
DOCUMENT RESUME

ED 314 502 TM 014 434

AUTHOR Adema, Jos J.
TITLE Implementations of the Branch-and-Bound Method for

Test Construction Problems. Project Psychometric
Aspects of Item Banking No. 46. Research Report
89-6.

INSTITUTION Twente Univ., Enschede (Netherlands). Dept. of
Education.

PUB DATE Nov 89
NOTE 45p.

AVAILABLE FROM Bibliotheek, Department of Education, University of
Twente, P.O. Box 217, 7500 AE Enschede, The
Netherlands.

PUB TYPE Reports - Evaluative/Feasibility (142)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *Achievement Tests; *Computer Assisted Testing;

Computer Software; *Item Banks; Item Response Theory;
*Mathematical Models; Search Strategies; *Test
Construction; Test Items

IDENTIFIERS *Branch and Bouna Method; *Maximin Model

ABSTRACT

Item banks, large sets of test items, can be used for
the construction of achievement tests. Mathematical programming
models have been proposed for the selection of items from an item
bank for a test. These models makr' automated test construction
possible. However, to find an optimal or even an approximate optimal
solution to a test construction model can be time consuming. This
paper shows how test construction models, and in particular the
Maximin Model, are solvable by the program MPSX/370 V2. This program
offers the user several implementations of the branch-and-bound
method, which can be used for solving test construction models.
Several implementations are compared. The results show that test
construction models are solvable in a practical amount of time if the
user applies the options offered by the program in an intelligent
way. An appendix describes the Extended Control Language (ECL)
compute). program. Five data tables and two figures are included.
(Author/SLD)

****1:***A*****.:************A*1.**1:************************************Xt
* Reprod'lctions supplied by EORS are the best that can be made
* from the original document.
*************************t*g***

Implementations of the
Branch-and-Bound method
for Test Construction Problems

U.S. DEPARTMENT OF EDUCATION
Orke of EducsIonai Research and trnprovemehr

EDUCATIONAL RESOURCES INFORMATION
CENTER IERIC)

T/tihs document has Deer reproduced as
received hors the person or organza! or
oripnating $1

r MOO, changes have been mnde to improve
reproduction cluaNti

Po.nts of ...ewer 0 pmCeS staIed,n tns dot u
men(do not necessawy represent otraI
OE RI DOS' On or pp. cy

0
Jos J. Adema

"PERMISSION TO REPRODUCE THIS
MATERIAL IT'S BEEN GRANTED BY

1 Mg.i. i 55EA)

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Otepcj tt rent of

, EDUCATION.. ..
. . .

Division of Educat(onaI Measurement
and Data Analys s

2

Research
R-port

89-6

University e Twente

I

Project Psychometric Aspects of Item Banking No.46

Colofon:
Typing: L.A.M. Bosch-Padb(=,rg
Cover design: Audiovisuele Sectie TOLAB Toegepaste

Onderwijskunde
Printed by: Centrale Reproductie-afdeling

J

e-,,-.111'

Implementations of the Branch-and-Bound method

for Test Construction Problems

Jos J. Adema

Implementations of the branch-and-bound method for test
construction prohlems , Jos J. Adema - Enschede : University
of Twente, Department of Education, November, 1989. - 39
pages

5

Branch-And-Bound

1

Abstract

Item banks, large sets of test items, can be used for the

construction of achievement tests. Mathematical programming

models have been proposed for the selection of items from an

item bank for a test. These models make automated test

construction possible. However, to find an optimal or even an

approximate optimal solution to a test construction model can

be time consuming. Here, it is shown how test construction

models and in particular the Maximin Model are solvable by

the program MPSX/370 V2. This program offers the user several

implementations of the branch-and-bound method, which can be

used for solving test construction models. Several

implementations are compared. The results show that tes.

construction models are solvable in a practical amount of

time if the user applies the options offered by the program

in an intelligent way.

Keywords: Test Construction; Item Banking; Branch-And-Bound.

Branch-And-Bound

2

Implementations of the Branch-and-Bound method

for Test Construction Problems

In this paper it is assumed that an item bank is available.

The items of the bank are supposed to be calibrated under an

item response model and some characteristics of the items

such as format and content are supposed to be known. One of

the applications of such an item bank is the selection of

items for an in some sense optimal test, for instance,

optimal with respect to its information function.

An example of an item response model for binary scored

responses is the 3-parameter model (Birnbaum, 1968). In this

model the probability, Pi(0), that an examinee with ability 0

answers item i correctly is given by the formula

1-ci
?ice) = ci +

1 + exp(-ai(0 -bi))

where ai, bi and ci are the discrimination, difficulty, and

guessing parameter of item i. The information function of

item i is represented by

'i(e)
a. 2 (1 -ci)

(ci+exp(ai(0-bi)))(1+exp(-ai(0-bi)))2

Another popular item response model is the Rasch model

(Rascn, 1960). In the Rasch model there is no guessing

parameter (ci = 0) and the item discrimination parameters are

Branch-And-Bound

3

equal. For a test with n stems the test information function

is found by addition of the item information functions:

n
I(0) = Z Ii(0).

i =1

The test information for an unbiased estimator of ability is

the reciprocal of the (asymptotic) sampling variance of the

estimator. Therefore, the higher the information function

value, the better the test measures at a given ability level.

This feature will be used in the construction of tests. A

more detailed description of item response models and

information functions is found in the psychometric literature

(e.g. Lord, 1980; Hambleton & Swaminathan, 1985).

