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Dutch educators P. M. van Hiele and Dina van
Hiele-Geldof proposed a linearly-ordered model of geometric
understanding. The van Hiele theory asserts that there
exist five hierarchical levels of geometric thinking that a
successful learner passes through: Basic Level -
visualization, Level 1 - analysis, Level 2 - abstraction,
Level 3 - deduction, and Level 4 - rigor. According to the
van Hieles' model, the learner cannot achieve one level
without passing through the previous levels. Progress from
one level to the next is more dependent on educational
experiences than on age or maturatien, and certain types of
experiences can facilitate (or impede) progress within a
level and to a higher level (Fuys, 1984).

Previous research tends to support the hierarchical
nature of the van Hiele levels within several populations.
Joanne Mayberry (1981i) found sufficient evidence among 19
undergraduate preservice elementary teachers to support this
aspect of the theory but she rejected the hypothesis that an
individual demonstrated the same level of thinking in all
areas of geometry included in the school program. The van
Hiele levels of her subjects were quite low: they did not
recognize squares as rectangles and did not perceive
relationships between classes of figures.

In examining high school sophomores, Usiskin (1982)
found that over 80% of these students can be assigned a van
Hiele level by means of a paper-and-pencil test, but
students may be in transition between levels and therefore
difficult to classify. Burger and Shaughnessy (1986) found
mainly level O thinking for subjects in grades K-8. They
described the levels as dynamic rather than static and more
continuous than discrete. Fuys, Geddes and Tischler (1985)
utilized instructional modules in geometry with sixteen
sixth graders and sixteen ninth graders. They found entry
levels of 0 and 1, but several students, especially those
deemed azbove average in mathematics ability prior to
instruction, exhibited level 2 behavior by the completion of
the six hours of clinical interviews and instruction. They
also reported several misconceptions or errcrs found among
these sixth and ninth graders. Among the examples cited
were thinking "sides" refers only to vertical segments,
using the phrase "straight lines' when referring to parallel
lines, and thinking that a parallelogram has to have oblique
angles (Fuys, Geddes and Tischler, 1985, p. 199).
Hershkowitz (1987) found several geometric misconceptions
displayed by students in grades 5 through 8. Examples
include misidentification of right triangles, isosceles
triangles, quadrilaterals and altitudes in various types of
triangles.

Research indicates that gifted, average, and retarded
children all follow the same pattern of progression through
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the Piagetian stages (Roeper, 1978; Weisz & Zigler, 1979;
Carter & Ormrod, 1982). Gifted students showed superiority
on Piagetian tasks over students of normal intelligence at
every age level tested. Piaget proposed that the transition
to the formal operational stage occurs at ages 11 to 12.
Carter and Ormrod (1982) found that the majority of subjects
of average intelligence were still transitional to formal
operations even as late as age 15. They also found that the
gifted subjects entered formal operations successfully by
12-13 years of age (p. 114). Does the gifted students'
ability to operate abstractly earlier than other students
affect the linearly ordered development hypothesized by the
van Hieles?

The purpose of this study was to investigate the
geometric understanding and misconceptions in students in
the fourth through eighth grades who have been identified as
gifted. 1In particular, how well the cognitive structures
and developmental levels of these gifted students conformed
to what was predicted by the van Hiele theory of geometric
understanding was examined.

METHOD

Subjects.

The subjects were students in the fourth through eighth
grades who have been identified as gifted based on IQ or
standardized test scores, teacher recommendations, and other
instruments chosen by their individual districts. The
population included two distinct groups of subjects: the
first group included 11 fourth graders, 12 fifth graders,
and 11 sixth graders who were participants in a science and
math pull-out program for the gifted in a small rural
district in Illinois.

