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Abstract

The paper identifies and addresses four methodological

weaknesses common to most previous studies that have used

LISREL confirmatory factor analysis to test for the factorial

validity and invariance of a single measuring instrument.

Specifically, the paper demonstrates the steps involved in (a)

conducting sensitivity analyses to determine a statistically

best-fitting, yet substantively most meaningful baseline model,

(b) testing for partial measurement invariance, (c) testing for

the invariance of factor variances and covariances, given

partial measurement invariance, and (d) testing for the

invariance of test item and subscale reliabilities. These

procedures are illustrated with item response data from normal

and gifted children in grades 5 and 8, based on the Perceived

Competence Scale for Children.
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Testing the Factorial Validity and Invariance of a Measuring

Instrument Using LISREL Confirmatory Factor Analyses:

A Reexamination and Application

In substantive research, an important assumption in

single-group analyses is that the assessment instrument is

measuring that which it was designed to measure (i.e., it is

factorially valid), and in multigroup analyses, that it is

doing so in exactly the same way across independent samples

(i.e., it is factorially invariant). Traditionally, the factor

structure of a measuring instrument has been validated by means

of exploratory factor analysis (EFA), and its invariance tested

by the comparison of EFA factors across groups using diverse ad

hoc procedures (for a review, see Marsh & llocevar, 1985;

Reynolds & Harding, 1983). At this point in time, however, the

limitations of EFA are widely known (see e.g., Fornell, 1983;

Long, 1983; Marsh & Hocevar, 1985), as are the issues related

to tests of factorial invariance based on EFA factors (see

Alwin & Jackson, 1981).

A methodologically more sophisticated and statistically

more powerful technique for such analyses is the confirmatory

factor analytic (CFA) procedure proposed by Joreskog (1969),

and now commercially available through the LISREL VI computer

program (Joreskog & Sorhom, 1985). The LISREL CFA approach
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allows researchers to test a series of hypotheses related to

(a) the factorial validity of an assessment instrument, and (b)

the equivalency of its factorial structure and measurements

across groups. While a number of construct validity studies

have applied the technique to multitrait-multimethod analyses

of assessment measures (e.g., Bachman & Palmer, 1981; Flamer,

1983; Forsythe, McCaghie. & Friedman, 1986; Marsh & Hocevar,

1984; Watkins & Hattie, 1981), few have used it to evaluate the

factorial validity or factorial invariance of a single

measuring instrument; of these, most have been incomplete in

terms of model fitting'procedures and tests of invariance. The

purpose of the present paper, in broad terms, is to address

these limitations in a demonstration of LISREL CFA procedures

for testing the factorial validity and invariance of a single

measuring instrument.

LISREL Confirmatory Factor Analysis

Factor analysis, in general terms, is a statistical

procedure for determining whether covariation among a set of

observed variables can be explained by a smaller number of

latent variables (i.e., factors). In contrast to EFA, where the

only hypothesis tested concerns the number of factors

underlying the observed data (Bentler, 1978), CFA permits the

testing of several hypotheses; the number and degree of

specificity being determined by the investigator. As such,



Factorial Validity

5

based on his/her knowledge of theoretical and empirical

research, the investigator postulates a priori, a particular

factor analytic model and then tests the model to determine

whether or not it is consistent with the observed data;

minimally, model specifications would include the number of

latent factors, the pattern of factor loadings, and relations

among the latent factors.

The LISREL CFA framework incorporates two conceptually

distinct models --- a measurement model and a structural model.

The first of these specifies how the observed (i.e., measured)

variables relate to the underlying latent (i.e., unobserved,

unmeasured) factors; the second specifies relations among the

latent factors themselves. In LISRFI notation, this means that,

typically, the factor loading (lambda, A), error (theta,0) and

latent factor variance-covariance (phi,4 ) matrices are of

primary importance. More specifically, A is a matrix of

coefficients regressed from latent factors to observed

variables, and 0 is the variance-covariance matrix of

error/uniruenesses. These matrices make up the measurement

aspect of the model 4) is the factor variance-covariance matrix
2

and constitutes the structural part of the model. Since a

number of papers are available to readers that (a) specify the

statistical theory underlying LISREL CFA (e.g., Joreskog, 1969;

Long, 1983), (h) outline basic notation and steps in using the
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LISREL program (e.g., Lomax, 1982; Long, 1983; Wolfle, 1981),

and (c) summarize advantages of LISREL CFA over tradition.al EFA

procedures (e.g., Long, 1983; Marsh & Hocevar, 1985), these

details are not provided here.

The.process of validating the factorial structure of a

measuring instrument and then testing for its invariance across

groups involves two separate` analytical procedur.:_:4 the first

is a prerequisite for the second. The initial step entails the

estimation of a baseline model; since this procedure involves

no between-group constraints, the data are analyzed separately

for each group. The baseline model represents the most

parsimonious, yet substantively meaningful And best-fitting

model to the data. Since instruments are often group-specific

in the way they operate, these models are not expected to be

identical across groups. For example, whereas the baseline

model for one group might include correlated measurement errors

and/or secondary factor loadings, this may not be so for the

second group A priori knowledge of such group differences, as

will be illustrated later, is critical in testing for

equivalencies across groups.

Having determined the baseline model for each group, the

investigator may then proceed to tests of factorial invariance.

Since these analyses involve the imposition of constraints on

particu'ar parameters, the data from all groups must be

"
I

...-
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analyzed simulcr'neously to obtain efficient estimates (Joreskog

F. Sorbom, 1985). It is important to note, however, that the

pattern of fixed and free parameters remains consistent with

the baseline model specification for each group. (For a review

of 1.1SqE1. CFA invariance testing applications, see Byrne,

Shavelson A luthim. in nress; for details of the procedure in

general, see Alwin & .Jackson, P)Sl; Byrne et al., in press;

Joreskog, 1971a; Marsh & Nncevar. 1985; Rock, erts & Flaugher,

1978.