The manual construction of tests from an item bank is

almost practically impossible, because the number of possible

tests is very large. Therefore, linear programming models

(e.g. Theunissen, 1985; van der Linden & Boekkooi-Timminga,

1989; Adema & van der Linden, 1989) are proposed which

provide the test constructor with a computerized method for

designing optimal tests.

Linear programming (LP) is an optimization method

applicable for the solution of problems in which the

objective function and the constraints appear as linear

functions of the decision variables (Rao, 1985). In the LP

models for test construction all cr almost all decision

variables are of the 0-1 type. It is well known that in

general models with integer variables are hard to solve. This

8

Branch-And-Bound

4

paper is addressed to the problem of solving test

construction models, in particular the Maximin Model as

proposed by van der Linden and Boekkooi-Timminga (1989).

In the following a short outline of the Maximin Model is

given. Define the decision variables xi as:

xi =

where I

0

1

is

&tem i not in the test

item 5 in the test,

the number of items in the item bank. The

information function of the test to be constructed is only

considered at the ability levels Ok, k = 1, ..., K. The test

constructor can specify the required precision by choosing

the number and spacing of the ability levels bk. Let Ii(Ok),

i = 1, I be the information of item i at ability level

Ok. The relative amount of information required at ability

level 0k is specified by rk. The vector (rk} constitutes a

target for the test information function. Let y be a decision

variable such that (rly, rKy) is a series of lower

bounds to the information function of the test to be

constructed. The idea of the Maximin Model is to maximize y,

which implies that the lower bounds are maximized (maximin).

If n is the number of items to be selected for the test, then

the Maximin Model can be written as follows:

(1) Maximize y,

9

subject to

I

(2) E Ii(Ok)xi - rky 0,

i=1

I

(3) E xi = n,
i=1

(4) Ax = b,

(5) xi e (0,1),

9ranch-And-Bound

5

k = 1, 2,...., K,

i = 1, 2,, I,

where x is (x1,x2,...,xi)T, A is a mxI matrix, and b is a mxl

vector. Constraints (2) considers the lower bounds to the

test information function. Constraint (3) assLres that the

number of items in the test is equal to n. The constraints in

(4) are added as a general provision to deal with practical

constraints, for instance, on test composition,

administration time, and the like; for examples, see Adema

and van der Linden (1989).

The purpose of this paper is to show how the Maximin

Model can be solved by the computer program MPSX/370 V2.

MPSX/370 V2 is an IBM licensed program for the handling of

linear and mixed integer linear programming problems (LP

problems with in'..eger and continuous variables). The program

offers the user a number of options for controlling the

optimization process. The user is also provided with

algoritmic tools which enable the experienced user to build

his/her own heuristics and algorithms. A popular method for

10

Branch-And-Bound

6

solving mixed integer LP problems is the branch-and-bound

(BAB) method. Several implementations of the °.B method are

available in MPSX/370 V2, which gives the user the

opportunity to compare these implementations for test

construction models. Several studies describing comparisons

of implementations (strategies) in a more general perspective

can be found in the mathematical programming literature (e.g.

Breu & Burdet, 1974; Benichou et al., 1971; Benichou,

Gauthier, Hentges & Ribiere, 1977; Crowder, Johnson &

Padberg, 1983; Ibaraki, 1987). The importance of studies like

these is the large amount of CPU-time that can 1e saved by an

effective implementation of the BAB method. In our case, fast

solution methods are needed, for instance, to enable the test

constructor to construct a test interactively.

In the next section a general outline of the branch-and-

bound method is given. More details about practical

implementations of the BAB method are given farther on in the

paper.

Branch-and-Bound for 0-1 Linear Programming

In this section the branch-and-bound method as described by

Papadimitriou and Steiglitz (1982, pp.433-438) is briefly

reviewed for the case that the integer variables are of the

0-1 type. Al_ the ideas to be pLeaented carry over unchanged

to the mixed 0-1 linear programming problem. Generally, a 0-1

linear programming (0-1 LP) problem can be written as:

1

Problem 0: Max. z = cTx = c(x),

subject to

Ax 5 b,

xi e (0,1),

Branch-And-Bound

7

i = 1,...., I,

where cT = (ci, ..., CI) is the vector of cost coefficients.

The branch-and-bound method starts wi...11 the computation of

the optimal solution x0 to the LP relaxation, i.e., Problem 0

with 0 5 xi 5 1, i = 1, ..., I instead of xi e (0,1). This

computation is done by the simplex method, a well known

method for scaring LP problems. The objective function value

zo = c(x0) is an upper bound on the optimal objective

function value z* = c(x*), where x* is the optimal solution

to the 0-1 LP problem. If x° is a 0-1 solution, then x* = x0

and the 0-1 LP problem is solved., If x0 is not a 0-1

solutic, then two subproblems are created. Suppose that, for

instance, decision variable xi in x0 is not equal to 0 or 1.

Then the two subproblems are as follows:

Problem 1: Max. z = cTx = c(x),

subject to

Ax 5 b,

xi e (0,1),

xi = 0,

12

i = 1,...., I,

Problem 2: Max. z = cTx = c(x),

subject to

Ax 5 b,

xi e {0,1),

xj = 1.

Branch-And-Bound

8

i = 1,...., I,

The variable xj is called the branching variable.

Both subproblems are solved by the simplex method. Then,

one of the subproblems, say Problem 1, is chosen for

branching. Several choice criteria are given in one of the

forthcoming sections. Again a fractional decision variable,

say xk, in xl is chosen and the Problems 3 and 4 are created

by adding the constraint xk = 0 and xk = 1 to Problem 1. This

process can be continued such th.t a tree like in Figure 1 is

created.