Procedure

The van Hiele level of all subjects was determined both
prior to and at the conclusion of approximately 20 hours of
instruction in geometry via Logo using a 15 item subset of
the paper and pencil test developed by the Cognitive
Development and Achievement in Secondary School Geometry
Project (CDASSGP) (Usiskin, 1982). 1In addition, they
participated in a 30-45 minute interview based on Mayberry's
questions. The second population consisted of 1 fifth
grader, 15 sixth graders, 10 seventh graders, and 5 eighth
graders attending a one week summer camp for the
Academically Talented. These subjects completed the full 25
item test developed by the CDASSGP prior to and following
the camp which contained approximately seven hours of
geometry instruction and activities. Additionally, selected
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questions of particular interest from the interview were
administered in written form to these students. The paper
and pencil and interview questions focused on the concepts
of square, isosceles triangle, right triangle, circle,
parallel lines, similarity, and congruence.

Results

CDASSGP Test

The distribution of written tests scores for the first
group (combined fourth, fifth and sixth grades) is may be
seen in Table 1. This distribution of the pretest levels is
consistent with the findings of previous researchers.
Disregarding the subjects who were unclassifiable on at
least one test, the van Hiele level is significantly
different between the pretest and the posttest (t = 1.90, df
= 24, p < .05). The posttest levels tend to support Dina
van Hiele's statement that 20 hours of structured
intervention may facilitate movement from one level to the
next. :

Table 1
% of Subjects in Group 1 at Each van Hiele Level
as Determined by the CDASSGP Test

van Hiele Level

Test 0 1 2 above 2 ?
Pretest 34% 56% 3% 0% 6%
Posttest 27% 27% 21% 12% 12%

The distribution of written test scores for the second
group (combined fifth, sixth, seventh and eighth grade
campers) is displayed in Table 2. The change in van Hiele
level is significant for this group as well (t = 2.11, df =
30, p < .025). A number of the unclassifiable scores were
related to students showing mastery of Level 4 type problems
when they had not mastered Level 3. The scores on oth the
tests and interviews also seemed to be influenced in part by
the gifted students' experience with and talent for
analyzing questions and taking tests.
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Table 2
% of Subjects in Group 2 at Each van Hiele Level
as Determined by the CDASSGP Test

van Hiele Level

Test 0 1 2 3 4 ?
Pretest 13% 42% 13% 7% 0% 26%
Posttest 3% 36% 19% 10% 3% 29%
Interviews

Analysis of the protocols from the interviews indicates
several patterns not apparent in the written tests.

Types of Reasoning Observed. Three categories of
reasoning can be detected in the subjects' identification of
geometric figures.

1. Appearance. The student is operating at Van Hiele
Level 0. For example, "It's a triangle because it looks
like a shark's fin on the top." or "These are all triangles
because they have the shape of a triangle." or "Line segment
DE is three centimeters long because it looks like about
half of the line segment labeled eight centimeters." This
type of reasoning sometimes led to correct answers.

2. Reasons based on noncritical attributes, usually
those of the prototype. Figures such as squares,
rectangles, right triangles, isosceles triangles, and
circles are defined in terms of critical attributes and
examples. Certain of these examples may be considered
prototypes such as squares and rectangles with sides
parallel to the bottom of the page or blackboard. A
prototype right triangle has its base parallel to the page
bottom and the other side vertical and locks like it's
pointing toward the right (as contrasted to a left
triangle). A prototype isosceles triangle also has its base
parallel to the page bottom. It points upward with its base
shorter than the two congruent sides.

Since teachers and textbooks tend to use them more
frequently, these prototypes are usually the first learned.
They appear to persist with the students failing to
differentiate between critical and non-critical attributes
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in a figure. For example, orientation of the shape was a
factor in grades 4-6 with 1/7 of the subjects failing to
identify a square rotated 45- from parallel to the sides of
the page (<) as a square. As one fourth grader said "I
think it might be a square if you tilted it." The reference
point does not seem to be the sides of the paper but their
own position. For example, another fourth grader said that
the sides of a square "have to be straight up and straight
across."

Several of the fourth graders could identify a square
printed on a file card with its sides parallel to the sides
of the card as a square when it was presented to them so
that the sides appeared '"straight ahead and straight across"
but when the card was then rotated 45  in their view, they
said the figure as no longer a square. These results are
summarized in Tables 3 and 4.