A review of previous stdies using CFA LISREL procedures to

validate assessment measures reveals several limitations.

First, with three exceptions (Byrne, in press; Marsh, 1987b;

Tanaka & !Juba, 1984), researchers have not considered alternate

model specifications beyond the one initially hypothesized (see

Benson, 1987; Marsh, 1985, 1987a; Marsh & Hocevar, 1985; Marsh

& O'Neill, 1984; Marsh, Smith & Barnes, 1985). In other words,

researchers have (a) postulated a model, (h) tested its fit to

the observed data. (c) argued for the adequacy of model fit,

and (d) evaluated factorial validity on the basis of this a

priori model. Such validity claims, however, may be considered

dubious for at least two reasons: (a) in many cases, model fit
4

was only marginally good, and (h) these models did not allow

for sample-specific artifacts such as nonrandom measurement

error (i.e., correlated error) and/or secondary factor

V
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loadings, to.findings not uncommon to measures of psycho-

logical constructs (see e.g., Byrne, in press; Byrne &

Shavelson, 1986; 'tuba, Wingard, P. Bentler, 1981; Newcomb, !tuba.

& gentler, 1986; Tanaka 8 uha, 1984). More appropriately,

model fitting should continue beyond the initially hypothesized

model until a statistically. best- fitting model is determined;

additional analyses can then he conducted to establish which

parameters are statistically, as well as substantively

important to the CFA model. In so doing, both practical and

statistical significance are taken into account (Muthen,

personal communication, .January, 1987; see also. Huha et al.,
5

1981; Tanaka A Jiuha, 1984).

While some have criticized such post hoc model-fitting

practices (e.g., llrowne, 1982; Fornell, 1983; MacCallum, 1987),

Tanaka and Huhn (1934) have argued that the process can he

substantively meaningful. For example, if the estimates of

major parameters undergo no appreciable change when minor

parameters are added to the model, this is an indication that

the initially hypothesized model is empirically robust; the

more fitted model therefore represents a minor improvement to

an already adequate model and the additional parameters should

be deleted from the model. If, on the other hand, the major

parameters undergo substantial alteration, the exclusion of the

post hoc parameters may leid to biased estimates (Alwin

9
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Jackson. l9(0; )oreskog, 1983); t'ie minor parameters should

therefore he retnined in the model.

One method of estimating the pra:tical significance of post

hoc parameters is to correlate major parameters (the A 's and

's) in the initially hypothesized model with those in the

best-fitting post hoc model (c.f. Marsh, 1987b). Coefficients

close to 1.00 argue for the stability of the initial model and

thus. the triviality of the minor parameters in the post hoc

model. Tn contrast, coefficients that are not close to 1.00

(say, <.90) are an indication that the major Parameters were

adversely affected, and thus argues for the inclusion of the

post hoc parameters in the final baseline model.

A second limitation of previous research relates to tests

of factorial invariance.. In particular, restnrchers have

conducted such tests at the matrix level only; when confronted

with a noninvariant A, or 4 , they have not continued test:ng to

to determine the aberrant paraneter(s) that contributed to.the

noninvariance (see Benson, 1987; Narsh, 1985, 1987b; Marsh Pt

Hocevar, 1985! Marsh et al., 1985). Consequently, renders arc

left wit!: the impression that given a noninvariant pattern of

factor loadings, further testing of invariance is unwarranted.

This conclusion, however, is unfounded when the model

specification includes multiple indicators of a construct

i0
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(Muthen & Christoffersson, 1981). (For an extended discussion,

review of the literature, and application, see Byrne et al., in

press; for an 1pplicatio, involving dichotomous variables, see

Muthen & Christoffersson, 1981).

In examining factorial validity, partial measurement

invariance is important because it beats directly on further

testing of measurement and/or structural equivalencies. For

example, the researcher may wish to test whither the

theoretical structure of the underlying contruct is equivalent

across groups; the invariance of factor covariances, then, is

c,f primary interest (see e.g., Marsh, 1985; harsh & Ilocevar,

1985). Alternatively, the investigator may be interested in

testing for the invariance of item or subscale reliahilites; in

this case, the invariance of factor variances is of interest

(see Cole & Maxwell, 1985; Rock et al., 1978). In testing for

the invariances of factor variances and covariances, equality

constraints are imposed on only those factor loadings known to

he invariant across groups; this may include all, or only a

portion of the factor loading parameters.

A final limitation concerns studies that have investigated

the invariance of item (Benson, 1987; Marsh, 1985, 1987b; Marsh

& Hocevar, 1985; Marsh et al., 1985) or subscale (Byrne &

Shavelson, 1987) reliahilities across groups. Three additional

studies (Corcoran, 1980; Hare & Mason, 1980; Wolf le &

11
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Robertshaw, 1983) are reported here for sake of completeness;

the focus here, however, was on the equivalence of response

error, rather than on specific test item or subscale

reliabilities. Each of these studies tested fo- the invariance

of measurement reliahlities by placing constraints on both the A

and the 0 parameters. However, this procedure is valid only

when the factor variances are known to be equivalent across

groups (Cole & Maxwell, 1985; Rock et al., 1978). When

variances are noninvariant, it is necessary to check the ratio

of true and error variances in testing for the equivalence of

reliabilities (see Werts, Rock, Linn, r, Joreskog, 1976).

In sum, four methodological weaknesses are evident with

previous LISREL CFA validity studies of measuring instruments.

