
DOCUMENT RESUME

ED 316 563
TM 014 513

AUTHOR Flournoy, Nancy
TITLE Adaptive Sal6)1ing Designs.
PUB DATE 89
NOTE 9p.
PUB TYPE Reports - Evaluative/Feasibility (142)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Algorithms; Evaluation Methods; Mathematical Models;

*Research Design; *Sampling! Statistical Analysis
IDENTIFIERS Adaptive Allocation; Clinical Trials; *Sequential

Sampling Procedures; *Urn Models

ABSTRACT

Designs for sequential sampling procedures that adapt
to cumulative information are discussed. A familiar illustration is
the play-the-winner rule in which there are two tr'atments; after a
random start, the same treatment is continued as long as each
successive subject registers a success. When .failure occurs, the
other treatment is used until failure occurs. Sequential sampling
procedures are discussed in relation to clinical trials, but there
are many applications of such procedures in statistics. Models are
presented for the adaptive allocation of dose levels to subjects
arriving sequentially. Natural multivariate design spaces occurring
in radiotherapy given at the Fred Hutchinson Cancer Research Center
motivate this work. The allocation rules proposed adapt to
accumulating failure data, possibly censored, and thus are governed
by an underlying, unknown, multivariate failure distribution in the
limit. An urn model is used to effect the a0aptation of the
allocation scheme. A recursive algorithm for updating the urn
distribution is derived. The Bernoulli environment and urn models on
ordinal sample spaces in a random environment are also considered.
(SLD)

***********************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.

**************A*******************************************? ,***********



U.S. DEPARTMENT OF EDUCATION
Office of Educe lional Research and Improvement

EDUCATIONAL RrSOURCES INFORMATION
CENTER (ERIC)

ortnis document has been reproduced as
received from the pson or organization
originating it

O Minor changes have been made lo Improve
reproduction quality

fe Points of view or opinions Slated in this docu
mint do not nece'osanly represent official
OERI position or pJlicy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Eibpiv e FiounilOY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

ADAPTIVE SAMPLING DESIGNS

Nancy Flournoy
The American University



ADAPTIVE SAMPLING DESIGNS

Nancy Flournoy, The American University
Nancy Flournoy, Clark Hall #211, 4400 Massachusetts Ave. N.W., Washington D.C. 20016.8050

KEY WORDS: dose response surface, failure
models, random walks, play-the-winner rules,
urn models, random environment

ABSTRACT

Models are presented for the adaptive
allocation of dose levels to subjects arriving
sequentially. Natural multivariate design spaces
occurring in radio-therapy given at the Fred
Hutchinson Cancer Research Center motivate
this work. The allocation rules proposed adapt
to accumulating failure data, possibly censored,
and thus are governed by an underlying,
unknown, multivariate failure distribution in the
limit. An urn model is used to effect the
addptacion of the allocation sch -me. A recursive
algorithm for updating the urn distribution is
derived.

1. BACKGROUND

This paper is concerned with designs for
sequential sampling procedures that adapt co
cumulative information. A familiar illustration
is the play-the-winner rule in which there are
two treatments; after a random start, the same
treatment is continued as long as each successive
subject registers a success. When a failure
occurs, the other treatment is used until another
failure is registered. This allocation strategy is
continued until a predetermined stopping criter-
ion is met, at which time the decision as to
which treatment is "better" is made by
probabilistic criteria. This design, and many
variants thereof, have been the source of
numerous mathematical analyses such as
described in Chow, Robbins and Siegmund
(1971). Sequential analysis has become a large
subfield in statistics and we briefly sketch the
further development of sequential methods as it
has motivated this work.

Herein, the term subject refers to a generic
experimental unit. Exchanging the term subject
to component or cells would connote industrial
or laboratory applications, respectively. It is
important to note that the designs depend on
the spatial and temporal features of the measure-
ments be;eg observed on each experimental unit.

The designs considered will be especially useful
when the experimental units are expensive.