During the instructiona). phase of the project, the
subjects wrote LOGO procedures for draging squares when
required that they incorporate four 90~ angles and four
sides of equal lengths to create their squares. They used
their procedures to draw squares with different orientations
both on the computer monitor and on paper on the floor with
a computer-controlled robot turtle. They sorted and
classified cut-out shapes, some of which were squares and in
the process viewed the shapes from different orientations.
However, four subjects still failed to identify the "rotated
square' as a square at the end of the study.

Table 3
% of Students Identifying Various Shapes as Squares

Shape

Grade [:] <:> <> [::] [] ﬁ;;j

8 100.0 100.0 20.0 0.0 0.0 0.0
7 100.0 100.0 11.1 0.0 0.0 0.0
6 96.3 92.6 7.4 7.4 7.4 0.0
5 100.0 87.5 25.0 37.5 37.5 0.0
4 100.0 100.0 20.0 0.0 0.0 0.0
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Table 4
% of Students Identifying Various Shapes as Rectangles

Shape
—
erad . A
e O O O ] /
8 60.0 60.0 0.0 100.0 100.0 20.0
7 11.1 11.1 0.0 100.0 100.0 11.1
6 70.4 59.3 7.4 96.3 96.3 25.9
5 37.5 37.5 12.5 100.0 100.0 75.0
4 0.0 0.0 0.0 100.0 100.0 80.0

This orientation factor did not seem to affect the
recognition of non-square rectangles when the rectangles did
not appear with their sides parallel to the page edges.
However, over 30% of the students identified as a
rectangle. Many of these same students included "has four
right angles" or "has four 90  angles" as part of their
definition of a rectangle. However, the four right angles
did not appear to be the attribute they were focusing on.
Rather these subjects were focusing on the non-critical
attribute for a rectangle of have two long sides and two
short sides which was not always mentioned in their
definitions.

This type of reasoning based on noncritical attributes,
usually those of the prototype, will usually result in
incorrect responses.

3. Reasons based on critical attributes. This
reasoning type will usually led to correct responses, given
that the definitions employed are correct. For example,
"I guess that a right triangle could be isosceles because
you could have the right angle at the top and the two sides
of it, meeting in the middle, be equal.™

Reasoning and Definitions. The reasoning ability of
the students was far beyond what may have been anticipated,
given their lack of knowledge of basic definitions and
concepts. Some students had incorrect definitions of -
various terms. For example, an isosceles triangle has
exactly two congruent sides and a rectangle has two long
sides and two short sides. During the initial interviews,
many students were unsure of the definitions of the
mathematical terms such as isosceles, congruent and
hypotenuse. For terms such as similar, they attempted to
use the English language definition of the word to apply to

CO
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the mathematical problem. For example, if they had not been
specifically taught the mathematical meaning of the term
"similar" students used definitions such as "It's like the
same, but there might be a very slight little difference.",
"Two figures look a little, sorta like each other.", or
"Congruent means exactly. Similar? you know, means maybe
like this much off and stuff.” or "They're a lot alike."
Most of these gifted students attempted to deduce the
definitions of terms they were unsure of from the context of
the question. They would then base their answers upon their
conjectured meanings. For example, on the initial
interview, one sixth grader, when asked if two squares with
a 10 cm side are always, sometimes or never congruent,
replied "That depends on what congruent means. If it means
the same, then those will always be congruent. And if it
means different, they never will be." In many cases the
students would build valid logic structures based upon their
conjectured definitions. This type of thinking is
indicative of Level 2, but has been accomplished without
knowledge of specific definitions or geometric content.

Reasoning Involving Parts of Figures. One difficulty
which many students exhibited became apparent in their
answers to two questions requiring the subjects to focus on
an angle which was part of another figure.

The first question was:

(2 em c D QCM F

Triangle ABC_is similar to triangle DEF.
How long is ED? How do you know?
What is the size of <EDF? How do you know?