First, model-fitting procedures have been incomplete in the

determination of adequately specified baseline models. Second,

testing for partial measurement invariance has not been

considered. Third, given the failure to test for, and identify

partially Invariant item scaling units, researchers have not

been able to proceed with testing for the invariance of

structural parameters. Finally, tests for the invariance of

item (or subscale) reliabilities have assumed, rather than

tested for, the equivalency of factor variances. As such,

testing for thP invariance of reliabilities has been

incomplete, and in many cases, incorrectly executed. The

1
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purpose of this paper is to address these limitations by

demonstrating. the steps involved in: (a) conducting a

sensitivity analysis to determine a Iseline model that is

statistically best-fitting, yet substantively most meaningful,

(h) testing for, and testing with partial measurement

invariance, and (c) testing for the invariance of subscale and

item reliabilities.

Application of LISREL Confirmatory Factor Analyses

The Measurina Instrument

The Perceived Competence Scale for Children (Harter, 1982)

is used here for demonstration purposes. This 28-item

self-report instrument measures four facets of perceived

competence: cognitive competence (i.e., academic nbilit),

physical competence (i.e., athletic ability), social competence

(i.e., social acceptance by peers), and general self-worth

(i.e., global self-esteem). Each 7-item subscale has a 4-point

"structured alternative" question format ranging from not very

competenK (1), to very competent (4). (For a summary of

psychometric properties, see Byrne & Schneider, 1988; Harter,

1982).

Data Base

Data for the present demonstration came from a larger study

that examined social relation differences between gifted

13
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students and their non- ;.gifted peers (see Schneider, Clegg,

Byrne, Ledinglicim, & Crombie, in press), Following listwist

deletion of missine data, the sample for the present paper

comprised 241 grade 5 (129 normal, 112 gifted) and 230 grade }

(113 normal, 117 gifted) children from the two public school

systems in Ottawa, Canada. Overall, an examination of item

skewness and kurtosis revealed a distribution that was

approximately normal for each group (see Muttic.n & Kaplan,
s

1985). (For details concerning descriptive statistics,

selection criteria and sampling procedures, see Byrne r,

Schneider, 1938).

Analysis of the Data

Analyses are conducted in two major stages. First, the

factorial validity of the PCSC is tested separately for grades

5 and 8 in the normal and gifted samples, and a baseline model

established for each of the four groups. Second, tests for the

factorial invariance of item responses across grade are

cono_cted separately for the normal and gifted samples.

Analyses are based on an item-pair structure (with the

exception of one item in each subscale). As such, the seven

items in each subscale are paired off, with items 1 and 2

forming the first couplet, items 1 and 4 the second couplet,

and items 5 and 6 the third couplet; item 7 remains a

singleton. The decision to use item-nairs was based on two

14
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primary factors.: "ct) the low ratio of number of subjects per

test item for each subsample, and (b) preliminary EFA results

derived from single-item analyses indicating, for the most

part, that items were reasonably homogeneous in their

domain-specific measurements of perceived competence (see Byrne

& Schneider, 1988). Furthermore, Marsh, Barnes, Cairns, &

Tidman (1984) have argued that the analysis of item-pairs is

preferable to single items for at least four additional reasons

--- item-pair variables are likely to: (a) he more reliable,

(h) contain less unique variance since they are less affected

by the idiosyncratic wording of individual items, (c) he more

normally distributed, and (d) yield results having a higher

degree of generalizahility.

The CFA model in the present study hypothesizes a priori

that: (a) responses to the PCSC can he explained by four

factors, (b) each item-pair (and item singleton) has a non-zero

loading on the perceived competence factor that it is designed

to measure (i.e., target loading), and zero loadings on all

other factors (i.e., non-target loadings). (c) the four factors

are correlated, and (d) error/uniqueness terms for the

item-pair (and item singleton) variables are uncorrelated.

Parameter specifications are sumnarized in Table 1.

1 J
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Covariance structure analysis has traditionally relied on

the X2 'likelihood ratio test as a criterion for assessing the

extent to which a proposed model fits the observed data; a

nonsignificant e indicates a well-fitting model. However, the

sensitivity of the e statistic to sample size, as well as to

various model assumptions (i.e., linearity, multinormality,

additivity) are now well known (see e.g., Bentler & Bonett,

1980; Fornell, 1983; Huba & Harlow, 1987; Joreskog, 1982; Pia-sh

& Ilocevar, 1985; Muth6n & Kaplan, 1985; Tanaka, 1987). As an

alternative to x2 , other goodness-of-fit indices have been

proposed (see e.g., Bentler & Bonett, 1980; Hoelter, 1983;

Tanaka & !tuba, 1985; Tucker & Lewis, 1973). Researchers,

however, have been urged not to judge model fit solely on the

basis.of X2 values (Bentler & Bonett, 1980; Joreskog & Sorhom,

1985), or on alternative fit indices (Sobel & Bohrns'cedt,

1985); rather, assessments should be based on multiple

criteria, including "substantive. theoretical and conceptual

consid! rations" (Joreskog, 1971, p. 421; see also, Sobel &

Bohrnstedt, 1985).

Assessment of model fit in the present example is based on

(a) the X2 likelihood ratio test, (b) the X2 /df ratio, (c)

16
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T-values, normalized residuals and modification indices

provided by LTSREI, VI :and (d) knowledge of substantive and

theoretical research in this area.

Fittinft the Baseline Model

Since parameter specifications for the hypothesized

4-factor model do not include equality constraints between

various subsamples, all analyses are pc4-formed on the observed

correlation matrix for each group. Results of the model-fitting

process are reported in Tables 2 and 3 for the normal and

gif,..A samples, respectively.