Insert Figure 1 about here

The root of the tree is formed by the LP relaxation and the

children of a node are formed b) setting a fractional

variable at its lower or upper bound CD or 1).

The branching process cannot conti-le indefinitely,

because the number of variables is bounded. This implies that

an optimal solution to the original 3-1 LP problem will

always be found. Branching from a node is not needed in the

following cases:

Branch-And-Bound

9

1) The LP solution corresponding to the node is a 0-1

solution. Branching from this node is not needed, because

adding constraints will give le's optimal solutions. If the

objective function value of this 0-1 solution is better than

the objective function value (zm) of the best 0-1 solution

obtained so far (incumbent), then the solution becomes the

incumbent and zm is now the objective function value of the

new incumbent. If no 0-1 solution is known when the standard

BAB method is started then the objective function value of

the incumbent is initialized by zm = -00.

2) There is no feasible solution for the LP problem

corresponding to the node.

3) The objective function value, say zk = c(xk) of the node

is smaller than or equal to zm. This implies that a solution

x that would be obtained as a descendant vi xk would have

objective function value c(x):

c(x) 5 zk 5 zm.

If there is no leaf left to branch on, the method stops and

the ptimal solution to the 0-1 LP problem is the incumbent

if one exists.

The next two sections address a number of

implementations of the BAB method.

Branch-And-Bound

10

Limiting the search

The BAB me-hod as given in the preceding section can be

implemented in several ways. The following three ways of

limiting the search are considered in this paper (see Adema,

Boekknoi-Timminga & van der Linden, submitted):

LIM1: After the LP relaxation (Problem 0) is solved,

variables are fixed using the reduced costs (see, e.g.,

Murtagh, 1981, p.25). Suppose di is the reduced cost

corresponding to item i. The next two rules are used for

fixing variables (H1 <1 is prespecified):

- Fix xi to 0, if in the relaxed solution xi = 0

and zo - H1z0 < di;

- Fix xi to 1, if in the relaxed solution xi = 1

and zo H1z0 <

LIM2: Initialize zm by zm = H2z0 for some prespecified H2<1

instead of zm = -00. This will decrease the number of

branchings through the search tree.

LIM3: Stop the search after the first 0-1 solution is found.

This strategy is most useful in combination with LIM2, where

H2 is close to 1, because this guarantees that the first 0-1

solution found is a good solution. It is senseless to search

for an exact solution, because the information functior

values in the test construction models are stimates and not

1_5

Branch-And-Bfund

11

known exactly.

The first two strategies speed up the BAB method

considerably if Hi a.%d H2 are close to 1, because these

strategies will redtz- the number of variables and the search

tree. An important characteristic of test construction

problems is that in general the difference between z0 a..d z*

is small, this characteristic makes it possible to choose H1

and H2 close to 1. However, if H1 and/or H2 are chosen to be

close to 1, two kinds of problems can arise. Firstly, it is

possible that too many varia les are fixed at 0 and 1. This

can imply that no feasible solution will be found. The second

kind of problem occurs it no 0-1 solution exists with an

objective function value between z0 and H2z0. In both cases

the branch-and-bound tree will be small and it does not take

much time before it is clear that no feasible solution with

objective function value higher than H2z0 can be found for

the chosen values of H1 and H2. The values of Hi and/or H2

can be adjusted and the solution procedure can be applied for

the new values. A procedure for choosing H1 and H2 will .Je

given in the discussion section.

Branching

MPSX/370 V2 offers a variety of built-in strategies for the

BAB method. The effectiveness of a number of these strategies

for test construction problems is regarded in the next

section. In this section these strategies are described, but

1

Branch-And-Bound

12

first the notion of node estimation is incrow.,:-;ed.

Node estimation

A node estimation (IBM MPSX/370 V2 Program Reference

Manual, 1988, p. 381) is a number that is attached to each

node waiting frwr rrocessing (waiting node). 'I estimates the

objective function value of the best 0-1 solution that can be

expected at a descendent node and can be considered as a

measure for the interest to continue the search by branching

from the node. Here, two types of node estimations are

considered. The first type of node estimation, say for node

k, is found by computing

I

(6) Ek = zk - E min (PCLi*fi, PCUi*(1-fi) 1,

i=1

where

Ek = estimation for node k,

zK = objective function value of node k,

PCLi = lower pseudo-cost of 0-1 variable hit

PCUi = upper pseudo-cost of 0-1 variable xi,

f4 = fractional part of the current value of 0-1 variable xi.

Pseudo-costs were introduced by Benichou, Gauthier, Girodet,

Hentges, Ribiere and Vincent (1971) and are well known in the

literature of mathematical programming. They are used for

predicting the detoriation of the objective function value

when an integer variable with a fractional value is forced to

take an integral value. During a search it is possible that

i

Branch-And-Bound

13

not all the pseudo-costs are known. Here, these missing

pseudo-costs are assumed tc, be zero. For the computation of

the pseudo-'costs in MPSX/370 V2 the reader is referred to the

IBM MPSX/370 V2 Program Reference Manual (1988, pp. 378-380).

The second type of estimation for node k is found by

computing:

I

(7) Ek = - E min(fi, 1-fi) .
i=1

It should be noticed that the second type of estimation does

not depend on the objective function value of node k.

Branching Strategies

The first branching strategy used in the forthcoming

numerical experiments is:

PURE: - Among the 0-1 variables with a fractional value the

variable with the lowest subindex i is selected as

branching variable.