Two categories of reasoning can be discerned in the answers
to "How long is ED?": answers involving a comparison
between the two figures, triangle ABC and triangle DEF
(characteristic of Level 2 thinking) and those depending on
comparisons within triangle DEF only (characteristic of
Level 1 thinking). (See Figure 1.) Approximately
two-thirds of the students gave 4 centimeters as the answer
supported by reasons such as 'because the base of triangle
ABC is 12 and the base of DEF is 6. And the side AB is 8
centimeters and everything else is halves, so DE has to be
half of that" or "The ratio in ABC is 2 to 3 so if this is 6
certimeters then the side must be 4." or "The proportion of
the lengths of the first triangle to the second is 2 to 1."
As can be seen in Table 3, the older the subject, the more
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likely s/he was to answer in this manner. An additional 47
also compared the two figures, but gave 8 centimeters as
their answer using reasoning such as "Because it says that
ABC is similar to DEF and the measurements are on ABC and
they have to be the same measurements.' or " Because they
said that "ABC ies similar to DEF and if it was similar,
they'd be about the same length." These subjects apparently
ignored the 6 cm label on DF and treated "similar" as
"congruent". However, later in the interview, they defined
similar as "'pretty close to the same", saying that they are
the same shape, could be the'same size, but could be
different sizes. This definition is not what they based
their previous answer of 8 centimeters on.

None of the seventh and eighth graders depended on
comparisons only within triangle DEF for their answers, but
approximately 30% of the fourth - sixth graders did, with
the younger subjects doing so more frequently. (See Table
5.) 1In all cases, the subjects were apparently estimating
the length of DE. The most frequent answer given was 3
centimeters with reasons such as "because it looks like it
is half of the 6 centimeters." or "Because if the bottom is
6 centimeters, this looks like it's half of that one."

COMPARISONS

BETWEEN FIGURES NETH!P:I DEF
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Figure 1. Categories of Reasoning Discerned in Answers to
"How long is ED?"
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Table 5
Answers Given for Length of Line Segment DE
in Per Cents

Answer Given

Grade 4 cm 8 cm 3 cm other blank
8 100.0 0.0 0.0 0.0 0.0
7 88.9 0.0 0.0 0.0 11.1
6 66.7 7.4 11.1 7.4 7.4
5 50.0 0.0 37.5 0.0 12.5
4 20.0 0.0 40.0 40.0 0.0

Total 66.7 3.7 14.8 7.4 7.4

Reasoning displayed in answering the question "What is
the size of <EDF?" can also be categorized in the same
manner: answers involving a comparison between the two
figures, triangle ABC and triargle DEF (characteristic of
Level 2 thinking) and those depending on comparisons within
triangle DEF only (characteristic of Level 1 thinking).

(See Figure 2.) Less than 407 of the subjects employed
comparisons between the two figures when considering the
size of <EDF._ 70% of the subjects did so when determining
the size of ED. (See Table 6.)

Table 6
Answers Given for Size of Angle EDF in Per Gents

Answers Given

other 12-18 other
Grade 60° 30° < cm 10 cm cm blank
8 60.0 0.0 0.0 0.0 20.0 0.0 20.0
7 22.2  22.2 0.0 22.2 11.1 0.0 22.2
6 29.6 7.4 22.2 14.8 7.4 3.7 14.8
5 0.0 25.0 0.0 37.5 0.0 12.5 25.0
4 0.0 20.0 0.0 40.0 0.0 40.0 0.0
Total 24,1 13.0 11.1 20.4 7.4 7.4 16.7
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COMPARISONS

BETWEEN FGURES WITHIM DEF

K o~ "1' ..('
K *, . )
y “ * s,
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54" 3"

perimeter uiﬁer

Figure 2. Categories of Reasoning Discerned in Answers to
"What is the size of <EDF?"

