
DOCUMENT RESUME

ED 318 056 CS 507 127

AUTHOR Pisoni, David B.; And Others
TITLE Research on Speech Perception. Progress Report No.

12.

INSTITUTION Indiana Uiiv., Bloomington. Dept. of Psychology.
SPONS AGENCY Air Force Armstrong Aerospace Medical Research Lab,

Wright- Patterson AFB, OH.; National Institu' es of
Health (DHHS), Bethesda, Md.; National Science
Foundation, Washington, D.C.

PUB DATE 86
CONTRACT AF-F-33615-83-K-0501
GRANT BNS-83-05387; NS-07134-08; NS-12179-10
NOTE 457p.; For other reports in this series, see CS 507

123-129.
PUB TYPE Reports - Research/Technical (143) -- Collected Works

- General (020) -- Information Analyses (070)

EDRS PRICE MFO1 /PC19 Plus Postage.
DESCRIPTORS *Acoustic Phonetics; Auditory Discrimination;

*Auditory Perception; Communication Research;
Computer Software Development; Infants; *Language
Processing; Language Research; Linguistics; Speech;
*Speech Synt'lesizers

IDENTIFIERS Indiana University Bloomington; *Speech Perception;
Speech Research; Theory Development

ABSTRACT

Summarizing research activities in 1986, this is the
twelfth annual report of research on speech perception, analysis,
synthesis, and recognition conducted in the Speech Research
Laboratory of the Department of Psychology at Indiana University. The
report contains the following 23 articles: "Comprermision of
Digitally Encoded Natural Speech Using a Sentence Verification ...sk
(SVT): A -st Report" (D. B. Pisoni and M. J. Dedina);
"Comprehenon of Natural and Synthetic Speech: II. Effects of
Predictability on Verification of Sentences Controlled for
Intelligibility" (D. B. Pisoni and others); "Perceptual Learning of
Synthetic Speech Produced by Rule" (S. L. Greenspan and others);
"Trading Relations, Acoustic Cue Integration, and Context Effects in
Speech Perception" (D. B. Pisoni and P. A. Luce); "Using Template
Pattern Structure Information to Improve Speech Recognition
Performance" (M. Yuchtman and H. C. Nusbaum); "On Word-Initial
Voicing: Converging Sources of Evidence in Phonologically Disordered
Speech" (O. A. Gierut and D. A. Dinnsen); "On the Assessment of
Productive Phonological Knowledge" (J. A. Gierut); "Generative
Phonology and Error Pattern Analyses: Empirical Claims and
Differences" (J. A. Gierut); "Effects of Talker Uncertainty on
Auditory Word Recognition: A First Report" (J. W. Mullenix and D. B.
Pisoni); "Effects of Stress and Final-Consonant Voicing on Vowel
Production: Articulatory and Acoustic Analyses" (V. Summers);
"Preference Judgments Comparing Different Synthetic Voices" (3. S.

Logan and D. B. Pisoni); "Auditory Perception of Complex Sounds: Some
Comparisons of Speech vs. Nonspeech Signals" (D. B. Pisoni);
"Perceptual Attention in Monitoring Natural and Synthetic Speech" (H.
C. Nusbaum and others); "Intelligibility of Phoneme Specific
Sentences Using Three Text-to-Speech Systems and a Natural. Speech
Control" (J. S. Logan and D. B. Pisoni); "PRONOUNCE: A Program for



Pronunciation by Analogy" (M. J. Dedina and H. C. Nusbaum); "The Role
of the Lexicon in Speech Perception" (D. B. Pisoni and others); "The
Role of Structural Constraints in Auditory Word Recognition" (H. C.
Nusbaum and D. B. Pisoni); "A Brief Overview of Speech Synthesis and
Recognition Technologies" (D. B. Pisoni); "Developing Methods for
Assessing the Performance of Speech Synthesis and Recognition
Systems" (D. B. Pisoni and H. C. Nusbaum); "Recognition Performance
of Six Isolated Utterance Speech Recognicion Systems" (H. C. Nusbaum
and others); "Human Factors Issues for the Next Generation of Speech
Recognition Systems" (H. C. Nusbaum and D. B. Pisoni); "Using Speech
as an Index of Alcohol Intoxication" (C. S. Martin and M. Yuchtman);
"Effects of Wholistic versus Dimensional Training on Learning to
Identify Epectographic Displays of Speech" (B. G. Greene); and
"Testing the Performance of Isolated Utterance Speech Recognition
Devices" (H. C. Nusbaum and others). (SR)

*****************************************************************t****

*

Reproductions supplied by EDRS are the best that can be made
from the original document.



RESEARCH ON
SPEECH PERCEPTION

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

e Pisok)i

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).-

Progress Report No. 12
(1986)

Speech Research Laboratory

Department of Psychology

Indiana Unit'ersity
Bloomington, Indiana

47405

.Supporitil 1)1

Department of flealth and Human Services
U.S. Public Health Service

National Institutes of Health
Research Grant No. NS-12179- I()

National Institutes of Health
"Training Grant No. NS-07131-08

:National Science Foundation
RestaRh Grant No. liNS-82)-05',8-

and

U.S DEPARTMENT rIF EDUCATION
r.)frK. e Uf F durt.onl Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CE ^ITE R ;ERIC;

Tr,s dot urrenl has been reproduced as
rece.ved from the person or orcin,talton

1' Mnor r nargeS have been made t1 improve
,eurock,.ton duality

P,,nts of ,,ea, or c,g). mon s staled 1",,S d(K.
not r,er r Syanly represent officlad

OE RI Pos.twn or pot ry

U.S. Air Force
Armstrong Aerospace Medical Research Lahoratory (AFSC)

Contra( t No. AF-F-1,1;615-83-K-0501

BEST COPY AVAILABLE



RESEARCH ON SPEECH PERCEPTION

Progress Report No. 12

(1986)

David B. Pisoni, Ph.D.

Principal Investigator

Speech Research Laboratory
Department of Psychology

Irdiana University
Bloomington, Indiana 47405

Research Supported by:

Department of Health and Human Services
U. S. Public Health Service

National Institutes of Health
Research Grant No. NS-12179-10

National Institutes of Health
Training Grant No. NS-0/134-08

National Science Foundation
Research Grant No. BNS 83-05387

and

U. S. Air Force
Armstrong Aerospace Medical Research Laboratory (AFSC)

Contract No. AF-F-33615-83-K-0501



[RESEARCH ON SPEECH PERCEPTION Progress Report No. 12 (1986)]

Table of Contents

Introduction iii

I. Extender' Manuscripts . 1

Comprehension of digitally encoded natural speech using a sentence
verification task (SVT): A first report;
David B. Pisoni and Michael J. Dedina 3

Comprehension of natural and synthetic speech: II.
Effects of predictability on verification of sentences
controlled for intelligibility;
David B. Pisoni, Laura M. Manaus, and Michael J. Dedina 19

Perceptual learning of synthetic speech produced by rule;
Steven L. Greenspan, Howard C. Nusbaum, and David B. Pisoni . . '43

Trading relations, acoustic cue integration, and context effects
in speech perception; David B. Pisoni and Paul A. Luce 87

Using template pattern structure information to improve speech
recognition performance; Moshe Yuchtman and Howard C. Nusbaum . . 107

On word-initial voicing: Converging sources of evidence in
phonologically disordered speech;
Judith A. Gierut and Daniel A. WaInsen 125

On the assessment of productive phonological knowledge;
Judith A. Gierut 151

Generative phonology and error pattern analyses: Empirical claims
and differences; Judith A. Gierut 175

Effects of talker uncertainty on auditory word recognition:
A first report; John W. Mullennix and David B. Pisoni 205

Effects of stress and final-consonant voicing on vowel production:
Articulatory and acoustic analyses; Van Summers 223

Preference judgements comparing different synthetic voices;
John S. Logan and David B. Pisoni 263

II. Short Reports and Work in Progress
. . 291

Auditory perception of complex sounds: Some comparisons of speech
vs. nonspeech signals; David B. Pisani 293

Perceptual attention in monitoring natural and synthetic speech;
Howard C. Nusbaum, Steven L. Greenspan, and David B. Pisani . . . 307



Intelligibility of phoneme specific sentences using three
text-to-speech systems and a natural speech control;
John S. Logan and David B. Pisoni 319

PRONOUNCE: A program for pronunciation by analogy;
Michael J. Dedina and Howard C. Nusbaum 335

The role of the lexicon in speech perception;
David B. Pisoni, Paul A. Luce, and Howard C. Nusbaum 349

The role of structural constraints in auditory word recognition;
Howard C. Nusbaum and i",avid B. Pisani 361

A brief overview of speech synthesis and recognition technologies;
David B. Pisoni

369

Developing methods for assessing the performance of speech
synthesis and recognition systems;
David B. Pisoni and Howard C. Nusbaum 379

Recognition performance of six isolated utterance speech
recognition systems; Howard C. Nusbaum, C. Noah Davis,
David B. Pisoni and Ella Davis 389

Human factors issues for the next generation of speech recognition
systems; Howard C. Nusbaum and David B. Pisoni 403

Using speech as an index of alcohol intoxication;
Christopher S. Martin and Moshe Yuchtman 413

Effects of wholistic versus dimensional training on learning to
identify spectrographic displays of speech; Beth G. Greene . . . 427

III. Instrumentation and Software Development .
. 439

Testing the performance of isolated utterance speech recognition
devices; Howard C. Nusbaum, Christopher K. uavis,
David B. Pisoni, and Ella K. Davis 441

IV. PubliLations 457

V. SRL Laboratory Staff and Personnel
. 461



INTRODUCTION

This is the twelfth annual report summarizing the research activities on
speech perception, analysis, synthesis, and recognition carried out in the
Speech Research Laboratory, Department of Psychology, Indiana University in
Bloomington. As with previous reports, our main goal has been to summarize
various research activities over the past year and make them readily available
to granting agencies, sponsors and interested colleagues in the field. Some
of the papers contained in this report are extended manuscripts that have been
prepared for formal publication as journal articles or book chapters. Other
papers are simply short reports of research presented at professional meetings
during the past year or brief summaries of "on-going" research projects in the
laboratory. Frcl time to time, we also have included new information on
instrumentation and software support when we think this information would be
of interest or help to others. We have found the sharing of this information
to be very useful in facilitating our own research.

We are distributing reports of our research activities because of the
ever increasing lag in journal publications and the resulting delay in the
dissemination of new information and research findings in the field of speech
processing. We are, of course, very interested in following the work of other
colleagues who are carrying out research on speech perception, production,
analysis, synthesis, and recognition and, therefore, we would be grateful if
you would send us copies of your own recent reprints, preprints and progress
reports as they become available so that we can keep up with your latest
findings. Please address all correspondence to:

Professor David B. Pisoni
Speech Research Laboratory
Department of Psychology
Indiana University
Bloomington, Indiana 47405
USA
(812) 335-1155

Copies of this report are being sent primarily to libraries and specific
research institutions rather than individual scientists. Because of the
rising costs of publication and printing, it is not possible to provide
multiple copies of this report to people at the same institution or issue
copies to individuals. We are eager to enter into exchange agreements with
other institutions for their reports and publications. Please write to the
above address.

The information contained in the report is freely available to the public
and is not restricted in any way. The views expressed in these research
reports are those of the individual authors and do not reflect the opinions of
the granting agencies or sponsors of the specific research.
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Abstract

A sentence verification task (3VT) was used to measure comprehension of
short sentences of digitally encoded natural speech. Three different vocoders
were tested: (1) 16 kbps continuously variAble slope delta modulation (CVSD),
(2) 9.6 kbps time domain harmonic scaling subband coding (TDHS/SBC), and (3)
2.4 kbps linear predictive coding (LPC). Subjects listened to sentences
produced by one of these vocoders and were required to determine if each
sentence was "True" or "False". Subjects also transcribed the sentence after
each trial. Three dependent measures were obtained: (1) verification
accuracy, (2) verification response latency, and ,Z3) sentence transcription
accuracy. The folloing rank ordering was found across the three measures:
CVSD was comprehended the most accurately, followed by TDHS/SBC, and then LPC.
The difference in comprehension performance in the SVT between the
highest-ranked and lowest-ranked vocoders was statistically reliable and
robust for all three dependent measures. The present findings demonstrate
that the SVT is an extremely sensitive technique to measure comprehension
processes that are not indexed well by traditional tests of segmental
intelligibility such 613 the modified rhyme test (HRT), which is concerned with
phoneme and Zeature perception in isolated monosyllablic words. When
listeners are asked to "understand" the linguistic content of a message and to
execute an apiropriate response, the quality of the initial acoustic-phonetic
information in the speech signal appears to play an important role in

controlling both the speed and accuracy of the response.



Comprehension of Digitally Encoded Natural Speech

Using a Sentence Verification Task (SVT): A First Report

This paper reports the results of a study that examined the comprehension
of short naturally-spoken sentences using a sentence verification task (SVT).
In a recent study in our laboratory, Manous, Pisoni, Dedina and Nusbaum (1985)
found that sentence verification error rates, response latencies and
transcription scores provided very sensitive measures of listeners'
performance that could be used to index processing load in the comprehension
of synthetic speech produced by rule. The comprehension scores in this task
for ten synthetic voices also correlated very highly with measures of
segmental intelligibility obtained earlier experiments using the Modified
Rhyme Test. The results suggested that differences in the early stages of
processing the acoustic-phonetic input appear to cascade up the speech
processing system to influence comprehension as well as recognition processes.
Large and statistically reliable differences were obtained in latencies among
systems even when the sentences were accurately transcribed thus ensuring that
the sentences were correctly encoded on inp'it and not misperceived.

In the present study, we were interested in learning if these differences
in perceptual processes were due to properties of synthetic speech per se or
whether they may reflect a more general property of speech signals that have
been processed so as to reduce the information content of the linguistic
message by coding and bandwidth reduction techniques. It is a well-known
ohservation that the speech signal is extremely redundant and that the human
listener can tolerate massive distortions and degradation in the signal
characteristics without noticeable loss in intelligibility or comprehension of
the linguistic message. Would differences similar to those found with
synthetic speech also be observed with digitally encoded speech?

To study this problem, we examined the perceptual consequences of using
three different algorithms for digitally encoding natural speech produced by
both a male and female talker. The data reported by Manous et al. (1985) on
the comprehension of synthetic speech using the SVT procedure demonstrated
extremely reliable differences among synthetic voices even though the
differences in some z,.!. th scores were relatively small. We hoped that this
same procedure could be l!sed to reveal differences in the perception of
natural speech that was processed using digital encoding techniques. The
three digital signal processing techniques used in this study were: (1)
continuously variable slope delta modulation (CVSD); (2) time domain harmonic
scaling subband coding (TDHS/SBC) and (3) linear predictive coding (LPC). The
CVSD has a data rate of 16 kbps, the TOHS/SBC has a data rate of 9.6 kbps and
the LPC-10, the DoD government standard, has a bit rate of 2.4 kbps. The
natural speech for this study was produced by one male talker and one female
talker. Both were native speakers of English and came from the midwestern
region of the UniteJ States.

Given the recent findings of Nixon, Anderson and Moore (1985) on the
perception of natural sp "ech, digitally encoded speech, and synthetic speech
in noise ring the modified rhyme test (MRT), we were interested in
determinini, the consequences of using the three different speech encoding
algorithms on comprehension performance in the SVT. Nixon et al. (1935)
reported fairly small differences in the MRT scores obtained in noise for
these same three digital sprJech coders over the range of S/N ratios that were
studied. The TDIiS /SBC speech coder was the worst of the three systems even



though the overall difference was only about ten percent. The LPC was the
best, with the CVSD falling somewhere in the middle. As expected, unprocessed
natural speech showed substantially higher MRT scores at all S/N ratios tested
compared to the digitally processed speech and the synthetically produced
speech. Of particular interest in the Nixon et. al. (1985) study. however,
was the unexpected finding that high-quality synthetic speech generated
automatically by rule was very close to natural speech over the range of S/N
ratios studied. Overall, MRT scores for this particular text-to-speech
synthesizer were higher than any of the systems tested including the three
digital speech coders using natural speech and the two other text-to-speech
systems.

Although all current speech synthesis systems produce speech that is
mechanical and unnatural sounding, the segmental intelligibility of several of
Lhese systems appears to be extremely high, approaching that obtained with
natural speech (see Pisoni, Nusbaum u Greene, 1985; Greene, Logan, & Pisoni,
1986). Based on early research on speech synthesis at Haskins laboratories in
the early 1950's, there is some reason to believe that naturalness and
segmental intelligibility are orthogonal perceptual dimensions and that even
highly mechanical-sounding speech may still be highly intelligible and may
remain so even under adverse listening conditions. Indeed, the very earliest
studies of speech synthesis by rule using the Haskins Pattern Playback
produced highly intelligible although admittedly quite unnatural sounding
speech because of the monotone fundamental frequency used to synthesize the
harmonic series (Cooper, Liberman & Borst, 1951; Cooper, Liberman, Borst $.

Gerstman, 1952).

The purpose of the present investigation was to measure the comprehension
of short sentences of digitally encoded natural speech using the sentence
verification task developed recently in our laboratory by Manous et al.
(1985). Although Nixon et. al (1985) reported small differences in MRT
scores among the three digital speech coders, we hoped that a more sensitive
test employing response latencies and transcription scores would reveal a more
robust pattern of differences that could be compared with the earlier results
of Manous et al. (1985) obtained using synthetic speech produced by rule.
Moreover, we were interested in detek.aining if differences at the
acoustic-phonetic level would affect high-level processes associated with
comprehensions of the linguistic message.

Method

Subjects. The subjects were undergraduate students enrolled in an
introductory psychology course at Indiana University. All were native
speakers of English who reported no history of a speech or hearing disorder at
the time of testing. The subjects fulfilled a course requirement in
introductory psychology by participating in this study. Between 13 and 16
subjects participated in each of the 6 conditions of the experiment, for a
total of 90 subjects. None of the subjects had any previous experience in
listening to synthetic speech before the present study.

Stimuli. The test items were sixty short English sentences origi.-ally
developed by Dr. Harry Levitt of CUNY for testing a visual speech display
system for hearing impaired subjects (Weiss, Levitt, & Halprin, 1983). All
sentences were screened in our laboratory by two independent ,;udges to
eliminate items that were potentially ambiguous or inappropriate for an
auditory comprehension task. The final materials used in the experiment were
30 three-word and 30 six-word sentences; half of the sentences at each length
were "True" and half were "False." The false sentences could not be falsified



until the subject heard the last word in the sentence. Thus, for both the
true and false sentences, subjects had to listen to the entire sentence to
respond correctly. Four additional sentences were chosen as practice items to
familiarize the subjects with the task and materials.

Six tokens of each of the 60 test sentences were produced for the
experiment. Each item was recorded on audio tape by a male talker (PAL) and a
female talker (JCL). The tape was then sent to the Air Force Aerospace
Medical Research Laboratory at Wright-Patterson Air Force Base for processing.
The sentences were processed by the three digital encoding techniques
mentioned above, then recorded on audio tape a.d sent back to our laboratory.
The sentences were then low-pass filtered at 4.8 kHz, and digitized at 10 kHz
using a 12-bit A/D converter and edited into individual stimulus files using
an interactive waveform editor.

Procedure. Subjects were run in groups ranging in size from three to
five listeners. Each subject sat at a booth equipped with high-quality
matched and calibrated headphones (Telephonics TDH-39) and a two-button
response box that was interfaced to a PDP-11/34 computer. At the beginning of
each session, the experimenter read aloud the instructions to the subjects
while they read a printed version in front of them. Subjects were told that
they would heal a short sentence on each trial and that their task was to
determine if the sentence was "True" or "False." Then subjects received four
practice trials to familiarize themselves with the task and with the sound
quality of the particular type of speech used in each condition. Following
the practice trials, 60 experimental trials were presented. The entire
experiment lasted about a half hour.

Test sentences were presented to the subjects over headphones. All
stimulus materials were output using a FOP-11/34 computer via a 12-bit D/A
converter. On each trial, subjects first heard a sentence and then made a
forced-choice True/False response by pressing one of the appropriately
labelled buttons on the two-button response box. Subjects were instructed to
respond as quickly and accurately as possible when making their responses.
After they had entered their response on each trial sutjects were required to
transcribe the entire sentence by writing down exactly what they heard on a
separate response sheet. When all of the subjects finished transcribing the
sentence, the next trial vegan. The experimenter remained in the experimental
room during the course cf the experiment to ensure that subjects were
responding appropriately. The trials were paced to the slowest subject in
each group. Response latencies were measured from the onset of each sentence
to the subject's response, using special purpose computer-controlled routines.
The duration of each sentence was then subtracted from the measured response
latency to provide a true measure of response time from the end of the
sentence that is not contaminated by differences in stimulus length.

Results

The data were analyzed using three different dependent measures: (1)
sentence verfication error rate, (2) verification response latency, and (3)
sentence transcription error rate. Separate ANOVAs were carried out for each
of the three dependent measures to determine the effects of vocoder, voice
gender, and sentence length on subjects' performance. For each dependent
measure, "True" and "False" responses were analyzed separately. In these
analyses, vocoder and voice gender were between-subjects factors and sentence
length was a within-subjects factor.



Sentence Verification Accuracy. The error rates for each voice at each
sentence are splayed in Figures la and lb for 'True" and "False"
responses, respectively. ANOVAs revealed a significant main effect of vocoder
for both "True" and "False" responses (F . 32.93, p < .0001 and F = 49.17, p <
.0001), a main effect of gender for "True" responses (F = 5.33, p < .0235),
and a main effect of length for "False" responses (F . 7.27, p < .0085). In

addition, the ANOVA for "True" responses showed a length by vocoder
interaction (F = 1.16, p < .0461), and a length by vocoder by gender
interaction (F = 3.62, p < .0310). The ANOVA for "False" responses showed a

main effect of length (F . 7.27, p < .0095), and interactions between vo,zoder
and gender (F = 17.04, p < .0001), and length and vocoder (F = 9.37, p <

.0002). Newman-Keuls post-hoc analyses were carried out to determine which
vocoders differed significantly from the others. The analyses were done
separately for each voice gender. For the male voice, LPC had a significantly
higher error rate than TDHS/SBC and CVSD. TDHS/SBC and CVSD did not differ
from each other. For the female voice, CVSD had a lower error rate than LPC
and TDHS/SBC, but LPC and TDHS/SBC did not differ.

Insert Figures la and lb about here

Sentence Verification Latencies. Response latencies were analyzed only
for sentences that had been both verified correctly and transcribed correctly
verbatim. The reason for using only these trials was to insure that the

sentences were encoded correctly on input and that any observed differences
were not due to misperceptions at the time of perceptual encoding. Thus, any
differences in the pattern of latencies would have to be due to processes
related to comprehension of the message. Verification latencies ere shown in

Figures 2a and 2b for "True" and "False" responses, respectively. Figures 3a
and 3b show the proportion of the total responses in each voice condition
which were included in calculating the verification latencies.

Insert Figures 2a, 2b, 3a and 3b about here

For true sentences, an ANOVA revealed a significant main effect of

vocoder (F = 53.13, p < .0001), and an interaction between length and gender
(F = 7.05, p < .0095). For false sentences, ignificant main effects were
found for vocoder (F = 51.43, p < .0001) and sentence length (F . 32.52, p <
.0001), and interactions were found between voice and gender (F = 4.27, p <

.0172), and ?ength and vocoder (F = 13.69, p < .0001). Newman-Keuls post-hoc
analyses revealed the same pattern for response latencies as we found for

error rates in the previous analysis. For both the male and female voices,
CVSD was responded to significantly faster than LPC. With the male voice,

TDHS/SBC differed from LPC but not from CVSD. However, with the female voice,
TDHS/SBC differed from CVSD but not from LPC.

Sentence Transcription Accuracy. Sentence transcription data were
hand-scored for the absolute number of errors in correctly transcribing the
key words in each sentence. A word was scored as a correct response if it was

-8-,
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an exact phonemic match of the corresponding key word. Spelling mistakes were
ignored. The number of errors was then used to compute an error percentage
for each subject on true and false sentences of each length. These data are
shown in Figures 4a and 4b.

Insert Figures 4a and 4b about here

ANOVAs on these transcription data revealed a main effect of vocoder for

both true and false sentences (F = 216.75, p < .0001; F = 434.49, p < .0001).
For true sentences, significant interactions of vocoder with gender (F

77.21, p < .0001) and length with gender (F = 5.29, p < .0239) were observed.
In addition, a three-way interaction between length, vocoder, and gender was

found for true sentences (F = 5.06, p < .0084). A significant main effect of
length (F . 91.31, p < .0001), and interactions of vocoder with gender (F

61.16, p < .0001), and length with vocoder (F = 36.63, p < .0001) were also
observed for the false sentences. Post-hoc tests showed a similar pattern for
transcription errors as we found in our analyses of the other two dependent
measures. Sentences produced by CVSD were transcribed more accurately than

those produced by LPC in all conditions. With the male voice, TDHS/SBC
differed from LPC but not CVSD for both "True" and "False" responses. 7ith
the female voice, TDHS/SBC differed from CVSD but not LPC for "True"
responses. Using the sentence transcription scores, however, all three

vocoders differed significantly with the female voice for "False" responses.
CVSD was transcribed most accurately, and LPC was transcribed least
accurately. This pattern of results differs slightly from the findings
obtained using the other two dependent measures.

Discussion

The results of the present study demonstrate reliable and extremely
robust differences in comprehension of short sentences processed by three
digital vocoders. The overall ranking on all three measures -- verification
accuracy, verification latency, and sentence transcription accuracy parallels
the data rate of the vocoders under examination. The worst system, the

LPC-10, had a data rate of 2.4 kbps whereas the best system, the CVSD, had a
data rate of 16 kbps. These two systems also differ in the kind of encoding
algorithm used to process speech. The LPC is primarily a technique involving
analyses of speech signals in the spectral domain whereas the CVSD involves

analyses in the time domain. We also observed a reliable and very consistent
interaction between vocoder and talker. The TDHS/SBC was consistently worse

for the female talker than the male talker across all three dependent
measures.

Setting aside the gross differences among the encoding algorithms used in
these vocoders, the results of the present study are of interest in connection
with the findings reported recently by Nixon et al. (1985) on the

intelligibility of digitally encoded speech in noise and the earlier study
from our laboratory by Manous et al. (1985) on the comprehension of synthetic
speech produced by rule. Using the MRT procedure, Nixon et al. (1985) found

very small differences among the thLee digital vocoders used here. No

statistical analyses of the differences were reported in their paper so we can
only infer from our own visual examination of their figures that the
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differencec were probably not statistically reliable. In contrast, using the
same three vocoders, we obtained large and consistent differences in the

comprehension of short sentences. Thus, the present procedure using the SVT
task appears to be much more sensitive to quality differences among vocoders

than traditional forced-choice measures of segmental intelligibility using
isolated monosyllabic words.

These comprehension findings which were obtained for both verification

accuracy and response latencies are more impressive when one considers that
the differences were obtained on test trials in which the observer correctly

transcribed the sentence. Thus, differences in segmental intelligibility due
to misperceiving of the input signal could be effectively ruled out as an

explanation of the observed differences among the systems. In other words,
the test items were correctly encoded on input, and therefore the differences
we obtained must reflect some process or processes above the level of phoneme
recognition. Whatever the nature of these differences turns out to be, it is

clear that the speech processing system is somehow registering, and then
passing on to higher processing levels, properties of the speech signal

related to its initial segmental intelligibility. Although a test sentence
may be correctly transcribed in terms of its lexical content, there appears to

be a cost associated with encoding a degraded signal, and this cost is
cascaded up the processing system. While these quality differences may not be
reliably indexed by traditional intelligibility measures such as the MRT or
DRT, the present procedure is able to separate out differences among these

three vocoders in a reliable and robust manner. These differences in

comprehension performance reflect the underlying perceptual and cognitive
processes involved in extracting the linguistic message from the speech signal

and responding appropriately to the meaning of the linguistic information

encoded in the signal rather than simply responding to the linguistic form of
the message. The results of this study demonstrate important differences

among three widely used digital vocoders in a task that requires more than
simple recognition and subsequent transcription of the message.

The findings obtained in the present study also extend the earlier

research reported recently by Manaus et al. (1985) on the comprehension of
synthetic speech produced by rule. Reliable differences in the same three

depenz.hmt measures were obtained for natural speech and several types of
synthetic speech. The SVT task was shown to be extremely sensitive to

differences among different systems generating synthetic speech by rule. Like

the present results, the findings suggested that differences in the processing
of the acoustic-phonetic input affect verification accuracy and latency and,
therefore, appear to cascade up the processing system to affect higher-level

operations typically associated with comprehension. For purposes of

comparison, we present the overall error rates for both studies. Figure 5

shows the verification error rates found by Manous et. al for five

text-to-speech systems and natural speech, alongside data from the present

study using three digital vocoders. The data in this figure are averaged
across gender and sentence length. Performance on TDHS/SBC and CVSD are

roughly equivalent to the two lowest quality synthesizers, while the error
rate for LPC is almost twice as high as for the lowest quality synthesizer.

These results are consistent with the data reported by Nixon et al. (1985)

showing higher levels of performance with vn-.hetic speech produced by rule

compared to natural speech processed by several different digital encoding
algorithms.



Insert Figure 5 about here

In addition to observing reliable differences among the three vocoders, a
number of other findings emerged from our analyses of the comprehension
scores. Some of these differences reflect processes that would ordinarily be
related to the linguistic analysis of the message rather than the perceptual
analysis of the signal. For example, for false sentences we found an
extremely reliable effect of sentence length. The six word false sentences
consistently produced more verification errors and were responded to more
slowly than the three word sentences. This finding suggests that the
differences among the processing algorithms are not restricted to only
analyses of the segmental and lexical content of the signal. Rather,
processing operations typically associated with comprehension and linguistic
analysis of the sentence structure are affected as well even when the
sentences are correctly perceived and encoded. Further studies of these
processing differences would no doubt .e very worthwhile to determine the
nature of the differences and to locate the specific operations within the
language processing system.

We also observed several complex interactions between vocoder and gender
suggesting that some algorithms are not well suited for encoding of female
speech. These findings are not at all surprising. For example, the error
rates and latencies fcr the 9.6 kbps TDHS/SBC algorithm were consistently
higher for the female talker than the male talker reflecting, in part, the
difficulty encountered in dealing with the higher fundamental frequencies of
female talkers and the greater spacing of the harmonics of the source
spectrum. Some findings on differences among talkers using LPC techniques
have been reported in the literature by Kahn and Garst (1983). Data on talker
variability using other digital encoding techniques have also been described
by Smith (1979). Thus, there is good reason to expect that talker differences
should also emerge in tasks such as the present (-le which appears to be even
more sensitive than MRT and DRT scores to factors affecting intelligibility
and comprehension.

Much of the research on speech communication over the last forty years
has been concerned with behavioral measures of segmental intelligibility using
materials such as PB :ists, MRT or DRT tests (Voiers, 1977). These techniques
are easy to administer and score and they provide extremely reliable data that
reflects the quality and sufficiency of the segmental acoustic-phonetic
properties of the speech signal. These traditional methods were not designed
to study the cognitive processes that mediate spoken language comprehension.
Taken together with the earlier study by Manous et al. (1985), we believe the
present findings using the SVT task may provide an extremely powerful method
to study the underlying perceptual and cognitive processes that mediate
between the speech waveform and understanding the content of the linguistic
message. The SVT task is able to discriminate large and consistent
differences between several digital encoding algorithms that are not revealed
very well using the conventional MRT or DRT measures. Our findings suggest
that segmental intelligibility is only one component, although obviously a
very important one, in the comprehension proces3. Additional findings using
techniques such as the SVT should prove extremely useful in studying the
interface between speech perception and spoken language comprehension and in
decomposing the processing stages and operations. The fact that spoken
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language is so redundant and that )ur speech processing system is so robust
often obscures the basic operations we wish to study and understand. We are
encouraged, however, by the results obtained in the present study and the
earlier findings of Manous et al. (1985). It may now be possible to begin to
study comprehension processes in ways that will reveal the close
interdependence between the acoustic-phonetic information in the speech signal
and the rich and varied sources of knowledge and linguistic constraints that
listeners have available to them as native speakers of the language.
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Abstract

A sentence verification task (SVT) was used to study the effects of
sentence predictability on comprehension of natural speech and synthetic
speech that was controlled for intelligibility. Sentences generated using
synthetic speech were matched on intelligibility with natural speech using
results obtained from a separate sentence transcription task. In the main
experiment, the sentence verification task included true and false sentences
that varied in predictability. Results showed differences in verification
speed between natural and synthetic sentences, despite the fact that these
materials were controlled for intelligibility. This finding suggests that the
differences in perception and comprehension between natural and synthetic
speech go beyond segmental intelligibility as measured by transcription
accuracy. The observed differences in response times appear to be related to
the cognitive processes involved in understanding and verifying the truth
value of short sentences. Reliable effects of predictability on error rates
and response latencies were also observed. High predictability sentences
displayed lover error rates and faster response times than low predictability
sentences. However, predictability did not have differential effects on the
processing of synthetic speech as expected. The results demonstrate the need
to devtlop new measures of sentence comprehension that can be used to study
speech communication at processing levels above and beyond those indexed
through transcription tasks or forced-choice intelligibility tests such as the
MRT.
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Comprehension of Natural and Synthetic Speech: II. Effects of Predictability

on the Verification of Sentences Controlled for Intelligibility

Over the past six years, numerous studies on the perception of synthetic
speech have been conducted in our laboratory at Indiana University (see
Pisoni, 1982; Pisoni, Nusbaum and Greene, 1985; Nusbaum and Pisoni, 1985).
The bulk of these studies have focused on measures of segmental
intelligibility such as identification of isolated words and recognition of
words in fluent sentences (e.g., House, Williams, Hecker and Kryter, 1965;
Egan, 1948; Nye and Gaitenby, 1973). Results from these studies of phoneme
and word perception have shown that synthetic speech is consistently less
intelligible than natural speech (see Greene, Logan, and Pisoni, 1986). This
was observed for a variety of synthesis systems ranging from very low-quality
to extremely natural sounding speech.

Most perceptual studies dealing with segmental intelligthility have not
addressed the issue of comprehension processes involved in understanding the
linguistic content of the message. In tests of segmental intelligibility such
as the ones we have carried out, subjects are not required to extract or
compute the meanings of utterances in order to make appropriate responses.
They can carry out the task based on their discrimination of the
acoustic-phonetic properties of the speech alone without fully understanding
what they are listening to, or making a response that is based on the
comprehension of the message. Depending on the type of comprehension test
employed, subjects must use other information to generate a correct response.

To date, relatively little work has been done to examine how listeners
comprehend synthetic speech produced automatically by text-to-speech systems.
Speech quality, or overall intelligibility of the input signal, is certainly
an important factor involved in spoken language comprehension. Yet adiitional
consideration must also be given to the contribution of higher sources of
knowledge in "understanding" the message and responding appropriately to the
truth-value cf sentences.

The few studies that have been conducted to excmine comprehension of
natural and synthetic speech have produced equivocal results, making it
difficult to draw any general conclusions about the comprehension process. In
one early study, McHugh (1976) assessed comprehension of synthetic and natural
speech using passages selected from a standardized reading comprehension test.
Prosodic information was manipulated by presenting six different stress
variations of the synthetic speech from the Votrax synthesizer along with a
natural speech control condition. Subjects' performance showed no significant
differences across the seven conditions. McHugh concluded that the test she
used was too sensitive to individual differences in performance to reveal any
difference between the various experimental versions of speech that were
tested.

In studies carried out in our laboratory Pisoni (1979) and Pisoni and
Hunnicut (1980) studied the comprehension of natural speech and synthetic
speech produced by MITalk, a text-to-speech system developed at MIT (see
Allen, 1981). Listening comprehension was compared to reading comprehension
for identical passages, using multiple-choice questions taken from
standardized reading comprehension tests. Pisoni and Hunnicutt's results
demonstrated that naive listeners were able to comprehend passages of
synthetic speech at levels comparable to subjects who either heard passage-. of
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natural speech or who read the passages and answered the same questions after
presentation of each passage.

In another study using passages of connected speech, Jenkins and Franklin
(1981) examined comprehension of natural speech and synthetic speech produced
by a Votrax text-to-speech system, using a free recall task and a sentence
dictation procedure. One group of subjects transcribed a passage presented
one sentence at a time. Another group of subjects listened to the entire
passage and then attempted to recall the information just presented, in a free
recall format. Once again, the results showed little difference in

performance between natural and synthetic speech. Apparently, the behavioral
measures used to assess comprehension were too gross and insensitive to reveal
differences between various types of speech.

More recently, Schwab, Nusbaum and Pisoni (1985) included listening
comprehension passages and true-false questions along with other tests to
study the effects of perceptual learning on the perception of synthetic
speech. As in the previous studies, the comprehension task did not reveal any
effects of training or any differences between natural and synthetic speech.
These results were surprising because all of the other tests (e.g.

identification of isolated words, recognition of words in fluent sentences)
used to assess performance in this study showed significant effects of
training on the perception of synthetic speech.

Following up on these earlier comprehension studies, Moody and Joost
(1986) have recently examined listener comprehension rates for synthesized
speech using DECtalk, digitized speech using 9.6 and 2.4 kbps LPC algorithms,
and natural recorded speech. Passages and multiple-choice questions were
selected from standardized verbal exams such as the SAT and GRE. Their
results showed significant differences in question-answering performance for
synthetic speech and 2.4 kbps LPC digitized speech compared to the natural
speech. The difficulty of the passage affected comprehension rates for all
passages, regardless of the type of speech signal used. However, Moody and
Joost observed an unusual interaction between passage difficulty and speech
type in their study. When subjects listened to more difficult information in

some passages, differences in performance between the natural speech group and
the synthetic speech group were net observed. However, when the comprehension
materials were easy, significant differences between the natural and synthetic
speech groups emerged.

It is not immediately obvious to us how one world account for these
findings given the earlier study of Luce, Feustel, and Pisoni (1983) which
showed increased error rates in serial recall when capacity demands of the

task were increased. We do not know of any current theory of human
information processing or language comprehension that would predict the
results observed by Moody and Joost. If there is some relationship between
comprehension difficulty and signal quality, then differences in performance
among natural speech, synthetic speech, and digitally vocoded speech should
emerge more robustly under experimental conditions in which there are greater
capacity demands on the processes used in perception or comprehension.
Resolution of this problem obviously awaits additional research on

comprehension using long passages of connected speech that have been
specifically designed to differ in comprehension difficulty. For the present,
we simply wish to point out that research on comprehension of synthetic speech
continues to yield equivocal results that are difficult to integrate with
other findings reported in the literature. When a situation like this arises,
it is often useful to examine some of the commonalities and differences in the
experimental procedures that have been used in this research and consider
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alternative techniques that may be used to approach the same general problem.

When considered together, all of the previous studies on comprehension
have a number of similarities. First, they all use,.: post-perceptual measures
to index differences in comprehension. It is well-known in the comprehension
literature that post-perceptual measures are affected by a variety of subject
strategies that rely on numerous sources of knowledge in addition to the
linguistic information contained in the input signal. Second, these studies
have all used multiple-choice or true-false question answering tasks or recall
tasks which encourage subjects to exploit their real-world knowledge to solve
the task. Finally, all of these studies have used accuracy measures to index
processing load instead of response latencies. The consistent failure to find
differences in perception between natural speech and several kinds of
synthetic speech using these measures suggests the need for much more
sensitive methods of measuring ongoing processing activities. One such method
is the sentence verification task, which has been used extensively in previous
psycholinguistic investigations of the language comprehension process.

Sentence verification has been used for many years to assess processing
activities in studies on language perception and compreh:Insion (see Clark and
Clark, 1977). In one of the earliest studies using this procedure, Gough
(1965, 1966) found that sentence verification time varied as a function of
grammatical form. Reaction times were shorter for active as opposed to
passive sentences, affirmative as opposed to negative sentences, and true as
opposed to false sentences. Collins and Quillian 01969, 1970) and Conrad
(1972) have used sentence verification to study the organization and retrieval
of semantic knowledge about words in long-term memory (see Chang, 1986, for a
recent review). Both studies used response time as a measure to infer the
level of processing required to verify information contained in various types
of sentences, such as "a canary is a bird" or "a canary has wings." More
recently, Larkey and Danley (1983) used sentence verification to investigate
the role of prosody in comprehension of digitally vocoded natural speech.
They found that subjects were 48 msec slower in responding to sentences with a
monotone pitch than to sentences with the original prosodic contour lett
intact.

In a recent study carried out in our laboratory, Manaus, Pisoni, Dedina
and Nusbaum (1985) used the sentence verification task to investigate
differences in comprehension between natural speech and synthetic speech
generated by five different text-to-speech systems. They found that response
latencies to verify short sentences sentences increased as segmental
intelligibility of the speech decreased. Specifically, the results yielded a
reliable rank-ordering of the different voices in which level of performance
corresponded to the quality of segmental information for each type of speech.
That is, performance on the sentence verification task for the various voices
followed the pattern observed in earlier standardized tests of segmental
intelligibility (Greene, Logan, and Pisoni, 1986). These findings suggest
that the early stages of the comprehension process depend primarily, if not
exclusively, on segmental intelligibility. However, it is possible that other
processes are also affected by the quality of the initial acoustic-phonetic
input in the speech signal. Differences in the early stages of perceptual
analysis of the input may cascade up the processing system and impact on other
processes more closely related to comprehension.

The present study was designed to examine this issue more closely and to
dissociate effects due to segmental intelligibility from those related to
comprehension processes. By controlling the level of intelligibility of the
speech, we hoped to assess the comprehension process more directly and to draw
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inferences about processing activities that were not confounded with initial
differences in segmental intelligibility. To accomplish this, we matcLed
high-quality synthetic speech produced by DECtalk with natural speech in terms
of segmental intelligibility. We then used the sentence verification task to
compare performance for these two types of stimulus materials using test
sentences that varied in length and semantic predictability. If the
differences in perception between natural speech and very high quality
synthetic speech are not due only to segmental intelligibility, then we would
expect to find differences in response times in a verification task even
though the error rates were comparable. Such a finding would be an important
demonstration that the perception and comprehension of synthetic speech
differs in important ways from the processing of natural speech (Pisoni,
1982). Moreover, such a finding with stimulus materials controlled for
segmental intelligibility would suggest that cognitive processes related to
comprehension are also affected by the initial quality of the
acoustic-phonetic input in the speech signal.

If synthetic speech speech is indeed more difficult to comprehend in some
general sense than natural speech, this difference should be influenced by
other factors that affect speech perception and spoken language comprehension.
In order to investigate this hypothesis, we manipulated the predictability of
the last word in the sentences. In low-predictability sentences, less
contextual information is available from earlier context to facilitate the
perceptual process. In this case, listeners must rely more heavily on the

acoustic-phonetic input in these sentences, therefore drawing scarce
processing resources away from high-level comprehension processes. Assuming
that the human speech processing system has only limited processing capacity
at its disposal, we expect that if synthetic speech is more difficult to

understand than natural speech, a manipulation of predictability would have a
larger effect on synthetic speech than on natural speech. In addition to

manipulating sentence predictability, we also varied sentence length as a
rough index of syntactic complexity. We expected to find interactions of

these two variables with the voice manipulation. If sentence length is an
index of syntactic complexity, we expected to find that long sentences would
be more difficult to process than short sentences and that this effect would
be reliably greater for synthetic speech than natural speech.

Method

Subjects. Subjects were either volunteers who were paid $3.50 for their
participation in this study or introductory psychology students who
participated to fulfill a course requirement. Subjects were drawn from the

same general university population. An equal number of subjects from these
two groups participated in each condition of the expe-invent. All were native
speakers of English with no reported history of a speech or hearing disorder.
None of the subjects had any extensive experience in listening to synthetic
speech before the present experiment.

Stimuli. In the first phase of the experiment, test items were

specifically developed to vary along the dimension of semantic predictability.
These materials were generated by having subjects provide the final word to

complete 100 3-word and 100 6-word sentence frames. Exairples of these stimuli
are given in Table 1. For half of the sentences of each length, subjects were
instructed to create true sentences; for the other half, subject, were
required to construct false sentences. Forty subjects participated in this

phase of the experiment.



Insert Table 1 about here

The data from this task were scored in terms of response frequency for
each item. The sentences were then categorized by response predictability.
Sentences for which a high frequency of subjects gave the same response and
for which there was only one response of high frequency were labelled "High
Predictability." Out of 40 subjects, 25 or more had to respond with the same
word in order for a sentence to be classified as "High Predictability." "Low
Predictability" sentences were defined as sentences for which there was a
unique response, that is, sentences for which only one subject gave that
particular response. Examples of "High Predictability" and "Low
Predictability" sentences are shown in Table 2.

Insert Table 2 about here

The second phase of the experiment involved intelligibility testing for
the sentences that were generated using synthetic speech produced by rule.
This phase was designed to match synthetically produced test sentences with
natural test sentences for segmental intelligibility. The sets of "High
Predictability" and "Low Predictability" sentences obtained in Phase 1 were
recorded on audio tape using the DECtalk version 2.0 text-to-speech system.
These sentences were then presented to subjects in a transcription task.

Twenty-four additional subjects listened to the sentences and transcribed
each one as accurately as possible with paper and pencil. Transcriptions were
scored for exact phonemic match to the original sentences. Spelling errors
were ignored unless they affected the meaning of the sentence (e.g. 'medal'
for 'metal').

Based on the data obtained in Phase 2, 40 true sentences and 40 false
sentences were selected to be used in the main sentence verification task.
For 77 of these sentences, there were no transcription errors; each of the
remaining three sentences had only ore transcription error. Half of the
sentences selected were "High predictability" sentences; the other half were
"Low predictability" sentences. In addition, half of the sentences of each
type were 3-word sentences and half were 6-word sentences.

Additional tokens of each of the 80 test sentences were produced by a
male talker (PAL). Both groups of test sentences, the synthetic speech and
the natural speech materials, were low-pass filtered at 4.8 kHz, then
digitized at 10 kHz using a 12-bit A/D converter and edited into individual
stimulus files using a digital waveform editing program.

Procedure. Sixty subjects participated in the final phase of the
experiw nt. Two to five subjects were run at a time in small groups. Each
subject sat at a booth equipped with high-quality matched and calibrated
headphones (Telephonics TDH-39) and a two-button response box. Stimulus
presentation and response collection were controlled by a PDP 11/34 computer.
At thL. beginning of each session, the experimenter read the instructions aloud
to the subjects while they simultaneously read a printed version in front of
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Table 1. Examples of Test Sentences Used for Predictability Norms

Three-Word Sentences:

Cotton is

Birds can

Six-Word Sentences:

Pots and pans are used for .

Most businessmen wear suits to



Table 2. Examples of High and Low Predictability Sentences

HIGH PREDICTABILITY

3-word --> Giraffes are tall. (TRUE)

Sandpaper is smooth. (FALSE)

6-word --> Pots and pans are used for cooking. (TRUE)

Sunglasses are most useful at night. (FALSE)

LOW PREDICTABILITY

3-word --> Trees have greenery. (TRUE)

Diamonds are rough. (FALSE)

6-word --> Most businessmen wear suits to lunch. (TRUE)

Leap year comes every four minutes. (FALSE)



them. Subjects were told that they would hear one sentence on each trial and
that their task was to determine if the sentence was "true" or "false". Each
group of subjects heard only one type of speech; half of the subjects listened
to natural speech, and hal:: listened to synthetic speech. Sentence length and
sentence predictability were within-subject factors.

Subjects received four practice trials to familiarize them with the task
and with the sound quality of the voice used in that particular condition.
Following the practice trials, 80 experimental trials were presented. Test
sentences were presented to subjects over headphones, via a 12-bit Dia
converter. On each trial, subjects first heard a sentence and then made a
forced-choice true/false response by pressing one of the appropriately
labelled buttons on a two-button response box. Subjects were instructed to
respond as quickly and accurately as possible when making their true/false
decisions. After entering their response, subjects were required to
transcribe each sentence on a separate answer sheet. This task was included
to ensure that subjects had correctly encoded the test sentences on input.

During the course of the experiment, the experimenter remained in the
experimental room to ensure that subjects were responding appropriately. Test
trials were paced to the slowest subject in each group. Response latencies
were measured using computer-controlled routines from the onset of each
sentence to the subject's response. The duration of each sentence was then
subtracted from the measured response latency to provide a measure of response
time that was not contaminated by differences in stimulus length.

Results

A few of our subjects seemed to ignore our request that they respond
quickly in this experiment. In order to reduce the subsequent variability in
our data, we omitted from our final analyses the subjects whose average
response latencies were greater than two standard deviations from the mean.
Using this criterion, three subjects were eliminated, two from the natural
speech group, and one from the synthetic speech groun. We also eliminated one
additional subject from the synthetic speech group, so that the same number of
subjects were omitted from each experimental condition. This last subject had
the slowest mean response time of the remaining subjects in the synthetic
speech group. Thus, the final analyses reported below were based on data
collected from 56 subjects.

Sentence Transcription Scores. In order to confirm that we had, in fact,
successfully controlled for the segmental intelligibility of the sentences
across the two sets of stimulus materials used in the experiment, we analysed
the effect of voice (natural vs. synthetic) on transcription accuracy. An
analysis of variance on the transcription scores revealed no significant
effect of voice for true sentences (F(1,54) . .96, N.S.) or for false
sentences (F(1,54) . .70, N.S.). The data were then analyzed using the two
other dependent measures: (1) sentence verification accuracy, and (2)
response latency. Separate analyses were carried out for each dependent
measure to assess the effects of the three experimental manipulations: (1)

voice, (2) sentence length, and (3) sentence predictability. In carrying out
these analyses, true awl false sentences were analyzed separately. The
experimental design included three main effects: voice was a between-subjects
factor, whereas sentence length and sentence predictability were
within- subjects factors. Unless otherwise noted, the significance levels
below are reported for the p < .01 level of confidence.
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Sentence Verification Accuracy. Figure 1 shows the verification error
rates for true and false sentences. Overall, the error rates were quite low,
demonstrating that subjects had little difficulty in understanding the
sentences and carrying out the verification task with both natural and
synthetic speech.

Insert Figure 1 about here

Inspection of the error rates shown in Figure 1 reveals several
consistent effects of the experimental variables. For the true responses,
displayed in the top panel of this figure, the observed error rates were
consistently higher for low predictability sentences than high predictability
sentences. This was found for both natural and synthetic speech and was
observed at each of the two sentence lengths used in the study. Analysis of
variance confirmed these observations for the effects of predictability on
true sentences (F(1,54) = 38.01, p < .001). All other effects in analyses of
the error rates for both true and false responses failed to reach
significance.

Although there was a trend for the error rates to be slightly higher for
the synthetic speech, the differences were not reliable in either analysis of
the true or false sentences. This result is not surprising considering the
procedures we used to match sentences on intelligibility before the main
verification experiment was carried out. The absence of an effect of voice in
the analysis of the verification error rates is also consistent with the
analyses of the transcription data described earlier in which no differences
were found in immediate recall between the natural and synthetic sentences -.
Thus, taken together, both sets of data--the transcription scores and the
sentence verification error rates, suggest that subjects correctly encoded the
stimulus materials at the time of input and that they comprehended the
linguistic content and meaning of the sentences. Although a reliable effect
of sentence predictability was observed for the true sentences, the absence of
a main effect for voice combined with the absence of any interactions with the
voice manipulation suggests that the differences in the perceptual encoding
between the natural and synthetic stimuli were minimal at best. In short, the
expected outcome for both of these measures was observed.

Verification Response Latency. Response latencies were analyzed only for
sentences that ha been both verified correctly and transcribed correctly.
Figure 2 shows the mean response latencies for true and false sentences in
each of the conditions of the design.

Insert Figure 2 about here



15

12

9

PERCENT
ERROR

6

3

0

15

12

9

PERCENT
ERROR

SENTENCE VERIFICATION ERROR RATE
FOR "TRUE" RESPONSES

3 WORD 6 WORD

NATURAL

E

VOICE

D HIGH

0 LOW

3 WORD 6 WORD

SYNTHETIC

SENTENCE VERIFICATION ERROR RATE
FOR "FALSE" RESPONSES

3 WORD 6 WORD

HIGH

[21 LOW

3 WORD 6 WORD

NATURAL SYNTHETIC

VOICE

Figure 1. Sentence verification error rates fol "True" responses (top panel)
and "False" responses (bottom panel) for natural and synthetic speech at
each of two sentence lengths. The high-predictability sentences are
displayed with open bars; the low-predictability sentences are displayed
with striped bars.
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Inspection of both panels in Figure 2 shows several consistent effects
for true and false response latencies. First, there is a very prominent
effect of sentence predictability on response latency. This may be observed
in both panels of the figure. High predictability sentences were responded to
much more rapidly than low predictability sentences and this is present for
both true and false sentenses, respectively. Table 3 shows the mean latencies
for each of the four cells (collapsing across voice) in both conditions of the
experimental design.

Insert Table 3 about here

Separate analyses of variance on the tit_ and false responses revealed highly
significant effects for sentence predictability, F(1,54) = 121.64, p < .001
and F(1,54) . 32.74, p < .001, respectively. No interactions were observed in
either analysis for sentence predictability.

Second, a consistent effect of voice can be observed in both panels of
Figure 2. Natural speech was responded to more rapidly than synthetic speech.
Table 4 provides the mean latencies for the four cells (collapsing across
predictability) in the experimental design for the true and false responses.

Insert Table 4 about here

Although the figure displays this effect for both true and false
responses, separate analyses of variance established that the effect of voice
was only significant for the true responses (P(1,54) = 9.07, p < .004). The
ANOVA for the false responses produced a result that was in the expected
direction from the data trends shown in Figure 2, but it did not reach
statistical significance (F(1,54) = 3.94, p < .053).

None of the other main effects or interactions reached statistical
significance in either analysis of true or false responses and no interactions
were observed with either of the two main variables (i.e., predictability and
voice) that did reach significance. Thus, consistent and reliable differences
in verification latencies between natural and synthetic speech were observed
even when the sentences were controlled for intelligibility. These results
provide evidence against the claim that the observed differences were due to
differences in segmental intelligibility betweea natural and synthetic speech
or differences in encoding strategies at the time of input. The 200 msec

.gall mean difference in the response latencies between natural and
synthetic speech found for the t.ue responses suggests that some aspect of the
comprehension process other than perceptual encoding is affected by the
quality of the acoustic-phonetic input in the speech signal. It is clear from
these findings that highly intelligible synthetic speech produced by rule
still produces a decrement in performance even when elaborate steps have been
taken to experimentally control for differences in the initial level of
intelligibility of the stimulus materials. The nature of these differences in
the comprehension process will be considered below.

' "7
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Table 3. Mean Response Latencies for Predictability and Length

3-word

6-word

3-word

6-word

TRUE

HIGH LOW
PREDICTABILITY PREDICTABILITY

553 815

492 788

FALSE

HIGH LOW
PREDICTABILITY PREDICTABILITY

629 813

650 730



Table 4. Mean Response Latencies for Voice and Length

3-word

6-word

3-word

6-word

TRUE

NATURAL SYNTHETIC

570 799

555 725

FALSE

NATURAL SYNTHETIC

643 799

627 753



General Discussion

The present investigation was designed to study the comprehension process
using much more sensitive response measures than have been employed in earlier
studies dealing with the perception and comprehension of synthetic speech
produced automatically by rule. Using short meaningful three- and six- word
sentences that were controlled for segmental intelligibility, we found that
response latencies in a sentence verification task were reliably faster for
sentences produced using natural speech than the same sentences produced using
high-quality synthetic speech generated by DECtalk. Thus, to a first
approximation, we were reasonably successful in finding a comprehension task
that would reveal meaningful differences in performance between natural speech
and very high quality synthetic speech. In the sections below, we offer an
account of these findings in terms of earlier work using the sentence
verification task to study language comprehension processes.

As we noted in the introduction to this report, previous studies on the
comprehension of synthetic speech have consistently failed to find reliable
differences in performance between natural speech and several kinds of
low-quality synthetic speech. Such findings have appeared anomalous to us
because other measures of phoneme perception, word recognition and sentence
transcription all reliably discriminated not only between natural and
synthetic speech but more importantly, between different kinds of synthetic
speech ranging from high quality systems such as DECtalk to very poor quality
systems such as ECHO (see Greene, Logan and Pisoni, 1986). We raised a number
of criticisms about the specific experimental procedures used in these earlier
studies, including some of own research, and we offered several suggestions as
fruitful alternatives to pursue in future work on this problem. The present
experiment which used a sentence verification task to study comprehension was
specifically designed with these criticisms in mind.

In addition to finding differences in the ,'erification latencies between
natural and synthetic speech, we also observe° a reliable effect of sentence
predictability on response latencies. This effect was found for both true and
false responses and was extremely robust. High predictability sentences were
consistently responded to more rapidly than low predictability sentences. To
our surprise, however, we failed to find any reliable effects of sentence
length on verification latencies. We failed to find any interactions among
the three experimental variables manipulated in this experiment. Contrary to
our original expectations, we did not observe the predicted interaction
between voice and sentence predictability which would have demonstrated
differential effects of predictability on the synthetically produced
sentences. Precisely why we failed to find this re-ult is unclear at this
time. Several suggestions will be considered below. Additional experimental
manipulations will be needed to determine the locus of the observed voice
effect in the language processing system. For the present time, however, the
absence of the predicted interaction between voice and sentence predictability
is an important finding that merits further attention.

The present results differ from our earlier study (see Manous et al.,
1985) in a number of respects that are important to consider at this point.
In the original SVT study, we found that sentence verification error rates and
response latencies were strongly relatc4 to the segmental intelligibility of
the palticulaL text-to-speech system under study. However, differences in
segmental intelligibility among the text-to-speech systems varied quite widely
and therefore the observed differences in the verification test could be
attributed to a variety of factors among which might be real differences in
the comprehension process itself or simply differences in the initial levels
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of intelligibility of the systems. As it stands, our earlier study could not
discriminate between the source or sources of the observed differences in

either the verification error rates or the response latencies. Differences in
the verification error rates suggest, however, that subjects probably did have
difficulty encoding some of the sentences, particularly those produced by the
low - quality systems. Our analyses of the transcription data, collected after
each sentence was verified, further suggested that this was a reasonable
account of the differences. Thus, the most parsimonious explanation of the
results of our earlier study was that the observed differences were probably
due to difficulties at the time of encoding because the initial level of

intelligibility of the systems varied so widely (see Greene, Logan and Pisoni,
1986, for a summary of the intelligibility data for these systems).

With regard to the outcome of the present study, such an explanation
would be difficult to find support for because the segmental intelligibility
of the test sentences was very carefully controlled before the experimental
data were collected. Moreover, the observed error rates for the verification
responses were extremely low and no reliable differences could be obserl, d in

the pattern of the errors across the experimental conditions. In short,
subjects did not have difficulty perceiving the sentences. They did have
difficulty, however, in determining whether the sentences were true or false.
This decision required subjects to understand the meaning of the sentences and
to respond appropriately.

The results of the present study suggest that several additional factors
related to processing operations involved in language comprehension may be
responsible for the observed differences in verification latencies. Because
the test sentences were matched on segmental intelligibility, the present
findings suggest that in addition to differences in segmental intelligibility,
differences also exist in comprehension between natural speech and high
quality synthetic speech generated by DECtalk and that these differences are
above and beyond differences related to the intelligibility of speech as
measured by traditional types of transcription tests or MRT scores. Whatever
the precise locus of the differences, the present findings demonstrate that
segmental intelligibility is not sufficient to account for the pattern of

response latencies observed in the present study.

In this connection, it is useful to consider briefly the findings of a

recent study carried out by Pisoni and Dedina (1986) who used a sentence
verification task with natural speech that had been processed using three
quite different digital encoding algorithms. Despite the fact that standard
tests of segmental intelligibility using the MRT revealed only very small
differences in performance among the three vocoders, the results of the
verification task revealed quite robust and consistent findings which could be
related directly to the data rate of the processing algorithms. Latencies
were fastest and error rates were lowest for the 16kbps CVSD algorithm,
followed by the 9.6kbps TDHS/SBC algorithm, and finally the 2.4kbps LPC-10
algorithm. Thus, it is reasonable to conclude from the present findings using
synthetic speech and the recent data of Pisoni and Dedina using vocoded
natural speech, that traditional intelligibility tests may simply be

insensitive to important differences that are, in fact, present in the speech
waveform and apparently affect the listener's performance :n understanding the
content of the message and responding appropriately to the truth value of the
utterance.

To determine the locus of the observed differences, it is necessary to

examine the comprehension process in somewhat greater detail within the
framework of a specific model. In recent studies of language comprehension,
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specifically, in experiments on sentence verification, it has become common to
view comprehension as a "process" and to divide that process into a series of
processing stages. Clark and Clark (1977) describe a generic sentence
verification model of sentence comprehension with the following four stages:
Stage I represents the interpretation of the sentence; Stage 2 represents the
relevant external or internal evidence; Stage 3 compares the representations
from Stages 1 and 2; and Stage 4 responds with the answer computed at Stage 3.
According to this model, each stage has one or more cognitive operations and
each operation takes some amount of processing time to complete. In applying
this model to the sentence verification task used in the present
investigation, it is assumed that listeners begin at Stage 1 and by the time
they get to Stage 4 they are able to respond either "true" or "false."

At Stage 1, listeners construct some internal representation of the
meaning of the sentence. For present purposes, the exact nature of the
internal representation is not important. What is important, however, is that
this stage of the model involves the encoding of the input sentence into a
format that can be used in Stage 3, the comparison stage. At Stage 2,
listeners represent the relevant external or internal evidence in the same
format as that used in Stage 1. In the present investigation, this
information is retrieved from the listener's knowledge stored in long-term
memory. This knowledge is assumed to be available because subjects can easily
verify simple statements concerning facts and knowledge that they know from
their past experiences. Thus, subjects have to retrieve relevant informationfrom long-term memory and represent that information in some format that can
also be used in Stage 3 of the model. At Stage 3, the comparison stage,
listeners compute a "truth index," which will be used to select the correct
response. According to Clark and Clark (1977), the comparison process atStage 3 consists of two rules. First, listeners start with the truth index
set to true. Second, they compare the two representations to determine if
they match. If the two representations match, the truth index is left alone.
If the two representations do not match, the truth index is changed to theopposite setting, false. Thus, the comparison stage of this Lodel is central
to determining the truth value of the 4- o representations. Finally, at Stage
4, the listener examines the final truth index and responds accordingly. If
the truth index is true the subject responds "true," and if the truth index is
false, the subject responds "false." In addition to assuming that each of
these operations takes up some processing time, the rcdel also assumes that
the comparison process relies on the congruence of the two representations
computed at Stages 1 and 2. Previous studies have shown that it is easier to
decide that two representations match than to decide if they mismatch.

Considering the framework of the verification model outlined above, it is
possible to speculate about the locus of the differences observed in the
present study. Although we have tried to argue that the differences found in
the present study are not due to factors related to segmental intelligibility,
and we have been cautious not to over-interpret the results of the present
study, it is still possible that our findings are due to some aspect of the
perceptual encoding process either at the time of input or at the time the
initial representation of the meaning of the test sentence is constructed at
Stage 1 of the model. Thus, the initial representation of the synthetic
speech at Stage 1 in the model outlined above may he degraded or noisy in some
way relative to natural speech. Because standardized tests of speech
intelligibility are not performance limited, that is, subjects are not
typically required to respond rapidly in these tasks, it is quite possible
that transcription scores and MRT results typically obtained with high-quality
synthetic speech or digitally encoded natural speech are much too insensitive
to pick up any of the differences that are localized at Stage 1 of the
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verification model, the stage at which the initial representation of the

sentence is constructed from the speech waveform.

If this line of reasoning is correct, or nearly so, it would imply that

the initial representation of the test sentence is encoded in a format that
contains some information about the acoustic-phonetic quality or attributes of
the input signal. Put another way, some property or set of properties related
to the perceptual analysis of the speech waveform and/or its segmental

representation are passed along or "propagated" up the processing system to
higher and progressively more abstract levels of the comprehension process.

One consequence of this account of our findings would be a general slowing up
of all processing activities in the comprehension task under these conditions.
This result would not be affected by other experimental manipulations such as
sentence predictability or sentence length that may have their effects

localized at Stages 2 or 3 in the verification model. Indeed our failure to
find an interaction between voice and predictability would be consistent with

this explanation and would imply that the locus of the predictability
manipulation occurs somewhere later in the comprehension process than the

voice manipulation, perhaps at Stage 2 where relevant information is retrieved
from long-term memory or possibly at Stage 3, where the two representations

are compared.

Similar findings have been reported by Pisoni (1,,81) and by Slowiaczek

and Pisoni (1982) who used lexical :;ecision and naming tasks to study the
perception of isolated words that were either natural speech or synthetic

speech generated by the MITalk text-to-speech system. Both studies found
longer re-ponse latencies for synthetic speech compared to natural speech.

However, no interactions were observed with any of the other experimental
variables suggesting, as we found in the present study, that the locus of the

effects of the voice manipulation appear to be at either the initial stage of
perceptual encoding or the development of some initial representation of the

input signal that will be used in the comparison process in verif4cation.
Without further studies utilizing additional experimental manipulations, it is
not possible to decide on which of these alternatives is the correct account
of the present results. However, it is clear that we have found robust

effects of the voice manipulation on some selected aspects of the

comprehension process that appear to be separable from effects related to

segmental intelligibility. The subjects in the present experiment had no
difficulty whatsoever in perceiving the words or sentences or responding to

the truth value of the meaning of the sentences. Our primary finding was that

the response latencies were considerably shorter when the sentences were

natural speech than when the sentences were produced with high-quality

synthetic speech generated by DECtalk.

In summary, the results of the present investigation demonstrate that

some aspect of the comprehension process, either the encoding of the initial
representation or the comparison process, is affected by the quality of the

acoustic-phonetic input in the speech signal. Using short meaningful

sentences that were controlled for segmental intelligibility, we found that

verification latencies were reliably shorter for natural speech than

high-quality synthetic speech produced by rule using DECTa1k. Further studies

are currently underway to identify the locus of these effects in the human
information processing system and to specify the nature of the processing

operations that are affected by these differences in the initial sensory-based

input in the speech signal. The results of the present study taken together

with the earlier findings of Manous et al., (1985) and the more recent data of

Pisoni and Dedina, (1986) demonstrate that the SVT appears to be a useful and

extremely sensitive tool for investigating differences in the comprehension
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process when initial differences in intelligibility are small or nonexistent.
The results also demonstrate the need to develop now and more sophisticated
measures of sentence comprehension that can be used to study speech
communication at processing levels above and beyond those typically indexed
through transcription tasks or traditional forced-choice intelligibility tests
such as the Modified Rhyme Test or Diagnostic Rhyme Test.
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Abstract

To examine the effects of stimulus structure and variability on
perceptual learning, we compared transcription accuracy before and after
training for synthetic speech produced by rule. In the first experiment,
subjects were trained either with isolated words or fluent sentences of
synthetic speech. In addition, subjects were presented either with novel
stimuli during each training session or with a fixed list of stimuli that was
repeated. A control group received no training. The results indicate that
training with isolated words only increased the intelligibility of isolated
words; however, training with sentences increased the intelligibilty of both
isolated words and sentences. This finding suggests that listeners do not
segment words in fluent speech by recognizing one word at a time.
Furthermore, subjects who were trained on the same stimuli every day improved
as much as the subjects who were given novel stimuli on each day of training.
This finding was further investigated in a second experiment in which the size
of the repeated stimulus set was reduced to enable subjects to quickly and
completely learn the items in the training set. Under these conditions,
subjects trained with repeated stimuli did not generalize to novel stimuli on
the post-training test as well as subjects trained with novel stimuli. Taken
together, the results on the effects of training with repeated items versus
novel items suggests that perceptual learning depends upon the degree to which
the training stimuli characterize the underlying structure of the full
stimulus set. Variability of the stimulus ensemble aids generalization to
novel tokens.



Perceptual Learning of Synthetic Speech Produced by Rule

In general, there are two basic experimental paradigms within cognitive
psychology for investigating learning. The first, usually identified with
Ebbinghaus (1964/1885), is concerned with learning a fixed set of stimuli
through repetition. This approach emphasizes the acquisition, retention,
retrieval, and representation of specific facts (see Kolers & Roediger, 1984)
and therefore may be said to investigate rote or pattern-specific learning.
Recent evidence suggests that even a single prior occurrehce of a degraded
stimulus during the study phase of an experiment can increase the probability
of its perceptual identification in a subsequent test (Jacoby, 1983). This
result was obtained even when only 10% of the tes; items had been seen
previously, and when the two presentations were separated by several days and
by other lists of stimuli. Moreover, the advantage of a repeated test item
ovn new tent items was evident despite nonspecific practice effects for
identifying both new and repeated items. This suggests that subjects encode
specific episodic traces of stimuli that can be used to aid subsequent
perceptual analysis (Jacoby, 1983).

The second paradigm, often associated with James (1890), Woodworth
(1938), Bartlett (1932), and Posner and Keele (1968), has been concerned more
with the development of abstract characterizations of stimulus information.
Typically, in this approach, subjects are first presented with a series of
stimuli in which no stimulus is repeated. During this phase of the
experiment, the subject is expected (or explicitly trained) to abstract some
characteristics from these stimuli. Afterwards, generalization to novel
stimuli is examined. Thus, this second paradigm focuses on the ability to
classify or respond to novel instances of a category. Under this experimental
procedure, learning is usually characterized by the development of abstract
concepts, schemata, or rules that represent the underlying structure of each
stimulus or an entire stimulus set. The difference between these two
paradigms highlights important issues underlying any account of perceptual
learning: What are the effects of stimulus repetition, stimulus variability,
and stimulus structure on perceptual learning?

Current evidence suggests that presenting subjects with stimuli that vary
around a prototype encourages the development of a mental representation of
the prototype. For example, Posner and Keele (1968) presented subjects with
random distortions of four dot patterns that served as the prototypes of four
categories. Although subjects never saw the prototypes during the study phase
of the experiment, the results suggested that the prototypes and the
previously-seen training patterns were equally easy to classify, and were both
more quickly and re accurately classified than novel category members. In
addition, the rev reported by Posner and Keele (1968) indicated that as
the variability of die training set increased, so did the abililty to classify
new, highly distorted variations of the prototype. Thu5 subjects in the
Posner and Keele experiment appeared to be abstra ag .1formation about
category prototypes and the variability of the categor; spacJ, as well as
retaining information about the exemplars that were present, during training.

In a related study that required subjects to learn r.mes for pictures of
individuals (Dukes & Bevan, 1967), subjects received trLining with either one
exemplar per category or with several exemplars per category and the number of
training trials was kept constant across conditions. Thus, subjects saw
either many repetitions of the same exemplar or few reoetitions of several
exemplars. During the test phase, subjects were presented with old and new
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exemplars. The results suggested that training by repeated exposure to a

single exemplar enhanced the ability to classify that exemplar in a subsequent
test relative to training with several different exemplars. However, training
with several examplars increased the ability to classify novel category
exemplars. Moreover, consistent with the results of Posner and Keele (1968),

the exemplars that were previously seen were more accurately classified than
new exemplars for both groups of subjects. (This type of result was also

obtained by Kolers, 1976.) These results suggest that as the number of
training exemplars for a particular category increases, the ability to

classify new instances of that category will also increase.

However, this conclusion must be qualified in light of results obtained

in several artificial-language learning studies. In this research, subjects
are presented with a set of patterns that were generated by several phrase

structure and lexical insertion rules. Subjects are told that they are being
presented with a subset of an artificial language. After exposure to the

training set, subjects are presented with novel instances and must either
produce grammatical sentences or make grammatical judgements. Studies by

Nagata (1976) and Palermo and Parish (1971) suggest that if the total number
of training presentations is kept constant, presenting few exemplars many
times or many exemplars few times will have equivalent effects, as long as the
training stimuli sufficiently characterize the set of possible grammatical

sentences.

Thus, in these artificial-language learning studies, the arbitrary
variability of the training set, per se, did not affect transfer to novel test
stimuli. Moreover, these results were oRiined with very different

grammatical systems and whether or not a semantic-referential framework had
been provided. The difference between the conclusions suggested by these

langauge learning studies and those of Dukes and Bevan (1967) and Posner and
Keele (19E0) may be due to the difference in the stimulus materials. In the

Posner and Keele study, different exemplars of a prototype were stochastically
related to the prototype. In contrast, the grammatical sequences presented in
the artificial-language learning studies were well-defined realizations of a
set of coherent grammatical rules. Thus, the importance of variability may be
minimized when the exemplar space is highly structured and can be well-defined
by a set of abstract rules. A few well-chosen exemplars may be sufficient to

induce the abstraction of the complete structure of the rules to produce
generalization learning.

Considered in this context, speech signals provide an especially
interesting and important class of stimuli for studying the effect of stimulus
variability on perceptual learning. The acoustic-phonetic variability of the

speech signal has been well-established (e.g., Liberman, Cooper, Shankweiler &
Studdert-Kennedy, 1967). To a large extent, this variability has often been

viewed as noise that must be "stripped away" from the speech signal in order
to reveal invariant phonetic structures (e.g., Stevens & Blumstein, 1978).

However, acoustic-phonetic variability may also be viewed as a highly

structured and coherent source of information about the talker, phonetic

context, and speaking rate that is treated by the listener as information
rather than noise (Elman & McClelland, 1986). This strtctural coherence

arises, in part, because the sources of variability in speech production are
not arbitrary. Factors such as speaking rate, vocal tract size and shape, and

phonetic context have regular, well-defined and physically specifiable effects

upon the acoustic realization of a phonetic segment. Thus, although the

production of a phoneme is strongly determined by the surrounding phonetic

context through coarticulation, these coarticulatory effects are, in

principle, computable, and therefore may serve as information about the

5
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segment and the context in which it is produced (cf. Cole, Rudnicky, Zue, &
Reddy, 1980; Greene, Pisoni, & Carrell, 1984).

Although it is difficult, if not impossible, to segment the speech signal
into linguistically defined units that are independent of one another, and
although there is no simple one-to-one correspondence between the acoustic
structure of the speech signal and the perceived phonetic structure, listeners
nonetheless show great facility for quickly adapting to novel
acoustic-phonetic variation. For example, listeners appear to have little
difficulty understanding novel speakers of their langauge despite substantial
variations in vocal tract size and shape, and manner of speaking. Moreover,
although the speech of some non-native speakers may be difficult to comprehend
because of violations in the phonetic, phonological, syntactic, and prosodic
regularities, word recognition and sentence comprehension generally improves
as the listener gains experience with the non-native speech. Thus, on the
basis of the previously described artificial-language learning studies, if the
variability of speech is systematic, the ability to adapt to distorted speech
may depend not upon the relative number of novel exemplars experienced during
learning, but rather upon the degree to which the training set is sufficiently
representative of the underlying structure of the distorted speech. This is
the issue that we investigated in the present experiments.

In order to investigate the effects of stimulus structure, repetition,
and variability on perceptual learning of speech, we used a rule-based
text-to-speech system to produce synthetic speech of relatively by
intelligibility. Unlike natural spk.oh, synthetic speech produced by rule has
an impoverished acoustic-phonetic cue structure that incorporates only those
acoustic cues that can be easily described by a small set of phonetic
implementation rules (cf. Liberman, Ingeman, Lisker, Delattre, & Cooper,
1959). In contrast, natural speech provides a rich set of redundant cues for
each distinctive phonemic contrast in the language (see Lisker, 1978). There
is now considerable evidence that this difference in acoustic-phonetic
structure between synthetic and natural speech has important perceptual
consequences for the human listener (Nusbaum, Dedina, & Pisoni, 1984;
Yuchtman, Nusbaum, & Pisoni, 1985).

To take one example, the pattern of perceptual confusions observed for
synthetic syllables is quite different from the pattern of confusions observed
for natural speech degraded by noise, even when the intelligibility of the
natural speech in noise is comparable to the intellibility of the synthetic
speech (Nusbaum, et al, 1984; Yuchtman et al. 1985). Nusbaum et al. (1984)
and Yuchtman et al. (1985) suggest that the difficulties incurred in
perception of synthetic speech are due primarily to the use of minimal
acoustic cues to synthesize phonetic contrasts in current text-to-speech
systems. Indeed, in some contexts, these cues are insufficient to distinguish
phonetic segments in particular contexts; in other contexts, the cues may
actually be inappropriate for the intended phonetic segment. Thus,
improvements in recognizing synthetic speech produced by a text-to-speech
system may require learning new perceptual mappings between acoustic cues and
phonetic categories. Furthermore, it may also require the listener to learn
to attend to and discriminate acoustic information that is not normally used
to distinguish phonemes in the listener's native language.

Whether listeners can, in fact, acquire new mappings between acoustic
information and phonetic labels is a matter of some controversy (Pisoni,
Aslin, Perey, & Hennesy, 1982). For example, Strange and Jenkins (1978)
reviewed a number of studies that attempted to train subjects to identify and
discriminate nonphonemic differences in voice-onset time. On the basis of
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these studies, Strange and Jenkins argued that the use of laboratory training
techniques with adult subjects is generally ineffective for improving the
discriminability of phonetic contrasts that are not phonemically distinctive
in the subject's native language. However, Pisoni et al. (1982) provided
evidence that the ability to discriminate nonphonemic differences in

voice-onset time can be acquired after a short training period, if appropriate
training procedures are used (e.g., additional response categories, immediate
feedback, and a brief exposure to the stimulus-response set prior to

training). Tlus, listeners are able to learn new relationships between
acoustic information and a set of phonetic labels.

More recently, Schwab, Nusbaum, and Pisoni (1986) have demonstrated that

moderate amounts of training with low-intelligibility synthetic speech will
improve word recognition performance for novel stimuli generated by the same
text-to-speech system. Schwab et al. trained subjects by presenting synthetic
speech followed by immediate feedback in recognition tasks for words in

isolation, in fluent meaningful sentences, and in fluent semantically
anomalous sentences. Subjects trained under these conditions improved
significantly in recognition performance for synthetic wotds in isolation or
in sentence contexts compared to subjects that either received no training or

received training on the same experimental tasks with natural speech. Thus,
the improvement found for subjects trained with synthetic speech could not be

ascribed to mere practice with or exposure to the test procedures. In

addition, a follow-up study indicated that the effects of training with
synthetic speech persisted even after six months. Thus, training with
synthetic speech produced reliable and long-lasting improvements in perception
of words in isolation and words in fluent sentences.

The finding that recognition improved both for words in isolation and for
cords in fluent speech is of some theoretical importance and interest because
recognizing words in fluent speech presents a problem that is not present when
words are presented in isolation: The context-conditioned variability between
words and the lack of independence between adjacent acoustic segments leads to
enormous problems for the segmentation of speech into psychologically
meaningful units that can be used for recogniton. In fluent, continuous
speech it is extremely difficult to determine where one word ends and another
begins using only acoustic criteria (Pisoni, 1985; although cf. Nakatani &

Dukes, 1977).

McClelland and Elman (1986; see also Cole & Jakimik, 1980; Marsien- Wilson
& Welsh, 1978; Reddy, 1976) have recently proposed a model of speech
perception called Trace, in which word segmentation is a direct consequence of
word recognition. In this model, there is a lexical basis for segmentation
such that recognition of the first word in an utterance determines the end of

that word as well as the beginning of the next word in the utterance.
Consistent with this proposal, there are no explicit mechanisms in Trace for

segmenting words prior to recognition. Although Trace was not intended to
address the issues surrounding perceptual learning, their model suggests that

training subjects with isolated words generated by a synthetic speech system
should improve the recognition of words in fluent synthetic speech and,

conversely, training with fluent synthetic speech should improve performance
on isolated words. According to Trace, if listeners recognize isolated words
more accurately, word recognition in fluent speech should also improve since,
in this model, perception of words in fluent speech is a direct consequence of
the same recognition processes that operate on isolated words.



However, recent evidence from studies using visual stimuli suggests thatdifferences in the perceived structure of training stimuli may lead to the
acquisition of different types of perceptual skills. Kolers and Magee (1978)presented inverted printed text and in a training task instructed subjects
either to name the individual letters 'Ai the text or to read the words. After
extensive training, subjects were found to have improved only on the task for
which they received training: Attending to letters improved performance with
letters, but had little affect on reading words; similarly, attending to words
improved performance with words but had little affect on naming letters.However, results for visual stimuli may not necessarily apply to speech
because of the substantial differences that exist between spatially
distributed, discrete printed text and temporally distributed,
context-conditioned speech.

To summarize, there are several basic issues that are directly relevant
to understanding perceptual learning, in general, and to understanding the
perceptual learning of speech, in particular. These issues concern theeffects of stimulus repetition, stimulus variability, and stimulus structure
on perceptual learning of speech. Previous research has demonstrated thatrepeating presentations of a stimulus have powerful effects on subsequent
perception of that stimulus (e.g., Jacoby, 1983). However, it is important to
understand the relationship between these repetition effects and the type of
generalization learning that is so important for acquiring new perceptualskills. According to Shiffrin and Schneider (1977), the automatization of a
perceptual process is the direct consequence of simple repetitions of fixed
stimulus-response mappings. However, this view of learning may not be
sufficient to generalize beyond highly restricted tasks using simple stimuliin very impoverished environments to complex perceptual-motor skills that must
not only be well-learned, but must also deal with environmental variability.Except under laboratory conditions, it is very seldom that listeners hear
precisely the same utterance with the same acoustic structure more than once.However, listeners do learn to accomodate the prodigious variability in the
structure of speech in a highly skilled manner. The present studies were
directed at investigating perceptual learning of synthetic speech generated by
rule. In this research, we were particularly interested in comparing the
effects on perceptual learning of repeating a fixed set of training stimuli
with the effects of continuously presenting novel training stimuli.

A second goal of the present research was to investigate how the pattern
structure of stimulus materials encountered during learning affects
generalization to other novel stimuli. Theories of speech perception thatposit wore segmentation as a consequence of word recognition predict that any
improvement in word recognition should also improve recognition of words influent speech. However, research on perceptual learning of inverted printed
letters and words suggests that there should be little generalization fromperceptual learning on one type of pattern to recognition of another type of
patt .71, (e.g., Kolers & Magee, 1978). We trained subjects with isolated words
or sentences produced by a text-to-speech system to investigate generalization
of learning across different stimulus materials and pattern structures.

Experiment 1

The first experiment was carried out to examine the effects of trainingbased on different stimulus materials. We trained subjects with either
isolated words or with fluent sentences (but not both), and then examinedwhether each type of training would improve recognition of novel words
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presented in isolation and in fluent sentences. If word segmentation is a
direct consequence of word recognition (as suggested by Cole & Jakimik, 1980;
Marslen-Wilson & Welsh, 1978; McClelland & Elman, 1986), then improvements in
isolated word recognition should produce better word recognition in fluent
speech. Alternatively, different linguistic materials may require the
acquisition of different perceptual skills (as occurred in Kolers & Magee,
1978), so that training with isolated words might only improve performance on
isolated words and training with fluent sentences might only improve
performance on fluent sentences. Finally, a third possibility is that some
complex linguistic materials may subsume other, structurally simpler
linguistic materials. On the one hand, sentences necessarily contain words so
training with fluent sentences may improve performance with isolated words as
well as with words in fluent speech. On the other hand, training with
isolated words might not generalize to recognition of words in fluent
sentences because recognition of words in sentences may require skills that
cannot be acquired from experience with isolated words alone.

We should note here that the stimulus materials used in Experiment 1 were
produced by the Votrax Type-'N-Talk text-to-speech system. The fluent
synthetic speech produced by the Votrax system has certain characteristics
that are useful for testing the hypotheses under question. An LPC analysis
(see Markel & Gray, 1976) of the Votrax-produced stimuli indicated that a word
excised from a fluent sentence produced by Votrax was identical to the same
word produced in isolation. Both words have identical formant structures and
equivalent pitch and amplitude contours. Thus, the fluent sentences produced
by the Votrax system are merely end-to-end concatenations of individual words
(with no pauses or coarticulation phenomena between words). The Votrax system
does not introduce any systematic acoustic information in its fluent speech
that is not already present in its productions of isolated words so there are
no observable sentence-level effects on phonetic segements. Therefore, the
Votrax speech provides an excellent set of stimuli for testing the claim that
word segmentation is a direct consequence of word recognition. Since a
sentence produced by the Votrax system is equivalent to a sequence of isolated
words, improvements in recognizing isolated words should directly generalize
to recognizing words in sentences.