Sequential sampli.ig procedures were
developed during World War II to analyze
observations taken in sequence. This was
particularly suitable for irl'ustrial inspections in
which measurements can be taken sequentially
from objects arriving on conveyor belts. These
early developments assume the outcome measure-
ment is taken on each subject before another
subject arrives. Armitage (1960) presents a
review of sequential clinical experiments. Hoel,
Sobel and Weiss (1975) survey adaptive
sampling methods for clinical trials and report
that, to the best of their knowledge at that time,
no sequential methods were being used in clinical
experiments. Two major barriers to the applica-
tion of sequential methods to clinical studies at
that time were that most clinical results are not
observed in the same sequence as subjects are
treated, and that observations may be truncated
(censored).

Two theoretical thrusts have led to the
widespread use of sequential analytic methods
when observations are truncated. First, the
development of nonsequential methods for
truncated observations had to precede the
development of sequential designs for such
observations. Statistics comparing two treat-
ments were first developed by Gehan (1965) and
Mantel (1967), and extended, by Breslow (1970)
to accommodate k treatments. By the time the
two papers by Peto, Pike, Armitage, Breslow,
Cox, Howard, Mantel, McPherson, Peto, and
Smith (1976, 1977) codified the now classical
design for clinical trials, a fixed two point
sampling space already was rapidly becoming a
design standard when failure distributions were
positive for years after a subjects arrives and is
treated. This standard two point sampling
space reflected the forefront of the existing
statistical tests permitting truncated realizations
of the failure process. From 1975 to 1986, we
designed and conducted dozens of such
experiments at the Fred Hutchinson Cancer
Research Center and other medical. institutions
did likewise.

The value of sequential decision rules for the
treatment of patients was apparent, which led to



a major research thrust that centered around the
development of sequential tests for two point
sampling spaces. Because of logistic difficulties
in the retrieval and management of data derived
from monitoring subjects to obtain failure times,
group sequential approaches became practical in
many applications where fully sequential designs
were not. Therefore, this research thrust focused
on the development of group sequential methods
(see Pocock (1977), Harrington, Flemming, and
Green (1982), Whitehead (1983) and Fleming,
Tlarrington, and O'Brien (1984)). An adaptive
multistage rule was proposed by Tsutakawa
(1972) for observations that are logistically
distributed. More recently, increased attention
is being directed at multistage procedures. For
example, see Hall (1981), Cohen and Sackrowitz
(1984), Witmer (1986), Clayton and Witmer
(1988) and Lorden (1988).

About the time that sequential methods for
comparing two truncated failure processes were
being developed, attention was focused on
studies with more that two treatments. Wamp-
ler, Carter, and Williams (1978) and Stablein,
Carter, and Wampler (1980) studied exper-
imental designs for estimating parameters from
truncated sample failure processes on multidi-
mensional sample spaces. But these have not
been extended to models dealing wit's the
sequential arrival of subjects. Flournoy (1486)
proposed combining group sequential arrival
models with a sequential stopping rule where
multiple treatments could be ranked on an
ordinal scale, and experimental designs based on
this model are now being applied at the Fred
Hutchinson Cancer Research Center. These
models contain a mix of theoretical and heuristic
considerations, including aspects of the se-
quential allocation rules proposed by Dixon
(1965) and Wetherill (1966) with the two-stage
Bayesian designs developed by Tsutakawa
(1972). The need to formalize the key objectives
of these applications motivate this paper.

The sampling designs described are directed
at the problem of estimating the relative effects
of treatment on the underlying failure distri-
bution. They are based on a modification and
extension of POlyapEggenberger urn models.
This idea arose as an extension of the play-the-
winner rule by Zelen (1969), from a design for
an outcome that has a Bernoulli distribution, to
one in which the outcome is distributed as a.
general time varying failure process In these
models, a treatment decision for an a. riving sub-

ject must be made before the outcome of the
previous trial is observed. Zelen described how
urn models could be used to decouple arrival and
failure sequences. Wei (1979, 1988) characteriz-
ed this model mathematically and developed sta-
tistical tests based on it.