- Choice of the branching node: Let k be the last

branching node. The next branching node is chosen

according to the processing results of the two

branches (k,n+1) and (k,n+2) (See Figure 2).

Insert Figure 2 about 114:re

Branch-And-Bound

14

Three possible cases should be considered:

1) Waiting nodes n+1 and n+2 satisfy the candidature

conditions given in section "Branch-and-Bound for

0-1 Linear Programming", i.e., there is no rule

indicating that further branching from these nodes is

senseless. In this case the node with the best

estimation is chosen as branching node, where the

first type of estimation (6) is used.

2) Exactly one of the waiting nodes n+1 and n+2

satisfies the candidature conditions. Then this node

is chosen as branching node.

3) Node n+1 and n+2 do not satisfy the candidature

conditions. From among all the other candidate nodes

the one with the best estimation (type 1) is chosen

as the next branching node.

The strategies PURE1 through PURE4 differ from the PURE

strategy only by the choice of the branching variable:

PURE1: As branching variable the one with its value furthest

from 0 and 1 is chosen.

PURE2: As branching variable the one with its value closest

to 0 or 1 is chosen.

PURE3: As branching variable the one with its value closest

to 0 is chosen.

PURE4: As branching variable the one with its value closest

to 1 is chosen.

Branch-And-Bound

15

In addition, the strategies INT through INT4 correspond

to PURE through PURE4, the difference being that the choice

of the branching node is based on the estimation of type 2.

The last set of strategies are USER through USER4. These

strategies correspond to PURE tnrough PURE4. Now, however,

the choice of the branching node is not based on node

estimation but on the objective function value: The node with

the highest value is chosen.

The strategies PURE, INT1, INT2, INT3, and INT4 are

equal to the strategies with the same name in the IBM

MPSX/370 V2 Program Reference Manual (1988). In this manual

the reader can also find a more detailed description of the

strategies.

Computational Experience

The strategies described in the previous sections are

compared in this section. The experiments were conducted with

two simulated item banks containing 450 grammar items. The

items in the banks fitted the Rasch (bi _ N(0,1)) and 3-

parameter model (ai _ U(0.5,1.5), bi Nt0,1), ci = 0.2),

respectively.

In the Maximin Model as used in the experiments the

ability levels were chosen to be 01 = -1, 02 = 0, and 03 = 1.

The relative information at these ability levels was set

equal to 1 (rk = 1, k = 1, 2, 3). The Maximin Model was

formulated as follows:

20

(8) Maximize y,

subject to

450
(9) E Ii(Ok)xi - y > 0,

i=1

450
(10) E xi = 20,

i=1

(11) X1 ' E (0,1),

Branch-And-Bound

16

k = 1, 2, 3,

i = 1,...., 450.

Constraints (8) through (11) give the basic Maximin Model. As

follows from constraint (10), the number of items in the test

was required to be equal to 20.

The experiments were conducted on an IBM9370. If an user

wants to apply the options offered by MPSX/370 V2 in an

advanced way, he/she has to write an ECL program for

controlling the optimization process. The appendix shows the

ECL program used in the experiments. ECL is a computer

language based on PL\1. The CPU-times in the forthcoming

tables are the times needed for the execution of the ECL

program.

In all the experiments strategies LIM1, LIM2, and LIM3

were applied for limiting the search together with one of the

branching strategies. The values of H2 in LIM2 were set to

0.995 in all cases, implying that the difference between the

objective function of the optimal 0-1 solution (z* = c(x*))

Branch-And-Bound

17

and the 0-1 solution found was at most 0.5% of z*, because z0

is an upper bo,:nd on z*.

Table 1 and 2 display the CPU-times (in minutes) for the

branch-and-bound part of the solution method and the

objective function values for the computed 0-1 solutions. To

be more specific the CPU-time is the time needed for the

procedures MIXFLOW and SOLUTION in the ECL program (seE.

Appendix), because the CPU-times of those procedure depend on

the branching strategy. In Table 1 the results for the bank

with items fitting the Rasch model are shown. In this case

two values for H1 were used namely 0.995 and 0.9999. In Table

2 the items fitted the 3-parameter model and H1 was 0.995 and

0.9975. Two values for H1 were chosen to detect ne

sensitivity of the results to the H1 value. In the 3-

parameter case the H1 value can not be chosen as close to 1

as in the Rasch case, because in the former case too many

variables would be fixed, which would increase the chance of

not finding a feasible 0-1 solution.

Insert Table 1 and 2 here

Looking at the two tables, it is seen that the differences

between the CPU-times comparing the two values for H1 are

larger for the Rasch model than for the 3-parameter model. A

possible explanation of this is the number of items fixed,

which is much larger for the 3-parameter model for both

22

Branch-And-Bound

18

values of H1.

The basic Maximin Model can be solved relatively easy,

because the number of fractional values in the optimal

solution for a relaxed (sub)problem is always smal..er than or

equal to the number of constraints. If a number of

constraints is added to the model, a more interesting and

realistic model is created. Therefore, the basic Maximin

Model (8)-(11) was extended with the fallowing constraints:

450
(12) E tixi 5 60,

i=1

150
(13) xi = 7,

i=1

300
(14) E xi = 8,

i=151

450
(15) E xi = 5,

i=301

75 225 375
(16) E xi + E xi + Z xi = 12,

i=1 i=151 i=3U1

150 300 450
(17) E xi + xi + E xi = 8.

i=76 i=226 i=376

Constraint (12) implied that tae administration time did not

23

Branch-And-Bound

exceed 60 minutes. The coefficients ti are estimates of the

time a student from the population needs for answering item

i. Here, they were drawn from the distribution U(1,6). The

item banks were supposed to be partitioned in the following

subsets with respect to content:

Items 1-150: noun items;

Items 151-300: verb items;

Items 301-450: adjective items.