In addition to examining the influence of stimulus structure on
perceptual learning in this experiment, the effect of stimulus repetition was
also investigated. Some subjects received novel stimuli throughout training,
so that they never heard any stimulus more than once. Other subjects received
a fixed set of stimuli that was r, ?_ted several times during training. Thus,
some subjects were always tr.;- fi on new words or sentences, while other
subjects heard the same words ci sentences over and over again. Both groups
were tested on novel sti qli before and after training to examine
generalization learning to novel words and sentences. Based on the Posner and
Keele (1968) and Dukes and Bevan (1967) experiments, subjects trained on novel
exemplars should show more improvement than those trained with repeated
exemplars, because the novel training set provides a more variable sample of
speech than is provided by the repeated training set. However, different
predictions follow from the artificial-language learning studies of Nagata
(1976) and Palermo and Parish (1971). On the basis of these studies, we can
predict that since the variability of speech is lawful and if the repeated
training set sufficiently characterizes the underlying rule structure of the
speech, there should be no performance difference between subjects receiving a
repeated training set and those presented with a novel training set (as long
as both sets of subjects receive an equal number of exemplars).
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Method

Subjects. Sixty-six naive subjects participated in this experiment. All
were students at Indiana University and were paid four dollars for each day of
the experiment. All subjects were native speakers of English, and reported no
previous exposure to synthetic speech and no history of a hearing or speech
disorder. All subjects were right-handed and were recruited from a paid
subject pool maintained by the Speech Research Laboratory of Indiana
University.

Materials. All stimulus materials were produced by a Votrax Type-'N-Talk
text-to-speech system controlled by a PDP -i1 computer. The Votrax system was
chosen for generating words and sentences because of the relatively poor
quality of its segmental (i.e., consonant and vowel) synthesis. Thus, the
likelihood of ceiling effects in word recognition were minimized. The
synthetic speech stimuli used in the present study were a subset of the
stimuli developed and used by Schwab et al. (1985) to insure comparability
between experiments.

The stimuli were produced by the Votrax Type-'N-Talk system corcrolled by
a PDP-11/34 computer. All stimulus materials were initially recorde1 on audio
tape. After the audio recordings were made, the stimulus materials were
sampled at 10 kHz, low-pass filtered at 4.8 kHz, digitized through a 12-bit
A/D converter, and stored in digital form on disk with the PDP-11/34 computer.
The stimuli were presented in real time at 10 kHz through a 12 bit D/A
converter and low-pass filtered at 4.8 kHz. Four sets of stimulus materials
were used in this experiment:

1. PB Lists. The first set of stimuli consisted of 12 lists of 50
monosyllaTc, phonetically balanced (PB) words. These lists were a subset of
the 20 lists originally designed for testing speech intelligibility (Egan,
1948). These stimuli were used during testing and training procedures. These
lists are considered to be phonetically balanced because their phonetic
composition provides a reasonable approximation of the relative frequencies of
phonemes occuring in English (Egan, 1948).

2. MRT Lists. The second set of materials consisted of four lists of 50
monosyllabic consonant-vowel-consonant words taken from the Modified Rhyme
Test (MRT) developed by House, Williams, Hecker, and Kryter (1965). Although
both the PB lists and the MRT lists contain monosyllabic words, these lists
were used in different tasks. The PB lists were used in an open-response set
transcription task, while the MRT lists were used in a closed-response,
six-alternative forced-choice procedure. Moreover, in combination with the
closed-response set procedure, the MRT lists wet,2 designed to examine
segmental phonetic intelligibility (as opposed to lexical intelligibility).
On each trial, the six alternatives differ by a single consonant in one
location. The alternatives either had identical beginnings (i.e., the same
initial consonant and vowel) or identical endings (i.e., the same vowel and
final consonant). As a consequence, the MRT examines the ability to
discriminate consonants. The MRT lists were only presented during the
pre-training and post-training test sessions to observe the effects of
different training conditions on perceptual learning.



3. Harvard Sentences. The third set of stimuli consisted of 10 lists of
10 HarvaidFiichoacoustic sentences (Egan, 1948; IEEE, 1969). These are
normal, meaningful, English sentences. Each sentence contains five key words
plus a variable number of function words, arranged in a variety of syntactic
structures.

4. Haskins Sentences. The fourth set of materials consisted of 10 lists
of 10 synTiETTEilii7157iiI, but semantically anomalous sentences that had been
developed at Haskins Laboratories (Nye a Gaitenby, 1974). Each Haskins

sentence contains four high-frequency monosyllabic key words presented in the
following syntactic structure: "The (adjective) (noun) (verb, Fast tense) the
(noun)". These sentences minimize word identification based on semantic cues
al TS5ugh syntactic cues are present.

Design. The entire experiment was conducted in six one-hour sessions on

different days. Five groups of subjects were tested on the first and last day
of the experiment. The four intervening days were used to provide training
for subjects in four of the five groups. A weekend separated the pre-training
test session (on Day 1) from the first day of training (Da/ 2). All groups
were treated similarly during the pre-training and post-training test sessions

(Days 1 and 6). However, each group was treated differently during training.

One group of subjects (the novel-word group) received a different set of

isolated words on each eay of training, while a second group (the

novel-sentence group) received a different set of fluent sentences each day of
training. In the two novel-stimulus conditions, subjects were continually
exposed to new stimuli. A third group (the repeated -word groat)) received a

fixed set of isolated words on every day-aFiraining. Similarly, a fourth

group of subjects (the repeated-sentence group) received a set of fluent

sentences on the first day of training that was repeated for all other

training sessions. Thus, in the repeated-stimulus conditions, subjects were

presented with novel stimuli only on the two test days (Days 1 and 6), and on
the first day of training. (The stimulus set presented on the first day of

training was subsequently repeated on the remaining training days.) The last
group of subjects (the control group) received no training and provided a

baseline againrt which the performance of the other four groups could be
compared.

Procedure. All stimuli were presented to subjects in real time under

computer control through matched and calibrated TDH-39 headphones at 77 dB SPL

measured using an RMS voltmeter. Before each experimental session, signal

amplitudes were calibrated usLig the same isolated word (from a PB list).

Subjects were tested in groups with a maximum of six subjects per group.

Testing Procedure. All subjects were tested during the pre-trainirg and

post-training test sessions using the same procedures and order of tasks.

Each test session lasted about one hour. In each session, recognition

performance for isolated words was tested with an open-response set procedure
using PB lists (Egan, 1948) and with a closed-response set procedure using the
MRT (House et al., 1965). In the PB task, subjects were presented with two
lists of 50 monosyllabic words, one word at a time. After each word was

presented, subjects were asked to write the English word that they heard.
They were encouraged to guess if they were uncertain about the identity of the
word. After writing a response, subjects were instructed to press a button on
a computer-controlled response box to indicate completion of the trial. After

all of the subjects had responded, the next trial was initiated.
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to the MRT, subjects identified 100 consonant-vowel-consonant words,
presented one at a time. After hearing each word, subjects were presented
with a list of six alternative words centered on a CRT. The subjects were
instructed to press one of six buttons on a computer-controlled response box
to indicate which word was heard. All subjects were istructcd to respond as
quickly and as accurately as possible. Response accuracy and latency was
recorded by a computer.

After the tests of isolated word recognition, recognition performance for
words in fluent sentences was measured using the Harvard psychoacoustic
sentences and the Haskins anomalous sentences. After each sentence was
presented, subjects wrote the words in the sentence in the order that they had
heard them. Subjects were encouraged to guess if necessary. After all of the
subjects indicated that they had completed their response (by pressing a
butt-Al a response box), the next trial was initiated.

Traininj Procedures. Except for the control group, all subjects received
training with synthetic speech on Days 2 through 5. Novel-word and
repeated-word subjects were trained with isolated words. Novel-sentence and
repeated-sentence subjects were trained with fluent sentences. In each case,
after listening to a stimulus (either a single word or a sentence), subjects
transcribed the stimulus. After all of the subjects indicated that they had
finished responding, feedback was provided. Feedback consisted of a visual
presentation of the stimulus printed on a CRT together with a second auditory
presentation of the stimulus item. After the feedback was presented, subjects
pressed a button to begin the next trial and the procedure was repeated for
subsequent trials.

On each day of training, novel-word subjects were presented with 100 new
PB words, while the novel-sentence subjects heard 20 new Harvard sentences and
20 new Haskins sentences. On the first day of training, the repeated-word
subjects also were presented with the same 100 PB words that were presented to
the novel-word subjects on the first day of training. However, for the
repeated-word subjects, this same list was presented again on each subsequent
training day. Similarly, the repeated-sentence subjects were first presented
with the same 40 sentences that were presented to the novel-sentence subjects
on the their first day of training, and this list of sentences presented again
on each subsequent day of training.

Results

Six subjects did not complete the experiment, and their data were
excluded from statistical analyses. Of the remaining 60 subjects, 12 subjects
received novel-word training, 12 received novel-sentence training, 13 received
repeated-word training, 11 received repeated-sentence training, and 12
received no training.

To score a correct response, subjects had to transcribe the exact word
(or homonym) with no additional or missing phonemes. For example, if the word
was flew and the response was flute or few, the response was scored as
incorrect. However, flue wouldNWi been scored as a correct response.

The principal results of the present study concern the differences among
the five groups of subjects on Day 1 (the pre-training test session) and Day 6
(the post-training test session). The analysis for each type of task will be
presented separately. Performance on isolated words will be discussed first
and then the data from the sentences will be described.
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MRT Words. The MRT was only presented on Days 1 and 6. Thus, all groups
were equally familiar with this task. Mean percent correct performance on the
MRT for the five groups is presented in Table 1. An analysis of variance
indicated that there were significant differences between subject groups as a
result of different types of training (F(4,50) = 3.52, MSe = .00346, 2 < .01)
and performance improved significantly from the pre-training test to the
post-training test (F(1,50) = 97.8, MSS . .00159, p < .0001). Furthermore,
the interaction between test session and training group was also significant
(F(4,50) . 6.03, MSe = .00159, p < .001). These results indicate that
although performance improved from the pre-training to the post-training test
session, the degree of improvement varied as a function of the type of
training received by different subject groups. A Newman-Keuls analysis of the
pre-training scores indicated that there were no reliable differences in

performance among the groups prior to training. However, an examination of
the improvement scores (i.e., the difference between pre- and post-training
test performance revealed that all of the groups receiving training improved
significant-4 from the pre training to the post-training session (p < .01).
In contrast, the control group did not demonstrate any reliable evidence of
improvement. Moreover, a Newman-Keuls analysis of the improvement scores
indicated that each of the training groups differed significantly from the
control group (p < .05), but not from each other. These results clearly
suggest that training with either isolated words or fluent sentences produces
equivalent improvements in performance on the MRT. Furthermore, these results
suggest that, as long as the number of stimulus presentations are equivalent,
training with a repeated set of stimuli produces as much improvement on the
MRT as training with novel stimuli.

Insert Table 1 about here

PB Words. The effects of training on isolated word recognition was also
examineddiing the open-response set PB task. The results from this task are
presented in Table 2 and are quite similar to the results from the MRT. An
analysis of variance indicated that there was a significant improvement in
recognition performance from the pre-training to the post-training test

(F(1,55) = 546.0, MSe = .00215, p < .0001) and there were significant
differences in recognition performance as a consequence of different types of

training (F(4,55) . 2.87, MSe = .00444, p .05). Moreover, as in the MRT
data, different types of training produced aPfering amounts of improvement
from the pre-training to the post-training test (F(4,55) = 10.04,
MSe = .00215,p < .0001).

An analysis of the pre-training test scores indicated that there were no

significant differences in performance among the five groups prior to

training. However, a series of planned comparisons indicated that, although
the recognition performance of all five groups improved significantly from the
pre-training test to the post-training test session (p < .01), all training
groups improved significantly more than the control grout (p < .01).
Moreover, the training groups did not differ reliably from one ancther. Thus,

for transcription of PB words, training with either words or sentence:, and
between training with either novel or repeated exemplars stimuli produced
equivalent improvements in recognition performance. Therefore, based on the
results of the PB task and the MRT, one might conclude that all four training
groups acquired equivalent abilities to recognize Votrax-generated speech.
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Table 1

Transcription accuracy for words in the pre-training

and post-training

Modified Rhyme Task (percent correct)

Test Session

Condition Pre-training Post-training Change(% points)

Control 65.5 66.6 1.1

Novel Words 64.6 75.8 11.2

Repeated Words 65.1 75.E 10.5

Novel Sentences 67.4 76.4 9.0

Repeated Sentences 64.9 71.3 6.4



However, the sentence perception data, described next, strongly argue against
this conclusion.

Insert Table 2 about here

Harvard Sentences. The third set of stimulus materials consisted of
coherent, meaningful sentences. Each sentence contained five key words that
were scored for recognition accuracy. Table 3 displays the average percent
accuracy scores for each group of subjects in the pre-training and
post-training test sessions. An analysis of ea:mice indicated no overall
significant increase in performance from the pre-training to the post-training
test session (F(1,55) . 1.7, MSe = 0.0068. p > .10). However, there was a
significant e!fect on performance of the type of training received by
different subject groups (F(4,55) . 7.95, MSe = 0.0124, p < .001). Moreover,
there was a significant interaction between performance in the pre- and
post-training test sessions and type of training (F(4,55) . 14.93,
MSe = .0068, p < .001) indicating that although there was no reliable overall
change in performance from the pre-training to the post-training test, the
direction of change varied significantly as a function of type of training.

Insert Table 3 about here

Mean performance for the control, word-trained, and sentence-trained
groups did not differ significantly from each other on the pre-training test
(Day 1). However, five days later, word recognition in the Harvard sentences
was dramatically different for the different subject groups. Planned
comparisons indicated t at performance dropped significantly for control
subjects and for subjects that were trained with novel words (p < .05).
However, subjects trained with repeated words showed no reliable increase or
decrease in performance. In contrast, subjects trained with either novel or
repeated sentences demonstrated a significant improvement in word recognition
accuracy (p < .01). A Newman-Keuls analysis of the improvement scores
demonstrated that the novel- and repeated-sentence conditions each produced
significantly greater improvement scores than the repeated-word, novel-word,
and control conditions (p < .01) It is not immediately apparent why the
performance of the control and novel-word trained subjects decreased from the
pre-training tc the post-training test.

Combined with the results from recognition of isolated words the results
from recognition of words in Harvard sentences indicates that: (1) training
with isolated words improves recognition of words in isolation, but does not
improve recognition of words in fluent sentences; (2) training with sentences
produces reliable improvements in recognition of words in isolation and in
sentences, and (3) training with novel stimuli does not produce reliably
different results from training with -repeated stimuli. These conclusions are
further supported by results obtained for word recognition in semantically
anomalous sentences.



Table 2

Transcription accuracy for words in the pre-training and post-training

PB-word task (percent correct)

Test Session

Condition Pre-training Post-training Change(% points)

Control 26.8 36.0 9.2

Novel Words 25.5 47.3 21.8

Repeated Words 24.2 48.2 24.0

Novel Sentences 25.6 47.4 21.8

Repeated Sentences 25.8 48.1 22.3



Table 3

Transcription accuracy for words in the pre-training and post-training

Harvard sentence task (percent correct)

Test Session

Condition Pre-training Post-training Change(% points)

Control 49.2

Novel Words 44.7

Repeated Words 40.6

Novel Sentences 45.3

Repeated Sentences 44.4

38.0

34.7

40.6

62.3

58.4

- 11.2

- 10.0

0

17.0

14.0
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Haskins Sentences. The results for recognition of words in syntactically
correct, semantically anomalous sentences are summarized in Table 4. An
analysis of variance indicated that type of training had a significant effect
on recognition performance (F(4,55) = 15.8, MSe = .01004, p < .0001) and there
was an overall increase in recognition performance from the pre-training testsession to the post-training test session (F(1,55) . 538.0, MSe . .00465, p <
.0001). Moreover, the effects of type of training on the change in
performance from pre-training to post-training session was also significant
(F(4,55) = 17.2, MSe = .00465, ? < .0001). Further analyses indicated that
although subject groups (receiving different types of training) did not differ
significantly from one another in the pre-training test (F(4,55) = 2.21,
n.s.), these groups differed significantly after training (F(4,55) = 17.2, MSe
. 0.00925, p < .0001). Planned comparisons indicated that all subject groupsimproved significantly from the pre-training to the post-training test (p <
.01). However, a Newman-Keuls analysis indicated that the improvement shownby the novel- and repeated-sentence groups was not significantly different
from each other, but was significantly greater than that of the control,novel-word, and repeated-word groups (p < .01). Moreover, the control,
novel-word, and repeated-word groups did not differ reliably after training.Thus, providing training with repeated or novel isolated words had no more
effect on recognizing words in fluent, semantically anomalous sentences than
providing no training whatsoever.

Insert Table 4 about here

Taken together, the results from the four different sets of stimulusmaterials presented in the pre- and post-training tests show that: (1)subjects who received no training showed little or no improvement inrecognition performance, (2) all subjects who received training improved in
recognition of novel, isolated words by about the same amount, and (3)
subjects trained on isolated words did not show any improvement in recognizing
words in fluent sentences compared to control subjects, while subjects trainedon fluent sentences improved significantly on recognizing words in novel
sentences. One account of the difference between word-trained and
sentence-trained subjects is that subjects trained with isolated words may
have difficulty locating the beginning and ends of words in fluent Votraxspeech. In isolated-word recognition tasks, the beginning and end of each
word is clearly marked by a period of silence. However, fluent connectedVotrax speech does not contain physical segmentation cues to provide the
listener with an indication of the location of word boundaries. If explicitacoustic word boundaries aid in word recognition by segmenting fluent natural
speech into word-size units, subjects trained with isolated words might haveexpected and needed these boundaries to recogni,:e the sentences produced by
the Votrax system. However, subjects trained with fluent sentences of
synthetic speech may have learned explicitly to do without these word
boundaries and may have learned a strategy of segmenting words by recognizingthem one at a time in the order by which they are produced. This strategy
would provide a recognition advantage for the sentence-trained subjectscompared to subjects trained with isolated words. This account suggests that
the performance of word-trained subjects might improve when word boundary cues
are provided. This hypothesis was evaluated by a more detailed analysis of
the recognition performance in the anomalous-sentence task.
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Table 4

Transcription accuracy for words in the pre-training and post-training

Haskins sentence task (percent correct)

Test Session

Condition Pre-training Post-training Change(% points)

Control 24.0

Novel Words 19.0

Repeated Words 21.3

Novel Sentences 25.6

Repeated Sentences 25.9

42.3

41.7

41.7

65.0

69.3

18.3

22.7

20.4

39.4

43.4



Each Haskins sentence is constructed with a fixed syntactic frame (i.e.,
"The adjective noun verb-ed the noun"). Thus, each sentence contained two key
words followingthis definite article the, and two key words following open
class items (i.e., an adjective, noun, or verb) that varied from sentence to
sentence and subjects were told explicitly about this invariant syntactic
structure. In addition, the response sheets were marked for each sentence,
with separate blanks for each open-class item and the word "the" for each
occurrence of the definite article. If word-trained subjects had difficulty
locating the beginnings of words, their recognition performance might be
better for words following the definite article compared to control subjects,
since the relative locations of the definite articles were known in advance
and the word-trained subjects would have better isolated word recognition
skills. In contrast, the performance of the word-trained and control groups
should not differ on the words following an open-class item because no word
boundary cues were provided.

In order to evaluate the hypothesis that word-trained subjects would
recognize words following "the" more accurately than words following a
open-class item, the data from the Haskins task was reanalyzed to include word
position (words following "the" or an open-class item) as a factor. This
reanalysis does not, in any way, change the statistical observations of the
prior analysis of variance. Thus, only the main effect of word position and
its interactions will be reported. The means for the different treatment
combinations are shown in Table 5. An analysis of variance indicated that, in
the pre-training test session, subjects performed significantly better on the
words that immediately followed the definite article than on those that
followed open class words (30% correct versus 16%, F(1,55) . 136.75, MSe
.00479, p < .0001). Type of training and word position did not interact in a
reliable and systematic fashion.

Insert Table 5 about here

As in the pre-training test, post-training recognition performance on
words that immediately followed the definite article was s.4nificantly better
than performance on words that followed an open class item (67% versus 36%,
F(1,55) . 278.0, MSe = .00970, p < .0001). However, in contrast to
pre-training performance, test scores after training revealed a significant
interaction between word position and the type of training given to each
subject group (F(4,55) = 6.78, MSe = .0097, p < .001). An examination of the
improvement scores for each combination of -ord position and subject group
(shown in Table 6) reveals that much of the improvement demonstrated by the
control group and the repeated- and novel-word trained groups was due to
increased recognition performance on words following a definite article.
Indeed, for these groups the improvement scores for words following an open
class item were significantly lower than the improvement scores for words
following "the" (p < .01). However, for the repeated- and novel-sentence
trained groups, the improvement scores for words following an open-class item
were not significantly different from the improvement scores following "the".
Thus, subjects trained with novel or repeated sentences acquired a generalized
ability to recognize words in novel, fluent sentences regardless of position.
In contrast, subjects who either were trained with isolated words or who had
received no training required additional cues for word segmentation to assist
in word recognition performance.

r
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Table 5

Transcription accuracy for words in the pre-training and post-training

PB-word Task as a function of word position (percent correct)

Test Session

Pre-training Post-training

Condition

After

"the"

After

open-class

After

"the"

After

open-class

Control

Novel Woris

Repeated Words

Novel Sentences

Repeated Sentences

30.8

25.0

27.7

32.9

36.4

17.1

12.9

15.0

18.3

15.5

56.7

62.9

60.8

73.3

81.4

27.9

20.4

22.7

56.7

57.3

Note. The category After "the" contains words that were presented immediately

after the word "the"; the category After open-cla;s contains words that were

presented immediately after an open-class word (sef text for further details).



Insert Table 6 about here

This conclusion is supported further by Newman-Keuls analyses of the
simple effects of word position, averaged across the novel/repeated
manipulation. For words following an open-class item, sentence-trained
subjects improved significantly more than word-trained and control subjects (p
< .01) Moreover, the improvement demonstrated by word-trained subjects
scores did not r'liably differ from the improvement shown by control subjects.

The pattern of results for words following the definite article was quite
different. The improvement scores for word-trained subjects were
significantly higher than those of the control subjects (g < .05), but
significantly lower than those of the sentence-trained subjects (p < .05).
(The difference between sentence-trained and control subjects was also

p < .01.) Thus, as predicted, prior experience with isolated
words aided recognition of words in fluent sentences only when the identity of
the preceding word was known in advance, providing a cue to word boundaries.
Furtherme:e, subjects trained with isolated words were able to recognize words
in sentences more accurately than control subjects when some location
information was provided. Thus, the isolated-word training only improved
recognition of isolated or segmented word patterns.

These data from the anomalous sentences suggest that word-trained
subjects were not able to separate their perception of the acoustic-phonetic
structure of a preceding word from that of a subsequent word, except when they
had prior knowledge and reliable information about the identity of the
preceding word (see Nakatani & Dukes, 1977; Nusbaum & Pisoni, 1985). With
that one exception, training listeners to recognize words in fluent sentences
required specific experience with fluent connected speech. These results
demonstrate that improvements in recognizing isolated words do not necessarily
predict improvements in recognizing words in fluent sentences. Thus, the
present findings argue against the hypothesis that word segmentation is a
direct result of word recognition. In fact, it is possible that the skill
that sentence-trained subjects acquired over and above the skills acquired by
the word-trained subjects may involve explicitly learning the strategy of
segmenting fluent speech via word n-cognition.

Although word-trained subjects were not able to generalize their newly
acquired skills to recognizing words in fluent sentences, sentence-trained
subjects did improve at recognizing isolated words. This suggests that the
perceptual skills acquired in learning to recognize words in fluent sentences
form a functional superset of the skills acquired during training with
isolated words. It is interesting to compare this finding with those reported
by Kolers and Magee (1 78). In the Kolers and Magee study, training subjects
to recognize inverted letters had little transfer to reading inverted words,
and training with inverted words had little impact on naming inverted letters.
Thus, Kolers and Magee found little evidence for transfer even though visual
words are structurally a superset of letters (just as auditory sentences are
comprised of words). The difference in the studies may arise from the
differences between auditory and visual modalities. Printed letters are
discrete stimuli, segmented from one another by blank spaces; in contrast,
there are no silent intervals for one auditory word from its neighbors and
coarticulation effects may span word boundaries. One implication is that



Table 6

Improvement (change in percentage points) from the pre training test to the

post-trainim test as a function of word position

Improvement horn pre-training to post-training

Word position

Condition

After

"the"

After

open-class

Control 25.9 10.8

.el Words 37.9 7.5

ted Words 33.1 7.7

Novel Sentences 40.4 38.4

Repeated Sentences 45.0 41.8

Note. After "the" classifies words that were presented immediately after the

word "the"; After open-class classifies words that were presented immediately

after an open-class word (see text for further details).



conclusions about perceptual learning of orthography cannot be generally
applied, without great caution, to the domain of speech perception, and vice
versa (see Liberman et al., 1967).

Despite variations in type of task (closed-response set procedures
vs. open-response set procedures), type of stimulus materials (sentences vs.
words), and type of training (sentences vs. words). no significant
differences were observed in performance between perceptual learning of novel
and repeated training sets. This result differs from the findings of Posner
and Keele (1968) and Dukes and Bevan (1967), but is consistent with the
findings of Nagata (1976) and Palermo and Parish (1971). One account of the
present results is based on the observation that the variations in synthetic
speech that must be learned are lawful and rule-goverened like the variations
in artificial-language materials. Under such conditions, perceptual learning
of a repeated training set appers to produce the same level of generalization
learning as training with novel stimuli, as long as the number of
presentations is the same for the two training procedures. However, the
utility of the repeated training set for generalization learning may depend on
the degree to which the repeated stimuli charac'- -e the underlying structure
of the entire ensemble of possible stimuli (Pal ,o & Parish, 1971). In this
context, it is useful to recall that Posner an Keele found that subjects
trained with a highly variable set of highly distorted exemplars, classified
new, highly distorted exemplars more accurately than subjects trained with a
less variable, less distorted set. Considered together, these studies suaest
that the structural relationship between the training and test stimuli is far
more important for perceptual learning than simply the relative number of
novel stimuli presented during training.

Traininf Data. Additional support for the proposal that the novel and
repeated stimuli both provided a sufficient characterization of the rule
structures of the text-to-speech system is revealed by an examination of the
data from each of the training sessions for the three types of stimulus
materials -- PB words (see Figure 1), Harvard sentences (see Figure 2), and
Haskins sentences (see Figure 3). These data from the training sessions shows
systematic improvements for subjects trained with repeated and novel words
(Figure 1), and for subjects trained with repeated and novel sentences
(Figures 2 and 3). The fact that subjects trained with repeated stimuli did
not reach asymptotic performance after a single training session and continued
to improve throughout training, indicates that the structural complexity of
the repeated stimuli could not be completely learned in a short period of
time. While it is not surprising that subjects trained with novel stimuli
continued to learn new attributes of these stimuli and thereby show systematic
improvements in performance, it is interesting that subjects trained on
repeated stimuli did not completely master these stimuli immediately and also
continued to learn new information from these stimuli throughout training.

Insert Figures 1, 2, and about here

For all three types of stimulus materials, recognition performance of the
repeated- stimulus groups was significantly higher than performance of the
novel stimulus groups (PB words, F(1,23) 49.6, MSe = .0129, p < .0001;
Harvard sentences, F(1,21) = 52.6, MSe .0202, 2 < .0001; and Haskins
sentences, F(1,21) . 17.2, MSe . .0195, p < .001). By itself, this is not a
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Figure I. Transcription accuracy for words in _he phonetically-balanced word lists for each day of
training in Experiment I. ( Note: Days I and 6 were pre- and post-training test sessions.)
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Figure 2. Transcription accuracy for words in the Harvard sentences for each day of training in
F,(peritnent I. (Note: Days I and 6 were pre- and post-training test sessions.)
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Figure 3. Transcription accuracy for words in the ilakins sentences for each day of training in
Fxperiment 1. (Note: Days 1 and 6 were pre- and post-training test sessions.)



surprising finding because the repeated-stimulus groups always recognized and
received feedback about precisely the same stimuli on every day of training,
while the novel-stimulus group always engaged in generalization -- they never
were presented with the same stimuli twice.

In addition, overall recognition performance improved significantly on
each day of training for all stimulus materials (PB words, F(3,69) = 279.7,
MSe = .0018, p < .0001; Harvard sentences, F(3,63) . 214.6, MSe . .00228, p <
.0601; Haskins sentences, F(3,63) . 141.6, MSe . .00233, p < .0001). Thus,
there is reliable evidence of perceptual learning occuring throughout the
training sessions. However, of greatest interest is the degree to which the
amount of learning in etch training session depended on the type of training
provided (repeated vs. novel stimuli). In fact, the interaction between
performance in each training session and type of training was significant for
all three types of stimulus materials (PB words, F(3,69) = 35.5, MSe = .0018,
2 < .0001; Harvard sentences, F(3,63) = 34.3, MSe . .00228, p < .0001; Haskins
sentences, F(3,63) = 11.6, MSe = .00233, p < .0001).

For all types of stimulus materials (i.e., PB words, and Harvard and
Haskins sentences), paired comparisons indicated that the interaction between
the type of training (with repeated or novel stimuli) and training session was
due to the absence of any significant difference between the two types of
training on the first day of training (Day 2 of the experiment), followed by
significantly better recognition performance for repetition training for all
subsequent days of training (p < .01). The reason for the advantage of the
repetition groups over the novel-stimuli groups during the training sessions
is clear: The novel-stimulus groups were always presented with new stimuli on
each training day, while the repetition groups responded to the exact same
stimuli on every day. It is not surprising therefore, that subjects performed
better on stimuli they had prior experience with than on completely new
stimuli. However, Newman-Keuls analyses of the simple effects of repetition
revealed that in the repeated stimulus condition, significant improvements
occurred in word recognition in repeated PB word lists and Haskins sentences
(p < .05), and except for the last day, regular, significant improvements
occurred in word recognition in the repeated Harvard sentences (p < .05;
failure to achieve significant improvement from the third to the last day of
training was probably due to a ceiling effect). This indicates that subjects
in the repetition groups continued to extract new information and learn about
the repeated stimuli on each subsequent training day.

In the novel stimulus conditions, significant day-)y-day improvements
were observed for word recognition in the PB word lists anzl Harvard senterces
after the second day of training (p < .05); significant improvements in word
recognition in Haskins sentences occurred from the first to the second day of
training, and from the third to the last day of training (p < .05). The
difference in the learning curves for the repeated-stimulus and novel-stimulus
conditions was undoubtably due to the fact that in the repeated-stimulus
condition the same list of stimuli was presented on each day of training,
while .n the novel-stimulus condition, subjects were always required to
identify novel stimuli. This demonstrates that repeated presentation of a
word will increase the prooability that it will be identified in a subsequent
presentation. Identifying new words is simply more difficult than recognizing
a repetition of a previously identified word. Notably, however, performance
in the repeated stimuli condition generally did not reach asymptotic levels.



Discussion

The results of the present experiment replicate and substantially extend
the findings reported by Schwab et al. (1985) for perceptual learning of
synthetic speech generated by rule. First, all subjects who received training
with synthetic speech displayed significant perceptual learning. All subjects
performed better in recognizing isolated words produced by a text-to-speech
system after traini-, than before training. Moreover, this learning was
measured by performance in recognizing completely novel words. Thus, subjects
clearly learned an abstra t representation of the acoustic-phonetic properties
of Votrax-generated synthetic speech that significantly aided in word
recognition.

However, although all subjects demonstrated reliable generalization
learning in identifying novel stimuli after training, a second major finding
concerned generalization learning across stimulus materials. Subjects trained
on fluent sentences improved in recognition performance for both isolated
words and words in sentences. In comparison, subjects trained on isolated
words improved only in recognition of isolated words. In general, with one
exception, word-trained subjects showed no better performance for recognizing
words in sentences than subjects who had received no training at all. The
exception was that when subjects were given some information about the
location of a word in a sentence (i.e., words following "the" in anomalous
sentences), word recognition performance for word-trained subjects was better
than for control subjects.

Considering current theories of auditory word recognition, these findings
are somewhat surprising since these theories posit that improvements in
recognition of isolated words should convey the same advantage for recognition
of words in sentences. The prediction of these theories should be especially
true for the speech generated by the Votrax system because the sentences
produced by this system are just concatenated s*--. s of words -- there are no
sentence-level phenomena in this synthetic spee Contrary to most theories
of word recognition, the present findings est that sentence-trained
subjects learned something about sentences that d not be learned from
training with isolated words alone. One hypotheL. s is that sentence-trained
subjects learned to recognize words in sentences without explicit segmentation
cues. A corollary of this hypothesis is that word-trained subjects performed
poorly at recognizing words in sentences because they expected the type of
word boundary phenomena that normally occur in natural speech. The absence of
these phenomena dictates the need for learning a strategy that most theories
of word recognition attribute to the listener as part of normative word
recognition -- segmentation by recognition. Perhaps it is this strategy that
is learned by subjects trained with fluent sentences.

Another major finding of the present study was that subjects trained with
the same stimuli every day showed as much generalization learning as subjects
trained with novel stimuli. Therefore, it is clear that generalization
learning is not dependent on training with novel stimuli. This is, in some
respects, a very Surprising finding because subjects trained with novel
stimuli everyday were continually engaged in generalization. Subjects trained
with repeated stimuli did not engage in generalization until the final session
of the study. As a consequence, we might expect subjects with more experience
at generalization to perform better on a generalization task, while subjects
trained on a fixed set of stimuli should perform much better on those stimuli
but show little generalization to completely new stimuli.
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One indication of the reason for this outcome may be found In thetraining data. In general, repeated-stimulus and novel-stimulus groups
continued to improve in performance throughout the training sessions withoutreaching an asymptote in accuracy. Remember that these data come from two
very different sets of stimuli. For the subjects trained on novel stimulieach day, the training data reflect day-by-day generalization performance.
However, for the subjects trained on repeated stimuli, the training datareflect increments in recognition performance for the same stimuli on eachday. Thus, it is clear that subjects did not quickly or easily master thetraining set even though it was presented on each day with feedback. The
apparent difficulty in learning this repeated training set may reflect thedegree to which the training set characterizes the rules used by the Votrax in
synthesizing speech. As in the research on artificial-language learning, ifthe training set sufficiently describes the actions of the rules,
generalization learning can occur even if the training set is relativelyrestricted.

Alternatively, the equivalent effectiveness of training with repeated andnovel stimuli could be due simply to the number of training stimuli presentedrather than the structural complexity of the training set. Since the subjectsin repeated- and novel-stimulus training groups had the same exposure to
synthetic speech and the same amount of feedback, it is possible thatgeneralization learning in this experiment was strictly due to the number of
stimulus presentations during training for each group. In Experiment 2, wetested this hypothesis by presenting two groups of subjects with the samenumber of stimuli during training, but we substantially reduced the structural
complexity of the training set for one of the groups.

Experiment 2

Experiment 2 was designed to examine further the difference betweentraining with repeated and novel exemplars. In Experiment 1, no systematic
differences were observed between perceptual learning with repeated and novelstimuli despite variations in tasks and type of stimulus materials. Of
greatest interest is the finding that repeated- and novel-stimulus trainingproduced equivalent patterns of generalization learning. Based on previous
research on artificial-language learning, it is tempting to conclude that theset of stimuli presented in the repeated stimulus condition was complex and
varied enough to provide a reasonable characterization of the underly.Agstructure of the entire ensemble of synthetic speech generated by the Votrax
text-to-speech system. Learning the acoustic-phonetic structure of thesynthetic speech may have been aided by prior knowledge of the lexical
structures of English. Thus, while subjects in previous studies learnedhighly arbitrary and novel stimulus-response mappings, the subjects inExperiment 1 learned to map a "distorted" set of acoustic-phonetic cues onto apreviously well-learned set of relations among natural acoustic-phonetic cuesand lexical knowledge. Subjects may have modified existing knowledgestructures to incorporate new acoustic-phonetic representations.

An alternative account of the perceptual learning observed in the firstexperiment is that simple exposure to the mechanical "sound" or voice qualityof the Votrax-generated speech may improve the intelligibilty of the speech.According to this hypothesis, there should be no difference between repeatedand novel stimulus conditions as long as the amount of exposure to thesynthetic speech is the same in ,epeated- and novel-stimulus trainingconditions. To investigate this hypothesis, we trained subjects on 200 novel
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PB words or on a fixed set of 10 PB words that was repeated 20 times. Such a
small set of repeated stimuli is u likely to provide a reasonable
characterization of the underlying acoustic-phonetic rules of the
text-to-speech system and is also very likely to be learned completely with a

small number of repetitions. Thus, we carried out this second experiment to
determine whether the generalization learning in the first experiment was
strictly a result of the equivalent exposure to synthetic speech for the
repeated-stimulus and novel-stimulus groups. In this experiment, if repeated-
and novel-word groups display equivalent generalization learning, that would
provide evidence that perceptual learning of synthetic speech is a direct
function of exposure regardless of the structure of the training set. On the
other hand, better generalization learning by the novel-word group relative to
the repeated-word groups would provide evidence that effective generalization
of perceptual learning depends on the structural properties of the set of
training stimuli.

Method

Subjects. Seventy-two undergraduates participated in this experiment to

fulfill a requirement for an introductory Psychology course. All subjects
reported that English was their first language, that they had no history of
hearing or speech disorders, and that they had no prior exposure to synthetic
speech.

Design. Subjects were assigned to two groups of thirty-six, and all
subjects completed the experiment. Both groups were given a pre-training,
open-response test of 50 PB words at the beginning of a one-hour session, and
both received a post-training open-response test of 50 PB words at the end of
the session. However, in the interval beL::een the pre-training and
post-training tests, the two groups were trained with different types of
materials. One group was trained with 200 novel PB words divided into 4

blocks. The other group received a fixed list of 10 PB words. This list was
repeated 20 times during trai ing.

Materials. The PB word lists used in Experiment 1 were modified for this
experiiiiTit: Four of the eight 50-word lists used for training in Experiment 1
were used without modification for training subjects in the novel-word
condition, The list of 10 words that was used to train subjects in the
repeated-word condition was constructed from the 100 PB words used during the

first day of training in Experiment 1. These words were selected because, in
Experiment 1, they were difficult to identify on the first day of training,
but were very reliably identified by the repeated-word subjects on the last
day of training. Thus, although these words were difficult to identify
initially, they were easily learned in the first experiment. Although all 10
words were always presented in each set of 20 trials, their order within a

block of trials was randomly varied.

The pre-training and post-training test lists each contained 40 novel PB
words, plus the 10 words that were used to train subjects in the repeated
stimulus condition of the present experiment. These sublists will be referred
to as the 40-word subtest and the 10-word subtest, respectively. The words of
the 10-word subtest were randomly mixed with those of the 40-word subtest in

both the pre-training and post-training stimulus lists.



Procedure. The same apparatus and general procedures used in Experiment
1 were also used in the present experiment. Subjects were tested in groups,
with a maximum of six subjects per group. Subjects were told that they would
be listenin6 to single monosyllablic words produced by a text-to-speech
system. For the pre-training test, they were instructed to listen carefully
to each word and after each word was presented, to write the word that they
heard. Subjects were told to guess if they were uncertain about a word's
identity. For the training sessions, subjects were told that after
transcribing their response, they would be shown the actual word on a CRT
monitor along with a second auditory repetition of the word. All subjects
were told that words could be repeated within a list. The post-training test
procedure was identical to that used in pre-training test (i.e., no feedback
was provided to subjects). In all other respects, the training and testing
procedures used in the present experiment were identical to those used in
Experiment 1.

Results

Transciption accuracy was determined according to the procedure used in
Experiment 1 for PS words. The principle results concern the performance of
the novel- and repeated-stimulus groups during the test sessions. However,
because the logic of Experiment 2 requires that the repeated word list is
completely learned prior to the post-training test, the results for the
training ses-ion will be reported first.

Training Data. Performance during training on the novel- and
repeated -word lists is summarized in Figure 4. To facilitate comparison with
the 4 blocks of 50 novel words, the 20 repetitions of the 10-word list were
grouped into 4 blocks, each containing 5 repetitions of the 10 words. All of
the subjects in the repeated-stimulus condition acheived perfect performance
by the third block of trials. An analysis of variance of the training data
for the subjects in the novel-word condition indicated that performance
increased significantly from the first training list to the last training list
(F(3,105) = 52.4, MSe = .00273, 2 <.0001). A Newman-Keuls analysis indicated
that percent correct word recognition increased from the first training list
to the second, and from the third training list to the fourth. These data are
not surprising and serve to demonstrate that subjects in the novel-stimulus
condition continued to improve in recognition performance throughout training,
while those subjects in the repeated-stimulus condition reached perfect
performance by the third block of trials.

Insert Figure 4 about here

The superior performance of the subjects trained with repeated words on
those words was apparent in performance on their first ten trials of training.
Repeated-word subjects were able to correctly identify 33% of the first ten
training words they received, while the novel-word subjects were able to
identify only 23% of their first ten words (F(1,70) = 8.38, MSe . .0215, 2 <
.01). Thus, words produced by the Votrax text-to-speech system were more
accurately identified after a single prior presentation i in the pre-training
test. Notably, this repetition effect occurred in the absence of any feedback
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training list in Experiment 2. (Now: Lists 1 and 6 were pre- and post-training test lists.)



during the initial presentation of the words. Thus, the repetition effect
reported by Jacoby (1983) for visual stimuli was found in the present
experiment for synthetic speech.

Testing Data. The results for the pre- and post-training tests are
summarized in Table 7. Prior to training, there was a significant difference
in performance on the two subtests such that subjects were able to correctly
identify only 15% of the 10-word subtest compared to 20% correct responses on
the 40-word subtest (F(1,70) = 14.55, MSe = .00644, p < .001). This
difference was probably due to the fact that the 10-word subtest was
constructed to be difficult prior to training, but easy after a moderate
amount of training. In addition, prior to training, there was no performance
difference between subject groups and no interaction between subject groups
and subtest (p > .25).

Insert Table 7 about here

However, after training, the two subject groups rerfoin.ed quite
differently. In order to describe these differences And to facilitate
comparison with the pre-training test scores, two analyses were conducted:
one on the 10-word subtest results and one on the 40-word subtest results. In
both cases, subject group (novel- vs. repeated-word training) was the
between-groups factor and test list (pre-training vs. post-training) was the
within-groups factor.

An analysis of variance of the 1(' -word subtests indicated that
repeated-word subjects identified 57% of toe 10-word list correctly and that
this was significantly greater than the 18% correctly identified by the
novel-word subjects (F(1,70) . 310.6, MSe = .01716, p < .0001). Furthermore,
significantly more items were correctly identified in the post-training
subtest (60%) than in the pre-training subtest (15%), (F(1,70) = 855.0, MSe
.00847, p < .0001). Also, the interaction between these types of training and
test list was significant (F(1,70) . 541.3, MSe .00847, p < .0001). Paired
comparisons indicated that although no significant difference between subject
groups was found in the pre-training 10-word subtest, a significant difference
between groups was observed for the post-training 10-word subtest (p < .01).
Furthermore, although both groups showed significant improvements in
performance from the pre-training 10-word subtest to the post-training subtest
(g < .01), the improvement demonstrated by the repeated-word subjects was
significantly greater than that shown by the novel-word subjects (p < .01).
These results demonstrate that the subjects in the repeated-word condition
learned to recognize words in their 10-word training list much more accurately
than subjects who did not receive those words during training.

The primary concern of the present experiment is with the amount of
generalization learning demonstrated by the two subject groups by recognition
performance for novel words after training. An analysis of variance of the
40-word subtest indicated that more words were correctly identified in the
post-training subtest than in the pre-training subtest (27% and 20%,
respectively), (F1,70) . 79.9, MSe = .0023, 2 < .0001); but there was no
significant overall difference between subject groups (F(1,70) . 2.3, MSe
.00434, p > .10). However, the difference between the pre- and post-training
40-word subtests was significant for the the two subject groups (F(1,70) =
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Table 7

Transcription accuracy for words in the pre-training

and post-training tests (percent correct)

Test Session

Pre-training Post-training

Condition

10-word

subtest

40-word

subtest

10-word

subtest

40-word

subtest

Repeated

Novel

16.7

13.9

20.7

20.1

97.2

23.1

25.6

29.5



8.21, HSe = .0023. p < .01). A series of paired comparisons probing this
interaction revealed that, although no reliable difference was observed
between the two subject groups in the pre-training 40-word subtest, novel-word
training produced significantly better generalization performance than
repeated-word training in the post-training 40-word subtest (p < .01).
Moreover, a comparison between pre-training and post-training results
demonstrated that novel-word subjects improved significantly more than
repeated-subjects as a result of training (p < .01). In short, subjects
trained with novel words displayed significantly greater generalization
learning than subjects trained with a repeated set of easily learned words,
even though the number of stimuli presented to each group of subjects was
equivalent.

Discussion

The findings of the present experiment clarify and extend the 'Jesuits of
Experiment 1. The purpose of this second experiment was to determine whether
simple repetition is sufficient to produce equivalent generalization learning
to training with novel stimuli. One major difference between these
experiments was in the structure of the repeated training set. In the first
experiment, the training set consisted of a large number of words or sentences
that represent a great deal of the segmental variability that occurs in speech
produced by the text-to-speech system. In contrast, in the present
experiment, subjects trained with repeated words were exposed to a
substantially smaller set of exemplars of the Votrax generated speech.
Furthermore, we chose the words for the repeated training set based on the
fact that in the first experiment, these words were initially difficult to
recognize but subjects were able to learn them after some training. The
results from the training blocks for the repeated words demonstrates that
subjects in the repeated-word group quickly learned to recognize these items
perfectly. By comparison, recognition performance of the novel-word group was
substantially poorer during the training blocks.

However, despite significantly poorer performance during training, the
novel-word trained subjects showed significantly better performance on the
generalizaticfl test than subjects trained with repeated words. Indeed, a
comparison of performance on the post-training test for the 10-word and
40-word subtests indicates a large interaction between training and
performance on these tests: Subjects trained with repeated words recognized
those words more accurately after training than subjects trained with novel
words; subjects trained with novel words recognized entirely I.ew words in a
generalization test more accurately than subjects trained with repeated words.
These results demonstrate clearly that repetition alone is insufficient to
facilitate generalization learning. Even though both groups of subjects had
the same amount of exposure to the synthetic speech, the novel-word group
showed significantly better generalization performance.

There are two conclusions that can be drawn from this pattern of results.
First, it is clear that simple exposure to the mechanical sound of synthetic
speech is insufficient to facilitate generalization learning. Repetition
alone will not produce generalized perceptual learning. Second, by extension
from the first experiment, generalization learning depends on exposure to a
training set that sufficiently characterizes the rule structure of the speech.
In other words, continuous presentation of novel stimuli during training is
not necessary to produce generalization training. Thus, generalized
perceptual learning of synthetic speech is a consequence of sampling tilt space
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of possible stimuli in such a way as to describe the structural properties of
the speech.

In general, the results of the present experiment using synthetic speech
produced by rule are similar to the pattern of results reported by Dukes and
Bevan (1967) nor naming pictures. However, one exception was observed. In
the Dukes and Bevan study, subjects trained with novel stimuli did better than
repeated-stimuli subjects on the new test stimuli, and subjects trained with
repeated-stimuli did better than novel-stimulus subjects on old test items.
However, Dukes and Bevan found that even the novel-stimulus subjects
identified old items more accurately than novel items. In contrast, in the
present experiment, the improvement of the novel-word subjects on the 10-word
subtest was not significantly different from their improvement on the 40-word
subtest. Thus, there was no distinction in recognition performance for new
items and old items for novel-word subjects, even though this difference was
obtained for the repeated-word subjects. This finding suggests that, in the
present experiment, the old items were either not sufficiently distinctive to
retain a salient episodic to further aid recognition (cf. Jacoby, 1983) or
the old items were not really "learned" as individual items but were only
learned for their acoustic-phonetic structure. This would mean that in
learning to recognize these words, subjects were actually attending to the
acoustic-phonetic properties of the speech rather than to the words
themselves.

Genet-J. Discussion

The present research has been concerned with the influence of stimulus
repetition, stimulus variablity and stimulus structure on generalization
learning. The results of this research have replicated a previous study by

Schwab et al. (1985) demonstrating that listeners can learn to recognize
synthetic speech more accurately with modest amounts of training. In fact,

subjects are not simply learning to recognize word patterns that they have
been trained on, but instead, they learn to recognize words and sentences they
have never heard before. The purpose of the present study was to investigate
this generalization learning in greater detail. In the first experiment, we
found that training with isolated words is not equivalent to training with
fluent sentences. Subjects trained with fluent sentences displayed two types
of generalization learning -- they improved in recognizing words in novel
sentences and they also improved in recognizing isolar -cords. Subjects
trained with isolated words only improved at recognizing lated words
and did not show any better performance for recognition -entences
than control subjects.

Another important finding of the first experiment was that subjects
trained with repeated stimuli displayed equivalent generalization learning to
subjects trained with novel stimuli. Thus, subjects who engaged in

generalization throughout training were no better at this task after this
training than subjects who were trained on a repeated stimuli. An exa74nation
of the day-by-day performance of these two groups of subjects indicated that
both groups showed systematic improvements on each training day in,!4cating

that the repeated-stimulus subjects continued to learn new information over
the course of training, as did the novel-stimulus subjects. By comparison, in
the second experiment, when repeated-stimulus subjects were able to quickly
and completely learn the fixed training set, the novel-stimulus subjects
performed significantly bette on the generalization -.est.
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In order to consider the implications of the present results for
perceptual learning in general, it is useful to compare the structural
characteristics of the stimulus materials used in the present experiments with
those used in previous perceptual learning studies. The variability of the
acoustic-phonetic structure of synthetic speech generated by the Votrax
text-to-speech system is lawful and context-conditioned; moreover, this
acoustic-phonetic structure, in principle, is systematically related to the
acoustic- phonetic structure of English (although there are significant
differences; see Yuchtman et al., 1985). Thus, subjects in the present study
were faced with the problem of mapping a distorted, but systematic, set of
acoustic-phonetic cues onto a previously well-learned set of relations between
natural acoustic-phonetic cues and lexical representations in memory. The
speech produced by a text-to-speech system is goferned by a set of rules that
describe the use of a particular phoneme or allophone in a specific context.
However, the acoustic-phonetic structure of synthetic speech does not
incorporate all the rich and redundant context-conditioned variability that
represents natural speech. Instead, the acoustic-phonetic structure of
synthetic speech is constrained much more severely and is limited to a small,
fixed inventory of sounds. Thus, in learning to recognize Votrax-generated
cords and sentences, listeners are really learning to map the limited sound
inventory of the Votrax speech onto already well- known, phonetic categories and
then they must also learn to recognize sequences of these segments as words.
Because the inventory of sounds produced by the Votrax is quite limited and
are systematically related to each other through acoustic-phonetic and
phonological constraints, listeners may have been able to learn the
acoustic-phonetic structure of the synthetic speech from a relatively small
set of repeated exemplars in the first experiment.

The stimuli used by Posner and Keele (1968) were quite different: The
exemplars were stochastic distortions of four dot patterns that served as
prototypes. Thus, the relationship among the Posner and Keele stimuli was not
as well-defined as the relationship among the present stimuli. The stimuli
used by Bevan and Dukes (1967) were perhaps more systematically related (they
used pictures of individuals in different poses), but it is unlikely that even
these stimuli provide the rich structural coherence and redundancy of speech.
The present results suggest that the underlying structure defining a set of
exemplars can greatly effect the outcome of a perceptual learning experiment.
In the previous two studies, as well as those conducted by Nagata (1976) and
Palermo and Parrish (1971), stimulus variability substantially affected
generalization learning. In the present experiment, stimulus variability had
a negligible effect, as long as the stimulus set in the repeated-stimulus
condition was large enough to provide a reasonable characterization of the
range or perceptual space of the stimuli generated by the Votrax
text-to-speech system.

In interpreting the present results, it is important to note that mere
familiarity with the mechanical sound of Votrax was not sufficient to improve
intelligibility. Listeners are clearly not simply becoming accustomed to the
unusual sound of synthetic speech or to the sound of Votrax speech, in
particular. Rather, listeners are learning very specific informq!ion about
the structural properties of the speech that is produced by the rule system.

Further support for the conclusion that listeners are learning specific
structural properties of the synthetic speech produced by the Votrax system
comes from the results of ''.le first experiment comparing perceptual learning
for subjects trained on isolated words and subjects trained on fluent
sentences. Although both groups of subjects recognizes isolated words more
accurately following training, it is apparent that training with sentences did

r.
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not display equivalent effects to training on isolated words. Subjects who

were trained on fluent sentences also showed performance improvements for
recognition of words in sentences, while subjects trained on isolated words
did not show this improvement for recognition of words in sentences.

This finding !s interesting for two reasons. First, these results are
quite different from those obtained by Kolers and Magee (1978), who found that
training subjects to read inverted letters did not improve with inverted words
and vice versa. The difference in the findings obtained in these two studies
is probably most directly the result of differences in the nature of the

patterns learned by subjects for synthetic speech and inverted print. In the
Kolers and Magee study, subjects may have adopted entirely different

perceptual organizations for patterns depending on the nature of their

training. Word-trained subjects may have learned to code entire word pkterns
while letter-trained subjects may have adopted a strategy of directing

attention at subword patterns. By comparison, in the present study,

word-trained and sentence-trained subjects both clearly displayed better
recognition of isolated words after training. This indicates that, after

training, subjects were more accurate in mapping sound sequences produced by
Votrax onto the intended lexical representations. Despite the differences in

training materials, both groups of subjects improved in word recognition
performance. This indicates that sentence-trained subjects did not learn to

treat fluent sentences of synthetic speech as holistic entities with a
qualitatively different (and more complex) pattern structure than isolated

words. Unlike the subjects in the Kolers and Magee study, the

sentence-trained subjects ewlously recognized that sentences are made up of

words and so learning to recognize required learning to recognize words.
However, beyond these basil improvements in recognizing words, it appears that
the sentence-trained subjects learned something more about perceiving

synthetic speech: They learned how to recognize words in fluent sentences, a

perceptual skill that was not conferred by training with isolated words alone.

This perceptual skill might be the ability to segment fluent synthetic

speech by recognizing words one at a time in the order by which they were
produced. According to this segmentation strategy, the beginnings and endings
of words are not located by explicit word boundary cues or information, but
simply by the process of serial word recognition. Recognition of the first

word in a sentence indicates the beginning of the next word and so on.
Another way of expressing this is to say that the sentence-trained subjects

learned to recognize words in the absence of word boundary cues that may be
expected in perceiving natural speech. Conversely, the word-trained subjects,
when presented with sentences, expected these boundary cues and the absence of
these cues impaired word recognition performance for these subjects.

This brings up the second reason for the importance of the asymmetry of

learning displayed by sentence-trained and word-trained subjects. A number of

theories and mo6els of word recognition propose that words are segmented out

of fluent natural speech as a direct result of word recognition (e.g., Cole &
Jakimik, 1980; Marslen-Wilson & Welsh, 1978; McClelland & Elman, 1986).

Accoiding to these theories, fluent natural rpeech includes no explicit
process for dividing speech into word-size units that are then matched against

lexical representations. Instead, segmentation is a direct by-product of the
recognition process (e.T., Reddy, 1976; Pisoni, 1978).

Suppose that these theories are correct and segmentation is a consequence
of word recognition and not a necessary antecedent to it. The sentences

produced by the Votrax text-to-speech system are simple concatenations of

isolated words and so, in these sentences, there are no explicit acoustic cues
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to word boundaries as have sometimes been observed in natural speech (e.g.,
Nakatani & Dukes, 1977). Thus, these sentences represent precisely the type
of stimuli that would be expected during word recognition by these theories.
Thus, any improvements in recognizing isolated words should directly improve
recognition of words in sentences as well. However, despite their
improvements in isolated word recognition, the word-trained subjects did not
show any better recognition of words in sentences than control subjects, with
one exception. The case in which word-trained subjects performed better than
the control subjects in recognizing words in sentences was for words whose
beginnings ,/ere located a priori on the response sheets. In other words, when
word-trained subjects knew the location of a content word, they were able to
recognize it more accurately after training. This demonstrates that the major
difficulty experienced by these subjects was it locating the words in the
fluent speech. When the location of a word was known, these subjects could
apply their enhanced word recognition skills. By extension, this suggests
that sentence-trained subjects, in learning to recognize words more accurately
in sentences, were really learning to recognize words in the absence of
segmentation cues. However, why should subjects need to learn this if most
theories of word recognition are correct and segmentation is a consequence of
recognition? Similarly, if these theories are correct, why did word-trained
subjects only display improved word recognition for sentences when word
location information was provided? One possibility is that a fundimental
claim of most theories of word recognition is wrong: Segmentation is not a
consequence of the recognition process but perhaps an important antecedent or
corollary of recognition.

Taken together, the pattern of results obtained in these experiments
argues that listeners do not normally recognize words one at a time, in the
order by which they are produced as a means of locating word boundaries.
Indeed, there is increasing evidence that there may be reliable cues to word
boundaries in both the acoustic structure (e.g., Nakatani and Dukes, 1977) and
the Aonotactic structure (Lamel and Zue, 1984) of fluent speech. Recently,
Quene (1985) has shown that adding acoustic word boundary cues to synthetic
speech does enhance the intelligibility of the synthetic speech. Thus, there
are word boundaries in natural speech that may aid in the process of word
recognition and these boundaries are absent from Votrax-generated synthetic
speech. If these word boundaries do indeed play an important role in the
recognition process, most of the current theories of auditory word recognition
would be based upon a fundamentally incorrect assumption and would require
considerable revision (Grosjean, 1985; Grosjean & Gee, in press).

One response to the claim that prosodic and segmentation cues play an
important role in word recognition might be to simply incorporate these cues
into extant theories of word recognition. For example, in McClelland and
Elman's (1986) Trace model, word beginnings or endings would be signified by
boundary cue detectors that would have a role similar to the current acoustic
feature detectors except that instead of signaling phonetic information to the
system, these boundary detectors would directly fire to the lexical level to
indicate t:le start or end of a word. Although it clearly would not be
diffict.,' to add cues to a theory of word recognition, either as part of the
lexical representations or as an explicit signaling mechanism, this may not be
the appropriate way to incorporate this information. The addition of these
cues might allow a theory to emulate human performance, but it would not be
dictated on computational grounds. Including these cues would not enhance the
capabilities of the theory except in terms of emulating humans. Instead, it
seems that the need for segmentation cues should dictate a different approach
to word recognition other than the current, strictly linear, word -by- -word
strategy (Grosjean & Get, in press).
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Finally, it is not clear whether repetition and novel-stimulus training
in Experiment 1 would have produced equivalent effects if subjects in the
repetition training condition had achieved asymptotic performance during the

training sessions. If subjects extract all the informatior from a fixed set
of stimuli so that no more overt learning occurs, and repethien training and
novel-stimulus training is continued on from that point, will the two types of
training be equivalent. Once learning reaches asymptotic levels in a

repetition condition, the effects of repetition learning on a generalization
test may level off while novel-stimulus training may continue to produce
increasingly better performance on a generalization test. This is an 4.ssue
that warrants investigation in future research on perceptual learning.

Clearly, the results of the present experiments demonstrate the

importance of studying generalization learning for stimuli that are lawfully
related to previously well-learned stimulus structures, and that are

internally coherent and involve context-conditioned variability. Moreover,
these results indicate that it is not always advisable to infer similarities
between the processes of visual pattern recognition and speech perception.
The processes that mediate perceptual learning appear to be linked directly to
the type of pattern structures that are presented in different modalities and,
as a consequence, perceptual learning may take different forms for different
types of stimulus sets across sensory systems. It is important to begin to
characterize what these differences and similarities are and how they may

affect the processes of perceptual learning in order to develop more general
theories of perceptual learning. Simple exemplar-based models (e.g., Jacoby,

1983) or stimulus-response associating mrdels (e.g., Shiffrin & Scheider,
1977) may be inadequate for the task of representing the full range of

complexity presented by perceptual learning in different modalities for

different types of stimuli. In future work, it will be necessary to

investigate systems that are capable of representing the rich structural
relationships that exist among different tokens of stimuli and that represent

perceptual learning as a more general process of complex skill acquisition
(e.g., Grossberg, 1982; Kolers and Roediger, 1984).
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Trading Relations, Acoustic Cue Integration, and

Context Effects in Speech Perception

The study of speech perception differs in several very important ways
from the study of general auditory perception. First, the signals typically
used to study the functioning of the auditory system have been simple,
discrete, and well-defined mathematically. Moreover, they typically vary
along only one perceptually-relevant dimension. In contrast, speech sounds
involve very complex spectral relations that typically vary quite rapidly as a
function of time. Changes that occur in a single perceptual dimension almost
always affect the perception of other attributes of the signal. Second, most
of the basic research on auditory perception over the last four decades has
been concerned with problems surrounding the discriminative capacities of the
sensory transducer and the functioning of the peripheral auditory mechanisms.
In the perception of complex sound patterns such as speech, the relevant
mechanisms are, for the most part, quite centrally located. Moreover, while
many experiments in auditory perception and sensory psychophysics have
commonly focused on experimental tasks involving discrimination of both
spectral and temporal properties of auditory signals, such tasks are often
inappropriate for the study of more complex signals including speech. Indeed,
in the case of speech perception and probably the perception of other complex
auditory patterns, the relevant task for the observer is more nearly one of
absolute identification rather than differential discrimination. Listeners
almost always try to identify, on an absolute basis, a particular stretch of
speech or try to assign some label or sequence of labels to a complex auditory
pattern. Rarely, if ever, are listeners required to make fine discriminations
that approach the limits of their sensory capacities.

Given the published literature on the per,vtion of simple auditory
signals, it is generally believed, at least among researchers in the field of
speech perception, that a good deal of what we have learned from traeitional
auditory psychophysics using simple sinusoids is only marginally relevant to
the study of speech perception. Perhaps some of what is cuLrently known about
speech perception might be relevant to the perception other complex auditory
patterns which have properties that are similar to speech. At the present
time, there are substantial gaps in our knowledge about the perception of
complex signals which contain very rapid spectral changes such as those found
in speech. And there is little if any research on the perception of complex
patterns that have the typical spectral peaks and valleys that speech signals
have. Finally, our knowledge and understanding of patterns containing
amplitude variations like the complex temporal patterns found in speech are
also quite meager at this time. Obviously, there is a lot of basic research
to do.

A voiced (periodic) speech signal is typically thought to be produced by
excitation of a time-varying filter with a source spectrum which has harmonics
at multiples of the fundamental. For unvoiced (aperiodic) signals, the
situation is somewhat more complicated because the source spectrum is
continuous ,nd may contain energy at all frequencies and the location of the
energy in the vocal tract can occur at a number of different locations between
glottis and lips. However, in considering only voiced sounds, at has been
convenient to assume, for modeling purposes, that the interactions between
source and filter are minimal and thus it is theoretically convenient to
dissociate properties related to the source spectrum from properties imposed
by the vocal-tract transfer function. The relevant perceptual attrioutes for
the perception of segmental sounds of speech a.-e closely associated with
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e.enges in spectral shape aver time. In contrast, the relevant perceptual
attributes for the perception of suprasegmental or prosodic attributes of
speech are related to the changes in the temporal properties of speech, such
as duration, and variations in pitch and amplitude as a function of time.
Considering only the segmental properties of speech sounds in patterns of
word-length size, it is possible to generate an enormously rich set of highly
distinctive acoustic patterns (i.e., words) that can be identified and
responded to very rapidly by human listeners. When interest is directed to
prosodic attributes of speech and some of the properties related to source
characteristics, it immediately becomes apparent that an even richer and more
distinctive set of complex signals can be generated by the combination of only
a small number of variations on a larger set of perceptually-relevant
dimensions.

As Pollack (1952) demonstrated over thirty years ago, speech sounds
represent a class of signals that are able to transmit relatively high levels
of information with only gross variations in perceptually- distinctive acoustic
attributes. In other words, speech is an efficient signaling system because
of its ability to exploit fundamental processing strategies of the auditory
system. This theme has been taken up and expanded recently by Stevens (1980)
who argues that speech signals display a certain set of general properties
that set them apart from other signals in the listener's auditory environment.
According to Stevens, all speech signals have three general properties or
attributes in common. First, the short-term power spectrum sampled at
specific points in time always has "peaks" and "valleys." That is, speech
signals display up and down alternations in spectrum amplitude with frequency.
These peaks in the power spectrum arise from the peaks observed in the vocal
tract transfer function and correspond to the formants or vocal resonances
that are so prominent in vowel and vowel-like sounds. The second general
property that speech sounds display is the presence of up and down
fluctuations in amplitude as a function of time. These variations in
amplitude correspond to the alternation of consonants and vowels occurring in
syllabic-like units roughly every 200-300 msec. Finally, the third general
property that speech signals display is that the short-term spectrum changes
over time. The peaks and valleys of the power spectrum change; some changes
occur rapidly -- like the formant transitions of stop consonants, whereas
other changes are more gradual like the formant motions of semi-vowels and
diphthongs. According to Stevens (1980), speech sounds have these three
general attributes and other sounds do not, and it is these attributes that
distinguish speech sounds from other complex nonspeech sounds.

It should also be mentioned here that in addition to some of the
differences in the signal characteristics between speech and nonspeech noted
above, there are also very marked differences in the manner in which speech
and nonspeech signals are processed (i.e., encoded, recognized, and
identified) by human listeners. For the most part, research over the last
thirty-five years has demonstrated that when human observers are presented
with speech signals, they typically respond to them as linguistic entities
rather than simply as random auditory events in their environment. The set of
labels used in responding to speech are int_mately connected with the function
of speech as a signaling system in spoken language. Thus, speech signals are
categorized and labeled almost immediately with reference to the listener's
linguistic background and experience. And, a listener's performance in
identifying and discriminating a particular acoustic attribute is often a
consequence of the functional role this property plays in the listener's
linguistic system. It is possible to get human listeners to respond to the
auditory properties of speech signals with some training and the use of
sensitive ps ,rchophysical procedures. But one of the fundamental differences
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between speech and nonspeech signals lies in the linguistic significance of
the patterns to the listener and the context into which these patterns may be
incorporated.

In the sections below, we discuss several recent findings that deal with
the dynamic or time-varying aspects of speech perception. The topics to be
considered this paper include findings on trading relations, perceptual
integration of acoustic cues, and context effects. The findings from these
studies point to significant gaps in our current understanding of the
perception of speech and nonspeech sounds in isolation and in context. At the
present time, we do not have a psychophysics of speech nor do we have a
psychophysics of complex sounds. Current theoretical efforts represent only a
very meager beginning and, in some cases, an unsatisiactory attempt to
understand a wide variety of phenomena in the field of speech perception. Our
discussion of these selected topics in speech perception is designed to
emphasize the wide separation that currently exists between researchers
working in the mainstream of speech perception and those attempting to develop
a psychophysics of speech and other complex sounds. It it hoped that this
presentation will generate a great deal of discussion at the workshop about
future directions for research and theory in speech perception and the
research goals of investigators who are currently interested in the
psychophysics of both speech and nonspeech signals.

Cue Trading and Acoustic Cue Integration. It has been well-known for
many years at several cues may signal a single phonetic contrast (e.g.,
Delattre, Liberman, Cooper, and Gerstman, 1952; Denes, 1955; see Repp, 1982,
for a review). Thus, it is possible to demonstrate that when the perceptual
utility of one cue is attenuated, another cue may take on primary
effectiveness in signaling the contrast under scrutiny because both cues, it
is assumed, are equivalent. This is called a phonetic trading relation (Repp,
1982). In recent years, phonetic trading relations have been cited as
evidence for a specialized speech mode of perception. Then appear to be two
reasons for this view. First, some demonstrations of phonetic trading
relations involve both spectral and temporal cues that are distributed over a
relatively long temporal interval. Repp (1982) has argued that it is hard to
imagine how such disparate cues arranged across relatively long time windows
could be integrated into a unitary percept if specialized (i.e., non-auditory)
processes were not in operation. Repp proposes, furthermore, that the basis
of this specialization lies in the listener's abstract knowledge of
articulation. In other words, because we as listeners know (implicitly) how
speech is produced, we are able in some way to integrate acoustically
different cues that arise from an articulatory plan into a single unified
phonetic percept. The second line of evidence for specialization of speech
perception involves demonstrations that phonetic trading relations do not
apparently arise for nonspeech sounds. Such evidence is therefore taken to be
proof that the integration of multiple cues giving rise to trading relations
is somehow or another peculiar to processing speech signals.

One frequently investigated trading relation involves the so-called stop
manner con.:ast in word pairs such as "say"-"stay" or "slit"-"split." The
presence or absence of a stop in such minimal pairs w.y be signalled by one of
two cues: (1) silent closure duration between the offset of /s/ frication and
onset of voicing and (2) the first formant transition onset. Fitch, Halwes,
Erickson, and Liberman (1981) examined the degree to which these two cues are
phonetically equivalent in perception. A demonstration of the phonetic
equivalence of these two diverse cues would suggest the operation of
specialized processes that "ignore" the acoustic diversity of these cues and
integrate them into a unitary phonetic percept.
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Fitch et al.(1981) synthesized two syllables, one having formant

transitions biasing perception of the syllable /lIt/and another the ,Y.lable
/plIt/. /s/ frication was appended to the beginnings of each syllable and two

series of stimuli were generated by varying the closure interval between the

/s/ frication and the vocalic portion of each syllable. One series of stimuli

was thus composed of /s/ + /lIt/ and another of /s/ + /pin/9 with both series
varying in the duration of the closure interval. Fitch et al. presented

these sets of stimuli to subjects for identification. For both series,

stimuli with sufficiently short closure durations were heard as /slit/ and

stimuli with sufficiently long closure durations were heard as /split/. Thus,

Fitch et al. demonstrated that in spite of the formant transitions, the

duration of the closure interval could induce indentification of the stimuli

from both series as either /slit/ or /split/. However, their results also

showed that, on the average, relatively more silence (approximately 20 msec)

was required for identification of /split/ for the /s/ + /lIt/ series than for

the /s/ + /plIt/ series. These findings demonstrate that formant transition
cues and closure duration trade off in producing perception of the presence or

absence of the stop /p/.

To determine more precisely if formant transitions and closure duration

are perceptually egtivalent, Fitch et al. carried out a second experiment on
the discrimination of /slit-split/ stimuli containing either only one cue, two

cooperating cues, or two conflicting cues. The logic behind this experiment

was as follows: If formant transitions and closure duration are equivalent,

their perceptual effects should be additive. Thus, relative to a baseline

condition, adding a cooperating cue should enhance discriminability, whereas

adding a conflicting cue should decrease discriminability due to the fact that

the perceptual effect of these two cues should cancel one another out. This

result is precisely what Fitch et al. found. Discrimination was best for the
cooperating cue stimuli, intermediate for the single cue stimuli, and worst

for the conflicting cue stimuli.

To further buttress the claim that phor?tic trading relations (and the

concommitant notion of phonetic equivalence) are peculiar to speech

processing: Best, Morrongiello, and Robson (1981) performed an experiment

using sine-wave analogs of "say" and "stay," a contrast for which they

demonstrated a similar trading relation to that of "slit"-"split." [Sine-wave

analogs were constructed by imitating the center frequencies of formants of

natural speech tokens with pure tones (Remez, Rubin, Pisoni, and Carrell,

1981).) Two versions of stimuli were constructed: In one, the sine-wave

portion of the stimulus had a low onset of the lowest tone (simulating /de/
or, in Best et al.'s terms, "strong" [defl) and one a high onset of the lowest

tone (simulating /eI/ or "weak" [del)). Noise' was then appended to the

beginning of each stimulus to simulate /s/ frication and test continua were
generated by varyig the closure interval.

Best et al.(1981) presented these stimuli to subjects for identification

using an AXB procedure. In this procedure, A and B are endpoints of the

continuum and X any one of the items from the continua. Subjects respond by

indicating whether X is more like A or B. According to post-hoc interviews of

the subjects, the subjects were partitioned into two groups, "speech"

listeners and "nonspeech" listeners. [For sine-wave stimuli modelled after

natural speech, some listeners spontaneously hear the stimuli as speech

(although somewhat unnatural speech). Other listeners, however, hear the

stimuli as nonspeech whistles (see Remez et al., 1981).1 Identification

functions for the "speech" or "say"-"stay" listeners revealed a trading

relation; those who failed to hear the stimuli as speech, however, failed to

display identification functions indicative cf a trading relation. In
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addition, the subjects who heard the stimuli as nonspeech were further
subdivided into two groups, one group which attended to spectral cues (i.e.,
onset frequency of the lowest tone) and one which attended to temporal cues
(duration of the closure interval). Thus, the nonspeech listeners were unable
to trade the two cues and attended to either the spectral cue or the temporal
cue. Apparently, subjects who heard the stimuli as speech perceived the
stimuli in a phonetic mode in which the temporal and spectral cues were
somehow integrated into a unitary percept, thus giving rise to the observation
of a trading relation; those subjects hearing the stimuli as nonspeech were
presumably perceiving the stimuli in an auditory mode in which integration of
the two cues was impossible.

The demonstration of trading relations constitutes the newest source of
evidence for the existence of a specialized speech mode in whicn knowledge of
articulation comes to bear in the perception of speech. According to Repp
(1982), "trading relations may occur because listeners perceive speech in
terms of the underlying articulation and resolve inconsistencies in the
acoustic information by perceiving the most plausible articulatory act. This
explanation requires that the listener have at least a general model of humanvocal tracts and of their ways of action" (p. 95). Thus, based in part on
demonstrations of phonetic trading relations, researchers, particularly those
associated with Haskins Laboratories, have once again renewed their efforts to
argue for articulation-based specialized phonetic processing. It is not
clear, however, that such a position is entirely unassailable.

Massaro and his colleagues (Massaro and Oden, 1980; Oden and Massaro,
1978; Massaro and Cohen, 1977) offer an alternative account of trading
relations that explicitly denies any specialized processing. Instead, in
their model, speech perception is viewed as a "prototypical instance of
pattern recognition" (Massaro and Oden, 1980, p. 131). Briefly, Massaro andOden argue that multiple features corresponding to a given phonetic contrast
are extracted independently from the waveform and then combined in the
deciT!-n processor according to logical integration rules. These rules
operate on fizzy sets so that information regarding a given feature may be
more-or-less present or "sort of" present. This aspect of their model, then,
stresses cont;nuous rather than all-or-none information. Thus, features are
assigned a probability value between .0 and 1.0 indicating the extent to which
a given feature is present. Subsequlitly, the degree to which this featural
information matches a stored prototype is determined according to a
multiplicative com6ination of the independent features. The fact that
multiple features are ev7Aluated independently, and that these features can
assume ambiguous values (e.g., .5), can account for the finding Lhdi the
perceptual utility of two cues may trade off in rendering a given phonetic
percept.

Although Massaro's model can handle phonetic trading relations without
reference to articulation or specialized phonetic processing, the results of
Best et al. (1981) demonstrating cue trading for speech stimuli but not for
sine-wave analogs of speech present a problem. If speech perception is simply
a prototypical example of pattern recognition, why are some patterns (e.g.,
speech) processed differently than other patterns (e,g., sane -wove analogs)?
One additional, reasonable assumption can be invoked to account for the
seech-.ionspeech findings, namely that experience with speech stimuli
sensitizes the listener to the existence of many possible J.tluliclasi cues to a
given phonetic contrast. For speech stimuli, then, the listener is biased
toward evaluation and integration of all possible cues. :'or sine-wave
analogs, with which the listener has presumably had little exper..ence, the
listener may hold no expectations of the possible dependenci s among cues.
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Thus, the absence of expectations of cue dependencies fur nonspeech stimuli
may have produced the differences in cue-trading effects of speech and

nonspeech observed in the Best et al. study. Indeed, the very fact that some
listeners in this study attended to spectral characteristics of the stimuli
and others to temporal characteristics attests to the fact that both cues were
available to the nonspeech listeners. However, because these subjects did not

treat these stimuli as speech-like, they may not have applied certain
overlearned strategies for evaluating and integrating diverse cues to the

sine-wave analogs (see Grunke and Pisoni, 1982; Schweb, 1981).

Repp, Liberman, Eccardt, and Pesetsky (1978) dismiss a similar
explanation of cue trading and integration on a priori grounds. However, Repp
(1983) has recently argued that cue 'rading results do not in fact support the
claim that speech is processed by specialized mechanisms. Much in the spirit

of our discussion of the cue-trading literature, Repp concludes that

cue-trading effects "are not special because, once the prototyptical patterns
are known in any perceptual domain, trading relations among the stimulus

dimensions follow as the inevitable product of a general patter,* matching

operation. Thus, speech perception is the application of general per "eptual

principles to very special patterns" (p. 132).

In short, we believe, as was shown several years ago with categorical

perception effects, that reasonable alternative explanations are possible for
the cue-trading evidence reported thus far. Whether these explanations will

stand the test of time is, of course, an empirical question. The arguments

proposed for the existence and operation of specialized speech processing

mechanisms and the mediation of articulation in speech perception have quite
broad implications for linguistics, psychology, and the philosophy of mind.

Thus, because of the important ramifications of these claims, it is probably
best to err on the side of caution in evaluating the available evidence. The

cue-trading evidence is one of the most compelling sources of evidence to date

for a speech mode of perception. However, the historical lesson taught by the

failures of previous lines of research (e.g., categorical perception,

select.,.ve adaptation) to demonstrate specialized speech processing emphasize

the import-nee of maintaining a nealthy skepticism in evaluating any new

evidence ) specialization of speech processing with reference to

articulatory mediation. In short, we are sympathetic to the position being
advocated here but we are not yet convinced from the experimental data used to

support these claims.

Context Effects in Speech Perception. Much, if not all, of the research

on speech perception over the last thirty-five fears has been concerned with
the minimal cues, features, f..,:. acoustic attribute that support perception of

segmental phonetic contrasts in highly restricted environments (e.g., CV

syllables). Although this reductionism has made scientific investigation more

tractable, it has led many researchers to ignore, or at least postpone
consideration of the perceptual problems posed by the production of speech in

fluently-articulated sentences or passages of c)nnecLed discourse. At the

level of fluent continuous speech, the problems of invariance and segmentation

appear to become even more imposing. Not only are segments coarticulated
within syllables in continuous speech, but coarticulatory effects are spread

across words, making isolation of words within sentences a seemingly

insurmountable task for the listener. In addition, many suprasegmental

effects found in continuous speech introduce other sources of variability that

need to be accounted for in the perceptual process. For example, phrasal and

sentential contexts introduce variations in fundamental frequency, stress
placement and timing, and duration, all of which tall under the rubric of

"prosodic phenomena." Finally, context effects produced by differences in
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speaking rate and speaker characteristics (e.g., sex, age, dialect) introduce
further sources of variability that affect the acoustic-phonetic encoding of
the linguistic message in the speech waveform.

Traditionally, context-conditioned variability has been viewed as a
source of "noise" in the acoustic signal from which phonetic segments are
extracted. Recently, however, research efforts have focused on discovering
the systematic effects of context, giving rise to the notion of "lawful
variability" (Elman and McClelland, 1983). Basically, this conception of
contextually-conditioned variability treats context effects as sources of
important acoustic-phonetic information rather than simply noise in the signal
(Church, 1983; Elman and McClelland, 1983; Nakatani and O'Connor-Dukes, 1980).
The notion of "lawful variability" stems from a number of diverse
demonstrations of the orderliness and predictability of context effects in the
production and perception of speech. What was once thought to be noise that
must be filtered out in recovering phonetic segments from the waveform is now
coming to be thought of as a source of useful information arising from
systematic, rule-governed contextual effects.

Inherent in the idea of "lawful variability" is the growing tendency to
view the speech waveform as a rich source of acoustic-phonetic information.
Previously, it was thought that acoustic-phonetic information was so
impoverished that higher-levels of knowledge must continually be brought to
bear in he perception of speech. Recent approaches that take advantage of
rule-governed variability, however, emphasize the richness and informativeness
of the acoustic-phonetic information in the waveform. Thus, a number of
researchers have begun to advocate more bottom-up approaches to the speech
perception process, an understandable turn of affairs in light of the claim
that "rather than a bane, phonetic variability may be a boon in speech
perception" (Nakatani and O'Connor-Dukes, 1980, p. 13).

In the sections below, we discuss four types of context effects that have
been of recent interest: (1) local phonetic context, (2) phonological and
lexical context, (3) phrasal and sentential context, and /4) speaking rate.
Each of these areas has proven to be highly amenable to experimental
investigation and has advanced our knowl0dge considerably about systematic
context effects in Speech perception.

Local Phonetic Context Effects. One of the most pervasive effects of
local5E5niM-E-Oitiiiii-that of allophonic variation. Allophonic variation
refers to the fact that a given phoneme may have many different
acoustic-phonetic realizations, depending on the context in which it is
produced. For example, a /t/ in syllable-initial position, such as in /tEd/,
is aspirated in English (i.e., accompanied by a short burst of noise
associated with release). However, a /t/ occuring in syllable-final position
is rarely released (e.g., in /bEt/) and a /t/ occurring in the cluster /st-/
is never aspirated (e.g., in /stap/). All three phonetic realizations of [ti
are said to be allophones of the phoneme /t/. Although [t]'s occurring in
clusters and in syllable-final position have acoustic attributes different
from [ti's occurring in syllable-initial position, we nevertheless perceive
every phonetic realization of a [t] as the phoneme /t/.

A number of years ago, Nakatani and his colleagues (Nakatani and Dukes,
1977; Nakatani and Schaffer, 1978; Nakatani and O'Connor-Dukes, 1980) and
Church (1983) proposed that allophonic variation should be viewed as a source
of information in parsing words and syllables in sentences (see also Oshika,
et i1., 1975). Consider the following phonetic transcription of the question
"Did you hit it Lc) Tom?", discussed first by Klatt (1977):
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This transcription is meant to represent a "normal" articulation of the

question in fluent casual speech. A spectrogram of this utterance is shown in
Figure 1 along with spectrographic representations of the same words produced

in isolation. As is apparent from this example, the "ideal" (or citation)

forms of the words, [did], [yu], [hIt], [It], [til], [tam], undergo many

phonetic changes when produced in sentential context. These changes, if

viewed simply as noise imposed on the canonical phonetic transcriptions of the

words, would appear to make the lexical retrieval process quite difficult for

the listener. In particular, where does one word end and another begin? An

analogous situation in printed text would arise if the spaces were removed

fulni a sentence, such as "CATSATEASEARERARELYEARNESTOPPONENTS" ("Cats at ease

aie rarely earnest opponents").

Insert Figure 1 about here

The problem of parsing "Did you hit it to Tom?" into its constituent lexical

items may be overcome, however, by appealling to at least two sources of

information: allophonic variation and phonological contraints (Church, 1983).

Church, building on the earlier work by Klatt (1977), points out that five
allophonic rules are operative in the example WilihILItitam]: (1) /d/ before

/y/ in "did you" palatines, rendering /dI'u /; (2) unstressed /u/ reduces to

/a/ in "you", rendering /dIlv; (3) intervocalic /t/ in "hit it" flaps,

rendering /hIf It /; (4) /u/ in "to" reduces and devoices, rendering /tf/; and
(5) /t/ in "it to" geminates, rendering /Iti/. Thus, many of the phonetic

changes observed in sentential context are highly predictable, and thus highly

informative, if one assumes that the listener has access to implicit knowledge

concerning the way allophonic variations operate. Applying these five

allophonic rules, we can recover a great deal of information about the

underlying phonemic representation of the sentence:

[dIlahIfItitam] becomes /dIdyuhItIttutam/

Another source of constraint pointed out by Church is imposed by the

operation of phonological rules. If we expand, as Church suggests, the

original transcription to include the presence of aspiration and glottal

stops, and subsequently apply a few general phonological rules,

hypothesization of lexical items is further simplified. Including aspiration

and glottalization renders the following transcription:

[dI/ahIII2thItham]

Syl]able boundaries are now predictable given the fonoving four

phonological rules. (1) /h/ always occurs in syllable-initial position, (2)

[X] always occurs in syllable-final position, (3) [I] always occurs in

syllable-final position, and (4) [0] always occurs in syllable-initial

position (Church, 1983). (As Church points out, [t4] may be found in syllable

final position, although aspiration in syllable-final position is very

different from that in syllable-initial position.)

