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ABSTRACT

The present paper suggests that multivariate techniques are

very important in educational research, and that one multivariate

technique, i.e., canonical correlation analysis, may be

particularly useful. The logic of canonical analysis is explained.

It is suggested that a backward variable elimination strategy can

make the method even more powerful, by yielding more parsimonious

results and greater power against Type II error. It is also

suggested that cross-validation procedures should be implemented

to augment interpretation. These analyses are illustrated using a

small heuristic data set.
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BACKWARD VARIABLE ELIMINATION CANONICAL CORRELATION

AND CANONICAL CROSS-VALIDATION

The knowledge explosion combined with rapid technological

advances in computer hardware and software have created both a need

and the means for asking questions that require multivariate data

analysis (Fish, 1988). Various statistical techniques available

for analysis of multivariate data include multivariate analysis of

variance (MANOVA), factor analysis, discriminant analysis, and

canonical correlation analysis. These analyses are appropriate for

use in studies involving more than one dependent variable because

only multivariate statistical procedures simultaneously consider

all the relationships among all the variables being investigated.

Multivariate techniques may be employed for purposes of detecting

treatment effects (MANOVA or discriminant analysis; cf. Maxwell,

in press), data reduction (factor analysis), and group

discrimination or classification of subjects (discriminant

analysis; Huberty & Barton, 1989; Huberty & Wisenbaker, in press).

However, perhaps the most powerful and potentially useful of the

multivariate designs is canonical correlation analysis, a technique

which analyzes complex relations of variable sets.

Canonical Correlation Analysis

Canonical correlation analysis is a statistical method that

examines the relation between two or more sets of variables. The

degree of relation, labeled the canonical correlation coefficient,

is determined by a correlation between scores on linear predictor

composite variables and scores on linear criterion composite
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variables. The discussion of how these composite scores are created

is beyond the scope of the current presentation, but the process

is described in readable detail by Eason, Daniel and Thompson,

(1990) and by Thompson (1984, 1988).

The canonical score composites maximize the correlation

between variable sets. Canonical correlation analysis is such a

powerful analytical technique because the method considers all the

relationships among all the variables and does not require that any

variables be converted to the nominal level of scale. The premise

that canonical analysis is powerful is supported in a study by

Chastain and Joe (1987). In a canonical correlation analysis

utilizing variables of intelligence, the researchers suggest that

their relatively strong relations imply that earlier findings

concerning intelligence have been "ignored or masked by previous

univariate methods" (p. 323).

The logic of canonical correlation analysis is similar to the

logic of the univariate technique of multiple regression. Cohen

(1968) notes that multiple regression is a general analytic

procedure encompassing all univariate procedures. Conversely,

Knapp (1978) suggests that a similar relationship exists between

canonical correlation analysis and virtually all univariate and

multivariate tests of significance. In multiple regression the

optimum linear combination of predictor variables to estimate a

criterion variable is derived. Similarly, in canonical correlation

analysis maximum linear relationships between sets of variables are

isolated.
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Canonical correlation analysis can be employed when at least

two predictor variables and two criterion variables are present.

The number of linear relationships obtained, i.e., canonical

functions, is equal to the number of variables in the smaller of

the two variable sets (Thompson, 1984). Canonical functions are

derived by the extraction of principal components from a matrix,

A, derived from the bivariate correlation matrix (R) involving all

the variables in the analysis (Thompson, 1984, p. 13).

The first canonical function explains the largest amount of

common variance across variable sets. Additional canonical

functions are orthogonal to (i.e., perfectly uncorrelated with)

previous functions, just as principal components are always

orthogonal when they are first extracted. By analyzing predictor

variables as a set and criterion variables as a set, the

interrelationships 6hared by the variables are fully considered.

Complex relations between the variable sets are accounted for in

determining the variance explained. A statistical method that

considers complex relations is important to social scientists,

since reality is complex, and it is important tc, use statistical

methods that mirror the reality about which the researcher wishes

to generalize.

Within canonical correlation analysis several types of

coefficients are computed which provide greater insight for the

researcher in interpretation of results. Two of the more prominent

coefficients are standardized function coefficients and canonical

structure coefficients. Standardized function coefficients are
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analogous to beta weights in multiple L-gression, or to factor

pattern coefficients in factor analysis. These are the weights used

to create the canonical composite scores actually correlated in the

analysis (Eason et al., 1990).