Constraints (13)-(15) implied that the test contained 7 noun,

8 verb, and 5 adjective items. Within the specified subsets

the first 75 items were multiple choice items. a other

items were of the matching type. According to constraints

(16) and (17) the examinees had to answer 12 multiple choice

and 8 matching items. In the experiments constraint (10) was

left out of the LP model, because it was implied by the

constraints (13)-(15) and (16)-(17).

The same experiments as with the basic Maximin Model

were conducted with the extended version. Table 3 and 4 show

the CPU-times and the objective function values of the

computed 0-1 solutions for the Rasch model and the 3-

parameter model, respectively.

Insert Table 3 and 4 here

As in Table 1 and 2 the choice of the branching variable

is important. In most of the experiments the best results in

2z:.

Branch-And-Bound

20

terms of CPU-time were found when the branching variable was

the variable furthest from an integer (PURE1, INT1, and

USER1) and closest to 1 (PURE4, INT4, and USER4). Remarkably,

the strategies INT through INT4 gave good results for all

choices of branching variables when the '.terns fitted the 3-

parameter model but not when they fitted the Rasch model (see

Table 1 and 3).

An interesting question is how hard is it to find an

exact optimal 0-1 solution. Therefore, the basic and extended

Maximin Model were also solved with the BAB method, where

LIM3 was nor applied, i.e. the algorithm was not stopped

after the first 0-1 solution was found. LIM1 and LIM2 were

applied with H1 = H2, which guaranteed that an exact optimal

0-1 solution was found if it had an objective function value

higher than H2z0 (see Discussion). For the 3-parameter model

H1 and H2 were set equal to 0.995. For the Rasch model the

gap between z0 and z* is smaller, and therefore the values of

H1 and H2 were set equal to 0.9999. Only branching strategy

PURE1 was applied. The CPU-times and optimal objective

function values are displayed in Table 5.

Insert Table 5 here

The difference between z0 and z* is indeed much smaller for

the Rasch model. The reason is the larger similarity among

the Rasch items, which makes it also harder to solve the

2 5

Branch-And-Bound

21

Maximin Model even if H1 and H2 are very close to 1.

Discussion

In this paper a comparison has been made among several

search strategies for the branch-and-bound method. From the

results it can be concluded that the strategies for limiting

the search are very effective. Fixing a large number of

variables by choosing H1 very close to 1 and stopping the

search after the first 0-1 solution has been found, reduces

the CPU-time considerably. A good 0-1 solutim is also

guaranteed by choosing H2 close to 1. Based on the

experiments the following procedure for choosing the values

H1 and H2 is proposed:

Ste+ 1: If the items fit the Rasch model then hl = 0.9999 and

H2 = 0.995. If the items fit the 3-parameter model

then H1 = 0.995 and H2 = 0.995.

Step 2: Solve the Maximin Model with the BAB method. If a

feasible 0-1 solution is found then go to Step 4 else

go to Step 3.

Step 3: If H1 > H2 then H1 := H2, else H2 ;= H2*H2. Go to

Step 2.

Step 4: Stop.

The starting values of H1 and H2 are based on the results in

Table 1 through 4. If H1 = H2 and no feasible 0-1 solution is

found in Step 2, then no feasible solution exists with an

objective function value higher than zm = H2z0 (see, e.g.,

2 6

Branch-And-Bound

22

Nemhauser & Wolsey, 1988, p.389; Crowder, Padberg & Johnson,

1983). Hence, the adjustment scheme in Step 3 guarantees that

the difference between the objective function value of the

optimal 0-1 solution z* and the 0-1 solution found zF is at

most 0.5%. If a smaller difference e is wanted, it can be

realized by initializing H2 by H2 = 1 - e with e 5 0.005 and

H1 2 H2. Then, by adjusting the H1 and H2 values according to

Step 3 the algorithm in this paper is an e-approximation

algorithm, i.e. (z* _ zF) / z* 5 e.

Experiments with several branching strategies were

conducted. The tables showed that especially the choice of

the branching variable was important. Good choices for the

branching variable were the variable furthest from an integer

and the one closest to 1. The strategies INT1 through INT4

are recommended in the IBM MPSX/370 V2 Program Reference

Manual (1988) for models having a large number of 0-1

variables as compared to the number of continuous variable

and for which the user also tries to find a good solution but

not necessarily the optimal. According to the tables these

strategies were not much better, and in some cases even worse

(see Table 1 and 3), if the Maximin Model is considered and

the items fit the Rasch model. Table 5 shows that exact

optimal 0-1 solutions can be found in a reasonable amount of

CPU-time if LIM1 and LIM2 are used. For interactive test

construction, however, searching for an optimal 0-1 solution

can take too much time especially if the Rasch model is

involved.

The above conclusions are basec. ,n experiments with

7

Branch-And-Bound

23

models specified by the author. Nevertheless, they probably

hold for Maximin Models in general, because the results

showed the same tendencies for the branching strategies under

varied conditions (with and without practical constraints,

Rasch- and 3-parameter model). The comparisons were also not

influenced by the choice of computer implementation, computer

characteristics etc, because all the experiments were

conducted on the same computer and with the same program.