Applying the rules governing allophonic variation to recover the

underlying phonemes and the phonological rules to identify syllable

boundaries, we obtain the following transcription (syllable boundaries are
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indicated by a A):

/dIdyuehItAitAtuAtam/

It is clear from this one example that exploiting the information in a

relatively fine-grained phonetic transcription allows recovery of a great deal
of information concerning syllable boundaries and the underlying phonemic

representations. By inference, it seems reasonable to suppose that the
listener makes use of his implicit know-edge of allophonic variation and

phonological rules to parse continuous speech into words. What is perhaps
most compell-ng, however, is the degree to which the acoustic cues to

allophones and syllable boundaries are differentially encoded in the signal.
By treating the manifestations of allophonic variation and phonological
processes in the speech waveform as sources of important information in the
signal rather than simply noise, we are able to take advantage of the

systematic variability contained in the speech waveform. Moreover, we are

able to focus more closely on acoustic-phonetic information in resolving

ambiguities, rather than having to appeal to higher-level knowledge sources
(such as syntax and semantics) for "hypotheses" about what may or may not bk.

present in the signal (Chomsky and Halle, 1968). In short, such an approach
to speech perception emphasizes the richness of the speech signal instead of

touting the impoverished and highly variable nature of the acoustic cues to
phonetic segments and word boundaries.

One of the first researchers to advocate the notion that allophonic
variation aids in parsing lexical items in sentences was Nakatani (Nakatani
and Dukes, 1977). Nakatani and his colleagues have conducted a number of

important perceptual and acoustic studies aimed at identifying cues to word
juncture in order to specify how allophonic variation as well as prosodic

information are used in identifying the beginnings and ends of words.
Nakatani and Dukes (1977) examined possible allophonic cues to word juncture

in pairs of words such as "no notion" and "known ocean." Such word pairs are
phonetically identical except tor the locus of the word juncture (see also

Bolinger and Gerstman, 1957). Nakatani and Dukes excised portions of word
pairs that immediately preceded and followed the word juncture and

cross-spliced these excised portions between words in a pair. They then
presented the spliced and original versions of these word pairs to subjects

for identification. rn this way, Nakatani and Dukes were able to determine
whether the offset of the first word, the onset of the second word, or both

contributed to perception of a word boundary.

Nakatani and Dukes' results showed that word junctures were almost

entirely cued by the ons(. of the second word in the pair, except for words
ending in In or /1/. Because !r/ and /1/ have distinctly different

allophones at the beginnings and endings of words, these allophones

constituted strong cues for word juncture both word-initially and

word finally. In addition, Nakatani and Dukes found that allophonic
variations at the beginnings of the second word in the pairs provided cues to

word juncture even in the absence of In or /1/. In particular, they found

that glottalization and/or laryngealization cued word junctures when the

second word began with a vowel. Finally, they showed that aspiration of
voiceless stops, which is most evident for word initial allophones, aided in

identifying word junctures.

The findings of Nakatani and Dukes (1977) provide strong empirical

support for Church's (1983) claim that allophonic variation is an important
source of information in segmenting words in sentences. In another study of

word juncture cues, Nakatani and O'Connor-Dukes (1980) extended their previous
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experiment to include a number of other allophonic and segmental differences
that cue word juncture. They found: (1) that gemination of consonants helped
to distinguish such pairs as "drunk converse" (in which a doubling or
gemination of the /k/'s is present) and "drunken verse" (in which no
gemination occurs); (2) that flapped apical stops distinguish pairs such as
"hardy feat" (which contains a flapped /d/) and "hard defeat" (which contains
the geminate /d+d/); (3) that the presence of a syllabic /n/ distinguishes
pairs such as "maiden forced" (which contains a syllabic /n/) and "maid
enforced"; (4) that deletion of the unstressed vowels in words such as
"bakery," pronounced "bakry," distinguishes word pairs such as "bakery
guarded" and "bake regarded"; and finally (5) that vowel reduction in prefixes
such as "de-" distinguishes word pairs such as "hard defeat" and "hardy feat."
In short, Nakatani and O'Connor-Dukes have shown that listeners take much
allophonic variation into account in parsing word strings into their
constituent lexical items.

Nakatani and Schaffer (1978) and Nakatani and O'Connor-Dukes (1980) have
also shown that stress patterns and rhythm can also aid in identifying word
boundaries (see also Nakatani, O'Connor, and Astor, 1981). Using reiterant
speech, which preserves prosodic information but eliminates allophonic
variation and other segmental differences (see Liberman and Streeter, 1978),
these researchers demonstrated that listeners conid correctly parse reiterant
speech versions of adje-tive-noun phrases such as "malformed nose" and "long
stampede." Taken together, these studies demonstrate that much information
resides in the speech signal that can significantly affect segmentation of
sentences into words. What was considered by some to be noise and random
variation (e.g., allophonic variation) appears to have quite important
ramifications for the identification ,A words in fluent speech from the
bottom-up analysis of the speech waveform.

Phonological and Lexical Context Effects. We have seen how local
phonetic context may serve to guide parsing of sentences into
words. We now turn to the issue of how somewhat higher-level linguistic
constraints can influence a listener's perception of phonetic segments. In
the preceding section, we suggested that knowledge of phonological rules may
aid the listener in recovering underlying phonemic representations and in
identifying syllable boundaries. In this section we turn to a somewhat more
abstract role of phonology in speech perception, namely the role of knowledge
of phonologically permissible sequences in speech perception (sometimes called
honotactics). In addition, we examine some evidence that relates to the

e ects of exicality on the perception of phonemes. Both phonological and
lexical context effects illustrate the degree to which the listener's
knowledge of permissible sound sequences and words in the lexicon influence
his or her perception of phonetic segments (see also Pisoni, Luce, and
Nusbaum, 1986).

Massaro and Cohen (1983) have recently reported the results of an
experiment aimed at evaluating the degree to which phonological context can
.ffect listeners' perception of phonemes. In ore of their conditions, Massaro
and Cohen generated a synthetic continuum ranging from /ri/ to /1i/. The
manipulation of c,:ucial interest was the consonant preceding the /0-11/
syllables. Massaro and Cohen placed each of the /ri-li/ stimuli after one of
four consonants: /p/, /t/, /s/, and /v/. In English, both /ri/ and /1i/ are
permissible after /p/; only /ri/ is permissible after /t/; only /1i/ is
permissible after /s/; and neither /ri/ nor /li/ are permissible after /17,.
Massaro and Cohen were interested, in part, in determining if phonological
context (permissible and non-permissible) would affect subjects labelling of
the Iri-11/ continua. In particular, they hypothesized that more In
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responses would be obtained for the /tri-tli/ continuum and more /1/ responses
for the /sri-sli/ continuum.

As predicted, Massaro and Cohen found that phonological context did

affect listeners' labelling of the stimuli. Their subjects produced more /r/
responses than /1/ responses in the context of /t/ and more /1/ responses than
In responses in the context of /s/. The identification functions for the
/pri-pli/ and /vri-vli/ continua fell between the two other functions, as

expected. Massaro and Cohen furthermore showed that their effect was in fact
due to phonological context and not to auditory interactions between the

initial stops and the following /ri/ or /li/ syllables.

In a similar experiment, Ganong (1980) examined the effect of lexical
context on the identification of word-initial stops. Ganong varied the VOT of
word-initial stops to generate continua ranging from a word to a nonword

(e.g., "dash" to "task ") and from a nonword to a word (e.g., "desk" to
"task='). He then presented these stimuli to subjects for identification.
Ganong found that lexicality (i.e., whether the stimulus was perceived as a
word or a nonword) strongly affected subjects' labeling of the word initial

stop. Subjects produced more "dash" responses for the "dash"-"tash" continuum
and more "task" responses for the "dask"-"task" continuum.

The Massaro and Cohen (1983) and Ganong (1980) studies both demonstrate

the effects linguistic knowledge can have on the categorization of speech
sounds. These results show that perception of phonetic segments is heavily
influenced by what listeners know about permissible sequences of speech sounds
in English and by their knowledge of words in the lexicon. Thus, phonological
and lexical context further serve to constrain the perceptual analysis of the
speech signal. These studies, in conjunction with those by Nakatani and his

colleagues, also demonstrate that relatively early in the perceptual

processing of speech, many ambiguities may be resolved by employment of

allophonic rules, phonological rules, and lexical constraints. We view these
studies as important new demonstrations of the influences of phonological and

lexical context on the perception of phonetic segments. This work furthermore
represents a sharp departure from the earlier views that assumed the speech

perception process was strongly driven by top-down knowledge of syntax and
semantics.

Sentence-level context effects. Thus far, we have discussed the

systematic variability of phonetic segments in various local phonetic

environments and how the listener's knowledge of allophonic variation,

phonological rules, and lexical items may serve to support perception of
phonemes and words. Another source of systematic variation is introduced,

however, when our attention is focused beyond the phonetic segment or word to
the study of speech produced in sentential contexts. At this level of

analysis, sentence-level effects come into play. We use the term

"sentence-level context effects" to refer to those changes in the

acoustic-phonetic structure of speech that arise not from the effects of the
articulation of adjacent segments, but from the production of fluent speech in
sentences.

One of the most widely studied effects of sentence-level context con,:erns
the changes in fundamental frequency (FO), duration, and amplitude that occur
at phrase boundaries. The presence of a major syntactic boundary (e.g., the

boundary between an initial subordinate clause and a main clause) may be
signaled by any of a number of possible cues: a marked fall in in the slope

of FO preceding that boundary (Cooper and Sorenson, 1981; Maeda, 1976;
Pierrehumbert, )979), a "resetting" aF FO following the boundary (Cooper and
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Sorenson, 1981; Maeda, 1976), a pronounced lengthening of segments immediately
preceding a boundary (Klatt, 1975; Oiler, 1973; Luce and Charles-Luce, 1985),
a decrease in amplitude at the boundary (Streeter, 1978), and a pause at the
boundary (Goldman-Eisler, 1972). The question addressed by many of the
studies investigating syntactic boundary phenomena concerns which of these
cues are most important for the listener in identifying phrase boundaries.

Much of the work on the perception of phrase boundaries has employed
ambiguous utterances that are manipulated in such a way as to allow assessment
of a single potential cue (e.g., Lehiste, 1973; Lehiste, Olive, and Streeter,
1976; Lehiste, 1983). The most comprehensive of these studies was performed
by Streeter (1978). Streeter examined the relative importance of phrase-final
lengthening, FO declination, and changes in amplitude for the identification
of phrase boundaries in ambiguous algebraic expressions. In one condition,
Streeter electronically manipulated duration, FO, and amplitude of utterances
of the phrase [A plus E times Oh which may be read as [(A plus E) times 0] or
[A plus (E times 0)], and required subjects to identify which of the two
possible readings was intended for a given stimulus. She found that both
duration and FO served to cue phrase boundaries, whereas amplitude had little
effect. (See Luce and Charles-Luce (1983) for similar findings obtained from
a reaction time task.) Moreover, she found that duration and FO were additive,
not interactive, cues. Streeter's study thus demonstrates that changes in FO
and duration induced by the presence of a phrase boundary are important
independent cues for listeners in the identification of phrase boundaries.

Cutler (Cutler and Darwin, 1981; Cutler and Foss, 1977) has examined the
extent to which prosodic information enables the listener to predict where
sentence stress will fall. Because sentence stress is usually placed on words
of primary semantic importance in a sentence, the ability to predict sentence
stress would presumably enable the listener to focus in on those words in a
sentence most crucial to the message. Thus, prosodic variations may help
direct the listener to high information centers in fluent speech.

It is clear that listeners rely on variability introduced by
suprasegmental context effects to extract syntactic and semantic information
from the speech waveform. Thus, duration and pitch changes caused by the
occurrence of syntactic boundaries and by sentence stress placement provide
valuable information for the parsing and comprehension of sentence-length
utterances. Moreover, it is clear that a listener's processing of prosodic
information is quite complex, in that no single cue has yet to be shown to be
necessary in identifying phrase boundaries or stress placement (see Cutler and
Ladd, 1983). Although the recent interest in the role of prosody in speech
perception is certainly a welcome trend, much work is needed to specify more
precisely how the listener takes advantage of this obviously important source
of information in the perception of fluent speech.

Effects of Speaking Rate. One final effect of suprasegmental context
that deservesaiscussion is that indu-ed by changes in speaking rate. Effects
of speaking rate on the perception of 6peech are not, in the strict sense of
the term, "prosodic" effects. Instead, the issue of the effects of speaking
rate on the perception of speech relates to the issue of "perceptual
normalizati'n." Just as we may ask how a listener compensates or normalizes
for the acoustic consequences of changes in the vocal tract sizes of different
speakers, we may also ask how the listener normalizes for changes in speaking
rate (within and between speakers). In short, how do listeners normalize for
speech produced in the context of many different speaking rates?
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In a comprehensive review of the effects of "global" speaking rate on the
production and perception of phonetic segments, Miller (1981) discusses a
number of changes at the phonetic level induced by changes in speaking rate.
For vowels, both spectral and durational changes may be observed as speaking
rate is increased. In particular, vowels tend to reduce at faster rates of
speech so that target torment frequencies are rarely achieved. For
consonants, cues to voicing of syllable-initial (VOT) and intervocalie... stops
(closure duration) undergo systematic changes as speaking rate is speeded or
slowed. In addition, manner class distinctions between consonants are
likewise affected by changes in speaking rate.

One of the most interesting findings concerning the effects of speaking
rate on the perception of segmental contrasts concerns voicing of str_T
consonants in syllable-initial and intervocalic position. In a series 0
studies, Summerfield (1974, 1975a, 1975b; Summerfield and Haggard, 1972)
examined the effects of speaking rate on the identification of stimulus
continua varying along the dimension of VOT. He found that the rate of
articulation of the carrier sentence in which the stimuli were embedded
affected the voicing boundaries for the continua in systematic ways. In
particular, for a carrier sentence produced at a fast speaking rate. shorter
VOT's were required to identify a stimulus as voiceless than when the carrier
sentence vas produced at a slower speaking rate.

On the basis of these and other studies, it appears that listeners adjust
their judgments of phonetic contrasts to compensate for perceived speaking
rate. Moreover, the adjustments are highly systematic and predictable.
Although it is not the case that all of the effects of speaking rate
heretofore demonstrated are so straightforward a:: those demonstrated by
Summerfield (see also Port and Dalby, 1982), it is probably true that the
variability intLoduced by changes in speaking rate are automatically
compensated for by listeners (Miller, Green, and Schermer, 1982) and have
highly predictable effects on listeners' perceptions. Unfortunately, we do
not have a good theoretical account of these findings yet nor a deep
understanding of the perceptual mechanisms responsible for this form of
perceptual compensation (see, however, Pisani, Carrell and Gans, 1983).

Conclusions. Despite these recent findings and their immediate impact on
theoretical efforts in speech perception, there are still very large gaps in
our understanding of the auditory/perceptual processing of speech signals by
human listeners. In the past, it has been very 'easy to account for a set
findings in speech perception by appealing to the existence and operation of
specialized speech processing mechanisms. Unfortunately, such global
explanatory accounts are becoming more and more unsatisfactory as we begin to
learn more about the psychophysical and perceptual properties of speech and
complex nonspeech signals and how the auditory system encodes these types of
signals. It is clear to us that theoretical accounts of specific phenomena in
speech perception such as trading relations, cue integration, and context
effects can no longer be couched in terms of vague descriptions of
articulatory mediation by specialized perceptual mechanisms. We have not
carried out all the appropriate nonspeech control experiments yet but we are
certain that more precise and testable explanations of these findings will be
forthcoming in the years ahead.
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Abstract

Isolated utterance, speech recognition systems are typically trained by

collecting speech data for each of the words in some vocabulary for a
particular application. The speech data is then converted into a template or

model of the pattern structure of each word. During recognition, each input
utterance is converted into the same type of pattern representation and this

representation is compared to all the patterns that were stored during
training. The distance or similarity of the input pattern to the trained

patterns is determined and a recognition decision is based on applying
criteria for minimally acceptable similarity scores. However, the formation
of templates during training and the recognition decision are not based on all
the information available in the vocabulary. We found th2t patterns of

similarity among utterances in the vocabulary can be obtained during training,
and these similarity patterns, in turn, may accurately predict the structure

and probabilities of confusions during recognition. In this paper, we

des:_lribe a method for incorporating intra-vocabulary similarity into an

improved decison-making process.
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Using Template Pattern Structure Information

to Improve Speech Recognition PerforLance

The vast majority of commercially available speech recognition systems
must be trained on the speech of a particular talker prior to recognizing that
talker's utterances. To train a recognition system, the talker produces one
or more tokens of each vocabulary item, and the recognizer constructs a
template or model of each word in the vocabulary based on these speech
samples. These stored representations of the vocabulary serve as the
reference patterns against which utterances are compared for recognition.
During recognition, speech input is converted into the same type of pattern
representation and the similarity or distance of this input pattern is
determined by comparing it to all the stored representations. The recognition
decision is based on applying criteria for minimally acceptable similarity or
distance scores to each of the vocabulary items. The recognized word is the
item with the smallest distance or the greatest similarity score. Thus, there
are several general components to the operation of most recognition systems:
(1) a training or enrollment procedure that is used to construct
representations of each of the vocabulary items, (2) a pattern matching
procedure that compares an input utterance with the stored representations to
compute similarity scores, and (3) a decision procedure that selects the best
candidate based on the similarity scores.

These very general principles of operation are typically quite effective
for successful recognition of vocabularies composed of acoustically
distinctive utterances. Thus, vocabularies consisting of words varying in
length, stress location, phonotactic pattern, and phonetic constituency will
be recognized with relatively low error rates. By comparison, much higher
error rates may result for recognition of acoustically similar items such as
the E-set (i.e., B,D,G,P,T,C,Z, and E). Poor performance on phonetically
similar items is largely due to the poor phonetic resolution of current speech
recognition systems. Improvements in phonetic recognition algorithms will
undoubtedly improve overall recognition performance for phonetically
confusable vocabularies. However, it is als,) possible that the performance of
the current generation of recognition algorithms may be improved by taking
into account information about the structural properties of the vocabulary
(see Pisoni, Nusbaum, Luce, and Slowiaczek, 1985).

Almost all recognition systems treat the words in a vocabulary as if they
were completely independent of each other. The current generation of
isolated-utterance, speaker-dependent speech recognition systems ignore the
structural relationships among words in a vocabulary. During training, the
only information used in constructing a representation of a word is the
separate tokens of the word tLat were produced by the talker. In deciding
which word was spoken. speech recognition systems use one or two simple
criteria such as the distance score for the highest candidate and the
difference in distances between the two highest candidates. But there is a
great deal more information available in acoustic-phonetic and lexical
structure of the vocabulary that could be used to improve recognition
performance. For example, after a vocabulary is enrolled (i.e., the
recognizer has been trained on one token of each vocabulary item), the
similarity of the templates to each other could be used to modify the training
procedure to increase the distinctiveness of the representation of similar
words. In addition, in trying to decide which of two similar candidates
should be chosen as the correct recognition response, a decision algorithm
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could examine the pattern of distance scores to all items in the vocabulary.
The pattern of distance scores distributed throughout the vocabulary could be

quite informative about the correct candidate.

To make effective use of the pattern of distance scores among the items
in a vocabulary, it is necessary to quantify this information with some
metric. Multidimensional scaling provides an analysis technique that

describes the structure of distances and confusions within a fixed vocabulary.
In general, a multidimensional scaling analysis yields a geometric
configuration which, for a given dimensionality, best describes (in terms of
variance accounted for) a set of observed distances among stimuli. In our
research, we have used a scaling procedure based on the INDSCAL model (Carroll
and Chang, 1970) that allows for a simultaneous analysis of several distance
matrices. An n-dimensional solution provides two sets of data: (1) the
projections of stimuli on each dimension which is referred to as the "stimulus
space", and (2) the relative weights of each dimension for each individual
matrix which is called the "subjects" or "condition space." In the domain of

speech recognition both types of information are of considerable importance.

By applying multidimensional scaling techniques to the analysis of

confusions and intra-vocabulary distances, it is possible to determine the
acoustic properties of a vocabulary that are most and least distinctive for a

particular speech recognition algorithm. This provides a metric of the
"recognition space" for an algorithm. An examination of this recognition
space may provide diagnostic information about the performance of a speech
recognition system, since this type of analysis indicates precisely long

vhich dimensions some subsets of a vocabulary are conf,sed and along y'ich
dimensions other subsets are diLcriminated. By exami .ng projections of

stimuli onto these dimensions it is be possible to determine which acoustic
properties correspond to these dimensions. Thus, based on a multidimensional
scaling analysis of one vocabulary, it may be possible to predict speech
recognition performance for a different vocabulary that is constructed along
similar dimensions.

Structure in the Recognition Space

In a recent study (Yuchtman, Nusbaum, and Davis, 1986), we carried out a

multidimensional scaling analysis of the recognition errors and distances
between words in the E-set vocabulary for several commercially available
speech recognition systems. We found that four-dimensional Euclidean spaces
provide an excellent fit to observed inter-word distances. These

four-dimensional spaces account for approximately 80 to 88 percent of the
variance in recognition performance. An example of this type of stimulus

configuration is shown in Figure 1. This figure displays the projections of
the E-set on the first and second dimensions of the 4-dimensional solution

obtained for o:e speech recognition system. Because the items in the E-set
vocabulary differ primarily in the initial consonant segment, it is possible
to interpret these dimensions in straightforward acoustic-phonetic terms.

Insert Figure 1 about here
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The first dimension assigns the stimuli to four broad categories: (1)

C,Z; (2) G,V; (3) the stops P,B,T,D; and (4) the vowel E. Clearly, the
projections along this dimension correspond to the level and/or duration of
frication noise in the word. On the second dimension, the stimuli G and T are
placed at one extreme, while Z, V, B, and E are located on the other. This
dimension may be interpreted in terms of the contrast between sounds with
abrupt onset of noise vs. sounds with gradual onset of periodicity or noise.

The projections of stimuli on the third and fourth dimensions are shown
in Figure 2. The distribution of words along the third dimension produces a
sequence in which, by moving from negative to positive weights, we find the

stimuli C and Z, followed by their homorganic stops, T and D. The labial
sounds P,B, and V assume a location in the center, while E and G have the

highest positive weights. In general, this sequence corresponds to

differences in spectral peaks and forivnt transitions that are associated with
the place of articulation of the initial sound segments.

Insert Figure 2 about here

The fourth dimension classifies stimuli according to the voicing value of
the initial consonants: B,V,D, and Z vs. C,T, and P, with G and E assuming a
middle position. The projection of E on this dimension, places this vowel in

the neighborhood of the voiceless consonants. An acoustically based account
for t!,is observation is not immediately apparent, although it may reflect the

presence of a glottal stop preceding the vowel.

In general, the scaling solutions obtained for two other speech

recognition systems can also be interpreted it terms of some underlying
acoustic properties that differentiate between several subsets of the E-set

(e.g., fries 'ves and non-fricatives). It is important to note, however, that
the fine deta.ls of the scaling solutions vary among different recognizers.

As one might expect, different speech recognition algorithms will use

different coding schemes and pattern representations so the structure of

confusions will differ. In the scaling solution, this will be revealed in
differences in the specific dimensions and dimensional weights that account

for these confusions. In this way, the multidimensional scaling analysis of
recognition data may directly reflect the idiosyncratic properties of signal

processing algorithms of different recognition systems. Thus, this approach
provides important diagnostic information about the way in which recognition

spaces may differ. This approach suggests one method of predicting
performance for application vocabularies based on performance data from tests

carried out with a laboratory "benchmark" vocabulary.

It may be possible to construct a special "calibrated vocabulary" (see

Ohala, 1982) that contains words differing systematically along various

structural dimensions (e.g., length, stress pattern, phonotactic pattern,

phonetic constituency). Multidimensional scaling analyses of recognition

performance for this type of calibrated vocabulary could provide important

information about the sensitivity of a parti( Jar recognition algorithm to

each of th dimensions that characterize the call:Jrated vocabulary. Once the

salient d mensions are known for a specific recognition system, it should be

possible to predict performance on any vocabulary by analyzing the new

vocabulary to determine the degree to which these salient dimensions are
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represented in the new ', ocabulary. For example, if word length is an
important dimension for a recognition algorithm and phonetic constituency is
not, performance should be bitter for vocabularies consisting of words
differing in length compared to vocabularies consisting of words differing in
the identity of specific phonemes.

Predicting Patterns of Similarities from Training Data

Beyond the capability of analyzing the structure of recognition spaces
and predicting performance for new vocabularies, it is also possible to use
multidimensional scalin7 to predict the pattern of confusions for recognition
of a vocabulary based solely on the training data. In the present study, we
compared multidimensional scaling solutions obtaned for similarity scores
derived from training tokens and similiarity stares derived from test tokens.

Method

The recognition vocabulary used in this study consisted of the E-set of
the alphabet. The actual speech tokens are part of the Texas Instruments
database collected by Doddington and Schalk (1981). This database was
produced by eight male and eight female talkers with 10 training tokens and 16
teFt tokens per word. Three commercially available speech recognition systems
were tested: (1) the VOTAN VPC-2000, (2) the Interstate Vocalink CSRB, and
(3) the NEC SR-100.

To determine the distances among all the vocabulary items for each test,
a recognition device was trained using a single vocabulary item and then
tested on the entire vocabulary. In other words, for one test, a recognizer
was trained on tokens of B and then was tested on all letters in the E-set.
Using this paradigm, we determined directly the distances among all the
vocabulary items.

Distances between each template in the vocabulary, and each training or
test token for the E-set, w,-re obtained directly from the recognizer.
Triangular distance matrices were constructed from the mean values of these
distances for the training (n=5), and test tokens (n=16). Sepatate scaling
analyses were conducted for each recognizer and distance type using the
SINDSCAL program (Pruzansky, 1975). Tn all cases, the input consisted of 16
matrices constructed for each talker, and solutions were obained in 1-to-6
dimensional configurations.

Results

Figure 3 shows the first two dimensions of the scaling solution generated
foi the VOTAN. In this figurt, the lower-case characters represent data for
recognition of the training tokens, while the upper-case characters represent
projections obtained from recognition of the test tokens. Training and test
data for the third and fourth dimensions are shown together in Figure 4.

Insert Figure 3 and Figure 4 about here
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Clearly, the patterns of stimulus projections on both dimensions are
remarkably similar for the training tokens and the test tokens. In several
cases, the order or polarity of a particular dimension had to be changed in
order tc achieve maximum overlap. However, it is important to note that
distances among stimuli are invariant over these transformations. Excellent
agreement between training- and test-based solutions was observed for the
other two recognizers as well. The value of the product-moment correlation
between the test and training projections obtained for all three devices, and
for each of the four dimensions. is .92, indicating that the similarity
patterns among the training tokens predicts about 81Z of the variance in the
similairty patterns of the test tokens.

This consistency in tne scaling solutions for independent sets of data
(i.e., the training tokens and the test tokens) has two important
implications. First, this finding indicates that scaling solutions obtained
for the three recognizers are highly reliaole. Thus, differences between
recognition spaces may be safely attributed to the operational characteristics
of each device rather than measurement error. Second, it is evident that the
distances beween vocabulary items used in the process of training can
accurately predict the pattern of distances between the same items during
actual recognition trials. It should be noted that distances among stimuli in
the spaces yielded by multidimensional scaling are normalized and relative
rather than absolute. While actual error probabilities can be inferred from
such data indirectly, they may be derived using simpler computational
procedures. ThE importance of the data yielded by multidimensional scaling,
and possibly by other multivariate approaches is in the insight scaling
analyses provide about the interaction between the operational characteristics
of a recognition system and the acoustic attributes of its application
vocabulary as produced by individual talkers. Moreover, in the case of highly
confusable items, this information may suggest which acoustic property can be
used to optimize discriminability.

Predicting Recognition Accuracy from Training Data

In the previous section we have shown that patterns of similarities
(i.e., the confusions) among 1,:ords in the E-set obtained from recognition data
can be reliably predicted from inter-word distances measured during training.
Using a set of training and recogniton data obtained in a "simulated"
recognition experiment, we examined the extent to which intra-vocabulary
distances obtained during training can reliably predict recogniton accuracy
for indivdual talkers or words. The recognition experiment was simulated in
the sense that no speech recognition device was used in this study. Instead,
a recognition system was simulated using software subroutines on a VAX-11/750
computer.

Methdd

The recognition vocabulary used in this study consisted of the E-set from
the TI database produced by eight male talkers. Five tokens of each word were
used for training. All 16 test tokens were used for recognition testing.

Simulated training and recognition was carried out using US Version 5.0
(Signal Technology Inc., 1985) software. Linear predictive cepstral
coefficients were computed every 12.8 msec and were used for subsequent
training and recognition. Template generation, as well as distance
measurements, were carried out using a non-linear warping alogorithm.
Following training, distances between all training tokens and templates were
measured and stored for later use. Likewise, distances between each test
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token and all templates were computed and stored for subsequent analysis.

Results

Overall, tokens of the E-set were recognized with an accuracy of 76.4%.
This performance falls well within the range of performance obtained using the
r:ommercially available speech recognition systems for this database. Thus,

the performance of our simulated speech recognition system is comparable to
that obtained for actual recognition devices.

As in the previous study, the distances among words measured during
training are highly correlated with distances obtained during recognition test
trials. This indicates that the distances among tokens presented for training
is highly predictive of the pattern of confusions that will result during
subsequent recognition testing.

Another parameter that predicts the pattern of confusions during
recognition is the ratio of the distances between the first and second word
candidates for an utterance. Almost all speech recognition systems will
return more than one possible candidate as a recognition response and, in many
cases, the correct word is contained within the first two candidates. When
the first candidate is very similar to the input utterance and the second
candidate is very different, recognition accuracy will be very high.

Conversely, when the two candidates have similar distance scores, accuracy
will be very poor. Figure 5 shows, for each of the 8 talkers, mea., vRlues of

proportion of correct responses as a function of the mean distance ratios
measured during training. The correlation bewteen the two variables is

relatively low (.72 ), primarily because one talker deviated considerably from
the rest of the talkers.

Insert Figure 5 about here

In Figure 6, we plotted, for each of the 9 words in the E-set, mean

percent correct word recognition obtained during recognition test, as a

function of the ratio of the distances for the first and second candidates
measured during training. The high correlation between the two series (.92),
suggests that recognition accuracy for individual words can be reliably
predicted using measures of similarity beween training tokens.

Insert Figure 6 about here

Taken together, the results indicate that it is not only possible to

predict th" vattern of confusions from distance scores obtained during
training, but it is also possible to predict the actual level of recognition

accuracy. If it is possible to predict, prior to reF6-iiiition, which items

will be confused and how often they will be confused, it should also be

possible to use this information to reduce the error rate and improve overall

recognition performance. From a detailed analysis of the recognition space
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duri-,r a first pass of training, we can determine which vocabulary items will
be cu'.f"sed. This type of analysis may also suggest how to refine the

acoustic analysis of utterances processed during subsequent training passes to
produce templates or word models that are more distinctive. This type o.

modification of the training protocol based on the structure of the

recognition space is just one way of improving recognition performance.
Another method is to use information that predicts the structure of confusions
to enhance the decision algorithm that selects one candidate as a recognition
response out of the two or more choices returned by the recognizer.
Currently, most recognition systems will return the first candidate if its

similarity or distance crosses some threshold (i.e., the reject threshold).
Raising the reject threshold trades substitution errors (incorrect responses)
for rejection errors (no recognition response returned). Another decision
strategy is to require the difference between the distance scores for the

first and second candidates to exceed some criterion (i.e., the delta reject
threshold). This strategy works for the reason outlines: above namely, that

the ratio of first and second candidate distance scores is an accurate
predictor of performance. However, few if any currently available speech
recognition systems provide a decision strategy that can choose '..he second
candidate over the first. The reject threshold and delta reject straTiiii
wily serve to filter out the first candidate based on a comparison of its
Cistance score with a standard reference or with the second candidate. In the
next study we examined the operation of a decision strategy designed to choose
between the first and second candidates.

Incorporating Word Neighborhood Structure into Decision Makini Rules

From the data presented so far, it is quite clear that the distances
between words, as measured using a small set of training tokens, provides a
good estimate of both the frequency and types of confusions that occur during

actual recognition. As discissed earlier, this information may be of

considerable "diagnostic" value by indicating which subsets of a given
vocabulary may be highly confusable and by predicting patterns of confusions
based on calibrated vocabularies. In addition, the pattern of distances
within a fixed vocabulary may be used to improve the performance of a
recognition system. In particular, when two candidates are both similar to an
input utterance, the pattern of distance scores for other vocabulary items may
be used to aid in deciding which candidate is the correct response.

Data from the simulated recognition of the E-set vocabulary, decribed

above, were used in the present investigation. The training data included a
set of inter-template distances and mean distances between training tokens and
templates for each talker and for each word. Recognition data for each talker
and word consisted of a set of the distance values measured between each of 16
test tokens and the nine stored templates.

Decision Rules

We examined the performance of three decision rules on recognition
performance for our simulation. The first of these was the Minimal distance
rule by which an utterance is identified as being a token of the most similar

template (i.e., the template with the smallest distance from the utterance).
In some recognition systems, the minimal distance decision is made if the

distance does not exceed pre-established criteria (i.e., reject and delta
reject thresholds).

,
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In addition to the minimal distance rule, we examined two other rules
that incorporate different quantitative properties of similarity structures
(as measured during training) into the decision making process. Both of these
rules rely on the distances obtained durirg training among training tokens and
the distances between the input utterance and all the vocabulary templates.
Rule 1 selected either the first or second word candidate based NI which
candidate produced a larger product-moment correlation score computed for the
nine distances between the utterance and each of the vocabulary items and the
series of distances obtained for the training tokens used in training each
candidate. According to this decision rule, a candidate is selected as the
correct recognition response, based on the candidate that yields a higher
correlation between the training data and the utterance -to- template distance
scores for the entire vocabulary. Rule 2 is similar to Rule 1 in that it is
based on correlations Fetween the training distances and the
utterance-to-template distances. The difference between Rule 1 and Rule 2 is
that Rule 2 is based on a rank-order (Spearman) correlation, instead of the
product-moment correlation.

Results

The performance of each of the three decision rules (minimum distance and
Rules 1 and 2) was evaluated using several criteria for applying the rules.
In all cases, the evaluation of these rules was limited to cases in which the
correct recognition response was one of the first two candidates. Since the
correct word had to be the first or second candidate, not all errors produced
by a recoL.lition system could be remediated by these decision rules. However,
51% of the total number of errors consisted of cases in which the correct
response was one of the first two two candidates.

The performance of these rules was first examined using al: the data
within this constraint. The minimum distance rule alone recognized the E-set
with an accuracy of 86.3%. By comparison, Rule 1 (product-moment correlation)
was slightly lower in overall accuracy -- 84.0% correct, while Rule 2
(rank-order correlation) yielded a considerably lower score -- 71.8% correct.
At first glance, this suggests that the minimum distance criterion used by
most speech recognition systems is the optimal decision rule. However, the
minimum distance rule and the two correlation rules take into account slightly
different types of information. Thus, the words that are correctly recognized
using the correlation rules may not be the same as those recognized by the
minimum distance rule.

If the different decision rules are indeed orthogonal, it should be
possible to invoke one rule when another rule is likely to produce an error
and thus improve overall recognition accuracy with the composite recognition
decision. In particular, if the minimum distance rule is generally quite
accurate, an auxilliary correlation rule should only be invoked when the
minimum distance rule will be inappropriate and error prone. There are two
conditions when this is likely to happen: (1) when the utterance is about
equidistant from two or more templates, and (2) when a high distance value is
measured between an utterance and its nearest template. In the first case,
any delta reject decision will produce a rejection error and in the second
case a reject threshold rule will produce a rejection if the distance is too
great. Thus, these are cases that are likely to produce rejection errors in
an application. Moreover, in both these cases there is no apparent criterion
for choosing another candidate since the second candidate would also fail by
the reject threshold and delta reject criteria.
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We tested the performance of the three decision rules using two different

criteria for their application. In one evaluation, correlation rules were
applied if the ratio of distances measured between an utterance and its two

nearest templates was below a certain cutoff. That is, when the distance

scores for two candidates were too similar, the correlation rules were

invoked. The cummulative proportion of correct responses yielded by each rule

for varying values of the distance ratios is shown in Figure 7. As expected,

the minimum distance rule yields a higher proportion of corre-_:t responses as

the distance ratio increases. At a distance ratio of 1.05, the minimum

distance rule yields an accuracy of 42%. When the distance ratio is 1.5,

accuracy improves to 77%.

Insert Figure 7 eout here

By comparison, it can be seen in this figure that the correlation rules

are less sensitive to the distance ratio between nearest candidates. Indeed,

for distance ratios lower than 1.15 both correlation rules yield better

results than the original minimum distance decison rule. Also, it is quite

clear from this figure that the product-moment correlation rule (Rule 1)

consistently outperforms the rank-order correlation rule (Rule 2). Rule 1

seems especially powerful at extremely low distance ratios: At a distance

ratio of 1.05, Rule 1 yields 62.5% correct responses compared to 52% correct

for Rule 2, and 42% correct for the minimum distance decision rule.

A second evaluation of these rules was carried out in which we

manipulated the absolute distance between an utterance and its nearest

templatt. Specifically, criterion cutoffs were defined as ratios between

recognit.on distance and the mean training distance obtained for the

identified word. In general, a low value of this parameter reflec s a high

degree of similarity between an utterance and a template and thus should be

associated with a higher probability of a correct decision. The three rules

were examined for recognition-to-training distance ratios ranging between 1 to

3. The results are shown in Figure 8. It is apparent that within a wide

range of recognition distances, each rule perf:"rms at a constant level.

Within this range, the minimum distance rule and Rule 1 are within about 1-2

percentage points of each other and both are about 10-15 percentage points

better than Rule 2. However, at recognition-to-training ratios exceeding 2.0,

a drop can be observed in the proportion of correct responses made using the

minimum distance decision rule, while for these values, Rule 1 is more

accurate by a margin of 3-4 percentage points.

Insert Figure 8 about here

Several conclusions are suggested by the results of our analyses. As

expected, when an utterance is about equally distant from two templates,

decisions made on the basis of a minimum distance rule are likely to result in

a high error rate. This is also true, to a lesser extent, if the utterance
cannot be closely matched by any template in the vocabulary. Under these
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conditions, a rule that utilizes information about the structure of words in a
similarity neighborhood as measured during training, provides a more robust

decision-making mechanism. From the differences in performance between the
rank-order and the product-moment correlation based rules, it is evident that

lower error rates are observed if the neighborhood structure is quantified
using a more detailed representation.

Overall, conditions that lead to high error rates using the minimum
distance rule, will also generate a higher proportion of incczrect decisions
by the neighborhood rules. However, by applying neighborhood decision rules

when minimum distance decisions are least effective, recognition performance
can be improved. Moreover, it is likely that frther research may reveal more
effective means of using lexical neighborhood data in the decision-making
process. However, more accurate recognition of acoustically similar
utterances may result if training information is incorporated directly into
the recognition algorithm itself.

General Discussion

Almost all speech recognition systems treat the items in a vocabulary as

completely independent entities. While a recognit;on system may take into
account the pattern similarities and differences among the different tokens of
a particular vocabulary item, few, if any, consider the structural properties
of the vocabulary as a whole. However, without examining the phonetic

similarity of the items in a vocabulary, it is difficult for a recognition
algorithm to determine which portions of a word are most distinctive (since

this may be determined by the context of the vocabulary). Furthermore, by not
analyzing the pattern of confusions across all vocabulary items, current

speech recognition systems ignore a source of information that is very
.,elevant to selecting the correct recognition response.

Taken together, the present results argue for the importance of

quantifying the structire of the recognition space produced for a specific
speech recognition system and vocabulary. By using multidimensional scaling

analyses of distance scores and confusion errors, it is possible to

characterize this recognition space and provide useful informaticn for

predicting and improving the performance of recognition algorithms. We

believe that these analysis techniques can be very useful in predicting the

performance of a recognition system for new and untested vocabularies.
Furthermore, these analyses can provide new methods for improving recognition

performance without modifying existin recognition algorithms, by simply

improving theUiTT;ion strategies use to select the correct recognition

response.

While these tezhf..ques are very powerful and offer much more promise for

characterizing and improving recognition performance than we have illustrated
here, we believe that the real significance of there techniques will be

realized with the next generation of speech recognition systems. Then? are
currently no established standardized methods for testing and comparing the

performance of commercially available speech recognition systems. The

recognition systems that are currently available have vocabulary sizes that

are generally under 256 words. Within a very short time, however, several
recognition systems will be available with vocabularies of 5,000 words or

more. The performance of these new and more powerful systems cannot be
completely described by testing with databases of digits or spoken letters.

Furthermore, collecting many different 5,000 word databases using large

numbers of talkers to test performance of these systems will simply not be

practical. By using multidimensional scaling analyses together with a
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specially designed diagnostic database using a "controlled vocabulary", it may
be possible to adequately describe the performance characteristics of a large
vocabulary speech recognition system. Moreover, it may be possible to predict
performance on any application vocabulary based on a linguistic analysis of
the application vocabulary in compar'son with the liagnostic vocabulary.
Finally, beyond the issues of performance measurement and prediction,
multidimensional scaling may suggest new ways of improving training,
recognition, and decision algorithms. We have already demonstrated how the
decision algorithm of a small vocabulary speech recognitin simulation can be
improved by developincr metrics based on neighborhood s.tmilarity. Further
research is needed to determine if an extension of the e techniques of
neighborhood analysis to large vocabulary speech recogr tion will provide
comparable improvements in recognition performance.
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Abstract

The purpose of this study is to bring related sources of data, i.e.,
phonological and acoustic phonetic, to bear on the characterization of two
children's disordered phonological systems. Auditorily-based phonological
analyses indicated that the children exhibited a superficially similar pattern
of error involving the voice contrast in word-initial obstruent stops, even
though both children accurately produced the voice contrast in post-vocalic
stops. Acoustic phonetic analyses indicated, however, that one of the
children systematically affected the voice distinction using closure duration
and voice onset time, whereas the other child did not. Despite the similarity
of their errors as assessed by auditorily-based phonological analyses, the
children had very different productive knowledge of word-initial voicing in
stops. These findings have implications for the clinical assessment and
treatment of children with phonological disorders.



On Word-Initial Voicing: Converging Sources

of Evidence in Phonologically Disordered Speech

Studies of both normal phonological acquisition (Barton & Macken, 1980;Kornfeld & Goehl, 1974; Macken & Barton, 1977, 1980; Menyuk, 1972) and
phonological disorders (Hoffman, Stager, & Daniloff, 1983; Maxwell, 1981a,1981b; Maxwell & Weismer, 1982; Weismer, Dinnsen, & Elbert, 1981) haveindicated that young children often produce contrasts among sounds that arenot perceived by adult listeners. Children mark phonological contrasts byproducing phonetic distinctions, which may or may not be comparable to thoseused by adults. Fine-grained acoustic phonetic analyses are needed in suchcases to determine whether a systematic distinction is being made. Phoneticdistinctions in the absence of perceptible phonological contrasts have beentaken as evidence that children have more knowledge of the sound system thanis immediately apparent to listeners at an auditory level. A child'sknowledge of the sound system, as used herein, refers specifically toproductive knowledge or the ability to produce systematic phonetic(articulatory and/or acoustic) distinctions amonr, sounds for the purpose ofmarking phonological contrasts in the language. A child's knowledge of thesound system can also be evaluated on the basis of other skills, such asspeech perception (cf. Menn, 1983). These skills, however, lie outside ofthe domain of speech production and are possibly even independent processes(cf. Dinnsen, 1984, 1985; Straight, 1980).

For phonologically disordered children, in particular, these findings arerelevant to the clinical assessment and treatment of speech sound errors.With regard to clinical assessment, these findings suggest that, in somecases, auditorily-based descriptions of a child's speech sound errors may be
inaccurate (Maxwell & Weismer, 1982; Weismer, 1984; Weismer et al., 1981).Maxwell and Weismer (1982), for example, reported the case of a child who did
not evidence a voice, place, or manner contrast among word-initial obstruents;phonologically, this child only produced [d] in word-initial position.Acoustic phonetic evidence, however., indicated that the child produced athree-way distinction among obstruents. This child demonstrated moreproductive knowledge of the sound system than was ',vailable from thephonological analysis. Conventional data for the phonological analysis werenot sensitive enough to identify these subtle, systematic phonetic differences
among word-initial obstruents.

With regard to clinical intervention, these findings suggest thatchildren with similar patterns of error may have very different productive
knowledge of sounds, and therefore, may require different treatments. Forexample, Weismer, Dinnsen, and Elbert (1981) observed three children who
displayed superficially similar phonological errors involving omission ofword-final obstruents. Acoustic phonetic data indicated that two of thechildren marked final obstruents in terms of vowel duration differences, eventhough final obstruents were omitted. These children evidently had productiveknowledge of final obstruents,' but used a phonological rule of word-finaldeletion.2 The third child, on the other hand, did not produce or otherwiseacoustically mark final obstruents. This child exhibited a pattern of errorcharacterized by inaccurate lexical representations of morphemes (relative tothe target); that is, the child apparently represented morphemes withoutpost-vocalic obstruents. Consequently, a rule of word-final deletion would
not be applicable. Notice that these three children all displayedsuperficially similar errors, but their productive knowledge of sounds was
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different. It is expected that these differences in productive knowledge
would affect the goals of treatment, such that two of the children would need
to be taught to eliminate a phonological rule, while the third child would
need to alter the underlying lexical representation of morphemes.

Phonological and acoustic phonetic evidence serve an important function
in the accurate assessment of a phonologically disordered child's productive
knowledge of the sound system and in the identification of an appropriate
treatment plan. To date, however, there have been relatively few studies
which have reported the use of related sources of data in the assessment or
treatment of phonological disorders. With the exception of Weismer et al.,
there have been no other studies which have established differences in
productive knowledge for children exhibiting similar patterns of error;
moreover, differences in productive knowledge have not been reflected in
subsequent treatment goals. Thus, the purpose of this paper is two-fold: (1)
to present related sources of data (phonological aad acoustic phonetic) in
descriptions of the sound systems of two misarticulating children, and (2) to
identify differences in productive knowledge and treatment despite superficial
similarities in error pattern. Two studies follow. The first study analyzed
phonologically the speech of two children and, thus, established the
similarity of their error pattern. The second study was motivated by the
first and, thus, analyzed acoustically the apparent phonological similarity
between both children.

Subjects

Two children, Aaron, age 4 years, 6 months, and Becca, age 4 years, 3

months, participated as subjects. Both children were functional
misarticulators, producing errors on several sounds from different sound
classes, as determined by performance on the Goldman-Fristoe Test of
Articulation (Goldman & Fristoe, 1969). The children were especially suites
for this study given the similar nature of their errors in production of the
voice contrast in word-initial stops. The children were from monolingual
English-speaking homes, and had no pievious history of language, hearing,
cognitive, or motor disorders.

Phonological Analyses

Data collection

A spontaneous speech sample, 30 minutes in duration, was elicited
individually from each child in varied situations, such as play and
story-telling. The spontaneous speech sample was supplemented by a probe
sample. The probe sample consisted of single-word spontaneous productions
elicited through picture and object naming tasks. The probe sample ensured
that each child had ample opportunity to produce all target English sounds; it
also allowed for the elicitation of potential minimal pairs and morphophonemic
alternations.

All speech samples were tape-recorded, then narrowly transcribed (IPA
notation) and glossed by the first author. If utterances could not be
glossed, transcriptions were still included in the data set, proding
information about the occurrence and distribution of sounds.



Data analysis

Standard generative phonological descriptions were developed for each
child, consistent with procedures outlined by Dinnsen (1984), Kenstowicz and
Kisseberth (1979), and Maxwell and Rockman (1984). Each child's sound system
was described in terms of the phonetic and phonemic inventories, distribution
of sounds, lexical representation of morphemes, phonological rules, and
phonotactic constraints.

Intrajudge reliability

Ten percent of each child's spontaneous speech sample used in the
phonological analysis was retranscribed by the first author approximately nine
months after it was obtained. Point-to-point intrajudge reliability was
calculated for all consonants produced. Mean intrajudge agreement for Aaron's
sample was 85% (N = 459 segments), and for Becca's sample, 94% (N . 431
segments).

Results

Aaron's phonological system. Aaron maintained a limited phonetic
inventory with regard to the target sound system. His phonetic inventory
included the sounds:

m n
pb td

is dz
w

"

r

kg ?

h

Of the fricatives, Aaron never produced [f,v,9,1,z,S] in any word position;
instead, he used Is]. In fact, Is) was the only fricative Aaron ever
produced. Affricates were produced, i.e., dz]; however, they were not
those of the adult sound system, i.e., [1,d3].

Stops were produced in intervocalic and final positions, and these sounds
did not alternate, as shown in the following forms:

Target [p] "zipping" "zip"
[tupi] [tup] "soupy" "soup"

Target [I)] [wAbiD] [waap] "rubbing" "rub"3
Ilobil [lop] "cobby" - "cob"

Target [t] [buli] [but] "bootie" "boot"
[baett] "butter"
[tai t] "light"

Target [d] [badi] "body"
[pa4cle] "spider"
[axd] "hide"
[dqd] "find"
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Target [k]

Target [g]

[daeki] ldaek]
lktkuanl- [kik]

[okLgi] [d=g]
[ggil leg]

"duckie" "duck"
"kicking" - "kick"

"digging" "dig"
"egg-i" - "egg"

Moreover, a voice contrast4 was maintained for intervocalic and final
stops as illustrated by these minimal and near minimal pairs:

"supper" [dApll [dzAbul "jumping"
"tape" [tep] [seb] "shave"

"water" [04) [odd') "over"
"ice" [art] lap] "hide"

"leggy" [skil [Egli "egg-i"
"frog" [pw3k] [pwatg] "flag"

In word-initial position, Aaron also produced stops. However, there was
no evidence of a voice contrast in that position; voiced and voiceleLs stops
freely varied:

[PI Ibl [pIgij [bIgi]
[pinaet] [bingat]
[ pwAsan] [bwAtan]

[t] [d] [ti] [di]

[top] [dop]
Iteoboyl [deobsiy]

[k] g]

"piggie"
"peanut"
"brushing"

"teeth"
"soap"
"sailboat"

[kom] [gom] "comb"
IkEt] [get] "catch"
[kit] [get] "got"

The absence of a word-initial voice contrast was also evident in the
child's homophonous production of potential minimal pairs:

"pie" [bat] [bar] "bye"

"pig" [big] - [big] "big"

"tie" [daT] Hari "die"
"town" [dayn] [dam] "down"

"coat" [kgr] [kory] "goat"
"cow" [WI [ kay] "gown"

These data indicate, among other things, that Aaron maintained a phonemic
voice contrast among stops in the intervocalic and final positions of words,
but not in word-initial position.

Becca's phonological system. Becca maintained a relatively complete
phonetic inventory with regard to the adult system. Her phonetic inventory
included the sounds:
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m

pb

fv OS

w

n 9
td kg 7

sz 5

13

1 r

h

Becca produced target fricatives (f,v,9A,s,z,51 in post-vocalic positions.She did not, however, produce these same sounds in word-initial position;stops were used instead. The affricates patterned in a similar manner to the
fricatives; [t$,d3] were used post-vocalically but not word-initially.

Like Aaron, Becca produced stops in the intervocalic and final positionsof words. These stops did not alternate, as shown in the forms:

Target [p]

Target [b]

Target (t)

Target [d]

Target [k]

Target [g]

[tupi] [tup] "soupy" -
1(11pil [dip] "chippy"

[tAbi] [dAb] "tubby"
MIA') [wg:uts] "robe-i"

(baelij [Imiet)

[baxlinr (b4t1

(widin) [wid]

ImAdfl [Ad]

[bold]
[wpki] [w)k]

"fatty"
"biting"

"soup"
"chip"

"tub"
"robes"

"fat" 5
- "bite"

"reading" "read"
"muddy" - "mud"

"book-i" - "book"
"rocky" "rock"

[baegi] [ba2g] "baggy" "bag"
[hAgt5] [hAg] "hugging" - "hug"

Moreover, in intervocalic and final positions, a phonemic voice
distinction was maintained among stops, as illustrated by the following
minimal and near minimal pairs:

"soapy" [dwpij [waybi] "robe-i"
"cup" [tAp] [ciAb] "tub"

"because" [dim] [did*) "teacher"
"cut" [dAt] [mAd] "mud"

"chicken" [dikin] "7iggY"
"back" [bartk] [baeg) "Lag"

In word-initial position, Becca also produced stops. However, voiced and
voiceless stops were in free variation, as in the forms:



tpl Ibl inl 11)511 "play"
[prks] [b/ks] "fix"
[ pelt i ] [ Iv is ] "page-i" "page"

[t] [d] (ti:] [di] "see"
[tr-d] :dt81 "kid(s)"
ItAmpin] [dimpIn] "something"

[k] [g] fk,f1 [gDfx,] "cough" "coughing"
[koym] [num] "comb" - "comb-i"

A voice contrast was evidently not maintained among word-initial stops.
This was further illustrated by Becca's homophonous productions of potential
minimal and near minimal pairs:

"pig"

"pie"

"to"
"tear"

"coat"

[big] [big] "big"
[b10 [blFt] "bite"

[du] [du] "do"

[dial [dial "deer"

[mil] [gr] "goat"

These data indicate that Becca used voicing contrastively in the
intervocalic and final positions of words; however, she did not use this
contrast word-initially.

Thus, the results of the phonological analyses indicated that both Aaron
and Becca exhibited a similar pattern of error with regard to their use of
obstruent stops. Stops were produced in all word positions. However, a voice
distinction was only maintained for post-vocalic stops; word-initially,
voicing was not systematically contrastive for either child.

This particular property of the phonological systems of these two
children is unusual in that their pattern of production is an apparent
violation of a known substantive universal, the voice contrast hierarchy
(Dinnsen & Eckman, 1975, 1978). This universal, which is based on
phonological contrast (and not strictly phonetic parameters), states that the
presence of a voice contrast word-finally implies the contrast word-medially,
and that in turn, implies the contrast word-initially. The universal
hierarchy predicts that a language which maintains a voice contrast in any
word position will also maintain the contrast in all implied positions, but
not necessarily in implying positions. Initial position (least marked) is the
most favored position for a voice contrast, and final position (most marked)
is the least favored position fcr a voice cuiitrast.

Typological evidence from primary (first acquired, natural) languages has
indicated that there are languages with no voice contrast in any position,
e.g., Korean.6 There are languages with a voice contrast initially, but not
intervocalically or finally, e.g., Corsican, Sardinian. There are languages
with a voice contrast initially and intervocalically, but not finally, e.g.,
Polish, German. Of course, there are languages with a voice contrast in all
positions, e.g., English. The universal excludes the possibility that a
primary language will maintain a voice contrast in intervocalic and final
positions without also maintaining this contrast word-initially. No known
primary languages have shown patterns contrary to this observed relationship.
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To date, there are no available data from normal language acquisitionwhich bear upon this universal. While there have been numerous reports on the
acquisition of voicing by children of different languages (Gilbert, 1977;Kewley-Port & Preston, 1974; Krause, 1982; Locke, 1983; Macken, 1980; Macken &
Barton, 1977, 1980; R%phael, Dorman, & Geffner, 1980; Smith, 1978; Zlatin &Koenigsknecht, 1976), these investigations have only focused on the use of the
voice contrast in one word position. Development of the voice contrast across
word positions for individual children is an area of investigation which needs
further attention.

Similarly, there are no available data from misarticulating childrenwhich bear upon this universal. The potwitial violation of this universal by
the two children of this study serves as additional motivation for examiningtheir disordered sound systems in greater detail. While phonological data
indicate that these children did not produce a word-initial voice contrast,perhaps acoustic phonetic evidence would show that this contrast was being
systematically marked, as has been observed in at least one stage ofacquisition of the voice contrast by normally developing children (Barton &Macken, 1980; Macken & Barton, 1977, 1980). If an acoustic analysis revealedthat a systematic distinction was being produced by the children (although notdetected in the phonetic transcriptions), these data would be in agreementwith the universal voice hierarchy. Given the apparent phonologicalsimilarity of the sound systems of these two children and given the apparentuniqueness of this error pattern, an acoustic phonetic study was designed tofurther inve."-ate word-initial voicing.

Acoustic Phonetic Analyses

Data collection

A naming game was developed to elicit comparable utterances from eachchild for measurement purposes. Before the actual test session, each child
participated individually in a pretraining session in order to instruct him orher in this game. The game required that the child embed the name of an
object or picture in the carrier phrase, "Say again." The game proceeded
in a manner similar to "Simon Says," with pictures and objects presented in
sequence and the child spontaneously producing the desired phrase. The childstayed "in" the game and earned points for saying the entire utterance with
the embedded target word, e.g., "say sun again." The child was "out" of thegame if only the target word was named, e.g., "sun," only part of the carrier
phrase was produced, e.g., "sun again," or there was a pause between "say" and
the target word, e.g., "say (pause) sun."

The actual test session proceeded in much the same manner as pretraining.
,x minimal pairs were selected as test items for spontaneous production.Test items were common, picturable words familiar to the children. Twoexemplars for each voiced and voiceless stop in each place of articulation

were used: "pig" - "big," "peach" - "beach" (bilabial stops); "town" -"down," "tear" "deer" (alveolar stops); "coat" - "goat," "curl" - "girl"
(velar stops). These items were randomly presented to each child forproduction in the carrier phrase, "Say again." Each test item waselicited 15 times, for a total sample size of 180 tokens per child. Sampleswere collected individually for each child and tape-recorded in a
sound-insulated clinical treatment room over three consecutive days.



Data analysis

Wide-band spectrograms (300 Hz filter) with high frequency shaping were
made on a Voice Identification Series 700 Sound Spectrograph. Measurements
were made relative to the vowel in the carrier word "say" and the following
stop and vowel in the test word. Measurements were made to the nearest 5
milliseconds (msec) for two different timing intervals: stop closure duration
and voice onset time (VOT). Stop closure duration was defined as the interval
from the offset of periodic vertical striations in the first and second
formants of the vowel in the word "say" to the sudden spiked vertical increase
in amplitude, indicating a stop release burst. VOT was defined as the
interval from the stop release burst (as above) to the onset of periodic
vertical striations in the following first formant. These particular
parameters were selected for measurement since they have been cited as two
cues to the voice distinction in word-initial stops (Delattre, Liberman, &

Cooper, 1955; Flege & Port, 1980; Lisker & Abramson, i964, 1967; Malecot,
1968; Stathopoulos & Weismer, 1983; Zlatin, 1974). In English, closure
duration may not be a primary cue to the voiced-voiceless contrast in
prestressed stops (for review of relevant literature, see Flege & Brown,
1982). However, closure duration is a cue to voicing in prevocalic stops in
other languages (e.g., Arabic). Since children may produce phonetic
distinctions which are unlike those used by adults, it is plausible that
closure duration functioned as a cue to the voice contrast for the two
children of this study.

For each child, several measurements had to be discarded from the
original data set. The measurements were discarded because of poor recordings
including a child's production being spoken too softly or with extraneous
noises, such as hand clapping or table tapping; or because the closure
duration exceeded 250 mser!, indicative of a pause between the carrier word,
"say" and the following test word. In any of these cases, measurement of the
noted parameters would prove unreliable (Maxwell, 1981a, 1981b; Maxwell &

Weismer, 1982). This resulted in approx.mately 16% of the 180 tokens for
Aaron being discarded; 152 tokens were subjected to analysis. For Becca,
approximately 37% of the tokens had to be discarded; 114 tokens were suitable
for analysis.

Analyses of variance were calculated for closure duration and VOT for
each child. A 2 (voice) x 3 (place of articulation) unbalanced factorial
design was used. The criterion for significance was set at p < .025 for each
comparison.

Intrajudge reliability

An estimate of measurement reliability was calculated for 10% of each
child's tokens used in the acoustic analysis. Spectrograms were remeasured by
the first author approximately nine months after the original measurements
were obtained. Intrajudge reliability was determined by calculating a mean
difference score (msec) between the initial measurements and the
remeasurements (cf. Charles-Luce, 1985) for both closure duration and VOT.
For Aaron, the mean difference scores were +/- 5.67 msec for closure duration
and +/- .67 msec for VOT. For Becca, mean difference scores were +/- 6.67
msec for closure duration and +/- 4.58 msec for VOT.



Results

Aaron's acoustic analysis. Mean values for closure duration and VOT for
voiced and voiceless stops in each place of articulation are presented in
Figures 1 and 2; means and standard deviations are reported in Table 1.

Insert Figures 1 and 2 about here

Insert Table 1 about here

For closure duration, the results of the analysis of variance indicate no
significant main effect for voice [F(1,146)=1.34] or interaction between voice
and place of articulation [F(2,146)=1.00]. There was, however, a significant
main effect for place of articulation [F(2,146)=16.65, p<.025]. Closure
duration values for place of articulation generally followed the sequence
noted for adults (Flege & Port, 1980; Stathopoulos & Weismer, 1983), with
bilabials being of longer duration than alveolars or velars.

The results of the analysis of variance for VOT also indicated no
significant main effect for voice [F(1,146)=2.05] or interaction between voice
and place [F(2,146)=2.67]. There was a significant main effect for place of
articulation [F(2,146)=15.57, p<.025]. Again, place trends approximated those
reported for adults (Klatt, 1975; Lisker & Abramson, 1964, 1967; Port &
Rotunno, 1979); i.e., velars have longer VOT values than alveolars which, in
turn, have longer VOT values than bilabials.

The results of the acoustic analysis for Aaron indicated neither closure
duration nor VOT were used 'o mark a voice distinction among word-initial
stops. It may have been the case, however, that this child used another
parameter, such as amplitude of the burst or fundamental frequency of the
following vowel, to achieve the voice contrast. Methodologically, of course,
it would have been impossible to rule out all potentially relevant parameters.
Thus, these findings, while specific to the acoustic parameters measured, do
support the phonological description indicating the absence of a word-initial
voice contrast in stops.

Becca's acoustic analysis. Mean values for closure duration and VOT for
voiced and voiceless stops in each place of articulation are displayed in
Figures 3 and 4; means and standard deviations are als'i reported in Table 2.

Insert Figures 3 and 4 about here



cc)

z
LLJ

230

220

210

200

190

180

170

160

150

140

130

120

110

100

BILABIAL

[1] VOICED

1111 VOICELESS

ALVEOLAR VELAR

Figure 1. Mean closure duration values (msec) for voiced and voiceless
stops in each place of articulation for Aaron.
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Figure 2. Mean VOT values (msec) for voiced and voiceless stops in each
place of articulation for Aaron.



Table 1. Means and standard deviations for closure duration and
VOT in msec for each place of articulation for Aaron.

Place of Closure Duration VOT

Articulation

n

Bilabials +voice 22 135.68 20.08 22 26.59 10.28

-voice 29 144.66 31.05 29 25.69 9.33

Alveolars +voice 25 114.80 15.84 25 28.60 15.91

-voice 29 111.38 25.14 29 28.45 14.09

Velars +voice 25 131.60 24.53 25 34.60 11.98

-voice 22 140.68 33.64 22 45.45 20.52

r.
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Figure 3. Mean closure duration values (msec) for voiced and voiceless
stops in each place of articulation for Becca.



40

ul 30

20

10

BILABIAL

VOICED

111 VOICELESS

ALt.)EJLAR VELAR

Figure 4. Mean VOT values (msec) for voiced and voiceless stops in each
place of articulation for Becca.



Insert Table 2 about here

For closure duration, results of the analysis of variance indicated that
there was a significant voice distinction among stops [F(1,108)=58.39,
p<.025], with voiceless stops of greater duration than voiced stops. This
finding is generally consistent with closure duration data reported for adults
(Flege & Port, 1980; Malecot, 1968; Stathopoulos & Weismer, 1983). There was
no significant main effect for place of articulation [F(2,108)=2.58]; the
relative place sequence (bilabial > alveolar or velar) was maintained, but
only for voiced stops. A significant voice by place interaction
[F(2,108)=4.23, p<.0251 was noted; that is, mean voiced-voiceless distinctions
were greater for alveolar and velar stops than bilabial stops.

For VOT, the results of the analysis of variance indicated a significant
main effect for voice [F(1,108)=13.65, p<.025]; VOT values for voiceless stops
were of greater duration than for voiced stops. There was no significant main
effect for place of articulation [F(2,108)=1.55]; however, relative place
trends (velar > alveolar > bilabial) were maintained, but only for voiced
stops. There was no significant interaction between voice and place
[F(2,108)=2.31].

The results of the acoustic analysis for Becca indicated that both timing
intervals, closure duration and VOT, were used to affect a voice contrast
among word-initial stops. These results, while sperific to the test items and
acoustic parameters measured, were not consistent with those of the
phonological analysis which failed to identify a distinction in voice for
word-initial stops. Becca demonstrated more productive knowledge of the voice
contrast in word-initial stops than was originally determined by the
phonological analysis.

Discussion

These two children displayed superficially similar patterns of error, but
their productive knowledge of the voice contrast in stops was different. For
Aaron, phonological and acoustic phonetic data were converging. Given all the
available data, this child did not produce or acoustically mark the voice
distinction word-initially. For Becca, on the other hand, phonological and
acoustic data were non-converging. Taken together, related sources of data
indicated that Becca was, in fact, producing a voice contrast for stops in all
positions; word-initially, however, this contrast was not perceptible to adult
listeners. Moreover, acoustic phonetic data were necessary to accurately
characterize Becca's productive knowledge of the voice contrast.

Differences in productive knowledge of the word-initial voice contrast
may also have implications for treatment goals. For Becca, the voice contrast
may not need to be taught since she was already consistently prodv.ing the
relevant distinction. Her problem would appear to be a matter of phonetic
implementation, and her error would be viewed as phonetic in nature. For
Aaron, it is clear that his error is phonological in nature and requires
learning the voice contrast in initial position. It is less clear, however,
what the goals of treatment should be in this case. The most obvious
recommendation is that the voice contrast should be directly taught since it
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Table 2. Means and standard deviations for closure duration and
VOT in msec for each place of articulation for Becca.

Place of Closure Duration VOT
Articulation

n X r n x Cr

Bilabials +voice 25 160.00 44.21 25 18.40 10.77
-voice 18 188.61 37.57 18 37.78 24.69

Alveolars +voice 23 126.74 44.05 23 19.13 9.73
-voice 15 198.00 35.24 15 33.33 18.19

Velars +voice 24 146.67 31.23 24 32.29 17.38
-voice 9 222.22 25.99 9 34.44 13.10



was not systematically produced in word-initial position. Here, treatment
might take the form of minimal pair contrast training (cf. Ferrier & Davis,
1973) among word-Initial voiced and voiceless stops. In light of some recent
research findings (Dinnsen & Elbert, 1984), however, it may not be necessary
to teach this contrast. Specifically, Dinnsen and Elbert demonstrated that if
a child is taught to produce more marked aspects of phonology, the acquisition
of unmarked aspects of phonology will occur without direct treatment. For
Aaron, there is some likelihood that voicing in the unmarked word-initial
position would be spontaneously acquired, since he already produced this
contrast in more marked post-vocalic positions./ In this case, production of
the word-initial voice contrast might only need to be monitored or minimally
treated in the course of clinical intervention. Thus far, there are no
available data to suggest which of these two treatment goals is to be
preferred, but these considerations are suggestive of future research.

The results of the acoustic and phonological analyses also bear upon the
accu =acy of the voice contrast hierarchy. By examining related sources of
data, it is possible to establish whether the sound systems of these children
violate the voice contrast hierarchy. In the case of Becca, even though the
phonological analysis did not converge with the acoustic evidence, the
acoustic evidence did indicate that the voice contrast hierarchy was
maintained. This child produced a voice distinction in both marked and
unmarked word positions; however, the strength of the contrast varied by
position. That is, in post-vocalic positions, the contrast was perceptible to
listeners; whereas, word-initially, it was not.

In the case of Aaron, the voice contrast hierarchy was not obviously
maintained. This child's sound system violated the linguistic universal and,
therefore, was not like any other known phonological system. Evidence of this
type can be brought to bear on the formulation of the voice contrast
hierarchy. It may be necessary to revise this universal to accommodate this
child's unusual phonological system. While it is not uncommon to find
well-defined exceptions to language universals (cf. Gamkrelidze, 1975),
qualifications of this particular universal are not readily apparent. More
likely, this type of evidence also may bear on the characterization of Aaron's
sound system. It has been suggested (Connell, 1982) that violations of
language universals may serve as a means of systematically determining the
severity of a child's speech sound disorder. Aaron's violation of the voice
contrast hierarchy could be taken as evidence that his sound system (or at
least part of the system) was structurally unlike that of other languages,
indicative of a "severe" phonological disorder. 8

In conclusion, the results of this study demonstrated that: (1)
phonological and acoustic phonetic sources of data were necessary to
accurately describe the errored sound systems of two children; (2) despite
superficially similar phonological patterns, the children had very different
productive knowledge of the relevant voice contrast; and (3) differences in
productive knowledge may be reflected in subsequent treatment goals. These
findings were consistent with those of previous research (Maxwell, 1981a,
1981b; Maxwell & Weismer, 1982; Weismer et al., 1981), which underscored the
importance of bringing phonological and acoustic phonetic data to bear upon
the clinical assessment and treatment of children with phonological disorders.
What was unique about this study, however, was that related sources of
evidence were also used to empirically validate a substantive universal, the
voice contrast hierarchy. It was only possible to establish "true" violations
of the voice contrast hierarchy when converging sources of data, phonological
and acoustic phonetic, were examined. Counterexamples to linguistic
universals, when based on both phonological and acoustic phonetic evidence,
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may aid in defining the full range and nature of language types, in both
normal and phonologically disordered speakers.



Endnotes

1 Another possible interpretation of these results, that was not
considered by Weismer et al. (1981), is that the children demonstrated
knowledge of a phonemic vowel length distinction rather than knowledge of
final obstruents. This interpretation, however, would have other theoretical
consequences that are problematic, i.e., phonemes with defective
distributions.

2 The claim that a phonological rule deleted final obstruents was
further motivated by morphophonemic alternations for these two children but
not for the third child.

3 The underlying representation of the morpheme "rub" is /waeb/; "cob"
is represented as /lob/. An optional rule of word-final devoicing applied in
this child's sound system; thus, the phonetic forms of these morphemes do not
have final voiced segments, resulting in the productions, [wee p] and [k,p].

4 The "voice contrast" or "voicing," as used throughout this paper,
refers to a phonological distinction among voiced and voiceless obstruents.
This phonological voice distinction is, of course, implemented phonetically in
a variety of ways in various contexts in different languages.

5 The alternation between [1] and [t] is consistent with adult
productions. This child, like adult speakers of English, used a rule of
intervocalic flapping.

6 Superficially, it may appear that Korean is not an appropriate example
of this point since both voiced and voiceless obstruents occur between vowels.
The voiced obstruents. however, correspond to and alternate with lax voiceless
unaspirated stops in other positions and are thus er.tirely predictable by an
allophonic rule. Phonologically all stops in Korean are described as
voiceless, i.e., tense and lax unaspirated stops and aspirated stops (Martin,
1951; Moon, 1974).

7 Of course, this does not explain why the child does not already
produce the voice contrast in initial position given that ne produces it in
more marked contexts. Claims about markedness do not in all cases correspond
with clairs about order of acquisition (Locke, 1983).

8 Aaron was enrolled in a clinical research program subsequent to his
participation in this study. In this intervention program, other errored
aspects of his sound system were targeted for treatment. After approximately
nine months of intervention, Aaron produced targeted sounds with only 50%
accuracy. Both the level of performance following treatment and the length of
time enrolled in treatment suggest that Aaron's sound system may, in fact,
have been "severely" disordered.



References

Barton, D., & Macken, M. (1980). An instrumental analysis of the English
voicing contrast in four-year-olds. Language and Speech, 23, 159-169.

Charles-Luce, J. (1985). Word-final devoicing in German: Effects of
phonetic and sentential contexts. Journal of Phonetics, 13, 309-324.

Connell, P.J. (1982). Markedness differences in the substitutions of normal
and misarticulating children. Paper presented at the Annual Convention
of the American Speech-Language-Hearing Association, Toronto, Canada.

Delattre, P.C., Liberman, A.M., & Cooper, F.S. (1955). Acoustic loci and

transitional cues for consonants. Journal of the Acoustical Society of
America, 27, 769-773.

Dinnsen, D.A. (1964). Methods and empirical issues in ana3yzing functional
misarticulation. In M. Elbert, D.A. Dinnsen, & G. Weismer (Eds.),
Phonological theory and the misarticulating child (ASHA Monographs No.

22, pp. 5-17). Rocky le, MD: ASHA.

Dinnsen, D.A. (1985). A re-examination of phonological neutralization.
Journal of Linguistics, 21, 265-279.

Dinnsen, D.A., & Eckman, F. (1975). A functional explanation of some
phonological typologies. In R. Grossman, J. San, & T. Vance (Eds.),
Functionalism (pp. 126-134). Chicago: Chicago Linguistic Society.

Dinnsen, D.A., & Eckman, F. (1978). Some substantive universal in atomic
phonology. Lingua, 45, 1-14.

Dinnsen, D.A., & Elbert, M. (1984). On the relationship between phonology
and learning. In M. Elbert, D.A. Dinnsen, & G. Weismer (Eds.),
Phonological theory and the misarticulating child (ASHA Monographs No.

22, pp. 5§-68). RoaTiirri, MD: ASHA.

Ferrier, E., & Davis, M. (1973). A lexical approach to the remediation of

sound omissions. Journal of Speech and Hearing Disorders, 38, 126-130.

Flege, J.E., & Brown, W.S. (1982). Effects of utterance position on English
speech timing. Phonetica, 39, 337-357.

Flege, J.E., & Port, R.F. (1980). Cross-language phonetic interference from

Arabic to English. Research in phonetics (Report No. 1, pp. 99-136).

Bloomington, IN: Department of Linguistics, Indiana University.

Gamkrelidze, T.V. (1975). On the correlation of stops and fricatives in a

phonological system. Lingua, 35, 231-261.

Gilbert, J.H.V. (1977). A voice onset time analysis of apical stop
production in 3-year olds. Journal of Child Language, 4, 103-110.

Goldman, R., & Fristoe, M. (1969). Goldman-Fristoe test of articulation.
Circle Pines, MN: American Guidance Service.



Hoffman, P.R., Stager, S., & Daniloff, R.G. (1983). Perception and
production of misarticulated /r/. Journal of Speech and Hearing
Disorders, 48, 210-215.

Kenstowicz, M., & Kisseberth, C. (1979). Generative Phonology. New York:
Academic Press.

Kewley-Port, D., & Preston, M.3, (1974). Early apical stop production: A
voice-onset time analysis. Journal of Phonetics, 2, 195-210.

Klatt, D.H. (1975). Voice-onset time, frication, and aspiration in
word-initial consonant clusters. Journal of Speech and Hearing Research,
18, 687-703.

Kornfeld, J.R., & Goehl, H. (1974). A new twist to an old observation: Kids
know more than they say. Papers from the Parasession on Natural
Phonology (Chicago Linguistic Society), 10, 20:219.

Krause, S.E. (1982). Vowel duration as a cue to postvocalic consonant
voicing in young children and adults. Journal of the Acoustical Society
of America, 71, 990-995.

Lisker, L., & Abramson, A.S. (1964). A cross-language study of voicing in
initial stops: Acoustical measurements. Word, 20, 384-422.

Li5ker, L., & Abramson, A.S. (1967). Some effects of context on voice onset
time in English stops. Language and Speech, 10, 1-28.

Locke, J.L. (1983). Phonological acquisition and change. New York:
Academic Press.

Macken, M. (1980). Aspects of the acquisition of stop systems: A
cross-linguistic perspective. In G.H. Yeni-Komshian, J.F. Kavanagh, &
C.A. Ferguson (Eds.), Child phonology: Production (Vol. 1, pp.
143-168). New York: Academic-Press.

Macken, M., & Barton, D. (1977). A longitudinal study of the acquisition of
the voicing contrast in American-English word-initial stops, as measured
by voice-onset time. Papers and Reports in Child Language Development,
14, 74-120.

Macken, M., & Barton, D. (1980). A longitudinal study of the voicing
contrast in American English word-initial stops, as measured by voice
onset time. Journal of Child Language, 7, 41-74.

Malecot, A. (1968). The force of articulation of American stops and
_icati,eJ as a function of position. Phonetica, 18, 95-102.

Martin, S. E. (1951). Korean phonemics. Language, 27, 519-533.

Maxwell, E.M. (1981a). The use of acoustic phonetics in phonological
analysis. Journal of the National Student Speech, Language, and Hearing
Association, 9, 20-37.

,

-147-



Maxwell, E.M. (1981b). A study of misarticulation from a linguistic
perspective. Doctoral dissertation, Indiana University, Bloomington, IN.
(Also distributed by the Indiana University Linguistics Club,
Bloomington, IN)

Maxwell, E.M., & Rockman, B.K. (1984). Procedures for linguistic analysis of
misarticulated speech. In M. Elbert, D.A. Dinnsen, & G. Weismer
(Eds.), Phonological theory and the misarticulating child (ASHA
Monographs No. 22, pp. 69-84). Rockville, MD: ASHA.

Maxwell, E.M., & Weismer, G. (1982). The contribution of phonological,
acoustic, and perceptual techniques to the characterization of a

misarticulating child's voice contrast for stops. Applied
Psycholinguistics, 3, 29-43.

Menn, L. (1983). Development of articulatory, phonetic, and phonological
capabilities. In B. Butterworth (Ed.), Language production (Vol. 2,

pp. 3-50). New York:Academic Press.

Menyuk, P. (1972). Clusters as single underlying consonants: Evidence from

children's production. In A. Rigault, & R. Charbonneau (Eds.),

Proceedings of the seventh international congress of phonetic sciences
(pP71161-11715). The Hague: Mouton.

Moon, Y. S. (1974). A phonological history of Korean. Unpublished doctoral
dissertation, University of Texas, Austin.

Port, R.F., & Rotunno, R. (1979). Relation between voice-onset time and
vowel duration. Journal of the Acoustical Society of America, 66,
654-662.

Raphael, L.J., Dorman, M.F., & Geffner, D. (1980). Voicing-conditioned
durational differences in vowels and consonants in the speech of three-
and four-year-old children. Journal of Phonetics, 8, 335-342.

Smith, B.L. (1978). Temporal aspects of English speech production: A

developmental perspective. Journal of Phonetics, 6, 37-68.

Stathopoulos, E.T., & Weismer, G. (1983). Closure duration of stop

consonants. Journal of Phonetics, 11, 395-400.

Straight, H.S. (1980). Auditory versus articulatory phonological processes
and their development in children. In G.H. Yeni-Komshian, J.F.

Kavanagh, & C.A. Ferguson (Eds.), Child phonology: Perception (Vol. 2,

pp. 43-71). New York: Academic Press.

Weismer, G. (1984). Acoustic analysis strategies for the refinement of

phonological analysis. In M. Elbert, D.A. Dinnsen, & G. Weismer

(Eds.), Phonological theory and the misarticulating child (ASHA

Monographs No. 22, pp. 30-52). Rockville, MD: ASHA.

Weismer, G., Dinnsen, D.A., & Elbert, M. (1981). A study of the voicing
distinction associated with omitted word-final stops. Journal of Speech
and Hearing Disorders, 46, 320-327.

f

-148-



Zlatin, M. (1974). Voicing contrast: Perceptual and productive voice onset
time characteristics of adults. Journal of the Acoustical Society of
America, 56, 981-994.

Zlatin, M.A., & Koenigsknecht, R.A. (1976). Development of the voicing
contrast: A comparison of voice onset time in stop perception and
production. Journal of Speech and Hearing Research, 19, 93-111.



(RESEARCH ON SPEECH PERCEPTION Progress Report No. 12 (1986) Indiana University]

On the Assessment of Productive Phonological Knowledge*

Judith A. Gierut

Speech Research Laboratory
Department of Psychology

Indiana University
Bloomington, IN 47405

*This research was supported, in part, by NIH Training Grant NS-07134 toIndiana University in Bloomington. I would like to thank Daniel Dinnsen,Ronald Gillam, Kathy Hoyt, and Michael Smith for their comments andsuggestions on an earlier version of this manuscript.



Abstract

This paper describes a new conceptual framework that has been introduced
in the literature (cf. Elbert, Dinnsen, & Veismer, 1984; Gierut, 1985) for
the assessment of functional speech sound disorders in children.

Specifically, the concept of productive phonological knowledge is defined and
described relative to disordered sound systems. It is further illustrated how
productive phonological knowledge may be used in the clinical assessment and
treatment of speech sound errors.



On the Assessment of Productive Phonological Knowledge

One of the keys to a successful and effective clinical treatment programis an accurate assessment and diagnosis of the speech disorder. In the
assessment process, we establish what the speaker already knows about thelanguage and also, what he or she has yet to learn in order to become a
proficient and intelligible user of the language. The subsequent diagnosis of
the disorder leads to the identification and selection of appropriate
treatment goals. Our treatment programs follow directly from the assessmentand diagnosis of the speech disorder and, therefore, can only be as effective
as the assessment is thorough and the diagnosis is accurate. This paperexamines the assessment process with regard to phonological disorders and
presents a new conceptual framework for describing and evaluating speech soundproblems in children.

Assessing phonological disorders in children usually involves identifyingthe pattern underlying a child's error productions (cf. Bernthal & Bankson,
1981). there are several different frameworks, e.g., place-voice-manneranalysis (Turton, 1973), distinctive feature analysis (McReynolds & Engmann,
1975), phonological process analysis (Ingram, 1981; Shriberg & Kwiatkowski,
1980), that may be used to determine a child's pattern of production. Each
framework provides a characterization of the systematicity and consistency ofa child's error productions; the goals of treatment focus on interrupting the
observed pattern of error.

Recently, a new framework for assessing speech sound disorders has been
introduced (cf. Elbert, Dinnsen, & Weismer, 1984; Gierut, 1985). This
framework lies within theoretical linguistics and is known as standardgenerative phonology (Chomsky & Halle, 1969; Kenstowicz & Kisseberth, 1979).
Standard generative phonology is a qualitative, rather than quantitative,
description of the structure and function of-sounds in a language. That is,
generative phonology identifies which sounds are present in a speaker's
phonological system, but also indicates how these sounds are used. Generative
phonology was initially developed as a 651 for evaluating and describing whatadult speakers of primary languages, such as French or German, know about the
sound system of their language. The procedures of generative phonology are
also applicable to applied disciplines as speech-language pathology and second
language instruction to evaluate what a speaker knows about the sound system
of the language being learned.

Generative phonology, like other frameworks for assessing disorderedsound systems, identifies the pattern governing a child's error productions.
Generative phonology characterizes the error pattern by assessing both a
child's performance and competence (cf. Foss & Hakes, 1978).1 The assessment
of performance provides a surface level evaluation of the sounds that areproduced in error; the assessment of competence provides an evaluation of the
underlying use and function of sounds. Together, these features characterize
a child's productive phonological knowledge of the target sound system. It is
the evaluation of a child's productive phonological knowledge that makes this
framework unique and different from other approaches to assessing speech sound
disorders.

Also, like other frameworks, generative phonology and the assessment of
productive phonological knowledge lead to the selection of appropriate
treatment goals. That is, a child's productive phonological knowledge can beused in a structured way to plan and implement treatment programs (Gierut,
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1985; Gierut, Dinnsen, & Elbert, 1984; Gierut & Elbert, 1983, 1985; Gierut,
Elbert, & Dinnsen, in review). Specifically, a child's productive
phonological knowledge can be ranked on a continuum ranging from "most" to

"least" knowledge relative to the (adult) target. Sounds for treatment can be
selected directly from the continuum of knowledge. Sounds of which a child
has "most" knowledge w'll be easier to learn than sounds of which a child has
"least" knowledge (Dinnsen & Elbert, 1984; Elbert, Dinnsen, & Powell, 1984;

Gierut, 1985; Rockman, 1983). Moreover, when productive phonological
knowledge is assessed prior to treatment, predictions can be made about a

child's learning during treatment; the relative success of a treatment program
can be estimated a priori. A child's productive phonological knowledge, then,
is closely linked to learning during treatment. This relationship between
productive phonological knowledge and learning is unique to this assessment
framework; the knowledge-learning relationship has not been observed when
other approaches to evaluating speech sound disorders have been used.