Subjects employing comparisons between the two
triangles gave one of two answers. Agproximately a quarter
of the subjects correctly answered 60  as the size of <EDF,
giving such reasons as '"They're similar triangles. Even
though the sides are longer, it's still the exact same angle
as the first figure." ©No fourth or fifth graders answered
correctly during the initial interviews. As mjight be
expected, a number of the studengs answered 30, citing
reasons such as "I think it's 30" because <BAG's 60 and I
think EDF is half scale, which would be 30."

Among the subjects considering only triangle DEF to
determine the size of <EDF, those subjects who gave an
answer in degrees appeared. to do so bx estimating the size
of <EDF, usually estimating 45° or 90°.

Most of the subjects could trace the angle with their
finger and had at least a basic understanding of what an
angle was. All had previously used protractors to measure
angles. Surprisingly, over 35% of all subjects gave the
size of <EDF in centimeters. Three categories of answers
were discernible. About 60% of these subjects estimated the
perimeter of triangle DEF, about 207% added together the
lengths of the two sides of angle EDF, and about ?0% gave
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another answer in centimeters.

Various types of explanations were given for giving the
perimeter: "I think the size of angle EDF means like what's
the area and stuff like that. Like how much is there in the
whole thing. ... _This (EF) would be about... let's say 4
centimeters to 6 (DF is labeled 6 cm.). That would be about
10, then 13 (She had previous said DE was 3 centimeters).

It looks about 13 centimeters. 6 plus 4 plus 3. 13
centimeters." or "If you had asked ne what the size of angle
D is, I would say 60°. But you didn't. You asked what the
size of angle EDF is. That means I have to add up the three
sides that enclose angle D."

Two types of reasoning appear-:d to occur among those
students who added together the length of the two sides of
angle EDF (6 cm + 4 cm) to obtain the size of angle EDF (10

cm). One group of subjects believed that you can
angle by measuring the lengths-of its sides. The
group seemed to be following the old rule of when
two numbers and don't know what to do, add them.
labeled 6 cm and they had just determined that DE
Among those subjects who gave other answers,

measure an
other

you have
(DF was
was 4 cm.)
some just

gave 6 cm because it was the only label on the figure.
Others tried to estimate the amount of opening of the angle.
For example, "You measure an angle by how much it's open.
So angle EDF is 5 centimeters. Like when you look at it,
it's kind of... Well, in the third grade, my teacher told me
a little bit about measuring. She said that your
fingernail, you thumb nail is about the same as a centimeter
and when you picture the size of you thumb nail or a
centimeter that you have seen in books. Like from there (E)
to there (F), that's about 5 centimeters.

The second question involving parts of figures which
caused difficulty was:

) (3
. ABCD is a square.
BD is a diagonal.
Name an angle congruent to <ABD.
How do you know?
A B

Many subjects gave expected answers arrived at through valid
reasoning such as "The square is cut in half so <DBC would
be congruent because the corners make a 90 degree angle so
if they're cut in half it would be 45 degrees and they would
be congruent." or "<CDB. Square ABCD was divided into two
congruent triangles placed next to each other with one
reversed, so opposite corners were equal.”

Some subjects were having difficulty with the notation
or were unable to focus on the angle as part of the whole
figure, interpreting <ABD as triangle ABD. In these cases,

~
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their answers were reasonable since they identified the
other triangle in the figure and could justify their answer
by such reasons as "The diagonal cuts the square into two
equal pieces.”" In each case, it was pointed out to the
students that the question read angie ABD, not triangle ABD.
In most cases, they could even properly trace the angle with
their finger, but still seemed to be interpreting the
question as referring to the shape rather than the angle.
Over 30% of the students answered <BCD in this manner, and
another 15% answered <CDB or <CBD correctly, but justified
their choices in such a way that it was obvious that they
were considering congruent shapes rather than angles. This
inability to distinguish part of a figure from the rest of
the figure may also have caused many of the errors in the
previous problem where subjects estimated the perimeter of
the triangle when asked to give the angle measure.