In Section 2, we describe an extended Polya-
Eggenberger urn model with a generalized
sample space in the environment of a failure
process. In Section 3, we exemplify this
generalized urn model by assuming the failure
process has a conditional Bernoulli distribution
and, in Section 4, a specific ref.' acement strategy
is incorporated into the model. Finally, in
Section 5, a recursive algorithm for the evolving
urn distribution is developed in terms of the
observed failures and the replacement algorithm.

2. URN MODELS ON ORDINAL SAMPLE SPACES
IN A RANDOM ENVIRONMENT
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The class of POlya-Eggenberger urn models
was designed to model potential contagion (for a
general description, see Johnson and Kotz
(1977)). A ball is taken from an urn with b
black and r red balls, its color is noted, and that
ball plus s b 3 of the same color are returned to
the urn. e that Polya-Eggenberger urn
models fors.. a general class in which balls are
distinguished by a categorical feature, such as
color. Hill, Lane and Sudderth (1980) general-
ized the Polya-Eggenberger urn models,
retaining the categorical labeling of balls, while
studying the asymptotic properties of several sto-
chastic replacement strategies. Chen and Starr
(1980) studied optimal stopping when drawing
balls with ordinal labels from an urn, but their
definition of 'optimal' reflects a different goal
from the one described here.

We extend the Polya-Eggenberger models in
two central ways: we assume (1) a random
process governs not only the dray ing of balls,
but their replacement as well, and (2) balls are
categorized according to an ordinal attribute
that maps to a parameter in the distribution
governing the replacement of balls. The first
feature places the urn ,nodel in a 'random
environment'; the second links the drawing and
replacement distributions by means of a bivari-
ate time series so that the drawing distribution
may adapt to the characteristics of the
replacement distribution. The replacement
strategy is specified as a mapping that is a
function of the experimental resulta. This map



links the urn distribution to the failure distri-
bution.

Consider a sequence of trials, in each of
which a subject receives a treatment that
involves a particular level or dose. The level
that will be most effective is unknown, and it
may be that a single optimal treatment level
does not exist. Instead, it is expected that
efficacy follows a probability distribution over
the treatment space. Indeed, the failure density
may well be composed of a mixture in the sense
that one failure process may predominate if the
treatment level is too low and another may
predominate if the treatment level is too high.
If a treatment level is too low, then we want to
increase the level for subsequent subjects. Also,
the treatment may be toxic or expensive, so we
want to decrease the level for subsequent sub-
jects if it is higher than necessary.

3. SAMPLING FROM AN ORDINAL URN
PROCESS

For each subject, a ball is drawn that
determines the treatment level. We construct a
sampling protocol that adapts to the distribution
of the minimum effective treatment level. This
is accomplished by letting the unknown random
failure process(ts) that. governs the outcome of
treatment also govern the replacement of balls in
the urn.

Consider an urn with balls labeled j=1, ,

J (J large) where the label determines the treat-
ment level. The number of balls in the urn at
each level is a randon. variable that changes as
outcomes are observed. Let flic=(flki,
be the random vector whose j-th element, pki, is
the number of balls at level j just prior to the
time that the k-th ball is drawn. Let fik assume
vector values b, k with elements

bki e {01 1, 2, Bk).

Then P(iik = k ) denotes the urn distribution
upon the arrival of the k-th subject. The initial
urn distribution and the total starting number of
balls in the urn are fixed, that is

P{QO =120: jE1 b0j= 130} = 1.

We restrict this analysis to the case when Ejbki=
B for all k which implies that the k-th ball
drawn must be replaced before the (k+1)st draw.

This means that failures are observed in the
same sequence as subjects arrive for treatment
assignments. By permitting Bk to vary we
would accommodate more general failure distri-
butions than the one being studied.

The urn distribution depends on the density
governing the draw of the balls and the replace-
ment. The drawing of balls conditional on the
urn distribution as each subject arrives has a
multinomial distribution. This portion of the
model remains constant across the entire general
class of models we discuss while the algorithms
for replacing balls and the failure distributions
will vary.