Thus, the framework of generative phonology bears similarity to other
frameworks used in assessing speech sound disorders. Generative phonology
identifies the pattern underlying error productions and aids in the selection
of suitable treatment goals. Generative phonology, however, is unique in that
it provides an assessment of a child's productive phonological knowledge,
including both performance and competence. It also allows for predictions to
be made about a child's learning during treatment based upon productive
phonological knowledge.

The purpose of this paper is to introduce certain aspects of this new

conceptual framework for assessment !ly describing productive phonological
knowledge and by demonstrating how productive phonological knowledge can be

used in the clinic. The paper is organized with a definition of phonological
knowledge presented first, followed by a description of the six types of

phonological knowledge that speech disordered children display. The sound
systems of two phonologically disordered children are then examined to

illustrate how productive phonological knowledge can be applied in clinical
assessment and treatment.

Productive Phonological Knowledge

What is phonological knowledge?

Productive phonological knowledge has been defined (Dinnsen, 1984;

Dinnsen & Elbert, 1984; Elbert & Gierut, 1986) as the idiosyncratic,
unpredictable properties of productive language that are learned and stored in
a speaker's lexicon. Phonological knowledge refers to those aspects of
production and properties of the sound system that are specific to a

particular language. These properties must be learned and cannot be generated
by rule. Consider the following example. In English, the sounds [d], [0],

[g] have no inherent meaning in and of themselves. When these sounds combine
as [dog], however, they are associated with the morpheme, "dog," meaning

"canine." This combination of sounds meaning "canine" is idiosyncratic and
specific to English; other languages use other sound comb.nations to signal

the same meaning (e.g., French [5iEn], Spanish [perro]). This sequence of
sounds meaning "canine" is also unpredictable. That is, there is no a priori

or independent reason for the morpheme "dog" to be composed of three segments,
for the segments to combine in a consonant-vowel-consonant sequence, for both

consonants to be voiced stops, or for the first segment to be [d] versus any
other sound. In other words, any other combination of sounds would be just as
likely to signal the meaning "canine" in English as [dog]. This information
about the morpheme "dog" is, therefore, idiosyncratic and unpredictable and
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must be learned by every speaker of English. These learned aspects of
productive language are then stored, or represented, in a speaker's lexicon.
This information constitutes a speaker's lexical or underlying representation
of morphemes.

In addition to the idiosyncratic and unpredictable properties of
productive language, phonological knowledge also refers to the rules
associating sound to meaning; this aspect of phonological knowledge is
predictable. Consider the case of plurals. There are three possible ways the
plural morpheme may be pronounced in English, [s], [az], or [z]. The plural
is pronounced as [s] when preceded by a voiceless segment, as in "books" or
"bats." It is realized as [a z] when preceded by [s,z,j,3,t5,d3], as in "buses"
or "bushes." The plural is also pronounced as [z] when preceded by a voiced
segment, as in "bees" or "pegs." Note that each way of signalling the plural
morpheme depends upon phonetic context. The different pronunciations of the
plural morpheme are predictable from the phonetic context and, therefore, can
be generated by rule. There is still, however, only one meaning associated
with the morpheme, but there are three ways of signalling that meaning. A
speaker learns the meaning of the morpheme and then generates the alternate
pronunciations in the various contexts by a rule. This information
constitutes the speaker's use of phonological rules. Together, the lexical
representation of morphemes and the use of phonological rules describe a
speaker's competence (or tacit knowledge) of the target sound system.

As mentioned, productive phonological knowledge also includes a
characterization of a child's performance. This aspect of phonological
knowledge specifies the sounds that are used by a child whether these are used
correctly or not; i.e., the phonetic inventory. Those sounds that a child
uses to contrast meaning are also identified; i.e., the phonemic inventory.
Finally, the distribution of sounds in the child's sound system is noted. The
distribution of sounds describes where sounds are used; i.e., whether a
particular sound is used in all word positions and whether a sound is used for
all target morphemes. The phonetic and phonemic inventories and the
distribution of sounds describe a speaker's performance (or explicit
knowledge) of the target s. and system.

To summarize, productive phonological knowledge refers to a speaker's
competence about the target sound system, including the unpredictable (i.e.,
lexical representation of morphemes) as well as the predictable (i.e.,
phonological rules) aspects of productive language. Productive phonological
knowledge also refers to a speaker's performance of the target sound system,
including the inventory and distribution of sounds.

Types of phonological knowledge

There are six different types of productive phonological knowlege that
have been identified in phonologically disordered children thus far (Gierut,
1985). The six knowledge types have been observed both within and across
children. The different types of knowledge emerge when the structure and
function of sounds in a child's sound system are examined. In particular,
three factors are taken into account: (1) the nature of a child's lexical
representation of morphemes, either adult-like or nonadult-like, (2) the
breadth of the distribution of sounds, extending either to some or all word
positions or to some or all target morphemes, and (3) the use of phonological
rules. Not coincidentally, these three factors are precisely those components
which constitute a child's productive phonological knowledge. The six types
of productive phonological knowledge are displayed in Table 1; a description
and examples of each type of knowledge are presented in Table 2 (adapted from
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Gierut et al., in review).

Insert Tables 1 and 2 about here

Notice, with reference to these tables, that sounds which are always
produced correctly relative to the (adult) target are characterized as Type 1
knowledge. At the opposite extreme, sounds which are always produced
incorrectly relative to the target are represented as Type 6 knowledge.
Knowledge types 2 through 5 describe variations in sound production ranging
between completely correct productions and completely incorrect productions
relative to the adult. The six knowledge types, therefore, describe all
logical combinations of the three factors: lexical representation, breadth of
distribution, and use of rules. The different knowledge types capture not
only the consistency, but also the full range of variability and
inconsistency, that may be observed in a child's errored productions.

Assessing Productive Phonological Knowledge

There are four steps involved in the assessment of productive
phonological knowledge: (1) obtaining a representative sample of speech, (2)
describing a child's productive phonological knowledge of target sounds, (3)
ranking productive phonological knowledge on a continuum, and (4) selecting
treatment goals and sounds directly from the knowledge continuum. A brief
description of each step follows; for a more complete discussion, the reader
is referred to Elbert and Gierut (1986).

Obtaining E representative sample of speech

To determine a child's productive phonological knowledge, a

representative speech sample must be obtained. Ideally, the sample should
include both connected speech and spontaneous single word utterances. The
sample should also meet the following criteria: (1) sample all target English
sounds, (2) sample each sound in at least three word positions (initial,
medial, and final), (3) sample each sound in each position in more than one
word, and (4) sample each word more than one time. In addition, the sample
should provide an opportunity for a child to produce potential minimal pairs
and morphophonemic alternations. Minimal pairs (e.g., "pat"-"bat" or
"cap"-"cah") provide information about those sounds a child is using
contrastively as phonemes. Morphophonemic alternations are pairs such as
"pig"-"piggie" or "miss"-"missing." Morphophonemic alternations sample a sound
(e.g., [g], [s]) in a single morpheme 0.g., "pig", "miss") placed in
different phonetic environments (e.g., iritervocalic vP-sus final position).
Morphophonemic alternations provide information out the lexical
representation of morphemes and the application of phonological rules. To
date, there are two available protocols which meet these cAteria (Gierut,
1985; Maxwell & Rockman, 1984).

Describing productive phonological knowledge

Having obtained a representative sample of speech, the second step in the
assessment of productive phonological knowledge involves determining the type
of knowledge that a child displays for each target sound. That is, each
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KNOWLEDGE
TYPES

LEXICAL
REPRESENTATION

BREADTH OF DISTRIBUTION

Positions Morphemes

PHONOLOGICAL RULE
ACCOUNT

1 Adult-like All All None

2 Adult-like All All Optional or
obligatory
rules

3 Adult-like All Some Fossilized
forms

4 Adult-like Some All Positional
constraint

5 Adult-like Some Some Combination
of Types 3
and 4

6 Nonadult-like All All Inventory
constraint

AIMEMM=m,

Table 1. Types of productive phonological knowledge displayed by
phonologically disordered children (from Gierut, 1985).



KNOVLEDGE
TYPE

DESCRIPTION EXAMPLE

2

3

4

5

6

A child displaying Type 1 knowledge of
target (s1 would produce this sound
correctly in all word positions and for
all morphemes; (s) would never be
producad incorrectly.

[sin) "sun"
[sup) "soup"
[mtsi) "messy"
[misto) "missing"

(m =s) "miss"

A child displaying Type 2 knowledge of (sAn1 "sun"

target (sJ would produce this sound (sup] "soup"

correctly for all morphemes and positions. (mtsil "messy"

However, a phonological rule would apply (ats) "ice"

to account for observed alternations
between, for example, (s1 and (t) in BUT: (mss) (mtt) "miss"
morpheme-final position. (kts1 (k7,t) "kiss"

A child displaying Type 3 knowledge of
target (s) would produce this sound
correctly in all positions. However,
certain morphemes that were presumably
acquired early and acquired incorrectly
(i.e., "fossilized") would always be
produced in error.

A child displaying Type 4 knowledge of.
target (sJ would produce this sound
correctly for all morphemes in, for
example, initial position. However,
production of (sJ would be incorrect for
all morphemes in medial and final
positions.

A child displaying Type 5 knowledge of
target (s) would produce this sound
correctly in, for example, initial
position. However, only some morphemes
in this position would be produced
correctly. All (s1 morphemes in
post-vocalic positions would be produced
incorrectly.

A child displaying Type 6 knowledge of
target (s) would produce this sound
incorrectly in all word positions and
for all morphemes; (s) would never be
produced correctly.

(Mn) "sun"
(moil "messy"
(mss) "miss"

BUT: (none/ "Santa"
(wu) "juice"

(Mn) "sun"

[sup) "soup"

BUT: [mati) "messy"
(instill "missing"
[mu I "miss"

[kW "kiss"

[sAn1 "sun"
(sup) "soup"

BUT: (op) "soap"
[tak) "sock"
[mttil "messy"
[kit] "kiss"

[tAn) "sun"

[cup' "soup"

tmst91 "missing"

[mu) "miss"

[kxt1 "kiss"

Table 2. Description and examples of six types of productive
phonological knowledge (from Gierut et al., in review).
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target sound is classified according to the particular knowledge types
described in Tables 1 and 2. The knowledge type that a child displays for agiven target sound or class of sounds can be determined by answering thefollowing questions regarding the nature of the child's lexical
representation, the breadth of the distribution of sounds, and the use of
phonological rules.

Is the child's lexical representation of the target sound adult-like or
nonadult-like? 2

If the child's lexical representation is adult-like,

does the correct representation extend to all word positions?

does the correct representation extend to all morphemes?

do phonological rules apply, thereby resulting in error
productions?

If the child's lexical representation is nonadult-like,

does the incorrect representation extend to all word positions?

does the incorrect representation extend to all morphemes?

do phonotactic constraints apply, thereby restricting production
of the sound in certain positions (positional constraint) or
excluding production of the sound from the inventory entirely
(inventory constraint)?

Ranking productive phonological knowledge on a continuum

The first two steps in the assessment of phonological knowledge sampleand establish what a child already knows about the target sound system; the
third step establishes what a child has yet to learn. In this step,
information about a child's phonological knowledge is organized in a
systematic way. Specifically, a child's knowledge of target sounds is ranked
on a continuum ranging from "most" to "least" phonological knowledge. A
decision tree for ranking a child's knowledge on a continuum (Gierut, 1985) is
presented in Figure 1. Notice that the decision tree takes into account the
three primary factors used to establish productive phonological knowledge
(i.e., lexical representation, distribution of sounds, and phonological
rules). Also, the decision tree relates directly to the questions (above)used to determine productive phonological knowledge. Finally, notice that
each of the six knowledge types is incorporated into the decision tree, as
represented by the numbers shown on the diagonal.

Insert Figure 1 about here



Child's Lexical Representation

Adult-like

All morphemes

Phonological rules

Non-adult-like

Some morphemes morphemes

Some

positions

Al'

o
Positional
constraint

All

positions

Figure 1. Decision tree for ranking a child's productive
phonological knowledge on a continuum ranging from "most" to
"least" relative to the adult target sound system (from Gierut,
1985).



Using the decision tree to rank a child's knowledge of target sounds is
relatively straightforward. Those sounds that a child produces in a manner
similar to the adult, or Type 1 knowledge, are ranked at that end of the
continuum labelled "most" knowledge. Those sounds that a child produces in a
manner quite different from the adult, or Type 6 knowledge, are ranked at the
opposite end of the continuum, "least" knowledge. Sounds classed as one of
the intermediate knowledge types (Types 2 through 5) are ranked accordingly on
the continuum.

Selecting treatment goals and sounds

Once a child's phonological knowledge of target sounds is determined and
ranked on a continuum, treatilient goals and sounds are selerted directly from
the continuum. Other auxiliary factors, such as age of acquisition of sounds,
ease of production, or stimulability, are generally not considered in
selecting treatment goals and sounds within this approach to assessment (see
Gierut, 1986, for discussion). Treatment may procede sequentially beginning
at one or the other end of the continuum.

Is starting treatment at one end of the continuum (e.g., "most"
knowledge) more effective in interrupting a child's error pattern than
starting treatment at the opposite end of the continuum (e.g., "least"
knowledge)? Preliminary research (Gierut, 1985; Gierut et al., in review) has
been conducted to address this question. The results of this research
indicated that, when treatment began at the end of the continuum labelled
"most" knowledge, children only learned treated sounds; other untreated sounds
ranked lower on the knowledge continuum were not acquired. For example, when
treatment began with sounds ranked high on the continuum at Type 2 knowledge,
changes in production of these sounds were observed; however, production of
other sounds ranked lower on the knowledge continuum, at Type 5 or Type 6
knowledge, did not change. Thus, when treatment begins with "most" knowledge,
in!orruption of a child's error pattern is limited to the treated sounds;
extensive reorganization of the overall sound system does not occur.

On the other hand, when treatment began with sounds ranked at the
opposite end of the continuum, "least" knowledge, children learned treated
sounds; in addition, other untreated sounds ranked higher on the knowledge
continuum were also learnni. For example, wher treatment began with sounds
ranked low on the Lrntinuum at Type 6 knowledge, changes occurred in
production of these sounds; production of other sounds ranked higher on the
knowledge contiluum at Type 2 or Type 3 knowledge also improved. Thus, when
treatment begins with "least" knowledge, interrurcion of a child's error
pattern is extensive; widespread reorganization of the overall sound system
occurs.

These research findings, while preliminary in nature, suggest that
treatment should begin with sounds ranked at "least" knowledge in order to
induce the greatest interruption in a child's error pattern. A treatment
program beginnir3 at the end of the continuum labelled "least" knowledge will
be more effective than a program beginning at "most" knowledge.

Clinical Applications of Productive Phonological Knowledge

To illustree how the assessment of productive phonological knowledge can
be used in the clinic, the sound systems of two children have been analyzed.
The two children were Annie, age 4 years, 6 months, and Clinton, age 4 years,
4 months. The children were considered to be functional misarticulators,



producing several speech sounds in error from different sound classes with no

known organic cause. Both children had normal hearing and auditory
discrimination skills, were of normal intelligence, and were from monolingual

English-speaking homes. The sound systems of these children, therefore, were
particularly well-suited for the assessment of productive phonological

knowledge. The assessment of productive phonological knowledge may be

inappropriate in cases of children displaying only one or two sounds in error

or errors of distortion. Moreover, the disordered sound systems of these

children were not unusual or atypical, but rather, represent the types of

errored sound systems that clinicians may frequently encounter in the clinic.

The analyses of each child's sound system follow the four steps in

assessing productive phonological knowledge. Included in each child's

analysis is a description of the type of phonological knowledge displayed for

each class of target sounds, a continuum of productive phonological knowledge,

and suitable target sounds for treatment. (It will be helpful for the reacb.lr

to refer to Table 1 and Figure 1 throughout the discussion.)

Annie's Sound SZstem

A representative sample of Annie's speech was obtained by having her tell

stories about pictures in a book and by having her name common pictures and
items wording to the citation form procedure developed by Gierut (1985).

The speech sample was phonetically transcribed and glossed and this sample

served as the data base for assessing Annie's phonological knowledge.

Annie's phonetic inventory was relatively complet_> compared to the adult

target and included the sounds:

m n 3
p b t d k 7

f v

w
1

t5 14.4

3

Nasals. Annie accurately produced Im,n,1 in all relevant word positions

and for alt target morphemes, indicative of Type 1 knowledge of these sounds.

Stops. Annie accurately produced the stops [p,b,d] relative to the adult

in all word positions and for all morphemes. She demonstrated Type 1

phonological knowledge of these sounds.

Annie also produced the alveolar stop [t] in all word positions; however,

for some morphemes, [t] alternated with either glottal stop or null in the

word-final position. To illustrate, [t] was produced in alternation with a

glottal stop in production of the morphemes "but" [bat] [ba7] and "got"

[dat] [dal; [t] was produced in alternation with null in production of the

morphemes "not" [flat] [na] and "put" [gut] [pu]. (The symbol "-"

indicates an alternating production.) Notice, in these examples, that [tJ was

produced in final position, but that production of this sound varied with

either a glottal stop or null. Annie was credited with phonological knowledge

of [t], but to account for the observed variation, optional rules of

word-final glottalization and word-final deletion applied. This is Type 2

phonological knowledge.



Annie's phonetic inventory included the velar stop [k] but this sound was
only produced in the morpheme "ok." She never produced [klg] in any other
morphemes or in any word positions. lk,g1 were always in error relative to
the adu..1.t, being produced as lt,d1 instead. Annie exhibited Type 6
phonological knowledge of [k,g].

Notice that Annie displayed several different types of phonological
knowledge of target stops: Type 1 knowledge of [p,b], Type 2 knowledge of
[t,d], and Type 6 knowledge of [k,g]. Of these sounds, Annie had relatively
less knowledge of velar stops compared with bilabial or alveolar stops.

Fricatives. Annie produced the fricatives it,v03,11 correctly relative
Lo the adult in all word positions and for all morphemes. She displayed Type
1 knowledge of these sounds. Annie never produced [s,z,S] in any position or
for any morphemes. These fricatives were always produced in error and were
not in Annie's phonetic or phonemic inventories. Annie exhibited Type 6
knowledge of these sounds.

Affricates and Glides. Annie displayed Type 1 knowledge of [t5,d3] and
[w,j,h], producTiii these sounds correctly in all word positions and for all
morphemes.

Liquids. The liquid [1] was accurately produced in all word positions,
but only for some target [1] morphemes. Other target [1] morphemes were
consistently produced in error, indicatiNve of Type 3 phonological knowledge.
'-se liquid [r] was produced as a distortion. In this assessment framework,
e., ortions iillicate that a child's phonological knowledge is comparable to

lult target. Therefore, Annie was credited with Type 1 knowledge of [r].

Annie's productive phonological knowledge of the sound system was then
ranked on a continuum ranging from "most" (Type 1 knowledge) to "least"
knowledge (Type 6 knowledge). The continuum of knowledge for this child is
presented in Figure 2. Notice that all of the sounds for which Annie
displayed Type 1 knowledge, i.e., [m,n,D,p,b,d,f,v,0,1,t5,13,w,j,h,r], were
ranked at the top of the continuum. Ranked next, at Type 2 knowledge, was the
target [t]; production of this sound was affected by optional phonological
rules. The liquid [1] was ranked at Type 3 knowledge since Annie produced
this sound for some, but not all, target morphemes. Annie did not display
Type 4 or Type 5 kno,qedge of target sounds. Ranked lowest on the knowledge
continuum were the sounds [k,g,s,z,S] at Type 6 knowledge; these sounds were
always in error relative to the adult.

Insert Figure 2 about here

In planning a remediation program for Annie, treatment goals and sounds
can be systematically selected directly from the knowledge continuum. Three
possible treatment goals were identified: (1) to eliminate the application of
optional rules affecting production of [t], (2) to stabilize inconsistent
productions of [1], and (3) to eliminate the inventory constraint affecting
production of [k,g,s,z,5]. Potential treatment sounds would, thus, include:
(1) production of [t] in final position of words, (2) production of [1] in
thoe morphemes consistently produced in error, and (3) production of
[k,g,s,z,S] in all word positions. While treatment can be initiated at any
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point along the knowledge continuum, it is recommended that treatment begin
with those sounds ranked lowest on tha knowledge continuum at "least"
knowledge. Therefore, for Annie, treatment would begin with production of
[k,g,s,z,5]; these targets may be treated either singly or in combination.
Starting treatment with these sounds should result in widespread
reorganization of Annie's sound system.

Clinton's Sound System

Clinton's phonetic inventory included the sounds:

m n D
p b t d k g '

fv sz
is dz t$ cy
... "

w j h

1 r

Nasals. Clinton correctly produced toe nasals [m,n,1] for all morphemes.
These sounds were never in error relative to the ault target. Clinton
exhibited Type 1 knowledge of this zlass of sounds.

Stops. Clinton accurately produced the stops [p,b,t,d,k,g] in all word
positions and for all target morphemes. Clinton, therefore, demonstrated Type
1 phonological knowledge of target stops.

Fricatives. The only fricatives produced correctly relative to the adult
target were [s,z]. Clinton accurately used [s,z] in all word positions and
for all target morphemes, indicative of Type 1 phonological knowledge.

The fricatives [9,i,5], on the other hand, were never produced correctly
in any position or for any target morohemes. These sounds were always in
error relative to the adult and were not ia Clinton's phonetic or phonemic
inventories. Production of these sounds reflected Type 6 phonological
knowledge.

Clinton's use of the fricatives [f,v] was somewhat more complicated. In
word - initi -l. position, [f] was used correctly for all target morphemes. [v],
however, never occurred word-initially; [b] was used instead. Production of
[v] was restricted from word-initial position indicating Type 4 phonological
knowledge.

In post-vocalic positions, [f] was produced in alternation with [s], and
[v] was produced in alternation with [z]. Clinton produced target [f] in two
ways, either as [f] or as [s]; similarly, target [v] was produced either as
[v] or as [z]. Production of either [f,v] or [s,z] was associated with
phonetic context. Notice, in the examples that follow, that Clinton produced
lf,v] in different ways depending on whether the sound was in the intervocalic
or the final position of a morpheme.



[kawfIn] [10s] "coughing"-"cough"
[jaefrn] [jaes] "laughing"-"laugh"
[nar.f..] [nars] "knifey"-"knife"

[wevx.n] twez] "waving"-"wave"
Isevin] [sez] "shaving"-"shave"
EdwaivinJ [dwarz] "driving"-"drive"

Given these variable productions, what can we assess about Clinton's
phonological knowledge? What did Clinton know about these particular
morphemes and, more generally, what did he know about post - vocalic targets
[f,v]? To answer these questions, consider, as an example, Clinton's
production of the morphemes "cough" and "wave." The target fricatives [f,v]
were produced (correctly) in these morphemes as [k5f] and [wev], respectively;
correct productions of [f,v1 occurred in the intervocalic position when the
present progressive suffix was added. The same exact morphemes were produced
(incorrectly) as [os] and [wez], respectively; incorrect productions of [f,v]
occurred in the word-final posizion when the present progressive suffix was
not added. Given these morphophonemic alternations, we will credit Clinton
with phonological knowledge of post-vocalic targets [f,v] since he did produce
these sounds correctly in the morphemes "cough" and "wave." However, since the
variation between [f,s] and [v,z] was systematic and limited to a particular
context, a phonological rule applied. This rule altered productions of [f,v]
to [stz] In word-final position. The rule was obligatory since it applied to
all target [f,v] morphemes. Thus, Clinton exhibited Type 2 knowledge of
[f,v].

Notice that Clinton exhibited several different types of phonological
knowledge of target fricatives, i.e., Type 1 knowledge of [s,z], Type 2
knowledge of [f,v], Type 4 knowledge of word-initial [v], and Type 6 knowledge
of WS'S].

Affricates. Clinton exhibited Type 1 knowledge of the affricates
It3,c131. These sounds were produced Correctly relative to the adult target in
initial position and as [t,p,c1F] in post-vocalic positions for all morphemes.
(Remember that distortions indicate that a child's phonological knowledge is
comparable to the adult.)

Glides. The sounds [w,j,hJ were produced accurately in all word
positIETli-and for all target morphemes, reflecting Type 1 phonological
knowledge.

Liquids. Clinton never produced targets [1,r] word-initially, but these
sounds were produced accurately in post-vocalic positions. Type 4 knowledge
accounted for the occurrence of liquids in some, but not all, word positions.

In addition to Type 4 knowledge of liquids, a phonological rule affected
Clinton's production of post-vocalic [r]. Target [r] was produced either as
[r] or as [w]. Prod4ction of [r] or [w] depended upon the phonetic context;
[r] was produced in word-final position and [w] was produced in intervocalic
position for the same exact morpheme. The examples that follow illustrate
morphophonemic alternations between In and [w].

[dlar] [di:wi] "deer"-"deery"
ItStr] 1 tSEwil "chair"-"chairy"
[star] [st3wij "star"-"starry"
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Clinton, therefore, was credited with phonological knowledge of post-vocalic
target [r], but an cbligatory rule altered production of :r] to [w] in the
intervocalic position. The rule was obligatory since all post-vocalic target
[r] morphemes were affected. This is Type 2 phonological knowledge.

Having assessed Clinton's productive phonological knowledge, a continuum
of knowledge was developed and is displayed in Figure 3.

Insert Figure 3 about here

Notice that the sounds [m,n,n,p,b,t,d,k,g,s,z,q,07,w,j,h] were al'.
ranked at the top of the continuum at "most" phonological-knowledge. Clinton
exhibited Type 1 knowledge of these sounds, with accurate productions relative
to the adult observed in all word positions and for all morphemes. Ranked
next on the knowledge continuum were the sounds [f,v,r]; Clinton exhibited
Type 2 knowledge of these sounds with phonological rules applying
obligatorily. Next on the continuum, at Type 4 knowledge, were the sounds
[v,l,r]. Clinton accurately produced these sounds in some, but not all, word
positions. Finally, ranked lowest on the knowledge continuum were the sounds
[9,I6]. These sounds were never produced in any position and were always in
error relative to the adult. Clinton displayed Type 6 knowledge of these
sounds. Notice that Clinton did not display Type 3 or Type 5 phonological
knowledge.

Appropriate treatment goals and target sounds can be identified directly
from Clinton's continuum of knowledge. Referring to Figure 3, three treatment
goals were identified. One goal of treatment was to eliminate obligatory
phonological rules (Type 2 knowledge) by targeting the sounds [f,v,r]. A
second treatment goal was to eliminate positional constraints (Type 4
knowledge), targeting [v,l,rJ. A third treatment goal was to eliminate
inventory constraints; appropriate treatment targets in this case were
[ 0,I,5].

It is reasonable to implement a treatment program along any point on
Clinton's continuum. As with Annie, however, the preferred remediation plan
for Clinton would begin treatment at "least" knowledge, teaching the sounds
(0,1,S]. We would expect changes to occur not only in Clinton's production of
these targets, but also, in other untreated sounds ranked higher on his
knowledge continuum.

Conclusion

The evaluation of a child's productive phonological knowledge has direct
applications for the three stage clinical process of
assessment-diagnosis-treatment. Evaluating a child's phonological knowledge
requires obtaining a representative speech sample, determining types of
phonological knowledge, ranking phonological knowledge on a continuum, and
selecting target sounds for treatment. As in other assessment frameworks, a
child's pattern of error production is _dentified; then, through treatment,
the pattern of error 4s interrupted. This framework for assessing
phonological knowledge is different from other procedures, however, in that it
examines a child's overall sound system, not just limited or isolated errors.
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Also, this framework evaluates both a child's performance and competence of
the sound system. Moreover, this framework has direct implications for
treatment. Treatment goals and sounds are organized and selected in a
principled manner based on a child's knowledge, and predictions about learning
during treatment are generated. Thus, the framework for evaluating a child's
productive phonological knowledge not only meets, but extends, the basic
features of an adequate assessment procedure.

At present, howevek, several important questions about this assessment
procedure remain unanswered (cf. Gierut, 1986). First, it is not known
whether the assessment of productive phonological knowledge provides a more
thorough evaluation or a more accurate diagnosis of speech sound disorders in
children. Perhaps, all pattern analyses, while adopting different theoretical
frameworks, are essentially equivalent in the assessment of speech sound
disorders. Or, possibly, certain pattern analyses may be more appropriate for
specific types of speech sound disorders. Second, it is not clear whether the
assessment of productive phonological knowledge necessitates different models
or strategies of treatment. Thus far, only established treatment procedures,
e.g., minimal pair contrast treatment, have been implemented following
assessments of phonological knowledge (cf. Gierut, 1985; Gierut et al., 1984;
Gierut & Elbert, 1985; Gierut et al., in review). Third, it has yet to be
determined whether the assessment of productive phonological knovledge is
relevant to descriptions of developing sound systems. Possibly, the construct
of productive phonological knowledge will provide new insights into normal
phonological development, as well as phonological disorders. These, and other
questions, remain open for future empirical study.
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Endnotes

1 Generative phonological descriptions of a child's sound system rely on

production data. It has also been suggested (cf. Barton, 1978) that speech

perception or discrimination data may provide information about a child's

phonological knowledge. There are, however, some inherent difficulties in

using data from speech perception or discrimination to evaluate phonological

knowledge. For example, Locke (1980a, 1980b) has reported that it is

difficult to accurately and adequately assess a child's perceptual skills.

Also, the role of perception or discrimination in learning sounds during

treatment has not been clearly established (Williams & McReynolds, 1975;

Winitz, 1975). Furthermore, recent evidence from primary languages, normal

language development, speech disorders, and second language learning suggests

that speech production and speech perception may be independent processes

(Dinnsen, 1985; Straight, 1980).

2 In the literature on normal phonological development and phonological

disorders, there has been some debate over the nature of children's lexical

representations, either unique or adult-like (cf. Maxwell, 1984 for review).

Within the generative approach to analysis, it has been demonstrated that
phonologically disordered children may or may not evidence adult-like lexical

representations (Dinnsen, 1984; Maxwell, 1981). For example, a child who

omits final stops may evidence adult-like knowledge of these target sounds if

he or she produces morphophonemically related forms with final stops, e.g.,

[da] "dog" [dagi] "doggie" or [p I] "pig" [pig'] "piggie." This child

lexically represents morphemes in a manner comparable to the adult. Another

child displaying a similar pattern of error, however, may not evidence

adult-like knowledge of target stops if morphophonemically related forms do

not alternate, e.g., [da] "dog" [dai] "doggie" or [pL] "pig" [pil]

"piggie." This child lexically represents morphemes in a manner quite

different from the adult.
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Abstract

Clinical assessment is a three component process involving
characterization of the problem, selection of treatment targets, and
projection about learning. In the assessment of functional speech sound

disorders, several different approaches have been used, the most recent being
generative phonological analysis. This paper examines the claims of

generative phonology underscoring the differences between various analysis
procedures. The generative approach is shown to be empirically different by

characterizing speech sound disorders in terms of a child's productive
phonological knowledge, by selecting treatment sounds based on a continuum of

productive phonological knowledge, and by predicting system-wide changes in
the sound system. The clinical importance of these differences is discussed.



Generative Phonology and Error Pattern Analyses:

Empirical Claims and Differences

Central to the clinical management of functional speech disorders is an
accurate and thorough assessment of the problem. To a large extent, the
relative success or failure of an intervention program depends on assessment;
treatment can only be as effective as the evaluation is accurate. In
assessment, a clinician establishes what a speaker knows about the target
language and identifies what remains to be learned during intervention. A
clinician also recommends appropriate treatment goals and plans an
intervention program that promotes maximal learning. Assessment can,
therefore, be considered a three component process involving: (1)
characterization of the problem, (2) selection of treatment goals, and (3)
projection about learning.

In the clinical management of functional speech sound disorders in
children, in particular, there have been several frameworks, or models of
assessment that have been adopted. These include various error patternanalyses such as place-voice-manner analysis (Turton, 1973; Weber, 1970),
distinctive feature analysis (McReynolds & Engmann, 1975; Singh, 1976), and
phonological process analysis (Hodson, 1980; Ingram, 1981; Shriberg &
Kwiatkowski, 1980; Weiner, 1979). More recently, standard generativephonology has been introduced as an alternate framework for error pattern
analysis (cf. Elbert, Dinnsen, & Weismer).1 The focus of this paper is tocompare the empirical claims of generative phonology with those of the other
non-generative pattern analyses.

Non-generative pattern analyses

Place-voice-manner analysis, distinctive feature analysis, and
phonological process analysis each corresponds, historically, to a shift in
the clinical approach to analyzing sound errors. It is not clear, however,whether the different frameworks uniquely distinguish themselves in terms of
the three components in the assessment process.

For ins.ance, in characterization, place-voice-manner analysis describes
the pattern underlying a child's error productions using a three-way
articulatory phonetics classification system. Sound errors are not viewed asrandom and isolated, but are considered systematic and consistent. Likewise,distinctive feature analysis emphasizes patterns of production. Thisframework applies concepts from linguistic theory to describe the regularity
of children's errors; it also borrows principles from learning theory in the
treatment of feature-related sounds. Phonological process analysis similarly
identifies error patterns using elements of linguistic theory. Within this
framework, error patterns are characterized as phonological rules that
describe systematic correspondences between a child's production and an adult
target. The focus of treatment, then, is on the elimination of phonological
processes, not on the acquisition of specific sounds or features as in other
pattern analyses. While each model of assessment offers a variation in the
approach to characterizing sound errors, these differences may only represent
terminological shifts (see Elbert, 1985; Locke, 1983; McReynolds & Elbert,
1981a; Shelton & McReynolds, 1979; Shriberg & Kwiatkowski, 1982a for
discussion).



Also, the selection of target sounds for treatment is essentially
equivalent across the different analyses. Elbert and Gierut (1986), for
example, analyzed the speech of a phonologically disordered child, A.B.,
within the framework of three pattern analyses, place-voice-manner,
distinctive feature, and phonological process analysis. A.B.'s pattern of
error was characterized as involving manner of production (place-voice-manner
analysis), continuant and strident features (distinctive feature analysis),
and the process of stopping (phonological process analysis). In each case,
however, the recommended goal of treatment was production of fricatives. The
approach to characterizing A.B.'s error pattern was different across the
various frameworks, but the preferred goal of treatment was identical.

Finally, predictions about learning are comparable across different
models of assessment. Intervention programs are typically structured to
interrupt the pattern underlying a child's productions by promoting a maximum
amount of learning (i.e., generalization) following a minimum amount of
treatment. Various types o generalization learning have been consistently
observed both within and across different pattern analyses, e.g.,
generalization to untreated word positions (Elbert & McReynolds, 1975, 1978;
McReynolds, 1972), to untreated sounds within a class (Elbert, Shelton, &
Arndt, 1967; Costello & Onstine, 1976; Weiner, 1981), to linguistic units of
increasing complexity (McLean, 1970; Wright, Shelton, Arndt, 1969), and to new
listeners and settings (Costello & Bosler, 1976; Olswang & Bain, 1985).
Generalization learning appears to be relatively independent of the analysis
procedure that is used. Regardless of the assessment framework, a clinician
can project the kind of generalization that will occur following treatment, as
well as how generalization will affect the pattern of error (see Elbert &

Gierut, 1986, for discussion).

Generative pattern analysis

As an initial overview, generative phonology appears to be similar to

existing analyses in that it describes and interrupts a child's pattern of
production using principles of theoretical linguistics and learning theory.

Generative phonology seems to be different in that it describes a child's
sound system independent of the adult target. This approach --ot only
identifies surface-level errors, but also describes a child's underlying
knowledge of the sound system. Generative phonology recommends target sounds,
structures treatment programs, and predicts learning on the basis of

underlying or productive phonological knowledge.

The generative approach to analysis appears to be 'Imparison to
other models of assessment. It is necessary, hL mpiLically
determine whether generative phonology is, in fact, ditLe- existing
pattern analyses. Does the generative approach to assessmeL add to the
characterization and treatment of functional speech sound disorders? Or, does
the generative approach to assessment represent no more than just a relabeling
of surface erroL patterns? At the very least, the generative approach should
provide information comparable to existing analyses about the nature of speech
sound disorders. At best, the generative approach should add to and extend
the current state of information about this disorder. Thus, the purpose of
this paper is to evaluate the generative approach to assessment with respect
to other types of pattern analyses. The empirical claims of the generative
approach are discussed relative to differences in the three components in the

assessment process: characterization of the problem, selection of treatment
sounds, and predictions about learning during treatment.



Characterization of the Problem

The initial step in any model of assessment involves identifying,
describing, and characterizing a child's pattern of error. The procedures for
the characterization of error patterns within a generative framework have been
described in detail elsewhere (Dinnsen, 1984; Elbert & Gierut, 1986; Gierut,
19893, in press; Gierut, Elbert, & Dinnsen, in review; Maxwell & Rockman,
1984) and are only summarized herein. Briefly, generative phonology
characterizes a child's production pattern by evaluating both the competence
and performance (cf. Foss & Hakes, 1978) of the child's sound system. The
assessment of performance provides a surface level evaluation of a child's
sound system by identifying: (1) those sounds that are produced regardless if
correct (i.e., phonetic inventory), (2) those sounds that are used
contrastively to signal meaning differences (i.e., phonemic inventory), and
(3) the distribution of sounds by word position and morphemes. The evaluation
of performance establishes the structure of sounds in a child's sound system.
This aspect of generative analysis is similar to other pattern analyses. The
assessment of competence, however, is particular to generative analysis.
Here, the underlying use and function of sounds is identified. The assessment
of competence provides a characterization of a child's lexical, or underlying
representation of morphemes, in addition to the use of phonological rules.
Lexical representations of morphemes refer to the idiosyncratic, unpredictable
properties of productive language, learned and stored in a speaker's lexicon;
phonological rules describe predictable variations in production and associate
sound to meaning (see Dinnsen, 1984; Gierut, in press, for more detail).

Thus, the assessment of performance provides information about the
inventory and distribution of sounds; the assessment of competence provides
information about unpredictable (i.e., lexical representations of morphemes)
and predictable (i.e., phonological rules) aspects of productive language.
When taken together, these components define a child's productive phonological
knowledge (Dinnsen & Elbert, 1984) of the sound system.

Certain types of data tire required to evaluate productive phonological
knowledge.2 As in other pattern analyses, the generative framework examines
production of all target English sounds in each of three word positions
(initial, medial, and final) by sampling both connected speech and
spontaneously produced citation forms. The generative approach also samples
each sound in each word position in more than one morpheme and further samples
each morpheme more than one time. Unique to the data base. however, is the
elicitation of potential morphophonemic alternations (e.g., "pig" - "piggy,"
"kiss" "kissing"). Morphophonemic alternations illustrate systematic
changes in production of a morpheme when placed in different phonological
contexts and thereby provide evidence for how sounds function in that context.
Morphophonemic alternations also provide information about a child's lexical
representation of morphemes and the use of phonological rules.

The evaluation of productive phonological knowledge also involves
classifying a child's use of each target sound as one of six different
knowledge types, as in Tables 1 and 2 (Gierut, 1985b, in press; Gierut,
Elbert, & Dinnsen, 1985; Gierut et al., in review). The six knowledge types
derive from the three factors above asscciated with competence and
performance: (1) the nature of a child's lexical representation of morphemes,
either adult-like or nona,!,tit-like; (2) the breadth of the distribution of
sounds, either to some or all word positions, or to some or all morphemes; and
(3) a child's use of phonological rules.
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Insert Tables 1 and 2 about here

The knowledge types describe the full range of consistency and
variability observed in a child's production of sounds. Notice that sounds
always produced correctly relative to the (adult) target are characterized as
type 1 knowledge; sounds always produced incorrectly are characterized as type
6 knowledge. Other systematic variations in sound production are
characterized as knowledge types 2 through 5. This systematic
characterization of variable productions based upon factors associated with
competence and performance is another unique component of generative analysis.
Other pattern analyses may also identify variation in sound production through
measures such as sound production tasks (Elbert et al., 1967) or deep tests
(McDonald, 1964). In these cases, however, the source of inconsistent
productions (e.g., nonadult-like lexical representati577some morphemes) is
not identified. Also, distinctions among different types of inconsistency
(e.g., by morpheme, or word position, or across repetitions) are not noted.
Finally, the systematicity of variable productions is not described with
respect to particular phonological contexts cr morphemes. For example,
Camarata and Gandour (1984) observed systematic changes in a child's
inconsistent production of alveolar and velar stops, but only when these
sounds were examined in phonologically relevant contexts. Similarly, Fey and
Stalker (in press) identified systematic changes in a child's inconsistent
production of sounds in specific morphemes, but only after considering
morphophonemic alternations.

To summarize, generative analysis is different from other pattern
analyses in several ways. First, a child's pattern of error is assessed by
examining competence and performance of the sound system. Second, the

evaluation of competence and performance requires that not only the production
of sounds at a phonetic level, but also the function of sounds at a
phonological level, is evaluated. Third, the data base for this analysis
includes elicitation of potential morphophonemic alternations. Finally, a

child's production of each target sound is characterized as a specific type of
productive phonological knowledge relative to the adult target. Both the
characterization of a child's production pattern and the procedures of
generative analysis are different from other analyses. Further differences
emerge when the selection of target sounds and predictions about learning are
considered, as will be seen below.

Selection of Treatment Sounds

The second component in the assessment process involves selecting target
sounds for treatment. Many different selection factors are typically taken
into account in pattern analyses, e.g., age of acquisition of target sounds,
frequency of errors, stimulability, overall intelligibility. Any combination
of these, or other factors may enter into target sound selection. However, to
date, there are no avi lable guidelines for the optimal selection of treatment
sounds. It has not yet been determined whether selection factors are of equal
weight in pattern analyses; perhaps, some factors are more important than
others in cases of particular children or specific error types.
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KNOWLEDGE
TYPES

LEXICAL
REPRESENTATION

BREADTH OF DISTRIBUTION

Positions Morphemes

PHONOLOGICAL RULE
ACCOUNT

1 Adult-like All All None

2 Adult-like All All Optional or
obligatory
rules

3 Adult-like All Some Fossilized
forms

4 Adult-like Some All Positional
constraint

5 Adult-like Some Some Combination
of Types 3
and 4

6 Nonadult-like All All Inventory
constraint

Table 1. Types of productive phonological knowledge displayed by
phonologically disordered children (from Gierut, 1985b).



KNOWLEDGE
TYPE

DESCRIPTION EXAMPLE

A child displaying Type 1 knowledge of
target (sj would produce this sound
correctly in all word positions and for
all morphemes; (sj would never be
produced incorrectly.

(sAn) "sun"
[sup] "soup"
[mes41 "messy"
[mzszoj "missing"
[mzsj "miss"

2 A child displaying Type 2 knowledge of (Mn) "sun"
target (s) would produce this sound [supj "soup"
correctly for all morphemes and positions. (mesij "messy"
However, a phonological rule would apply (a2sj "ice"
to account for observed alternations
between, for example, (s) and (0 in BUT: (mu) (mu) "miss"
morpheue-final position. (kis] (kit) "kiss"

3 A child displaying Type 3 knowledge of
target (sj would produce this sound
correctly in all positions. However,
certain morphemes that were presumably
acquired early and acquired incorrectly
(i.e., "fossilized") would always be
produced in error.

4 A child displaying Type 4 knowledge of
target (sj would produce this sound
correctly for all morphemes in, for
example, initial position. However,
production of (s1 would be incorrect for
all morphemes in medial and final
positions.

(seri) "sun"
(mesij "messy"
(mss) "miss"

BUT: [non,' "Santa"
[vu) "juice"

(sin) "sun"
(sup) "soup"

BUT: [mttij "messy"
[mitioj "missing"
[mat) "miss"
(at) "kiss"

5 A child displaying Type 5 knowledge of [sAnj
target [s] would produce this sound [sup]
correctly in, for example, initial
position. However, only some morphemes
in this position would be produced
correctly. All (s) morphemes in
post-vocalic positions would be produced
incorrectly.

6 A child displaying Type 6 knowledge of
target (s) would produce this sound
incorrectly in all word positions and
for all morphemes; (3) would never be
produced correctly.

"sun"
"soup"

BUT: (top) "soap"
(tak) "sock"
[mitt] "messy"
[kit) "kiss"

(tAn) "sun"

(tup) "soup"

[mstzli "missing"
"miss"

(kit) "kiss"

Table 2. Description and examples of six types of productive
phonological knowledge (from Gierut et al., in review).
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Also, within models of assessment, there is little agreement on the
selection metric that should be used. Within the phonological process
approach, for example, it has been recommended that the treatment of processes
should be based on the frequency of process use (Hodson, 1980; Ingram, 1981).
It has also been suggested that the selection of processes to be treated
should be based on developmental sequence; i.e. those phonological p ,cesses
first eliminated by normally developing children should be treated first
(Edwards & Bernhardt, 1973; Ingram, 1981; Shriberg & Kwiatkowski, 1980;
Weiner, 1979). Another recommendation has been that phonological processes
which apply optionally, or processes which are used inconsistently, should be
targeted for treatment initially (Edwards & Bernhardt, 1973).

Selecting treatment sounds becomes a difficult clinical decision, then,
given the lack of criteria for sound selection and the range of factors
considered within particular pattern analyses. Consequently, the selection of
target sounds may be based to a large degree on a clinician's subjective
judgment.

Alternate criteria for selecting treatment targets are used in the
generative framework. Generative phonology does not necessarily exclude such
factors as age of acquisition, stimulability, or frequency of errors; however,
these considerations are auxiliary. Because generative phonology was not
designed specifically for use in speech-language pathology as a means of
assessing children's sound errors, typically used selection factors are less
relevant. In the generative framework, treatment sounds are selected on the
basis of a child's productive phonological knowledge and a hierarchical
relationship among sounds (Gierut, 1985b, in press; Gierut et al., 1985).
Specifically, a child's productive phonological knowledge is arranged on a
continuum ranging from "most" to "least" knowledge of target sounds. Sounds
classed as type 1 knowledge are ranked at the end of the continuum labeled
"most" knowledge; sounds classed as type 6 knowledge are ranked at thn
opposite end of the continuum, "least" knowledge. Other sounds classified al.

one of the intermediate knowledge types 2 through 5 are ranker' accordingly.
Selection of target sounds for treatment then derives directly from this
continuum. Targets are chosen from either end of the continuum, with
treatment proceeding sequentially from "most" to "least" knowledge or from
"least" to "most" knowledge. It should be noted, however, that the entire
knowledge continuum does need not be treated in order for a child's error
pattern to be interrupted. Experimental data (Gie-ut, 1985b) on this point
suggests that treatment can be limited to a few target sounds at either end of
the continuum. Thus, the selection of treatment sounds within generative
phonology is based upon a hierarchical relationship that emerges among the
different types of productive phonological knowledge that a child displays
about target sounds.

The selection of treatment targets within the generative framework is, in
principle, unique. It is fair to ask, however, whether the knowledge
continuum corresponds in any way to selection factors considered in other
pattern analyses. For example, does the knowledge continuum reflect a
developmental sequence of sound acquisition, or frequency of errors? If this
were the case, the knowledge continuum would only provide an alternate but
comparable means of selecting treatment sounds. If, on the other hand, a
correspondence were not observed among selection factors, then the knowledge
continuum would represent a novel method of choosing treatment sounds.

To evaluate this potential equivalence, the knowledge continuum is
compared to selection factors used in other pattern analyses. Continua of
knowledge from six different children are presented as examples. These
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continua were selected as representative of those reported elsewhere (Gierut,

1985a, 1/85b). The continua were vll developed in the same way, using both

spontaneous connected speech and citation form samples, and the procedures

described for classifying and ranking productive phonological knowledge

(Gierut, 1985b, in press; Gierut et al., 1985). Mean point-to-point inter-
and intrajudge transcription reliability reported on these samples (Gierut,

1985b; G.erut et al., in review) was 98% and 93% agreement, respectively.

Continuum of knowledge as an index of acquisition sequence

Age of acquisition of sounos is one factor often considered in selecting

treatment targets. Sounds that should be, but are not yet mastered (according
to developmental norms) by a child of a given age may be chosen for treatment.

Perhaps, the knowledge continuum corresponds to age of acquisition, with
sounds mastered early ranked at "most" knowledge and sounds mastered later

ranked at "least" knowledge.

The knowledge continua for two children, ages 4 years, 6 months (Child 1)

and 4 years, 4 months (Child 2) are presented in Figure 1. Comparing these

data to developmental norms (Prather, Hedrick, & Korn, 1975), it can be seen

that the knowledge continua do not directly correspond to age of acquisition.

First, sounds typically mastered early were ranked at "least" knowledge.

Child 1, for example, demonstrated "least" knowledge of [k,g], sounds

generally acquired by age 3. Second, sounds mastered late were ranked at

"most" !:_nowledge. Both Child 1 and 2 demonstrated relatively "most" knowledge
of targets [v,t5,d5,r], mastered beyond age 4. Third, sounds mastered at

approximately the same age were ranked at opposite ends of the knowledge

continuum. The sounds [b,g,f] are all typically acquired by age 3; for Child

1, [b,f] were ranked at "most" knowledge, whereas [gi was ranked at "least"

knowledge. Similarly, [S,tS ,43] are all mastered at approximately the same

age, but for Child 2, [1013] were ranked at "most" knowledge and [S] was
ranked at "least" knowledge. Finally, as might be expected, some

early-mastered sounds (e.g., nasals) were ranked at "most" knowledge and other

late-mastered sounds (e.g., [1,5]) were ranked at "least" knowledge for both

children. Thus, the data from these two children illustrate that the

knowledge continuum does not directly correspond to age of sound acquisition.

A knowledge continuum is not, therefore, a notational variant of an age of

acquisition hierarchy.

Insert Figure 1 about here

Continuum of knowledge as an index of gltatilative measures of sound accuracy

Quantitative measures, s'ch as baseline scores or percentages of accurate

prodlietion, are other factors considered in sound selection. Sounds

frequently and consistently in error are sometimes chosen for treatment, since

remediation of these sounds significantly interrupts an error pattern (cf.

Bernthal & Bankson, 1981). On the other hand, sounds infrequently and

inconsistently in error have also been selected for treatment (cf. Bernthal &

Bankson, 1981). The intent, here, is to have a child achieve initial success

before advancing to more frequent errors and, perhaps, more difficult sounds.

It may be tempting to think of the knowledge continuum as corresponding to

quantitative measures of accurate sound production. Sounds ranked at "most"

knowledge may be indicative of a high percentage of accuracy, whereas sounds
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Figure 1. The knowledge continua for Children 1 and 2.



ranked at "least" knowledge may reflect a low percentage of accuracy. To

evaluate this hypothesis, the knowledge continuum is compared to two different

quantitative measures, i.e. baseline scores and percentage of consonants

correct (PCC) (Shriberg & Kwiatkowski, 1982b).

Baseline scores. Baseline scores have been used as one measure of a

child's productive phonological knowledge. Elbert, Dinnsen, and Powell

(1984), for instance, equated baseline performance with productive

phonological knowledge to distinguish between "phonologically known" versus

"phonologically unknown" sounds. In this study, generative analyses of

children's sound systems were not developed; rather, an equivalence

relationship was established between baseline scores and productive

phonological knowledge.3 Given that generative analyses are qualitative

and descriptive, and rely on specific types of data, i.e., morphophonemic

alternations, it is highly likely that baseline scores do not, in all cases,

accurately reflect productive phonological knowledge as ranked on a continuum.

Table 3 presents the ranking of sounds on a knowledge continuum for three

children, in addition to the baseline scores obtained for these same sounds

prior to treatment. The relative ranking of sounds on the knowledge continua

was established independent of baseline scores. As described above, the

knowledge continua were developed on the basis of descriptive generative

analyses; baseline scores represent the percentage of accurate sound

production on a probe measure consisting of spontaneously produced citation

forms (Gierut, 1985b).

Insert Table 3 about here

Notice, first, that baseline scores corresponded to the relative ranking

of sounds on the knowledge continuum in the case of Child 3. Baseline data

accurately reflected Child 3's productive phonological knowledge. The sound

[t], ranked at "most" knowledge, was also produced with the greatest accuracy

(i.e., 60%); likewise, [s], ranked at "least" knowledge, was produced with the

least accuracy (i.e., 0%). The hierarchical relationship among sounds on the

continuum was reflected in Child 3's performance in baseline. This

observation is consistent with Elbert et al. (1984).

Baseline scores, however, did not correspond to qualitative claims about

productive phonological knowledge in the case of Child 4. The ranking of

sounds on this child's continuum, from "most" to "least" knowledge, was [S] ->

(d3] -> [v]. Baseline performance indicated that production of [43) (i.e.,

85%) was more accurate than production of [5] (i.e., 6'%) whi,ch, in turn, was

more accurate than production of [v] (i.e., OX). Hele, baseline scores and

productive phor,)logical knowledge were not equivalent. This mismatch relates

to the type of knowledge that Child 4 displayed for these target sounds. The

generative analysis credited Child 4 with type 3 knowledge of [S), or

adult-like lexical representations in all word positions but only for some

morphemes. Here, the accuracy of [s] production was associated with specific

morphemes. Items sampled on the baseline measure were most likely those

target [5] morphemes that Child 4 represented in a nonadult-like manner;

hence, the lower baseline score. Methodologically, it would be impossible, of

course, to identify all the morphemes that Child 4 represented in an

adult-like versus a nonadult-like way for purposes of constructing and
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CHILD 3
(4;3 years)

CHILD 4
(4;3 years)

CHILD 5
(4;6 years)

PRODUCTIVE PHONOLOGICAL KNOWLEDGE

"Most"

[t]

60%

(Type 2)

[51

45%

(Type 3)

[ s ]

0%

(Type 6)

fcl
:131

[vi

60% 90% 30%

(Type 3) (Type 4) (Type 4)

[k] [s]

or 0%

(Type 6) (Type 6)

IS]

or

(Type 6)

> "Least"

Table 3. Sounds selected for treatment for three c.ildreil as ranked
on a continuum ranging from "most" to "least" knowledge.
Baseline scores obtained prior to treatment for these same
sounds are also reported as percentages of accurate procuction.
The type of productive phonological knowledge each child
displayed for these targets is noted in parentheses.
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obt-ining a representative baseline measure. The accuracy of [cl,v], on the

other hand, was associated with word position. Child 4 demonstrated type 4

knowledge of these sounds, or adult-like lexical representations in some

positions for all morphemes. In this case, it was possible to obtain a
representative baseline measure by sampling specific word positions. For

Child 4, then, a different ranking of sounds on the knowledge continuum would
have resulted if baseline data, rather than generative descriptions, had been

used to establish productive phonological knowledge.

Also, baseline data did not adequately identify differences in productive
phonological knowledge in the case of Child 5. The knowledge continuum
differentiated among Child 5's productive phonological knowledge of [k,s,S];

however, baseline scores for these three sounds were identical at OX accuracy.
This mismatch between baseline scores and the knowledge continuum related to

the nature of the child's lexical representations. Specifically, Child 5

represented target [k] as /t/; the child's lexical representation and the

target sound were both from the same class. Child 1: also represented target
[s] as /t/; the lexical representation and target sound were from different

classes. Child 5 lexically represented [S] as either /q/ or /t/ depending on
the morpheme and word position; e.g., "shoe" /tcu/, "wash" /wot/. Notice

that, for all three targets, Child 5 disp layed nonadult-like lexical

representations, but was credited with subtle C'fferences in knowledge based

on how these sounds were represented; i.e., representations from the same or
different sound class as the target, or representations from one or more than

one sound class. For Child 5, then, baseline data were not as sensitive as

the continuum of knowledge in identifying differences in productive

phonological knowledge of sounds.

One other instance where baseline scores are not equivalent to productive

phonological knowledge is that of a child displaying type 2 knowledge, or the
use of phonological rules (Gierut, 1986). In this case, the generative

analysis credits a child with adult-like knowledge of target sounds, or

relatively "most" knowledge. Baseline scores, however, reflect the inaccurate

production of these target sounds as a result of the application of a

phonological rule. The mismatch results because baseline measures only sample
how sounds are produced, i.e., the correct/incorrect production of sounds;
whereas, generative analysis samples how sounds are represented, distributed,

and function in a child's sound system.

These comparisons illustrate that baseline scores do not accurately or

adequately establish a child's productive phonological knowledge in all

cases.4 Furthermore, these data suggest that treatment sounds selected

from a knowledge continuum would not necessarily be the same as those selected
using baseline scores.

Percentage of consonants correct. Another quantitative measure that has

been described in the literature (Shriberg & Kwiatkowski, 1982b) involves
calculating a percentage of consonants correct (PCC). The PCC metric provides

a measure of the accuracy of a child's production of target English sounds in
each of three word positions based on a connected speech sample. As was

suggested with baseline scores, it may be thought that the continuum of

knowledge is equivalent to PCC values.

Table 4 presents the knowledge continuum and PCC values for Child 6, age

3 years, 7 months. The knowledge continuum and PCC values were established

independently. As described, the knowledge continuum was developed from an

extended convected speech sample and spontaneously produced citation forms

that included morphophonemic alternations. PCC values were calcularcid from a
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3-minute portion of the same connected speech sample (Appendix A) in accord
with PCC procedures (Shriberg & Kwiatkowski, 1982b).

Insert Table 4 about here

First, notice that for both the knowledge continuum and PCC metric, four
divisions or groupings of sounds emerged. The knowledge continuum grouped
sounds according to type of productive phonological knowledge, while the PCC
metric grouped sounds on a scale of severity of involvement. Certain sounds
within these divisions were comparable across the knowledge continuum and PCC
metric. For example, the sounds [m,n,3,k,s,w,nj were clasped as type 1
("most") knowledge and, similarly, as mild Al severity. Also,
if,v,I,S,ti,d3,11 were classed as type 6 ("least") knowledge, or r?verely
involved. This overlap was noted for the categories "most" knowledge/"mild"
involvement and "least" knowledge/"severe" involvement. The overlap, however,
was not all-inclusive. This observation is not surprising given that
knowledge types 1 and 6 define sounds that are consistently produced correctly
or incorrectly, relative to the adult.

Second, sounds ranked on the knowledge continuum did not always show a
one-to-one correspondence with sounds classed together on the PCC metric. In
these instances, the generative approach credited the child with more
productive phonological knowledge than PCC scores indicated. As an example,
lb) was ranked as type 1 knowledge on the continuum; Child 6 consistently
produced and used this sound correctly relative to the adult. PCC values,
however, indicated that [b] was moderately to severely involved. A similar
case resulted with the targets [z,j]. These sounds were ranked as type 1
knowledge on the continuum, but were classified as severely involved on the
PCC metric. This discrepancy is likely re-ated to the fact that all sound
errors are not viewed as equivalent in the generative framework. For example,
errors that result from the application of phonetic implementation rules
(e.g., distortions) are considered less severe than errors that result from
the application of phonological rules (e.g., omissions). Similarly, errors
that are the result of the application of phonological rules are less severe
than errors that relate to the nature of a child's lexical representation.
The generative framework makes distinctions among errors at the phonological
level versus those at the phonetic level of representation. The PCC metric,
on the other hand, views all errors, regardless of the source and type, as
equivalent. This discrepancy may also be further related to methodological
differences involving the nature of the sample and the kinds of data
considered in each analysis.

In these examples. the generative approach attributed more knowledge to
the child then was determined by the PCC metric. The reverse situation,
however, was ,t observed. That is, there were no cases where the generative
framework credited the child with less knowledge th,- was determined by the
PCC metric. That generative phonology affords a child the maximum
phonological knowledge again relates to the fact that this assessment examines
both the prAuction and function of sounds in the system. The PCC metric, as
well as any other quantitative measure, only examines how sounds are produced
at the phonetic level.
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CONTINUUM OF PRODUCTIVE PHONOLOGICAL KNOWLEDGE

Type of Knowledge Target Sounds

PERCENTAGE OF CONSONANTS CORRECT

Severity Adjective Target Sounds

Type 1 ("most")

Pb
Adult-like representation
No phonological rules

sz

Type 2

Adult-like representation
Optional phonological rules

td

kg

j h

Mild

PCC > 85%

Mild-Moderate

PCC > 65%

r.

w

p td

k

h

Type 4

Adult-like representation
in some, but not all positions

Type 6 ("least")

Nonadult-like representation
in all positions

r

Moderate-Severe

PCC > 50%

tv

tS d3

1

Severe

PCC < 50%

b./ I z 5

J

5 di

1 r

Table 4. Continuum of productive phonological knowledge and

percentage of consonants correct (PCC) for Child 6.
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This observation has further implications for treatment. Returning to
the case of Child 6, targets [b,z,j] would not be selected as potential
treatment targets within a generative approach to pattern analysis because the
child demonstrated type 1 knowledge of these sounds. [b,z,j] would likely be
considered for treatment using the PCC metric since these sounds were
characterized as moderately to severely involved. In some instances, sounds
that do not require clinical attention may, in fact, be treated when PCC
values are considered. Quantitative measures may overtarget and, therefore,
overtreat sounds that a child already knows. There is preliminary
experimental support (Gierut, 1985b) for granting a child the maximum
phonological knowledge and for not directly treating those sounds that a child
already knows; i.e., error sounds for which a child has relatively more
knowledge have been shown to spontaneously improve without treatment.

Thus, the knowledge continuum and the PCC metric appear to be comparable
in cases of sounds produced in error consistently and frequently (i.e., 0%
accuracy/"least" knowledge). Rare, the selection of treatment targets using
the knowledge continuum and the PCC met :ic would be essentially equivalent.
In all other cases, rankings on the knowledge continuum do not correspond to
PCC values. PCC values seem to underestimate a child's productive
phonological knowledge; consequently, sounds recommended for treatment based
on PCC values would not likely be targeted for treatment based on the
knowledge continuum.

Continuum of knowledge as an index of other selection factors

The continuum of knowledge may also correspond to other selection
factors, e.g., ease of production, stimulability, typological markedness.
With regard to ease of production, perhaps sounds that require greater motor
control are ranked at the end of the continuum labelled "least" knowledge. To
date, ease of sound production has not been firmly established (cf. Dinnsen,
1980; Locke, 1972; Ohala, 1980). In the absence of more definitive studies,
it is diff:.cult to identify those sounds that may require greater motor
control.

With regard to stimulability, Dinnsen and Elbert (1984) suggested that
sounds which are stimulable may be indicative of greater productive
phonological knowledge than sounds which are not stimulable. This hypothesis
has not yet been empirically evaluated.

The knowledge continuum may also reflect typological markedness.
Typological markedness refers to a linguistic phenomenon which identifies a
relationship among sounds, such that the occurrence of one sound in a language
predicts or implies the occurrence of other sounds in that same language. The
predicting or implying sound is "marked" relative to the predicted or implied
sound, i.e., "unmarked." For example, if a language has voiced obstruents
(e.g., stops, fricatives, and affricates), it will also have voiceless
obstruents; voiced obstruents are marked relative to vuice:Less obstruents.
Markedness relationships of this type have been identified by examining the
sound systems of languages of the world (Greenberg, 1966; Greenberg, Ferguson,
& Morayscik, 1978). Perhaps, sounds that are typologically unmarked are
associated with "most" knowledge and sounds that are typologically marked are
associated with "least" knowledge. This hypothesis remains open to empirical
test.



Predictions about Learning

The final component in the assessment process involves making predictions

about a child's learning. Predictions about learning provide a priori

information about the extent to which a child's error pattern will be

interrupted and restructured. Predictions about learning are primarily

motivated by the generalization literature (see Elbert & Gierut, 1986, for

review and discussion). For example, if a child produces a pattern of error

involving the liquid [r] and is taught to produce [Si, it is likely than

production of [r,r] will also improve (Elbert & McReynolds, 1975; Hoffman,

1983). Predictably, this child's pattern of correct production would be

reorganized to include all related allophones, [r0,1].

There are two specific predictions that have consistently been observed

across the different approaches to pattern analysis, including generative

phonology. The first prediction is that untreated sounds within a pattern of

error will be produced with some degree of accuracy following treatment of a

particular sound within that pattern. In other words, generalization learning

extends to untreated sounds within an error pattern. This type of learning

has been observed, for example, within the place-voice-manner framework;

teaching the manner of frication through production of [s] resulted in

learning about frication in [z] (Elbert et al., 1967). Similarly, in the

distinctive feature approach, teaching the [ fstrident] feature in the sound

[f] resulted in accurate production of other sounds involving the [ +stridentj

feature, [v,s,z,tS] (McReynolds & Bennett, 1972). Using a phonological

process framework, elimination of the process of deletion of final consonants

by teaching production of [p,d,s,43] in final position resulted in the

acquisition of other final consonants, lb,t,k,g,f,v,z41, affected by this

same process (Weiner, 1981). Finally, teaching one sound ranked at a

particular level of knowledge on the continuum resulted in accurate production

of other sounds also ranked at this same level of knowledge (Gierut, 1985b).

Across each of the different frameworks, then, generalization to untreated

sounds within a specific pattern is a predictable type of reovranization that

can be e acted.

The second prediction is that production of treated sounds will be more

accurate than production of untreated sounds within a pattern. Froduction of

untreated sounds usually parallels, but lags behind, production of treated

sounds. Generalization learning for treated sounds is, therefore, superior to

generalization learning for untreated sounds. Again, this type of

generalization has been observed across all pattern analyses (Costello &

Onstine, 1976; Dinnsen & Elbert, 1984; Elbert et al., 1967; Gierut, 1985b;

Hoffman, 1983; McReynolds & Bennett, 1972; McReynolds & Elbert, 1981b; Weiner,

1981). Reorganization of this type is, likewise, predictable.

Both of these predictions about learning provide information about how

specific error patterns will restructure; they do not, however, provide an

estimate of how a child's overall sound system will be affected. The effect

that treating one pattern of production will have on a child's entire sound

system is not predictable from most assessment frameworks. Generative

phonology is the only assessment framework that provides empirical support for

predictions about system-wide changes following treatment. Specifically, it

has been demonstrated (Gierut, 1985b; Gierut et al., in review) that the

starting point of treatment on the knowledge continuum is a predictor of the

extent of system-wide reorganization and change. When treatment began with

targets sounds ranked at "least" knowledge, extensive generalization to, and

reorganization of, the entire sound system was observed. Production of
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untreated sounds ranked at "least" knowledge improved, in addition to
production of other untreated sounds ranked at all higher levels on the
knowledge continuum. When treatment was initiated at the opposite end of the
continuum, "most" knowledge changes in the sound system were also observed;
however, these changes were limited to only those sounds ranked at treated
levels of knowledge (i.e , generalization within a pattern). System-wide
reorganization was generally not observed when treatmen, began at "most"
knowledge.

Predictions of this type ha-re important clinical ramifications. The
nature and extent of treatment is facilitated if both the degree of learning
within an error pattern, as well as the degree of restructuring across the
sound system can be projected. No other approaches to pattern analysis offer
similar predictions about systematic restructuring of the overall sound
system.

Discussion

The generative framework is a relatively new procedure of pattern
analysis that presents information comparable, in many instances, to other
assessments about the nature and treatment of speech sound disorders. As in
other frameworks, a child's pattern of production is identified, sounds for
treatment are selected on the basis of this pattern, and learning is
proje -ted. The generative framework for assessment, however, extends and
quali ies information provided by other pattern analyses. Generative
phonology, like other pattern analyses, characterizes the production of sounds
in a child's sound system; it also describes the function of sounds and
identifies the relationship among sounds. In selection of treatment targets,
generative phonology relies on a hierarchical, ordered relationship among
types of productive phonological knowledge. This criterion factor is
different than those selection consieerations used in other pattern analyses.
Finally, changes in specific patterns of error are predictable from each
assessment framework; generative phonology, moreover, projects how the overall
sound system will be restructured. Therefore, the generative approach not
only meets, but extends the basic elements of pattern analysis. Generative
phonology adds to the three component assessment process and furthers the
current state of information about the nature and treatment of functional
speech sound disorders in children. This is not to say, however, that other
non-generative pattern analyses should be abandoned or replaced. These
frameworks have provided considerable insight into the assessment of speech
sound disorders and serve as an impetus for further research.

For example, while it has been demonstrated that generative phonology
offers a unique and different approach to assessment, it has not yet been
determined whether this approach also provides the most accurate assessment.
Single-subject treatment studies provide a suitable testing-ground for
empirically evaluating predictions that derive from the different pattern
analyses. If the claims and predictions of generative analysis are borne out
in treatment, but those of other pattern analyses are not, then the generative
approach would be judged most accurate in assessing speech sound disorders.
On the other hand, if the claims and predictions of Lther pattern anc.lises are
confirmed in treatment, but those of generative phonology are not, then the
other pattern analyses would represent more accurate assessments of speech
sound disorders.

The role of generative phonology in treatment also needs
established. Treatment methods common to other pattern
r inimal pair contrast treatment, have been used within
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framework (Gierut, 1985b, 1986; Gierut et al., in review). Perhaps, different

models or strategies of treatment specific to the generative approach will

need to be developed. These procedures may, for example, take the form of

morphophonemic treatment (Dinnsen, personal communication) where production of

a sound is contrasted in phonologically relevant contexts using

morphemically-related items, e.g., "pig" versus "piggy," "dog" versus

"doggie." This approach to treatment may be particularly well-suited for a

child displaying errors involving phonological rules operating on adult-like

lexical representations (e.g., knowledge type 2). Treatment may also focus on

category formation (Gierut, 1985b; Leonard & Brown, 1984) where specific

sounds or lexical items are associated with new and narrower sound categories.

This treatment strategy may be most appropriate for a child exhibiting errors

that result from inventory constraints (e.g., knowledge type 6).

Finally, generative, phonology may offer new insights into descriptions of

normally developing sound systems. The claims of generative phonology,

particularly those related to productive phonological knowledge, have not been

examined with respect to young children's sound systems. It is not clear

whether generative phonology is appropriate for use with these children given

that the analysis procedures rely heavily on a child's knowledge of morphemes

and the analyzability of words into morphemes. Whether young children

segment, represent, process, or produce speech as distinct morpheme-sized

units is a question open to considerable debate (cf. Peters, 1983).

In conclusion, generative phonology has direct applications in the

clinical assessment process and can be differentiated from other approaches t-+

pattern analysis on the basis of empirical claims. This framework also offers

new directions for clinical research and remediation of disordered sound

systems.



Endnotes

1 Several years ago, Compton (1970, 1975, 1976) reported using the
generative framework in descriptions and treatment of children's speech sound
errors. These descriptions involved radical modifications of generative
phonology theory (Chomsky & Halle, 1968) that have not generally been accepted
within Oeoretical linguistics. Moreover, the descriptions of sound error.,
developel by Compton cannot be distinguished from those developed within a
phonological process approach, since both basically assume that a child
maintains adult-like underlying representations of morphemes (see Maxwell,
1979, 1984, for a further discussion of this point).

2 Generative phonological descriptions of a child's sound system rely
solely on production data. It has been suggested (Barton, 1978) that speech
perception or discrimination data may provide information about a child's
phonological knowledge. There are, however, some inherent difficulties in
using data from speech perception or discrimination to evaluate phonological
knowledge. For example, Locke (1980a, 1980b) has reported that it is
difficult to accurately and adequately assess a child's perceptual skills.
Also, the role of perception or discrimination in learning sounds during
treatment has not been clearly established (Williams & McReynolds, 1975;
Winitz, 1975). Furthermore, recent evidence from primary languages, normal
language development, speech disorders, and second language learning suggests
that speech production and speech perception may be independent processes
(Dinnsen, 1985; Straight, 1980).

3 Although Elbert et al. (1984) used many terms and concepts
particular to generative phonology, no generative analyses were developed or
are otherwise available for these data. In fact, there has been no
demonstration, to date, that it is appropriate to equate baseline scores with
productive phonological knowledge.

4 A child's performance on baseline measures may not adequately or
accurately establish productive phonological knowledge or a continuum of
knowledge. However, a child's performance, i.e., generalization, during
treatment does reflect his or her phonological knowledge (Diwisen & Elbert,
1984; Elbert et al., 1984; Gierut, 1985b). That is, performance on sounds for
which a child has "most" productive phonological knowledge is generally
superior to performance on sounds for which a child has "least" knowledge. It
appears that performance (baseline) may not be indicative of phonological
knowledge, but that phonological knowledge is indicative of performance
(generalization). The association between productive phonological knowledge
and performance seems to be unidirectional.
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Appendix A

Three-minute portion of connected speech used to

calculate PCC values for Child 6

its a Us"' wart atra dar

it's a teacher right over there

dim a virS

them the girls

dim dzt.F Ap an dab

them gets up and down

dem siz atm bartzn

them sees them writing

dim avt baut waynz an kAir

them about about crayons and color

vavns an wad=

crayons and writing

vaunts

crayons

Its a kana mark it nazi( a ham

it's a kinda make it like a house

dtm tel hzm sat dawn

them tell him sit down

tLl am hav4r den halm a kAC

tell him how and then time to color



dam da Art gat in a dark

them the other guys in the dark

hIM pOVVI kAm insazd

him supposed to come inside

akAz him war wean walk satkats an satiates

because him wear rain like jackets and pajamas

at dOVnt navl

I don't know

wEavvi du daet Evri taIm

well we do that every time

vi drsa dtt daet bA wi gia hlr Ap an du dae t

we just do that but we dress her up and do that

Earn sex wen It at dark

him say when it gets darker

den him gatravIsaid in goLt:;t2r

them him go outside and go store

man ar kvicin an metkIn s,m daft an da atlir grz On SAMa

men are cooking and making some that and the other girls and some of

swiks SA In sApr

fixes some supper

toyst an weibi au sAm mhswums

roast and gravy And some mushrooms

A . I
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SAM ov wait aen sAm s=kin

some of bread and some chicken

kAZ der mexkIn abAsOs sApr

because they're making everybody's supper

aen dz bA (la A.CT ger sepn dovnt mak 6ni datp daes

and the but the other girls saying don't make any (unintelligible)
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Abstract

Individual talkers vary in source and vocal-tract configurations,
loudness, speaking rate, and accent among other variables. The effects of
these differences have largely been ignored in research concerning auditory
word recognition. In the present study, we investigated the effects of talker
uncertainty on auditory word recognition using an identification task.
Subjects were presented with monosyllabic CVC English words presero-ed at
various signal-to-noise ratios, and were required to identify them on an
absolute basis. The single-talker group received words from one talker only,
while the mixed-talker group received items from 15 different talkers. In
addition, the effects of lexical structure upon identification were examined.
Lexical density was manipulated within subjects by creating high and low
density stimulus items as a function of number of neighbors for each word.
The results showed that identification performance was worse under the
mixed - talker conditions than the single-talker condition. Performance under
both lexical density conditions was not significantly different, although an
interacOon was present between S/N ratio and density. The results suggest
that variability due to talker uncertainty may be an important variable that
affects the early stages of auditory word recognition. The absence of a main
effect of lexical density suggests that perceptual processes related to talker
normalization may logically proceed access to the lexical representation of
words in long-term memory. The interaction between S/N ratio and density
suggests that lexical structure is an important variable affecting auditory
word recognition.
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Effects of Talker Uncertainty on Auditory lord Recognition:

A First Report

The processes involved in recognizing spoken words are extremely complex.
Information at sensor, phonetic, lexical, and higher-oilier contextual levels
is used to arrive at the final word percept. Although alternatives to this
view exist (i.e. Klatt, 1980), much work has suggested that analysis at
multiple levels of processing contributes to the recognition of spoken words.
The components which are intrinsic to the word recognition process may be
organized it a fashion which is interactive (Elman and McClelland, 1984),
hierarchial (Forster, 1976; 1979); or some combinatio5 thereof (Marslen-Wilson
and Welsh, 1978; Marslen-Wilson and Tyler, 1980). Regardless of how the
processing components are organized, the manipulation of certain variables
within an experiment can elucidate the contribution of hypothetical processing
factors relevant to the word recognition process.

The experiment to be described here concerns an important area that has
been neglected as a factor in auditory word recognition research, namely, the
effects of talker differences on recognition. Individual talkers vary in a
multitude of differing articulatory and acoustic cFaracteristics, i.e., source
and vocal tract configuration, vocal amplitude, speaking rate, accent,
dialect, etc. For the average listener, these differences between talkers
appear to be of little consequence in recognizing spoken words and
understanding spoken language. This form of normalization or compensation has
been viewed as a form of perceptual constancy, where differences in
articulatory and acoustic composition of particular spoken items do not appear
to overtly affect perception. Although subjectively it may appear as though
differences attributed to different talkers do not have perceptual
consequences, this is not necessarily the case. It is possible that the
variability manifested by differences in articulatory and acoustic parameters
attributed to talkers may be compensated for by a processing mechanism which
quickly and efficiently "normalizes" the oifferences between talkers. In
particular, the processes which are inherent compcnents in recognition of
spoken words may include such a mechanism. In the present study, the role of
talker uncertainty was examined in a task which measuied performance in
recognizing s?oken words. Before proceeding, however, background research
will be summarized which pertains to the effects of talker variation upon
speech and word perception. These studies formed the motivation fcf the work
we carried out on word recognition.

A number of studies have looked at the effects of vocal tract differences
on the perception of .speech. In particular, a number of studies have focused
on vowel perception (Summerfield and Haggard, 1973; Summerfield, 1975; Nearey,
1977; Assman, Nearey, and Hogan, 1962; Verbrugge, Strange, Shankweiler, and
Edman, 1976; Strange, Verbrugge, Shankweiler, and Edman, 1976). These studies
have used various tasks to examine performance for vowel perception wader
conditiohs where the vowels originated either from one talker or from a
variety of talkers. Summerfield and Haggard (19'3; Summerfield, 1975) used
sets of synthetic stimuli in which spectral information was varied by
manipulating values of FO and vowel formant frequencies (i.e. creating thF
items ned", "bird", and "bored"). Essentially, a number of stimuli were
created which varied in formant components which emulated different vocal
tracts. Using a choice RT task for the vowels, Summerfield and Haggard (1973)
discovered that RTs were slower for a particular target syllable when the
target was preceded by a syllable which contained spectral parameters
specifying a different vocal tract than the target stimulus. They concluded
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that the slower RTs to the target in this situation reflected the time taken

for the operation of a vocal tract normalization process, although the details

of this mechanism were left unspecified.

A slightly different approa,h to studying the effects of talker

variability on vowel perception was taken by Strange and her colleagues

(Strange et al., 1976; Verbrugge et al., 1976). In a series of experiments,

the effects of talker variation and consonantal context on vowel

identification were examined. In one experiment, Strange et al. compared

performance in terms of identification responses for naturally-produced

isolated vowels and for medial vowels produced in a /p-p/ context. Two

conditions were present: a segregated-talker condition, in which subjects

were given stimuli from a single talker, and a mixed-talker condition, in

which subjects were given stimuli randomly selected from 15 different talkers

(males, females, and children). Strange et al. found that for both isolated

vowels and /p-p/ vowels, identification performance as worse in the

mixed-talker case. Thus, uncertairv:y due to talker variability had a

detrimental effect on vowel identification.

In another experiment, Strange et al. (1976) again compared segregated

versus mixed-talker conditions, with the vowels produced in a /C-C/ context,

where the consonants randomly varied between six stop-consonants

/b,d,g,p,t,k/. Here, they found no difference in performance between groups.
Strange et al. compared the results to the isolated vowels and /p-p/ context

vowels in terms of the relative usefulness of consonantal context cues in

vowel identification. However, they did not offer an explanation for the lack

of an effect of talker variability on identification when the context was in a

/C-C/ form.

In considering the Strange et al. results, a couple of caveats must be

kept in mind. First, as Assman, Nearey, and Hogan (1982) pointed out, the

results in these particular experiments could have been confounded by dialect

discrepencies between talkers and listeners, as well as orthographic

interference within the response procedure. Assman et al. (1982) examined

vowel identification for segregated and mixed-talker conditions, where these

two factors were controlled. They used natural, isolated vowels and gated

vowels (natural vowels with only the center portion remaining). For both

types of vowels, performance was worse in the mixed-talker case than in the

single-talker condition. Thus, it appears that at least for isolated and

gated natural vowels, variability due to talkers has a detrimental effect upon

vowel identification.

In addition to the work done on the effects of talker variability on

vowel perception, attempts have been made using somewhat different

experimental paradigms to examine talker effects at the word level. Cole,

Coltheart, and Allard (1974; Allard and Henderson, 1975) used an auditory

analog of the Posner and Mitchell (1967) same-different RT task, which

investigated physical and name codes. Cole et al. (1974) used a restricted

set of CV alphabetic-name stimuli and isolated vowels. The stimuli were

produced by one male and one female speaker. For "same" responses, two

possibilities existed: First, a physical identity match on the basis of same

word and voice could result in a same response, i.e. a male "bee" and a male

"bee". Secondly, a name match in which voice was irrelevant could also result

in a "same" response, i.e. a male "bee" and a female "bee". Cole al.

found that RTs for "same" responses where the stimuli differed in voice were

slower than those found for sam' -voice "same" responses. However, a simila:

pattern for stimuli in the same and different voices also existed frir

"different" responses. That is, RTs for the "different" responses were faster
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with pairs of stimuli occurring in the same voice. As this pattern of RTs was
different than what Posner and Mitchell (1967; Posner, Boies, Eichelrnan, and
Taylor; 1969) had found in letter matching, the results were interpreted as
evidence against a direct auditory analog of visual physical and name codes.

In another study, Allard and Henderson (1975) found identical results for
a set of CVC words. However, two additional aspects of the Allard and
Henderson (1975) experiment were interesting: First, the effect of voice on
same RTs disappeared over sessions as a result of practice; and, second, the
voice effect was only manifested in the subjects who were slower responders.
It is unclear in this case as to whether experience with the voices over time
resulted in a "readjustment" of the perceptual mechanisms for responding to
the stimuli, or whether it was simply due to a change in task strategies. It
is possible that faster responders may have been more adept at developing a
response strategy, hence showing no effect of voice for "same" decisions.
Performance differences may have been due to task strategies which were
irrelevant to processes affected by talker variation. In addition, the
stimuli used in both studies were highly constrained: Cole et al. (1974)
used 4 CVs and 4 vowels, while Allard and Henderson (1975) used only 5 words.
It is possible that with such a small number of stimuli, subjects were
capitalizing upon aspects of the stimuli which, under normal conditions, would
not be attended to. Thus, these results must be viewed with caution when
interpreting them in terms of their effects upon perception. Nevertheless,
there is some suggestion from these studies that talker uncertainty may affect
auditory word perception.

The effect of speaker's voice at the word has also been
investigated within more traditional recognition and recall paradigms within
the human memory literature. Craik and Kirsner (1974) conducted a series of
experiments which examined recognition performance in continuous-string
auditory word lists. Subjects were required to listen to a long, continuous
list of common nouns. The words were spoken either by a male or female
talker. The subjects performed a recognition task, i.e., for each word
presented they judged it as "old" or "new". The critical variable was whether
the word, when repeated the second time, was in the same or different voice as
the original word. The results showed that recognition performance was better
when the 'rord was repeated in the same voice rather than a different voice.
However, the abi3ity to recall the voice in which the original word occurred
was not affected by the voice in which the word was repeated. Thus,
recognition memory performance for words was affected by variation in voice of
the word, but recall was unaffected, at least within the traditional
experimental paradigm used to study recognition memory and free recall.

One recent experiment by Mattingly, Studdert-Kennedy, and Magen (1983)
explicity tested the effects of speaker and dialect variation on memory. In a
serial-ordered recall experiment using digits, Mattingly et al. constructed
three conditions for recall: (1) a "single-speaker condition", in which all
the words came from one speaker only; (2) a "mixed-speaker, same dialect"
condition, in which the words came from three English speakers with the same
dialect, and (3) a "mixed-spe.ker, different dialect" condition, in which the
words came from three different speakers, each speaker having - different
dialect. Their results indicated that only performance in the primacy region
of the serial position curve was worse for the mixed different- dialect
condition than for the single-speaker and mixed same-dialect conditions, which
did not differ from one another. Mattingly et al. (1983) interpreted these
results as suggesting that phonological uncertainty affected either rehearsal
or encoding processes in memory, such that items spoken in varying dialects
were harder to remember. Under these conditions, the variation in speaker
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characteristics did not cause any observable performance deficits.