However, standardized function coefficients are affected by

multicollinearity, and can provide incomplete information as to a

variable's contribution to a given set of results (Thompson &

Borrello, 1985). The computation of a second coefficient, i.e.,

canonical structure coefficients, is necessary to fully explore the

explanatory power of a given variable. Canonical structure

coefficients are correlations between observed variables and the

synthetic or latent canonical score composites. By squaring a

structure coefficient the amount of variance a variable shares with

a function is indicated. Thus, the sum of the squared structure

coefficients for a variable across each function yields the amount

of total variance a variable contributes to the overall solution.

The variance a variable contributes to the overall solution

is labeled a communality coefficient (h2) and is important to the

conceptualization of backward variable elimination canonical

correlation analysis (Thompson, 1984), a method originating in the

work of Rim (1972). In the past researchers too frequently

concluded their analyses after interpreting the standardized

function coefficients but prior to investigating the canonical

structure coefficients (Thompson, 1988). Such a practice fails to

take into consideration the amount of variance explained by the

variables. When only function coefficients are consulted, a true
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picture of a variable's importance is unavailable (Thompson &

Borrello, 1985).

The purpose of the present paper is to describe an extension

of canonical correlation analysis which utilizes canonical

communality coefficients. The technique is called backward

variable elimination canonical correlation analysis (Thompson,

1982a). CANBAK (Thompson, 1982c), a computer program specifically

designed to implement this canonical analysis, was utilized to

provide the concrete heuristic example of the procedure.

Backward Variable Elimination Canonical Correlation Analysis

Backward variable elimination canonical correlation is a

technique that sequentially deletes variables with low communality

coefficients. A canonical communality coefficient is the sum of

squared structure coefficients for a variable across all canonical

functions. The communality coefficient represents the explanatory

power of a variable after all possible linear relations are

maximized. Since the variance explained by the linear combination

of variables is of primary importance to analytical findings,

variables contributing small amounts of variance to the results

offer relatively unimportant contributions to solutions. Such

variables can be eliminated in the interest of greater parsimony

and to conserve degrees of freedom so that statistical power

against Type II error is improved (Stevens, 1986; Thompson, 1982a).

The backward variable elimination procedure analyzes data in

the following manner. First, a full model canonical correlation

analysis involving all possible canonical functions is computed.
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Communality coefficients are consulted and the variable with the

lowest coefficient is deleted from the analysis, provided the

communality coefficients are not homogeneous. A second canonical

correlation analysis is conducted disregarding the discarded

variable. Following the analysis, communality coefficients are

once again consulted. The procedure of variable deletion is

complete when the communality coefficients are reasonably

homogeneous. Inference can be made that the variables remaining

in the analysis explain most of the variance in the overall

solution.

Heuristic Example of the Method

To illustrate the technique a hypothetical data set involving

a university/school study will be presented. The study involved

49 subjects participating in a project called "At Risk Kids." The

objectives of the project were to positively affect middle school

adolescents in two primary areas. Eight predictor variables

assessed pretreatment attitudes while the two criterion variables

assessed locus of control and reading aptitude. The computer

program, CANBAK, facilitates the variable elimination analysis by

automatically consulting the communality coefficients, deleting

variables when appropriate, and recomputing the canonical solution.

An additional feature of CANBAK is the computation of several

canonical coefficients usually obtained manually. CANBAK also

computes vari- -e adequacy, redundancy, pooled redundancy, and index

coefficients.
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The four quadrants of the bivariate correlation matrix (R) for

these data are presented in Table 1. The quadruple product matrix

(Thompson, 1984, p. 13) for the canonical analysis of these data

was derived from the following equation:

R 212' x R
2,1

x R x R
112

= A2X2

From the 10 x 10 correlation matrix presented in Table 1, the

analysis extracted two canonical functions. The extraction is

consistent with the indication that the number of functions

corresponds to the size of the smaller variable set, a function of

the fact that this set determines the rank of matrix A, the matrix

from which the functions are actually derived. The squared

canonical correlation for the first function was .90 (chi square

= 102.74, df = 16, p < .05); the squared canonical correlation

coefficient associated with the second function was .11 (chi square

= 4.9, di = 7, p > .05).