Let the balls be drawn at random and
consider a specific urn distribution 1,.)k upon the
arrival of the k-th subject. Let 3Sk EE (Xkl,
Xk(J .1)) be ja random vector with elements Xki.
Also let E

1
1,x . = 1 where

1

-1XkJ E.' 1 EJ i=iXki.

Let Xki=1 if a j-level ball is drawn upon the
arrival of the k-th subject and Xki = 0 for all
i # j for j=1, ..., J. Let pk {P beia,
a vector with elements

pki bki/B, j=1,

where E!
1 I

= 1 for all k.
Then conditional on the urn distribution

13k=12k, )Sk has a multinomial distribution with
parameter Pk. The event that a ball labeled
with the j-th treatment level is chosen is
{Xi = 1}. This event is equivalent to the vector
valued vrent

{Xk= = 1 & xki = 0, V i j, = 1, ..., J}.

It follows that Xi is conditionally distributed as
a Bernoulli with parameter pki and the
conditional probability of the k-th ball being
drawn having label j is written as:

5

P{Xki = 1 I pk} = pki . (1)

If 2k is the (1xJ) vector tabulating the
number of balls at each level in the urn
immediately after the k-th draw, and before any
additional balls are placed in the urn, then

)2k k* (2)



4. THE BERNOULLI ENVIRONMENT

The law governing the drawing of balls from
the urn upon arrival of the (k4-1)st subject not
only depends on the history of the experiment
through tie urn's distribution at the k-th
arrival, but also on realizations of the failure
process during this inter-arrival time. Let Uk
denote the random failure process for the k-th
subject. If the failure process Uk is a function of
time since arrival (time on trial), then naturally
the replacement operator also would be a
function of time since arrival. To define a speci-
fic urn process in the environment of a random
failure process, select the failure distribution and
the replacement operator.

At this stage of our development, we
consider a simple failure process:

11 if the k-th outcome is a failureUk_
0 otherwise.

Als' assume that the subjects k=1, 2, ... are
homogeneous; and that the processes
determining the subjects' arrival times are
independent of each other and independent of
the failure process. The outcome Uk is not
observed unconditionally, but only conditional
given a treatment level j. Our concern is with
the relationship between the conditional failure
probabilities as the treatment level varies. Let

P{Uk = 1 I )Ck: Xki=1 }

denote the probabilities of failure given
treatment level j and let

P{Uk = 0 I ZCk: ki=1 ) Es: 1-79

j= 1, J and k=1, 2,

Conditional on the k-th draw, the failure process
Uk has a Bernoulli distribution:

P{Uk = Uk ZCk: Xid=1 ) = riuk ask, (3)

j= 1, J and k=1, 2, ... ,

where we write_i = 1 z.
From equation (3), it is clear that once the

treatmelt level is determined by the draw 15k,
the failue process Uk has no further dependence
on the uro distribution or on its prior evolution.
When equations (1) and (3) are applied to the

joint probability mass function of the treatment
and outcome for subject k conditional on the urn
distribution fik, the joint probability factors
into two terms, only one of which depends on
the urn distribution: That is, when {Xki=1}, we
have

P{Uk = uk, ..Ck = pk) (4)

= P {Uk = uk I /ck: Xki=1 } P{Xki = 1 I ek}

= Tr.rk

Let yki be the number of failures among the
first k subjects treated at the j-th dose level and
nki the number of trials at the j-th dose level.
Then

yki = E ui xii and nit; = E x;;, (5)
i=i `' i=i

j =

The difference iiki yki is the number of
successes among the first lc trials. The condition-
al distribution of yki given nt_J. is Binomia'

K (nkr). Furthermore, the k-th subject's marginal
failure density, conditional on igk is

PlUk = uk I ek = pkB),
7; 7j "

Let (It %k) be a (k x (J 4- 1)) matrix in
which the m-th row is (Um, )..cm). Then the
total accumulation of random variables through
the k-th trial is cLntained in (cilk,
Analogously, let be the (k x (J 1)) matrix of
observations accumulated through the k-th trial:
That is, the m-th row of (u, Ek) is (um, xm) for
m = 1, k.