The pattern of results found in the Mattingly et al. experiment is
remarkably similar to work done in our laboratory on the recall of lists of
synthetic speech (see Luce, Feustel, and Pisoni, 1983). Luce et al. (1983)
found that serial-ordered recall of lists of natural and synthetic words
re-Lilted in performance decrements in the primacy region of the serial
position curve for synthetic speech. This finding was interpreted as evidence
for the claim that synthetic speech incurs greater demands in processing, such
that rehearsal and/or encoding processes suffered. The results of Mattingly
et al. (1983) are also related to findings reported by Rabbitt (1968), who
found that serial recall of digits in the first half of a list of words
suffered more when the latter half of the list was presented in noise,
regardle.s of whether the first half of the list was presented in noise or
not. The findings of Rabbitt (1968) have been explained in terms of increased
processing demands due to presentation of items in noise interfering with
rehearsal/encoding processes in memory for earlier items in the list. The
results are analogous to processing demands of synthetic speech affecting
recall (Luce et al., 1983), and processing demands of phonological uncertainty
affecting recall (Mattingly et al., 1983).

Taken together, the experiments that have been conducted examining
effects of talker variability on vowel perception and word recognition and
recall suggests several conclusions. On the one hand, the results found by
Summerfield and Haggard (1973), Summerfield (1975), and Assman et al. (1982)
suggest that at the segmental acoustic-phonetic level, talker variability
incurs a decrement in perception. Strange et al. (1976) found similar
results for vowels in isolation and /p-p/ con!.exts, but found no effect with
vowels in a /C-C/ context. Some evidence is provided for talker effects in
the Posner-type tasks (Cole et al., 1974; Allard and Henderson, 1976), but as
mentioned above, these findings are obscured by possible response strategies
using that particular task. Voice differences do have effects on recognition
of words in a continuous string (Craik and Kirsner, 1974), but do not affect
serial-recall unless the dialect is also different (Mattingly et al., 1983).
At the very least, this body of research which has studied talker uncertainty
as an experimental variable suggests the possibility that the uncertainty due
to a change in talker may have both perceptual and processing consequences.
Unfortunately, the nature of these differences is not well understood nor are
there sufficient data in the literature to permit one to formulate a well
reasoned account of these differences.

With regard to word recognition processes, an appropriate task is needed
which will focus directly on these questions. The aim of the present study
was to study the effects of talker uncertainty on the identification of
isolated spoken words. By examining performance differences in identification
under conditions of exposure to words from one talker or from many talkers,
inferences can be made about underlying processing operations involved in the
word recogniticn process. If talker variability has a detrimental effect on
identifying spoken words, it is possible that an underlying mechanism may be
used for transforming different-talker input into a more abstract form as it

can be used by the perceptual system.

The studies discussed above all used extremely restricted sets of
synthetic and natural stimuli. Evidence exists that synthetic speech requires
greater capacity and incurs greater encoding demands than aatural speech (Luce
et al., 1983; Pisoni, Nusbaum, and Greene, 1985). Thus, the use of synthetic
speech in exploring spoken word recognition may not give an accurate picture
of what happens when natural speech is heard. Also, with a restricted set of
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stimuli within a given task, responses may be based upon aspects of the
stimuli which under normal conditions may not be attended to by listeners.

In the present experiment, natural speech was used with a reasonably
large set of words. The responses in the identification task were
unconstrained by the use of an open response set. Subjects were required to
identify the word which was presented on each trial. Hence, the experimental
situation more closely resembles conditions which may be found in a more
"naturalistic" situation, where naturally-produced words are heard and
identified in the course of normal conversation. However, the lack of
sentential context precluded the use of higher- order contextual information
(i.e. syntactic, semantic, pragmatic) in making responses. Thus, any
observed effects may be relegated to processes related to word recognition and
lexical access or earlier analyses of the acoustic-phonetic information in the
signal.

In addition to talker uncertainty, another factor was manipulated in this
study. This factor is related to the structure of words in the mental
lexicon. Landauer and Streeter (1973) and Eukel (1980) have suggested that
lexical structure may affect processes of word recognition and lexical access.
Recently, Luce (1985; 1986), using auditory and visual word recognition tasks,
has round that several structural factors which include measures of lexical
density and similarity are important in accounting for word recognition
performance. In the present experiment, the density of the lexical space of
words was manipulated. One particular measure (the number of words differing
from a given lexical item by one phoneme) provided an index for a given word
in regards to its position in lexical space. Words of high lexical density
and low lexical density were selected in order to study the effects of lexical
similarity on word recognition. Thus, a situation was created where both the
effects of lexical structure and talker variability could be studied.

The basic predictions for the present experiment were as follows: First,
if uncertainty due to talker variability has a detrimental effect on auditory
word recognition, then performance should be worse under conditions where
subjects received stimuli from many talkers rather than just one talker.
Second, if lexical density has an effect on auditory word recognition,
performance should differ as a function of the density condition (high or
low). An interaction or lack thereof between lexical density and talker
uncertainty should allow statements to be made about the hypothetical locus of
a talker-normalizing perceptual mechanism. If both variables have effects on
performance and do not interact, this outcome would suggest that the
manipulations affect processes at different processing levels. If both
variables have effects and do interact, this would suggest that the processing
operations affected by both manipulations may be occurring at some common
locus.

Identification performance was studied at three different signal-to-noise
ratios and over successive blocks of trials in the experiment. We predicted
that overall performance would be bett2r at higher SIN ratios, simply as a
function of discriminability of the signal from the background noise. The
pattern of performance over blocks provides information as to whether practice
(or experience) has a differential effect as a function of talker condition.
If experience with only one talker (versus m.ny talkers) results in a
relatively greater increase in performance ova= the blocks of trials, this
would prov:; .e further evidence that a mechanism exists which "tunes in" on the
talker characteristics to assist perceptual processing and facilitate word
recognition processes.
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Method

Subjects. Thirty-seven undergraduate students from an introductory

psychabgy course at Indiana University were used as subjects. Fifteen
subjects served as talkers to produce the stimuli, and 22 subjects served as

listeners in the perceptual experiment. Each subject participated in one
1-hour session, and received partial course credit for participating in the

experiment. All subjects were native speakers of English with no history of a
speech or hearing disorder.

Stimuli. The stimuli consisted of 72 naturally spoken words obtained

from eiEg-iieaker. The words consisted of CVC monosyllabic English words that
varied randomly in their consonants (i.e. stops, fricatives, affricates,

liquids, and nasals) and vowels. The sr'-. of 72 stimuli was identical across

all speakers. The stimuli were recorded oa audiotape from each speaker in a

sound-attenuated IAC booth using an Electra-Voice Model D054 microphone and a
Crown 800 series tape recorder. Each stimulus to be recorded appeared on a

CRT screen in front of the subject, embedded in the carrier sentence "Say the

word for me", where the blank corresponded to a particular target word.

The Taker was instructed to read the entire sentence aloud in a normal voice
and at a normal speaking rate. Utterances were recorded from 7 male talkers

and 8 female talkers. The sentences were converted to digital form via a
12-bit analog-to-digital converter at a 10,000 kHz sampling rate, and were

low-pass filtered at 4.8 kHz. The words were then digitally edited from the
carrier sentences to produce the final stimuli used in the study. Amplitude

levels among words we,e equated using a software package designed specifically
for digitally manipulating amplitude.

The test words were selected to differ it terms of lexical density using

an on-line lexicon database consisting of a version of the 20,000 entry

Webster's Pocket Dicticnary. This database vas used to compute a lexical

density measure for each stimulus based on neighborhood similarity (see Luce,

1985; 1986). The measure of lexical density used here was defined as the

number of neighbors (words differing by one phoneme from the stimulus)

existing for a particular word. Low-density words had a value of 10 or less;

high-density words had a value of 15 or greater. Thirty-six words were
selected for each condition, resulting in a total of 72 stimuli.

The final constraint used in selecting words was related to familiarity.

Familiarity ratings on a scale from 1 (unknown) to 7 (familiar and well-known)
were obtained from data collected in a previous study by Nusbaum, Pisoni, and

Davis (1984) for the lexical database used here. The stimuli selected for the
present study met a 95% criterion of familiarity (translating to 6.65 on t"e

rating scale). All 72 stimuli were rated at 6.65 or above. Thus, all the
target words were rated av highly familiar to the subjects. This manipulation

was done to insure that subjects were familiar with the words used in the
experiment.

Procedure. Three experimental factors were manipulated: Talker

variability, lexical density, and signal-to-noise (S/N) ratio. Talker

variability was manipulated as a between-subjects factor, forming two groups

with 11 subjects each. The single-talker group received stimuli from one

talker only throughout the session, while the mixed-talker group received

words from all 15 of the talkers. In the mixed-talker group, 5 words were
randomly selected for presentation from 12 of the speakers, and 4 words from 3
of the speakers. In the single-talker group, each subject received the 72
stimuli from only o!ie of the 15 different talkers. In other words, each

subject in this condition received stimuli coming from a different speaker
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than each of the other subjects had received. Manipulation of the lexical
density factor created two within-subject conditions: High-density and
low-density target words. As previously mentioned, the low-density items
consisted of words Laving fewer neighbors, while high-density items had more
neighbors. Each subject received both types of items. Finally, the lastvariable manipulated was the signal-to-noise ratio. Each word was presented
at 3 differing S/N ratios: +10 dB, 0 dB, and -10 dB. S/N ratio was
manipulated within subjects. For all S/N conditions, the background of noise
remained constant at 70 dB SPL, with the stimulus signal attenuated at 80 dB
SPL, 70 dB SPL, and 60 dB SPL for the respective conditions.

The experimental paradigm involved the use of a word identification task.
First, each stimulus was embedded in noise and was presented binaurally over
matched and calibrated TDH-39 headphones to subjects. Subjects in the
single-talker group were run individually, while subjects in the mixed-talker
group were run in small groups varying from 1 to 4. For each trial, the
subjects were instructed to identify the word that was presented in noise, and
then type in a response on a CRT terminal. A prompt appeared on the CRT
screen immediately after presentation of the stimulus to indicate tisat a
response should be initiated. Subjects were instructed to type in s rd
corresponding to what they thought they had heard. They were not gi n't
indication as to what words to expect during the experiment, except tha. aey
would be English words. After all the subjects had responded, a m,..ssage
appeared on the CRT indicating that the next stimulus would be presented. A
2-second ISI intervened between presentation of the message and the subsequent
stimulus onset.

Three separate blocks of 72 trials were run, with approximately a
2-mirute rest period between each block. Each word was presented only once in
each block, with the word presented at a different S/N ratio in each
particular block. For example, the word "batch" may havt been presented at a
-10 S/N ratio in the first block, at a 0 S/N in the second block, and at a +10
S/N in the third block. Within each block, words occurred randomly at all
three of the S/N ratios, with one-third of the words presented at each S/N
ratio in each block. The assignment of S/N ratio to each word was randomized,
as was presentation of words within each block. Stimulus output and data
collection were controlled on-line by a PDP-11/34a computer. Stimuli were
output via a 12 -bit digital-to-analog converter at a 10,000 kHz sampling rate,
and were low-pass filtered at 4.8 kHz.

Results

The data were collected and analyzed on computer. Responses were
analyzed in terms of percent correct identification. Table 1 displays the
results for the mixed and single-talker conditions for high and low
lexical-density, at the three S/N ratios, for each of the three blocks of
trials. These data are also presented graphically in Figure 1.

Insert Table 1 and Figure 1 about here

An examination of the data shown in Figure 1 suggests the presence of
several experimental effects. To quantify these observations, a four-way
ANOVA was run with the factors of talkers (single or mixed), density (high or
low), S/N ratio (+10, 0, or -10) and block (1st, 2nd, or 3rd block of trials).
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Table 1

Identification performance of words
(percent correct)

SINGLE-TALKER GROUP

1

Block

2 3

High Density

410 S/N 68.2 78.0 53.4
0 S/N 31.8 52.3 50.8

-10 S/N 3.0 3.8 12.9

Mean 34.3 44.7 39.0

Low Density

+10 S,N 59.9 74.3 75.8
0 S/N 48.5 45.2 51.2

-10 S/N 3.8 10.5 7.3

Mean 37.4 43.3 44.8

MIXED-TALKER GROUP

High Density

+10 S/N 65.9 81.1 39.4
0 S/N 15.2 43.9 46.8

-10 S/N 0.7 1.5 8.4

Mean 27.3 42.2 31.5

Low Density

+10 S/N 56.4 36.4 75.0
0 S/N 38.6 52.7 29.3

-10 S/N 0.7 3.0 15.0

Mean 31.9 30.7 39.8



Effects of Talker Variability an Word Recognition
so-

Percent Correct
Identification

30..

tow

VA
11;: +10 HI 0 HI -10 LO +10

S/N Ratio
LO 0 LO -10

1

Single

Mixed
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Three significant main effects were found. First, an effect of talker was
present (F[1,20] = 8.26, E < .01). Identification was better for the single
talker condition compared to the mixed talker condition (40.6% correct and
33.9%, respectively, averaged over all conditions). This result suggests that
the uncertainty due to multiple talkers had a detrimental effect on auditory
word recognition; words were not identified as well when stimuli came from
many talkers.

Second, a main effect was found for S/N ratio (F[2,40] = 592.5, p < 0.01)
Identification performance was best in the +10 S/N condition, next to best in
the 0 S/N condition, and worst in the -10 S/N condition (see Figure 1). As
expected, performance was a function of the discr4minability of the speech
signal from the background noise, with better identification at higher S/N
ratio.

Finally, a main effect of block was observed (F[2,40] = 20.1, p < 0.01).
Performance in the first block of trials was worse than the second and third
block. Newman-Keuls tests showed that the second and third block did not
differ reliably from one another, while the first block was significantly
worse than the other two. This result suggests that experience with the
stimuli obtained in the first block led to better performance in the latter
blocks.

A number of significant interactions were also observed in these
analyses. First, the two-way interactions will be considered. A density x
S/N interaction was found (F[2,40] = 3.64, p < .04). Performance was slightly
better for high-density items in the +10 S/N condition, and slightly better
for low-density items in the 0 S/N and -10 S/N conditions. Newman-Keuls tests
showed that these differences between density conditions at each S/N ratio
were not significant. A S/N x talker interaction was found (F[2,40] = 4.03, p
< .03). Newman-Keuls tests showed that performance was better for the
single-talker group than the mixed-talker group in the +10 S/N and 0 S/N
conditions, but not for the -10 S/N condition. A density x block (F[2,401
interaction was = 7.79, p < .002) present, with performance significantly
different between the density conditions in the second block only (with
performance higher for the high-density items). An interaction was also found
for S/N x block (F[4,80] = 5.92, p < .001). Performance was significantly
different within each block of trials for the three S/N conditions.

Three significant three-way interactions were also fowid. An interaction
for density x block x talker was present (F[2,40] = 5.2, p < .001), S/N x
block x talker (F[4,80] = 4.42, p < .003), and density x S/N x block (F[4,80]

14.16, p < 0.0). The four-way interaction was also significant (F[4,80] .
7.76, p < 0.0).

Discussion

The results of the present experiment have implications for understanding
the effects of both talker uncertainty and lexical density on auditory word
recognition. First, the fact that performance was worse in the mixed-talker
condi,ion demonstrates that uncertainty due to talker variability has a
detrimental effect on recognition. Words presented at +10 S/N and 0 S/N
ratios were identified better when the words were from one talker, rather than
15 talkers. Performance for words presented at -10 S/N for both talker
conditions is about the same, and probably reflects floor effects.



With regard to lexical density, no overall significant difference in
perrJrmance between high and low density items was observed, although density
entered into several interactions with the other variables. Jnder these
particular conditions, 't appears as though the density measure which was
manipulated does not have any direct effect upon word recognition. However,
the interaction between density and S/N ratio suggests that lexical structure
in terms of the density manipulation may be important. Performance at the +10
dB S/N level was slightly better for high-density items. But, at the 0 dB S/N
level, performance was better for the low-den..,ity items. At the -10 dB S/N
level, performance was a little better for low-density items although there
may have been a root- effect in performance at that level. These particular
results suggest that when the acoustic-phonetic level of information becomes
increasingly degraded by an increase in S/N level, the information from the
lexical level of processing is relied on to a greater extent in order to
identify the word item. Since low-density item:, have fewer neighbors to
compete with (thus being less confusable), the low-density words are
identified more often.

There are a nue,er of possible reasons as to why performance dir! not
directly vary as a function of density. First, it may be the case that the
measure which we used was much too crude. Luce (1985) found that for visually
presented words, lexical density measured in number of words differing from
the target in one letter had a significant effect upon word identification.
However, for auditorily presented words (Luce, 1986), the l'ictura appears to
be more complicated. With spoken words, acoustic-phonetic co- :fusibility
combines with a mulitiplicity of lexical structural components to contribute
to spoken word recognition. Lexical density as measured by the absolute
number of neighbors does not appear to be an overtly salient factor in
recognition performance (see Luce, 1986). Hence, with a set of stimuli
restricted to CVCs, this structural effect may not be displayed very robustly.

Second, there may not have been sufficient power to pick up any effects
of the density measure. Each subject only made three responses to each word,
one response at each S/N ratio. The magnitude of the effect of this
particular density measure may be small, so that an insufficient number of
observations per stimulus may preclude eliciting the effect. Although bogh of
these explanations for the absence of an effect of density as used here are
speculative, it may be useful to investigate lexical structure with a
different metric in future studies of auditory word recognition.

With regard to the other findings, the effect of S/N ratio was
anticipated. Performance was best at the highest S/N, and worst at the lowest
S/N. The effect of block showed that performance was worst in the first block
of trials, and was significantly better in the second and third blocks, with
performance in the second and third blocks approximately the same. It appears
as though practice under these conditions results in an improvement which
reaches a ceiling by the end of the second block of trials. The lack of an
interaction between the talker variable and blocks shows that performance over
time was about the same for both talker groups.

Finally, the other various interactions which were found had little
bearing upon the variables of interest (talker and density). No two-way
interaction was found between talker condition and density; although a
three-way interaction was found between talker, density, and block. Closer
analysis showed that performance bev2een talker groups differed as a function
of density in the second block of trials.
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The effects of talker uncertainty on auditory word recognition in the
present experiment suggest that the processes which are involved in taking
speech input and transforming it into a lexical representation must include
mechanisms that adjust for differences between talkers. Whether this
mechanism is a "vocal tract normalization" process (Summerfield and Haggard,
1973), or a higher-level mechanism which is responsive to uncertainty in a
more generic sense is not clear at this time. The absence of effeet due to
lexical density precludes any speculatic. as to whether this putative
mechanism occurs at a level which incorporates structural factors of the
lexicon or not.

A number of questions arise a, to the nature of this phenomenon, in
particular, what aspects of w .rd recognition processes may be affected by
talker uncertainty. To further tvestigate questions of this sort, e-Jnverging
evidence from other experimental paradigms may be useful. For example,
experiments which look at word recall from memory may be useful in determining
whether talker variability affects processes relevant to memory. Mattingly et
al. (1983) did not find any differences in performance between word lists
that came from either one talker or many talkers; however, they used only
three different talkers. It is very likely that three talkers will not induce
enough variation in order to exhibit any effects upon recall. Also, the
serial-recall procedure as they used it may not tax processing capacity to the
extent that effects due to talker variability would be displayed robustly. It
may be necessary to increase the processing load in the task (i.e., use a
memory pre-load, increase presentation rate, etc.) before such effects would
be chibited. If talker variability in such a task has a detrimental effect
upon recall, examination of the serial position curve could provide useful
information concerning the locus of the effects. A lowered primacy region
would indicate that either encoding or rehearsal processes are being affected
by talker variation. Changes in the recency portion of the curve may not be
as easily interpreted in terms of short-term memory (see Baddeley and Hitch,
1977; Bjork and Whitten, 1974; Greene, 1986a,b).

In considering the effects of lexical structure on word recognition, it
may be more useful to use a confusability metric which accounts for a greater
proportion of performance instead of the simple density measure as used in the
present experiment (see Luce, 1986). If an interaction exists between a
lexical density metric and a talker variable, this would suggest that one
locus of the processes affected by talker variation is related to processes
azrociated with accessing words in the lexicon. Conversely, if there is an
effect of both lexical and talker variables with no interaction, then the
processes affected by talker variation may exist at separate levels
independently of structural factors in the lexicon.

-n summary, the present investigation was designed to study the effect of
talker uncertainty on auditory word recognition using English words that
differed in lexical density. The result demonstrated consistent differences
in identification performance of words in noise for single-talker, homogenous
conditions over mixed-talker conditions. The uncertainty due to changes in
talker from trial to trial in the mixed condition affected performance at the
two most favorable S/N ratios. However, no effect of the lexical density
manipulation was observed for the set of highly familiar CVC monosyllabic
words used in the study. Obviously, further research will be necessary to
understand the precise nature of these differences and to identify the locus
of the pz.,rceptual mechanisms responsible for talker normalization effects in
auditory word recognition. In future work it will be necessary to dissociate
effects due to phonetic processing at early stages of language understanding
from processes related to access of words in the mental lexicon. From the
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present result, it appears that the effects of talker normalization areprimrily perceptual in nature and restricted to developing some segmental
representation of the input signal.
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Abstract

Durations of the vocalic portions of speech are influenced by a large

number of linguistic and nonlinguistic factors (e.g., stress, speaking rate,

etc.). However, each factor affecting vowel duration may influence

articulation in a unique manner. The present study examined the effects of

stress and final-consonant voicing on the detailed stucture of articulatory

and acoustic patterns in consonant-vowel-consonant (CVC) utterances. Jaw

movement trajectories and Fl and F2 patterns were examined for a corpus of

utterances differing in stress and final-consonant voicing. Articulator

lowering and raising gestures were more rapid, longer in duration, and

spatially more extensive for stressed versus unstressed utterances. At the

acoustic level, stressed utterances showed more rapid initial Fl transitions

and more extreme Fl steady state frequencies than unstressed utterances. In

contrast to the results obtained in the analysis of stress, decreases in vowel

duration due to voicing did not result in a reduction in the velocity or

spatial extent of the articulatory gestures. Similarly, at the acoustic

level, the reductions in formant transition slopes and steady state freqencies

demonstrated by the shorter, unstressed utterances did not occur for the

shorter, voiceless utterances. The results demonstrate that stress-related
and voicing-related changes in vowel duration are accomplished by separate and

distinct changes in speech production with observable consequences at both the

articulatory and acoustic levels.
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Effects of Stress and final-consonant voicing on vowel production:

Articulatory and acoustic analyses

Speech timing and segmental durations are influenced by multiple
linguistic and nonlinguistic factors in fluent speech. Consider a simple
consonant-vowel-consonant (CVC) word spoken in a sentence frame. The duration
of the vocalic (vowel) portion of this word will be influenced by the inherent
or intrinsic duration of the intended vowel, the voicing feature of the
following conscnant, the speaker's overall speaking rate, the sentential
stress pattern, the position of the word within the sentence, and other
factors. Previous research suggests that in certain contexts, vowel duration
may supply useful perceptual information for many of these factors (Ainsworth,
1972; Denes, 1955; Fry, 1955, 1965; Klatt & Cooper, 1975; Raphael, 1972).
However, the fact that segmental durations are influenced by multiple factors
makes it difficult to understand how a given pattern of acoustic durations can
supply unambiguous perceptual information concerning each factor known to
affect the pattern.

An example from the present study may clarify this point. The example
deals with the effects of stress and final-consonant voicing on vowel
production. Consider the three acoustic waveforms displayed in Figure 1. The

Insert Figure 1 about here

waveforms in the top and middle portions of the figure represent the CVC
syllable /bab/, produced in a sentence context. The /bab/ token at the top of
the figure received primary sentence stress during production. The /bab/
token in the middle of the figure was not stressed. A comparison of the
durations of these tokens reflects the general pattern reported in the
literature; vowels are generally longer in a stressed context than in an
unstressed context (Cooper, Eady, & Mueller, 1985; Fry, 1955; Parmenter &
Trevino, 1936). The relationship between stress and vowel duration suggests
that vowel duration may provide information about stress with long vowel
durations cuing stressed syllables. Now consider the waveform displayed at
the bottom of Figure 1. This waveform is based the CVC syllable /bap/. This
token received primary stress during production yet it is more similar to the
unstressed /bab/ token than to the stressed /bab/ token in terms of vowel
duration. The shorter duration of the stressed /bap/ token in comparison to
the stressed /bab/ token reflects the influence of final consonant voicing on
vowel duration; vowels followed by voiced final consonants are generally of
greater duration than vowels followed by voiceless final consonants (Peterson
& Lehiste, 1960; Luce & Charles-Luce, 1985). The unstressed /bab/ and the
stressed /bap/ in Figure 1 are similar in duration and are both shorter than
the stressed /bab/, but for entirely different reasons. Apparently vowel
duration, as an isolated cue, cannot disambiguate durational differences due
to stress from differences due to final-consonant voicing.

While ambiguous as an isolated cue to stress or voicing, vowel duration
may provide useful information for stress and voicing when used in combination
with other perceptual cues. The present study focuses on additional
perceptual information contained within the vowel portions of the speech
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stressed /bab/

unstressed /bab/

stressed /bap/

Figure 1. Acoustic waveforms from three utterances differing in stress
and final-consonant voicing (speaker: VS).



signal. It may be that each of the factors influencing vowel duration has a
ique influence on the detailed acoustic structure of a given vowel (i.e., a

specific "signature"). Some support for this hypothesis may be obtained from
an examination of the literature concerning the effects of stress any?
final-consonant voicing on formant patterns.

Regarding stress, it has been reported that in addition to being shorter
in duration, unstressed vowels are often reduced or neutralized toward /A / in
formant structure (DeLattre, 1969; Gay, 1978; Harris, 1978; Lindblom, 1963).
Thus, a structural change in the formant patterns accompanies the
stress-related durational change. While the importance of vowel duration as a
cue to stress has been examined by a number of researchers (Fry, 1955, 1965;
Morton & Jassam, 1965; Nakatani & Aston, 1978; Westin, Buddenhagen, & Obrecht,
1966), less attention has been given to the potential role of vowel formant
structure in providing stress information. As used here, "formant structure"
refers to formant properties such as frequencies, transition slopes,
transition and steady-state durations, etc. The neutralization of formant
frequencies towards /A / is an example of a change in formant structure which
may provide stress information.

Fry (1955, 1965) used two-formant synthetic stimuli to compare syllabic
amplitude, duration, fundamental frequency, and formant structure as stress
cues in lexical stress pairs (e.g., com'bat and com bat'). By orthogonally
varying duration and one of the other variables (e.g., amplitude) while
holding the remaining variables constant, Fry ordered the four variables in
terms of perceptual importance. His ordering was: fundamental frequency,
duration, amplitude, and formant structure. Unfortunately, Fry's experimental
techniques were extremely primitive. Fry (1965) varied the steady-state
frequency of synthetic vowels in order to examine how vowel reduction affects
stress judgments. The naturalness of these stimuli and the extent to which
changing steady-state target frequency approximates normal vowel reduction are
both open to question. Thus Fry's (1965) experiments may be a poor test of
formant structure as a stress cue. Summers (1981) reexamined this issue using
natural productions of lexical stress pairs. Using computer editing, he
increased the durations of unstressed vowels to compare the importance of
duration versus structure as cues to stress. His results showed, in contrast
to Fry's (1965) earlier findings, that vowel structure outweighed vowel
duration as a cue to stress in many cases. Thus listeners may rely more on
vowel structure for stress information than Fry's (1955,1965) results would
lead one to expect.

Reduction of formant frequencies towards /A/-like values does not appear
to accompany voicing-related reductions in vowel duration. However,
consistent voicing-related changes in formant structure have been reported in
the literature. Soli (1982) carried acoustic analyses of productions of /jus/
and /juz/ by two speakers at two speaking rates and reported that /jus/ tokens
had proportionally longer initial transitions than /juz/ tokens which had
proportionally longer steady-state regions.

Perceptual experiments have demonstrated the importance of formant
structure in cuing final-consonant voicing. Fitch (1981) demonstrated that
when vowel duration and closure duration were held constant, a vowel
containing a longer initial transition was more likely to be heard as
preceding a voiceless stop while a vowel containing a longer steady-state
region was more likely to be heard as preceding a voiced stop. Thus Fitch's
(1981) results with stop consonants and Soli's (1982) findings with fricatives
suggest the same formaat structure component as a cue to final voicing. With
the exception of these two studies, previous research has devoted more
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attention to vowel duration than formant structure as a cue to final voicing
(Derr & Massaro, 1980; Luce & Charles-Luce, 1985; Raphael, 1972). Other
research has focused on the ratio of vowel duration to fricative or closure
duration as a cue to final-consonant voicing (Denes, 1955; Port, 1981; Port &

Dalby, 1982).

The present research examines changes in the detailed articulatory and
acoustic structure of vowels which accompany stress-related and
voicing-related changes in vowel duration. Articulatory movement data and
formant data were collected for a set of CVC utterances varying in stress and
final-consonant voicing. The articulatory data were obtained through an
optical tracking system which monitored the movement of light-emitting diodes
(LED's) attached to subjects' lips and jaw during production. The formant
data were obtained by simultaneously recording the speech signal. Specialized
hardware and software allowed for the storage and analysis of the articulatory
and acoustic data in a time-locked fashion.

The goal of this research was to describe how changes in stress and
final-consonant voicing affect articulatory movement patterns and formant
patterns. Consistent stress-related and voicing-related changes in movement
patterns and formant patterns may convey perceptual information for stress and
voicing. Previous research has already identified some of the ways in which
stress may influence articulatory and acoustic characteristics of vowels.
This previous work allows one to generate several predictions about the
effects of stress on movement patterns and formant patterns in the present
study. For example, in comparison to stressed utterances, unstressed
utterances should display reductions in the maximum displacement of the lips
and jaw (Kelso, Vatikiotis-Bateson, Saltzman, & ray, 1985; Kent & Netsell,
1971) and concommitant reductions in formant frequencies toward more central
(IA/-like) values (Lindblom, 1963). In reducing maximum displacement, the

entire articulatory movement pattern is restructured. Similarly, in reducing
steady-state formant frequencies, the formant trajectories are restructured.
The present focus is on describing this restructuring at both the articulatory
and acoustic levels. Changes in the entire formant pattern rather than
changes in steady-state target frequencies may provide the relevant perceptual
information for assignment of stress. By collecting productions of utterances
which vary in stress and final-consonant v icing, and by examining the
articulatory movement patterns and formant patterns associated with vowels
from these utterances, it should be possible to identify aspects of

articulatory id acoustic structure which vary across utterances differing in

stress and final-consonant ioicing. Characteristics of the articulatory and
acoustic patterns which show clear oAfferences across stress levels and across
voicing conditions may provide the listener with perceptual information that
is used in conjunction with vowel duration to specify stress and
final-consonant voicing.

A further goal of this research was to map stress-related and
voicing-related changes in the movement patterns to changes in the formant
patterns and vice versa. The relations we examined between the articulatory
and acoustic data were fairly straightforward. The main articulatory and
acoustic data to be reported are jaw movement data and Fl data. Thf! test

utterances were CVC's containing the vowels /a/ or /at/. These vowels are
produced with the tongue low in the oral cavity which produces a high first

formant frequency. In the present study we assumed that jaw height and tongue
height bear the same relationship to Fl frequency. Thus, low jaw positions
are expected to correlate with high Fl frequencies. Slopes of the jaw
movement gestures will be compared with slopes of Fl transitions. For

example, a sapid initial jaw-lowering gesture is expected to correlate with a
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steep Fl initial transition. Finally, durations of various components of the
articulatory gestures will be compared with durations of components of the Fl
trajectory. For example, a long jaw-raising duration at the end of a vowel is
expected to correlate with a long Fl final transition.

Method

Stimuli. The utterances examined were CVC syllables with initial
consonant ./b/, vowel ./a/ or /ae /, and final consonant ./b/, /p/, /v/, or
/f/. Thus the stimulus set contained final voiced and voiceless stops and
final voiced and voiceless fricatives. The vowels and final consonants chosen
involve significant jaw and lip movement in their production.

Procedure. Three male native English speakers (BW, VS, and EB) produced
multiple repetitions of each test stimulus (e.g., /bab/) embedded in the
sentence frame: "I'll be at the bus :Ix up the street." Speakers were
instructed to produce each sentence with contrastive stress on the target
utterance or with stress on the word immediately preceding it, leaving the
target utterance unstressed. Speakers produced 10 repetitions of each
utterance at each stress level. A total of 160 utterances were produced by
each speaker (2 stress levels x 2 medial vowels x 4 final consonants x 10
repetitions). Tokens were repeaed in instances in which the speaker or
either of two judges believed that a mispronunciation of the desired utterance
had occured.

The Haskins Laboratory's Selspot optical tracking system was used to
obtain jaw and lower lip position data during utterance production. During
production by each speaker, the Selspot camera tracked the movements of
infrared LED's placed at four locations: the midline of the vermilion border
of the upper and lower lips, the tip of the nose, and the the point of the
jaw. Each speaker was seated 21 inches in front of the Selspot camera wit'
his face parallel to the camera's focal plane. A microphone was positioned to
one side of the speaker's face so chat it VA not occlude any of the LED's.
Prior to stimulus production, the position of each LED was recorded wi h the
jaw and lips in a normal resting position. As the utterances were being
spoken, the speech waveform, position data from each LED, and a timing signal
produced once every second were recorded on separate channels of an FM tape
recorder.

The Haskins Laboratory's Physiological Signal Processing (PSP) software
system (Gulisano, 1982) was used to sample the movement records and associated
speech waveforms into a PDP 11/45 computer and to store these data in a
time-locked fashion. The LED movement data were sampled by the computer at a
rate of 200 Hz and the speech waveform data were sampled at 10,000 Hz. The
LED movement data were numerically smoothed using a 25 ms triangular window.
Synchranization of the speech and movement data .ras maintained to within 2.5
ms of accuracy with the PSP software.

Measurement of total vowel duration. Total vowel duration of each
utterance was determined from visual inspection of a CRT display of its
acoustic waveform. For utterances containing final stop consonants, total
vowel duration was defined as the period from voicing onset following release
of the initial /b/ to onset of fin ,1 closure. For utterances containing final
fricatives, total vowel duration was defined as the period from voicing onset
to frication onset. Final closure, for target utterances containing final
stops, and frication onset, for utterances containing final fricatives, will
henceforth be referred to as "vowel offset". Voicing onset following release
of the initial /b/ will be referred to as "vowel onset".
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Articulatory analyses. Vertical movements of the jaw and lower lip were

examined for the vowel portion of each utterance. The jaw movement data will
be described in this report. The lower lip data are not included because they
did not differ in any important respect from the jaw results. The 200 Hz
sampling rate provided jaw position data at 5 ms intervals.

Figure 2 displays jaw movement traces for the three utterances shown in

Figure 1. The figure isplays clear differences in jaw movement between
utterances differing in stress and final voicing. These differences will be

examined at length in later sections. The figure is provided here to help
clarify the segmentation process used in analyzing the articulatory data,

which will now be described.

Insert Figure 2 about here

Jaw movement traces from each utterance were segmented into three

sections corresponding to an initial jaw lowering portion, a steady-state
portion between lowering offset and raising onset, and a final raising

portion. The following segmentation rule was used to divide each jaw trace
into these three components. First, jaw position at vowel onset and position

at maximum lowering were determined. The total change in jaw position from
onset to maximum lowering was then calculated. A cutoff value was then

established which corresponded to 80% of the change in position from vowel
onset to maximum lowering (position at vowel onset .8(position at maxinum
lowering position at vowel onset). The first point in the movement trace
with a value below this cutoff was defined as the first point of the

steady-state region. Similarly, the last point in the trace with a value
below this cutoff was defined as the final point in the steady-state region.

The use of this rule provided an objective method of dividing each jaw
movement trace into an initial lowering portion, a steady-state portion, and a

final raising portion. As will be seen, the same segmentation strategy was
applied to the Fl data, dividing each formant pattern into an initial rising

transition, a steady-state region, and a final falling transition.

Formant analyses. Linear predictive coding (LPC) analysis was used to

examine tie spectral-temporal structure of Fl and F2 for the vowel portion of

each utterance. Linear prediction coefficients were calculated every 5 ms

using the autocorrelation method. Thus the spectral analysis matched the
articulatory analysis in using a 5 ms interval between samples. Fourteen LPC

coefficients and a 20 ms Hamming window were used in the LPC analyses. A

peak-picking algorithm was applied to the LPC spectra to estimate formant

frequencies (ILS version f.0, Signal Technologies Corporation, 1985). Figure

3 displays Fl frequency traces for the utterances shown in Figure I. The

figure is provided to clarify the following description of the segmentation of
the Fl frequency traces.

Insert Figure 3 about here
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As already mentioned, the Fl data from each utterance were segmented into
three sections: a rising initial transition, a steady-state region, and a
falling final transition. The segmentation rule used to divide each Fl trace
was the same one used in segmenting the jaw movement traces. First, the total
change in Fl frequency from %rowel onset to peak Fl frequency was calculated.
A cutoff value was then established which corresponded to 80% of the change in
frequency from vowel onset to peak Fl frequency. The first point in the Fl
trace with a frequency greater than this cutoff value was defined as the first
point of the steady-state region. The last point in the trace with a value
greater than this cutoff was defined as the final point in the steady-state
region.

By applying the same segmentation strategy to both the jaw movement data
and the Fl data, each set of data was divided into initial transitional
regions, medial steady-state regions, and final transitional regions. The
durations of these three regions were examined for each movement trace and
each Fl trace. The slopes of the transitional regions were also examined for
each trace. Initial transition slopes were calculated by dividing the change
in position (or frequency) from vowel onset to steady-state (the 80% cutoff
value) by the duration of the initial transition. Final transition slopes
were calculated in an analogous fashion. Finally, jaw positions and Fl
frequencies at vowel onset, at vowel offset, and at the cutoff value used to
define the steady-state region, were examined. Altogether, a total of eight
descriptive properties were examined for each jaw movement trace and for each
Fl trace. Regression analyses, described in the following section, were used
to determine the influence of stress and final-consonant voicing on each of
these jaw movement and Fl properties.

Stress and final-consonant voicing influences on jaw movement and Fl
structure are the main foci of this study. One additional acoustic
measurement included in the analysis was F2 peak frequency. F2 structure was
not examined in detail in the present study for two reasons. First, given
that the articulatory data are vertical (up-down) position data, there was
little expectation that these data would bear a close relationship to F2 which
is generally associated with the horizontal (front-back) position of the
tongue. Secondly, a number of the F2 trajectories did not contain initial
formant transitions and therefore could not be segmented into transitions and
steady-state regions using the segmentation strategy described above. The
analysis of F2 peak frequency in the present study was included in order to
determine the extent to which vowel neutralization (movement of formant
frequencies towards /A/-like values) in Fl was independent of or correlated
with neutralization in F2.

Statistical Analyses. The influence of stress and final-consonant
voicing on various articulatory and acoustic properties of the test utterances
was examined using multiple regression techniques. Each utterance was coded
in terms of stress, final-consonant voicing, final-consonant manner , and
medial vowel. Since each of these variables is dichotomous (e.g., stressed,
unstressed), each could be described in a single vector containing the values
1 and -1 (i.e., contrast coding). Interactions were also coded into vectors
containing the values 1 and -1 by multiplying the values from the main effect
vectors involved in the interaction. Articulatory and acoustic properties of
the test Ltterances (e.g., Fl steady-state frequency, jaw steady-state
position) were then used as dependent variables in regression analyses with
stress, final-consonant voicing, etc., serving as independent or predictor
variables. The question of whether a given predictor variable (e.g., stress)
was significantly related to a given dependent variable (e.g., Fl steady-state
frequency) was addressed by examining whether the vector coding that predictor



made a significant contribution to the p:rediction equation. This was
determined by testing the regression coefficient (the b weight) of each vector
for a significant deviation from zero. Separate analyses were carried out for
each of the three speakers. Each regression analyses used in this study

included 15 predictor variables (the main effects of stress, final-consonant
voicing, vowel, and final-consonant manner, and all possible interactions

among these factors). Three of these 15 factors were not examined or tested
for significance since they did not involve stress or final-consonant voicing
(the factors not tested were the vowel and final-consonant manner main effects
and th.. vowel x manner interaction). Therefore, a total of 12 predictor

variables were tested for significance in each analysis. The large number of
analyses carried out in the present study and the large number of significance
tests carried it out within each analysis made it necessary to adopt a fairly
stringent alpha level for testing each individual predictor variable. A

value of .004 was used as the critical value in all tests of individual
predictor variables. The probability of a Type 1 error when 12 significance

tests are carried out at .004 is approximately .05. This is the overall
probability of a Type 1 error for each analysis of a given acoustic or

articulatory property in the present study.

Regression analyses were used in the present study rather than the more

common analysis of variancy approach in order to deal with cases of missing
data. Three utterances were unavailable due to mistakes in the original

computer-sampling of the utterances. In addition, for each speaker there were
several utterances for which reliable Fl tracks could not be obtained. These

utterances were excluded from all analyses including the analyses of total
e,gel duration and of jaw movement properties. The statistical procedures

involved in the repeated-measures analysis of variance that would be

appropriate to the present experiment are not easily modified for use in an

experiment in which each cell does not contain the same number of data points
(i.e., utterances). The multiple regression techniques used here do not

require equal cell N's and are therefore more appropriate for the present
data. The analysis of variance and regression approaches are statistically

identical in cases of equal cell N's. Of the 160 utterances produced by each
speaker, 155 were available for the analyses of BW's productions and 156 were

available for EB and VS. At least 8 of the original 10 utterances were
available in each utterance category for each speaker.

The unequal cell N's in the present study make arithmetic means only

meaningful at the individual cell level. Above the cell level, the

appropriate comparison is between least squares estimated means based on the

regression equation (at the individual cell level least squares estimated
means and arithmetic means are identical). All references to means in the

following sections refer to least squares estimated means.



Results I

Influence of Stress and Final-Consonant Voicing
on Total Vowel Duration

This section will describe stress and final-consonant voicing effects on
total vowel duration. As already noted, previous research has demonstrated
that each of these factors significantly influences vowel duration. The
expected stress-related and voicing-related differences in vowel duration must
be demonstrated in the present data prior to examining changes in the
articulatory and formant data which accompany these changes in duration.

Mean total vowel durations for stressed utterances and unstressed
utterances are presented for each speaker in the lefthand panel of Figure 4.
For each speaker, stress had a significant influence on the total vowel
duration. Stressed utterances (S+ utterances hereafter) were longer in
duration than unstressed utterances (S- utterances) (p < .0001 for each
speaker). These results are in agreement with previous studies reporting
stress-related differences in vowel duration (Cooper, Eady, & Mueller, 1985;
Lieberman, 1960; 011er, 1973; 'Parmenter & Trevino, 1936; Summers, 1981).

Insert Figure 4 about here

Mean total vowel durations for utterances containing voiced final
consonants (V+ utterances hereafter) and for utterances containing voiceless
final consonants (V- ...tterances) are presented in the righthand panel of
Figure 4. V+ utterances were significantly longer in duration than V-
utterances for each speaker (ps < .0001). Thus, the expected voicing-related
differences in vowel duration were also present in these data (Denes, 1955;
House & Fairbanks, 1953; Luce & Charles-Luce, 1985; Mack; 1982; Peterson &
Lehiste, 1960).

For speaker EB, the stress and voicing main effects were mediated by a
significant stress x voicing interaction (p< .0001). The stress x voicing
interactions for speakers VS and BW fell short of the .004 significance level
(p. .0101 (VS) and p . .0089 (BW)). However, the nature of the stress x
voicing interaction was similar across speakers In each case, while S+
utterances showed greater vowel durations than S- utterances regardless of
final-consonant voicing, stress had a greater effect on duration for
utterances containing voiced final consonants than voiceless final consonants.
For EB, only a very small change in vowel duration (approximately 2.5 ms) was
observed across stress conditions for V- utterances. The stress x voicing
interaction can also be described in terms of the final-consonant voicing
effect. While V+ utterances showed longer vowel durations than V- utterances
within each stress condition, voicing had a greater influence on duration for
stressed utterances than unstressed utterances for each speaker.

One way of describing these interactions is to assume that a change in
stress did not influence total vowel duration as much for the durationally
shorter voiceless utterances as for the longer voiced utterances.
Alternatively, final-consonant voicing did not influence the duration of the
shorter unstressed utterances as much as it did for the longer stressed
utterances. These results would be expected given Klatt's (1973, 1975, 1976)
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proposal on the "incompressibility" of segment durations beyond some minimum
value. The present data support incompressibility if it is assumed that
destressing (or devoicing) did not decrease the duration of voiceless (or
unstressed) utterances by a larger amount due to a limit on minimum vowel
duration. Klatt has suggested that this m'_ilimum duration "reflects a minimum
time of execution of the required crticulatory program" (Klatt, 1973, p.
1103).

For speaker SW, the stress effect was also mediated by a significant
stress x final-consonant manner interaction (E< .0001). The influence of
stress on vowel duration was greater for utterances containing final
fricatives than final stops. This pattern is again in accord with Klatt's
incompressibility proposal. Once again the durationally shorter utterances
(in this case, the utterances containing final stop consonants) showed less
durational change across stress conditions than the longer (fricative)
utterances.

Taken together, the results demonstrate that the expected stress-related
and voicing-related differences in total vowel duration are present in these
data. The following sections examine changes at the articulatory level and
changes in Fl and F2 which accompany stress and voicing-related changes in
vowel duration.

Results II

Influence of Stress and Final-Consonant Voicing on Jaw Movement

This section examines the effects of stress and final-consonant voicing
on jaw movement patterns during vowel articulation. Eight descriptors of each
articulatory gesture were examined. The initial jaw-lowering portion of the
gesture was examined in terms of jay position at voicing onset, lowering
gesture slope, lowering gesture duration, and position at lowering offset
("steady-state" position as defined in the Method section). The steady-state
portion of the gesture following lowering offset and preceding raising onset
was examined in terms of jaw position and steady-state duration. The final,
raising portion of the gesture was examined in terms of jaw position a'
raising onset (steady-state position), raising gesture slope, raising gescur(
duration, and position at vowel offset. Mean values for stressed versus
unstressed utterances for each of these articulatory variables are listed for
each speaker in Table I. Mean values for V+ versus V- utterances are listed
in the righthand portion of the table.

Insert Table I, Figure 5, and Figure 6 about here

The mean values listed in Table I for S+ and S- utterances (with the
exception of lowering and raising gesture slopes) are represented graphically
in the three panels of Figure 5. Each speaker's data appear in a separate
panel. Within each panel of the figure, mean values for stressed versus
unstressed utterances are represented by lines connecting four points (these
four points are labelled for the line representing S, utterances in the upper
panel of Figure 5). The first point represents jaw position at vowel onset.
The second and third points represent jaw steady-state position (th.. 80%
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Table 1. Least squares estimated means on articulatory movement variables

for S+ versus S- utterances and V+ versus V- utterances.

Speaker

VS
8W
EB

VS
8W
ES

stressed
utterances

-0.95
-1.42
-3.22

-10.56
-6.17

-13.36

unstressed
utterances

-1.03
-1.67
-3.43

-8.25
-4.92
-8.65

stressed
unstressed

0.07
1.25
U.20

-2.31 **

-1.25 ***
-4.71 **

voiced
utterances

-0.97
-1.59
-3.16

-9.14
-5.16

-10.26

voiceless
utterances

-1.01
-1.49
-3.48

-9.67
-5.93

-11.75

voiced -
voiceless

0.04
-0.10
0.32

.53

.77
1.49 ***

VS 42 35 7 * 38 39 -1

8W 40 38 2 37 41 -4

LB 38 35 3 "* 36 36 0

VS -5.39 -3.89 -1.50 **. -4.45 -4.83 0.38 **
BW -3.87 -3.51 -0.37 **. -3.49 -3.89 0.40 a.
ETA -8.27 -6.47 -1.80 *** -6.99 -7.75 0.76 ***

VS 94 72 22 *** 92 73 19 a**

BW 83 64 19 ** 84 62 22 ***

ETA 75 55 20 *** 74 55 19 a**

VS 11.31 10.10 1.20 *a* 8.63 12.78 -4.15 ***

8W 10.75 9.24 1.51 *** 9.40 10.59 -1.19 *
EB 16 60 11.10 5.50 **. 11.24 16.46 -5.22 ***

VS 83 67 16 *** 87 62 25 a**

8W 68 63 5 76 54 22 **a

EB 65 75 -10 ** 82 58 24 ***

VS 3.38 2.59 0.80 *** 2_98 2.99 -0.01
8W 2.84 1.97 0.87 *** 3.14 1.67 1.46 **

LB 1.57 1.13 0.43 1.46 1.24 0.22

p < .004
p < .001
p < .0001
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cutoff value). The final point represents position at vowel offset. The
distance along the x axis between points 1 and 2 represents jaw lowering
duration. The x-distance between points 2 and 3 represents jaw steady-state
duration. The x-- distance between points 3 and 4 represent jaw raising
duration. The mean jaw positions and mean durations for V+ and V- utterances
listed in Table I are shown in the panels of Figure 6 using the same format as
Figure 5. The mean slopes of the initial lowering gestures and final raising
gestures listed in Table I were not used in constructing Figures 5 and 6.
However, the slopes of the transitions in these figures are representative of
these mean slopes in most instances.

Influence of Stress and Voicing on Jaw Lowering

Jaw Position at Vowel Onset

For each speaker, mean jaw positions at vowel onset were slightly higher
for S+ utterances than S- utterances. However, differences in jaw position
across stress levels were not significant for any of the three speakers.
Similarly, final-consonant voicing did not significantly influence jaw
position at vowel onset for any of the speakers.

Jaw Lowering Slope

For each speaker, lowering gesture slopes were significantly steeper in
S+ utterances than in S- utterances (2< .0001 for each speaker). For BW, this
main effect was mediated by a significant stress x voicing x vowel interaction
(2= .0037). This interaction reflected a smaller stress effect for /a/
utterances containing voiceless final consonants than for other utterances.
The stress effect was consistent in direction (i.e., S+ utterances showed
steeper lowering slopes than S- utterances) within each voicing x vowel
condition. The steeper slopes demonstrated by S+ utterances for each speaker
suggest that these utterances are produced with more rapid jaw lowering than
occurs for S- utterances.

Final-consonant voicing also influenced jaw lowering slopes. For BW and
EB, V- utterances demonstrated significantly steeper jaw lowering slopes than
V+ utterances (2. .0004 (PW);p. .0001 (EB)). The main effect of voicing was
nonsignificant for VS (p= .0972) although V- utterances again showed steeper
slopes than V+ utterances. A significant stress x voicing x vowel interaction
mediated the voicing main effect for BW (the interaction mentioned in the
previous paragraph in conjunction with the stress main effect). For this
speaker, V- utterances did not have steeper lowering slopes than V+ utterances
in stressed utterances containing /a/. The change in slope across voicing
conditions was larger in each of the other stress x vowel conditions, all of
which demonstrated steeper slopes for V- utterances, than in this one case
where V+ utterances demonstrated steeper slopes. Although the results
concerning the effect of final-consonant voicing on lowering gesture slopes
are not consistent, the data suggest that V- utterances tend to demonstrate
steeper lowering slopes than V+ utterances, suggesting that more rapid jaw
lowering may be associated with voiceless final consonants.

Jaw Lowering Duration

In addition to displaying steeper slopes, lowering gestures for S+
utterances were also durationally longer than for S- utterances. For. EB and
VS, S+ utterances showed significantly greater lowering durations than S-
utterances (2. .001 (EB); p< .0001 (VS)). S+ utterances also demonstrated
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longer durations for BW although the stress effect was not statistically

significant (p= .0441).

Final-consonant voicing did not significantly influence jaw lowering

duration for any speaker. Thus it appears that final-consonant voicing

influences total vowel duration without effecting the duration of the initial

jaw-lowering gesture.

Jaw Steady-state Position . ,osition at lowering offset)

Stress had a clear and consistent influence on jaw position at lowering

offset. S+ utterances showed significantly loweL jaw positions at lowering

offset than S- utterances for each speaker (p< .00u1 for each speaker).

Final-consonant voicing also had a significant effect on jaw position at

lowering offset. For each speaker, V- utterances demonstrated lower offset

positions than V+ utterances (2< .0001 for each speaker).

To summarize the data presented thus far, stress had an influence on the

velocity (slope), duration, and extent of jaw lowering gestures. Compared to

unstressed utterances, stressed utterances were produced with more rapid

lowering gestures of greater duration. The increase in velocity and duration

produced more extreme (lower) articulatory positions at the termination of

lowering for each speaker. Stress effects on lowering gesture slope and

position at lowering offset were more consistent than on lowering gesture

duration for speaker BW.

Final-consonant voicing had less influence than stress on jaw lowering.

Voicing did influence jaw-lowering slopes with V- utterances having slightly

steeper lowering slopes than V+ utterances. In addition, the jaw reached a

more extreme (lower) position at lowering offset in V- utterances than in V+

utterances. With no consistent voicing influence on jaw position at vowel

onset or on duration of the jaw lowering gesture, it appears that the slight
increase in the slope of the lowering gesture seen for V- utterances allowed

these utterances to achieve lower jaw positions at lowering offset.

Voicing-related differences in jaw lowering slope and position at lowering

offset were generally not as large as the stress-related differences in these

same variables.

Influence of Stress and Voicing on Jaw Steady-State Region

As described above, S+ utterances displayed consistently lower

steady-state positions than S- utterances. The duration of the steady-state

region was also significantly influenced by stress; S+ utterances showed

longer steady-state regions than S- utterances for each speaker (ps < .0001).

The stress main effects were mediated by significant stress x voicing

interactions for BW and EB (2. .0008 (BW);p< .0001 (EB). For these speakers,

stress - related differences in jaw steady-state duration were greater for V+

utterances than V- utterances. Thus, jaw steady-state position and

steady-state duration were both significantly influenced by stress; S+

utterances displayed more extreme (lower) jaw steady-state positions and

greater steady-state durations than S- utterances.

As already described, final -- consonant voicing influenced jaw steady-state

position; V- utterances displayed lower steady-state positions than V+

utterances. The duration of the steady-state region was also significantly

influenced by voicing; V+ utterances showed longer steady-state regions than

V- utterances for each speaker (ps < .0001). As mentioned above, significant
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stress x voicing interactions mediated the stress and voicing main effects for
BW and EB. For these two speakers, voicing influenced duration more in S+
utterances than in S- utterances. Significant voicing x manner interactions
occured in the analyses of jaw steady-state duration for BW and EB as well (p=
.0039 (BW); p< .0001 (EB)). The change in duration across voicing conditions
was greater in utterances containing final fricatives than final stops for
these two speakers.

The present results suggest that while V- utterances demonstrate mow
extreme steady-state positions than V+ utterances, steady-state positions are
maintained for briefer periods in V- utterances than in V+ utterances
Furthermore, it appears that voicing-related (and stress-related) difference_
in jaw steady-state duration are greater in utterances which do not have other
factors operating to reduce their duration. Thus, for EB and BW, the change
in steady-state duration across voicing conditions was greater in S+
utterances than in S- utterances and greater in utterances containing final
fricatives than final stops. Similar interactions were resrt3d in the
analysis of total vowel duration.

Influence of Stress and Voicing on .:aw Raising

Jaw Raising Slope

Stress had a clear and consistent influence on the slope of the jaw
raising gesture; S+ utterances demonstrated significantly steeper slopes than
S- utterances for each speaker (ps < .0001). A significant strels x voicing
interaction mediated the stress main effect for EB (p,- .0004). For this
speaker, the difference in slope across stress conditions was greater in V-
utterances than in V+ utterances.

Voicing also significantly influenced the slope of the jaw raising
gesture; V- utterances demonstrated steeper raising slopes than V+ utterances
for each speaker (p< .0001 (VS)(EB);p= .0004 (BW)). A significant voicing x
manner interaction mediated the voicing main effect for VS. For this speaker,
the voicing-related difference in raising slope was greater in utterances
containing final stops than final fricatives. As already mentioned, a
significant stress x voicing interaction mediated the voicing main effect for
EB. The change in slope across voicing conditions was greater in S+
utterances than in S- utterances for this speaker.

Jaw Raising Duration

Stress did not have a consistent influence on the duration of tie jaw
raising gesture. For VS, S+ utterances displayed significantly longer aising
durations than S- utterances (p< .0001). S+ utterances displayed longer
raising durations than S- utterances for BW also, although the stress main
effect was not significant for this speaker (p= .0189). For EB, the stress
main effect was significant but in the opposite direction to the pattern seen
for VS and BW. S+ utterances had significantly shorter raising durations than
S- utterances for EB (p= .0004). A significant stress x voicing interaction
mediated the stress main effect for VS (p= .0013). Stress-related differences
in raising duration were greater in V+ utterances than V- utterances for this
speaker.

One of the clearest and most consistent effects of voicing on jaw
articulation was on the duration of the raising gesture. For all speakers, V+
utterances demonstrated significantly greater raising durations than V-



utterances (ps < .0001). Significant voicing x manner interactions were
present in the analyses for BW and EB (2< .0001 (BW);p. .0002 (EB)). For

these two speakers, the difference in raising duration across voicing

conditions was greater in utterances containing final fricatives than final

stops. As already mentioned, a significant stress x voicing interaction was
present for VS (p= .0013). Voicing had a greater effect on raising duration

for S+ utterances than S- utterances for this speaker. Once again, these

interactions are similar in nature to the interactions reported in the

analysis of total vowel duration, i.e., stress and voicing effects on duration

are greatest in utterances where other factors are not operating to reduce

duration.

Jaw Position at Vowel Offset

Stress influenced jaw position at vowel offset; S+ utterances displayed

higher offset positions than S- utterances. The stress main effect was

consistent in direction across speakers but statistically significant for

speakers VS and BW only (p< .0001 (VS,BW);p. .0824 (EB)). For VS, stress x

voicing and stress x vowel interactions were also significant (p= .0008 and p

= .0017). The stress effect, while consistent in direction across voicing and

vowel conditions, was greater for V+ utterances than V- utterances and greater

for /ae/ utterances than /a/ utterances for this speaker. For BW, a

significant stress x manner interaction was present. For this speaker, S+

utterances showed higher offset positions than S- utterances within each

manner category with a larger stress- related difference for utterances

containing final fricatives than final stops.

Voicing did not affect jaw position at vowel offset in a consistent

manner across speakers. The main effect of voicing on offset position was

significant for BW only (p< .0001). V+ utterances displayed higher positions

at vowel offset than V- utterances for this speaker. No significant voicing

main effects were observed in the analyses of jaw offset position for VS and

EB. However, significant voicing x manner interactions wet2 present for each

of these speakers (p< .0001 (VS);p= .0007 (EB). For these two speakers, V+

utterances demonstrated higher offset positions than V- utterances for

utterances containing final fricatives while V- utterances had higher offset

positions for utterances containing final stops. A significant voicing x

stress interaction for VS (p= .0008) reflected the fact that voicing effects

were in opposite directions across stress conditions for this speaker. Within

S+ utterances, V+ utterances demonstrated higher offset positions than V-

utterances. For S- utterances, V- utterances had higher offset positions than

V+ utterances.

Stress effects on jaw movement can be summarized as follows. S+

utterances were produced with more rapid jaw lowering gestures that were of

greater duration than seen for S- utterances. These increases in velocity and

duration allowed for more extreme (lower) articulatory positions at lowering

offset for S+ utterances. Steady-state positions (following lowering offset

and preceding raising onset) were maintained for greater durations in S+

utterances than in S- utterances. Finally, S+ utterances demonstrated more

rapid jaw raising gestures allowing higher jaw positions to be attained at

vowel offset. The durations of jaw raising gestures were not influenced by

stress in a consistent manner across the three speakers.

Turning to final-consonant voicing effects, jaw loyering gestures were

slightly more rapid (i.e., had steeper slopes) and reached more extreme

(lower) positions at lowering offset for V- utterances than V+ utteranzes.

The voicing-related differences in jaw lowering slope and at lowerirg
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offset were not as large as the stress-related differences in these same
variables. Although jaw steady-state positions were more extreme (lower) in
V- utterances, steady-state positions were maintained for greater durations in
V+ utterances. Jaw raising gestures were more rapid in V- utterances but
durationally longer in V+ utterances. Voicing consistently influenced jaw
position at vowel offset for only one speaker (SW) with V+ utterances
demonstrating higher positions at vowel offset than V- utterances.

Although final-consonant voicing did have some influence on articulation
in the early (jaw-lowering) portions of the utterances, these effects ware not
as large as stress effects on these early portions. Voicing effects on
articulation became larger and more consistent in later portions of the
utterances. Stress, on the other hand, appears to have influenced jaw
articulation in a less time-dependent manner, affecting early and later
portions of the utterances approximately equally. The voicing results
contrast with the stress results in another important way. Recall that in
examining stress the utterances with a greater total vowel duration (i.e., the
S+ utterances) demonstrated more rapid lowering and lower positions at
lowering offset. In the voicing results, exactly the opposite pattern was
observed. Here the temporally shorter V- utterances display steeper slopes
and lower positions at lowering offset. This contrast between stress and
voicing effects on production is also evident in the formant data described in
the next section.

Results III

Influence of Stress and Final-Consonant Voicing on Formant Structure

This section examines the effects of stress and final-consonant voicing
on Fl structure and on F2 peak frequency during vowel production. Fl
structure was examined in terms of eight descriptive properties. Fl initial
transitions were examined for onset frequency, transition slope, transition
duration, and offset frequency (steady-state frequency as defined in the
Method section). The Fl steady-state region was examined for frequency and
duration. Fl final transitions were examined for final transition onset
frequency (equivalent to steady-state frequency), transition slope, transition
duration, and offset frequency.

Mean values for S+ versus S- utterances for each of these variables are
listed for each speaker in the lefthand p3rtion of Table II. Mean values for
V+ utterances versus V- utterances appear in the righthand portion of the
table. The Fl mean frequencies and mean durations for S+ and S- utterances
given Table II are displayed graphically in the panels of Figure 7. Each
panel of the figure contains two lines representing mean Fl values for
stressed versus unstressed utterances for a particular speaker. The initial
rising transitions in each panel are based on mean Fl onset frequencies and
mean initial transition durations. The steady-state regions represent mean
steady-state frequencies and steady-state durations. The final transitions
represent mean final transition durations anu offset frequencies. The mean
frequencies and mem, durations for V+ and V- utterances listed in Table II are
represented in the panels of Figure 8 using the same format as used in Figure
7. The mean slopes of the initial and final transitions listed in Table II
were not used in constructing Figures 7 and 8. However, the slopes of the
transitions in these figures are representative of these mean slopes in most
instances.
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Insert Table II, Figure 7, and Figure 8 about here

One goal of the present investigation was to determine the extent to

which stress-related and voicing-related changes in the articulatory data are
related to corresponding changes in the formant data. For example, we

expected that more rapid jaw movement would produce steeper formant

transitions, more extreme jaw lowering would produce more extreme formant

frequencies, etc. Having already presented the articulatory results for
stress and voicing effects on jiw movement, the present section will refer to

these results and describe the extent to which stress and voicing effects on
formant structure do or do not conform to expectations based on the

articulatory data.

Influence of Stress and Voicing on Fl Initial Transitions

Fl Onset Frequency

In our earlier analyses, S+ utterances demo.,..cat:ed slightly higher jaw

positions at voicing onset than S- utterances for each speaker. The small

differences in jaw position across stress levels were nonsignificant in each

case. These articulatory results led to the prediction that Fl onset

frequency would show little change across stress levels. Based on the

expectation that lower jaw positions correspond to higher Fl frequencies, a
tendency for S+ utterances to show slightly lower onset frequencies would be

anticipated. The expectation of no large stress effects on Fl onset frequency
was supported. The main effect of stress was significant for BW only, with S+
utterances showing higher onset frequencies than S- utterances (p. .0034).
The mean values for VS and EB were also in the direction of S+ utterances

showing higher onset frequencies. Thus, the expected relationship between jaw
position on Fl frequency was not entirely supported in this instance.

With regard to voicing, the articulatory data demonstrated little voicing
effect on jaw positioi at voicing onset. Thus Fl frequencies at voicing onset

were not expected to !how consistent differences across voicing conditions.

However, voicing did }Ave a consistent influence on Fl onset frequency with V+

utterances showing significantly lower onset frequencies than V- utterances

for each speaker (p< .0001 (VS,EB);p. .0034 (BW)). The results suggest that

jaw position at voicing onset may not be highly correlated with Fl onset

frequency.

Fl Initial Transition Slope

The articulatory data demonstrate more rapid initial jaw lowering

(steeper lowering slopes) for S+ utterances than for S- utterances for all

speakers. Fl initial transition slopes were expected to be steeper in S+

utterances than S- utterances as a result. Fl initial transition slopes were
significantly steeper for S+ utterances for BW and EB (p= .0033 (BW);p< .0001

(EB). The stress main effect was in the same direction but nonsignificant for

VS (p= .2484). A significant vowel x stress interaction was present for VS

(p= .0021). For this speaker, S+ utterances containing /a/ demonstrated

steeper slopes the S- /a/ utterances while S- utterances containing /ace/

demonstrated slightly steeper slopes than S+ /ae/ utterances. Thus the

expectation of S+ utterances demonstrating steeper Fl initial transitions was
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foraant property

Fl frequ.,ncy
at voicing
onset (Hz)

F1 initial
transition
slope (Hz /as)

Fl initial
transition
duration (as)

Fl steady-state
frequency
(Hz))

PI steady-state
duration (as)

Fl final
transition
slope (Hz /as)

F1 final
transition
duration (as)

Fl frequency
at vowel
offset (Hz)

F2 peak
frequency (Hz)

It

p
p
p

<

(

(

.004

.001

.0001

Table II.

for S+

Speaker

VS
BW
EB

VS
SW
EB

VS
8W
EB

VS
BW
EB

VS
BW
EB

VS
13w

EB

VS
13W

EB

VS
BW
EB

VS
w

LB

Least squares estimated

versus S- utterances and

stressed unstressec
utterances utterances

621 609
598 587
568 -.360

3.03 2.81
2.13 1.65
3.66 2.51

86 72
86 65
49 47

810 787
766 667
713 658

105 76
72 68
93 85

-3.66 -3.95
-3.97 -2.32
-2.16 -1.79

30 28
35 35
38 35

699 662
629 579
646 595

1552 1524
1409 1335
1489 1414

means on Fl

V+ versus

stressed -
unstressed

12
11
8

0.22
0.48
1.15

*14
21
2

23
99

0 *55

29
4

8

0.29
*-1.65

-0.27

2

0

3

37
k50

51

28
*74

70 * k *

and F2 variables

V- utterances.

voiced voiceless
utterances utterances

605 625
587 598
553 575

2.69 3.15
1.98 1.81
3.25 2.92

83 74
68 83
43 53

780 816
694 739
665 705

100 80
82 57
96 82

-4.20 -3.41
-3.48 -2.81
-2.08 -1.78

36 22
50 19
57 16

633 728
536 672
567 675

1550 1526
1360 1384
1954 1444

voiced -
voiceless

it-20
-11
-22

-0.46
0.17
0.33

9

-15
-10

***-36
***-45

-40 ***

20
25
14

-0.79
-0.67
-0.30

* *19
* *31

*41

-95
-136
-108

k24
-29
10
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borne out for two of the three speakers and for /a/ utterances from the third

speaker.

Voicing did not have as large or as consistent an influence on jaw

lowering slopes as stress. However, V- utterances did tend to demonstrate

more rapid jaw lowering (steeper lowering slopes) than V+ utterances (for EB

in particular). It was therefore expected that V- utterances would

demonstrate steeper Fl initial transitions than V- utterances. The formant

data did not support this expectation. Voicing did not have a significant

influence on Fl initial transition slopes for any of the speakers. Thus,

while the large and consistent differences in jaw lowering slopes observed

across stress conditions appeared to correlate with differences in Fl initial

transition slopes, the smaller changes in jaw lowering slopes seen across

voicing conditions were not reflected in the formant data.

Fl Initial Transition Duration

Jaw lowering durations were greater in S+ utterances than S- utterances.

This led to the prediction that Fl initial transitions would also be longer in

S+ utterances. Initial transitions were significantly longer for S+

utterances than S- utterances for VS and BW (p< .0001 (VS,BW)). S+ utterances

showed only slightly longer initial transition durations than S- utterances

for EB. The stress main effect did not approach significance for this

speaker.

Voicing did not significantly influence jaw lowering durations for any of

the speakers and was therefore not expected to influence F] initial transition

durations. A significant voicing effect on Fl initial transition duration was

present for BW (p. .0003) with V- utterances demonstrating longer durations

than V+ utterances. This main effect was mediated by a significant voicing x

vowel interaction (p<.0001). For BW, V+ utterances containing /a/

demonstrated longer Fl initial transitions than V- /a/ utterances while V-

utterances containing /ae/ were longer than V+ /ae/ utterances. Thus voicing

did not have a consistent main effect on Fl initial transition duration for

any of the three speakers.

Fl Initial Transition Offset Frequency (steady-state frequency)

Jaw positions at lowering offset (jaw steady-state positions) were lower

in S+ utterances than S- utterances for all speakers. These 1°4/tr jaw

positions were expected to correlate with higher Fl steady-state freque;:cies.

This expectation was supported for all three speakers with S+ utterances

demonstrating higher Fl steady-state frequencies than S- utterances (2< .0001

for each speaker). A significant stress x voicing interaction was also

observed for BW (p< .0001). Stress had a greater influence on steady state

frequency for V- utterances than V+ utterances for this speaker.

Turning to voicing, jaw steady-state positions were lower f(1 7-

utterances than V+ utterances for each speaker. V- utterances were therefore

expected to demonstrate higher Fl steady-state frequencies than V+ utterAnces.

This expectation was also borne out for all three speakers. For each speaker,

V- utterances demonstrated significantly higher Fl steady-state frequencies

than V+ utterances (p< .0001 for each speaker). A significant stress x

voicing interaction was present in the analysis of Fl steady-state frequency

for BW. For this speaker, the influence of voicing on Fl steady-state

frequency was greater for S+ utterances than S- utterances. A significant

voicing x vowel interaction was present in the analysis of Fl steady-state

frequency for VS (p = .0013). For this speaker, the voicing effect was
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greater for utterances containing /ae/ than /a/.

To summarize, differences in Fl initial transition structure across
stress levels were fairly well correlated with stress effects on jaw lowering.
The more rapid, durationally longer jaw lowering gestures demonstrated by S+
utterances apparently contributed to the more rapid, longer Fl initial
transitions seen for these same utterances. The lower jaw positions
demonstrated by S+ utterances appear to be related to the higher Fl
steady-state frequencies which S+ utterances also demonstrated.
Voicing-related changes in Fl initial transition structure were not well
predicted from the articulatory data in most cases. Lower Fl onset
frequencies demonstrated by V+ utterances did not correspond to significant
voicing-related differences in jaw position at voicing onset. No consistent
voicing-related differences in Fl initial transitions slopes or durations were
seen, although the articulatory data suggested that transitions slopes would
be slightly more rapid for V- utterances. The one case in which
voicing-related changes in articulation showed a clear relationship to changes
in formant structure concerned jaw position at lowering offset (steady-state
position) and Fl frequency at initial transition offset (steady-state
frequency). V- utterances displayed lower jaw steady-state positions and
higher Fl steady-state frequencies than V+ utterances for all three speakers.

Influence of Stress and Voicing on Fl Steady-state Region

F1 Steady-state Frequency and Duration

As already described, Fl steady-state frequencies were higher in S+
utterances than in unstressed utterances. S+ utterances were also expected to
demonstrate longer Fl steady-state durations based on the articulatory data
where the period between jaw lowering offset and raising onset (jaw
steady-state duration) was greater for S+ utterances. Longer Fl steady-state
durations for S4 utterances were clearly present for VS (p,' .0001). While S+
utterances displayed longer durations than S- utterances for BW and Eli also,
the stress main effect was not significant for either speaker (p= .4531 (BW);
2= .1068 (EB)). Thus the pattern of S+ utterances showing longer steady-state
durations than S- utterances was more reliable in the articulatory data than
in the formant data.

While V- utterances demonstrated higher Fl steady-st to frequencies than
V+ utterances, the articulatory data suggested that Fl steady-state durations
would be shorter for these utterances than for V+ utterances. That is, the
longer jaw steady-state durations demonstrated by V+ utterances were expected
to be correlated with longer Fl steady-state durations. V+ utterances
demonstrated significantly longer F1 steady-state durations than V- utterance
for VS and BW (p< .0001 (VS,BW)). Thr main effect of voicing was
nonsignificant for EB (2= .0079) although V+ utterances again showed longer
durations than V- utterances. Several interactions involving voicing
complicated these results. Significant voicing x vowel interactions were
present for both BW and EB (p< .0001(BW);p. .0003 (EB)). For each speaker, V+
utterances containing /ae/ were clearly -longer in duration than corresponding
V- utterances while V+ utterances were slightly shorter than V- utterances for
utterances containing /a/. In addition, a significant voicing x manner
interaction was seen for EB (2= .0002). For EB, Fl steady-state durations
were clearly longer in V+ utterances containing final stops than in
corresponding V- utterances. However, V- utterances containing fricatives had
slightly longer Fl steady-state durations than V+ utterances containing
fricatives. Thus while V+ utterances tended to demonstrate longer
steady-state durations than V- utterances, the pattern was not completely
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consistent. The pattern of V+ utterances showing longer steady-state regions,
while present in both the articulatory and formant data, was more consistent
and reliable in the jaw movement data than in the Fl data.

Influence of Stress and Voicing on Fl Final Transitions

Fi Final Transition Slope

The slopes of jaw raising gestures were steeper in S+ utterances than S--

utterances for each speaker, suggesting more rapid raising gestures for S+
utterances. These more rapid raising gestures were expected to be correlated
with steeper Fl final transitions for S+ utterances. This prediction was
supprted for BW; S+ utterances demonstrated significantly steeper Fl final

transitions than S- utterances (p< .0901). Stres3 did not significantly
influence Fl final transition slope for VS or EB. A significant stress x

vowel interaction for BW (p= .0007) was due to a larger stress effect for /a/
utterances than / / utterances. A significant stress x voicing interaction
was present in the analysis of final transition slope for EB (p= .0008). For

this speaker, the direction of the stress effect varied across voicing

categories. S+ utterances showed steeper final transitions for V- utterances
while S- utterances showed steeper transistions for V+ utterances. The
expectation of steeper Fl final transitions being correlated with S+

utterances was not consistently supported across speakers.

V- utterances demonstrated significantly steeper jaw raising slopes than

V+ utterances for all speakers. Therefore, it was expected that V- utterances
would i.emonstrate steeper Fl final transitions than V+ utterances. This
expectation was not supported; voicing did not have a significant effect on Fl
final transitior slopes for any of the speakers. A significant voicing x

manner interaction was observed in the analysis of Fl final transition slope

for BW (2. .0022). For BW, V+ utterances containing final fricatives showed

steeper slopes than corresponding V- utterances while V- utterances containing
final stops showed steeper slopes than corresponding V+ utterances. A

significant stress x voicing interaction was seen in the analysis of Fl final
transition slope for EB. For this speaker, V+ utterances showed steeper final
transitions than V- utterances in the S- context while V- showed steeper
slopes in the S+ condition. The expectation of steeper Fl final transition

slopes being associated with V- utterances was not supported.

Fl Final Transition Duration

Stress effects on jaw raising duration were extremely variable across
speakers (see Table 1) which led to an expectation of inter-speaker
variability in terms of stress effects on Fl final transition durations.
Little variability was seen however. Stress did not significantly influence
Fl final transition duration for any speaker. For each speaker, final

transition mean durations were slightly, but nonsignificantly, longer for S+
utterances than S- utterances.

Voicing had consistent effects on jaw raising durations with V+

utterances showing significantly longer raising duration than V- utterances
for each speaker. These longer raising durations were expected to be

correlated with longer Fl final transitions for V+ utterances. This

expectation was supported across speakers. V+ utterances demonstrated
significantly longer Fl final transition durations than V- utterances for each
speaker (2< .0001 for each speaker). Significant voicing x manner and voicing
x vowel interactions were present in the analyses of Fl final transition
duration for BW and EB (p< .0001 for the voicing x manner interactions and the

-252-



voicing x vowel interaction for EB;R. .0003 for the voicing x vowel
interaction for BW). For each speaker, voicing had a greater effect on
duration for utterances containing /a/ than fief, and a greater effect for
utterances containing final fricatives than final stops.

Fl Frequency at Vowel Offset

Jaw positions at vowel offset were higher for S+ utterances than S-
utterances for all speakers (significantly higher for VS and BW). The
expectation of low jaw positions correlating with high Fl frequencies would
therefore suggest that Fl final transition offset frequencies would be lower
in S- utterances than S- utterances. However, exactly the opposite pattern
was observed. Final transition offset frequencies were significantly higher
for S+ utterances than S- utterances for each speaker (p< .0001 for each
speaker). A significant stress x vowel interaction was also present for VS
(R. .0033), reflecting a larger stress effect for /a/ utterances than /ale/
utterances.

Voicing had a significant main effect on jaw position at vowel offset for
BW only. V+ utterances displayed higher offset positions than V- utterances
for this speaker. It was therefore expected that Fl offset frequencies might
be lower for V+ utterances than V- utterances for BW and that this pattern
might rlt be seen for the other speakers. However, V+ utterances showed lower
Fl offset frequencies than V- utterances for all speakers (p< .0001 for each
speaker). Significant voicing x manner interactions occurred in the analyses
of Fl offset frequency for BW and EB (Rs < .0001). For these two speakers,
voicing had a larger effect on offset frequency for utterances containing
final stops than final fricatives. The stress and voicing results suggest
that jaw position and Fl frequency. while consistently related to each other
during the central, steady -state portions of the vowels, are not closely
related at vowel onset or vowel offset.

F2 Peak Frequency

It has already been pointed out that F2 is traditionally thought of as
being related to the front-back position of the articulators (particularly the
tongue). Since the present study did not include articulatory measurements in
the horizontal plane, the F2 results were not compared with the articulatory
data.

F2 peak frequency means for S+ versus S- utterances and for V+ versus V-
utterances are listed in Table II. F2 peak frequencies were significantly
higher in S+ utterances than in S- utterances for each speaker (Rs < .0001).
A significant stress x vowel interaction mediated the stress main effect for
VS (p< .0001). For this speaker, S+ utterances containing /a/ showed slightly
lower F2 frequencies than S- utterances containing /a/ (means differed by less
than 5 Hz across stress conditions). Thus the pattern of S+ utterances
showing higher F2 peak frequencies than S- utterances, while consistent across
vowels for speakers BW and EB, was only true for utterances containing /de/
for speaker VS.

Final-consonant voicing did not have a consistent main effect on F2 peak
frequencies. For VS, V+ utterances showed significantly higher frequencies
than V- utterances (p< .0001). For BW, the voicing main effect was also
significant but in the opposite direction; V- utterances showed higher F2
frequencies than V+ utterances (R. .0004). The voicing main effect was not
signficant for speaker EB. However, a fairly consistent voicing-related
pattern was seen within each of these analyses. Significant voicing x vowel

-253-



interactions were present for each speaker (p< .0001 (BW, VS);p. .0011 (ED)).

For each speaker, V+ utterances containing /ae/ demonstrated higher F2

frequencies than corresponding V- utterances. For VS, voicing had a neglible

effect on F2 frequency for utterances containing /a/; the difference in means

across voicing conditions was less than 2 Hz. For BW and E8, the voicing

effect was in the opposite direction for utterances containing /a/ compared to

/ae/ utterances. For these two speakers, V- utterances containing /a/

demonstrated higher F2 peak frequencies than corresponding V+ utterances.

Summarizing stress effects on formant structure, we found that S+

utterances displayed steeper, durationally longer Fl initial transitions than

S- utterances. These more rapid, lengthier initial transitions produced

higher Fl steady-state frequencies in S+ utterances. Stress effects on Fl

final transition characteristics were less consistent, although S+ utterances

demonstrated significantly higher Fl offset frequencies than S- utterances for

each speaker. F2 peak frequencies were higher in S+ utterances than in S-

utterances for BW and EB, and for VS' utterances containing lee/.

Summarizing the voicing effects, we found that V- utterances displayed

higher Fl onset frequencies and higher steady-state frequencies than V+

utterances. Fl steady-state durations and final transition durations were

longer in V+ utte-ances than unstressed utterances. Fl offset frequencies

were much lower for V+ utterances than V- utterances. Contrasting with the

stress results, decreases in vowel duration due to final-consonant voicing did

not lead to neutralization of Fl frequencies toward more central values. In

fact, the shorter, V- utterances actually demonstrated more extreme (higher)

Fl frequencies than the longer, V+ utterances. This contrast between stress

,ld voicing effects was also noted in the articulatory data with respect to

.w steady-state position. Voicing interacted with vowel in influencing F2

peak frequency. For utterances containing paw, V+ utterances showed higher

F2 frequencies than V- utterances for all speakers. For utterances containing

/a/, V- utterances showed higher F2 frequencies than V+ utterances for two of

the three speakers.

General Discussion

Previous research has shown that vowels in unstressed syllables are

shorter in duration and often demonstrate more centralized (///-like)

steady-state formant frequencies than stressed vowels. This change in

steady-state frequencies is referred to as vowel reduction and has been

reported in a number of acoustic studies (Delattre, 1969; Gay, 1978; Harris,

1978; Lindblom, 1963; Tiffany, 1959). The present data replicate these

zarlier findings concerning stress-related vowel reduction. Furthermore, the

present results provide information on how thin stress-related vowel reduction

was achieved in terms of the overall restructuring of the articulatory and

acoustic patterns.

In terms of articulation, stressed utterances demonstrated longer, more

rapid jaw lowering gestures than unstressed utterances. The greater duration

and velocity of these lowering gestures resulted in lower steady-state jaw

positions for stressed utterances. These more extreme steady-state positions

were maintained for longer durations than in unstressed utterances. Finally,

raising gestures were more rapid and reached higher positions at vowel offset

in stressed utterances than in unstressed utterances. Stressed gestures were

of greater magnitude for most of the articulatory dimensions examined. In

general, the presence of stress increased the duration, velocity, and spatial

extensiveness of jaw movement. Several of the stress effects on jaw movement
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reported here have been reported previously in the literature. Stress-related
increases in articulator lowering velocity have previously been reported for
both the jaw (Stone, 1981) and lower lip (Kelso, Vatikiotis- Bateson,
Saltzman, & Kay, 1985). Kelso et al. (1985) also reported greater
articulatory lowering durations in stressed utterances which again agrees with
the results reported here. The finding of more extreme articulatory positions
being associated with S+ utterances has been reported in several studies
(Kelso et al., 1985; Kent & Netsell, 1971; Kozhevnikov & Chistovich, 1965;
Stone, 1981). Finally, Kent & Netsell (1971) ano Kelso et al., (1985) also
reported stress-related increases in articulator raising velocities which are
in agreement with the present results.

The formant data were slightly less consistent in terms of stress
effects. Nevertheless, the overall picture is once again one of longer, more
rapid, and more extreme formant movement in the stressed context.
Specifically, Fl initial transitions tended to be steeper and of greater
duration in S+ utterances, producing higher Fl steady-state frequencies. Fl
steady-state durations were also of greater duration in S+ utterances compared
to S- utterances. Stress effects on Fl final tr-,sition characteristics were
not as consistent as stress effects on jaw ra g characteristics. The only
consistent stress effect on Fl final transitions concerned ottset frequency;
.: utterances demonstrated consistently higher offset frequencies than S-
utterances.