Discussion

Several patterns of thought and misconceptions in
geometry were identified in this study. The influence of
prototype figures in the identification of geometric figures
is strong. Textbook publishers need to illustrate figures
so that their sides are not always parallel to the sides of
the page. Teachers should be careful not to use prototype
figures exclusively when making drawings on the blackboard
or overhead projector and in other work. They should vary
the size and orientation of their figures. Experiences with
cutouts of shapes and LOGO may also be beneficial in
addressing this problem of orientation. Games in which
students sort shapes &according to attributes and classify
figures may be useful. Creating a “family tree' of shapes
will also focus attention on critical attributes.

Subjects also exhibited difficulty in focusing on an
angle embedded in a triangle or square. Additional work is
needed on the identification and labelling of angles and
triangles.

Analysis of the clinical interviews confirmed
Mayberry's rejection of the hypothesis that an individual
demonstrates the same level of thinking in all areas of
geometry included in the school program.

The cognitive structures and developmental levels of
these gifted students seem different from what would be
predicted by the van Hiele theory of geometric
understanding. Their reasoning is typical of at least Level
2 and, in some cases, Level 3 and Level 4 thinking, but many
of them have not mastered Level 0 or Level 1. Deduction is
meaningful to most of them. In fact, many of them can
manipulate symbols without referents according to the laws
of formal logic. However, they have not been exposed to the
""rules of the game" and so do not know how to construct an
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acceptable proof. In addition, they do not know the role of
axioms and definitions and the meaning of necessary and
sufficient conditions.

Criteria which distinguish a figure are determined
artificially by general agreement on the required defining
attributes possessed by the figure rather than on something
innate or inherent in the figure. That is, definitions are
based on invented criteria rather than innate attributes.
For example, it is as reasonable to define isosceles
triangles as triangles having exactly two congruent as it is
te define them as triangles having at least two cengruent
sides. Many of these gifted subjects had not been exposed
to or did not remember what the critical defining attributes
of various figures were. However, they tended to look for
similarities and differences in figures (a characteristic of
subjects who have attained at least Piaget's Stage 2) and
deduce what the defining attributes might be. In other
words, not knowing what the previously established criteria
were, they tried to discover innate attributes which could
provide them with a working definition. The students would
then base their reasoning on these conjectured meanings, no
matter how conceptually inadequate they might be.

Generally, the subjects were consistent, given the
definition they were basing their thinking on, and often
quits sophisticated in their reasoning. When they were
faced with a contradiction or inconsistency, they would
generally fault their definition. Some students would
simply give up at this point, while others would attempt to
change or refine their definition. They enhanced their
definitions as they detected additional information in the
context of subsequent questions as well.

A similar process occurred with terms the students were
not familiar with terms such as congruent. Most subjects
who were unfamiliar with a term attemptted to construct a
meaning out of contextual clues. Once they encountered the
symbol for congruence (=) most students assumed congruent
meant equal. Many appeared to not even notice the tilde.
Students also had a tendency to skip over symbols like A\
(as in ZﬁhABC), < (as in <ABC), and - (as in EF) when
reading them aloud as if the symbols weren't even there.

In dealing with terms they had an existing schema for,
such as the English language definition of "similar”,
students had a tendency to persist in their definitions.
Apparent inconsistencies were often ignored.

Generally, these students were capable of handling
inclusion relationships if they had suitable definitions of
the elements involved, a characteristic of Piaget's Stage 3
as well as van Hiele's Level 2. But an equilateral triangle
can not be an isosceles triangle if you think that an
isosceles triangle has exactly two congruent sides. A
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square isn't a rectangle if a rectangle has two long sides
and two short sides.

While the cognitive structures of these gifted subjects
do not seem to be described well by the van Hiele theory of
geometric understanding, they do need Level 1 and Level 2
experiences in order to provide a foundation for their
reasoning, so that they dec not have to deduce the meaning of
the teérms they encounter and the relationships. Provided
with this additional background, gifted seventh and eighth
graders should be capable of a proof oriented geometry
course.
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