Normal sample. As shown in Table 2, the initial model

(Hodel 1) represented a fairly reasonable fit to the observed

data for grade 5 students ( X2/df .. 1.55). Nonetheless, an

examinaton of the modification indices revealed three

off-diagonal values in the 0 matrix that were greater than 5.00

(see Joreskog & Sorbom, 1985). These parameters represented

error covariances between item variables, both within (PSC4,

PSC2) and across (PPC4, PSC/3; PCC1, PGS3) subscale s. Such

findings, as noted earlier, are often encountered with models

of psychological phenomena, but are particularly evident when

the model represents items (i.e., observed variables) and

subscale factors (i.e., latent variables) from a single

measuring instrument (see e.g., Byrne, in press; Byrne &

Shavelson, 1987); error covariances in these instances are

1 7
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considered substantively plausible since they indicate

nonrandom error introduced by a particular measurement method

such as item format.

Insert Table 2 about here

To determine the statistical and practical significance of

these error covariances, then, model fitting continued with the

specification of three alternative models (Models 2-4). In each

model, the error covariance in question was specified as a

free, rather than as a fixed parameter. Since a difference in X
2

( 42) for competing (i.e., nested) models is itself X2 --

distributed with degrees of freedom equal to the difference in

degrees of freedom, this indicator is used to judge whether the

reestimated model resulted in a statistically significant

improvement in fit. Model 4 ultimately yielded the model of

best fit (X295= 117.57, £>.05;X2 /df = 1.24) and also

demonstrated a significant improvement in fit (421 = 8.96,

_e.01.

However, given the known sensitivity of the X2 statistic

discussed earlier, some researchers have preferred to look at

differences between (a) the absolute magnitude of estimates

(Werts et al., 1976), (b) the magnitude of estimates expressed

as X2/df ratios (see e.g., Marsh & Ilocevar, 1985), or (c) the

1
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x2/df ratios of nested models, as a more realistic index of

model improvement (see e.g., Harsh, 1985, 1987b). An

examination of differences between the e/df ratios in the

present data showed values of .11, .12 and .09 (Models 2-4,

respectively), suggesting that the impact of the post hoc

parameters on the specified model was fairly trivial. This

notion was supported by three additional pieces of evidence.

First, the error covariance estimates, while statistically

significant (T-values > 2.00), were of relatively minor

magnitude (mean 0 = .06). Second, visual inspection of the

factor loadings and factor covariances in Models 1 and 4

revealed little fluctuation in their estimated values. Third,

the factor loadings in Model 1 were highly correlated with

those in Model 4 (r . .95); likewise, for correlations computed

between the factor variance-covariances (r = .99). Since the

addition of the error covariance parameters to the model

altered neither the m-asurement parameters (see Bagozzi, 1983),

nor the structural parameters (see Fornell, 1983), their impact

on the model was clearly trivial. These resalts thus verified

the parameter stability of the initially hypothesized model;

Model 1 was, therefore, considered as baseline for grade 5 in

all subsequent analyses.

The hypothesized 4-factor model for grade 8, as shown in

Table 2, represented a good fit to the data ( X2/df = 1.35).

1 :1
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Although an examination of the modification indices suggested

possible model-fit improvement if error terms between two item

variables were allowed to covarv, the fit differential was not

statistically significant ( 421. 3.33, V.05); Model 1,

therefore, was considered basiline for the grade 8 normal

sample.

Gifted sample. Model-fitting results for the gifted

differed substantially from those for their normal peers. These

results are presented in Table 3. Let us look first at the fit

statistics for grade 5. We can see that the initially

hypothesized 4-factor model (Model 1) does not represent a

2particularly good fit to the data (X 98 = 160.43). To

investigate the misfit, model fitting proceeded as before with

the normal sample. A substantial drop in e was found when item

PPC4 ( 421= 25.57, 2<.001) and item PGS4 (421= 17.99, 2<.001)

were free to cross-load on the social (PSC) and cognitive (PCC)

factors, respectively.

Insert Table 3 about here

In contrast to the post hoc error covariances encountered

with the normal sample, these parameters represented fairly

major alterations to the initial 4-factor model and hear

importantly on the factorial validity of the Harter instrument.
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The decision to accept Model 3 as aseline for the grade 5

gifted was based on three primary consilerations. First,, the

secondary loadings of PPC4 on the PSC factor ( A ), and PGS4
16 / 3

on the PCC factor ( A
42 ) were both highly significant (T-values

= 4.97;. 4.09, respectively) and of fairly high magnitude (A =

.61; .65, respectively). Second, the factor loading correlation

between Models 1 and 3 was .6R, suggesting that the Model 1

measurement estimates were somewhat unstable; the structural

parameters, on the other hand, appeared to be very stable (r .

99). Finally, the findings were consistent with an earlier FIFA

of

pa

the data which indicated evidence of the same cross-loading

ttern (see Byrne & Schneider, 1988).

A review of the model-fitting results for grade 8 (see

le 3) reveals the secondary factor loadings noted earlier,Tab

to be common to both groups of gifted students. However, a

well-

when

fitting model for the grade 8 subsample was realized only

two further restrictions on the hypothesized model (Model

1) wer

Item 4

e relaxed; these included one error covariance between

and Item -pair 1 on the perceived cognitive competence

e (PCC4, PCC1; Ax21= 25.74. 2.<.001) and one secondarysubscal

factor 1

Foll

(lading (P(;S2 on PSC; 421. 14.14, y.001).

owing these analyses, Model 5 was considered baseline

for the g

decision

rade 8 gifted. As with the previous subsamples, this

was linked to several factors. First, the secondary

ri

4.
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loadings of PPC4, PCS4 and PCS2 on the PSC, PCC and PSC

factors, respectively, were statistically significant (TL.values

= 4.74, 4.05, 3.80, respectively); the factor loading estimates

were also of substantial magnitude ( A = .45, .35, .34,

respectively). Second, the error covariance estimate, unlike

those for the normal sample, was highly significant (T-value =
.