The articulatory data demonstrate that jaw movement is less rapid and
both spatially and temporally less extensive in S- utterances. This reduction
in the overall magnitude of the articulatory gestures is clearly related to
the neutralization of Fl seen in the formant data. The articulatory data were
not expected to relate directly to the F2 peak frequency data. u.owever, it
was anticipated that reduction in F2 frequencies towards more central
(IA /-like) values would accompany stress removal. This expectation was only
partially supported by our analyses. For each speaker, S+ utterances
containing /ae/ demonstrated higher F2 peak frequencies than corresponding S-
utterances. The results for iaei were consistent with the expectation that
vowel reduction accompanies stress removal. F2 is clearly higher for lae/
than //1/ in the Peterson and Barney (1952) data. Vowel reduction should
therefore result in a decrease in F2 frequency for /a2/, as was found in the
present study. However, the Peterson and Barney (1952) data show /a/ as
having a fairly central F2 steady-state frequency only slightly lower tnan
that of /A/. Vowel reduction would therefore be expected to produce very
little change in F2 frequency for /a/. This result was observed for speaker
VS only.

In his well-known study on'vowel reduction, Lindblom (1963) suggested
that the relationship between vowel duration and vovel reduction described
above is universal. That is, a decrease in vowel duration (due to the
destressing of an utterance, an increase in speaking rate, etc.N was assumed
to lead directly to a reduction in vowel formant frequencies towards /A/. In
the present study, this relationship was not observed when final-consonant
voicing is the factor influencing vowel duration (at least in terms of the F1
data). In addition, reports of vowel reduction accompanying voicing-related
decreases in vowel duration could not be located in the acoustic literature
(Lindblom did not examine utterances diffe-ing in final voicing in his 1963
paper). The presence of vowel reduction across stress levels and the absence
of reduction across voicing conditions obviously requires a different sort of
restructuring of the formant patterns in the two cases. These differences are
also clearly reflected in the articulatory data.

-255-



V- utterances demonstrated slightly greater jaw-lowering slopes than V+

utterances, suggesting more rapid jaw lowering for V- utterances. This more

rapid jaw lowering apparently contributed to the more extreme (lower) jaw

steady-state positions demonstrated by V- utterances. More extreme jaw

lowering for V- utterances has also been reported by Fujimura and Miller

(1979). Steady-state jaw positions, while spatially more extreme for V-

utterances, were maintained for greater durations in V+ utterances.

Jaw-raising gestures were steeper in slope but briefer in duration in V-

utterances compared to V+ utterances. The pattern of V- utterances

demonstrating more rapid articulatory raising than V+ utterances has been
reported previously for both the jaw (Fujimura & Miller, 1979) lower lip

(Chen, 1970). The influence of voicing on articulatory properties was small
during early portions of the utterances (i.e., during jaw-lowering) and

increased during later-occuring portions.

Although final-consonant voicing did affPct Fl frequency at voicing onset

(V+ utterances showed lower onset frequencies),

structure were more prevalent in later-occuring
voicing
portions

effects
.f the

on Fl

test

utterances. Fl steady-state regions demonstrated higher frequencies and

briefer durations in V- utterances compared to V+ utterances (see Wolf (1978)

for similar findings with respect to Fl steady-state frequency). Fl final

transitions were briefer in duration and terminated at much higher frequencies

for V- utterances.

Fl steady-state frequencies were not neutralized towards //1/4/ in the

shorter, V- utterances. However, changes in F2 peak frequencies across
voicing conditions were consistent with a vowel neutralization explanation.

As already described, vowel neutralization would require a lowering of F2 for

utterances containing /we/ and a slight rise in F2 for utterances containing

/a/. While final-consonant voicing had almost no effect on F2 frequency for
VS' utterances containing /a/, more neutral F2 frequencies were seen for the

V- utterances compared to V+ utterances in all other instances.

V- utterances were considerably shorter than V+ utterances in total vowel

duration. However, initial jaw lowering durations and Fl initial transition
durations gave no evidence of being briefer in V- utterances. In order for

jaw-lowering durations and Fl initial transition durations to be similar

across voicing conditions, V- utterances necessarily contributed a greater

proportion of total vowel duration to jaw lowering and to initial Fl

transitions. This result is consistent with earlier acoustic and perceptual

data suggesting that voiceless utterances contain proportionally longer

initial transitions than voiced utterances (Fitch, 1981; Soli, 1982). These

results are again in agreement with the general observation that

final-consonant voicing has greater effects on the final portions of vowels

than on the initial portions while stress has a more global influence on
articulatory movements and formant structure throughout vowel production.

Stress is generally described as a suprasegmental feature of speech which is

overlaid on the segmental articulatory pattern. Final-consonant voicing, on

the other hand, is described as a segmental feature of a given consonant.

Thus the greater influence of stress on articulatory movements during the

early portions of the vowels and the increasing influence of voicing on
production during later portions of the vowels is not surprising.

Parker (1974) has suggested that vowel termination characteristics

contain final-consonant voicing information with gradual termination cuing a
voiced consonant and abrupt termination cuing voicelessness. The longer, less

rapid articulatory raising gestures demonstrated by V+ utterances in the

present data fit nicely with this description. Other researchers have also
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focused on vowel termination characteristics as an important source of voicing
information (Hillenbrand, Ingrisano, Smith, & Flege, 1984; Revoile, Pickett,
Holden, & Talkin, 1982; Walsh, Parker, & Miller, 1985; Walsh & Parker, 1981;
Vardrip-Fruin, 1982; Wolf, 1978). Several of these researchers have reported
both acoustic and perceptual data suggesting Fl offset frequency as a voicing
cue 'rith lower offset frequencies cuing voicing (Hillenbrand et al., 1984;
Revoile et al., 1982; Wolf, 1978). These results are also in agreement with
the present data.

In the present data, decreases in vowel duration due to stress removal
had very different effects on jaw movements and formant structure than
decreases in duration due to devoicing of a following consonant. Decreases in
vowel duration due to stress were accompanied by reductions in the speed,
duration, and extensiveness of articulatory gestures. This "reduction" is
also evident at the acoustic level with less rapid formant transitions and
more central (MI-like) Fl steady-state frequencies occurring in unstressed
utterances. Vowel duration differences due to final-consonant voicing did not
reflect this pattern. That is, the durationally shorter voiceless utterances
did not show any tendency towards reduction at either the articulatory or
acoustic level (in terms of F1). In fact, in the present data, more rapid and
more extreme articulatory lowering and more extreme Fl steady-state
frequencies were observed for the durationally shorter, voiceless utterances
than for the longer, voiced utterances.

Stress and final-consonant voicing influence Fl structure differently.
Consequently, vowel duration and Fl structure, when jointly examined, may
uniquely specify both the stress and final-consonant voicing information for a
given utterance. First, extremely long vowel durations are associated with
stressed utterances containing voiced final consonants since both factors are
working to lengthen vowel duration. Likewise, extremely short durations are
associated with unstressed utterances containing voiceless final consonants.
However, vowel duration does not disambiguate the two remaining combinations
of stress and voicing. S+ utterances containing voiceless final consonants
and S- utterances containing voiced final consonants are fairly similar in
total vowel duration. It is these two sets of utterances which differ the
most in Fl structure. The stressed-voiceless utterances show the steepest Fl
initial transitions and the most extreme Fl steady-state frequencies. In this
case the presence of stress and the absence of final-consonant voicing work
together to produce rapid transitions and high steady-state frequencies. The
unstressed voiced utterances have both factors working to reduce Fl initial
transition slopes and to neutralize Fl steady-state frequencies. These
utterances show the most gradual F1 transitions and most central steady-state
frequencies. The large difference in Fl structure for these two types of
utt-_rances can be seen by comparing the Fl trajectories for the stressed /bap/
and unstressed /bab/ tokens in Figure 3. Taken together, vowel duration and
Fl structure appear to unambiguously specify both stress and final-consonant
voicing information.

A nearly identical pattern to the one just described can be observed in
the articulatory data. As in the Fl data, the jaw movement data disambiguate
the stressed-voiceless utterances from the unstressed-voiced utterances (the
sets of utterances with similar vowel durations). Stressed-voiceless
utterances demonstrate the greatest lowering velocities and lowest positions
at lowering offset. In this case, stress and voicelessness are both working
to increase lowering velocities and produce greater jaw movement. In
unstressed-voiced utterances, both stress and voicing are working to reduce
lowering velocities and overall jaw movement. These utterances demonstrate
the smallest velocities and the highest positions at lowering offset. The
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difference in jaw movement across these two utterances types can be seen by
comparing the the jaw trajectories for the stressed /bap/ and unstressed /bab/
tokens displayed in Figure 2.

The results of the present study suggest that vowel duration and vowel
structure may both provide information for the perception of stress and
final-consonant voicing. A detailed examination of vowel produc-ion at the
articulatory and acoustic levels suggests that changes in vowel duration due
to stress and final-consonant voicing are not accomplished by identical
changes in articulatory and acoustic patterns. Rather it appears that the
restructuring of the articulatory and acoustic patterns which accompany
changes in vowel duration are specific to the factor producing the change in
d ation. The question of whether the stress-related and voicing-related
differences in the articulatory and acoustic patterns reported here provide
useful information for the perception of stress and voicing can best be
addressed through perceptual experiments using synthetic stimuli which vary
along dimensions suggested by the present dr,a. These perceptual experiments
are currently underway and reports of these findings should be forthcoming.

In summary, the present findings demonstrate that the simultaneous
a.alysis of acoustic and articulatory data from an appropriate set of
utterances can provide the beginnings of an articulatory explanation for
acoustic variability due to stress and final-consonant voicing. Clearly,
these techniques could be used to examine other linguistic and nonlinguistic
factors known to influence articulatory and acoustic patterns. Factors such
as intrinsic vowel duration, speaking rate, and position in utterance each
have an important influence on vowel duration. An examination of the
articulatory and acoustic correlates of vowel duration change associated with
each of these factors could be carried out using techniques similar to those
presented here. This research would be extremely valuable in determining
whether each factor known to influence vowel duration has a consistent and
unique influence on articulatory and acoustic structure.
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Abstrect

Two experiments were carried out to study listener's preference
judgements for synthetic speech from several different text-to-speech systems
using an A/B paired comparison task. In both experiments, subjects heard a

sentence produced by one system followed by the same sentence generated by
another system. Subjects indicated which of the two voices they preferred and
then furnished a confidence rating for their decision. In the first
experiment, 40 Harvard Psychoacoustic sentences generated by the DECtalk,
Prose 2000, and MITalk-79 systems were used as stimuli. In the second
experiment, 92 Phoneme Specific sentences (Huggins & Nickerson, 1985)

generated by the DECtalk, Prose 2000, and Infovox SA101 systems served as
stimuli. The overall relationship among preference, response times, and
confidence ratings was examined. In both experimi. 1, a strong relation
between preference and intelligibility was found. The remaining measures also
appeared to be systematically related to judgements of subjective preference.
The results are discussed in terms of the relationships among preference,
naturalness, and intelligibility in the perceptual evaluation of natural
speech and synthetic speech produced automatically by rule.
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Preference Judgements Compa-ing Different Synthetic Voices

Most investigations of the quality of synthetic speech have concentrated
primarily on segmental intelligibility since this aspect of perception is
assumed to be central to its acceptance and use outside the laboratory.Despite the unquestionable role that segmental intelligibility plays in the
perception of synthesized speech, other more subjective factors, such aspreference and naturalness, are also important. Since the intelligibility of
several commercially available text-to-speech systems has now reached a levelof intelligibility approaching that of natural speech (Logan, Pisoni, &
Greene, 1985), these somewhat more subjective factors have become topics ofinterest in evaluating devices that produce synthetic speech and in assessing
their acceptance by users in specific applications where voice output systemsmay be used. Despite relatively high levels of intelligibility, synthetic
speech still sounds mechanical and machine-like and users often focus on thisas the major problem in adopting synthetic speech in an application using
voice output. Clearly, in order to take advantage of voice output devicesusing synthetic speech, it will be necessary to improve their naturalness and
make them sound more human-like.

In the past, researchers have assessed the perceived quality of speech
produced under a number of different conditions, including vocoding and other
electronic manipulations of natural speer'h by using multidimensional scaling
techniques, isopreference methods, semantic differential scales, and other
rating methods. A review of these approaches to evaluating the subjectivereaction of listeners to speech after having undergone various types of
processing may be found in Nusbaum, Schwab, & Pisoni (1984).

Research specifically directed at examining listeners preferences amongdifferent types of synthesized speech was included in an experiment conducted
several years ago by Nye, Ingemann, & Donald (1975). T*1 assessed the
comprehension of synthetic speech produced by several different algorithms by
measuring the time required to answer questions about short passages produced
by each of the algorithms. Moreover, Nye et al. also examined the
relationship between comprehension and listeners preference for the different
speech types by presenting subjects with pairs of short passages produced by
two different algorithms and determining which system listeners preferred.
These results were then compared with comprehension performance using the same
stimuli. Nye et al. found that listeners preferred those speech algorithms
that were found to be most comprehensible in the previous tests. However, the
complex nature of the factors related to comprehension (segmental
intelligibility, word recognition, and prosody, for example) make it difficult
to determine the degree to which each component contributed to the overall
results. In other words, it may have been more fruitful to examine one of the
factors contributing to comprehension, such as intelligibility, and determine
its relation to preference among different synthetic speech algorithms.

In another study, McHugh (1976) also investigated the relationship
between preference and comprehension of different synthetic voices. Listeners
were presented with several different types of synthetic speech which differed
in stress. Their task in this experiment was to decide the extent to which
the different synthetic vuices sounded "good" or "bad" using a rating scale.In a subsequent experiment, McHugh used the same synthetic voices to generate
passages that were presented to subjects followed by questions to assess
comprehension. She obtained a similar pattern of results in both the rating
and comprehension tasks, suggesting that comprehension and preference were
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closely interrelated. Specifically, the preferred voices were also the more
comprehensible. Thus, a similar pattern of results was obtained by both

McHugh (1976) and Nye, Ingemann, & Donald (1975). Performance on a

comprehension task was directly related to subjective preference.

More recently, Nusbaum, Schwab, & Pisani (1984) carried out a subjective

evaluation study in which listener's preferences among natural speech and the
output from two text-to-speech systems, MITalk and Votrax, were examined.

Using a specially constructed evaluation questionnaire, Nusbaum et al. found

that subjects judged synthetic speech to be more coarse, rough sounding, and

harsh than natural speech. Subjective differences between the two synthesized
voices tended to follow intelligibility: MITalk was rated more positively
than Votrax on adjective pairs such as hard/easy, gentle/harsh, and

halting/fluent which corresponded to the results obtained using tests of

segmental intelligibility which showed MITalk to be more intelligible than
Votrax.

The results of the Nusbaum et al. (1984) study suggested that

intelligibility was an important component of preference but the results did

not permit a more precise elaboration of the nature of the relationship

between preference and intelligibility or any of the other factors that

presumably underlie subjective preference. Since the intelligibility
differences between MITalk and Votrax were substantial, subj :t's awareness

and attention to other qualities differentiating the sywilesiz:d voices may

have been obscured. In other words, subjects may have used gross differences
in intelligibility alone when they made their evaluations. Also, the use of

adjective pairs in the rating scales may have biased subjects judgements by
providing them with somewhat artificial dimensions on which to base their

decisions.

The issues raised by the results of the Nye et al. (1975), McHugh

(1976), and Nusbaum et al. (1984) st lies led us to the following question:
What would subjects do if they were given output from several synthesizers of

similar intelligibility and were asked to make direct preference judgements
using whatever criteria they thought was important? The present experiments

were designed to address this question.

Subjects were presented with the same sentence generated by two different
text-to-speech systems in an A/B format. ineir task was to decide which of
the two voices they preferred and then make a confidence judgement on their

decision. The problems associated with the use of adjective pairs to assess
preference were addregsed in the present experiment by the use of an A/B

paired comparison method. In using this procedure, only those criteria the
subjects themselves considered relevant determined which of the two voices

they preferred. Moreover, the A/B paired comparison test provides an

objective, forced-choice measure of the observers preference for one synthetic
voice over another.

Experiment I

The first experiment served to validate the A/B paired compariso
procedure as well as provide a baseline measure of the relation between

preference and intelligibility. Based on previous tests of segmental

intelligibility carried out in our laboratory using the Modified Rhyme Test

(House, Williams, Hecker, & Kryter, 1'465), output from three text-to-speech

systems was chosen for use in the first experiment: DECtalk, Prose, and

MITalk. These tests yielded error rates of 3.25% for DECtalk, 5.72% for
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Prose. and 7.0% for MITalk (see Logan et al., 1985). The stimuli chosen for
use in the first experiment were Harvard Psychoacoustic sentences (Egan,
1948). One reason for the choice of these particular stimuli was that
sentences enabled the prosodic features of the text-to-speech systems to be
evaluated in some gross manner. If individual words were used as stimuli the
effects of prosody would be minimal. Furthermore, these sentences were
grammatical and easily understandable, making the subject's task less
dependent on intelligibility alone when making preference decisions.

Method

Subjects. A total of 38 native speakers of English participated as paid
observers. All reported no history of a speech or hearing disorder. None had
any extensive experience listening to synthetic speech prior to this
experiment.

Stimuli. The stimuli consisted of 40 Harvard Psychoacoustic sentences
generated the DECtalk 2.0, Prose 2000 V3, and MITalk-79 text-to-speech
systems. The output of each synthesizer was recorded on audio tape, low pass
filtered at 4.8 kHz, and then digitized at 10 kHz using an A/D converter with
12-bit resolution. Each sentence was then edited into individual waveform
files using WAVES, a waveform editing program developed in our laboratory (see
Luce & Carrell, 1981).

Procedure. The sequence of events during each experimental trial was as
follows: Subjects listened to the sentence produced by Voice A, and then,
after a 500 ms interval, they listened to the same sentence produced by Voice
B. After hearing the pair of sentences, subjects decided which voice they
thought was the most natural-sounding in the pair by pressing either "A" or
"B" on their response boxes. After subjects recorded their preference
judgement, they were also required to indicate how confident they felt about
their decision on a seven point rating scale that ranged from "just guessing"
to "very confident". After all subjects had recorded their rating response,
the next trial began. The order of presentation for each voice was randomized
across trials.

At the beginning of each experimental session, subjects were told that
they would be participating in an experiment in which they would hear
synthetic speech produced by a computer. Following a description of the
sequence of events in each trial, subjects were told to treat each trial
independently of the preceeding trials. This was done in order to discourage
the use of a strategy in which subjects would always choose the same voice
regardless of the context. Subjects were also told that in this experiment
there were no right or wrong answers, and that we were interested only in
their relative judgements about which voice they preferred. After receiving
instructions, subjects were given four practice trials followed by forty
experimental trials. Each experimental session lasted about 30 minutes.

Subjects were tested in groups of three to six in a quiet room. Stimuli
were presented at 80 dB SPL against a background of 50 dB white noise over
TDH-39 matched and calibrated headphones. The white noise was genera 'd using
a Grason-Stvdler 1724 noise generator. A PDP 11/34 computer was used to
control the .mesentation of stimuli and to record subjects responses. Three
experimental conditions resulted from each pair-wise comparison between the
synthesizers: 1) DECtalk vs. Prose, 2) DECtalk vs. MITalk, and 3) Prose vs.
MITalk. Three measures were obtained from subjects on each trial: 1) a
forced-choice preference response, 2) a response latency for the preference
decision, and 3) a confidence rating for that decision.
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Results and Discussion

The overall proportion of preference responses for each voice is shown in
Figure 1.

Insert Figure 1 abut here

The largest difference in the pair - -wise comparisons was between DECtalk and
MITalk, followed by DECtalk and Prose, and then Prose and MITalk. In each
pair wise comparison, the preferred voice was also the more intelligible
voice: DECtalk over Prose, DECtalk over MITalk, and Prose over MITalk. All

differences in preference were statistically reliable except for the

Prase /MITalk comparison (see description of analyses below).

Insert Figure 2 about here

The mean confiderce rating for the subjects' preference decisions in each
of the comparison Landitions is shown in Figure 2. As in the overall
preference data, the mean ratings also follow the rank ordering of segmental
intelligibility. That is, confidence ratings for DECtalk were higher than the
confidence ratings for Prose and, in turn, the confidence ratings for DECtalk
were higher than the confidence ratings for MITalk. Finally, the confidence
ratings for Prose were higher than the confidence rati,.0 for MITalk. These
differences were all statistically reliable (see description of analyses
below).

Insert Figure 3 about here

A more detailed presentation of the data is shown in Figure 3. This
figure shows the distribution of the preference responses as a function of the
confidence ratings in the DECtalk/Prose comparison (top panel), MITalk/DECtalk
comparison (middle panel), and the Prose/MITalk comparison (bottom panel). In

the DECtalk/Prose comparison, subjects displayed a high degree of confidence
in their preference decizicals as shown by the higher proportion of responses
towards the "most confident" en3 of the rating continuum compared to the "just
guessing' end of the rating continuum. This panel also shows that when
subjects were more confident of their responses, the differences in preference
response between the pair of syntheti: voices were greater. An analysis of
variance was performed on the data from the DECtalk/Prose condition and the

results revealed significant main effects for voice [F(1, 15).18.92, p<0.0006]
and confidence rating category [F(6, 90).5.35, p<0.0001]. In addition, a

significant interaction between voice and confidence rating category was also
obtained [F(6, 90).3.74, p<0.0023]. Thus, DECtalk is preferred over Prose and
subjects tended to be more confident of their preference decision when they
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Figure 1. Overall proportion of preference responses for each voice in each
comparison condition (Experiment I).
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chose DECtalk than when they pi ferred Prose.

The distribution of preference responses for each rating category in the

DECtalk/MITalk comparison is shown in the middle panel of Figure 3. A pattern

of results similar to that found in the DECtalk/Prose comparison may be

observed: a greater proportion of preference responses were assigned to the

"most confident" end of the continuum and differences in preference between

voices became greater as the confidence ratings increased. An ANOVA was

carried out to assess the reliability of these effects and significant main

effects for voice [F(1, 11).54.35, p<0.00001] Ind confidence rating category

[F(6, 66).5.31, p<0.0002] were obtained. In addition, a significant

interaction between voice and confidence rating category was also observed

[F(6, 66).3.65, p<0.0034]. Overall, subjects preferred DECtalk over MITalk;

also, they tended to be most confident of their preference decision when they

chose DECtalk. The only anomolous point is the overall attenuation of

responses in the "most confident" rating category; however, the difference

between the two voices is still present even in this rating category.

The distribution of preference responses for each rating category in the

Prose/MITalk comparison is shown in the bottom panel of Figure 3. In this

condition, the tendency for a greater proportion of responses for the "most

confident" end of the continuum was still present but no strong voice

preference emerged. An ANOVA was performed on these data and the results

indicated that this was the only comparison condition in which a significant

effect for voice failed to emerge [F(1, 9)2.44, p<0.1524]. There was,

however, a significant main effect for confidence rating category [F(6,

54).3.21, p<0.0091]. No significant interaction between voice and confidence

rating category was obtained [F(6, 54).0.59, p<0.7347]. Apparently, subjects

were equivocal in their preferences between MITalk and Prose.

A further set of analyses were carried out to determine the relationship,

if any, between response times for the initial A/B preference decision and the

subsequent confidence ratings. The assumption underlying these analyses was

that a fast response time for the preference decision would reflect a greater

degree of confidence in that decision. Similarly, a slow response *Arne for

the preference decision would indicate much greater uncertainty in deciding

which voice was preferred. If the response time measure and the confidence

rating for the preference decision were both measuring the same degree of

certainty in the decision, these two measures should be positively correlated.

Separate Pearson product moment correlations were calculated for each of the

three conditions in the experiment. Each took the form of a partial

correlation in which the effect of which voice was preferred was removed,

leaving only the effect of response time and confidence rating (The

differences between the partial correlations and the correlations with the

effect of voice present were minimal). The partial correlation coefficients

for each condition were as follows: DECtalk/Prose condition, r.+0.302;

Prose/MITalk condition, r.+0.264; MITalk/DECtalk condition, r.+0.460.

These correlations show a small positive relationship between response

1 for the A/B preference decision and the subsequent confidence ratings,

inu.Lcating that the confidence ratings are reasonably valid indicators of

subjects uncertainty in their preference decision. The small size of the

correlation coefficients may have been due to the post hoc nature of the

confidence rating response within each trial: enough time may have elapsed

after the initial preference decision to make the confidence ratings a less

effective indicator of certainty than if it were possible for subjects to

indicate preference and confidence rating within the same response. Despite

the small size of the correlation coefficients for confidence ratings and
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response times, the size of the coefficients does correspond to the preference
judgements: the two highest coefficients were obtained in the DECtalk/Prose
and MITalk/DECtalk comparison conditions which were also the two conditions in
which one voice was preferred over the other for a significant proportion of
the responses. Thus, it appears that when subjects showed a definite
preference for one voice over the other, response times and confidence ratings
tended to be reasonably correlated.

A final analysis was carried out in order to determine if any ',lases
existed in the button press response when making the A/B preference decision.
Since the order of Voice 1 and Voice 2 varied randomly from trial to trial,
subjects ideally should have shown no preference for one response over the
other, within the limits imposed by chance. This analysis indicated a strong
preference for pressing the right-hand button. However, this effect varied as
a function of the confidence subjects hAd in their responses. When subjects
were sure of their response, they tended to show no right --hand button bias.
But, when subjects were unsure of their preference decision, a right-hand
button bias began to emerge in their responses. Because virtually all of our
subjects were right-handed (86.82 of subjects reported they were right-handed,
7.9Z were left-handed, and 5.3Z were ambidextrous), this response bias can be
attributed to a handedness preference. It is important to keep in mind that
despite the presence of a response bias, the voice preference results
described above were quite systematic. The overall effect of this bias was
minimal and only occured when subjects were unsure of their preference
decision which for most subjects was only for a small proportion of the
trials. The relationship between a right button-pressing bias and confidence
ratings is displayed in Figure 4. When subjects are more confident in their
preference decision, the response bias becomes more attenuated.

Insert Figure 4 about here

In summary, several general conclusions may be drawn from the results of
this initial experiment using the A/B preference task. First, intelligibility
appears to play a major role in determining a subject's preference for one
synthetic voice over another. Results from two of the three comparison
conditions indicated that the most preferred synthetic voice could be
predicted from the segmental intelligibility scores of the synthetic voices.
In short, subjects preferred to listen to the more intelligible of two
synthetic voices, even when differences in intelligibility were small, as in
the DECtalk/Prose comparison. Of course, to determine more precisely the role
of intelligibility in preference decisions is difficult in the context of the
presert experiment alone. A further discusion of this point will be found
below in the general discussion.

Our experiment also demonstrated the usefulness of the A/B method .
paired comparisons as a means of examining differences in the subjec'ive
quality of synthetic speech produced by rule. The strength of the conclusions
concerning the relation between intelligibility and preference is further
supported by the convergence of the A/B preference judgement, response
latency, and confidence rating data. The finding that consistent and
systematic data was obtainable using this procedure suggested that further
investigations were clearly warranted. To this end, a second experiment using
the A/B procedure was undertaken. In this second experiment, a new set of
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stimulus materials were used. Instead of the Harvard sentences, the Phoneme
SpeciLic Sentences (PSS) developed by Huggins et al. (1985) were used and
some attempt was made to relate preference and rating data to specific phoneme
classes.

Experiment II

The robustness of the findings obtained in Experiment I suggested that
other sets of stimuli used in the same A/B paired comparison procedure might
also provide useful information. We chose the PSS (Huggins et al., 1985)
because they were specifically developed for use in evaluating speech
processing devices. Each sentence was "loaded" with phonemes of a particular
class: for example, several sentences contained a large proportion of
fricatives, while others contained a large proportion of voiced stops, etc.
Altogether, a total of 92 sentences were used. These sentences are listed in
Appendix 1. By examining the relationship between the preference for specific
sentences and the classes of phonemes contained within those sentences, some
understanding of the perceptual basis for preference associated with different
classes of phonemes produced by the different synthetic voices can be
obtained. These data should therefore provide a greater body of knowledge
regarding what acoustic-phonetic and phonological parameters affect preference
in evaluating different types of synthetic speech produced by rule.

The choice of voices to be used in this experiment was based, in part, on
MRT performance data. We wanted to use the same voices as in the first
experiment in order to make the difference in the test sentences the only
variable that changed between the first and second experiments; however, since
output from the MITalk text-to-speech system was no longer available, we chose
output from the Infovox system instead. The reason for the choice of the
Infovox system was its similarity to the MITalk system in terms of overall
intelligibility (see Logan et al., 1985).

Because the PSS stimuli have not been widely used prior to this
experiment, we also decided to collect data on the intelligibility of these
materials. These data were collected in an independent experiment and are
reported in a companion paper (see Logan & Pisoni, 1986). Each of the voices
used in the present experiment were tested in a simple
identification/transcription task in which subjects were presented with all 92
sentences in a random order. The subjects task was to transcribe what he or
she heard. The transcriptions were scored for exact matches to the intended
output and results, reported as percent correct, were as follows: DECtalk
56.34%; Prose - 56.24%, and Infovox 24.91%. Using the MRT, the differences
in performance between DECtalk and Prose were somewhat larger while the
differences between Prose and Infovox were substantially smaller. However,
the rank ordering of the intelligibility scores of the voices using the PSS
stimuli remained identical to that obtained with isolated words using the MRT
and the Harvard sentences. able 1 shows the results obtained using the
voices studied in the present investigation with several different kinds of
test materials.

Insert Table 1 about here



Table 1

Measure of Intelligibility for Several

Text-to-Speech Systems
(Percent Error)

Measure of Intelligibility

Text-to-Speech
System

MRT
(closed/open)

Harvard
Sentences

Phoneme Specific
Sentences

DECtalk 3.3/13.3 4.7 43.7

Prose 2000 5.7/19.9 [6.5 *] 43.8

MITalk 6.9/24.6 6.7

Infovox 12.5/37.2 - 75.1

*This error rate was obtained using an earlier version of the Prose 2000 than
used in the MRT and PSS evaluations.



Method

Subjects. Thirty subjects were obtained from a subject pool of students
taking an -introductory psychology course at Indiana University. Subjects
received course credit for their participation. All subjects reported no
history of a speech or hearing disorder and none of the subjects had extensive
experience with sythetic speech prior to the present experiment.

Stimuli. The stimuli used in the second experiment were the Phoneme
Specific Sentences (PSS) constructed by Huggins et al. (1985) to examine the
effect of different methods of speech processing on the perception of specific
classes of phonemes. A total of 92 sentences, each containing a large
proportion of phonemes from a particular phoneme class, were generated using
the DECtalk, Prose 2000, and Infovox SA101 text-to-speech systems. As in the
first experiment, the stimuli were digitized and edited into individual
sentences. To ensure compatability among the stimuli in terms of overall
signal level, the sentences were processed using a waveform modification
program (Bernacki, 1981). A target value of 50 dB RMS was chosen to minimize
clipping and yet provide an adequate signal level.

Procedure. The same procedure used in the first experiment was also used
in this study. Each experimental session lasted approximately 45 minutes.

Results and Discussion

The overall proportion of preference responses for each voice is shown in
Figure 5.

Insert Figure 5 about here

A pattern of results similar to that obtained in Experiment I was found: the
largest differences in preference correspond to the largest differences in
intelligibility between the voices. However, in this experiment, in all three
comparison conditions the differences between the proportion of preference
responses for each voice were significantly different (see description of
analyses below).

The mean confidence ratings for the preference decisions are shown in
Figure 6.

Insert Figure 6 about here

Statistically reliable differences were obtained in the mean confidence
ratings for the DECtalk/Prose and DEC/Infovox comparisons. No significant
difference in the mean confidence ratings was observed in the Infovox/Prose
comparison (see description of analyses below).
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Figure 7 shows she preference responses as a function of rating category
for the DECtalk/Prose comparison (top panel), the DECtalk/Infovox comparison
(middle panel), and the Infovox/Prose comparison (bottom panel).

Insert Figure 7 about here

As in Experiment I, subjects preferrce DECtalk over Prose by a large margin in
the two end-point rating categories at the "most confident" end of the rating
scale. When subjects were more uncertain of their preference decision,
DECtalk was still preferred but the difference between the proportion of
preference responses for each voice was much smaller. In general, subjects
were confident of their preference decisions as indicated by the large
proportion of responses at the "most confident" end of the rating scale for
both voices. This description of the data trim the DECalk/Prose ccmporison
was supported by an ANOVA comparing the proportion of prefer,ce judgements
for each voice in each rating category. Significant main effects for voice
[F(1, 9).6.66, p<C.0297] and confidence rating category [F(6, 54).3.09,
p<0.0114] were obtained, but no significant interaction between voice and
confidence rating category [1,(6, 54).1.46, p<0.2101] was found.

The preference responses for the DECtalk/Infovox condition as a function
of rating category are shown in the middle panel of Figure 7. In every rating
category, DECtalk was consistently prefered over Infovox. The difference is

especially noticeable at the "most confident" end of the rating scale but the
trend is quite noticable over the entire range of rating responses. An ANOVA
revealed significant main effects for voice [F(1, 9).274.2, p<0.00001] and
rating category [F(6, 54).4.16, p<0.0017] and an interaction of voice and
rating category [F(6, 54).6.09, p<0.0001], confirming the trends shown in
Figure 7.

The preference data for the Prose /iifovox condition as a func ion of
rating category is shown in the bottom panel of Figure 7. In all rating
categories, Prose was preferred over Infovox. The largest difference was
observed between he two voices at the "most confident" end of the rating
scale, suggesting that subjects were more confident in their choice decision
if they chose Prose over Infovox. An ANOVA on these data revealed a
significant main effect for voice [F(1, 9).76.36, p<0.00001] but no
significant main effect for confidence rating category [F(6, 54).1.16,
p<0.3425] nor any significant interaction between voice and confidence rating
[F(6, 54).2.0, p<0.0769]. Despite the appearance of a trend for the least
preferred voice, Infovox, to have a larger proportion of responses at the
"least confident" end of the rating scale, the effect was not substantial
enough to produce a significant interaction between voice and confidence
rating.

Ar in Experiment I, several analyses were carried out to examine the
relati_nship between response time for the preference judgements and
confidence ratings. The partial correlation coelficients (removing the effect
of voice) for each comparison condition were as follows: DECtalk/Prose,
r.+C.208; DECtalk/Infovox, r.+0.120; and Infovox/Prose, r+0.206. All of

these correlations were lower than any of those obtained in the first
experiment. Also, little difference existed between the partial correlations
reported here and the corresponding correlations with the effect of voice
present.
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The consistently low correlations obtained in both Experiments I and II

between response time and confidence rating may be an indicator of the
complexity of the task facing subjects. The temporal separation between the

two measures in each trial may be sufficient to make the second measure, the
confidence rating, more dependent on factors such as memory and

post-perceptual decision making. Another aspect of the task that may affect
the performance of subjects is the two different sets of stimuli used in

Experiments I and II. Substantially smaller correlations between response
times and confidence ratings were obtained with the PSS stimuli than with the

Harvard sentences. This result may have been related to the somewhat
anomalous nature of many of the PSS stimuli. In order to achieve the desired
loading of phonemes from a given phonetic class into a single sentence, many
of the resulting sentences were often constructed using unusual combinations
of words that rarely occur in English. These constraints were reflected in
the relatively low scores in transcription task used to assess the

intelligibility of these phoneme specific sentences; the comparible
transcription data for the Harvard sentences yielded substantially greater
levels of intelligibility when scored using the same criteria (see Table 1).

A final set of analyses was carried out to study the relationship between
the different phonetic classes that served as the ',asis for the creation of
the PSS stimuli and the proportion of preference responses for each voice in

each pair-wise comparison. Each analysis took thf. form of an ANOVA in which
the two factors were voice (2 voices! and phonetic class (18 categories). In

the Prose/DECtalk comparison, a significant main efect for voice was obtained
[F(1, 9).9.26, p<0.05], as well as a significant interaction between voice and
phonetic category [F(17, 153)183.4, p<0.05]. The absence of a main effect
for phonetic category and the presence of an interaction between voice and

phonetic category indicates that preference changed as a function of phonetic
category although overall, DECtalk was preferred over Prose. In the

DECtalk/Infovox comparison, a significant g.in effect for voice was obtained
[F(1, 9).331.69, p<0.0001], but no effect of phonetic category or interaction

between voice and phonetic category was found. This analysis indicated that
DECtalk was strongly preferred over Infovox regardless of phonetic category.

In the lnfovox/Prose comparison, a significant main effect for voice was
obtained [F(1, 9)79.53, p<0.0001], as well es a significant interaction
between voice and phonetic category [F(17, 153).3.47, p<0.0001]. The absence
of a main effect for phonetic category and the presence of an interaction
between voice and phonetic category suggests that although Prose was preferred
over Infovox, the degree to which this relationship was observed changed as a

function of the phonetic category that was represented by the sentences.
Thus, when subjects are forced to make fine phonetic distinctions they have to
attend closely to the specific phoneme classes and not only the overall
quality of the voice. The mean proportion of preference responses for each

voice in each phonetic category is shown in Table 2.

Insert Table 2 about here

In summary, the preference data obtained using the PSS stimuli was, for

the most part, quite similar to the data obtained using the Harvard sentences.
Again, small differences in segmental intelligibility were positively

correlated with preference. Thus, the major findings of Experiment I were
replicated in Experiment II using different sentence materials and another
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Table 2

Proportion of Preference Responses for

Phoneme Specific Sentence Categories

PSS Categories Proportion of Preference Responses

DECtalk/Prose DECtalk/Infovox Infovox/Prose

1) all fricatives 55.0/45.0 100.0/00.0 6.7/93.3

2) all stops & affricates 63.3/36.7 93.3/6.7 16.7/83.3

3) all consonant phonemes 49.3/50.7 96.7/3.3 5,0/95.0

4) glides except 1 & vowels 40.0/60.0 85.0/15.0 5.0/95.0

5) glides 60.0/40.0 95.0/5.0 0.0/100.0

6) glides & nasals... 45.5/54.5 85.9/14.1 12.0/88.0

7) all labials 50.0/50.0 85.0 /15.0 5.0/95.0

8) nasals 56.3/43.7 90.0/10.0 12.9/87.1

9) nasals + 1 75.0/25.0 90.0/10.0 15.0/85.0

10) all tongue tip 50.0/50.0 82.9/17.1 1: 0/85.0

11) all unvoiced ,nsonants 48.0/52.0 84.0/16.0 6.0/94.0

12) unvoiced fricatives 75.0/25.0 100.0/00.0 15.0/85.0

13) unvoiced stops 71.5/28.5 76.0/24.0 48.0/52.0

14) unvoiced stops & affricate. 73.3/26.7 82.0/18.0 31.0/69.0

15) voiced fricatives 75.0/25.0 87.5/12.5 36.7/63.3

16) all voiced consonants 71.5/28.5 86.0/14.0 36.0/64.0

17) voiced stops 60.0/40.0 91.3/8.7 25,7/74.3

18) voiced stops & affricate 75.0/25.0 90.0/10.0 20.0/80.0



synthetic voice. The use of the PSS stimuli enabled a preliminary examination
of the relationship between preference and individual classes of phonemes. In
two of the three comparison conditions examined in this experiment, preference
for one synthetic voice over another does change as a function of phonemic
class under consideration. Other measures, such as the strength of the
relationship between confidence ratings and response times for the preference
decision, varied between the first and the second experiment. However, these
differences appeared to be related to a.) interaction between the PSS stimuli
and the task requirements in the second experiment.

General Discussion

The results of Experiment I and Experiment II are very similar and appear
to be related to two factors. First, the A/B paired comparison task itself
clearly yields useful and reliable information concerning the preferences of
inexperienced subjects listening to several different kinds of synthetic
speech produced by rule. Although certain aspects of the task, such as the
confidence ratings, did not display as strong a relationship to other measures
as might be expected, the overall task provided systematic data that proved
useful in revealing differences in preference among several types of synthetic
speech studied here.

Secondly, the results suggested that segmental intelligibility plays an
importer', role in determining subjects' preference for one voice over another.
Even when differences in intelligibility ware small, preference was positively
correlated with intelligibility. However, knowledge of this relationship
between intelligibilty and preference must be viewed as incomplete. To
determine the relative contribution of intelligibility to preference
judgements requires the comparison of two voices of equivalent
intelligibility. Further experiments investigating the effects of
manipulating different parameters within the same synthetic voice and their
effects on preference are underway in our laboratory.

The results of the present experiments suggest several additional
extensions of our initial appraoch to studying preferences among synthetic
voices. Further research is currently underway to examino the relationship
between this method of assessing preference and other more subjective methods
such as questionnaires and rating scales (see Nusaum et al., 1984). Also, the
relationship between intelligibility and preference warrants further
examination using other types of stimuli such as words, sentences, and even
longer passages of connected fluent speech produced by rule. In addition, the
relationship between preference and naturalness is also of interest. It may
not neccesarily be the case that these two subjective attributes are the same
although they are likely to be interrelated in some complex way.

Finally, we feel that the information obtained in this study has a number
of implications for further work involving "real world" applications where
preference may be directly related to user accf.ptance of voice output devices
utilizing synthetic speech produced by rule. At the present time, almost all
synthetic speech produced by rule, even highly intelligible synthetic speech
such as that produced by DECtalk and Prose, sounds mechanical and unnatural to
most human observers who are not speech scientists. As more and more effort
is devoted to research on the acoustic cues to naturalness, comparable efforts
will also need to be devoted to developing new methods and techniques to

assess these more subjective qualities and to determine the relationships
between segmental intelligibility, subjective preferences, and naturalness.
In some applications of speech synthesis, there may be some advantages to

-284 -

.,P



having an unnatural and very mechanical sounding voice. But in other
applications, naturalness and user acceptability may be extremely desirable
attributes that listeners will come to expect in voice output devices using
synthetic speech.
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Appendix 1

Phoneme Specific Sentences
(from Huggins & Nickerson, 1985)

Fricatives
His vicious father had seizures.
Whose shaver has three fuses?
Three of the chefs saw the thieves.

Stops and affricates
Which tea party did Judge Baker go to?
We'd better buy a bigger dog.
Georgie had to chew tobacco.

Consonants
If the treasure vans got so much publicity we think you should hide
your share.
The voyagers have ground the crankshaft with unimpeachable precision.
The old-fashioned jacket was giving you both f_.o much humourous
pleasure.

The average disillusioned gambler thinks he wishes for a cheap yacht.
Nothing could be further from reality than his illusion of chasing
your gorgeous sheep away.

She thinks even the pale rouge you bought was much too gaudy for her
age.

Glides except 1 -

Why were you away a year Roy?
Why were you weary?

Glides -
Our lawyer will allow your rule.
Our rule will allow you a lawyer.
We really will allow you a ruler.

Glides and nasals
You were wrong all along.
I know you're all alone.
When will our yellow lion roar?
An alarm rang a warning in only one room.
A lawyer may well allow a new Luling.
I'm learning my new role.
I'll remain in my narrow room.
Anyone may rely on a mailman.
I'm wearing my maroon ring.
We'll allow you a new loan
I'll lie in an alarming manner.
Why lie when you know I'm your lawyer?
A normal animal will run away.
Mail me an aluminum railing.
I'll villingly marry Marilyn.
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Appendix 1 (continued)

Phoneme Specific Sentences

Labials -
Pay my wife by five.
Weave me a web above a poppy.
Move off my pew baby!
Weep for my baby puppy.

Nasals
Nanny may know my meaning.
I'm naming one man among many.
No one knows my name.
I know many a mean man.
I know no minimum.
Many young men owe money.
When may we know your name?

Nasals plus 1 -
I'm well known among men.
Nine men moaning all morning.

Tongue tip -
The judge's short decision really touched the youth.
Each decision shows the jury she lies through her yellow teeth.
Such a rash allusion to dosage teases the youth.
Seth yawns at each rash c.liusion to the dosage.
The designers really earned the judge's derision this year.
Each allusion to Daisy's agility lessens her attention.
Each decision shows that he lies through his yellow stained teeth.
John drowned his sorrows in gin and orange juice.

Unvoiced consonants -
She swiftly passed a health check.
He steps off a path to cash a check.
I hope she chased her fox to earth.
A thick-set officer pitched out her hash.
He checked through fifty ships.

Unvoiced fricatives -
A thief saw a fish.
I saw three fish.
Three chefs face a thief.

I / )
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Appendix 1 (continued)

Phoneme Specific Sentences

Unvoiced stops -

Take a copy to Pete.
Pat talked to Kitty.
Quite a cute act.
Peter took out a potato.
Kate typed a paper.

Unvoiced stops and affricates
Chip took a picture.
A teacher patched it up.
Chat quietly to teacher.
Quite quiet at church.
Catch a paper cup.
Actuate a paper copier.
A teacher taped up a packet.
Capture a cute puppy.
A teacher typed up a paper.
Katie tacked up a cute picture.

Voiced fricatives
They use our azure vials.
There's our azure vial.
There's usually a valve.
Those waves veer over.

Voiced consonants -

Does John believe you were measuring the gun?
Your brother's vision was gradually dimming.
The regular division was led by a young major.
I gather you will be abandoning the major revisions?
The young major's evasions were growing bolder.

Voiced stops
Bobby did a good deed.
I begged Dad to buy a dog.
Did Bobby do a good deed?
Buy Dad a bad egg.
Dad would buy a big dog.
Why did Gay buy a bad egg?
Do you abide by your bid?
Grab a doggie bag.
A greedy boy died.

Voiced stops and affricates -

Did George do a good job?
Greg adjudged Bobby dead.
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Abstract

For many years, speech researchers have been interested in the
differences in perception between speech and nonspeech signals. Early studies
revealed marked differences in the manner in which speech sounds were
discriminated suggesting two very different modes of response, a speech mode
and a nonspeech mode. Recent studies using nonspeech control patterns have
raised questions about these earlier interpretations and have provided the
basis for explaining several phenomena in speech perception by means of more
general principles of complex auditory pattern perception. This paper
summarizes the philosophy behind these nonspeech comparisons and describes two
recent studies, one on temporal order perception and the other on the
perception of the duration of rapid spectrum changes. Both show commonalities
between speech perception and the perception of complex nonspeech patterns.



Auditory Perception of Complex Sounds:

Some Comparisons of Speech vs. Nonspeech Signals

Introduction

The study of speech perception differs in several very important ways
from the study of general auditory perception. First, the signals typically
used to study the functioning of the auditory system have been simple,
discrete and well defined mathematically. Moreover, they typically vary along
only one perceptually relevant dimension. In contrast, speech sounds involve
very complex spectral relations that typically vary quite rapidly as a
function of time. Changes that occur in a single perceptual dimension almost
always affect the perception of other attributes of the signal. Second, most
of the basic research on auditory perception over the last four decades has
been concerned with problems surrounding the discriminative capacities of the
sensory transducer and the functioning of the peripheral auditory mechanisms.
In the perception of complex sound patterns such as speech, the relevant
mechanisms are, for the most part, quite centrally located. Moreover, while
many a-mreriments in auditory perception and sensory psychophysics have
commonly focused on experimental tasks involving discrimination of both
spectral and temporal properties of auditory signals, such tasks are often
inappropriate for the study of more complex signals including speech. Indeed,
in the case of speech perception and probably the perception of other complex
auditory patterns, the relevant task fcr the observer is more nearly one of
absolute identification rather than differential discrimination. Listeners
almost always try to identify, on an absolute basis, a particular stretch of
speech or try to assign some label or sequence of labels to a complex auditory
pattern. Rarely, if ever, are listeners required to make fine discriminations
that approaLh the limits of their sensory capacities.

Given the published literatare on the perception of simple auditory
signals, it is generally believed, at least among researchers in the field of
speech perception, that a good deal of what we have learned from traditional
auditory psychophysics using cimple sinusoids is only marginally relevant to
the study of speech perception. Perhaps some of what is currently known about
speech perception might relevant to the perception of other complex
auditory patterns which have properties that are similar to speech. At the
present time, there are substantial gaps in our knowledge about the perception
of complex signals which contain very rapid spectral changes such as those
found in speech. And, there is little if any research on the perception of
complex patterns that have the typical spectral peaks and valleys that speech
signals have. Finally, our knowledge and 'understanding of patterns containing
amplitude variations like the complex temporal patterns found in speech is
also quite meager at this time. Obviously, there is a lot of basic research
to do.

As Pollak (1952) demonstrated over thirty years ago, speech sounds
represent a class of signals that are able to transmit relatively high levels
of information with only gross variations in perceptually distinctive acoustic
attributes. In -ther words, speech is an efficient signaling system because
of its ability tJ exploit fundamental processing strategies of the auditory
system. This theme ha,, been taken up and expanded recently by Ste%ens (1980)
who argues that speech signals display a certain set of general properties
that set them apart from other signals in the Astener's auditory environment.
According to Stevens, all speech signals have three general properties or
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attributes in common. First, the short-term power spectrum sampled at
specific points in time always has "peaks" and "valleys." That is, speech
signals display up and down alternations in spectrum amplitude with frequency.
These peaks in the power spectrum arise from the peaks ohserved in the vocal
tract transfer function and correspond to the formants or vocal resonances
that are so prominent in vowel and vowel-like sounds. The second general
property tht speech sounds display is the presence of up and down fluctuations
in amplitude as a function of time. These variations in amplitude correspond
to the alternation of consonants and vowels occurring in syllabic-like units
roughly every 200-300 msec. Finally, the third general property that speech
signals display is that the short-term spectrum changes over time. The peaks
and valleys of the power spectrum change; some changes occur rapidly -- like
the formant transitions of stop consonants, whereas other changes are more
gradual like the formant motions of semi-vowels and diphthongs. According to
Stevens (1980), speech sounds have these three general attributes and other
sounds do not and it is these attributes that distinguish speech sounds from
other complex nonspeech sounds.

It should also be mentioned here that in addition to some of the
differences in the signal characteristics between speech and nonspeech noted
above, there are also very marked differences in the manner in which speech
and nonspeech signals are processed (i.e., encoded, recognized and identified)
by human listeners. For the most part, research over the last thirty-five
years has demonstrated that when human observers are presented with speech
signals 'hey typically respond to them as linguistic entities rather than
simply as random auditory events in their environment. The set of labels used
in responding to speech are intimately associated with the function of speech
as a signalling system in spoken language. Thus, speech signals are
categorized and labeled almost immediately with reference to the listener's
linguistic background and experience. And, a listener's performance in
identifying and discriminating a particular acoustic attribute is of.en a
consequence of the functional role this property plays in the listener's
linguistic system. It is possible to get human listeners to respond to the
auditory properties of speech signals with some training and the use of
sensitive psychophysical procedures. But one of the fundamental differences
between speech and nonspeech signals lies in the linguistic significance of
the patterns to the listener and the context into which these patterns may be
incorporated.

In the sections below, we briefly summarize research on the perception of
complex auditory patterns that have acoustic properties that are similar to
speech sounds. The results of these studies demonstrate that complex
nonspeech signals may also display perceptual characteristics that were once
thought to be unique to the processing of speech signals. Our findings imply,
contrary to popular belief in speech perception circles, that detailed
knowledge and understanding of how complex nonspeech signals are processed by
the auditory systcm may contribute in a number of ways to a much better
understanding of speech perception. The converse is also true. New knowledge
concerning the acoustic correlates of speech signals and more detailed
understanding of the speech perception process may also contribute to a much
better understanding of the perception of complex nonspeech auditory patterns.



Voicing Perception and VOT

Interest in categorical perception has occupied the attention of speech
researchers since the late 1950s. Although early studies using n, nspeech
control patterns failed to find similarities with the results obtained using
speech signals, several more recent studies have been more successful in
demonstrating comparable categorical effects. In one study, Pisoni (1977)
employed a set of nonspeech tonal patterns that differed in the relative onset
time of the individual components. Examples of these signals are shown in
Figure 1.

Insert Figure 1 about here

A series of experiments was carried out using these patterns to study the
underlying perceptual basis of voicing perception in stop consonants that
differed in voice-onset time (VOT). The results of the first experiment,
shown in Figure 2, provided evidence for categorical perception of these
signals. The labeling functions displayed steep slopes and the discrimination
-unctions were non-monotonic with the physical scale and displayed peaks and
valleys that corresponded to changes in the labeling probabilities. Three
additional experiments were carried out in this study. All of them provided
additional evidence for the presence of three distinct perceptual categories
along this nonspeech stimulus continuum which were separated by narrow regions
of high discriminability.

Insert Figure 2 about here

Based on these findings using nonspeech patterns that differed in
relative onset time, a general account of '-he perception of voicing in initial
stop consonants was proposed in terms of the discriminability of differences
in the temporal order of the component events at stimulus onset. At the time,
we argued that these results with nonspeech patterns as well as the earlier
data using speech signals with infants, adults, an chinchillas reflect a
basic limitation of the ability of the auditory system to process (i.e.,
identify) temporal-order information in both speech and nonspeech signals
(Hirsh, 1959). With regard to the cues to voicing perception in word initial
stops as cued by VOT, we suggested that the time of occurrence of an event
(i.e., he onset of voicing) must be perceived in relation to the temporal
attributes of other events (i.e., the release from stop closure). The fact
that these events, as well as o,hers involved in VOT perception, are ordered
in time implies that highly distinctive and discriminable changes will be
produced at various regions along this temporal continuum. Thus. the
discrimination of small temporal differences such as those used here will be
poor in some regions of the stimulus continuum whereas the discrimination of
discrete attributes across perceptual categories will be excellent. This is
exactly what the previous categorical perception experiments demonstrated and
reflects fundamental properties of the phonological systems of natural
languages. As Stevens and Klatt (1974) observed a number of years ago, the
inventory of phonetic features used in natural languages is not a c,ntinuous
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variable but rather consists of the presence or absence of discrete sets of

attributes or cues. One of these attributes appears to be related to the
perception of simultaneity at stimulus onset.

Perception of the Duration of Rapid Spectrum Changes

For many years speech researchers have been interested in how one phoneme

affects the perception of other phonemes in the speech signal. This general
phenomena has been called context conditioned variability in speech and it has

been a major theoretical issue in the field (see Miller, 1981). Despite the
variablity in the physical signal, listeners display a form of perceptual

constancy or normalization. Several hypotheses have been proposed over the
years to account for this process. One view assumes that listeners track

changes in the talker's speaking rate. According to Miller and Liberman
(1979), the listener interprets a particular set of acoustic cues in the

speech signal, such as the duration of a formant transition for [m] or Ewa],

in relation to the talker's speaking rat+ rather than by reference to some

absolute set of context-invariant attributes in the auditory pattern itself.

In Miller and Liberman's well-known study on the perception of [ba] and [wa]

they found that the labeling boundary for a syllable-initial [b -w] contrast
was determined by the overall uuration of the syllable containing the target

phoneme. Thus, listeners adjusted their decision criteria to compensate for
the differences in vowel length that are produced at different speaking rates.

We became interested in these claims concerning the perceptual basis of

normalization for speaking rate and carried out a nonspeech control experiment

to determine if similar changes also occur when the signals contain rapid

spectrum changes but do not sound like speech (Pisoni, Carrell, & Gans, 1983).

Examples of the test stimuli are shown in Figure 3.

Insert Figure 3 about here

As in the Miller and Liberman study, we varied stimulus duration of the

test pattern and studied the effects of this manipulation on the

identification of the duration of a rapid spectrum change at stimulus onset.

Subjects were required to identify the onsets of these nonspeech patterns as
either "abrupt" or "gradual." The results of our identification study are

shown in Figure 4 for both speech and non-speech stimuli. We observed

comparable context effects for perception of the duration of rapid spectrum

changes as a function of overall duration of the stimulus with both speech and

nonspeech signals. Our findings from this nonspeech control study therefore

call into question the earlier claims made by Miller and Liberman that context

effects such as these are specific to processing speech signals and somehow

reflect the listener's normalization for speaking rate.

Insert Figure 4 about here



EXAMPLES OF ENDPOINT STIMULI

Figure 3. Schematized displays of the formant motions of endpoint
corresponding to [ba] and [wa]. Long duration syllables are
the left, short syllables are shown on the right. [From
Carrell, & Gans, 1983].
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We suggest that context effects such as these may simply reflect general
psychophysical principles that influence the perceptual categorizaton and
discrimination of all auditory patterns, whether speech or nonspeech. In our
experiment, the perceptual categcrization of stimulus onsets as either
"abrupt" or "gradual" appears to be influenced by later occurring events in
the stimulus configuration as observed with speech stimuli. Thus, complex
nonspeech signals may also be processed in a "relational" mode, that is, in a
manner comparable to that observed in the perception of speech. Our results
were particularly striking because we replicated not only the contextual
effects reported by Miller and Liberman for syllable duration as displayed in
Figure 4 but we also found the same effects as they did when simulated formane
transitions were added to the end of the sinusoidal replicas of CV syllables,
thus changing the internal structure of the stimulus pattern itself. In
short, a relational or nonlinear mode of processing auditory patterns is not
limited specifically to the perception of speech signals or to a distinctive
phonetic mode of response.

Conclusions

The two sets of findings summarized here taken together with other
studies using nonspeech signals suggests that it is possible to offer
alternative accounts of specific phenomena observed in speech perception
within a somewhat larger context of what is currently known about auditory
pattern perception. In the past, it has been very easy to explain a set of
findings in speech perception by appealing to the existence and operation of
specialized speech processing mechanisms. As we have seen, such global
explanatory accounts are no longer satisfactory as we begin to learn more
about the psychophysical and perceptual properties of speech and complex
nonspeech signals and how the auditory system encodes these types of acoustic
patterns. These findings make it clear to us that theoretical accounts of
speech perception can no longer be couched in terms of vague descriptions of
articulatory mediation via specialized perceptual mechanisms. All of the
relevant nonspeech control studies have not been carried out yet but the
results of these initial studies are very encouraging that some rapprochement
between speech and hearing scientists is possible in the future.
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Abstract

The role of voice distinctiveness and phonetic discriminability in
perception of natural and synthetic speech was investigated. Subjects were
instructed to monitor sequences of CV syllables for a specified target
syllable in several conditions: (1) targets and distractors produced by the
same human talker (N/N); (2) targets produced by a synthetic talker and
distractors produced by a human talker (S/N); and (3) targets produced by a
synthetic talker and distractors produced by both the same synthetic talker
and a natural talker (S/S+N). Results indicate that highly intelligible
synthetic targets are detected faster mixed with natural distractors, than are
natural targets mixed with natural distractors. However, when subjects are
required to discriminate between synthetic targets and synthetic distractors,
performance is much worse than for natural targets and natural distractors.
The distinctive mechanical sound of synthetic speech only appears to aid
perception when there is just a single synthetic message among natural
messages. When listeners must discriminate among synthetic messages,
performance is significantly worse than %rhe they must discriminate among
natural Messages.



Perceptual Attention in Monitoring Natural and Synthetic Speech

Under normal circumstances, we are not typically aware of the effort and
attention required to recognize spoken language. However, the inability of
listeners to fully recognize the linguistic content of two simultaneously
presented utterances demonstrates quite clearly that speech perception
requires attention (e.g., Bookbinder & Osman, 1979; Moray, 1969; Treisman,
1969). At the same time, it has also been demonstrated that listeners can
quickly and accurately detect changes in talker identity or the presentation
of a tone within an unattended utterance, even though they are unable to
recognize the linguistic content of that utterance (e.g., Cherry, 1953;
Lawson, 1966). Clearly then, listeners are able to detect changes in the
source characteristics of a signal, even when they do not pay close attention
to that signal.

Recently, Simpson and Williams (1980) suggested that the distinctive
"sound" of synthetic speech may serve to facilitate its detection among other
messages in much the same way. The distinct,vely different voice quality of
synthetic speech compared with natural and coded speech may directly orient
the listener to the synthetic message. Simpson and Williams (1980) claimed
that "the reason synthesized speech messages may serve as their own alerting
signal may be that they possess some perceptual feamre that requires only a
low level of attention for detection" (p. 328). Therefore, it should be
relatively easy to detect a very distinctive or unnatural sounding synthetic
utterance in the context of natural speech messages.

However, this hypothesis is based only on the distinctiveness at "voice
quality" and does not take into account the acoustic-phonetic structure of the
speech. The acoustic cue structure of synthetic speech is impoverished by
comparison with the rich and redundant acoustic-phonetic structure of natural
speech. As a result, perceptual encoding of synthetic speech may require more
attention than natural speech. For example, Luce, Feustel, and Pisoni (1983)
reported that perception of highly intelligible synthetic speech generated by
MITalk requires more effort and attention than perception of natural speech.
This suggests that even though the distinctive quality of a synthetic voice
may facilitate detection of synthetic utterances against a background of
natural speech, the effort required to recognize the linguistic content of
that message may be substantially greater than fol navaal speech.

Method

To investigate the role of voice quality and segmental intelligibility in
message detection and recognition, we used a binaural target monitoring
paradigm. Subjects were asked to listen to a sequence of consonant-vowel (CV)
syllables and to respond as quickly and accurately as possible whenever a
target syllable was heard. At the beginning of each trial, a target syllable
(e.g., GA) was presented visually on a CRT oisplay. Following the thisplay of
this target syllable, a sequence of 20 CV syllables was presented over
headphones, with a 350 msec interstimulus interval. Each sequence of 20
stimuli consisted of six presentations of the target syllable and 14
presentations of different distractor syllables. Target and distractor
syllables were drawn from a set of 16 consonan.s (i.e.,
/b,d,g,p,t,k,r,l,m,n,j,w,v,z,f,s/) paired with the vowel /3/ produced by a
male talker, a female talker, the Paul voice of DECtllk, and the Votrax
Type-'N-Talk. These stimuli ar-2 shown in the top panel of the first figure.
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insert Figure 1 about here

A different group of subjects participated in each of nine conditions.
These conditions are shown in the bottom panel of Figure 1 and result from the
combination of three target types with three types of distractors. The
targets were either produced by a female talker, DECtalk, or Votrax. For one
third of the target conditions, the distractor syllables were produced by a

male talker and thus differed in voice from the targets. For another third of
the conditions, the targets and distractors were produced by the same voice.
Finally, for the remaining conditions, the distractors consisted of a mix of
syllables produced by the target voice and syllables r,duced by the male
talker. These conditions are illustrated in Figure 2. In this figure, the
underlined syllables represent the target stimuli. Also, syllables that are
circled are in a different voice than syllables without circles.

Insert Figure 2 about here

The top panel of Figure 2 shows the condition in which the targets and
distractors were presented in different vAces. In this ondition, subjects
can always detect the target using either the voice difference or the identity
of Cie target syllable. Following the logic of Simpson and Williams (1980)
target detection should be faster and more accurate as the distinctiveness of

the target voice increases. Thus, performance for Votrax targets with natural
distractors should be better than performance with the DECtalk targets.

In the middle panel of Figure 2, the target and distractor voices are the
same, so subjects can only use syllable identity as a basis for correct target
monitoring. In this condition, segmental intelligibility should be the most

important factor. Thus, monitoring performance should be best for the natural
targets and worst for the Votrax targets, with DECtalk in between.

Finally, at the bottom of the figure, half of the distractors are in the

same voice as the target and half are in a different voice. This condition is
closest to the actual application for voice response systems, in which there

may be several messages presented to an observer. Some of these messages will
be background communications that are to be ignored while other messages will

be in synthetic speech from the voice response system. The ability of
listeners to quickly and accurately monitor fcr targets in this condition
indicates the degree to which the distinctiveness of the target voice
facilitates message detection and recognition. Sinop text-to-speech systems
will seldom be used to deliver just a single invariant message to an observer,
this condition tests the more realistic cas! in which there are several
messages produced by the synthetic voice and the listener must correctly
recognize the target.
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Stimulus Sit:

BA, DA, GA, PA, TA, KA, MA, NA, RA, LA, WA, YA, PA, SA., VA, ZA

Talkers:

1. Female/Natural
2. Male/Natural
3. DECTaIk Pail
4. Votrax Type -'n -Talk

Target/Distractor Conditions:

TARGETS

Female/Mtural DICTalic Votrax

Different Male/Natural Male/Natural Male/Natural

%,me Female/Natural CECtalk Votrax

Mixed Female/Natural DECtalk Votrax
+ + +

Male/Natural Male/Natural Male/Natural

Figure 1. The top panel shcws the talker characteristics and syllables used as stimuli in target
monitoring. The bottom panel shows the different testing conditions of the target monitoring
paradigm. Three types of targets were presented (Female/Natural, DECTalk, or Votrax) in one of
three distractor condi. c,ns. The distractors were presented in either the same voice as the target.
different voice, or a mix of the same voice as the target and a different voice.
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Target and Distractor Voices Different:

BA DA

Target Syllable Po- QOA

LA RA RA WA YA RA DA

Target and Distractor Voices Same:

Target Syllable 110-

BA DA A LA RA RA DA WA g_A, YA RA

Target and Distractor Voices Mixed:

Target Syllable-0-

LA WA YA RA

Figure 2. The three target/distractor conditions in the target monitoring procedure.
Targets are shown in boldface and are underlined. Syllables that are circled arc
presented in one voice and uncireled syllables are preserued in a different voice.



Results

Figure 3 shows the percentage of correct target detections in each of the
conditions. First, it should be noted that performance is significantly more
accurate when the target and distractor voices are different (shown with the
open circles) than in the other two conditions. Second, there is no
significant difference in performance between the other two conditions. The
presence of some distractors in the same voice as the target affects
performance as if all distractors are in the target voice. Next, it is
important to note that there is a significant decrease in accuracy as a
function of target voice, such that natural targets are detected more
accurately than Votrax targets, with performance on DECtalk targets in
between. Finally, there is a significant interaction indicating that
performance on Votrax targets is dramatically impaired when Votrax distractors
are presented.

Insert Figure 3 about here

These results indicate that Votrax targets are detected less accurately
than natural targets and DECtalk targets in all conditions. Clearly then, the
more distinctive sound of the Votrax speech does not provide any advantage in
detection, even when all the distractors are natural speech. The response
time results further support this conclusion.

Insert Figure 4 about here

Figure 4 shows target monitoring speed for natural, DECtalk, and Votrax
targets in the three distractor conditions. Responses are fastest when the
target and distractor voices are different. As iu the hit rate data, there is
little, if any, difference between the Mixed and Same conditions, indicating
that the presence of any distractors in the same voice as the targets is
suff'cient to impair performance. In addition, there is a clear effect of the
intelligibility of the target speech such that natural targets are responded
to most quickly and Votrax targets are responded to most slowly with
performance on DECtalk targets in between. Thus, subjects are fastest and
most accurate when detecting natural targets, and slowest and least accurate
when detecting Votrax targets regardless of the distractor voice.

Insert Figure 5 about here

The false alarm data shown in Figure 5 support these conclusions, as
well. Subjects made fewer false alarms when the target and distractor voices
were different than in the other conditions. Also, subjects made fewer false
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alarms to natural targets than the synthetic targets. One difference in the
pattern of false alarm data compared to the hit rate data can be seen for the
Votrax targets. Subjects made half as many false alarms for Votrax targets in
the Mixed condition than they did in the condition where all distractors were
produced by Votrax. This result occurred simply because there were half as
many Votrax distractors in the Mixed condition as in the Same condition, and
none 5TTEi false alarms were responses to the natural distractors.

Discussion

Taken together these results argue that the effort and attention required
for recoghizing synthetic speech is not reduced when the synthetic speech must
be detected against a background of speech produced by other talkers. Rather,
recognition of synthetic speech seems to be imp'ired, by comparison with
natural speech, regardless of the conditions under which it is presented.
Similarly, Pierce and Remington (1984) reported that natural speech flight
instructions were more intelligible than synthetic speech when presented
against a background of air traffic control communications. Moreover, this
result was found across several signal-to-noise ratios and after several days
of repeated exposure.

The overall pattern of our results indicates that the distinctiveness of
a voice is less critical to target detection than the segmental
intelligibility of the speech. This argues against the hypothesis that
synthetic speech possesses acoustic features that require only a low level of
attention for detection. Instead, it is apparent that synthetic speech is
harder to detect in the context of natural speech than speech produced by a
different natural talker. There is no special perceptual feature in synthetic
speech that reduces the effort renuired for detection. Indeed, it appears
that highly distinctive synthetic speech is more difficult to detect than more
natural sounding synthetic speech.

One surprising finding was that the speed and accuracy of target
monitoring depended on the intelligibility of the speech, even when subjects
could have detected targets based on the difference in target and distractor
voices alone. This result suggests that subjects processed the phonetic
content of the target stimuli despite the fact that it was not necessary for
performing the task. Subjects may have been unable to ignore the segmental
information encoded in these targets.

In conclusion then, the results of the present study support the claim
that recognition of synthetic speech requires more effort and attention than
natural speech. Moreover, there is no advantage in detecting synthetic speech
against a background of natural speech indicating that there is no special
ale.ting property in synthetic speech. Thus, there appears to be no
perstual advantage for using low-quality synthetic speech in voice-response
systili-1; high-information-load applications and high-noise environments.
However, there is still much research that is needed to determine how noie
and cognitive load interact in perception of synthetic speech and how training
and experience affect the effort required to recognize utterances generated by
a text-to-speech system.
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Abstract

The performance of three text-to-speech systems and a natural speech control
was assessed using the Phoneme Specific Sentences (PSS) developed by Huggins &
Nickerson (1985). Use of the PSS stimuli enabled us to compare the
intelligibility of different classes of phonemes produced by the four voices
in sentence contexts. Subjects were asked to transcribe the sentences they
heard as accurately as possible. Transcriptions were scored according to an
exact match criterion. Analyses revealed differences among the overall
intelligibility of the voices. As expected, natural speech was significantly
more intelligible than any of the three synthetic voices. However,
examination of the errors across the different phoneme categories revealed
different response patterns among the voices. The results demonstrate that
the PSS stimuli provide valuable information about the quality of phoneme
synthesis in sentence contexts. The present results also replicate the
findings of earlier studies carried out in our laboratory showing qualitative
differences among the patterns of perceptual confusions that occur when
listening to different types of synthetic speech and those that occur when
listening to natural speech. Taken together, our results provide further
evidence for the claim that synthetic speech produced by rule displays an
impoverished acoustic-phonetic structure compared to natural speech. Our
results also show important differences among several synthetic voices
suggesting that synthetic speech, like natural speech, should not be viewed
collectively as a generic entity.



Intelligibility of Phoneme Specific Sentences Using Three

Text-to-Speech Systems and a Natural Speech Control

The perceptual evaluation of devices that process (i.e., encode and
transmit) speech signals has been the object of considerable effort ever since
Fletcher & Munson (1929) determined that the perceived quality of voice
transmission over telephone circuits could not be determined solely through
electronic measurement techniques. Over the year, a relatively large number
of perceptual tests have been developed that provide useful information on
several characteristics of the speech processed by devices ranging from radios
to vocoders and text-to-speech systems. With respect to the latter two
devices, most of these tests have examined segmental intelligibility since,
until recently, this factor had been assumed to be most critical to the
perception and understanding of speech. Although this emphasis on the
assessment of segmental intelligibility was well placed, other factors, such
as preference and naturalness, are also likely to play an important role in
determining the acceptability of spe.2ch processing devices to listeners.

Recently, Huggins & Nickerson (1985) described the development of a set
of Phoneme Specific Sentences (PSS) that they had found useful for evaluating
the preferences subjects displayed for different types of vocoded speech.
Each sentence contained a large proportion of words containing a set of
phonemes corresponding to a specific class, such as voiced stops, nasals,
liquids or glides. They used a small set of these PSS stimuli to examine the
preferences subjects had for speech processed by several different vocoders.
Huggins & Nickerson found the PSS stimuli were useful materials for reliably
differentiating among the preferences that subjects had for different
vocoders. Although Huggins & Nickerson (1985) used only a small set of these
stimuli in their preference experiment, they included nearly one hundred
sentences in their report that were constructed using similar principles as
those sentences they actually used.

The usefulness of these stimulus materials to our ongoing studies on the
perception of synthetic speech became apparent to us after carrying out an
experiment in which we examined the preferences subjects had for different
synthesized voices obtained from several text-to-speech systems (see Logan &
Pisoni, 1986). In our first experiment, we used a small set of Harvard
sentences (Egan, 1946) as stimuli and found that intelligibility appeared to
be a good predictor of the preferences subjects display for one synthetic
voice over another. In a second study, we wanted to see if this effect was
reliable using different stimulus materials. To this end, we carried out
another experiment in which we used the PSS stimui developed by Huggins &
Nickerson (1985). The reason we chose these particular sentences was because
the results of the Huggins & Nickerson experiment indicated these sentences
might be useful stimuli in evaluating preferences for different types of
vocoded speech. Furthermore, the information provided by the different
phoneme categories and how they were related to preference was also of
interest. The results of our second preference experiment replicated the
findings obtained in the first experiment. Preference was positively
correlated with the pattern of differences in intelligibility.

The measure of intelligibility that we used in our preference study was
the Modified Rhyme Test (MRT) developed by House, Williams, Hecker, & Kryter
(1965). This test was designed to assess the intelligibility of irdividual
isolated monosyllabic words. In light of the obvious differences in
performance between isolated words and words in sentences, we decided to
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collect intelligibility data directly from the PSS stimuli generated by the
three synthetic voices used in the earlier preference experiment.
Furthermore, to provide a benchmark against which to judge the intelligibility
of the sentences tested with synthesized speech, we also used a natural speech
control.

In short, in this study, we examined transcription performance for the
PSS output from three text-to-speech systems (DECtalk, Prose, and Infovox) and
natural speech obtained from a native speaker of English. We were interested
in the variations among the four voices in the transcription accuracy across
the 18 individual phonetic categories used in the PSS stimuli. Another factor
that we examined was the gross structural characteristics of the sentences and
how they may have affected intelligibility. The structural component that we
chose to look at was the number of words in a sentence which can be taken as a
rough estimate of syntactic complexity.

Method

Subjects. For the three conditions of the experiment in which output
from text-to-speech systems was used, thirty subjects (ten for each condition)
were recruited from a paid subject pool maintained by the Speech Research
Laboratory. These subjects were paid $3.50 for their participation. For the
condition in which natural speech was used, ten subjects were recruited from a
volunteer subject pool maintained by the Department of Psychology at Indiana
University. The subjects in the natural speech condition received course
credit for their participation. All subjects used in these tests were native
speakers of English and reported no history of a speech or hearing disorder at
the time of testing. All subjects were drawn from the same general population
of undergraduate students at Indiana University.

Stimuli. A subset of the Phoneme Specific Sentences developed by Huggins
& Nickerson (1985) were used as stimuli in the present experiment. Ninety-two
sentences were selected for use in this study. The sentences are given in
Appendix A. The synthesized stimuli used in the present experiment were
obtained from the digitized waveform files used in our earlier preference
experiment. These waveform files were produced in the following way. The 92
PSS stimuli were generated using the default voices for three text-to-speech
systems, DECtalk V3, Prose 2000 V3, and Infovox SA101. The PSS output from
each text-to-speech system was recorded on audiotape, low pass filtered at 4.8
kHz, and then digitized on a PDP-11/34 computer at a 10kHz sampling rate using
an A/D converter with 12 bit resolution. Individual waveform files for each
sentence were created using WAVES, a waveform editing program (see Luce &
Carrell, 1981). After digitization, each sentence was processed by a level
adjustment program (Bernacki, 1981) in order to ensure an approximately 50 dB
RMS level across each sentence.

The natural speech stimuli were produced by a male talker (PAL) who read
the sentences at a moderate speaking tempo from a randomized list. The
sentences were recorded in an IAC sound-attenuated booth on a Crown 800 Series
tape recorder. The recordings were digitized and .:egmented into individual
waveform files for each sentence. The natural speech was also processed by a
level adjustment program in order to obtain an approximately 50 dB RMS level
across each sentence.

Procedure. Subjects were tested in individual listening booths in groups
of four to six. The stimuli were presentLi over matched and calibrated TDH-39
headphones at a level of approximately 80d8 SPL. The amplitude of the test

stimuli was measured in relation to a calibration signal, a lOs vowel /a/,
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produced by DECtalk. Measurements were carried out using a VTVM. Individual
audiotapes containing the stimuli produced by each voice were reproduced using
an Ampex AG500 tape recorder. White noise of approximately 50dB amplitude was
mixed with the speech signal to mask background and tape noise. The tape
recorder and associated equipment were located in an adjacent room anA were
remotely controlled by the experimenter who remained with the subjects in the
testing room.

Each group of subjects was told that they would be listening to English
sentences and that their task was to write down each sentence they heard.
Subjects were also told that if they were unsure about what they heard, they
should write down whatever they thought they heard, even if they had to guess.
Subjects recorded their responses in specially prepared response booklets.
After each sentence was presented, the experimenter stopped the tape recorder
so that subjects could write the sentence dew-. After all subjects had
indicated they had recorded their response, the next sentence was presented.
This procedure was continued until all the sentences had been presented. The
experiment required approximately 45 minutes to complete.

The transcription responses were scored according to the following
criteria: Spelling errors were scored as correct if there was a phonemic
match between the response ano the actual stimulus presented. Otherwise,
sentences were scored as correct only it there was an exact match between the
response and the intended stimulus. Omissions, transpositions, and additions
were all scored as errors. In other words, the entire sentence was required
to be completely correct in order for it to be scored as correct.

Overall Percent Error

Results

The overall proportion of error responses for each voice is shown in
Figure 1. The lowest error rate as measured by transcription accuracy was
obtained for natural speech, followed by DECtalk, then Prose, and finally,
Infovox. The differences in error rate between the natural speech control and
the three synthetic voices are very apparent from this figure. In contrast,
the differences between DECtalk and Prose appear very small, while the
differences between Infovox and the other two synthetic voices appears to be
quite large.

Insert Figure 1 about here

In order to confirm the trends observed in Figure 1, an analysis of
variant_ -.,- carried out. The between subjects factor was voice (four voices)
while the within subjects factor was phonemic category (18 categories).
Significant main effects for voice [F(3, 36).119.73, p<0.0001) and phonemic
category [F(17, 612.26.7, p<0.0001[ were obtained. In addition, a
significant interaction between voice and phonemic category was also obtained
[F(51, 612)=4.51, p<0.0001]. The main ef,ect of voice was further examined to
determine which voices were significantly different from each other.
Newman-Keuls tests comparing the mean percent error indicated that the
performance obtained with the natural speech was significantly better (p<0.05)
than any of the synthetic voices. Furthermore, the performance of both Prose
and DECtalk was significantly different from that of Infovox. No significant
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differences were found, however, in the transcription performance between
DECtalk and Prose. Thus, the trends observed in Figure 1 were confirmed.

It is of some interest to compare the results obtained using the PSS
stimuli described above with results obtained in our laboratory using other
types of stimulus materials. In earlier studies examining the intelligibility
of synthetic speech (e.g., Greene, Logan, & Pisoni, 1986; Logan, Pisoni, &
Greene, 1985; Greene, MI-snous, & Pisoni, 1984), we found that the overall error
rates for synthetic speech were consistently higher than those obtained with
natural speech. Th's difference in intelligibility between natural and
synthetic speech was observed consistently across several different types of
stimulus materials, including CV syllables, isolated words (MRT), and words in
sentences (Harvard and Haskins sentences). Not surprisingly, this effect was
replicated in the present experiment; tnat is, the natural voice was more
intelligible than any of the synthetic voices. However, some of the relative
differences in performance that existed among the different synthetic voices
obtained using measures such as the MRT changed when the PSS stimuli were
used. Specifically, a statistically reliable difference in overall error rate
was found between DECtalk and Prose when the MRT was used as the measure of
intelligibility (see Logan, Pisoni, & Greene, 1985). In contrast, no reliable
difference was observed in error rates between DECtalk and Prose using the PSS
stimuli in this study. The differences in results will be considered briefly
below.

Error Analysis by -oneme Class

The data were also tabulated and analyzed according to the different
phonetic categories used to construct the PSS stimuli. These data are shown
in Table 1. The percentage of error responses is shown for each phonetic
category and for each voice. The significant interaction obtained in the
analysis of variance described above suggested differences in performance
among the voices as a function of phonetic category. Simply put, different
voices exhibited different patterns of errors.

Insert Table 1 about here

In order to obtain a more detailed assessment of the relationship among
the error patterns of the different voices, Pearson product moment correlation
coefficients were calculated for the six possible pair-wise combinations.
These correlations are shown in Table 2. The highest correlation was obtained
between DECtalk and Prose, followed by the correlation between DECtalk and
Infovox. The lowest correlation was observed between Prose and natural
speech, and the next highest was between Infovox and natural speech. All of
the correlations were significantly different from zero (p<0.05) except the
correlation between Prose and natural speech. No significant differences
between the correlations coefficients were obtained.

Insert Table 2 about here



Table 1

Proportion of Error Transcription Responses for

Phoneme Specific Sentence Categories

PSS Categories Proportion of Error Responses (%)

1) all fricatives

2) all stops & affricates

3) all consonant phonemes

4) glides except 1 & vowels

5) glides

6) glides & nasals

7) all labials

8) nasals

9) nasals + 1

10) all tongue tip

11) all unvoiced consonants....

12) unvoiced fricatives

13) unvoiced stops

14) unvoiced stops & affricate

15) voiced fricatives

16) all voiced consonants

17) voiced stops

18) voiced stops & affricate

Overall

DECtalk Prose Infovox Natural

60.2 60.00 93.33 13.33

30.00 56.67 80.02 0.00

73.33 85.00 ?8.33 44.00

50.00 60.00 75.00 1.67

35.00 5.00 70.00 45.00

38.00 23.99 68.67 7.01

27.50 42.50 75.00 3.17

12.87 20.02 67.13 2.86

20.00 5.00 70.00 6.43

74.26 57.13 92.85 34.29

72.00 4,!.00 92.00 16.00

45.00 45.00 80.00 15.00

26.00 42.00 42.00 2.00

44.00 47.00 47.00 6.00

80.00 77.50 100.00 37.50

24.00 40.00 74.00 24.00

23.75 28.75 61.25 7.75

50.00 50.00 65.00 30.00

43.65 43.76 75.09 16.41
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Table 2

Correlations Between Voices for Transcription Accuracy in

PSS Phonetic Categories

DECtalk Prose Infovox Natural

DECtalk 1.00 0.722 0.712 0.590

Prose - 1.00 0.535 0.273

Infovox - 1.00 0.506

Natural - 1.00



We also carried out an analysis to assess the effects of sentence length
on transcription accuracy. Because there was a great deal of variability in
the number of words used in the 92 sentences, which ranged in length from four
to fifteen words, we wanted to determine the extent that sentence length
affected transcription accuracy. For each voice, Pearson product moment
correlations were calculated to assess the relationship between sentence
length and transcription accuracy. The correlation coefficients were 0.250
for DECtalk, 0.256 for Prose, 0.328 for Infovox, and 0.368 for natural speech.
All of the correlations were significantly different from zero (p<0.05).
Thus, longer sentences tended to be transcribed less accurately than shorter
sentences. This result was observed for natural speech as well as synthetic
speech.

Discussion

The results of the present study suggest two main conclusions. First,
the PSS stimuli are more difficult than other stimulus materials we have used
in our previous studies on the perception of synthetic speech, such as the MRT
vocabulary or the Harvard and Haskins sentences. This conclusion is supported
by the higher error rates observed for all voices using the PSS stimuli.
Obviously, the differences between stimuli comprised of individual isolated
words, such as those used in the MRT, and stimuli comprised of highly complex
and variable sentences, such as those used in the PSS, are not surprising and
are suggestive of the diagnostic utility of these materials in speech
perception studies. With sentences such as these, it is possible to identify
sources of error and associate them with specific classes of phonemes that may
be synthesized poorly or even incorrectly in a particular context.

One example of the diagnostic usefulness of the PSS materials emerges
from the finding that natural speech was more intelligible than synthetic
speech. Since this result was obtained for even DECtalk, the most
intelligible of the synthetic voices, even small improvements in synthesis
quality may be revealed by comparing the performance of synthetic speech and
natural speech using the PSS. The generality of this explanation of how small
differences in intelligibility may be exploited to infer improvements in
synthesis, however, must be qualified by noting that the differences in
transcription performance between DECtalk and Prose became negligible when we
consider only the gross overall measure of error responses. Despite the fact
that the overall error rates for DECtalk and Prose were comparable, the
results of the present study demonstrated quite clearly that the source of
errors for DECtalk and Prose were very different.