In this paper it was shown how the computer program

MPSX/370 V2 can be used for solving the Maximin Model. Other

programs (e.g., HS/LP, Haverly Systems Inc.; SCICONIC,

Sciconic Computer Services Ltd.; APEX4, Control Data

Corporation) also provide the user with a number of options

for controlling the search. Hence, the results can also be

important for users of other optimization programs. The

reader interested in computer codes for solving mixed integer

linear programming problems is referred to Land and Powell

(1979) and Powell (1985).

Appendix

The program MPSX/370 V2 enables the user to control the

search by an Extended Control Language (ECL) program. ECL is

based on the computer programming language PL\1. The ECL

program used for the experiments can be divided in three

parts. In the first part the initialization takes place and

the relaxed LP problem (Projlem 0) is solved. Then, the

Branch-And-Bound

24

problem is reduced by fixing 0-1 variables at their bounds.

Finally, the reduced problem is solved.

CONTROL:PROCEDURE OPTIONS(MAIN);

/***/

/* PART 1. INITIALIZATION AND OPTIMIZATION OF THE

/* RELAXED PROBLEM

*/

*/

/***/

%INCLUDE DPLINIT;

DCL DUMMY SREAL;

XBPNAME='BANK450'; /* NAME OF THE PROBLEM */

XDATA='BANK450';

XOLDNAME='BANK450';

CALL CONVERT;

XMINMAX='MAX';

CALL SETUP;

XOBJ='OBJE';

XRES='RIHA';

CALL OPTIMIZE; /* OPTIMIZATION OF THE */

/* RELAXED PROBLEM */

CALL SOLUTION; /* PRINT THE RESULTS */

2 ,9

Branch-And-Bound

25

/***/

/* PART 2. FIXING OF 0-1 VARIABLES *

/***/

XMXDROP=0.9975*XFUNCT; /* THE VALUE OF H1 IS

/* SPECIFIED

*

*/

DUMMY=XFUNCT;

CALL SETVAR('FILE','REVIFILE','NOHEUR','NOPRINT');

/* THE VARIABLES TO BE */

/* FIXED ARE FLAGGED */

XPBNAME='RBANK450'; /* NAME OF THE REDUCED */

/* PROBLEM */

CALL REVISE('FILE','REVIFILE');

/* THE PROBLEM IS REVISED */

/* BY LEAVING OUT FIXED

/* VARIABLES

/**/

/* PART 3. OPTIMIZATION OF THE REDUCED PROBLEM *

/**/

CALL SETUP('BOUND','BOUND');

CALL OPTIMIZE; /* OPTIMIZATION OF THE */

/* RELAXED REDUCED PROBLEM*/

CALL MIXSTART;

XMNMAXN0=1; /* THE SEARCH STOPS AFTER */

/* XMXNAXNO 0-1 SOLUTIONS */

/* ARE OBTAINED */

XMXSTRAT=JUSER'; /* THE SEARCH STRATEGY IS */

/* SPECIFIED BY THE USER */

30

XMIXSWT='0000004'; /*

Branch-And-Bound

26

TO SPECIFY THE STRATEGY*/

/* 7 SWITCHES ARE CHOSEN: *

/* 0000004=PURE1 *

XMXDROP=0.995*DUMMY; /* THE VALUE OF H2 IS *

/* SPECIFIED *

CALL MIXFLOW; /* SEARCH FOR 0-1 SOLUTION*/

/* USING THE BAB METHOD *

CALL SOLUTION; /* PRINT THE RESULTS *

END CONTROL;

The information values ii(ek), k = 1, 2, 3; i = 1,....,

were all multiplied by 1000 in the input file BANK450,

because SETVAR did not work well with the non scaled values.

The ECL program is given here to show how MPSX/370 V2 enables

the user to control the optimization process and in

particular how the optimization process can be controlled for

the Maximin Model. For a description of the ECL language the

reader is referred to the IBM MPSX/370 V2 Program Reference

Manual (1988) .

31

Branch-And-Bound

27

References

Adema, J.J., & van der Linden, W.J. (1989). Algorithms for

computerized test construction using classical item

parameters. Journal of Educational Statistics.

Adema, J.J., Boekkooi-Timminga, E., & van der Linden, W.J.

(1989). Achievement test construction using 0-1 linear

programming. Manuscript submitted for publication.

Benichou, M., Gauthier, J.M., Girodet, P., Hentges, G.,

Ribiere. G., & Vincent, 0. (1971). Experiments in mixed-

integer linear programming. Mathematical_Programming,

76-94.

Benichou, M., Gauthier, J.M., Hentges, G., & Ribiere, G.

(1977). The efficient solution of large-scale linear

programming problems - some algorithmic tec-niques and

computational results. Mathematical Programming, 11,

280-322.

Birnbaum, A. (1968). Some latent trait models and their use

in inferring an examinee's ability. In F.M. Lord and

M.R. Novick, Statistical theories of mental test scores.

Reading: Mass.: Addison Wesley.

Breu, R., & Burdet, C.A. (1974). Branch and bound experiments

in zero-one programming. Mathematical Programming Study,

2, 1-50.

Crowder, H., Johnson, E.L., & Padberg, M. (1983). Solving

large scale zero-one programming problems. Operations

Research, fl, 803-834.

Branch-And-Bound

28

Hambleton, R.K., & Swaminathan, H. (1985). Item response

theory: Principles and applications. Boston: Kluwer-

Nijhoff.