5.76) and fairly large ( 0 = .43); given the size of this

estimate, it was considered risky to constrain the parameter to

zero since this specification could have an important biasing

effect on other parameters in the model (Alwin & Jackson, 1980;

Joreskog, 1983). Third, fluctuation of the factor loading

estimates, albeit more modest than for grade 5, was evident

between Models 1 and 5; this instability was verified by a

correlation of .87 between A parameters in the two models; as

with the grade 5 findings, the structural parameters were shown

to he fairly stable (r = .94). Finally, the cross-loading of

factors for the grade 8 sample was consistent with findings by

Byrne and Schneider in the EFA study noted earlier.

Testing for Invariance

Tests of invariance involved specifying a model in which

certain parameters were constrained to be equal across groups

and then comparing that model with a less restrictive model in

which these parameters were free to take on any value. As with

model-fitting, the 42between competing models provided a basis

r.,9
...,
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for determining the tenability of the hypothesized equality

constraints; a significant 42 indicating noninvariance. .Unlike

the model-fitting analyses, however, the simultaneous

estimation of parameters was based on.the covariance, rather

than on.the correlation matrix for each group (see Joreskog &
7

Sorbom, 1985). For purposes of the present demonstration,

invariance-testing procedures are applied to the gifted sample

only, since it is the more interesting of the two samples in

terms of model specification; analyses focus on equivalencies

across grades 5 and 8. We first test for the equality of item

scaling units (i.e., factor loadings; A's), components of the

measurement model. Once we have determined which item pairs

(and/or single items) are invariant, we can then proceed with

tests for the equality of subscale (i.e., factor) covariances,

components of the structural model. Finally, we test for the

equality of subscale and item reliabilities.

As noted earlier, once baseline models are determined, any

discrepancies in parameter specifications across groups remain

so throughout the analyses. in the present application, for

example, the secondary loading in the A matrix (A
23

), and the

error covariance in the 0 matrix
(e 85

) for grade 8, remained

unconstrained for all tests of invariance. A summary of the

baseline model parameter estimates for the grades 5 and 8

gifted are summarized in Tables 4 and 5, respectively.
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Insert Tables 4 and 5 about here

Equality of item scaling units. Since the initial

hypothesis of equality of covariance matrices was rejected ( X
2

136

. 209.81, .e.001), invariance testing proceeded, first, to test

the equivalence of item scaling units. These results are

summarized in Table 6.

Insert Table ( about here

The simultaneous 4-factor solution for each group yielded a

reasonable fit to the data (X2190 232.08). These results

suggest that for both grades, the data were well described by
a

the four perceived competence factors. This finding, however,

does not necessarily imply that the actual factor loadings are

the same across grade. Thus, the hypothesis of an invariant

pattern of loadings was tested by placing equality constraints

on all lambda parameters (including the two common secondary

loadings, A ly and A 42' but excluding X23, the secondary factor

specific to grade 8), and then comparing this model (Model 2)

with Model 1 in which only the number of factors was held

A
invariant. The difference in X

2
was highly significant (L1X

2

38.93. 2<.001); thus, the hypothesis of an equivalent pattern
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of scaling units was untenable.

In orderto identify which scaling units were noninvariant,

and thus detect partial measurement invariance, it seemed

prudent to first determine whether or not the two common

secondary loadings were invariant across grade. As such,

equality constraints were imposed on Aim Aand 42, and the model

AX2reestimated; this hypothesis was found tenable ( 2= 5.10,

.0.05). Tests of invariance proceeded next to (a) test each

congeneric set of scaling units (i.e.; parameters specified as

loading on the same factor) and then, given findings of

noninvariance, to (h) examine the equality of each item scaling

unit individually. For example, in testing for the equality of

all scaling units measuring perceived general self (PGS),
A21 ' A316

A
41 '

as well as A
162and A42were held invariant across groups.

Given that this hypothesis was untenable ( Ax25 24.66, 2<.001),

each factor loading (A ,A,A) was tested independently to
21 3 1 Id

determine whether it was invariant across grade; Almand A42 were

also held concomitantly invariant. These analyses detected one

item scaling unit (PGS2; A
21

) to he nonirvariant across grade.

In a similar manner, the scaling units of all remaining

item pairs (or singletons) were tested for invariance across

grade. As can he seen in Table 6, invariant factor loadings

were held cumulatively invariant, thus providing an extremely

powerful test of factorial invariance. In total, only two item
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scaling units were found to he nonequivalent --- one item pair

measuring perceived general self (PGS2; A ) and one single item
21

measuring perceived social competence (PSC4; A ).
12,3

Equalit of factor covariances. The first step in testing

for the. invariance of structural relations among subscales was

to constrain all factor covariances to be equal across grade.

Equality constraints were subsequently imposed, independently,

on each of the phi parameters. It is important to note that

partial measurement invariance was maintained throughout these

testing procedures. In other words, the following measurement

parameters were held invariant while testing for the equality

of the factor covariances: the two common secondary factor

loadings (A ,A ), and all factor loadings except), and A
16,3 42 21 ud

The hypothesis of equivalent factor covariances was found
9

tenable ( AX2
6
.. 5.12, .V.05). If, on the other hand, the

hypothesis had been found untenable, the researcher would want

to investigate further, the source of this noninvariance..Thus,

as demonstrated . ,h tests of item scaling units, he/she would

proceed to test. independently, each factor covariance

parameter in the matrix; model specification, of course, would

include the partially invariant measurement parameters.

Equality of reliat.ilities. Generally speaking, in

multiple-indicator CFA models, testing for the invariance of

reliability is neither necessary (Joreskog, 1971b), nor of
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particular interest when the scales are used merely as CFA

indicators and not as measures in their own right, ignoring

reliability (Authf,n, personal communication, October, 1987).