Following the canonical correlation analysis, the procedure

of deleting a variable with the lowest communality coefficient (h2)

was initiated. For the present analysis only members of the larger

variable set were considered for deletion; such a procedure is

appropriate if the smaller set is a true criterion set and one does

not wish to exclude 4 criterion variables from the analysis.

Table 2 indicates that at the first step in the analysis the second

predictor variable, Program, had the lowest communality coefficient

(.015). Thus, the variable was eliminated from further analysis.

At the second step of the analysis, as reported in Table 3,

two canonical functions were extracted from the reduced nine x nine
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correlation matrix. Deletion of one variable reduced the degrees

of freedom for the first function from 16 to 14. In studies with

larger variable sets, i.e., eight predictor variables and four

criterion variables, four degrees of freedom would be conserved

with deletion of one variable. Thus, the more variables there are

in each set, through a multiplicative, the greater will be the

conservation of degrees of freedom used in statistical significance

testing. Thompson (1982b) suggests, "The conservation of degrees

of freedom can be sizeable, and tends to reduce the likelihood of

Type II errors occurring as a function of variable set sizes" (p.

4). The squared canonical correlation for the first function in the

second step was .90 (chi square = 102.72, df = 14, < .05); the

squared canonical correlation associated with the second function

was .11 (chi square = 4.92, df = 6, p > .05). The analysis

indicated that the fifth predictor variable, High School Diploma,

had the smallest canonical communality coefficient (.22) and was

therefore deleted.

At the third step the correlation matrix was reduced to an

eight x eight matrix. The squared canonical correlations for the

functions were .90 (chi square 103.60, df = 12, P < .05) and .11

(chi square = 4.90. df = 5, P > .05), respectively. Table 4

indicates variable six, Self Esteem, had the smallest canonical

communality coefficient (.25) and was deleted. The analysis was

concluded as the remaining variables had relatively homogeneous

communality coefficients. Thus, the variables Program, High School

Diploma, and Self Esteem minimally contributed to the prediction
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of outcomes for these "At Risk Kids." Table 5 presents the final

solution in the canonical correlation analysis.

In summary, backward variable elimination canonical

correlation analysis yields parsimonious results thereby conserving

degrees of freedom and reducing the likelihood of a Type II error.

The procedure utilizes communality coefficients to eliminate

variables with relatively small explanatory power. CANBAK, a

computer program designed specifically for the analysis,

facilitates the computational process, although the same analysis

could be conducted with SPSS-X or SAS, albeit with somewhat more

difficulty.

Cross-Validation

Findings of a study can yield large effect sizes and

statistically significant coefficients but remain of little

importance to researchers, if results are not replicable. For

example, a prediction equation derived from one sample may not be

accurate in a different sample. Invariance or cross-validation

procedures can provide the researcher with an estimate of the

stability of results across samples (Fish, 1986).

Cross-validation, recommended as an appropriate invariance

procedure for canonical correlation analysis (Fish, 1986; Thompson,

1984), involves splitting a sample randomly into two subgroups

(usually of unequal size) and performing separate canonical

correlation analyses on each subgroup. In addition, new predictor

and criterion composite scores for one group are derived from

standardized function coefficients of the second group. Likewise,
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predictor and criterion composite scores for the second group are

derived from standardized function coefficients of the first group.

The new composite scores are correlated and compared for an

invariance estimate.

The invariance estimates obtained from the "At Risk Kids"

analysis indicated that the results were invariant and therefore

replicable. The squared canonical correlation coefficient for

group one was .89 as compared to the invariance check of a squared

canonical correlation coefficient of .78. For group two the

squared canonical correlation coefficient was .98 as compared to

the invariance check of a squared canonical coefficient of .90.

Only the replicability of the statistically significant canonical

function was cross-validated here, for illustrative purposes.