Then using Equation (4), the density of
% ) conditional on the evolving urn distribu-

tion parameters {p1, ...I Pk} factors into a
product of densities:

PINkt sk) = (uk' ei, ek}

= 1-1 P{Um = I X..} P{Xm = 3sm I pm}.
m=1

Note that only the second term in the product
depends on the history of the urn distribution.



5. AN EXEMPLARY REPLACEMENT
STRATEGY

For an initial replacement strategy, let
Bk=B for all k and define the replacement
operator to restrict the level on the replacement
ball to be adjacent to the level on the ball
drawn. If the j-th II is drawn upon the arrival
of the k-th subject, then one such strategy is
defined by the following recursive formula:

b(k+i)j = bit; + (xk(j.i)Uk Xko+i)rik), (6)

j=1, 3,

where the subscripts are taken mod(J) so that

b(k+1), = bit (xjuk xiik)

b(k+i)j = + (x uk + x1rIk).

The cyclic behavior is adopted in order to make
the transformation one to one. In the applica-
tions motivating this work, the number and
range of treatment levels is sufficiently large that
the replacement process should reach the
boundaries with null probability. In other
words, the treatment will be 'successful' at the
highest levels, J-1 and J, and may well be far
above the minimally successful level with severe
toxicities. Similarly, at the lowest levels the
treatment is known to be ineffective (the lowest
level may be no treatment at all). If these condi-
tions hold, the replacement process will never
actually cycle.

The strategy expressed in (6) is just one of a
wide class of interesting alternative replacement
strategies, ,ut it's simplicity is useful to
illustrate general class of adaptive models
While permi,ki ig a number of their characteris-
tics to be developed. Other strategies will be
needed for varying underlying shapes of the
dose-response surface. This strategy has the
following interpretation: If U=1 there has been
a failure and consequently a ball labeled with
the next higher level is added to the urn,
whereas if U=0, a ball marked with th'. next
lower level is added to the urn.

We now extend (6) to a matrix repre-
sentation. Let Rk II(uk) be the JxJ matrix
operating the replacement strategy. If the
failure process was more general than the
Bernoulli, Rk would be a function the multiple

and

outcomes under observation at the time of the k-
th arrival, and thus a function of both the
failure times and the interarrival times.

Let eirc(ci, cj) denote a circulant
matrix:

C1 C2 Cj

Circ(ci, cj) 1
[c c c 1

e2 ei

In the example described by (6), the replacement
operator is the circulant matrix

Rk E- Circ(0, u, 0, ..., 0,

Therefore the change in the distribution of balls
in the urn induced by the k-th subject can be
written as

12k+i 12k = ISk(Rk I), (7)

where subtracting the identity matrix accounts
for the influence of the draw from the urn as
given in (2).

6. ADAPTING TILE URN PROCESS

To find the distribution of the urn as it
evolves, we first decompose the replacement
operator. Then we transform the joint density
of the accumulating dra-vs and the experimen Lai
results to a density of partial sums.
Conditioning In one of the partial sums, we
derive the urn distribution.

Define JxJ dimensional circulant matrix
P = Circ(0, ..., 0, 1), for which

P-1 = PT = Circ(0, 1, 0, ..., 0),

where P-1 is the inverse and PT is the transpose
of P. Note that P operating on )5 shifts the
elements in IS to the next higher dose level,
whereas Pr shifts the elements in x to the next
lower dose level. Let Rk = rikP ukPT. So
using the difference equation (7), the urn distri-
bution in (6) can be expressed in terms of the
partial sums defined in (5):

k
4+1 = bi )Si

1=1

= 121 + Ok(1) Yk(PT P).

(8)



Thus we have derived an general algorithm
by which the urn distribution can be updated.
When the urn distribution reaches a steady
state, the influence of the initial urn distribution
will be negligible and it will reflect the failure
distribution. A more precise characterization of
this evolving reflection is currently under study.
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