Althou0 Joreskog (1971a) demonstrated the steps involved in

testing for a completely invariant model (i.e., invariant A,t

and 0), this procedure is considered an excessively stringent

test of factorial invariance (Muthlan, personal communication,

January 1987). In fact, Joreskog (1971h) has shown that while

it is necessary that multiple measures of a latent construct be

congeneric (i.e., believed to measure the same construct), they

need not exhibit invariant variances and error/uniquenesses

(see also, Alwin & Jackson, 1980).

When the multiple indicators of a CFA model represent items

from a single measuring instrument, however, it may be of

interest to test for the invariance of item reliabilities. For

example, this procedure was used by Benson (1987) to detect

evidence of item bias in a scale designed to measure

self-,:oncept and racial attitudes for samples of white and

black eighth grade students, and by Munck (1979) to determine

whether the item reliability of items comprising two

attitudinal measures were equivalent across different nations.

In contra-t to the conceptual definition of item bias generally

associated %.;th cognitive instruments (i.e., individuals of

equal ability have unequal probabilit.y of success), item bias
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related to affective instruments reflects on its validity, and

hence, on the question of whether items generate the same

meaning across groups; evidence of such item bias is a clear

indication tit the scores are differentially valid (Green,

1975).'

In the present example, the invariance of factor variances

was tested first, in order to establish the viability of

imposing equality constraints on the A and 6 for each item or

whether, in light of nonequivalent factor variances, invariance

testing should be based on the ratio of true and error

variances (see Cole & tlaxwell, 1985; Rock et al., 1978). The

hypothesis of equivalent factor variances was found tenable

( Ile 40 5.20, V.05; see Footnote 10). As such, the reliability

Jf each item pair (or singleton) was tested for invariance

across grade by imposing equality constraints on the respective

A and 0 parameters; as with previous tests of item scaling units,

equally reliable items were held cumulatively invariant

throughout the testing sequence. These results are summarized

in Table 7.

Insert Table 7 about here

Tests of invariance proceeded, first, by testing for the

equivalency of each subscale; only the Perceived Cognitive

2g
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Competence subscale (PCC) was found to be equivalent across

grade (AX2, is 8.49, 2>.05). Subsequently, the reliability.
io

equivalency of each item pair (or singleton) was tested. Had

tests of invariance revealed the factor variances to be

nonequivalent, on the other hand, it would have necessary to

test for item reliability by examining the ratio of true and

error score variances (
0

). (For an explanation of this

procedure, see Hunck, 1979; Werts et al., 1976).

Conclusion

While the use of LISREL CFA procedures is becoming more

prevalent in construct validity research in general, relatively

few studies have applied this approach to the validation of

single measuring instruments, in particular. However, of the

studies that have used the procedure for testing the factorial

validity and invariance of a single instrument, most share four

methodological weaknesses; these relate to the failure: (a) to

determine an adequately specified baseline model, (b) to test

for partial measurement invariance, (c) to test for the

invariance of structural parameters, given partially invariant

item scaling units, and (d) to test for the equivalence of

factor variances prior to testing for the invariance of test

item reliabilities.

The present paper addressed these limitations in an

application to data comprising self-report responses to the

2 9
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Ilarter (1982) Perceived Competence Scale for Children by grades

5 and 8 normal and gifted children. Specifically, the paper

demonstrated the steps involved in (a) the conduct of

sensitivity analyses to determine a statistically best fitting,

yet substantively most meaningful baseline model, (b) testing

for partial measurement invariance, (c) testing for the

invariance of factor variances and covariances, given partial

measurement invariance, and (d) testing for the invariance of

test item and subscale reliabilities. These procedures,

historically, have received scant attention in the literature.

It is hoped that the present illustration will be helpful in

providing guidelines to future LISREL CFA research bearing on

the construct validity of an assessment instrument.
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Footnotes

1. If tests of factor means are of interest, the measurement

model would also include the regression intercept (nu,v ), a

vector of constant intercept terms. In the basic CFA model,

however, variable means are not of interest since they are

neither structured or explained by the constructs (gentler,

1978).

2. For the same reason as noted in Footnote 1, the gamma (r), a

vector of mean estimates, is not included in the structural

model.

3. Secondary loadings are measurement loadings on more than one

factor.

4. The absolute X2/df ratio value that represents a reasonable

fit to the data remains a controversial issue. For example,

Muthen (personal communication, October, 1987) contends that

a X
2
/df ratio >1.50 indicates a malfitting model for data

that are normed to a sample size of 1000. On the other hand,

Carmines and McIver (1981) argue that an acceptable X 2 /di

ratio can range as high a., 3.00. Taking a midpoint between

these two extremes, it seems likely that, with sample sizes

less than 1000, a coefficient >2.00 is a fairly good

indication of model misfit.

19
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5. This post hoc fitting procedure has been referred to as

tests for "substantive invariance" (Tanak. & Huhn, 1934) and

as "sensitivity analyses" (gyrne et al., in press).

6. Mean skewness and kurtosis values were as follows: normal

(grade 5, SK = -.47. ..0i = -.79; grade 8, SK = -.38, KU =

-.46): gifted (grade 5, SK = _.33, KU = -.50; grade 3, SI: =

-.46, KU = .01).

7. The reader is advised that if start values were included in

the initial input, these will likely need to be increased in

order to make them compatible with covariance, rather than

correlation values.

fl. Since X2and its corresponding degrees of freedom are

additive, the sum ofx2's (see Table 6) reflects how well the

underlying factor structure fits the data across groups.

9. This model was compared with one in which all items known to

be invariant were constrained equal across grade (Model

12, see Table 6).