The high error rates obtained using the PSS stimuli also points out the
somewhat arbitrary effects of different stimulus materials on intelligibility
scores. The effect of different stimulus materials may be further illustrated
by considering the influence of sentence length on error rates. In the
present study, we found that sentence length was positively correlated with
error rate. Other structural factors, such as word frequency, familiarity,
syntactic structure, and semantic coherence also may have contributed to the
low overall performance obtained using the PSS stimuli. Some of these
structural differences were necessary to satisfy the constraints imposed by
creating sentences loaded with specific phonemes without the sentences
becoming completely anomalous.

The second major conclusion that may be drawn from the results of the
present investigation is that large differences exist among the types of
errors found in natural and synthetic speech using these specially constructed
materials. Not only were large differences in the error patterns observed

.(,
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between the natural and synthetic speech, but differences were also observed
among the error patterns for different synthetic voices. For example, even
though the speech produced by DECtalk is hignly intelligible, it is still
quite different from natural speech in many important ways, as shown by an
examination of the error patterns and the correlations with natural speech. A
similar conclusion was suggested in earlier work done in our laboratory.
Several studies showed that the patterns of perceptual confusi,ns were
different for natural and synthetic speech, suggesting that synthetic speech
was not simply the rame as natural speech degraded by noise (see Nusbaum,
Dedina, & Pisoni, 1984; Yuchtman, Nusbaum, & Pisoni, 1985). Indeed, the
results implied that synthetic speech had an impoverished acoustic-phonetic
cue structure. Some cues to phonemic contrasts were present but others were
distorted or missing in the phonetic implementation rules used in slthesis.

Thus, one of the major difficulties with synthetic speech produced by
rule lies in the manner in which the phonetic information is actually
converted into an acoustic waveform, the phonetic implementation rules. In
addition, factors such as prosody and naturalness undoubtedly play an
important role in determining the intelligibility of a particular sequence of
synthesized speech. However, the present error analyses strongly point to
segmental intelligibility as a source of the differences in transcription
performance. Until all these factors are better under-tood, synthesized
speech will continue to remain less intelligible than natural speech. We
believe it is important to emphasize here that synthetic speech, like natural
speech, is not a homogenous entity and that it may be misleading to talk about
synthetic speech as if it were simply a generic form of speech produced by
rule, as some re...earchers have implied. The present tests establish quite
firmly, in our view, that important differences exist among different kinds of
synthetic speech produced by rule. And, of course, consistent differences
between the perception of natural speech and various kinds of synthetic speech
continue to be observed using a wide variety of stimulus materials. Only by
understanding the nature of these differences and their locus will we be able
to improve the quality and intelligibility of synthetic speech produced by
rule, so that it eventually sounds indistinguishable from natural speech
generated by real talkers.
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Appendix A

Phoneme Specific Sentences
(from Huggins & Nizkerson, 1985)

Fricatives
His vicious father had seizure..
Whose shaver has three fuses?
Three of the chefs saw the thieves.

Stops and affricates -

Which tea party did Judge Baker go to?
We'd better buy a bigger dog.
Georgie had to chew tobacco.

Consonants
If the treasure vans got so much publicity we think you should hide
your share.
The voyagers have ground the crankshaft with unimpeachable precision.
The old-fashioned jacket was giving you both so much humourous
pleasure.

The average disillusioned gambler thinks he wishes for a cheap yacht.
Nothing could be further from reality than his illusion of chasing
your gorgeous sheep away.
She thinks even the pale rouge you bought was much too gaudy for her
age.

Glides except 1
Why were you away a year Roy?
Why were you weary?

Trides -

Our lawyer will allow your rule.
Our rule will allow you a lawyer.
We really will allow you a ruler.

Glides and nasals -

You were wrong all along.
I know you're all alone.
When will our yellow lion roar?
An alarm rang a warning in only one room.
A lawyer may well allow a new ruling.
I'm learning my new role.
I'll remain in my narrow room.
Anyone may rely on a mailman.
I'm wearing my maroon ring.
We'll allow you a new loan.
I'll lie in an alarming manner.
Why lie when you know I'm your lawyer?
A normal animal will run away.
Mail me an aluminum railing.
I'll willingly marry Marilyn.
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Appendix A (continued)

Phoneme Specific Sentences

Labials -
Pay my wife by five.
Weave me a web above a poppy.
Move off my pew baby!
Weep for my baby puppy.

Nasals
Nanny may know my meaning.
I'm naming one man among many.
No one knows my name.
I know many a mean man.
I know no minimum.
Many young men owe money.
When may we know your name?

Nasals plus 1
I'm well known among men.
Nine men moaning all morning.

Tongue tip -
The judge's short decision really touched the youth.
Each decision shows the jury she lies through her yellow teeth.
Such a rash allusion to dosage teases the youth.
Seth yawns at each rash allusion to the dosage.
The designers really earned the judge's derision this year.
Each allusion to Daisy's agility lessens her attention.
Each decision shows that he lies through his yellow stained teeth.
John drowned his sorrows in gin and orange juice.

Unvoiced consonants -
She : iftly passed a health check.
He steps off a path to cash a check.
I hope she chased her fox to earth.
A thick-set officer pitched out her hash.
He checked through fifty ships.

Unvoiced fricatives -
A thief saw a fish.
I saw three fish.
Three chefs face a thief.
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Appendix A (continued)

Phoneme Specific Sentences

Unvoiced stops -

Take a copy to Pete.
Pat talked to Kitty.
Quite a cute act.
Peter took out a potato.
Kate typed a paper.

Unvoiced stops and affricates -

Chip took a picture.
A teacher patched it up.
Chat quietly to teacher.
Quite quiet at church.
Catch a paper cup.
Actuate a paper copier.
A teacher taped up a packet.
Capture a cute puppy.
A teacher typed up a paper.
Katie tacked up a cute picture.

Voiced fricatives -

They use our azure vials.
There's our azure vial.
There's usually a valve.
Those waves veer over.

Voiced consonants -

Does John believe you were measuring the gun?
Your brother's vision was gradually dimming.
The regular divisi.n was led by a young major.
I gather you wil] be abandoning the major revisions?
The young major's evasions were growing bolder.

Voiced stops
Bobby did a good deed.
I begged Dad to buy a dog.
Did Bobby do a good deed?
Buy Dad a bad egg.
Dad would buy a big dog.
Why did Gay buy a bad egg?
Do you abide buy your bid?
Grab a doggie bag.
A greedy boy died.

Voiced stops and affricates -

Did George do a good job?
Greg adjudged Bobby dead.
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Abstract

Humans can pronounce novel orthographically-regular text strings such as
pseudowords, like "peemers", or words they have never seen before. How do
they do this? Two hypotheses have been proposed to account for this ability.
According to one view, pronunciation-by-rule, pseudowords are pronounced by a
ruled-based phonological process in which the pronunciation for a pseudoword
is generated from its spelling by the use of a complex set of spelling-to-
sound rules (e.g., Forster & Chambers, 1973). According to the alternative
view, pronunciation-by-analogy, pseudowords are pronounced by analogy to known
words which are similar in spelling (e.g., Glushko, 1981). Although the
pronunciation-by-analogy approach is psychologically plausible, it is not
clear that it is computationally feasible. Pronunciation-by-analogy depends
on the degree to which orthographic consistency in the spelling patterns of
words is related to phonotactic consistency in pronouncing those words. To
investigate this theoretical issue, we de\celoped a computer program called
PRONOUNCE that automatically generates a set of rank-ordered pronunciations,
in the form of a sequence of phonetic segments, using pronunciation-by-analogy
with a lexicon of approximately 20,000 words based on Webster's Pocket
Dictionary. PRONOUNCE examines every word in the lexicon and builds a
pronunciation lattice structure using the phonetic representations of the

words that match the input string. In this pronunciation lattice, each node
represents a possible phoneme to be used at a particular position in the

pronunciation, and each path through the lattice represents a possible
pronunciation. At this time, PRONOUNCE performs reasonably well, generally
producing pronunciations that agree with those given by native speakers of
English. PRONOUNCE was tested on a set of 70 short pseudowords and was found
to disagree with human subjects on only 9% of the pseudowords. These results
suggest that pronunciation-by-analogy is indeed computationally feasible.
Furthermore, the limited success of PRONOUNCE suggests a new approach to
spelling-to-sound conversion for text-to-speech conversion systems.



PRONOUNCE: A Program for Pronunciation by Analogy

I. INTRODUCTION

In reading aloud, most people have very little trouble pronouncing novel
words and pseudowords. A pseudoword is a string of letters that does not
spell a real word, but still conforms to he spelling patterns of English.

Insert Figure 1 about here

Figure 1 shows several example pseudowords that most native English
speakers can easily pronounce. If text-to-speech systems could pronounce
pseudowords as accurately as most humans do, synthetic speech generated
automatically by computer would be more intelligible. A text-to-speech system
is a speech synthesizer that converts unrestricted English text in ASCII
format into speech. When pronouncing known words, a text-to-speech system
will often reference a pre-compiled dictionary containing pronunciations for a
number of words. However, unknown spelling patterns that are not found in the
dictionary must be pronounced using a relatively large and complex set of
spelling-to-sound rules. In the more sophisticated text-to-speech systems
currently available, such as DECtalk, Prose, and Infovox, this approach works
quite well. However, the development of a set of spelling-to-sound rules for
a particular dialeLt or language requires a great deal of time and the
services of an expert linguist. The linguist must analyze the pronunciations
of a large corpus of words and then apply explicit linguistic knowledge and
intuition to formalize the relationships between spelling and sound patterns
for this data. Thus, the development of spellir;-to-sound rules by linguistic
experience and intuition is a complex process with many opportunies for error
that may be compounded by the size of the rule -let and side effects among
rules. One way to reduce the chances of errorful rules and improve the
pronunciations of text-to-speech systems is to somehow automate the role
played by the expert linguist. The success of this approach depends, in part,
on gaining a better understanding of the way humans pronounce words,
especially novel words they have never seen or heard before.

Psychologists have generally assumed that humans pronounce pseudowords by
a rule-based process (e.g., Forster & Chambers, 1973). However, Glushko
(1979, 1981) has proposed an alternative to the ruled-based theory that does
not require the generation of explicit spelling-to-sound rules (see also
Brooks, 1977; Baron, 1977). Instead, Glushko has suggested that humans use a
process of analogy to derive the pronunciation for a spelling pattern. Words
that are similar in spelling to a pseudoword are activated in the language
user's mental lexicon. The activated phonological representations in the
lexicon are then combined to form an appropriate pronunciation for the novel
string.

Glushko (1979) presented a number of experimental results that support
his hypothesis. In one study, he found that an "exception pseudoword", that
is, a pseudoword that closely resembles words with conflicting pronunciations,
will take longer to pronounce than a "regular pseudoword" that resembles a set
of words with consistent pronunciations. In addition, he found that words
that have inconsistent neighbors (i.e., they resemble words with conflicting
pronunciations) are pronounced more slowly than words with consistent
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Orthography
(Spelling)

Phonetic Representation
(Pronunciation)

NILF /nIlf/

HEEN /hin/

NICH /nItS/

POMB /pam/

LOME /lom/

HOAP /hop/

MOOF /muf/

Figure 1. Example pseudowords that most English speak.rs can pronounce
easily, with their likely pronunciations.



neighbors. Glushko inferred that these exception words and pseudowords are
pronounced more slowly than regular strings because the subject must Lomehow
resolve the inconsistency in possible pronunciations.

Examples of regular and exception pseudowords are shown in Figure 2.
Thus, T-A-V-E may be pronounced as /tev/ or /txv/, while T-A-Z-E is typically
pronounced as /tez/. Glushko's findings suggest that the pronunciation of
both words and pseudowords depends, at least to some degree, on the
pronunciation of other words with similar spellings.

Insert Figure 2 about here

The pronunciation-by-analogy theory may provide the same pronunciation
ability as a set of spelling-to-sound rules without requiring an explicit
theory of rule induction. As a result, for text-to-speech systems,
analogy-based pronunciations may laminate the need for an expert linguist and
may be reiatively simple to automate. However, pronunciation-by-analogy
depends on two critical assumptions. First, the correspondence between
spellings and sound patterns in the lexicon is assumed to be sufficiently
close to provide reasonable pronunciations. Second, the similarity in
spelling patterns between some unkown target letter string and words in the
lexicon is assumed to allow the synthesis of a pronuciation from the
intersection of spelling-to-sound mappings for several words. To test these
assumptions, we developed a computer program called PRONOUNCE that
automatically generates a set of rank-ordered pronunciations, in the form of a
sequence of phonetic segments, by analogy with the words in a large lexical
database. In the sections below, we describe the main features of PRONOUNCE
and then summarize its performance in pronouncing novel strings.

II. PRONOUNCE

PRONOUNCE was written in Zetalisp on a Symbolics 3670 Lisp machine.
PRONOUNCE contains four basic components. In addition to the lexical
database, these include the matcher, which compares the target spelling
pattern to the words in the database, the pronunciation lattice, which is a
data structure representing possible pronunciations, and the decision
function, which rank orders pronunciations extracted from the lattice.

The lexical database used by PRONOUNCE consists of approximately 20,000
words based on Webster's Pocket Dictionary. Each entry includes a mapping
from the letters of the word onto the phonetic segments of its pronunciation.
This mapping was carried out by a simple Lisp program that only uses knowledge
about which letters and phonemes are consonants and which letters and phonemes
are vowels. The program parses spellings and pronunciations into separate
groups of consonants and vowels, then maps consonant spelling groups to
consonant phoneme groups, and vowel spelling groups to vowel phoneme groups.

Insert Figure 3 about here



Spelling Pronunciation

Exception: TAVE Ray/ or /tev/

Neighbors: HAVE /h v/

GAVE /gev/

Regular: TAZE /tez/

Neighbors: DAZE /dez/

GAZE /gez/

Figure 2. Exception pseudoword TAVE and regular pseudoword TAZE, with
their lexical neighbors and pronunciations.



1:

2:

3:

GREEN
g r i n

(G R) (E E) (N)

(g r) (i) (n)

G R (E E) N

V 1

g r i n

1:

2:

3:

1:

2:

TOUGH
t A f

(T) (0 U) (G H)

(t) (N) (f)

T (0 U) (G H)
\/ \I

t A f

NO", EP AD
t p de. d

(N) (0) (T) (E) (P) (A) (D)

(n) (o) (t p) (az) (d)

N 0 T EP AD
3: /\ I I

n o (t p)ae d

Figure 3. The spelling-to-sound mapping process as applied to the words
GREEN, TOUGH, and NOTEPAD. In each panel, the spelling and
pronunciation of the word is shown at the three stages of the mapping
process: 1) before mapping, 2) after parsing into consonant/vowel
groups, and 3) after congruent groups have been mapped to each other
in left-to-right fashion. The bottom panel shows an incorrectly
mapped word.
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Figure 3 shows an example of the mappings that would be generated for the
words "green", "tough", and "notepad". The mappings produced generally
conform to linguistic intuitions, although there are some errors. For
example, a "silent e" sometimes occurs between two consonants in a compound
word, as shown for "notepad" in the bottom panel of Figu ( 3. In cases such
as this, the "e" is incorrectly mapped onto the next phonetic vowel. This
problem could be solved by performing a nonlinear warping of the spelling and
phone strings starting with the initial and final segments of both strings and
working toward the middle (see Sankoff & Kruskal, 1983).

For each spelling pattern that must be converted to a phoneme pattern,
PRONOUNCE looks at every word in the lexicon. The spelling of each lexical
entry is compared with the input string by aligning the strings from the
beginning, and then sliding the shorter string to the right by one position at
a time until the ends of the strings are aligned. For each alignment
position, the phonetic segments corresponding to the correctly matched
substrings within the word are entered into the pool of information used in
generating a pronunciation.

Insert Figure 4 about here

Figure 4 shows an example of the matching process that compares the
spelling patterns. In this figure, the input pseudoword "blope" is matched
against the lexical entry "sloping". At the first alignment position, the
substring "lop" is matched. Subsequent alignment positions do not yield any
more matching substrings. Following this spelling pattern matching process,
the phonetic mappings are retrieved for the matching substring. The data
structure used to represent the output of the matching process as it is

applied to the lexical database is a pronunciation lattice. This lattice
consists of a set of nodes and arcs. Each node represents a hypothesis about
a phonetic segment that may occur at a particular position within the
pronunciation. When a letter substring from a lexical entry matches a part of
the input string, nodes are created for each phonetic segment produced from
the substring. Each of these nodes is connected by arcs to subsequent nodes.
In addition to the phoneme nodes, there is a START node at position zero, and
an END node at the position that is one greater than the length of the input
string. These special nodes mark the entry and exit points for the
pronunciation paths in the lattice. Each complete path thtc,ugh the lattice,
from START to END, represents a possible pronunciation for the target string.

Insert Figure 5 about here

Figure 5 shows the partial pronunciation lattice that is produced by

matching "blope" to "sloping". The correctly matched substring "lop" yields
the nodes labeled 1-2, o-3, and p-4. In this example, the node labeled "1-2"
asserts that the phonetic segment corresponding to the second letter in the
pseudoword is /1/. Node 1-2 is connected to o-3, representing the fact that a
string "lo" was matched, resulting in the phonetic sequence /1 0/. Nodes o-3
and p-4 are similarly connected. In addition, node 1-2 is connected directly
to node p-4, representing the match for the complete substring "lop".



INPUT: BLOPE

LEXICAL ENTRY: SLOPING

1st positioL:

BLOPE
SLOPING

shared: L 0 P

2nd position:

BLOPE
SLOPING

shared: none

3rd position:

BLOPE
SLOPING

shared: none

Figure 4. An example of the matching process that finds spelling pattern
analogies. In this example, the input pseudoword "blope" is matched
against the lexical entry "sloping" at three orthographic alignment
positions.



Figure 5. A segment of the pronunciation lattice for the "lop" substring.

1
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Attached to the arc connecting 1-2 and p-4 is a list of phonemes to be added
to the pronunciation should that arc be taken. In this case the list consists
of the phoneme /o/.

Also, a frequency count is stored with each arc, reflecting the number of
matched substrings that produced that arc. FinE'ly, if a matched substring
starts at the beginning of a word or ends at the end of a word, the START and
END nodes are connected to the appropriate nodes of the pronunciations lattice
segment.

Once the entire lexicon has been processed and the complete lattice has
been constructed, the lattice is traversed to find all the paths from START to
END. These paths represent all the pronunciations for the input string. As
the lattice is traversed, PRONOUNCE keeps track of the number of arcs in each
path, as well as the sum of the arc frequencies for each path. The paths are
then rank-ordered first by ler 1, and second, by the sum of the arc
frequencies. By using path length as a heuristic for selecting
pronunciations, decisions are based on the amount of spelling overlap between
an input string and the lexicon. The us'a of arc frequencies as a secondary
heuristic causes the system to select the most common spelling-to-sound
translations that occur in the database.

III. RESULTS

We tested PRONOUNCE on 70 pseudowords presented by Glushko (1979) to
human subjects for pronunciation. All the strings were four or five
characters in length and they were all derived from monosyllabic words by
changing one letter. Since these pseudowords have no objectively ccrrect
pronunciation, we also elicited pronunciations from human subjects, to give us
a basis for assessing the performance of PRONOUNCE. The seven subjects all
had formal training and experience in phonetic transcriptions of English
words. The subjects were given a printed list of the pseudowords and were
instructed to provide a phonetic transcription of the first pronunciation that
came to mind. In order to compare the performance of PRONOUNCE with a system
using a set of relatively complex spelling-to-sound rules, we also presented
the pseudowords in ASCII format to Digital Equipment Corporation's DECtalk
V2.0 text-to-speech system, which provided phonetic transcriptions.

Insert Figure 6 about here

Figure 6 shows some sample pronunciations produced by the human subjects,
PRONOUNCE. and DECtalk. In general, both PRONOUNCE and DECtalk consistently
agree with the pronunciation given by the human subjects.

A pronunciation was scored correct if it exactly matched one of the
pronunciations produced by one of the human subjects. PRONOUNCE petformed
with an error rate of 9%, while DECtalk had an error rate of 3%.

IV. SUMMARY AND CONCLUSIONS

The success of the PRONOUNCE system provides some additional support for
the hypothesis that humans pronounce novel words and pseudowords by analogy to
known words in their mental lexicons. It is clear that pronunciation-by-
analogy is computationally sufficient to generate reasonable pronunciations of
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Pseudoword Human PRONOUNCE DECtalk

COTH /kae/ /kae/ /kae/

HEEN /hin/ /hin/ /hin/

DROOD /drud/ /drud/ /drud/

SHEAD /gid/ igid/ /sid/

FEAD /fid/ /f6d/ /fid/

STEAT /stit/ /stlt/ /stid/

POMB /pam/ /pam/ /pam/

COSE /kos/ /kos/ /koz/

/koz/

Figure 6. Comparison of sample human, PRONOUNCE, and DECtalk

transcriptions.



novel words. Thus, pronunciation-by-analogy can account for the performance
of humans, even though the performance of PRONOUNCE must still be improved to
completely simulate human performance. Moreover, PRONOUNCE demonstrates that
pronunciation-by-analogy may, with sufficient development effort, replace the
use of spelling-to-sound rules in the next generation of text-to-speech
systems. This will reduce the need for human intervention in modifying a
text-to-speech system for a new dialect or language.

In addition to these considerations, pronunciation-by-analogy may improve
spelling-to-sound translation for surnames (cf. Church, 1985; Spiegel, 1985).
Surnames are often "borrowed" into English from other languages, and the
application of English spelling-to-sound rules to these names often produces
inappropriate translations. However, with some representative entries for
foreign names in the lexical database, pronunciation-by-analogy should be able
to produce the correct spelling-to-sound translation for other names from the
sampled language.

Finally, it is clear that additional research efforts cm pronunciation-
by-analogy are needed. First, the present system of mapping letter strings to
phoneme strings could be modified to incorporate non-linear string warping and
more linguistic knowledge. At the present time, only the distinction between
consonants and vowels is used to bind phoneme translations onto letter
substrings. This mapping process could be modified to incorporate more
sophisticated representations of syllable structure and stress pattern, and
therefore generate more linguistically complex mappings. Second, the
string-matching algorithm represents the core of the analogy process in the
present version of PRONOUNCE. Improvements in this analogy function should
result in selecting lexical entries that are more appropriate for building the
pronunciations of an input string. In the present version, a match of a
single letter between the input string and a lexical entry causes phonetic
information to be added from the lexical entry to the pronunciation lattice.
In the next version of PRONOUNCE, we are planning to incorporate a more
abstract concept of analogy based on the overall patterns of spelling
information in the input and )-xical entry and a more sophisticated way of
computing similarity or distant scores for two strings.

In summary, PRONOUNCE demonstrates that pronunciation-by-analogy may
provide a viable alternative to traditional rule-based pronunciation systems.
However, improvements in the pronunciation generated by analogy will depend on
incorporating more explicit linguistic knowledge and more abstract concepts of
analogy into the system. Finally, there is a need for more research on the
structural properties of spelling and sound patterns in order to develop more
sophisticated theories of pronunciation by humans and eventually to
incorporate these more powerful and productive systems into the next
generation of text-to-speech converters.
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The Role of the Lexicon in Speech Perception

For the last five years our research group at Indiana has been interested
in the role of the lexicon in speech perception. To carry out this work, we
have adopted a computational approach that makes use of several large
databases containing phonetic transcriptions and approlriate software to index
the structural properties of words and relations among words. Our initial
work has revealed a number of interesting and pote "tially important findings
about the distribution of words in the mental lexicon and the role of
structural constraints in human word recognition (see Pisoni, Nusbaum, Luce &
Slowiaczek, 1985). We believe this computational approach to word recognition
may provide insights into several very long-standing problems in the field of
human word recognition and may have some important implications for large
vocabulary speech recognition in terms of developing computational techniques
for rapid and efficient search space reduction. Although there has been a
great deal of research carried out over the last few years on the development
of metrics for quantifying spectral distance among speech signals, there has
been little, if any, research directed at formalizing an approach to phonetic
distance among words in terms of their acoustic-phonetic or phonological
similarity. Moreover, there has been practically no research done to
determine if these proposed distance metrics based on 'the structural
properties and similarity spaces of words can be used to predict the behavior
of human listeners. Finally, there has been little, if any, knowledge of the
precise role that structural constraints play in speech perception and word
recognition.

The overall goal of our research on the lexicon is to learn more about
the structural properties of words in the mental lexicon and how this
information may be used by human observers in recognizing words. We are
interested in learning how structural information can be used to reduce the
search space and how it constrains the selection of lexical candidates in the
word hypothesization process. We have been interested in determining which
aspects of the structural properties of words are important in this task and
how this information may be used by human listeners in recognizing spoken
words from very large vocabularies. As a side interest, we have also been
considering how information derived from studies of human speech perception
and word recognition could be used in developing new and more efficient
algorithms for speech recognition. However, our major interest is in human
auditory word recognition and speech perception.

As a first step to approaching these computational problems, we acquired
several large computer readable databases. One of these, based on Kenyon and
Knott's A Pronouncing Dictionary of American English an' Weoster's Seventh
Collegiate Dictionary, contains approximately 1.130,00J entries. Another
smaller database of 20,000 words is based on Webster's Pocket Dictionaq.
Each entry contains the standard orthography of a won ,several phonetic
transcriptions in ARPABET, stress patterns and special codes indicating the
syntactic functions of the word. We have developed a number of algorithms for
determining, in various ways, the similarity neighborhoods, or "lexical
density," for any given entry in the dictionary based on analyses of either
the orthographic or phonetic transcriptions o. -fords in the database. This
information has provided some very interesting information about the
structural properties of words in the lexicon and how this information might
be used by human listeners in word recognition. In the sections below, we
summarize briefly some ci our recent findings using these computational
techniques and discuss their implications for spoken word recognition.
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Word Fre9uency Effects. Word frequency effects in the psychological
literature obtained-717-iierceptual and memory research using human subjects
have typically been accounted for in terms of frequency of usage, the time

between the current and last encounter with the word in question, and similar
ideas. In each of these explanations of word frequency effects, however, it

has been assumed that high and low frequency words are "perceptually
equivalent." That is, it has often been assumed that common and rare words are
structurally equivalent in terms of phonological and orthographic composition.
A number of years ago, Landauer and Streeter (1973) suggested that the

assumption of perceptual equivalence of high and low frequency words may not
necessarily be warranted. In their study, Landauer and Streeter demonstrated
that common and rare words differ on two structural dimensions. From an
analysis of a small number of printed words, they found that the "similarity

neighborhoods" of common and rare word differ in both size and composition:
High frequency words have more words in common (in terms of one letter
substitutions) than low frequency words, and high frequency words tend to have
high frequency neighbors, whereas low frequency words tend to have low

frequency neighbors. Thus, for printed words, the similarity neighborhoods
for high and low frequency words show marked differences. Landauer and

Streeter also demonstrated for a small number of spoken words that certain
phonemes are more prevalent in high frequency words than in low frequency
words and vice versa. Both of these analyses and conclusions were, however,
based on a very small number of words and no attempt was ever made to

generalize these findings to a larger database that is more representative of
the words in the language.

In our laboratory, Luce has recently undertaken a project that is aimed

at extending and elaborating the original Landauer and Streeter study (Luce,
1986). In this research, both the similarity neighborhoods and phonemic
constituencies of high and low frequency words have been examined in order to
determine the extent to which spoken common and rare words differ in the

nature and number of "neighbors" as well as their phonological configuration.
To address these issues, an on-line version of Webster's Pocket Dictionary
(WPD) was employed to compute statistics about the structuralorganization of
words. Specifically, the phonetic representations of approximately 20,000

words were used to compute similarity neighborhoods and to examine phoneme
distributions for words of different frequencies of occurrence in the

language.

To examine the similarity neighborhoods of common and rare words, a

subset of high and low frequency target words were selected from the WPD for
evaluation. High frequency words were defined as those equal to or exceeding

1000 words per million in the Kucera and Francis word count. Low frequency
words were defined as those between 10 and 30 per million inclusively. For

each target word meeting these a priori criteria, similarity neighborhoods
were computed based on a metric allowing only one-phoneme substitutions at

each position within the .arget word. There were 92 high frequency words and
2063 low frequency words. The mean number of words within the similarity

neighborhoods for the high and low frequency words was also computed, as well
as :he mean frequencies of the neighbors. In addition, a decision rule was

use3 to was compute a measure of the "distinctiveness" of a given target word
relative to its neighborhood with the following formula:



T
4

where T equals the frequency of the target word and N equals the frequency of
the i-th neighbor of that target word. Larger values for the decision rule
indicate a target word that "stands out" in its neighborhood; smaller values
indicate a target word that is relatively less distinctive in its
neighborhood.

The results of these analyses revealed that although the mean number of
neighbors for high and low frequency target words were approximately equal,
the mean frequencies of the similarity neighborhoods for high frequency target
words were higher than the maTI77iiI7lincies of the similarity neighborhoods of
the low frequency target words. The finding that high frequency words tend to
have neighbors of higher frequency than low frequency words suggests, somewhat
paradoxically, that high frequency words are more likely rather than less
likely to be confused with other words than low TFequency words.

At first glance, this finding would appear to contradict the results of
many behavioral studies reported in the psychological literature demonstrating
that high frequency words are recognized more easily than low frequency words.
However, an examination of the predictions derived from the decision rule
applied to high and low frequency target words showed that high frequency
words should be perceptually distinctive relative to the words in their
neighborhoods whereas low frequency targets should not. Indeed, substantially
larger values of this index were obtained for high frequency words than for
low frequency words of the same length.

Several other interesting findings were also revealed in these analyses.
First, for target words of both high and low frequencies, the decision rule
predicted increasingly better performance for words of greater length. In
addition, the analyses showed chat for words consisting of more than three
phonemes, the percentage of unique words increased very substantially as word
length increased. This last finding demonstrates that simply increasing the
length of a word increases the probability that the phonotactic configuration
of that word will be unique and eventually diverge from all other words in the
lexicon. Such a result suggests the potentially powerful contribution of word
length in phonemes in combination with various structural t tors to the
isolation of a given target word in the lexicon.

Phoneme Distributions in High and Low Frequency Words. The finding that
high frequenZTiPain---WoTas tend to be more similar to other high frequency
words than to low frequency words also suggests that certain phonemes or
phonotactic configurations may be more common in high frequency words than in
low frequency words. As a first attempt to evaluate this claim, Rice has
examined the distribution of phonemes in words having frequencies of 100 or
greater and words having a frequency of one. For each of the 45 phonemes used
in the transcriptions contained in the WPD, percentages of the total number of
possible phonemes for four and five phoneme words were computed for the high
and low frequency subsets.

Of the numerous trends uncovered through these analyses, two were of
special interest. First, the percentages of bilabials, interdentals,
palatals, and labiodentals tended to remain relatively constant or decrease
slightly from the low to high frequency words. However, the pattern of
results for the alveolars and velars was quite different. For the alveolars,
increases from low to high frequency words of 9.07% for the four phoneme words
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and 3.63% for the I...ye phoneme words were observed. For the velars, the
percentage of phonemes dropped from the low to high frequency words by 2.33%
and 1.14% for the four and five phoneme words, respectively. Second, there
was an increase of 4.84% for the nasals from low to high frequency words
accompanied by a corresponding drop of 4.38% in the overall percentage of
stops for the five phoneme words.

The finding that high frequency words apparently tend to favor consonants
having an alveolar place of articulation and disfavor those having a velar
place of articulation suggests that frequently used words in the language may
have succumbed to pressures over the history of the language to exploit
consonants that are, in some sense, "easier" to artiv.date for human talkers.
This result, taken together with the finding for five phoneme words regarding
the differential use of nasals and stops in common and rare words, suggests
that, in terms of phonological composition, common words differ structurally
from rare words in terms of their choice or selection of constituent phonemes.
Further analyses of the phonotactic configuration of high and low freqeuncy
words should reveal even more striking structural differences between high and
low frequency words in light of the results obtained from the crude measure of
structural differences based on the overall distributions of phonemes in these
words.

Similarity Neighborhoods and Word Identification. In addition to the
work summarized above demonstrating differences in structural characteristics
of common and rare words, we have also explored the use of similarity
neighborhoods as a measure of lexical density to derive predictions regarding
word intelligibility in noise. A subset of 300 words published by Hood and
Poole (1980) which were ranked according to their intelligibility in white
noise have been examined to study the role of similarity neighborhoods in word
recognition. As Hood and Poole pointed out, frequency of usage was not
consistently correlated with word intelligibility scores in their data. In

our analyses, we reasoned that some metric based on the similarity
ne'-hnurhoods of these words might be better at capturing the observed
ditLarences in intelligibility than a simple account based only on frequency
of occurrence in the language.

To test this possibility, we examined 50 of the words provided by Hood
and Poole, 25 of which constituted the easiest words and 25 of which
constituted the most difficult words in their data. In keeping with Hood and
Poole's observation regarding the effects of word frequency, we found that the
25 easiest and 25 most difficult words were not, is fact, significantly
different from each other in frequency. However, we found that the

relationship of easy words to their neighbors differed vary substantially from
the relationship of the difficult words to their neighbors. More
specifically, on the average, 56.41% of the words in the neighborhoods of the

difficult words were equal to or higher in frequency than the difficult words
themselves, whereas only 23.62% of the neighbors of the easy words were of

equal or higher frequency. Thus, it appears that the observed differences in
intelligibility of these words may have been due, at least in part, to the

frequency composition of the neighborhoods of the easy and difficult words,
and were obviously not primarily due to the absolute frequencies of the words
themselves (Anderson, 1962; Havens and Foote, 1963). Thus, it appears that
the difficult words found in Hood and Poole's study were more difficult to

perceive because they had relatively more "competition" from their neighbors
than the easy words.



Phonotactic Patterns of Words in the Lexicon. Although human listeners
may perceive spoken worai as a temporally distributed sequence of segments,
the recognition system need not compare these segments to lexical
representttions in memory in a strict left-to-right order as assumed by
several current theories of word recognition. Indeed, it is unclear how
serial pattern matching strategies can recognize a word if the initial segment
of the input is somehow obscured, degraded or ambiguous. Because this initial
segment may be thought of as an index into the lexicon, as in content
addressable memory system (Kohonan, 1980), recognition could not proceedwithout a well-defined access point to begin the process. This is obviously
one of the reasons why the problem of segmentation has been so important inautomatic speech recognition. An alternative approach is to view auditory
word recognition as process involving "constraint satisfaction" rather than
simply pattern recognition of elementary features or attributes. According to
this view of word recognition, the propagation of a number of weak constraints
is used to specify the target word. When word recognition is viewed as a
process of constraint satisfaction, a number of quite different sources ofinformation can be simultaneously applied to the lexicon in parallel to refinethe set of hypothesized word candidates. Even if one constraint is
uninformative, the intersection of the other constraints across different
domains may still be able to specify the correct word and locate it even invery large search spaces. Given this view, it is important to determine
precisely whicL constraints, if any, may be used by human listeners in
auditory word recognition.

The approach we have taken to study the role of structural constraints inauditory word recognition was motivated, in part, by several recent studies
that investigated the relative heuristic power of several different
classification schemes for large vocabulary word recognition by computers.Zue and his colleagues (Huttenlocher & Zue, 1984; Shipman & Zue, 1982) have
shown that a partial phonetic specification of every phoneme in a word results
in an average candidate set size of about two words for a vocabulary of 20,000
words. The partial phonetic specification in Zue's system consisted of six
broad manner classes. Thus, with this approach, a recognition system need not
accurately identify the exact phonemes in a spoken word. Instead, only the
most robust manner information needs to be coded. Using a slightly differentapproach, Crystal et al. (1977) demonstrated that increasing the "phonetic
refinement" of every phoneme in a word from four broad phonetic categories to
ten more refined categories produced large improvement in the number of unique
words identified in a large corpus of text.

It is important to point out here that these computational studiesexamined the consequences of partially classifying every segment in a word.
Thus, two constraints were actually employed: the partial classification ofeach segment in the word and the broad phonotactic shape of each word
resulting from the combination OT word length with coarse phonetic information
about each segment. The analyses that we have carried out used a large
lexical database consisting of a subset of 126,000 words from the Kenyon and
Knott pronouncing dictionary. In carrying out these analyses, we assumed that
human listeners are able to recognize much more phonetic information thanwould be encoded by just sir coarse manner categories. Thus, in carrying out
our analyses, we assumed that human listeners might be able to identify some
segments completely, other segments only partially and finally some segmentsnot at all.

The results of our analyses have been quite revealing about the
structural constraints that may contribute to search space reduction in
auditory word recognition. For the most gross level of segmental analysis,
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that is, knowing only the length of a word in terms of the number of
constituent phonemes, the search space was reduced from 126,000 words to only
6,342. Thus, word length per se appears to be an extremely powerful
constraint for reducing the candidate set in the lexicon by at least two
orders of magnitude, even without knowing any detailed segmental phonetic
information about the internal structure of the word. Our analyses also
revealed that this length constraint is strongest for the longest words.
Thus, as words become longer and longer, less detailed segmental information
is needed to isolate the hypothesized candidates in recognition.

By simply classifying each segment in a word as either a consonant or

vowel, without providing any more detailed phonetic information, the reduction
in the search space beyond the length constraint becomes even more
substantial. The number of candidates is reduced by another order of
magnitude to 109 words averaged across different word lengths. It is

interesting to note here that much of this reduction in the size of the
candidate set appears to be due to the specific phonotactic constraints
imposed by the ordering of consonants and vowels in words. If the segments in
a word are classified with just two categories, consonants and vowels, but the
ordering of these categories is removed, then the average candidate set size
increases to 1196 words instead of the 109 words observed earlier. This
finding suggests that the phonotactic information in the pattern structure of
a spoken word accounts for another order of magnitude reduction in the
candidate search space compared with just having information available about
the number of consonants and vowels within a word or its length.

Increasing the amount of phonetic detail for each segment from two
ies (i.e., consonants and vowels) to six coarse manner classes used by

Zt% his colleagues, reduces the search space by another two orders of

magr.-:;Je from the CV classification scheme. The average candidate set size
is reduced to about 5.5 words from the original 126,000 words. Our analyses
of words from the 126,000 lexicon agree closely with the findings reported by
Shipman and Zile (1982) using the 20,000 word Webster's Pocket Dictionary.
Increasing the size of the lexicon by an order of magnitude from 20,600 words
to 126,000 words only results in a tripling of the number of lexical
candidates from 2 to about 6 words. Thus, by any metric, partial information
about every segment is an extremely powerful constraint on the candidate set
of words.

Of course, research over the last 80 years on human word recognition has
shown that listeners are able to resolve much more phonetic detail in the
speech waveform than just six broad manner categories. One issue that we
considered concerns the constraint that is provided by complete phonetic
information about some of the segments in a word compared to only partial
information about every segment in a word. Classt:ying every segment in a
word provides two types of information: (1) partial phonetic information
about every segment, and (2) the phonotactic "shape" or envelope of the entire
word. By comparison, complete phonetic classification of only some of the

segments in a word provides: (1) detailed phonetic information about a few
segments, and (2) partial information about the phonotactic shape of a word.
Based on the previous demonstrations of the power of the phonotectic shape of
a word with only two categories corresponding to consonant and vowel, it seems
reasonable to predict that a partial classification of every segment in a word
should be more effective than complete classification of some of the segments.

To test this prediction, we carried out the following analyses. First,

the phonetic information in the first half of every word was classified very
narrovly leaving the remaining segments unclassified with cover symbols.
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Second, the phonetic information in the last half of each word was classified
very narrowly therefore leaving the first half of each word unclassified. Two
other analyses were carried out in which only the consonants or only the
vowels were classified completely. When the consonants were classified, the
vowels were left unspecified and vice versa. To our surprise, given the
earlier prediction, the results showed that complete information about only
some of the segments in a word actually provides a mo.-e powerful constraint on
search space reduction than having partial information about every segment.
Classifying the beginning of words completely reduces the search space from
326,000 words to 1.7 words and classifying the last half of words reduces the
candidate set to only 1.9 words. By comparison, classifying only the
corsonants exactly and leaving the vowels unspecified yielded a candidate set
size of 1.4 words whereas classifying the vowels and leaving the consonants
unspecified yielded a set size of 3.2 words.

In short, complete phonetic information about some of the segments in a
word constrains the search space much more than partial classification about
every segment. Our computational analyses suggest that detailed phonetic
information about some of the segments in a word r 'des enough constraint,
in general, so that other segments can probably .e obscured or remain
ambiguous without significantly impairing recognition. Moreover, to the
extent that some phonetic information is available about other segments, the
candidate set will be reduced even further, probably to the extent of uniquely
specifying the correct word or one that is highly similar to it. Of course,
these analyses are based on computations carried out with a large database and
it remains to be seen if these same findings generalize to how humans
listeners recognize words from large search spaces. This work is currently
underway.

In summary, the results obtained thus far using a number of computational
techniques with databases of phonetic transcriptions suggest that the
processes involved in word recognition may be highly contingent on the
structural factors related to the organization of words in the lexicon and the
relation of words to othe. phonetically similar words in surrounding
neighborhoods in the lexicon. The outcome of this work should prove quite
useful in discovering not only the underlying structure of the sound patterns
of words in the men!al lexicon, but also in detailing the implications these
structural constraints may have for the real-time processing of spoken
language by human listeners as well as machines. In the case of machine
recognition of speech, our findings may provide a principled way to develop
nev distance metrics based on acoustic-phonetic similarity of words in large
vocabularies that could substantially reduce the search space for lexical
hypothesization.

The present research is concerned w-:_th a central problem in large
vocabulary word recognition, namely, the organization of the sound patterns of
words and the structural constraints that define these patterns in spoken
language. We view the lexicon as a complex multidimensional space in which
phonetically similar sound patterns are grouped m(re closely together than
phonetically dissimilar patterns. A major task in our future research is to
define the dimensions of this similarity space an(' specify the structural
constraints that are used to characterize the similarity neighborhoods of
words in this space. With these findings, we shoul' be able to predict the
behavior and error patterns of human observers in large vocabulary word
recognition tasks and contribute new knowledge to the development of more
efficient algorithms for large vocabulary search space reduction in automatic
speech recognition. We believe that the current conception of the mental
lexicon as simply a large dictionary with words indexed by frequency of
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occurrence in the language is inadequate to account for many of the behavioral

findings reported in the literature. Moreover, our preliminary findings
suggest a potentially more powerful approach in terms of conceptualizing the

lexicon in terms of similarity spaces for sound patterns of words in terms of

neighborhoods. Thus, in our view, words should not be conceived of as

unrelated lexical entries as in a dictionary but rather as auditory patterns
that have a complex internal structure reflecting the morphology, phonology

and phonotactics of English. The process of recognizing a word should
therefore not be viewed as a form of pattern recognition via template matching

or feature analysis but rather as an ideal example of recognition via

constraint satisfaction.
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Abstract

Auditory word recognition in humans has traditionally been viewed as a

pattern matching process in which acoustic-pattern attributes of a spoken word
are compared to stored representations of words in the mental lexicon. One
consequence of this view is that each word is treated as an isolated pattern
that is independent of the other words in the lexicon. An alternative
approach to understanding human auditory word recognition is to consider
recognition as a search process that takes place within a lexical space
defined by the pattern structures of words in the listener's vocabulary. By

this view, word recognition becomes a process of constraint satisfaction for

which the constraints are the acoustic-pattern attributes of a spoken word and
the structural relationships among words in the mental lexicon. In this

paper, we consider some of the implications of this view of human auditory
word recognition.
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The Role of Structural Constraints in Auditory Word Recognition

In the past, much of the research on human speech perception has focused
on the recognition of acoustic - phonetic properties of isolated CV and CVC
syllables. The tacit asst' ration of this research has been that our
understanding of auditory word recognition is contingent upon solving the
problems inherent in phoneme perception. By this assumption, auditory word
recognition is equivalent to visual word recognition carried out one letter at
a time. Indeed, most current theories of auditory word recognition directly
reflect this sequential pattern matching approach to word recognition.
However, a different perspective is that word perception nay be approached as
a problem of "weak" constraint satisfaction, in which the structural
properties of words in the lexicon interact to specify the identity of an
utterance. We will present the results of several analyses of the phonotactic
constraints of word patterns that suggest the type of constraints that may be
used by human listeners to mediate spoken word recognition.

Recognition in the Context of the Lexicon

Context exerts an undeniably strong influence on perceptual processes.
However, it is interesting to note that "context" is defined in almost all
speech research by whatever stimulus information is presented immediately
prior to or subsequent to a target stimulus. Thus, a phoneme is perceived in
the context of a syllable, a syllable is perceived in the context of a word,
and a word is perceived in the context of a sentence. In all cases, there are
objectively definable physical dimensions to the context that is typically
investigated. But there is another context that after*- viord perception as
well: the implicit context of the mental lexicon. nd the listener's
explicit knowledge about words, the structure and oz, 'ation of the sound
patterns of lexical entries may serve as an implicit ?Act within which
recognition occurs.

Marslen-Wilson and Welsh (1978) called attention to the potential
importance of the structural properties of words with the cohort theory of
word recognition. According to this theory, the initial sounds in a stimulus
word activate all the words in the lexicon beginning with those sounds.
Inappropriate candidates in the cohort are then deactivated when a mismatch
occurs in comparing the left-to-right order of subsequent segments in the
stimulus with the structures of activated candidates. The word that is
ultimately recognized is the candidate that remains after all the other
incompatible candidates have been deactivated.

According to cohort theory, the activated cohort of word candidates in
the lexicon forms the mental context for spoken word recognition. However,
unlike the sentential context that may precede a spoken word, this context has
no physical dimensions that can be directly measured or analyzed. In the
past, this has posed a problem for investigating the role of the lexicon in
word recognition. However, several computer-readable databases of
orthographic and phonetic representations of words have recently become
available for analyzing the structural properties of words in the lexicon.
The database used for all the analyses we will describe contains orthographic,
phonetic, and syntactic information for 243,000 words (see Crystal, Hoffman,
House, 1977). Proper names and possessives were excluded from the analyses,
leaving about 126,000 words that were examined in the database.
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Phonotactic Patterns in the Lexicon

Although the listener may be presented with spoken words as a temporally

distributed sequence of segments, a recognition process need not compare these

segments to lexical representations in a strict left-to-right order as claimed

by some theories. Indeed, it is unclear how serial pattern matching

strategies can recognize a word if the initial segment of the input is

obscured, degraded or ambiguous. Since this initial segment is treated as the

index into the lexicon, recognition could not proceed without a well-defined

access point. An alternative approach is to view auditory word recognition as

a constraint satisfaction process, in which the propagation of a number of

weak constraints is used to specify the recognized word. When viewed as a

constraint satisfaction process, a number of constraints may simultaneously be

applied to the lexicon to refine the set of word candidates. Even if one

constraint is inappropriate or uninformative, the intersection of the other

constraints may still specify the correct word. Given this view, it is

important to determine precisely which constraints are actually used during

word perception.

The approach that we have taken to investigate structural constraints on

human auditory word recognition was motivated by several recent studies that

investigated the relative heuristic power of various classification schemes

for large vocabulary word recognition by computers. Zue and his colleagues

(Huttenlocher & Zue, 1984; Shipman & Zue, 1982) have shown that a partial

phonetic specification of every phoneme in a word results in an average

candidate set size of about 2 words for a vocabulary of 20,000 words. The

partial phonetic specification consisted of six broad phonetic manner classes.

Thus, with this approach, a recognition system need not accurately identify

the phonemes in spoken words. Instead, only the most robust manner

information must be coded. Using a slightly different approach, Crystal et

al. (1977) demonstrated that increasing the phonetic refinement of every

phoneme in a word from four broad phonetic categories to ten more refined

categories produces large improvements in the number of unique words

identified in a large corpus of text.

It is important to note that these computational studies examined the

consequences of partially classifying every segment in a word. Thus, they

actually employed two constraints: the partial classification of each segment

and the broad phonotactic shape of each word resulting from the combination of

word length with patterned phonetic information.

The analyses that we have carried out used a large lexical database of

126,000 words to study different constraints that might be appropriate for

describing human auditory word recognition. This work extends the previous

research of Zue and his colleagues to a much larger set of words. In

addition, since human listeners are capable of recognizing much more phonetic

information than just six manner categories, we have carried out analyses

based ou the assumption that human listeners will be able to identify some

segments completely, while other segments will be unanalyzed.

The results of these analyses are quite revealing about the recognition

constraints provided by the structural properties of spoken words. For the

coarsest level of segmental analysis, that is, knowing only the length of a

word in number of phonemes, the sears space is reduced from 126,000 words to

6,342 words. Clearly, word length is a very powerful constraint for reducing

the candidate set in the lexicon by about two orders of magnitude, even

without any detailed segmental phonetic information. Furthermore, the length
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constraint is strongest for relatively long words. If the length of a word is
21 segments, there are only two candidates out of 126,000 words. Thus, as
word length becomes extreme, less detailed segmental information is needed to
identify a uord.

By simply classifying each segment as either a consonant or vowel (i.e.,
two categories), without providing any more detailed phonetic uescription, the
reduction in the search space beyond the the length constraint phonotactic
constraint is enormous. The number of candidates is reduced by an order of
magnitude to 109 words averaged across different word lengths. Furthermore,
it is interesting to note that much of this reduction in the candidate set is
due to the specific phonotactic constraints provided by the ordering of
consonants and vowels. If the segments in a word are classified with just two
categories, as consonants or vowels, but the order information is removed,
there are 1196 words in the average candidate set. This means that the
phonotactic order information in the pattern structure of a spoken word
accounts for an order of magnitude reduction in the candidate set size
compared to just knowing the number of consonants and vowels, but not their
arrangement.

Increasing the amount of phonetic detail for each segment to the six
manner classes used by Zue and his colleagues reduces the search space by
another two orders of magnitude from the CV classification scheme that
maintains phonotactic order information. Using six categories for classifying
every segment in each word reduces the average candidate set size to about 5.5
words '_rom 126,000 words in the lexicon. This result agrees very well with
the results reported by Shipman and Zue (1982) for a 20,000 word lexicon,
indicating that this broad classification sc:.eme is very powerful in reducing
the number of word candidates in the search space. Increasing the lexicon by
an order of magnitude from 20,000 words to 126,000 wr_is only results in a
tripling of the number of candidates from 2 to about 6 wards. By any metric,
partial information about every segment is an extremely effective constraint
on the candidate set.

However, human listeners are capale of resolving much more phonetic
detail than just six broad categories. One issue that can be raised then,
concerns the constraint provided by complete phonetic information about some
of the segments in a word compared to partial information about every segment
in a word. Classifying every segment in a word provides two types of
information: (1) partial phonetic information about every segment, and (2)
the phonotactic "shape" of the entire word. By comparison, complete
classification of some of the segments provides: (1) detailed phonetic
information about a few segments, and (2) partial information about the
phonotactic shape of a word. Based on the previous demonstration of the power
of phonotactic shape with just two categories (i.e., consonant or vowel), it
seems reasonable to predict that partial classification of every segment in a
word should be more effective than -omplete classification of some of the
segments in a word.

To test this prediction the following analyses were carried out: (1) the
phonetic information in the first half of every word was classified completely
leaving the remaining segments unclassified, (2) the phonetic information in
the last half of each word was classified completely leaving the first half
unclassified, (3) only the consonants were phonetically classified leaving the
vowels unlabeled, and (4) the vowels were phonetically classified leaving the
consonants unlabeled. The results demonstrate that complete information about
some of the segments in a word provides a more powerful constraint on the
candidate set than partial classification of every segment. Classifying the
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beginning of words completely reduces the search space from 126,000 words to
1.7 words and classifying the last half of words reduces the :andidate set to
1.9 words. By comparison, classifying only the consonants exactly and leaving
the vowels unclassified yields a set size of 1.4 words, while classifying the
vowels only yields a set size of 3.2 words. In each analyses, complete
phonetic information about some of the segments in a word conArains the
search space much more than partial classification of every 'segment. These
results demonstrate that detailed phonetic information about some of the
segments in a word provides enough constraint, in genera], that other segments
can be completely obscured or ard...:guous without significantly impairing
recognition. Moreover, to the extent that som, phonetic information is
available about other segments, the candidate set will be reduced further,
probably to the extent of uniquely specifying the correct word.

Conclusions

The view of word recognition that emerges from these analyses differs
substantially from serial pattern matching approaches. As more of a stimulus
wort. is heard, the listener progressively narrows the candidate set based on
the development of a phonotactic specification for the input. Over time,
acoustic information in the stimulus is successively refined into more
detailed phonetic representations. In some cases, only a broad phonetic
description of segments may be computable and the phonotactic structure is
used to further narrow the candidate set. This approach, called Phonetic
Refinement Theory, is currently being implemented as a model of the
recognition process. Although further research is needed, it is clear that
computational analyses of the sound patterns of words can provide new
information about the processes that mediate speech pe ception.
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Abstract

An overview of several aspects of speech synthesis and recognition
technologies is provided as background for subsequent speakers in this
session. Specifically, we discuss speech synthesis by rule using automatic
text-to-speech conversion and speaker-dependent isolated word recognition.
Both of these speech I/O technologies have been developed sufficiently to the

point where commercial products are now available for a number of

applications. Some of the limitations of these devices are described and
suggestions for future research in both synthesis and recognition
outlined.



A Brief Overviow of Speech Synthesis and Recognition Technologies

Speech is without question the most natural means of communication
between humans (Lindgren, 1967). It is automatic, requires little conscious
effort or attention, and creates few if any demands while other tasks are
being carried out concurrently, especially tasks which may require active use
of the hands or eyes in demanding conditions. One potential use that speech
can serve is as an interface to computers. At the present time, most users
interact wi,h computers using traditional screens and keyboards. These
systems can and will eventually be replaced by speech I/O. Speech is not only
more natural for humans to use, but it is also faster and less prone to
errors. While generic speech interfaces to computers are not yet widely
available, extensive research efforts have been carried out over the last
thirty years to develop speech recognition and synthesis technology so that
this goal can be realized.

In this paper, we briefly examine two aspects of this technology, s;...eech

synthesis by rule using automatic text-to-speech conversion and
speaker-dependent isolated word recognition. Both technologies have been
developed sufficiently to the point where commercial products are now
available for a number of applications. And both technologies have been
studied in our laboratory in two separate research projects. Although these
speech I/O products are now available commercially, there are still many
questions that need to be answered with regard to how humans will interact
with this technology and whether the presumed benefits of speech I/O will
outweigh the costs associated with the current technology.

With a text-to-speech system, any computer can generate spoken output
from a string of characters and therefore can provide the user with a novel
speech display instead of the more traditional VDT screen. In some
applications, having a speech display may significantly reduce the user's
workload and increase operator efficiency in retrieving information from a
computer. In other applications, speech displays may provide entirely new
methods for retrieving data and other kinds of information from the computer
using standard telephone voice and data channels. As the technology becomes
more wiaely known and as the costs decrease, much wider usage can be
anticipated since the benefits may be quite substantial in many applications.

With speech recognition technology, even the limited technology of
speaker-dependent isolated word recognition, a user can use spoken language as
input to a computer system. Commands, da'a, and messages can be entered via a
microphone or over the telephone line directly into files on the host computer
without the need for a CRT display or keyboard entry. Combining both
synthesis and recognition technologies can provide advantages in hands-busy
and eyes-busy enironments where the operator has very severe constraints on
bis/her information processing capabilities. The implications of speech I/O
technology as aids for the handicapped and as additions to business and
commercial application.: should be fairly obvious.

Voice Output and Text -to- ;speech Conversion

A text-to-speech system is a device that automatically converts printed
orthographic text into spoken output without human intervention of any kind.
This process usually takes place immediately in real-time and will accept any
text that can be typed at a computer terminal and converted into ASCII code.
Several currently available text-to-speech systems convert unrestricted
English text to intelligible speech in real-time. One commercially available
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system, Infovox, has the capabilities of synthesis of several languages
(Magnusson et al., 1984). The speech output generated by a text-to-speech
system is synthesized or created anew in real time by the device in response
to a phonetic representation of the specific typed input (see Allen, 1973a,b;
198'_; Allen, Hunnicutt and Klatt, 1979; Studdert-Kennedy and Cooper, 1966).
Most text-to-speech systems are designed to allow the user to customize
certain features. For example, there is a "phonetic input mode" that allows
the user to specify (with phonetic symbols rather than standard orthography)
the correct pronunciation for proper names or to enter a specialized
vocabulary that may have unusual pronunciations not captured by the rule
system.

One common system of voice output use, stored speech. Natural speech is

recorded on audio tape using a microphone and tape recorder. This speech is
then digitized with a computer using a analog-to-digital converter. The
process involves sampling the speech waveform at a rapid rate and storing the
samples in digital form. Typically about 8 to 10 thousand samples are taken
for every one second of speech. Unfortunately, for long passages of speech,
the storage requirements are enormous. However, there is a good reason to use
stored speech. All the digital samples can be retrieved from the computer
memory and then reconverted to analog form using a digital-to-analog
converter. This process reproduces the speech that was originally recorded
with little or no degradation or effects on intelligibility. While there may
be some loss in speech quality due to the sampling rate and number of bits
used to encode the speech waveform, the resulting speech quality is highly
acceptable. These observations are also appropriate for wide-band
digitall--encoded speech using a variety of coding algorithms.

When the vocabulary becomes very large and the potential set of messages
is theoretically unrestricted, a voice output system using stored speech
becomes impractical and extremely expensive (see Cooper, 1963; Cooper,
Gaitenby, Mattingly and Jmeda, 1969; Studdert-Kennedy and Cooper, 1966).
Furthermore, when individual stored items are combined into word strings
without additional processing and smoothing, the resulting speech lacks normal
pitch and intonation; listeners often describe this type of speech as

unnatural and mechanical sounding. The intelligibility of this kind of
concatenated speech is often quite poor even though the intelligibility of

individual words is typically quite high.

Voice output using stored speech may be contrasted with voice outplit

using various synthesis by rule techniques. In this -. the speech is

generated by a series of rules which are used to create ut, n demand
(Allen, 1973; Allen et al., 1979; Cooper, 1963). These .-zystems

consist of a number of modular subsystems each of which has et of

rules. The initial typed input is first converted into ASCII. coot. .n most
current systems, the ASCII code is then processed through several modules
which serve to produce a detailed phonetic description (see Allen, 1981).

In one system, MITalk-79, this analytic process involves the
determination of the underlying phonemic, syllabic, mcrphemic, and syntactic
form of the input message as well as adjusting the input when numerals,
abbreviations, and special symbols are present. After the basic modules have
operated on the input message, any word that has not been analyzed is

processed through a set of letter-to-phoneme rules. Once the text has been
converted into a phonetic transcription, other modules containing detailed
phonological, pitch, stress, and timing adjustments operate on this

representation. Additional rul ,; are included to make he speech sound less

mechanical. Some rules "smooth" tne speech and lead to more natural sounding
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output. Other rules serve to disambiguate words such as "read" which can be
pronounced like "red" or like "reed".

After the input text has been analyzed, it is converted into spoken
output. The output process is also modular in nature. Several modules are
used to specify the way each speech sound is to be pronounced, how certainspeech sounds are modified by specific contexts, and where stress is to be
placed. The more detailed the rule system, the closer the synthesized speech
approximates natural sp, h. All the parametric information that has been
accumulated in the various modules is then input to a digital speech
synthesizer and a speech waveform is generated. Finally, the speech samples
are converted to analog form via a digital-to-analog converter and low-pass
filtered. The text-to-speech systems that are available at this time all work
in real time, performing the analysis and synthesis immediately after the text
is input to the device (see Allen, 1981; Bruckert, 1984; Groner, Bernstein,
Ingber, Pearlman, and Toal, 1982 for further details).

With error rates for segmental intelligibility of isolated monosyllabicwords in the range of 3% to 4% for the best text-to-speech system tested to
date, performance is rapidly approaching asymptote (Greene, Logan and Pisoni,
1986; Pisoni, Nusbaum and Greene, 1985). A great deal of further refinement
and research probably will be necessary to improve segmental intelligibilitymuch above these levels of performance. At this time, it is probably more
productive to look for ways to ionrove prosody -- the amplitude, timing and
durations of individual sounds and words in sentences and the perceived
naturalness of synthetic speech. There is a belief among speech researchers
that the mechanical sounding quality of synthetic speech is primarily related
to the poor knowledge of prosody and the relatively simplt. algorithms that are
currently used to compute pitch and duration in sentences. There is also a
need to improve the naturalness of synthetic speech and for further
investigations of the factors that control a listener's preference for one
synthetic voice over another (Logan and Piscni, 1986). It is also very likely
that the specific application will play an important role in influencing
judgments of naturalness and preference amon7 synthetic voices. For the
present, however, our studies demonstrate that very high-quality synthetic
speech is commercially available and can be incorporated into a wide variety
of applications requiring voice output of unrestricted English text.

Speech Recognition

A speech recognition system is a device that takes spoken input (letters,
digits, ury-d ^, or sentences) from a human operator and converts it into some
digital representation that can be input to a computer. Compared to the
developments in speech synthesis and automatic text-to-speech conversion, the
field of speech recognition is still in its infancy (Lea, 1980). Of the
commercially available devices, almost all use traditional pattern-matching
recognition techniques and require cooperative talkers in relatively benign
conditions. Almost all of these systems are speaker-dependent; that is, they
require some form of training or "enrollment" to develop "templates" of a
given talker's vocabulary. Whenever a new talker uses the system, his/her
templates must be accessed from some storage medium or the system must be
re-trained with the new talk:. While there are some systems that claim to
provide speaker-independent Lecognition, the vocabulary size is typically much
smellor and restricted to some well-defined set of words (i.e., digits, or
"yes" and "no").
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Most commercially available speech recognition systems are, for the most

part, only able to recognize discrete utterances -- either isolated words or
short phrases. These systems do not "understand" or comprehend the linguistic
message in any conventional sense. They operate exclusively on

representations of the physical properties of the speech waveform, not on more
abstract representations cf the content of the message. As a result, they are
extremcly sensitive to factors that affect the acoustic-phonetics of the

speech signal such as noise, stress, fatigue and phonological environment.
Moreover, they require that only a single talker use the system at any time.

The pattern recognition technology developed for isolated word recognition has
been extended to connected speech recognition. Instead of discrete single

word utterances, the system is trained on short phrases of connected speech
such as a sequence of letters or digits. Most systems do not perform
segmentation and treat each utterance as a wholistic pattern regardless of its
internal structure.

Continuous speech recognition systems using large vocabularies and

unconstrained syntax represent the final objective of speech researchers.
With this technology, a talker uses ordinary language input with no

constraints on speaking style, vocabulary, or syntax. In some sense, this is
like talking to another human. Unfortunately, at present, speech recognition

technology is not advanced enough to support speaker-independent continuous
speech recognition, an elusive anal ',hat requires substantially more basic

speech knowledge and understanding than is currently available. The most
serious technical problems in speaker-independent recognition are the enormous
variability in the speech waveform produced by the talker, the effects of
context, and the surrounding acoustic environment on the talker's articulation

of speech sounds in sentences and connected speech. Until these problems are
solved, it is doubtful whether much progress will be made in developing robust
speech recognition systems that are capable of accepting continuous speech

input from a wide variety of talkers using a large vocabulary in an

unrestricted semantic domain. It is apparent to some investigators that the
solution to this problem will involve the use of novel technologies that rely

heavil3 on acoustic-phonetic knowledge. Traditional pattern recognition

techniques are simply not adequate.

Some efforts have been made in the interim to deal with the problems of

segmentation in continuous speech recognition by requiring talkers to insert
pauses between words and by using very limited vocabularies and constrained

syntax in restricted semantic domains such as an office correspondence task.
However, a great deal more knowledge of speech production and the

acoustic-phonetic properties of speech will be needed Lefore the speech

recognition problem can be solved. Traditional pattern recognition 'echniques

are not adequate to overcome the enormous problems of variability in the

speech waveform and the multiple sources of knowledge that Auman listeners

routinely use in communicating with each other using spoken language.

Moreover, knowledge of language structure will have to be incorporated to

resolve ambiguities and deal with impoverished information.

In addition to these technical problems, there are a host of issues that

surround the way human talkers interact with speech recognition technology.
Talking to a machine is not like talking to another human being who shares a

great deal of knowledge ane background that is essential for comprehending the

message. For some applications, such as a dictating task, humans may have to

consciously mgdify the way they talk by inserting pauses between words and
articulating their speech in citation format. For more severe environments

where there is noise, psychological stress or high cognitive load, robust
recognition algorithms will have to be designed to be self- adapti "e (Makhoul,



1985). That is, the algorithms will require "knowledge" of the ways in which
talkers modify their speech in noise or under stress or high cognitive load
(Fisoni, Bernacki, Nusbaum and Yuchtman, 1985). To accomplish these goals,
further basic research will be needed to learn more about the ways human
talkers modify their speech output. Finally, substantial efforts will be
needed to develop realistic and efficient methods for training and cr(llment.
The acoustic phunotic properties of speech change in a variety of ways as a
function of time, emotional state, and physiological condition.

Of the many components in a speech recognition system, the human talker
is probably the easiest to control or modify. Wish directed feedback and
speciali3ed training procedures, :;t is possible tc change the way a human
talks '_11 a relatively short period cf time (Zoltan-Ford, 1984).
Unfortunately, relatively little r6search has been directed at this central
component of a speech recognition system. Of course, this is not surprising
because the bulk of the speech recognition problem has traditionally been
conceptualized as an engineering problem rather than a human factors problem
(McCauley, 1984). Hopefully, more efforts by human factors specialists will
contribute to the development of new and more robust algorithms for speech
recognition that can overcome some of the inherent limitations of the
traditional pattern recognition techniques that are currently used in the
commercial products available today at relatively modest cost (Simpson,
McCauley, Roland, Ruth and Williges, 1985).
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Abstract

As speech I/O technology develops and improves, there is an increased
need for standardized methods to systematically assess the performance of
these systems. At the present time, speech synthesis and speech recognition
technologies are at different levels of maturation and, accordingly, the
procedures for testing the performance of these systems are at different
stages of development. In the present paper, we describe the results of
testing several text-to-speech systems using traditional intelligibility
measures. In addition, we outline the design and philosophy of an automated
testing procedure for measuring the performance of isolated utterance
speaker-dependent speech recognition systems.



Developing Methods for Assessing the Performance of Speech Synthesis

and Recognition Systems

Speech synthesis and recognition may be thought of as paradigm cases of
emerging technologies. Although currently at different stages of development,
both synthesis and recognition are still in their infancy in terms of
commerically available products that can be interfaced successfully into the
work environment. As is often the case with new technologies, few if any
government standards are available while the technology is being developed.
Indeed, the standards usually appear after the techrology is developed and put
in place in some application. Those informal or "unofficial" standards that
are available have often evolved more or less informally by researchers and
vendors working on developing the technologies.

At the present time, there are no government standards for assessing the
performance of speech synthesis and speech recognition systems. The National
Bureau of Standards (NBS) has been working on these problems for a number of
years and has issued guidelines for performance testing of speech recognition
systems (Pallett, 1985); however, no formal standards are presently available
for either synthesis or recognition technology. In the absence of any formal
standards, we have carried out a number of studies to assess and compare the
performance of synthesis and recognition devices. Over the last seven years,
efforts have been made in our laboratory to collect relevant behavioral data
from several synthesis by rule systems and to draw comparisons among several
commerically available text-to-speech systems. In some sense, our studies on
this problem over the last seven years have resulted in a "de facto" standard
for assessing the segmental intelligibility of synthetic speech produced by
rule. We have ccIlected enough data from a variety of systems under the same
set of conditions to permit meaningful comparisons among several systems.
Although our tests were conducted under laboratory conditions and some caution
must be exercised in generalizing to other environments, our data have served
as an extremely useful benchmark and have laid ',he foundation for the
development of other behavioral tests to assess the performance of speech
synthesis systems.

Most researchers will probably argue that these behavioral tests are far
from the ideal instruments to assess performance of speech synthesis systems.
However, the tests we have used have provided extremely reliable data and they
are able to discriminate among the various systems tested in a meaningful way.
Those systems that sound good to a naive listener in informal listening tests
are the systems that display high scones on tests such as the modified rhyme
test (MRT), a test designed to measure the segmental intelligibility of
phonemes in initial and final position of isolated CVC English words. Those
systems that do not sound good are ones that show low scores on these tests.
In all cases involving evaluation of the intelligibility ant 'or quality of a
speech synthesis system, the human listener is the ultimate uiscriminator.
Consequently, behavioral data are needed in drawing comparisons among systems
or ranking the performance of systems on some absolute scale.

The situation with regard to the evaluation of speech recognition
technology is somewhat different from the evaluation of speech synthesis
technology. First, the state of the art for each technology differs rather
substantially at the present time. Speech synthesis technology is currently
at the point where any English text can be automatically converted into fluent
speech that is only slightly less in:lligible than natural speech. However,
speech recognition technology is in a much less advanced state because it is
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not possible for a human to talk to a computer with the same fluency and ease
as it is to talk to another human. Second, while we have carried out an

extensive program of research investigating a wide range of factors that can
influence the performance of a text-to-speech system, to date there has not

been the same kind of effort directed at systematically studying the

performance of speech recognition systems. There are a large number of

variables that can and do affect the performance of a speech recognizer and
the contribution of these variables is poorly understood at this time.

In the two sections below we briefly summarize work we have carried out

in developing techniques for the evaluation of synthesis and recognition

systems. The section on synthesis reports behavioral data obtained from human

listeners in a variety of perceptual tests; the section on recognition
describes our recent work in developing automated testing procedures to assess
the performance of several commercially available speaker-dependent isolated
word recognition systems using a large data base of speech collected at Texas

Instruments.

Evdluation of Speech Synthesis Systems

To interpret the results of evaluation studies, it is necessary to

consider the following underlying factors that affect an observer's

performance: (1) the specific demands imposed by a particular task, (2) the

inherent limitations of the human information processing system, (3) the

experience and training of the human listener, (4) the linguistic structure of

the message set, and (5) the structure and quality of the speech signal.

Task Complexity

The first factor that constrains performance concerns the complexity of

the tasks that engage an observer during the perception of speech. In some

tasks, the response demands are relatively simple, suet as deciding which of

two known words was said. Other tasks are extremely complex, such as trying

to recognize an unknown utterance from a virtually unlimited number of

response alternatives while angaging in an activity that already requires

attention. There is a substantial amount of research !T. the cognitive

psychology and human factors literature der.onstrating the powerful effects of

perceptual set, instructions, subjective expectancies, cognitive load, and

response set on performance in a variety of perceptual and cognitive tasks.

The amount of context and the degree of uncertainty in the task also affect an

observer's performance in substantial ways.

.imitations on the Observer

The second factor influe'.icing recognition of synthetic speech concerns

the substantial limitations on the human information processing system's

ability to perceive, encode, store, and retrieve information. Because tne

nervous system cannot maintain all aspects of sensory stimulation (ar.4

therefore must integrate acoustic energy over time), very severe processlhg

limitations have been found in the capacity to encode and store raw sensory

data in the human memory system. To overcome these capacity limitations, the

listener must rapidly transform sensory input into more abstract neural codes

for more stable storage in memory and subsequent processing operations. The

bulk of the research on cognitive processes over the last 25 years has

identified human short-term memory (STM) as a major limitation on processing

sensory input. The amount of information that can be processed in and out of

STM is severely limited by the listener's attentional state, past experience,

and the quality of the sensory input.
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Experience and Training

The third factor concerns the ability of human observers to quickly learn
effective cognitive and perceptual strategies to improve performance in almost
any sort of task. When given appropriate feedback and training, subjects can
learn to classify novel stimuli, remember complex pattern sequences, and
respond to rapidly changing stimulus patterns in different sensory modalities.
Clearly, the flexibility of subjects in adapting to the specific demands of a

task is an important constraint that must be evaluated, or at least controlled
in any attempt to evaluate synthetic speech.

Message Set

The fourth factor relates to the structure of the message set; that is,
the constraints on the number of possible messages and the organization and
linguistic properties of the message set. This linguistic constraint depends
on the listener's knowledge of language.

Signal Characteristics

The fifth factor deals with the acoustic-phonetic and prosodic structure
of a synthetic utterance. This constraint refers to the veridicality of the
acoustic properties of the synthetic speech signal compared to naturally
produced speech.

Speech signals may be thought of as the physical consequence of a complex
and hierarchically organized system of linguistic rules that map sounds onto
meanings and meanings back onto sounds. At the lowest level in the system,
the distinctive properties of the speech signal are constrained in substantial
ways by vocal tract acoustics and articulation. The choice and arrangement of
speech sounds into words is constrained by the phonological rules of language;
the arrangement of words in sentences is constrained by syntax; and finally,
the meanings of individual words and the overall meanings of sentences in a
text is constrained by semantics and pragmatics. The contribution of these
Ta-ious levels of linguistic structure to perception will vary substantially
from isolated words, to sentences, to passages of fluent continuous speech.
In addition to linguistic structure, the ambient noise level and the
spectro-temporal properties of noise in the environment in which the speech
signal occurs will also affect recognition.

Perceptual Evaluation of Synthetic Speech

There are basically three areas in which a text-to-speech system could be
deficient that would impact the overall intelligibility of the speech: (1)
the spelling-to-sound rules, (2) the computation and production of
suprasegmental information, and (3) the phonetic implementation rules that
convert the internal representation of phonemes and/or allophones into a
speech waveform. In our previous research, we have found that phonetic
implementation rules are a major factor in determining the segmental
intelligibility of a voice response system (Nusbaum & Pisoni, 1982). The task
that is generally used as a standard measure of the segmental intelligibility
of speech is the Modified Rhyme Test (MRT). In this procedure, subjects are
asked to identify a single word by choosing one of six alternative response
words differing by a single phoneme in either initial or final position
(House, Williams, Hecker, & Kryter, 1965). All the stimuli in the MRT are CVC
words; on half the the responses share the VC of the stimulus and on
the other half, the responses share the CV. Thus, the MRT provides a measure
of how well listeners can identify either the initial or final phoneme of a
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set of spoken words. To date, we have evaluated natural speech and speech

produced by a number of different text-to-speech systems including the Votrax
Type-'n-Talk, the Speech Plus Prose-2000, the MITalk-79 research system, and

DECtalk (Greene, Logan, & Pisoni, 1986; Greene, Manous, & Pironi, 1984). Word
identification performance for natural speech was the best at 99.4% correct.

For DECtalk, we evaluated speech produced by Paul and Betty, two of DECtalk's
nine voices, and found different levels of performance on these voices

96.7% of the words spoken by the Paul voice were identified correctly while
only 94.4% of Betty's words were identified correctly. The level of

performance for the Paul voice comes quite close to natural speech and is
higher than performance for any other text-to-speech system we have studied to
date. Performance on MITalk-produced speech was somewhat lower than either of
the DECtalk voices at 93.1% correct word identification. The early prototype

of the Prose-2000 produced speech that was identified at 87.6% correct,
although the current Prose-2000 Version 3.0 is considerably improved, with

performance at 94.3% correct. Finally, the least intelligible synthetic

speech was produced by the Votrax Type-'n-Talk at 67.2% correct word

identrication. These results, obtained under closely matches testing
conditio, show a wide range of variation among text-to-speech systems that

seems to reflect the amount of basic research that was carried out to develop
the phonetic implementation rules of these different voice response systems.

In addition to these tasks, we hive used an open-response format version
of the MRT in which listeners are instructed simply to write the word that was
heard on each trial. This open-response format provides a measure of

performance when cosstraints on the response set are minimized (compared to
the six-alternative forced choice version). It also provides information

about the intelligibility of the vowels that is not available in the

closed-response set version of the MRT. A comparison of the closed- and

open-response versions of the MRT for speech produced by different

text-to-speech systems with natural speech indicates the degree to which

listeners rely on response-set constraints. Performance on the open-response
set MRT for natural speech was at 97.2% correct exact word identification

compared to 99.4% correct in the closed-response set task. Even when there

are no strong constraints on the number of alterative responses for natural

speech, performance is better than for any text-to-speech system with a

constrained set of responses. For tne MITalk-79 research system, performance

in the open-set task is considerably worse than at 75.4% correct. Similsrly,

DECtalk's Paul voice produced words that were identified at the 86.7% level.

These results show a large and reliable interaction between intelligibility
measured in the closed-response format MRT and the open-response format MRT.

Even though the rank ordering of intelligibility stays the same across the Lee
forms of the MRT, it is clear that as speech becomes less intelligible,

listeners rely more heavily on response-set constraints to aid recognition.

Evaluation of Speech Recognition Systems

Measuring the performance of a speech recognition system involves

consideration of several closely related factors that interact to influence
the final observed performance of the system as a whole. Several human

factors problE s can be identified in characteristics of the user and the

associated individual differences and variability in t,'king style. Other

problems are related to the design of the user/system interface and the
applications environment in which the recognizer will be used. The specific

task plays an important role in affecting performance depending on whether the

system is used for dictation. quality control inspection, command and control,

or voice data entry uslig a small vocabulary. Finally, characteristics of the
recognition system itself, the signal processing algorithms and overall system
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architecture, also play an important role in recognition performance. If the
recognition algorithms are inherently incapable of discriminating fine
phonetic details, the system will not be able to recognize phonetically
confusable vocabularies such as the alphAbet, Similarly, properties of the
physical environment st,:_h as the microphone and the surrounding ambient noise
level also affect performance of the system.

Vocabulary

One major factor that influences performance of a speech recognizer is

the vocabulary and the inherent acoustic-phonetic similarity of members of the
ensemble of to-be-recognized utterances. The letters of the alphabet are
notoriously difficult to recognize whereas words like "Presbyterian,"
"Episcopalian," and "chrysanthemum" are extremely easy. The differences in
performance between thtse two vocabularies are intimately related to the
number of phonetically similar words in the vocabulary and the confusability
of the sound patterns. As the length of a word in phonemes increases, it
becomes more and more unique and distinctive from other phonetically similar
words. In the case of the alphabet, particularly the so-called "E-set"
(b,p,d,t,c,z,e), the items represent minimal pairs of sound contrasts that are
difficult to discriminate in isolation even by human observers who are often
considered the benchmark agains-. which performance of a speech recognizer is
ultimately evaluated. The differences among members of the "E-set" are
restricted to the beginning of the utterances and there is little additional
acoustic-phonetic redundancy that can be used to discriminate between them.

Talker Variability

Another factor that affects recognizer performance involves the problem
of talker variability. This problem is so important and so central to solving
the major problems in speech recognition that a distinction is drawn in
describing speech recognizers between speaker-dependent and
speaker-independent recognition systems. The former represent systems that
are designed to recognize utterances from a specific individual talker; the
latter describe systems that can recognize utterances from any talker.
Speaker-dependent systems require some period of training and enrollment so
that the vocabulary of the talker can be entered into the system and a set of
templates can be developed for than particular talker. Speaker-independent
systems can operate without a training period and are, in principle, capable
of recognizing the speech of any talker presented to the system.

The problem of dealing with talker variablity is therefore reduced rather
substantially with speaker-dependent recognition systems although it is not
completely eliminated by simply restricting the utterances to a single talker
who has trained the system at some earlier time. Restricting the vocabulary
to a talker does not eliminate within-talke: variability due to stress,
fatigue, emotional state and the momentary changes in cognitive l,ad.
Moreover, environmental conditions play a significant role in affecting
recognizer performance even with speaker-dependent systems. Substantial
decrements in recognition performance are routinely obtained in the presence
of environmental noise of when the utterances are transmitted over
conventional telephone lines compared to benign laboratory conditions.
Another important related issue in speech recognition deals with how
performance in the laboratory will generalize to performance in an
application-specific context in which a variety of uncontrolled environmental
factors are operating. Relatively little systematic research has been done on
this problem.
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Recently, we began a research project that was designed to carry out

systematic and controlled laboratory benchmark tests of the performance of
isolated-utterance, speaker-dependent speech recognition systems. Performance
testing for a recognition system typically requires training the recognizer on
several tokens of a vocabulary and then carrying out recognition tests on a

number of other tokens of the vocabulary. This training and testing protocol
must be carried out for a number of talkers and some tests may require as many
as 5120 trials to collect suffi "ient recognition data to assess performance.
In the past, these tests were carried out trial by trial by a human operator
requiring a great deal of time and effort.

Automated Recognition Testing

To reduce the casts and effort involved in carrying out performance tests
and to reduce the possibility of operator error in testing, we have developed
a computer-controlled testing system that permits a researcher to define and

then execute automatica2ly training and testing protocols for different
recognition systems. The basic c...ncept fJr this testing system derives from

our research in testing human subjects in speech perception experiments. In

these experiments, human subjects are tested under real-time control of a

computer that presents speech signals over headphones and collects the
subjects' responses to these stimuli. Speech signals are stored in digital
waveform files on a large disk and are retrieved on demand and converted to
analog form for presentation to subjects. In our testing procedure, the

subject is a particular speech recognition system interfaced to a

microcomputer. A different computer controls tht training and testing

protocols and presents speech signals to the recognizer. The recognizer
resnonds to the controller through its host microcomputer over a serial

communications line

We have implemented this testing paradigm by dividing the test control

system into two parts: (1) a virtual device controller and interface (VDC)
for generalized speech recognition systems and (2) a device dependent
interface (DDI) that is specifically programmed for each individual
recognizer. The VDC embodies a model of a generic speech recognition system.

This model includes several functions and parameters that can be manipulated
by an operator. The operator uses a command language to program the generic

recognition model in the controller. The VDC communicates these commands to
the DDI which translates the generic recognizer commands into the specific

commands and syntax of the recognizer that is being tested. Thus, the DDI

serves as the communications host and translator for the reccgnition system

that is being tested.

We are currently testing recognition systems using the digital speech

database collected by Texas Instruments (Doddington & Schalk, 1981). Thi-

database consists of two vocabularies: (1) the TI-20 consisting of the tell

digits and ten control words, and (2) the 26 letters of the alphabet. The

database consists of ten training tokens and sixteen testing tokens of each

vocabulary item. Eight male and eight female talkerz the speech

which was digitized at 12.5 kHz with 16 bits of resolution.

Friar to testing, signal levels presented to the recognition system are

adjusted to the optimal level for a specific recognizer. Following

calibration, each recognizer is trained and tested on one talker at a time,

for each talker in the database. Recognizers are only tested on one

vocabulary at a time (either the TI-20 or the alphabet). A minimum of three

tests is carried out for each recognizer on each vocabulary. In each test, a

recognition system is tra'ned on a different number of tokens firm the

-386-



training set of the speech database (either one, two, or three tokens of each
word). h comparison across these tests for each recognizer indicates the
incremental improvement in recognition performance as a function of increased
training. The performance of different recognition systems is compared across
training curves with a specific vocabulary to determine the relative
performance of each system. Beyond these basic three tests, other tests have
been carried out to try to improve the recognition performance of a specific
system to its optimal level and to determine the effects of noise on
recognition performance.

Although it is clear that these tests cannot, by themselves, completely
assess the performance of currently available speech recognition systems, they
do provide an index of the relative performance of these devices under
controlled laboratory testing conditions that will permit objective
comparisons of different systems. These data are therefore a much better
measure of recognition performance than the performance figures typically
cited by vendors for their systems which are collected under uncontrolled and
unspecified testing conditions. Furthermore, although it is an emprical
question that is yet be resolved, it is entirely possible that the rank
ordering of performance on laboratory benchmark tests may accurately predict
the rank ordering of performance under application-specific conditions. From
our own work on this problem, it is clear that a great deal more research is
needed using systematic testing of recognition systems under a wide range of
conditions and applications. By comparison with the performance testing of
text-to-speech systems, systematic laboratory-based performance testing of
speech recognition systems has only just begun.
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Abstract

Although performance data are often freely cited by vendors of speech
recognition devices, the conditions under which these data were collected are
seldom specified in detail. Thus, it is nearly impossible to interpret
performance comparisons among different recognition systems. To directly
compare performance of six commercially available speech recognition systems,
we developed a computer-controlled testing system and a set of standard tests.
We carried out these tests to assess the performance of recognition devices
sold by Texas Instruments, Votan, Dragon Systems, IBM, Interstate Electronics,
and NEC. Our results demonstrated several reliable performance differences
among these systems. However, in general, performance differences among these
devices were quite small and were reduced by appropriate training. The
results also indicated that the effects of training on performance are much
more pronounced for difficult vocabularies, such as the alphabet than easy
vocabularies, such as the digits. Finally, the results for recognition of the
speech of one talker in the testing database suggest that user-specific
difficulties in recognition performance may, in some cases, result from an
interaction among the application vocabulary, the user's speech, and the
training algorithm used in the recognition device.