However, cross-validation procedures can be performed to establish

the invariance of the other functions,

Summary

The present paper has suggested that multivariate techniques

are very important in educational research, and that one

multivariate technique, i.e., canonical correlation analysis, may

be particularly useful. The logic of canonical analysis is

explained. It is suggested that a backward variable elimination

strategy can make the method e.'en more powerful, by yielding more

parsimonious results and greater power against Type II error. It

is also suggested that cross-validation procedures should be

implemented to augment interpretation. These analyses are

illustrated using a small heuristic data set.
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Table 1
Correlation Matrix

Camp 1.000 .162 .597 .556 .445 .395 .400 .241 -.167 .501
Program .162 1.000 .117 .108 .339 .554 .206 .207 .003 .112
Teacher .597 .117 1.000 .605 .665 .86 .451 .458 -.102 .538
School W .556 .108 .605 1.000 .529 .512 .506 .502 -.029 .937
High Sch .445 .339 .665 .529 1.000 .672 .680 .483 -.135 .469
HS Diplo .395 .554 .486 .512 .672 1.000 .467 .387 -.045 .441
College .400 .206 .451 .506 .680 .467 1.000 .593 -.244 .522
Self Est .241 .207 .458 .502 .483 .387 .593 1.000 -.012 .471

R11 R
1,2

R
2 R

2,2
Locus C -.167 .003 -.102 -,1-.029 -.135 -.045 -.244 -.012 1.000 -.142
Read Apt .501 .112 .538 .937 .469 .441 .522 .471 -.142 1.000

Table 2
Canonical Solution for Step One

Function I
F S SSQ

Function II
F S SSQ h2

Camp -.057 .514 .264 -.428 -.453 .206 .470
Program .071 .120 .014 .102 .022 .001 .015
Teacher .004 .561 .315 -.166 -.253 .064 .379
School Work 1.060 .994 .987 .582 .011 .000 .987
High School -.087 .484 .234 .067 -.360 .130 .364
HS Diploma -.080 .464 .216 .106 -.089 .008 .223
College .111 .528 .278 -1.138 -.687 .472 .750
Self Esteem -.028 .500 .250 .483 .015 .000 .250

Locus Control .108 -.035 .001 1.004 .999 .999 1.000
Read Aptitude 1.010 .994 .988 .035 -.107 .012 1.000

Note. F =canonical function coefficient; S = canonical
structure coefficient; SSQ = squared canonical structure
coefficient; 2'14= canonical communality coefficient.
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Table 3
Canonical Solution for Step Two

Function I
F S SSQ

Function II
F S SSQ h2

Camp -.047 .515 .265 -.416 -.452 .205 .470
Teacher -.012 .562 .316 -.190 -.251 .063 .379
School Work 1.044 .995 .990 .564 .016 .000 .990
High School -.078 .485 .235 .079 -.359 .129 .364
HS Diploma -.035 .465 .216 .172 -.087 .008 .224
College .105 .529 .280 -1.150 -.686 .471 .751
Self Esteem -.018 .501 .251 .500 .018 .000 .251

Locus Control .107 -.037 .001 1.005 .999 .999 1.000
Read Aptitude 1.010 .994 .989 .037 -.106 .011 1.000

Note. F = canonical function coefficient; S = canonical
structure coefficient; SSQ = squared canonical structure
coefficient; h2= canonical communality coefficient.

Table 4
Canonical Solution for Step Three

Function I
F S SSQ

Function II
F S SSQ h2

Camp -.050 .515 .265 -.407 -.458 .209 .475
Teacher -.010 .562 .316 -.205 -.255 .065 .381
School Work 1.037 .995 .991 .6U1 .013 .000 .991
High School -.099 .485 .235 .185 -.363 .132 .367
College .107 .529 .280 -1.172 -.693 .481 .760
Self Esteem -.019 .501 .251 .512 .016 .000 .251

Locus Control .108 -.036 .001 1.004 .999 .999 1.000
Read Aptitude 1.010 .994 .989 .036 -.107 .011 1.000

Note. F = canonical function coefficient; S = canonical
structure coefficient; SSQ = squared canonical structure
coefficient; h2= canonical cimmunality coefficient.

17

lb



Table 5
Canonical Solution for Final Step

Function I
F S SSQ

Function II
F S SSQ h2

Camp -.046 .515 .265 -.561 -.498 .248 .513
Teacher -.015 .562 .316 -.085 -.279 .078 .394
School Work 1.032 .996 .991 .787 .007 .000 .991
High School -.098 .484 .235 .182 -.396 .157 .392
College. o098 .528 .279 -1.013 -.753 .568 .847

Locus Control .110 -.034 .001 1.004 .999 .999 1.000
Read Aptitude 1.010 .994 .988 .034 -.109 .012 1.000

Note. F = canonical function coefficient; S = canonical
structure coefficient; SSQ = squared canonical structure
coefficient; h2= canonical communality coefficient.
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