10. Although the PCC subscale, as a whole, was found to be

invariant, tests of individual item parameters revealed the

first item pair (PCC1) to he noninvariant; this illustrates

the possibility of masking information when analyses are

conducted at the more macroscopic subscale level.
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Table 1

Pattern of LISREL Parameters for Model Fitting

A

PGS1

PGS2

PGS3

PGS4

PCC1

PCC2

PCC3

PCC4

PSCI

PSC2

PSC3

PSC4

PPC1

PPC2

PPC3

LPC4

PGS

PCC

PSC

CPC

/ix

El

la

A
21

$ A

31

A
41

0

0

0

0

0

0

0

0

0

0

0

[1

t2 E3 t4

0 0 0

0 0 0

0 0 0

0 0 0

la 0 0

A
62

0 0

)*72
0 0

A
82

0

0 la 0

0 A
10,3

0

0 A
11,3

0

0 A
12,3

0

0 0
la

0 0 A 14,4

0 0 A
15,4

0 0 A
16,4...

0
22

.
32 33

.
42 .43 0

44
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PGSI

PGS2

PGS3

PGS4

PCC1

PCC2

PCC3

PCC4

PSC1

PSC 2

PPC4

PPC1

PPC2

PPC3

PPC4

6

611

0 6
22

0 0 -6 33

0 0 0 6
44

0 0 . 0 0 6
55

0 0 0 0. 0 6
66

0 0 0. 0 0 0 6
77

0 0 0 0 0 0 0 6
88

0 0 0 0 0 0 u 0 6
99

0 0 0 0 0 0 0 0 0 6
10,10

0 0 0 0 0 0 0 0 0 0 6
11,11

0 0 0 0 0 0 0 0 0 0 0 6
12,12

0 0 0 0 0 0 0 0 0 0 0 0 613,13
0 0 0 0 0 0 0 0 0 0 0 0 0 6

14,14.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
15,15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
16,16

aFixed parameter

X = observed item measures for the Perceived Competence Scale. for Children

(PCSC); El - E4 '= perceived competence subscales (i.e. factors) of he PCSC

(t
1

= perceived genteel self.
' 2 '

= perceived cognitive competence; E3 = perceived

social competence; E4 perceived physical competence); A = factor loading matrix;

= factor variance - covariance matrix; 66 error varian a - covariance matrix.

PGS1-GS3 = paired items #4/b, 12/16, 20/24 measuring perceived general self

(PGS); PGS4 = item #28 measuring PGS; PCC1-PCC3 = paired items #1/5, 9/13, 17/21

measuring perceived cognitive competence (PCC. PCC4 = item #25 measuring PCC;

PSC1-PSC3 = paired items #2/6, 10/14, 18/22 measuring perceived social

competence (PSC); PSC4 = item #26 measuring PSC; PPC1-PPC3 = paired items #3/7,

11/15, 19/23 measuring perceived physical competence (PPC); PPC4 = item #27

Aa.
42
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Table 2

Steps in Model Fitting for the Normal Sample

df ax2 tdf x2IdirCompeting Models X
2

Grade 5

1 Basic 4- factor modela 152.26 98 .00 --- --- 1.55

2 Model 1 with correlated error 139.45 97 .00 12.81*** 1 1.44

between PPC4 and PSC3

3 Model 2 with correlated error 126.53 96 .02 12.92*** 1 1.32

between PSC4 and PSC2

4 Model 3 with correlated error 1:7 57 95 .06 8.96** 1 1.24

between PCC1 and PGS3

Grade 8

1 Basic 4-factor modela 132.13 98 .01 --- - -- 1.35

2 Model 1 with correlated error 120.55 97 .05 3.33 1 1.24

between PGS4 and PGS3

* *p < .01
***

p < .001

aFinal model conbidered as baseline

PPC4 Item #27 measuring perceived physical competence; PSC3 = Paired items #18

and #22 measuring perceived social competence; PSC4 - item #26 measuring

perceived vecial competence; PSC2 Paired items #10 and #14 measuring perceived

social competence; PCC1 Paired items #1 and #5 measuring perceived cognitive

competence; PGS3 Paired items #20 and #24 measuring perceived general self;

PGS4 - item #28 measuring perceived general self.
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Table 3

Steps in Model Fitting for lifted Sample

Competing Models X
2 df

1 Basic 4-factor model

2 Model 1,with PPC4 loading

on PSC

3 Model 2 with PGS4 loading

on PCC

1 Basic 4-factor model

2 Model 1 with PPC4 loading

on PSC

3 Model 2 with correlated

error between PCC4 and PCC1

4 Model 3 with PGS4 loading

on PCC

5 Model 4 with PGS2 loading

on PSCa

Factorial Validity
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Grade 5

160.43 98 .00 --- --- 1.64

134.86 97 .00 25.57*** 1 1.39

116.87 96 .07 17.99*** 1 1.22

Grade 8

197.77 98 .00 - -- 2.20

175.66 97 .00 22.61*** 1 1.81

149.42 96 .00 25.74*** 1 , 1.56

129.35 95 .01 20.07*** 1 1.36

115.21 94 .07 14.14*** 1 1.23

***p < .001

aFinal model considered as baseline

PSC = perceived socia: competence factor; PCC = perceived cognitive competence

factor; PPC4 = item #27 measuring perceived physical competence; PGS4 = item #28

measuring p eived general self; PCC4 = item #25 measuring perceived cognitive

competence; PCC1 = Paired items #1 and #5 measuring perceived cognitive

competence; PGS2 = Paired items #12 and #16 measuring perceived general self.



Factorial Validity

44

Table 4

Baseline Model Paiameter Estimates for Grade S Gifteda

Measured Subscale Factors

Item Variables
b

PGS PCC PSC PPC Error/Uniqueness

POI .72 0 0 0 .48

PGS2 .85 0 0 0 .28

PGS3 .83 0 0 0 .32

PGS4 .22 .46 0 0 .62

PCC1 0 .72 0 0 .49

PCC2 0 .69 0 0 .52

PCC3 0 .69 0 0 .53

PCC4 0 .73 0 0 .47

PSC1 0 0 .78 0 .39

PSC2 0 0 .66 0 .56

PSC3 0 0 .76 0 .42

PSC4 0 0 .61 0 .62

PPC1 0 0 0 .76 .43

PPC2 0 0 0 .79 .38

PPC3 0 0 0 .82 .33

PPC4 0 0 .47 .30 .57

Subscale (Factor) Correlations

PGS -

PCC .56 -

PSC .61 .42 -

PPC .31 .33 .43 -

a
Factor loadings and factor correlations are presented in standardized form to

b

facilitate interpretation.