Ibaraki, T. (1987). Enumerative approaches to combinatorial

optimization...Part 1 and 2. In P.L. Hammer (Editor-in-

chief), Annals of operations research: Vol. 11 (Complete

Volume) No. 1-4. Basel, Switzerland: J.C. Baltzer AG.

IBM Mathematical Programming System Extended/370 Version 2

(MPSX/370 V2) Program Reference Manual (1988). Form

number SH 19-6553-0, IBM corporation.

Land, A., & Powell, S. (1979). Computer codes for problems of

integer programming. In P.L. Hammer, E.L. Johnson and

B.H. Korte (Eds.), Annals of discrete mathematics 5:

Discrete optimization 2. Amsterdam: North Holland

Publishing Company.

Lord, F.M. (1980). Applications of item response theory to

practical testing problems. Lawrence Erlbaum Associates,

Hillsdale, New Yersey.

Murtagh, B.A. (1981). Advanced linear prgsrammingi_

computation and practice. New York: McGraw Hill.

Nemhauser, G.L., & Wolsey, L.A. (1988). Integer and

combinatorial optimization. New York: John Wiley & Sons,

Inc.

Papadimitriou, C.H., & Steiglitz, K. (1982). comtdnarsjdal.

optimization* Algorithms and complexity. Englewood

Cliffs, NJ: Prentice Hall.

Branca: -And -Bound

29

Powell, S. (1985). Software. In M. O'hEigearteigh, J.K.

Lenstra and A.G.H. Rinnooy Kan (Eds.), Co; inatorial

optimization: Annotated bibliographies. Chichester: John

Wiley & Sons, Inc.

Rao, S.S. (1985). Optimization: Theory and applications (2nd

Ed.). New Delhi: Wiley Eastern Ltd.

Rasch, G. (1960). Probabilistic models for some intelliaence

and attainment tests. Copenhagen: Nielsen and Lydicke.

Theunissen, T.J.J.M. (1985). Binary programming and test

design. Psychometrika, 2a, 411-420.

van der Linden, W.J., & Boekkooi-Timminga, E. (1989). A

maximin model for test design with practical

constraints. Layshmetr..a.4., 52, 237-247.

Branch-And-Bound

30

Table 1

ReaultalorthebranchingLtyategi_e_s applied to the basic

Maximin Model where the items fit the Rasch model.

111=0.995a

Branching CPU-time Objective CPU-time Objective

Strategy (mins.) Function (mins.) Function

Value Value

PURE 0.26 3.9299 0.09 3.9299
PURE1 0.16 3.9313 0.07 3.9313
PURE2 0.32 3.9300 0.08 3.9300
PURE3 0.32 3.9300 0.07 3.9300
PURE4 0.16 3.9313 0.06 3.9313

INT 0.29 3.9312 0.16 3.9312
INT1 0.24 3.9287 0.09 3.9287
INT2 0.90 3.9307 0.15 3.9307
INT3 0.89 3.9307 0.15 3.9307
INT4 0.24 3.9 "37 0.09 3.9287

USER 0.25 3.9299 0.10 3.9299
USER1 0.16 3.9313 0.06 3.9313
USER2 0.33 3.9300 0.08 3.9300
USER3 0.33 3.9300 0.08 3.9300
USER4 0.17 3.9313 0.06 3.9313

a Number of fixed variables: 133. Elapsed CPU-time before

MIXFLOW was called: 0.15 mins.

b Number of fixed variables: 375. Elapsed CPU-time before

MIXrLOW was called: 0.16 mins.

Branch-And-Bound

31

Table 2

Results for the branching strategies applied to the basic

Maximin Model where the items fit the 3-parameter

H1=0.995a H1=0.9975b

Branching CPU-time Objective CPU-time Objective

Strategy (mins.) Function (mins.) Function

Value Value

PURE 0.20 4.1024 0.16 4.1024
PURE1 0.07 4.1024 0.04 4.1024
PURE2 0.24 4.1043 0.05 4.1060
PURE3 0.25 4.1043 0.05 4.1060
PURE4 0.07 4.1024 0.04 4.1024

INT 0.08 4.1033 0.06 4.1033
INT1 0.07 4.1043 0.05 4.1043
INT2 0.09 4.1085 0.06 4.1085
INT3 0.09 4.1085 0.06 4.1085
INT4 0.07 4.1043 0.05 4.1043

USER 0.10 4.1058 0.09 4.1058
USER1 0.06 4.1024 0.04 4.1024
USER2 0.16 4.0995 0.05 4.1060
USER3 0.16 4.0995 0.05 4.1060
USER4 0.06 4.1024 0.04 4.1024

a Number of fixed variables: 393. Elapsed CPU-time before

MIXFLOW was called: 0.14 mins.

b Number of fixed variables: 419. Elapsed CPU-time before

MIXFLOW was called: 0.15 mins.

a5

Branch-And-Bound

32

Table 3

Results for the branching strategies applied to the extended

Maxdel where the items fit h Rasch mod

1.11=0.995a H1=0.999913

Branching CPU-time Objective CPU-time Objective

Strategy (mins.) Function (mins.) Function

Value 7alue

PURE 0.23 3.9308 0.09 3.9308
PURE1 0.25 3.9295 0.15 3.9257
PURE2 1.35 3.9308 0.21 3.9206
PURE3 0.60 3.9308 0.17 3.9308
PURE4 0.21 3.9308 0.09 3.9308

INT 0.43 3.9306 0.19 3.9306
INT1 0.99 3.9296 0.19 3.9296
INT2 2.59 3.9245 0.17 3.9299
INT3 1.91 3.9310 0.14 3.9310
INTO 0.38 3.9212 0.14 3.9212

USER 0.22 3.9308 0.08 3.9308
USER1 0.21 3.9295 0.14 3.9257
USER2 1.35 3.9308 0.21 3.9206
USER3 0.60 3.9308 0.17 3.9308
USER4 0.22 3.9308 0.09 3.9308

a Number of fixed variables: 133. Elapsed CPU-time before

MIXFLOW was called: 0.19 mins.

b Number of fixed variables: 377. Elapsed CPU-time before

MIXFLOW was called: 0.20 mins.