Recognition Performance of

Six Isolated Utterance Speech Recognition Systems

Over two years ago, at the Speech Research. Laboratory at Indiana
University, we began a research project directed at measuring and comparing
the performance of commercially available, speech recognition systems. As
experimental psychologists, we decided to test the performance of these
systems using the same general approach that we have taken in testing the
perception of speech signals by human listeners. In this pacadigm, we present
human listeners with digitized speech signals and collect their responses
under computer control. Thus, we had three basic objectives in carrying out
this research.

The first goal of this project was to develop an automated system that
would allow us to carry out performance tests with speech recognizers
completely under computer control, This system was designed to take a program
as input that describes the entire training and testing protocol for one
recognition system and collect performance data without any human intervention
whatsoever. The second objective of this research was to develop a
methodology for measuring the performance of speaker-dependent,
isolated-utterance, speech recognition systems. These testing procedures were
realized as a set of programs that are interpreted by the automatic testing
system. The final goal was to actually test several commercially available
speech recognition systems and compare their performance using our testing
methods.

Methods

Recognition Devices. Table 1 shows the speech recognition systems that
were tested along with the approximate date when testing began for each
system. Vocabulary sizes in these systems range from 50 to 256 utterances.
All systems were tested as isolated-utterance recognition systems, even though
some of them used connected-speech recognition algorithms. In order to
facilitate the testing process, only IBM-PC compatible recognition systems
were used. This constraint was imposed by our automatic testing system which
uses an IBM-PC as a host for the recognition device.

Insert Table 1 about here

Speech Databases. All recognition devices were tested using two
digitized speech databases. One database, called the TI-20, consisted of
spoken digits and ten control words such as GO, ENTER, RUBOUT, and REPEAT.
The second database, the TI-Alphabet, consisted of the spoken letters of the
alphabet. Although the TI-20 provides a more realistic application
vocabulary, we included both databases in our tests for two reasons. First,
the TI-20 is a relatively easy vocabulary, containing few confusable words.
Second, this database has been in the public domain for some time, and has
been used as the basis for developing and improving recognition algorithms by
a number of vendors of speech recognition technology. By comparison, the
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Table 1

Recognition Devices and Test Dates*

System Test Date

NEC Sa-100 6/85

Votan VPC-2000 9/85

Interstate Vocalink 10/85

Dragon Systems 7/86

TI Speech-II 7/86

IBM System 9/86

*Note: All speech recognition systems are small vocabulary (<300 items),
speaker-depenchnt, IBM-PC compatible devices costing less
than $3,500.
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TI-Alphabet provides a more difficult vocabulary because of the highly
confusable members of the E-set the letters B, D, G, C, P, T, E, Z, and V.
Also, this database has not generally been used as the basis for algorithm
development. Both databases therefore provided a means of investigating a
range of recognition performance with each device we studied.

Procedure. Prior to testing each recognition device, the output level of
a preamplifier was set based on the outcome of two types of calibration tests.
One series of tests consisted of a complete recognition test using the TI-20
database at signal levels varying from 2.5 to 12.5 dB in 2.5 dB steps. In the
second set of tests, we trained and tested each recognizer on the same set of
digits to find the level that produced the smallest distance scores. One
signal level was chosen that produced the fewest errors in the first set of
tests and the smallest distance scores in the second series of tests.

Each recognition device was tested at the chosen signal level on the
TI-20 database and on the TI-Alphabet database. A minimum of three tests was
carried out on each database to investigate the effects of the number of
training tokens on performance. A test was carried out with one training
token, three training tokens, and five training tokens. Very few of the
recognizers were capable of using more than five training tokens, However, we
have carried out tests in which recognizers such as the Dragon system were
trained with all ten tokens. It is important to note that the NEC SR-100 does
not update its template representations when trained on more than one item.
To simulate updating on the NEC system, we created one vocabulary item for
each training token. During recognition, we mapped the set of tokens
corresponding to one word onto a single response.

In all tests, the reject threshold was turned off to elicit only
substitution errors. A substitution error occurs when a recognition system
responds to an utterance with an incorrect vocabulary item.

Description of SPERTES

Our computer-controlled testing system is called SPERTES (SPEech
Recognition TEsting System). The system consists of two major components. A
Vax - 11'750 controls each testing session by interpreting a script of generic
recognition commands. An IBM-PC serves as the host and interface for the
recognition device. Training and testing is carried out under the direction
of a Virtual Device Controller (VDC) running on the Vax. This program
embodies a gener, model of a recognition system and interprets scripts that
describe training and recognition in terms of generic commands. These
commands are sent to a Device Dependent Interface (DDI) on the PC which
translates commands into recognizer-specific format. The DDI also returns
responses from the recognizer recoded into a generic format.

Insert Figure 1 about here

Figure 1 shows the major components of SPERTES. The Vax and PC
communicate over a serial line. The digital speech database is stored on
large-capacity, high-speed disks on the Vax. Digitized speech is converted to
analog form by the DSC and is then presented directly to the recognition
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(VDC) and an IBM-PC that serves as a Device Dependent Interface (DDI). The VDC
controls the training and testing protocol for a recognition device that is interfaced to
the DDI.



device under control of the Vax. Each recognition device is directly
interfaced to the PC which serves as a host.

Results and Discussion

The results of testing on the TI-20 vocabulary are shown in the top panel
of Figure 2. The mean percentage of substitution errors (averaged across
talkers) out of 5120 test tokens is displayed for each of the six recognition
devices. Several results are of interest in this graph. First, a general
improvement in recognition performance can be observed as the amount of
training increased. However, the largest and most reliable effects of
training are produced by the first three training tokens.

Insert Figure 2 about here

Another finding of interest Li that, although reliable differences in
performance are observed among recognition devices trained on one token, these
differences are substantially reduced when the systems are trained on five
tokens. With one training token, recognition devices can be assigned to three
categories based on performance, from lowest to highest accuracy: (1) the NEC
and Interstate systems, (2) the IBM and Dragon systems. and (3) the TI and
Votan systems. However, with five tokens of training, the Votan, IBM, TI and
Dragon systems are nearly equivalent in performance, while the Interstate and
NEC systems are less accurate for this vocabulary.

The bottom panel of Figure 2 shows recognition performance for the six
recognition systems on the TI-Alphabet database (containing 6656 test tokens).
It should be noted that the scales showing performance in percentage of
substitution errors are considerably different for the TI-Alphabet and TI-20
databases. Performance is substantially worse for the Alphabet vocabulary due
to the presence of sets of confusable letters such as the E-set (e.g., B, D,

G, etc.) and the A-set (A, K, J).

Also, by comparison to performance on the TI-20 vocabulary for the
Alphabet, all systems showed statistically reliable improvements in
recognition performance as the number of training tokens was increased from
one to three to five. However, the results for the Votan system only show
this improvement when the data for one talker is omitted horn the analysis.
This talker's data will be discussed separately later.

The bottom panel of Figure 2 also shows that performance differences
among recognition devices are substantially reduced with increased training.
At five tokens of training, no overall statistically reliable differences in
performance were observed among any of the recognition systems. However, with
minimal training using only a single token, performance of the Votan and TI
systems is reliably better than the other systems.
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Insert Figure 3 about here

The top panel of Figure 3 shows the results for the IBM and Dragon
systems tested on the TI-20 database when these devices have been trained on
one, three, five, and ten tokens selected from the training items. In
addition, these data show the effects of training both the Dragon and IBM
systems with ten tokens and with adaptation. The adaptation feature of the
Dragon and IBM systems Mows the recognition algorithms to update a model of
a word throughout recognition, even after explicit training is complete.
Although this feature is really intended to improve performance with multiple
talkers, or under less than optimal environmental conditions, it also allows
the recognizer to use more speech data for improving performance. However,
for the TI-20 database, the results indicated no reliable improvements in
recognition performance with either ten tokens of training or with adaptation
in comparison with either three or five tokens of training. Thus, for the
TI-20 vocabulary, training with three tokens yields optimal levels of
performance for both the IBM and Dragon systems, despite the ability of these
devices to make use of more speech data in training.

Recognition performance on the TI-Alphabet for the IBM and Dragon systems
is shown in the bottom panel of Figure 3 for training with one, three, five,
and ten tokens. Testing with adaptation was not carried out for the
TI-Alphabet with the IBM and Dragon systems. The performance data for the
TI-Alphabet show that training with ten tokens produces significantly better
performance than the other training conditions. These results indicate that
increased training is more important and beneficial to recognition performance
with difficult vocabularies, that is, with vocabularies that contain more
confusable tokens.

Comparing performance across the TI-20 and TI-Alphabet vocabularies, the
largest effect of training is generally provided by the first three tokens.
For vocabularies that do not contain many confusable items, recognition
performance does not appear to benefit from greater amounts of training, even
for systems that use sophisticated Hidden Markov Modeling (HMM) techniques.
(HMM techniques permit the use of much more training data than more
traditional dynamic time warping, template matching systems.) Furthermore,
when recognition systems are trained appropriately (e.g., about 3-5 tokens as
per vendors' instructions), equivalent amounts of training result in roughly
equivalent performance. However, for vocabularies that contair highly
confusable items, increased training beyond three tokens does reliably improve
performance. And, HM:'-based systems, by virtue of their ability to train on
more speech data than other systems, may perform better when trained more
extensively.

Goats and Sheep. As noted earlier, unlike other recognition devices, the
Votan system-ai4 not display reliable increases in recognition performance for
the TI-Alphabet vocabulary due to performance of one talker. The top panel of
Figure 4 shows the data for this talker -- Ml -- and the data for Fl, a more
typical talker, for the Votan and Interstate systems on the Alphabet
vocabulary. The bottom panel If Figure 4 shows the performance of these two
recognition devices for the same talkers on the TI-20 vocabulary.
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Insert Figure 4 about here

For both recognition systems tested on the TI-Alphabet and TI-20,
performance on F1's speech generally improves as the number of training tokens
is increased. A similar pattern Lan be seen in the performance of the
Interstate system on MI's speech for the Alphabet and for the Votan and
Interstate systems on the TI-20. Howcver, for the Alphabet, performance of
the Votan system on Ws speech decreases with more training, producing an
error rate of almost 85% with five tokens of training. Comparing the
performance of the Votan system on the Alphabet vocabulary for talkers Ml and
Fl might lead one to conclude that Ml is a "goat" -- an unsuccessful user of
speech technology, while Fl is a "sheep" -- a successful user of this
technology. This conclusion receives further support because performance for
one talker shows an error rate that is as high as the recognition accuracy
obtained for another talker.

Note that this huge error rate drops back down to about the same
performance level as the Interstate for the point on the figure labeled
"INDEXED." In the training condition labeled INDEXED, each recognition device
was trained on five tokens of speech, but each token was used to create a
separately indexed vocabulary item. Using software built into the DDI, we
mapped the separately indexed items onto the appropriate word. Thus, during
training, each letter of the vocabulary would have five separate templates
such as Al, A2, A3, A4, and AS corresponding to each of the different training
tokens. During recognition, if one of these five items was recognized, the
DDI would simply respond with the word "A", ignoring which token generated the
response. This allowed us to circumvent the mechanism by which a recognition
device combines different tokens of speech into a single representation. The
data for this INDEXED condition for the Votan demonstrates that the
increasingly poor performance with increased training on Ml's speech is not
due specifically to the recognition algorithm, but instead is a consequence of
the method by which the Votan combines tokens of speech during training. It
is interesting to note that the increased error rate of this type with
training did not occur for any other talker in the database or for the TI-20
vocabulary.

We believe data such as these bear directly on the issue of why
differences between goats and sheep are often reported in the literature and
discussed frequently among some researchers working in the field. Several
hypotheses have been proposed to account for the differences observed in
recognition performance by so-called goats and sheep. One hypothesis is that
goats and sheep differ in motivation towards using the equipment. A second
hypothesis is that goats and sheep differ in the reliability of their speech.
Finally, a thiti hypothesis is that goats and sheep differ in the
acoustic-phonetic "clarity" or distinctiveness of theil :speech. In all three
cases, these hypotheses attribute the goats /sheep distinction to the talker
alone. However, the results obtained for talker Ml in the present study
suggest that in some cases, a goat for one vocabulary or recognition device
may be a sheep for a different vocabulary or recognizer. As a consequence, it
appears that poor recognition performance for a particular talker may result
from an interaction between vocabulary, recognition device, and talker and,
therefore, may not be entirely due to the talker alone. We believe this is an
important observation concerning the combined effects of all three sources of
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variability to the recognition process.

Conclusions

Taken together, the results of our research on the performance of
recognition devices demonstrate the importance of controlled laboratory
testing. By carrying out tests with different amounts of training and
different vocabularies, it is possible to draw some general conclusions about
recognition performance of the six recognition systems we studied. First, it
is clear that the difference in performance among these recognition systems is
much smaller than would be expected based on the differences in technology and
price. Second, the performance differences are largest when the recognition
systems are inadequately trained. Thus, if a recognition device is trained
appropriately, factors other than performance may be more important in
selecting a recognizer for a specific application. In addition, it is
important to note that appropriate training becomes much more important as the
difficulty of the vocabulary increases. Finally, analyses of the performance
data for one talker in the database suggest that the distinction between sheep
and goats that is between successful and unsuccessful users of recognition
devices -- may, in some cases, be the result of an interaction between talker,
vocabulary, and a specific training algorithm. El citing new tokens, changing
the vocabulary, or modifying software may reduce or eliminate the performance
problem observed with these types of talkers.
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Abstract

There are a number of fundamental human factors issues that are concerned
with the design and use of speech recognition systems. Some human factors
problems are determined specifically by characteristics of the user, such as
individual differences in the success of recognition performance. Other
issues are more general, and relate more directly to the design of the
user/system interface, such as the type of feedback presented to the user.
While many of these issues will be the same for small and large vocabulary
recognition systems, their relative importance and the way these issues are
resolved will be very different in these two types of systems. This paper
will outline some of these basic differences and will discuss some new human
factors issues that may arise with the next generation of speech recognition
systems.



Human Factors Issues for the Next Generation of

Speech Recognition Systems

Introduction

Speech is the normal mode of communication between people. We can issue
commands, requests, and assertions by directly speaking to another person, and
although communication by speech is not a perfect process, we understand each
other with a very high success rate. Furthermore, when an utterance is not
understood completely, there are a number of standard linguistic conventions
for error correction and recovery, such as a directed request for
clarification of some part of an utterance. However, by comparison, speaking
to machines is a much less satisfactory communication process. In general,
talkers mr,st pause between words, carefully choosing each word from a
restricted set of alternatives and they must speak clearly and regularly.
Since the interaction between human and machine is seldom an intelligent
dialogue, feedback about errors and error correction strategies may be very
frustrating to the user.

Clearly there is good reason to believe that speaking to a machine using
current speech technology is not as simple as talking with a person. The act
of choosing words from a relatively large but restricted vocabulary (greater
than 50 but less than 20,000 words) and of speaking in a precise fashion may
require a great deal of effort and attention. There is little doubt that the
use of speech recognition systems in a variety of applications produces human
factors problems that may not arise with other interface technology.
Currently, some research has been directed at investigating the human factors
problems that are involved in the use of commercially available, isolated
utterance, small vocabulary speech recognition devices for database retrieval,
command and control, and personnel training applications (see Simpson,
McCauley, Roland, Ruth, and Williges, 1985). However, there has been very
little research directed at the issues surrounding the use of large vocabulary
recognition systems (e.g., Gould, Conti, and Hovanyecz, 1984) or the next
generation of recognition systems still under development. Although
vocabulary size has been cited as a significant limiting factor on the
usatility of speech recognition devices (NRC, 1984), it does not seem
reasonable to assume that simply increasing vocabulary size will greatly
enhance the performance or effectiveness of the technology. Rather, it is
important to consider in detail the nature of the limitations on the
technology and tailor the user interface to surmount those limitations
wherever and whenever possible. Moreover, large vocabulary recognition
systems will make possible new applications for speech technology such as
dictation, and these applications will raise new human factors problems.

Our purpose in the present paper is not to attempt to describe the
solutions to these problems, but instead to point out the need for new,
systematic research that investigates the use of speech recognition systems
both by making use of existing technology and by simulating more advanced
systems (e.g., Gould et al., 1984). At the present time, there is simply too
little information available about the human factors issues that must be
addressed in developing and using the next generation of speech recognition
systems. However, it is clear there are three aspects to the use of speech
recognition systems that must be investigated: (1) the design and functions
of the speech recognition system, (2) the limitations and capabilities of the
human operator, and (3) the environment within which recognition takes place.
Each of these three areas must be understood because there is little doubt
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that they interact to determine the overall effectiveness and performance of a
speech recognition system for a particular task.

The Recognition System

For our purposes, a recognition system can be defined to consist of the
hardware and software that instantiate the algorithms for training and
recognition along with any software for user interaction with the recognizer's
functions. There are actually two user interfaces that must be considered
the recognizer interface and the application interface. At this point, our
concern is with the information and control provided by the recognizer
interface.

According to Norman (1983), a user interface not only serves to provide
communication and control for a system, but it also conveys a system image.
Since the user interface is the main point of contact between an operator and
a system, it is through this interface that the user forms a mental model of
the operation of the system. This mental model of a system allows thie user to
interact with, interpret, understand, and predict the behavior of the system.
In a well-designed interface, the system image should directly reflect the
operating principles of the system and should direct the user to interact with
the system in clearly constrained ways. This issue of the development of a
system image for a speech recognition device has not been explored
systematically, perhaps because of the relatively simple operating principles
for small vocabulary recognition systems. However, as the complexity of
recognition systems increases, it will become very important to design
interfaces that modulate the user's expectations about how to speak, about
recognition performance, and about how to control the recognizer's functions.

Recently, Zoltan-Ford (1984) has demonstrated how the system image of
speech technology can control the speech behavio of users. Subjects spoke
freely with unconstrained syntax and vocabulary to a computer simulation of a
recognition system that responded using a limited vocabulary and syntax. The
subjects learned the syntactic and lexical constraints provided by the
simulation, and adopted them in their own speech to the computer. Thus, it is
apparent that the user does indeed form a mental model about speech technology
through interactions with the user interface. Furthermore, by projecting the
appropriate system image, it is possible to modify the speech produced by a

user to conform to the requirements of a recognition system, thereby improving
performance.

In addition, Norman (1983) has suggested that it is important to separate
the user interface from the rest of a system. The reason for this is that a
separate interface module makes it much easier to modify and improve the
interface independent of the main functions of the system. In the case of a
speech recognition device, it is important to provide the applications
developer with the tools to build the recognition interface into the
application. Since it is unlikely that the applications developer will be
familiar with the requirements of a speech interface, it is also important to
provide guidance in terms of how speech can be integrated into an application,
along with examples of error correction procedures and feedback to the user.
Although there has been some research about the type of feedback needed to

improve the effectiveness of recognition technology (e.g., Schurick, Williges,
and Maynard, 1985), it is unlikely that the rest is of this research will be
appropriate for the next generation of recognition systems with large
vocabularies. For example, it is unclear whether word-by-word visual feedback
in a dictation task will slow down the dictation process or speed it up.
Moreoier, the type of error correction strategies that are effective for
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restricted vocabulary, data entry tasks will be less effective for large
vocabulary dictation tasks.

Recognition performance is another important human factors issue that
must be iavestigated systematically. Although it is clear that users will
probably prefer a system with high recognition accuracy, it is not clear how
users would trade off recognition accuracy for other features of a system.
For example, would users accept lower accuracy with a very fast system
response time? Or, will users prefer to dictate connected speech even if
accuracy is lower than in a recognition system that requires isolated word
input? Moreover, these issues can only be addressed in the context of a
particular application.

In addition, it is clear that effective training of a recognition system
is critical to the performance of that system. This issue becomes especially
important for large vocabulary recognizers. There may be 5000 or more words
in an isolated utterance recognition system, or hundreds of thousands of
possible sentences in a connected speech recognition system, and it is not
practical to require training on all the utterances that a device must
recognize. As a consequence, it will be important to combine talker tuning of
a recognition system (in which a talker provides a few key utterances prior to
using the system) and talker adapatation (in which the representations of
speech are changed on the fly following each recognition pass), in order to
achieve acceptable performance. It is important to develop "tuning
vocabularies" that provide critical information about talker differences and
protocols for collecting the speech that insure that the talker does not speak
in a different manner from the way the system will be used. Unfortunately,
there has been little or no systematic research on this problem or on other
human factors problems that stem from the size of the vocabulary in the next
generation of recognition systems.

However, there has been one well-documented investigation of some of the
issues surrounding vocabulary size that may arise with large vocabulary
recognition systems. Gould et al. (1983) reported results cf a dictation
task based on a simulation of a large vocabulary recognition system. The
results of this study may have important implications for several human
factors issues. For example, they found that, with connected speech input,
the speed of composing and proofing letters was independent of vocabulary size
for users who were experienced in dictating letters, while there was a large
effect of vocabulary size for isolated word input. For the experienced
subjects, dictation performance became slower for isolated wird input as the
vocabulary size decreased. In general, for vocabularies of 5000 words or 1000
words, Crud et al. found that connected speech produced better performance
of the users in writing letters. However, it is reasonable to suspect that a
different pattern of results might be obtained for other applications. In any
case, .1t is clear from this study that the type of speech input and vocabulary
size are two issues that must be investigated more thoroughly.

Another issue of some importance for dictation tasks is the presence and
weighting of a language model in a recognition system. On one hand, a
language model that is built to constrain word recognition can improve
performance in a listening typewriter as long as the speech input conforms to
the expectations of the model. On the other hand, a highly weighted language
model that is built on a particular database of text could actually introduce
errors in recognition if the user's syntax and vocabulary was inconsistent
with the model. It is important to investigate whether users can learn to
accomodate tacit feeiback from a language model or whether language models
must be made to adapt to the talker over time.
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Finally, it is important to consider how the user will change modes of

operation. For example, in their simulation of a dictation application, Gould
et al. (1984) provided several modes of operation to the user including a

dictation mode (the default), a spell mode, a number mode, and several
commands for formating and punctuating text. They provided clear keywords to

enter and exit these different states. This is a very important human factors
issue, since many errors in text editing occur because users may become

confused about the current mode of a system. Norman (1984) has made four
general suggestions about the design of a user interface for any complex

information processing system. First, feedback to the user should provide
clear information about the current state of the system. Second, different

types of functions should be invoked using distinctly different commands.
Third, the user should be able to undo almost all actions. Finally, it is

important for commands to be as consistent as possible across the different
modes of a system. For example, the delete function in a listening typewriter
should be activated in the same way in dictation, spell, and number modes.

In general, few if any of these issues have been investigated

systematically for the operation of large vocabulary speech recognition

systems. However, it is important to realize that, although we have focused

on the recognition system and its interface with the user, none of these
issues can be completely understood without considering the limitations and

capabilities of the human operator.

The Human Operator

The effectiveness of any recognition system will depend on the human

operator who is providing the speech input and must make use of this

technology. As a consequence, it is important to remember that the human

information processing system is limited in its ability to perceive, encode,
store, and respond to all the sensory stimulation that is presented at any

point in time. Furthermore, the user is subject to stress and may become

fatigued while using a recognition system. These limitations may, under

certain conditions, constrain the performance that may be achieved with a

recognition system. Thus, the overall effectiveness of recognition technology
depends on a thorough understanding of the limitations of the human operator.

However, at the same time, it is also important to remember that the human

operator is much more flexible and accomodating than a speech recognition

system. Humans are able to quickly adopt new strategies for interacting with

technology if they are given appropriate and informative feedback. The human

information processing system is adaptable and can respond to the requirements
and limitations of technology when the technology is inflexible. Thus, even

though there are limits to the human that form the boundaries on performance,

there are also important capabilities that the human can use to cope with and

overcome limitations on technology.

In order to fully understand and predict the performance of a speech

recognition system in a particular application, it is important to understand

the stress and cognitive demands placed on the human operator. At the present
time, there is insufficient data on the effects of stress and effort on speech

production. However, it is a general principle of cognitive and perceptual

processes that as the demands on the human observer increase, performance

decreases across a wide range of tasks. Thus, there is reason to believe that

speech production, which is a skilled motor task, should be affected by these
factors. There is clearly a need for understanding the effects of effort and

attention on the acoustic-phonetic structure of speech (NRC, 1984).

4
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Furthermore, no data have been reported on the effort required to dictate
passages of text with isolated word input. Although Gould et al. (1984)
reported data on the performance of talkers in a dictation task using discrete
utterances as input, they did not report the effects of this requirement on
the cognitive capacity of the talker cnmAred to continuous speech input. It
is entirely possible that the requirement of dictating discrete words may
require a great deal of attention and eflort so that performance may degrade
over time at a faster rate than it would for continuous speech input.
Similarly, the restriction of dictating using a limited vocabulary of 1000 to
5000 words or a constrained language model may require more effort than
dictating from an unrestricted vocabulary or using unconstrained syntax.

However, it is possible that if such attentional effects are found, they
may be overcome through appropriate training and etderience with a speech
recognition system In our laboratory, we have found thlt human listeners can
be trained to improve their ability to recognize synthetic speech generated by
rule (Schwab, Nusbaum, and Pisoni, 1985). This demonstrates that the human
listener is flexible enough to adopt new perceptual strategies tc, improve
recognition performance with synthetic speech. It seems quite reasonable to
predict that atcentional demands may be reduced for interacting with speech
recognition systems by giving the user appropriate training and experience.
Furthermore, this training may be used to modify a talker's productions to
improve recognition performance. The human opere_or is quite able to learn to
use techwrlogy more effectively when given appr_priate feedback and training.
Thus, even if a particular operator does not use a speech recognition device
effectively when first introduced to t'ie technology, it may be possible to
improve performance through a systematic program of training.

In general, t.Alkers differ in their ability to use speech recognition
devices. This is the basis for the distinction between "sheep" (successful
users) and "goats" (unsuccessful users) that has been made for speech
recognition systems (Doddington and Schalk, 1981). Of the possible accounts
of this distinction among users, there are three explanations that seem most
likely. First, sheep may be h4ghly motivated to use the technology while
goats are not. It is not clear precisely how motivation does affect
performance, but it is easy to generate several possibilities such as
mumbling, not responding to feedback, or not paying attention to the state of
the ..7lystem. Second, sheep and goats may differ in the acoustic-phonetic
structurz of their speech such that the utterances produced by goats are
simply less distinctive and discriminable from each other compared to sheep.
Finally, goats may be less consistent in their productions so that training
utterances are very different from each other and from utterances provided as
input when the recognition device is used in an application.

Recently, we have obtained some data in our laboratory that bears
directly on these hypotheses. We have been testing the performance of several
small vocabulary, speech recognition systems using the digitized speech
database collected by Doddington and Schalk (1981). We have found some
systematic differences between talkers for performance on different
recognition devices. Since the same recc7ded tokens are used for testing the
different systems, motivation of the speakers is probably less a factor than
the acoustic structure of the speech. However, a much larger difference
between talkers was observed that depended on the recognition systems
themselves. In the most striking example of this finding, as the number of
training tokens increased, the pattern of performance for one talker was very
different across two recognition systems. For one system, as the number of
training tokens was increased, recognition accuracy increased as would
normally be expected. But for a different device, as the number of training
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tokens increased, recognition accuracy actually decreased. Furthermore, this
pattern was only found for this talker for an alphabet vocabulary and not for
a digit vocabulary. This finding suggests that the definition of a goat may
depend on the training algorithm, the recognition algorithm, and the specific
vocabulary used for recognition. This indicates that the issut of goats and
sheep may be less a function of the talker and more a function of the
recognition technology itEllf. However, it is apparent that differences in
the speech produced by differeat talkers must be understood so that it is
possible to modify speech behavior through training and experience to improve
recognition performance.

The Recognition Environment

Finally, speech recognition takes place within the context of a physical
environment and an application environment. The physical environment includes
the ambient noise background, as well as other nonacoustic characteristics
such as temperature, vibration, and acceleration. These physical
characteristics can affect recognition performance by either changing the way
the talker produces speech or by affecting the input or operation of the
recognition system. In particular, the effects of high levels of background
noise on recognition performance are well known (NRC, 1984). However,
recently we have demonstralmd that the acoustic-phonetic properties of speech
are modified for speech 4roduced in noise, compared to speech produced in
quiet (Pisoni, Bernacki, Nusbaum, and Yuchtman, 1985). In essence, there is a
systematic change in the tilt of the power spectrum when there is noise
presented to the ears of the talker, along with systematic changes in the

vowel space. These changes can have large effects in reducing recognition
performance. As a consequence, recognition systems will have to adapt to

changes in a talker's speech that might occur as a consequence of a wide range
of environmental factors.

Beyond the human factors problems engendered by conditions of the

physical environment, it is also important to understand the effects of the
application environment on the effectiveness of using speech recognition
systems. The application environment refers to the tasks and application
context in which speech recognition is being used. It has been stated many
times that the appropriate applications for speech input to replace manual
input are tasks in which an operator's eyes and hands are already busy.

Speech input is often proposed to provide a more efficient control system, or
to provide another set of functions that is not available in the existing
system. As a general rule, this is probably not a bad guide for small
vocabulary recognition systems (e.g., Simpson et al., 1985).

However, this may not be the most important criterion for using large
vocabulary, speech recognition systems. For these new, more powerful systems,
it will be important to consider tasks in which speech is currently used with
a human who is listening and responding in some way. In these cases, a speech
recognition system would directly replace the functions carried out by a human
listener. The prototypical example of this is dictation in which text is
spoken to a secretary for transcription. However, there are other examples as
well, such as database retrieval in which queries may be very complex and
might be made over a phone to a database manager. To be effective in these
applications, speech recognition systems must not interfere with carrying out
the task. There should be little difference in the demands placed on the user
whether a human or a machine is listening.



Also, speech recognition should facilitate the task in some way that is
readily apparent to the user. In considering the use of small vocabulary
recognition systems for voice data entry tasks, a significant advantage is the
immediate entry of data into a computer system for higher level managers to
access and analyze. the benefits to the user are not direct in this case and
the operator is instructed to use voice data entry as part of the job.
However, in the case of an application like dictation, the user must be
motivated to change from a human listener to a machine.

Moreover, there is a need to, research cm the relationship between the
task requirements of different applications and the functions that might be
provided by a large vocabulary speech recognition system. There are currently
no strong criteria for choosing a particular application as a target for
speech recognition. Instead, recognition is integrated into applications
based on a combination of intuition and trial and error. Furthermore, there
are no guidelines to specify how to integrate recognition functions into an
application. With large vocabulary recognition systems, there may be a
temptation to place all the functions of the application under the control of
the ecognizer. However, this may not be the best approach for all
applications. For example, in a dictation task, speech may provide the best
means of entering the original text into the system, but it may be more
efficient to edit the text using a keyboard and a mouse.

Summary and Conclusions

Although there has been some research in recent years directed at
investigating human factors problems in using speech recognition systems, this
research has focused primarily on small vocabulary systems and the
applications that are appropriate for this more limited technology. However,
as the capebilities of recognition systems increase, so does their complexity.
The next generation of speech recognition systems will be used in very
different applications and will place very different demands on the human
operator. In order to understand better how to use these systems effectively,
it is important to investigate more thoroughly a number of human factors
issues.

There are three constraints that must be understood in order to optimize
the use of speech recognition systems -- the characteristics of the
recognition system, the limitations and abilities of the human operator, and
the requirements and demands of environment. These three general constraints
interact to determine the overall performance of a particular recognition
system and there can be little doubt that as the complexity of recognition
systems increases, so will the importance of understanding the human factors
problems inherent in each constraint.
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Abstract

In a recent study in our laboratory, we found that listeners could
reliably discriminate between sentences produced by talkers speaking under
sober and alcohol-intoxicated conditions, and that experienced listeners
performed significantly better than naive listeners (Pisoni, Hathaway, and
Yuchtman, 1985). The present experiment was designed to study how well
listeners can distinguish between speech produceu in a sober and an
alcohol-intoxicated condition, using a single-interval absolute identification
task. Subjects were required to make a judgement for each sentence in
isolation, rather than a comparative judgement on a matched pair of sentences.
Two groups of listeners, college students and Indiana State Troopers, were
tted in order to evaluate the effects of past experience in detecting
changes in speech due to alcohol-intoxication. We were interested in

determining whether speech could be used as an index of sensory-motor
impairment due to alcohol-intoxication. Both groups of listeners identified
test sentences significantly above chance for all eight talkers used in the
experiment. State Troopers performed significantly better than college
students for six of Oe eight talkers. The results demonstrate that

systematic changes in sensory-motor control are encoeled in the speech
waveform, and that listeners can reliably identify these properties in a

single-interval absolute identification task. There Also appear to be
reliable differences between grcups of listeners as a function of their

experience in detecting these changes in the speech waveform.



Using Speech as an Index of Alcohol-Intoxication

Although laypersons and law-enforcement officers routinely use perceived
speech quality as an index of alcohol-intoxication, little systematic research
has been done on the accuracy and limitations of this ability. The few
studies that have examined differences in perception between speech produced
in a sober and in an alcohol-intoxicated condition are consistent with the
finding that alcohol acts as a central nervous system depressant that effects
fine sensory-motor processes. Speech produced in an alcohol-intoxicated
condition has been found to be more prone to errors, is lower in amplitude,
and is more negatively judged in perceptual tests. These findings were
discussed in Pisoni, Hathaway, and Yuchtman (1985).

Data for the present experiment were collected by Pisoni, Hathaway, and
Yuchtman (1985). They made audio recordings of eight male talkers in a sober
and an alcohol-intoxicated condition. Blood alcohol level (BAL) was
determined by a Breathalyzer test. In a perceptual experiment using an A-B
forced choice format, graduate students, versed in articulatory phonetics, and
introductory psychology students both performed better than chance in
identifying the condition under which the sentences of four male talkers were
produced. Subjects listened to the same speaker produce the same sentence in
both conditions, and selected the sentence produced in the intoxicated
condition. Overall percentage of accuracy was 82.4% for the graduate
students, and 73.8% for the introductory psychology students, suggesting that
listeners who have studied speech can use perceptual cues in the speech
waveform as an index of alcohol-intoxication more accurately than listeners
who have not had this experience. The absolute frequency of obvious
misarticulation errors in these sentences was very low, and could not account
for most of the listeners' discriminations.

The present experiment was designed to study how well listeners could
distinguish between speech produced in a sober and an alcohol-intoxicated
condition with a single-interval absolute identification task. Subjects were
required to make an absolute judgement for each sentence in isolation, rather
than a comparative judgement on matched pairs of sentences used in the
previous perceptual experiment. Two groups of listeners, college students and
Indiana State Troopers, were tested in order to evaluate the effects of past
experience in detecting changes in speech due to alcohol-intoxication on this
ability. We were interested in determining whether speech could be used as an
index of sensory-motor impairment due to alcohol-intoxication.

Method

Subjects Two groups of subjects were used. One group consisted of
thirty introductory psychology students who received credit to fulfill a
course requirement. The second group consisted of fourteen Indiana State
Troopers who volunteered their time to participate in this study. All
subjects were native English speakers with no history of a speech or hearing
disorder

Stimuli Speech samples from eight male talkers speaking in a sober and
an alcohol-intoxicated condition were recorded by Pisoni, Hathaway, and
Yuchtman (1985). Two master files of sentences digitized at 10 KHz were
compiled from this data bank. Each file contained eight talkers speaking the
same 24 sentences. Each talker contributed 12 sentences produced in an
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intoxicated condition, and 12 different sentences produced in a sober
condition. The two master files differed in that each sentence-speaker
combination appeared only in the intoxicated condition for one file and the
sober condition for the other. Different random orders of each master file
were transferred from the computer onto audio tapes using a 12-bit
digital-to-analog converter. A five second interval was inserted between the
sentences. Half of the subjects in each group heard an audio tape generated
from the first master file, and half heard an audiotape generated from the
second master tile.

Procedure Each listener heard a total of 192 sentences, eight talkers
saying 24 sentences each. Subjects wore headphones and were presented with
the sentences on audio tape. They recorded their decision after each sentence
by circling the letter S for "sober" or I for "intoxicated" on a prepared
response sheet and then rated their degree of confidence in their choice on a

scale from 1, "just guessing", to 5, 'very sure."

Results

Accuracy Mean accuracy across all of the sentences was 61.48%
(SD =4.75) for the college students, and 64.66% (SD=3.08) for the Indiana State
Troopers. This difference was significant (t=2.43, p.02). Both groups
performed significantly better than chance beyond the .001 level. Mean
accuracy for the sentences produced in the two conditions was 60.5% for sober,
and 64.5% for intoxicated. This difference was significant beyond the .01
level. These data are shown in Figure 1.

Insert Figure 1 about here

Mean accuracy for the different talkers ranged from 55% to 71.9%.

Accuracy for all of the talkers was significantly better than chance beyond
the .001 level. State Troopers performed significantly better than college
students for 6 of the 8 talkers. These data are shown in Figure 2.

Insert Figure 2 about here

No differences in performance between the groups for sentences produced
in the intoxicated condition were observed for any of the eight talkers.
However, State Troopers performed significantly better than the college
students in correctly identifying sentences produced in the sober condition
for 6 of the 8 talkers (p<.001).
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Response Bias Mean beta and d' values for the two groups were
calculatea from the proportion of hits (correctly identifying a sentence
produced in the intoxicated condition) and false alarms (identifying a
sentence actually produced in the sober condition as having been produced in
the intoxicated condition). Beta is a measure of response bias, and d' is a
measure of performance independent of response biases. Beta was slightly
higher for State Troopers compared to students, but this difference was not
significant. State Troopers obtained a significantly higher d' compared to
students (p<.01). These data are shown in Figure 3.

Insert Figure 3 about here

The proportion of hits and false alarms for both groups of listeners on
individual talkers is plotted on an ROC graph in Figure 4. Performance for
the individual talkers was very similar for both groups, although the State
Troopers had a stricter criterion in judging whether a sentence was produced
in an alcohol-intoxicated condition, for 7 of the 8 talkers.

Insert Figure 4 about here

The probability of hits and false alarms for individual talkers, ranked
in ascending order of false alarm rate, is shown in Figure 5. There was
considerable talker variability which led the speech of some talkers to be
consistently labelled sober or consistently labelled intoxicated in both
conditions.

Insert Figure 5 about here

Confidence Ratings The proportion of the total responses in each
confidence rating category for both groups of listeners in shown in Figure 6.
State Troopers used the extreme ratings of 1 and 5 less often, and a rating of
3 more often, compared to the students. Percent accuracy across the five
confidence rating categories is shown in Figure 7. The more confidence a
listener placed in a given response, the more likely it was that the response
was correct. This finding suggests that listeners are able to reliably
predict their ability to discriminate between the speech samples produced in
the two conditions.

Insert Figures 6 and 7 about here
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Discussion

Our results support the hypothesis that perceived speech quality can be a
reliable index of sensory-motor impairment due to alcohol-intoxication. Both
groups of listeners performed significantly above chance level in identifying
test sentences. However, no listener obtained higher than a 70% correct
response rate, suggesting that the ability to use speech as an index of
alcc,hol-intoxication may be limited when speech samples of short duration are
used to make absolute judgements. The performance of listeners in
discriminating the condition under which longer passages of fluent speech are
produced needs to be studied. Percent accuracy for the different talkers
ranged from 55% to 71.9%, suggesting that the degradatioli of speech quality
varies widely across individuals with similar blood alcohol levels.

Our results also lend support to the hypothesis that experience in
detecting changes in speech due to alcohol-intoxication enhances performance
in the experimental task. State Troopers performed better than college
students at this task. The difference between the two groups of listeners,
while statistically significant, was quite small. It may be that the
experimental task was not powerful enough to detect larger differences between
the groups of listeners that actually exist, or that the two groups are more
similar in their ability to use speech as an index of alcohol-intoxication
than was hypothesized. Previous results in our laboratory suggest that
experience in studying speech, compared to experience in detecting changes in
speech due to alcohol-intoxication, may be a more important factor in using
speech as an index of alcohol-intoxication. Obviously, further research is
needed to investigate this issue.

State Troopers were significantly better at this task overall because
they identified sober, and not alcohol-intoxicated, sentences better than the
college students. Beta, a measure of response bias, was slightly higher for
the State Troopers. Thus, the State Troopers used a stricter criterion in
judging if a sentence was produced in an alcohol-intoxicated condition.
College students were more likely to judge a sentence as being produced in an
alcohol-intoxicated condition when it was not. The nonbiased measure of
discriminability, d', was significantly higher for the State Troopers compared
to college students, suggesting a true difference in sensitivity. This
conclusion was supported by the confidence ratings given by the listeners,
which were highly correlated with response accuracy. The more confidence a
listener placed in a given response, the more likely it was that the response
was correct.

The present results demonstrate that systematic changes in sensory-motor
control are encoded in the speech waveform and that human listeners can
reliably identify these properties in a single-interval absolute
identification task. There appeared to be reliable differences between groups
of listeners as a function of their experience detecting these properties in
speech. However, there were also substantial individual differences among the
talkers who produced the speech samples. Some talkers were consistently
labelled sober or consistently labelled intoxicated no matter what the true
condition was.

Based on these findings and our earlier acoustical analyses, it may be
possible to develop talker-dependent algorithms to identify sensory-motor
impairment from speech samples, and to use these algorithms in safety
interlock systems to prevent alcohol intoxicated drivers from starting their
automobiles.
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Abstract

Two groups of subjects learned to recognize speech spectrograms of 50

monosyllabic English words spoken by two male talkers. Ten blocks of five
words each served as the stimulus words in this experiment. These word lists

were prepared so that each block shared some phonetic attribute, e.g., initial
/br/ cluster (brain) or the vowel-consonant pattern /II/ (bill). The

dimensional group viewed the spectrograms in a blocked condition; that is,
they learned the spectrograms in blocks that shared a phonetic attribute. The
wholistic group viewed five stimulus spectrograms selected randomly from the
set of 50 words. Subjects learned to recognize the 100 spectrograms after 18

hourly sessions at 90% correct or better. When presented with the same word
spoken by a new talker, subjects in the wholistic group correctly identified
74X of the spectrograms while subjects in the dimensional group correctly
identified 58% of the spectrograms. The implications of these results for

perceptual learning of visual displays of speech are discussed in terms of
training procedures and the acquisition of detailed acoustic-phonetic
knowledge about speech spectrograms.



Subjects were trained to recognize visual displays of speech as an
English word using a study-test procedure. In this procedure, the subject
viewed a spectrographic display of speech on a CRT screen and was told what
the word was. The subject was instructed to "study" the display and to learn
the relationship between the visual pattern and the word it represented.
Subjects were also told that words that sound like each other look alike in
spectrogr..z. and words that sound different from each other look different
from each other. After learning a predetermined number of stimulus items, the
subject was given a "test" to evaluate how well the stimulus items were
learned.

Subjects viewed a single spectrogram of each word displayed in the center
of a CRT monitor screen. On those trials designated as "study" or "practice"
trials, feedback was given verbally by the experimenter. Before feedback was
provided, subjects were required to write down a response on prepared response
sheets for every spectrogram displayed. On trials designated as "test"
trials, no feedback was given. Subjects were required to respond on every
trial even if they had to guess. All responses were recorded on prepared
response sheets and saved for later analysis.

Stimulus Materials. In this experiment, the stimulus materials consisted
of 50 monosyllabic English words. The words represented 10 phonetic
dimensions, 5 words per dimension. The dimensions included shared initial or
final phonemes (e.g., feed, fail, fan; bill, dill, hill); shared consonant
clusters (e.g., bran, braid, broke; band, hound, land); and same initial and
final consonants with the medial vowel varying (e.g., fizz, fours, fuzz; bid,
bed, booed). Examples of the dimensions used in this study are listed in
Table 1. Figures 1 and 2 show spectrograms of five words representing the
/fVz/ and /-at/ dimensions.

Insert Table 1 and Figures 1 and 2 about here

Stimuli were presented to subjects in blocks of five words. One group of
subjects, the dimensional group, received all five tokens of one dimension in
a block. The first block of items for this group consisted of the items bill,
dill, hill, mill, and frill. A second group of subjects, the wholistic group,
received a random set of five words selected from the set of 50 words. For
this group the items were bran, feed, find, hat, and Lill. In addition, for
both groups, we included tokens spoken by two different talkers. Thus, for
each block of five words, ten spectrograms were presented to subjects, two for
each word.

Each stimulus word was spoken in citation form and recorded on audio tape
for later editing. Twc ',ales and one female produced tokens each of the 50
training words as well a_ tokens of 50 test words. All stimulus words were
then processed digitally using a 12 bit analog-to-digital converter, edited
into individual stimulus files, and stored for future use. Automated
experimental programs were used to present blocks of spectrograms to subjects
each day.



Table 1

Examples of Dimensions*

1. -ILL BILL CHILL
2. -EAR GEAR REAR
3. -AT BAT CAT
4. -ASH MASH STASH
5. F- FACE FLAT
6. BR- BRAWL BREED
7. -S PASS MICE
8. -ND FIND SEND
9. BvD BID BEAD

10. FvZ FUZZ FEES

*Dimensions are phonetic, not orthographic
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Figure 1. Speech spectrograms of five words for the /fVz/ dimension.
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Figure 2. Speech spectrograms of five words for the /-at/ dimension.



Procedure. Each spectrogram was displayed in the center of the CRT
screeir17Titudy. The display remained on the screen for five seconds after
which the experimenter told the subjects what word the spectrogram
represented. The spectrogram was then erased from the CRT screen. Subjects
studied five words during each session designated as a study session. Since
two different talkers produced tokens for this experiment, there were ten new
tokens presented during each study session. Each token was presented five
times during the session. Thus, each study session consisted of fifty trials.

Results

Subjects learned to recognize the 50 words in the training set at levels
above 85% correct in 18 sessions. There was a total of just over nine hours
of training and testing time during the course of the 18 day training period.
The eighteen daily sessions were a maximum of o , hour long but the actual
study time, i.e., presentation of the spectrograms with feedback, averaged 10
to 12 minutes per session. The testing portion of the daily sessions took
longer, ranging from 10 to 40 minutes. After each block of five new items was
presented to subjects using the training procedure described above, subjects
were tested for recognition on the new items plus all previously learned
items. Therefore, the daily recognition test increased by 10 tokens each day.
During these tests, no feedback was ever provided. Subjects had to identify
each stimulus independently from every other on each trial since they were not
told whether their response was correct. The daily test results are displayed
in Figure 3.

Insert Figure 3 about here

As shown in Figure 3, subjects' performance never fell below 85% correct;
in fact, performance was generally above 90% correct. Subjects in the
wholistic group showed consistently higher levels of performance than subjects
in the dimensiona. group throughout the entire experiment.

In contrast to our earlier study on reading spectrograms of phonetically
balanced words, we did not provide extensive practice and testing prior to
generalization testing as we did in our previous study (Greene, Pisoni, &
Carrell, 1984). After the subjects had learned the 50 words in the training
set, we went directly to generalization testim with different talkers and
different words.

The first generalization test consisted of the same 50 words spoken by a
new talker, a talker whose tokens the subjects had not been exposed to during
the experiment. The results of this generalization test are shown on the
extreme right side of Figure 3 labeled GENERALIZATION. The wholistic group
correctly identified 72% of the words (36 out of 50 words) whereas the
dimensional group identified only 58% of the words (29 out of 50 words).
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The second generalization test consisted of 50 additional novel words
spoken by the same two talkers who produced the words used in the training
set. These novel words represented the same ten dimensions and consisted of
five items for each dimension, resulting in a total of 50 novel words.
Subjects viewed the spectrograms in the generalization set for about ten
seconds. The longer exposure time allowed subjects ample time to "analyze"
each display and record their responses.

The results obtained from this generalization test with novel words
showed that subjects in the wholistic group identified 15% of the words
correctly while the the dimensional group identified 9.5% of the words
correctly. These data reflect better generalization to unknown spectrograms
than we found in our earlier study. In our earlier study, subjects correctly
identified only 6% of the words.

Although performance on the novel words was low relative to the first
geLeralization test, exact identification of the novel words was not the
intended goal of this experiment. The daily test data have already shown
superior learning for the wholistic group, a result that was not anticipated.
From the outset, we were concerned with determining whether blocked
presentation of words that shared common phonetic attributes would facilitate
generalization as well as learning. Thus, the generalization results were
scored by dimensions correctly identified. Instead of simply scoring a
response right or wrong, we scored an item as correct if the subject indicated
the correct relevant dimension for a particular dimension. For example, if
"gill" or "will" was given as a response to the stimulus "kill", it was scored
as correct -- the relevant dimension was correctly identified. Similarly, for
the dimension /br-/, the initial consonant cluster was the only part of the
response that had to be correctly identified for the response to be scored
correct. Once again, the wholistic group showed better performance than the
dimensional group (49% correct vs. 32.5% correct, respectively).

Finally, we examined the results separately by talker. Since the
subjects learned tokens spoken by two talkers, we can examine both the exact
words correctly identified and the relevant dimensions correctly identified
for tokens produced by the two talkers. These results are shown in Table 2.

Insert Table 2 about here

Examination of Table 2 reveals that subjects showed better generalization
performance to tokens produced by Talker 1 for both wholistic and dimensional
groups. No obvious reason is arparent for this difference. Daily test scores
during the course of the experiment did not yield differential scores for each
talker for either group. Sometimes subjects did better on tokens spoken by
Talker 1; other times they did better on tokens of Talker 2.



Table 2

Results Separately for Talkers

TALKER 1 TALKER 2

Percentage of
Novel Words
Correctly Identified

WHOLISTIC 15.33 14.66
(23 of 150) (22 of 150)

DIMENSIONAL 10

(20 of 200) (18 of 200)

Percentage of
Relevant Dimensions
Correctly Identified

WHOLISTIC 54 44

(81 of 150) (66 of 150)

DIMENSIONAL 37 28

(74 of 200) (56 of 200)
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Discussion

At the outset of this study, we expected better performance for the
dimensional group because the relevant stimulus attribute(s) for each block of
trials was provided explicitly for subjects. By having knowledge of the
relevant dimensions, subjects should therefore be able to attend to this
information to help them learn the items and, more importantly, use this
information to identify new members of a category -- that is, new tokens for
each relevant dimension.

Taken together, the results in this experiment show consistently better
performance for the wholistic group. It appears to be that in the case of
visual displays of speech, specifically speech spectrograms, explicit
attention to the relevant dimensions made learning and generalization more
difficult. Perhaps the overlap across stimuli that shared a dimension
obscured the visual cues subjects needed to sort out the spectrograms and made
them more perceptually confusable. Subjects could not learn the
word-spectrogram relationship because the visual similarities outweighed the
visual differences. If this argument is correct, then the performance of the
wholistic group would be predicted to be better than the dimensional group
because they did not (necessarily) have overlapping dimensions among stimulus
items in a given study block.

Our findings also suggest that the superior performance of the wholistic
group may be due to the kind of learning strategy used by these subjects. Our
earlier study revealed that subje:,13 do analyze and segment speech
spectrograms and that they can describe specific parts of the spectrogram in
ways that correspond to well-known acoustic-phonetic attributes. The subjects
in the wholistic group may have defined certain parts of the spectrogram as
their own "relevant dimension" to help them remember the specific display.
When they saw another spectrogram that also included one of their own relevant
dimensions, they used this information to help learn the new display. In
constrast to the dimensional group, the wholistic group abstracted relevant
dimensions fro* the stimulus items for themselves. Implicit learning may
therefore have facilitated generalization while explicit presentation and
ordering of the dimensions did not.

In summary, the results from the present experiment suggest that subjects
learn to identify speech spectrograms more successfully when the words are
presented in a mixed rather than a blocked format. Subjects trained using the
wholistic approach also showed better generalization performance to a new
talker and to new tokens than subjects trained using the dimensional approach.
Although explicit pattern information was provided for the dimensional group,
they apparently did not find this organization of speech spectrograms helpful
to them during learning or generalization testing. These findings demonstrate
that conscious attention to and awareness of salient visual dimensions may not
necessarily facilitate perceptual learning and generalization to complex
visual displays of speech as shown in spectrograms.
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Abstract

In order to choose the appropriate speech recognition device for a

particular application, a number of factors must be considered carefully.
These factors include performance, basic recognition capabilities (e.g.,
vocabulary size), price, the user/system interface, and ease of programming.
Most of these factors can be assessed quite easily relative to the demands and
requirements of a specific application or task. However, it is much more
difficult to determine the relative performance of different speech
recognition devices without carrying out systematic tests of these devices
under controlled conditions. Of course, this type of comparison depends on
the development of standardized methods for performance testing. At the
Speech Research Laboratory, we have developed a computer-controlled system and
a standardized methodology for measuring the performance of speech recognition
devices under carefully controlled laboratory conditions. While this approach
may not provide information about the performance of speech recognition
systems in specific applications and tasks, it does permit detailed
comparisons and the development of benchmarks of recognition performance under
controlled conditions. By carrying out performance tests completely under
computer control, we are able to eliminate errors and variability in

performance introduced into resting by a human operator. Furthermore, it is

possible to systematically investigate the effect::, of different training
algorithms, vocabulary differences, talker differences, and different
parameter settings.



Testing the Performance of Isolated Utterance Speech Recognition Devi-..2s

In normal conversation, a talker will issue commands, requests, and
assertions by speaking directly to another person and, in general, this spoken
language will be understood with a very high rate of success, even though
communication by speech is not a perfect process. Communication between
humans using spoken language is extremely successful because speech is highly
redundant at all levels of analysis and because there are a number of
linguistic and paralinguistic conventions for error correction and recovery
that can be used to assist comprehension. By comparison, speaking to a speech
recognition system is a much less satisfactory communication process because
the talker's speaking behavior is artificially constrained to conform to the
limitations of recognition technology. By comparison with human listeners,
recognition performance is extremely poor. And, there are very few robust
strategies for error correction. In most interactions using speech
recognition devices, talkers must pause between words, they must carefully
choose each word from a restricted set of alternatives, and the speech must be
articulated clearly and consistently. Since the interaction between human and
machine is seldom an intelligent dialogue, the type of feedback that is
provided about errors may be very frustrating to the user.

Speaking to a machine using current speech technology is not as simple
and effortless as talking with a person. The act of choosing words from a
relatively small and restricted vocabulary (greater than 50 words, but often
much less than 300 words), and of speaking in a precise and consistent fashion
may require a great deal of effort and attention. Thus, the use of speech
recognition systems in a variety of applications may produces human factors
problems that do not arise with other interface technologies. Although some
research has been directed at investigating the problems that are involved in
the use of commercially available, isolated utterance, small vocabulary speech
recognition devices for database retrieval, command and control, and personnel
training applications (see Simpson, McCauley, Roland, Ruth, and Williges,
1985), there are still many important issues that must be addressed
systematically.

One fundamental issue that has not been extensively investigated concerns
the performance of speech recognition systems. Basic information regarding
the performance of a speech recognition system is important for assessing the
suitability of a recognition system or a particular application and can be
used to determine price/performance comparisons between systems. However,
there has been very little systematic research directed at investigating the
performance of speech recognition systems, especially by comparison with
studies investigating the performance of text-to-speech systems (e.g., Greene,
Logan, & Pisoni, 1986).

Performance testing of speech recognition systems is important for
several reasons. First, performance testing is an integral part of the
process of improving existing recognition systems and developing new and more
robust recognition algorithms. Without systematic measures of recognition
performance under controlled conditions, it is almost impossible to determine
whether changes in a recognition algorithm result in reliable changes in
recognition accuracy. Also, detailed analyses of performance measures can
provide diagnostic information about the specific problems inherent in a
particular recognition algorithm and may suggest how an algorithm can be
improved.
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Second, performance testing provides data on speech recognition systems
that may be important for determining how appropriate a particular recognition
system is for a specific application. Typically, many vendors of recognition
systems cite performance of their technology at 99% without specifying the
conditions under which testing was carried out. Without knowing something
about the structure of the vocabulary used in testing, how many talkers and
tokens of speech were used, or how training was carried out, or what

signal-to-noise ratio or microphone was used, it is impossible to determine
what 99% correct recognition really means or how it compares to some other
performance measure. To assess the relative performance of different
recognition systems, it is necessary to compare performance when testing is

carried out systematically under carefully controlled conditions. Performance
comparisons between systems are meaningless if the testing conditions are not

controlled and comparable for all the systems so that replication would be
possible.

Finally, performance testing can serve an important function for

advancing basic research on speech recognition. Detailed analyses of the data
collected in performance tests can provide fundamental information on

individual differences between talkers, the effects of noise on speech
production, the role of lexical stress in distinguishing vocabulary items, as

well as a number of other basic issues in speech research. Although
recognition systems have not played a large role in basic speech research in

the past, the potential contribution is substantial since these systems code
speech produced by training and generate direct distance functions for

utterances compared to the trained vocabulary. Thus, performance testing of
recognition systems is important to a number of issues surrounding the

development, application, and advancement of recognition technology as well as
basic speech research.

In recent years, there has been increasing interest in developing
standardized methods for testing speech recognition systems both to insure
some degree of comparability between different tests, as well es to promote
testing reliability and validity (e.g., Moore, 1986; Pallett, 1982, 1985).
But despite the obvious importance of establishing standard testing methods,

there is currently no concrete set of standards to govern or direct the
testing of speech recognition systems. Pallett (1985) has described some

general guidelines that are based, in part, on discussions arising in the IEEE
Working Group on Speech I/O Systems Performance Assessment (see Baker,

Pallett, & Bridle, 1983). These guidelines provide an important starting
point for developing a standardized testing methodology. Pallett discusses in
detail many specific issues that concern the testing process and

interpretation of test results. However, beyond this initial discussion of

testing issues, there has not been any attempt made to describe a standard
testing procedure in sufficient detail that it could be implemented in

different laboratories to permit a direct comparison of the performance of
different speech recognition systems.

The need for a specific and well-described testing procedure comes from

the simple observeration that no one laboratory will be able to exhaustively
test all _he available speech recognition systems. Furthermore, as algorithms
are revised and improved, and new systems are developed, it would be a
full-time effort for any single laboratory to keep up with the constant

changes that occur in recognition systems. Thus, there is a definite need to
distribute the process of testing recognition systems among speech research
laboratories in such a way as to permit a meaningful comparison of the results
from the different tests. A clearly specified and well-developed testing

procedure that is adhered to carefully would insure that different
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laboratories would be able to carry out separate testing programs that are
directly comparable. Even if particular research groups chose to go beyond
the established testing methods, data collected using the standard procedure
along with data from other procedures would provide a basis for comparison and
interpolation. Moreover, an established testing procedure would enable a
laboratory that has developed a new recognition system to test that system
(using standard methods) and compare the results against earlier tests of
other systems.

Part of the reason that no standard testing methodology has been
specified is that there is no general agreement as to what constitutes a fair
and meaningful test of the performance of a speech recognition system. Tests
can be conducted using a live microphone while the talkers perform some
specific task or tests can be based on a digitized database of speech. The
vocabulary can be simple or difficult, small or large, and it can be based on
an application or generated according to theoretical criteria (e.g., Ohala,
1982). The talkers who produce the speech for the test can represent one
dialect or many. The speech can be produced under benign laboratory
conditions or under more severe noise and stress conditions (e.g., Pisoni,
Bernacki, Nusbaum, & Yuchtman, 1985). Training and testing can be carried out
under directly comparable conditions or under conditions that are individually
tailored to produce the best performance obtainable from each recognition
device.

Each of these decisions regarding the conditions for testing a
recognition system could have a significant impact on the performance that is
measured in a given task. In general, the choices made for any particular
test will reflect the specific goals of the test, as well as any constraints
on the testing process. However, it is clear that there is no single test
that can be carried out for a group of recognition systems that will answer
all possible performance questions. Furthermore, carrying out performance
tests is very time-consuming and expensive, and requires a great deal of
effort and expertise. As a consequence, very few controlled performance tests
of recognition systems have been reported.

In the first systematic study of speech recognition performance,
Doddington and Schalk (1981) reported a comparison of seven commercially
available systems ranging in cost from $500.00 to $65,000.00. These systems
were tested on a database of speech collected from eight male and eight female
talkers. The vocabulary consisted of the ten digits and ten control words.
Ten training tokens of each vocabulary item were recorded and 16 tokens of
each item were recorded for testing recognition performance. The reject
threshold of each recognition system was disabled to allow more direct
comparisons of recognition performance. Thus, the majority of errors were
substitutions of one vocabulary item as an incorrect response to an utterance
that was presented for recognition. Performance across systems ranged from
.2% to 12.6% substitution errors and these errors increased, in general, with
decreases in system price.

A second study reported by Baker (1982) compared the performance of the
recognizers tested by Doddington and Schalk (1981) under slightly different
conditions. The database used by Baker was produced by five male and five
female talkers. The vocabulary consisted of the ten digits and the letter
"0." Each talker produced 10,210 utterances for testing purposes and the
speech was recorded simultaneously by two different microphones to compare
their effects on performance. The rank-order of performance for the
recognizers on both microphones generally corresponded to the results obtained
by Doddington and Schalk (1981), and the magnitude of the errors was also
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quite similar (ranging from .2% to 16.3% for one of the microphones). Thus,
the pattern of results was quite similar for two different tests conducted on
two similar (but not identical databases) carried out by two different
laboratories: The overall rank order of results was the same despite
differences in ,Microphones, talkers, vocabularies, and testing procedures.

Although the differences between the testing conditions in these two
studies are small compared to the differences between benign laboratory
enviroments and applications under more severe conditions, the general
concordance between these two sets of results indicates that recognition
performance is quite stable across tests. However, these studies are several
years old and few, if any, of the recognizers tested in these studies are
currently marketed in the same form. Most of the systems that were tested are
no longer produced or marketed (e.g., Verbex 1800, Threshold Technology T-500,
or Heuristics 7000). Thus, the results of these studies do not apply to
currently available speech recognition devices.

Over the past year and a half, we have been carrying out a project
designed specifically to investigate the performance of several commercially
available speech recognition systems. The primary goal of this research has
been to measure and compare the performance of speech recognition systems
under controlled, laboratory conditions. In the present paper, we will only
discuss the procedures and the system that we have developed for automatically
testing the recognition performance of these systems.

To measure and compare the performance of isolated-utterance,
small-vocabulary recognition systems, it was necessary to accomplish two other
goals. The first goal was to develop a set of explicit testing procedures
that could be clearly described and implemented by almost any laboratory with
the necessary facilities. The second goal was to design and implement a
computer-controlled testing system that would measure the performance of
speech recognition devices automatically, without constant human attention.

Testing Method

Although no single test procedure can completely address all possible
issues that arise in considering the assessment of recognition performance,
the development of an explicit and coherent testing procedure permits the
direct comparison of performance data collected in different laboratories.
Furthermore, in our performance tests, we have used a standard database of
speech that is currently in the public domain to provide another level of
comparability between our results and the results of other tests carried out
using this database.

Speech Database. The database of speech that we chose for testing
purposes was coITcted by Doddington and Schalk (1981) and is distributed in
digital and analog form by the National Bureau of Standards. This database
was produced by eight male and eight female talkers and consists of two
vocabularies. The TI-20 vocabulary contains the ten digits and the ten
control words YES, NO, GO, START, STOP, ENTER, ERASE, RUBOUT, REPEAT, and
HELP. The TI-Alpha vocabulary contains spoken versions of the 26 letters of
the alphabet. For each vocabulary item, each talker produced 10 tokens for
training purposes and 16 tokens for recognition testing. This database was
originally digitized at 12.5 kHz with 12-bit resolution. For testing
purposes, we presented the speech at 12.5 kHz, using 12 bits of resolution
with a 16-bit D/A converter. The speech was low-pass filtered at 4.8 kHz.
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The TI-20 vocabulary was chosen to permit comparisons of our test results
with other tests carried out with this vocabulary. Also, the words in this
vocabulary are extremely discriminable, with the majority of confusions
occuring between GO and NO. By comparison, the alphabet is a much more
difficult vocabulary because it contains several confusable subsets of letters
such as the E-set. These confusable subsets differ only by a single phoneme
(e.g., B and D) and therefore may engender many more substitution errors than
would be produced for the TI-20.

It is important to measure performance on different vocabularies for
several reasons. As noted earlier, the TI-20 vocabulary is a good choice
because it has teen used for other tests and therefore can serve as a standard
benchmark of performance. Unfortunately, the TI-20 database has been
circulating in the public domain for a while and it is always possible that
recognition systems may be "tuned" specifically for this database. While it
is always possible that a developer might design into a recognition system the
capability of excelling on this particular database for the purposes of
distorting performance assessments, it is more than likely that recognition
systems will be developed, tested, and improved using this database as a
benchmark in the vendors' laboratories. As a consequence, performance on this
database might simply be better because algorithms were tested and improved
specifically using these speech samples. By comparison however, the alphabet
database has not been distributed in the public domain long enough to be used
by vendors for their own development efforts. As a result, it is unlikely
that any commercially available recognition system has been optimized for
performance on these speech samples.

Another reason for testing performance on different databases of speech
is to determine how recognition performance depends on the acoustic-phonetic
structure of the vocabulary. Changes in vocabulary size and confusability are
likely to have very large effects on recognition performance. By measuring
performance on more than one vocabulary, it is possible to investigate the
relative influence of different vocabularies on the performance of a number of
different recognition systems.

Furthermore, by choosing a relatively easy vocabulary (e.g., the TI-20)
and a relatively difficult vocabulary (e.g., the alphabet), it may be possible
to predict the relative performance of recognition systems on an application
vocabulary. If the rank ordering of recognition performance for different
devices is similar for a difficult and an easy vocabulary, then the same rank
ordering might hold for most vocabularies. In other words, if the same
recognizers perform well on both vocabularies and other recognizers perform
poorly on both vocabularies, this relative performance might be obtained for
almost any vocabulary. Of course, this is an empirical question that can be
answered by conducting the appropriate tests with several recognizers.

Recognition S stems. For the present study, we chose several
commercially avails e recognition systems that are similar to each other in
terms of intended use and price. Compared to the price range covered by the
recognizers tested by Doddington and Schalk (1981), the recognizers we have
been testing are much more similar in cost, varying from less than $1,000.00
to around $3,000.00. Furthermore, these systems are all compatible with the
IBM-PC (and PC-compatible) microcomputers. The vocabulary sizes of these
devices range from ar-,und 50 items to 256 items. In general, these systems
are intended for use as speaker-dependent, isolated-utterance recognition
devices, although some of the recognizers incorporate connected-speech
algorithms. Thus, while there are several systematic differences among these
systems, the overall similarity of these recognizers is much greater than in
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previous research. The systems that we have tested include: (1) the NEC
SR-100, (2) the Interstate VocaLink CSRB, (3) the Votan VPC-2000, (4) the
Dragon Systems Evaluation Board, and (5) the Texas Instruments Speech II

board.

Calibration. To facilitate replication of test procedures and test

results, it is important to calibrate and measure signal levels and
signal/noise ratios for presenting signals to recognition systems. When a

talker speaks directly to a recognition system, it is difficult to maintain
accurate calibration levels. The talker must try to adjust his or her

productions based on feedback from the recognition system. By comparison,
with a digitized speech database, signal levels can be chosen that are optimal
for testing purposes. The database collected by Doddington and Schalk (1981)
was controlled so that the variation in the amplitude of words varied within a
range of plus or minus 3 dB. Thus, it is possible to choose a single signal
level for testing purposes using this database.

We have us,A two different calibration procedures for establishing an

optimal signal level for testing each recognizer. In our calibration
procedures, 0 dB is referenced by a 1 kHz sinewave generated at full 16-bit

resolution presented at 1 mV. In the first calibration procedure, a

recognizer is trained on the first five tokens of the TI-20 training set and

then tested on all 16 test tokens for each of the 16 talkers in the database.
One of these tests is carried out at levels varying from 2.5 dB to 12.5 dB in

2.5 dB steps. The signal level that produces the lowest error rate is used
for testing the system.

We have also used a second calibration procedure in which a recognition
system is trained on a single token of each of the ten digits for a talker and
then tested on the exact same tokens. When trained and tested on the same

tokens of speech, recognition accuracy is typically excellent, especially for
the digit vocabulary. However, speech recognition systems generally return a

distance measure or "similarity score" along with each recognition response.
This value is a much more sensitive measure of the pattern matching process
than recognition accuracy alone. Thus, the purpose of this test is to
determine the signal level that produces the smallest distances or highest
similarity scores for the digit vcocabulary. One test is carried out at
several signal levels over a 25 dB range of amplitudes, varying from the

lowest level at which all tokens are recognized in 5 dB steps. The distance
or similarity scores returned by the recognizer are analyzed statistically to

determine the level that produces the best performance and this signal level
is then used for testing the recognizer.

Testin Procedure. For each recognition system, at least three tests are
conducted for the TI-20 database and for the TI-Alpha database. Each of these
three tests studies recognition performance with a different number of

training tokens. In each test a recognizer is trained on one, three, or five
tokens from the training set of the database, using tokens chosen in

consecutive order from the beginning of the training t. A command file is
prepared for each test that sets the names of ...he data, log, and error files

on the VAX, initializes any parameters or states or data structures on the
recognition system, and controls the training and testing procedure. Every

recognition system is trained on the same tokens and is tested on all 16 test
tokens. Thus, each test using the TI-20 generates 5120 data points and each

test using the alphabet generates 6656 data points. Following the rationale
of Doddington and Schalk (1981), all tests are carried out with the rejection

thresholds disabled so that substitution errors are not traded off for

rejection errors.
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Testing performance at several levels of training provides important
basic information about a recognition system. First, performance based on a
single token of training indicates how a recognition system will perform under
the minimal training conditions. It is important to note that training on one
token is, in many respects, biased against recognition systems that are based
on statistical modeling principles compared to template-based systems
(Pallett, 1985). However, while this is certainly not the optimal training
procedure for eliciting the highest performance from a recognition system, it
is nonetheless important to understand how a system will perform under
conditions of minimal, training. It is highly optimistic to assume that all
users of recognition systems will follow the vendors operating instructions
exactly. In some cases, a user might simply try to implement a new vocabulary
quickly to see how confusable it is; in other cases, users may simply try to
reduce their own workload in training the system. Furthermore, while it is
true that the one token used for training could be a "bad" utterance that does
not represent the typical production of this vocabulary item, all recognition
systems are trained on the same tokens. It is the relative performance of the
recognition systems that is of greatest interest, so that even if the training
token is not representative, all recognition systems will be at the same
disadvantage.

Second, performance curves as a function of training can provide some
indication of the optimal amount of training. The asymptote in performance
will indicate how much training is required to obtain the highest recognition
performance. Moreover, the performance curves will a'so indicate the tradeoff
between increased training and increased performance. These data might
suggest that the cost of additional training is not justified in terms of the
size of the improved recognition performance that results.

Finally, after testing recognition systems on the TI-2U and the TI-Alpha
databases after one, three, and five tokens of training, we have often carried
out additional tests. The purpose of these additional tests is to comply with
any specific vendor test recommendations that were not covered under the
standard tests. In some cases, a recognition system may be able to use more
than five training tokens, so another set of tests would be conducted under
optimal training conditions for that system. In other cases, the performance
of a recognition system may fall short of the vendors expectations so we carry
out tests to attempt to diagnose more carefully the performance of the system
and to try to improve performance by modifying the test conditions
systematically. These auxilliary tests provided additional information about
how performance might be improved when using a recognition system and, by
comparison to our standard series of tests, they may indicate how much
improvement might be expected.

Automatic Testing of Recognition Performance

At the present time, almost all testing of speech recognition systems is
carried out under manual control by a human operator. However, in order to
collect a large number of recognition test trials, control by a human operator
is simp'y too costly. If tests are carried out automatically under computer
control, data can be collected 24 hours a day for seven days a week, making
the testing process much more efficient and reducing costs and possible human
errors in testing.

The basic concept for this computer-controlled testing system derive
from the paradigm of testing human subjects in speech perception experiments.
In these experiments, human subjects are tested under real-time control of a
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computer that presents speech signals over headphones and collects the
subjects' responses to these stimuli. Speech signals are stored in digital
waveform files on a large disk and are retrieved on demand and converted to
analog form for presentation to subjects. Subjects respond by pressing
buttons on a computer-controlled response box, or by pressing keys on a
terminal keyboard. The concept is quite straightforward: The computer
controls the testing session by presenting speech signals and recording
responses.

This is the paradigm we chose to employ for testing speech recognition
systems. A computer controls the entire testing procedure, and a recognizer
serves as the experimental subject. The controller presents speech signals to
the recognizer and the recognizer generates a response which is sent back to
the controller. Carrying out this testing process automatically accomplishes
several objectives. First, the environment and testing conditions can be
carefully controlled. This makes it possible to systematically investigate a

number of factors that may have a significant impact on recognition
performaace. By storing speech in large digital databases, changing testing
conditions such as talker gender or effects of environmental noise only
requires specifing a different database without changing any other testing
conditions. Second, responses are collected by the computer thereby
eliminating possible human error and experimenter bias in data collection.
Moreover, this permits rapid analysis and re-analysis of data using a variety
of different scoring procedures. Third, by automating the testing procedure,
!t becomes easier to parametrically investigate changes in training protocols
or parameter settings that would ordinarily be too expensive in personnel
costs if carried out by human operators using the conventional approach.

There are several important capabilities that are needed to automate
testing of speech recognition systems. First, at some level, a description of
the functional operation of a recognizer is necessary. That is, the
controller must be able to initiate each function of the recognizer that is
needed to carry out testing. Second, the controller must be able to

communicate with the recognition system to convey commands and receive
responses. Third, the controller must be able to access databases of speech
and present these signals to the recognizer according to some
experimenter-defined testing protocol. Finally, the controller must maintain
complete descriptions of the testing procedure, errors encountered during
testing, and the recognition responses that are generated as data.

We have implemented these basic capabilities by dividing the control
system into two parts: (1) a virtual device controller and interface (VDC)
for speech recognition systems, and (2) a device dependent interface (DDI)

that is specifically programmed for each individual recognizer. The virtual
device controller and interface embodies a model of a generic speech
recognition system. This model includes several functions and parameters that
can be manipulated by a researcher. The training and testing protocol for

each experiment is described using a command language to program the generic
recognition model in the controller. The VDC communicates these commands to

the DDI which translates the generic recognizer commands into the specific
commands and syntax of the recognizer that is being tested. Thus, the DDI

serves as the communications host and translator for the recognition system
that is being tested.

Commands and data are passed between the VDC and the DDI using a

communications protocol to insure proper handshaking and the integrity of
information. In addition, the VDC coordinates the events of the testing

procedure and presents speech to the recognizer and stores data and errors in
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disk files along with a log of the communications between the VDC and DDI. We
call this system SPERTES (SPEech Recognition TEsting System).

Implementation of SPERTES

SPERTES instantiates the VDC and DDI as C programs running on a high
speed minicomputer and a microcomputer. A VAX-11/750 serves as the controller
presenting speech from a digital waveform database stored on RA-81 disks. The
speech is converted into analog form using a DSC-200 16-bit digital-to-analog
converter with a DSC-240 amplifier under the control of the VDC. An IBM-PC
serves as the physical host for a speech recognition system. Commands to the
recognizer are sent over an RS-232 serial line to the PC from the VAX.
Responses from the recognizer are sent from the PC back to the VAX over this
serial line.

The virtual device controller and interface has been implemented in C on
the VAX-11/750 under the VMS operating system, For each recognition system, a
new device dependent interface is written in C and it runs on the IBM-PC under
PC-DOS. Communications between the VAX and the PC take place over the serial
line at 9600 baud.

To test a recognition systr,m, the recognizer must first be physically
interfaced to the host IBM-PC, either over a serial line or in a bus slot.
Then a device dependent interface is written that translates generic
recognizer commands sent by the VDC into the format necessary to control the
functions of the specific recognizer. Also the DDI translates the responses
of the recognition system (e.g., error messages or recognition results) into
the generic format expected by the VDC. Thus, the DDI manages communications
between the PC and the recognizer, sending commands to the recognizer and
collecting responses. In addition, the DDI communicates with the VDC running
on the VAX, receiving commands and sending back responses.

Once a recognizer is interfaced to the host, and a DDI is developed and
tested, the recognizer can be controlled by command files read on the VAX by
the VDC software. A command file is written to control each testing session.
In general, there are three classes of commands that can be used in a command
file: (1) "set local" commands control some aspect of the VDC software, (2)

"relay" commands allow access to recognizer-specific commands that do not haw!
generic counterparts in the VDC, and (3) recognition commands control trainin-;
and testing.

The "set local" commands control the operation of the VDC and do nor
affect operation of the DDI or the recognition system. One function of these
commands is to specify the names of data files, log files, and error files
the VAX. Another function is to select which analog output line will be used
to present speech to the recognition device. The current configuration of th-
DSC-200 on the Speech Research Laboratory VAX includes four analog outptr
lines allowing up to four recognition tests to run concurrently. A "sut
local" command is used to initiate a debugging mode that presents th,
researcher with detailed information about the operation of the VDC. Also
using this command, it is possible to set a delay between VAX -to -PC

communications and speech output to accomodate differences in response time
for different recognizers. Finafl.y,"set local" can be used to change the
error limit which specifies the number of times a command will be tried after
an error is encountered.
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The "relay" commands permit direct access to the functions of a
recognizer that may not be part of the generic recognizer model, but may be
important to conducting a test, such as gain control or recognizer-specific
instructions or parameters. Another feature that may be invoked using "relay"
is separate indexing of templates in a vocabulary. Normally, each vocabulary
item is "enrolled" using a training token to create one template for each
vocabulary item. Subsequent tokens of each vocabulary item then "update" or
"retrain" the initial template creating a representation for each vocabulary
item that contains more information about the pattern of a word than is
created after enrollment on a single token. In some recognition systems, the
updated representation may be a single template that incorporates pattern
information from several tokens. On other systems, the updated representation
may actually be a cluster of individual templates that are created one for
each training pass and then are internally mapped onto a single vocabulary
item. The "relay" command that instantiates separate indexing of templates in
the DDI (called "overloading" in SPERTES), implements this latter form of
updating in the DDI software. With overloading, each repeated training pass
with a vocabulary item creates a new template in the recognition system that
is treated by the recognition system as a new vocabulary item rather than an
update of an old vocabulary item. These separate templates in the recognizer
are mapped in the DDI onto single vocabulary items and returned as such to the
VDC. Thus, separate indexing through the overloading feature causes the DDI
to maintain a table of template numbers for each vocabulary item so that it is
possible to train a recognizer on more than one token of a word and still have
access to the individual templates. Overloading is not used as part of the
normal performance measurement testing procedure, because it may penalize any
recognition system that optimizes its models or templates for vocabulary items
based on statistical properties of the vocabulary. However, overloading has
proved a useful tool for investigating the operation of updating algorithms.
By using overloading it is possible to determine the distribution of
recognition resnonses over the different tokens stored separately as
templates.

Finally, recognition commands control training, retraining or updating,
and recognition testing. Training refers to the initial "enrollment" of a
template or model in the recognizer foL a word. Retraining is used ior
recognizers that allow multiple training passes to "enrich" an initially
enrolled template or model. Recognition refers to the testing phase in which
speech is sent to the recognizer and responses are collected from it.

The flags and parameter settings for these commands indicate to the VDC
which words or groups of words are to be used in training or testing, and
which talkers and tokens are to be accessed from the speech database that is
on-line on disk. The parameter "full" accesses all the tokens of a particular
word for a given talker, while "random" selects one token at random, an?
"s#e#" uses the tokens in numerical order from the starting number "s#" to the
ending number "e#" (where the # stands for a token number). In addition,
vocabulary subsets are defined such as "620" for the Doddington and chalk
(1981) vocabulary, "digits" for the digit set, "alpha" for the alphabet,
"eset" for the E-set of the alphabet (i.e., B,D,G,P,T,C,Z,E,V). Also, any
word in the vocabulary can be accessed by reference to a symbol such as
"HELP." One form of the command allows the researcher to talk to the
recognizer instead of using the database. Finally, it is possible to specify
any valid waveform file name using full VMS pathname conventions for training,
retraining, or recognition.
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In order to perform a test of a recognition system, a command file is
written that describes the experimental protocol. This command file uses the
SPERTES commands to specify the names of files associated with the test, set
parameters for the recognition test, train the recognizer on specific
utterances, and finally present utterances for :ecognition and record
responses. Using the SPERTES command set, a large number of experiments are
possible. A recognition system can be trained and tested on the speech of one
talker at a time, or trained on one talker and tested on several talkers, or
any other combination of training and testing protocols using a stored
database of speech.

For each testing session, the VDC creates several different files as
output. A log file is created that contains a complete record of all commands
sent from the VDC to the DDI and all the responses back from the DDI, and also
includes all the local VDC actions. A second file is created containing any
error messages that were generated by the VDC or the DDI during a test. This
file can be used to determine if any problems occurred during a test and can
aid in the diagnosis of those problems. Finally, the VDC creates a data file
that contains all responses produced by the DDI from the recognition system
during recognition testing. One record is stored in this file for each
utterance presented for recognition. Each record of this file consists of the
word that was presented to the recognition system, the first candidate
returned by the system and its distance or similarity score, followed by any
other candidates generated during the recognition trial. Data files are
analyzed to determine substitution error rates, rejection error rates,
confusion matrices, and inter-vocabulary distances.

Discue'sion

In summary, we have developed a software system called SPERTES that
automatically controls the testing of speech recognition systems. SPERTES
consists of a virtual device controller that implements a generic model of a
speech recognition device and a device dependent interface that translates
messages and commands between the generic model and recognizer-specific
format. This automated testing system for speech recognition devices reduces
human error and bias in the measurement of recognition performance and allows
precise manipulation of signal and testing conditions. Moreover, the command
set used by SPERTES allows a great deal of flexibility in defining test
protocols and recognition experiments.

In addition, we have developed an explicit testing procedure that
provides directly comparable performance measures for different recognition
systems. Following a calibration procedure to determine the optimal signal
level for presenting speech, each recognition system is tested .n the TI-20
and alphabet vocabularies with one, three, and five training tokens. This
test provides information about the performance of systems that receive
minimal training and about the improvements in performance that can be
expected to occur for each system with increased training. Testing on an easy
vocabulary and difficult vocabulary should span a wide range of possible
performance levels and thus allow performance comparisons between systems as a
function of confusability of the vocabulary.

One important issue that arises in considering the measurement of
recognition performance concerns the ability to predict actual performance of
a specific recognition system in a particular application based on benchmark
laboratory tests. If laboratory results bear no relationship to recognition
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performance obtained in an application environment, then the utility of

benchmark testing is problematic. Indeed, there is some question as to
whether performance on benchmark tests carried out under controlled laboratory
conditions are predictive of performance of recognition systems under
application conditions (Pallett, 1985). However it should be remembered that

without data, any kind of prediction is impossible. In addition, recognition
systems are physical devices and the performance of these systems is not

arbitrary. Thus, it is quite unlikely that performance data obtained in
controlled laboratory tests will have no predictive validity at all. While it
is probably true that the best predictor of performance in a specific
application is a test that was carried out completely simulating all the

conditions of the application, the important issue is to determine precisely
how to predict performance in specific applications based on laboratory data.

Let us take an example. If the recognition vocabulary, application
environment, user population, and user interface are all held constant, the
major variable affecting performance will be differences among the recognition
systems (see Nusbaum & Pisoni, 1986). Of course, it is very unlikely that the
absolute level of recognition performance obtained in a benign laboratory
benchmark test will also be identical to performance obtained in any real
application under more severe field conditions. However, it is not always
necessary to predict the absolute performance of a recognizer in an

application, but only the relariTriformance of different systems for that

application. In other words, the primary issue is to predict which system
will perform best in an application, and not to determine exactly how accurate
recognition will be for each system in the application.

If the relative performance of different recognition systems were
invariant over conditions, direct extrapolation from benchmark tests to
relative performance in an application would be straightforward. But it is

unlikely that the rank ordering of systems based on performance will be
constant across all conditions. Therefore, the goal of laboratory testing

should be to provide not only a standard basis for comparing different
recognizers, but also to establish a range of performance for each recognition
system to permit comparisons of performance distributions. In future

research, it will be important to determine precisely how predictive

laboratory performance data are of applications performance and to develop
laboratory tests that are specifically designed for the purpose of prediction.
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