Branch-And-Bound

33

Table 4

Results forlheizzannlieLLeext&nded'no_*
Maximin Model where the items fit the 3-parameter model.

H1=0.995a H1=0.9975b

Branching CPU-time Objective CPU-time Objective

Strategy (mins.) Function (mins.) Function

Value Value

PURE 0.43 4.0531 0.17 4.0583
PURE1 0.13 4.0583 0.20 4.0607
PURE2 0.84 4.0580 0.37 4.0607
PURE3 0.36 4.0565 0.48 4.0580
PURE4 1.20 4.0580 0.14 4.0607

INT 0.12 4.0580 0.09 4.0580
INT1 0.09 4.0589 0.09 4.0580
INT2 0.41 4.0575 0.18 4.0575
INT3 0.41 4.0575 0.17 4.0575
INT4 0.12 4.0580 0.08 4.0580

USER 0.27 4.0583 0.17 4.0583
USER1 0.25 4.0583 0.17 4.0583
USER2 0.56 4.0607 0.78 4.0589
USER3 0.30 4.0565 0.39 4.0566
USER4 0.47 4.0607 0.26 4.0583

a Number of fixed items: 390. Elapsed CPU-time before MIXFLOW

was called: 0.17 mins.

b Number of fixed items: 414. Elapsed CPU-time before MIXFLOW

was called: 0.17 mins.

s6

Branch-And-Bound

34

Table 5

Exert optimal 0-1 solutions by brenchinostrateqy PURE1

Objective

Function Value

IRT Extended Relaxed 0-1 CPU-time

Model Maximin (mins.)

Rasch no 3.9318 3.9317 3.24

yes 3.9314 3.9313 4.23

3-param. no 4.1188 4.1105 0.82

yes 4.0731 4.0607 2.64

3i

Branch-And-Bound

35

Figure Captions

Figure 1. Branch-and-bound tree.

Eiguxa2. Node k and its children.

40

Problem 0

xi=0 xj=1

Problem 1 Problem 2

Xk=0

Problem 3 /
Xk=1

Problem 4

k

42

n+2

Titles of recent Research:Kepo-ts from the Division of

Educational Measurement ard_Data Analysis,

University of Twente. Enschede.

The Netherlands.

RR-88-1 E. van der Burg & J. de Leeuw, Nonlinear redundancy analysis

RR-88-2 W.J. van der Linden & J.J. Adema, Algorithmic test design

using classical item parameters

RR-88-3 E. Boekkooi-Timminga, A cluster-based method for test

construction

RR-88-4 J.J. Adema, A note on solving large-scale zero-one

programming problems

RR-88-5 W.J. van der Linden, Optimizing incomplete sample designs for

item response model parameters

RR-88-6 H.J. Vos, The use of decision theory in the Minnesota

Adaptive Instructional System

RR-88-7 J.H.A.N. Bikers, Towards an authoring system for item

construction

RR-88-8 R.J.H. Engelen, W.J. van der Linden, & S.J. Oosterloo, Item

information in the Rasch model

RR-88-9 W.J. van der Linden & T.J.H.M. Eggen, The Rasch model as a

model paired comparisons with an individual tie parameter

RR-88-10 H. Kelderman & G. Macready, Loglinear-latent-class models for

detecting item bias

RR-88-11 D.L. Knol & M.P.F. Berger, Empirical comparison between

factor analysis and item response models

RR-88-12 E. van der Burg & G. Dijksterhuis, Nonlinear canonical

correlation analysis of multiway data

RR-88-13 J. Kogut, Asymptotic distribution of an IRT person fit index

RR-88-14 J.J. Adema, The construction of two-stage tests

RR-88-15 H.J. Vos, Simultanenus optimization of decisions using a

linear utility function

RR-88-16 H. Kelderman, An IRT model for item responses that are

subject to omission and/or intrusion errors

RR-88-17 H. Kelderman, Loglinear multidimensional IRT models for

polytomously scored items

4 3

RP 88-18 H.J. Vos, Applications of decision theory to computer based

adaptive instructional systems

RR-89-1 R.J.H. Engelen 6 R.J. Jannarone, A connection between

item/subtest regression and the Rasch model

RR-89-2 E. Boekkooi-Timminga, The construction of parallel tests from

IRT-based item banks

RR-89-3 D.L. Knol, Stepwiee item selection procedures for Rasch

scales using quasi-loglinear models

RR-89-4 H.P.F. Berger, On the efficiency of IRT models when applied

to different sampling designs

RR-89-5 H.J. Vos, A simultaneous apprlach to optimizing treatment

assignments with mastery scores

RR-89-6 J.J. Adema, Implementations of the Branch-and-Bound method

for test construction problems

Research Reports can be obtained at costs from Bibliotheek,

Department of Education, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands.

4

El

,dep art men t of
. . .

EDUC*ION. .

A publication by

the Department of Education

of the University of Twente

P.O. Sox 217

7500 AE Enschede

The Netherlands