Item variables 1-3 represent the first six items of each subscale, paired

consecutively; item variable 4 represents fte seventh item of each subscale.

PGS = perceived general self; PCC = perceived cognitive competence; PSC =

perceived social competence; PPC = perceived physical competence.
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Table 5

Baseline Model Parameter Estimates for Grade 8 Gifteda

Measured Subscale Factors

Item Variables
b

PGS PCC PSC PPC Error/Uniqueness

PGS1 .88 0 0 0 .23

PGS2 .63 0 .28 0 .37

PGS3 .91 0 0 0 .18

PGS4 .58 .30 0 0 .46

PCC! 0 .88 0 0 .23

PCC2 0 .66 0 0 .57

PCC3 0 .65 0 0 .58

PCC4 0 .89 0 0 .21

PSC1 0 0 .82 0 .33

PSC2 0 0 .83 0 .32

PSC3 0 0 .87 0 .24

PSC4 0 0 .55 0 .70

PPC1 0 0 0 .83 .31

PPC2 0 0 0 .89 .22

PPC3 0 0 0 .37 .22

PPC4 0 0 .37 .55 .38

Subscale (Factor) Correlations

PGS -

P'" .33 -

PSC .43 .16 -

PPC .40 .15 .45

a
Factor loadings and factor correlations are presented in standardized form to

facilitate interpretation.
b
Item variables 1-3 represent the first six items of each subscale, paired

consecutively; item variable 4 represents the seventh item of each subscale.

PGS perceived general self; PCC = perceived cognitive competence; PSC =

perceived social competence; PPC = perceived physical competence.
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Table 6

Tests for Invariance of Item Scalin Units Across Grade for the Gifted

Competing Model X
2. df Ax2 Adf x

2/df

1 Four perceived 232.08 190 ---

factors invariant

--- 1.22

2 Model 1 with all factor 271.01 204 38.93***

loadings invariant'

14 1.33

3 Model 1 with 2 common k37.18 192 5.10

secondary loadings

invariant

2 1.24

4 Model 3 with all PGS 256.74 195 24.66***

factor loadings invariant

5 1.32

5 Model 3 with PGS2 254.33 193 22.25*** 3 1.32
.

invartant
b

6 Model 3 with PGS3 239.47 193 7.39

invariant

3 1.24

7 Model 3 with PGS3, 240.37 194 8.29 4 1.24

PGS4 invariant

8 Model 7 with all PCC 244.35 197 12.27

factor loadings invariant

7 1.24

9 Model 8 with all PSC 251.37 200 19.29*

factor loadings invariant

10 1.28

10 Model 8 with PSC2 245.20 198 13.12

invariant

8 1.24

11 Model 8 with PSC2, 245.45 199 13.37 9 1.23

PSC3 invariant

12 Model 11 with all PPS 248.69 202 16.61

factor loadings invariant

12 1.23

*p < .05 ***p < .001
a.
Including the 2 common secondary factor loadings

b
The first item-pair loading for each factor was fixed to 1.0 for purposes of

statistical identification. PGS = perceived general self; PCC = perceived

cognitive competence; PSC = perceived social competence; PPC = perceived

physical competence.
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Tests for Invariance of Subscale and Item Reliabilities
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Across Grade for the

x2/df

Gifted

X
2 df Ax2 AdfCompeting Model

1. Two common secondary factor

loadings invariant

237.18 192 1.24

116,3 142

Subscales

2. PGS subscale Model 1 with 269.84 199 32.66*** 7 1.36

X
11

- 141 and 6
11

- 6
44

invariant

3. PCC subscale Model 1 with 245.67 199 8.49 7 1.23

152 - 182
and 6

55
- 6

88

invariant

4. PSC subscale Model 1 with 272.83 206 35.65** 14 1.32

A
93

- 112,3 and 899 12,12

invariant

5. PPC subscale Model 1 with 269.29 206 32.11** 14 1.31

113,4 - 116,4
and 6

13,13
- 6

16,16

invariant

Items

6. Model 1 with 241.23 193a 4.05* 1 1.25

111 and 6
11

invariant

7. Model 1 with 254.76 194 17.58*** 2 1.31

121 and 6
22

invariant

8. Model 1 with 246.48 194 9.30** 2 1.27

A
31

and 6
33

invariant
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df Adf Adf X2 /di

9. Model 1 with 242.88 194 5.70 2 1.25

A
41

and 64
4

invariant

10. Model 9 with 245.56 195a 8.38* 3 1.26

A52. and
655

invariant

11. Model 9 with 244.82 196 7.64 4 1.25

A
62

and 6
66

invariant

12. Model 11 with 245.08 198 7.90 6 1.24

A
72

and 6
77

invariant

13. Model 12 with 249.19 200 12.01 8 1.25

A
82

and 6
88

invariant

14. Model 13 with 249.19 201a 12.01 9 1.24

A
93

and 6
99

invariant

15. Model 14 with 254.92 203 17.74 11 1.26

A
10.3

and 6
10,10

invariant

16. Model 15 with 265.15 205 27.97** 13 1.29

111,3
and 6

11,11

invariant

17. Model 15 with 266.52 205 29.34** 13 1.30

112,3
and 6

12,12

invariant

18. Model 15 with 258.14 204a 20.96 12 1.27

113,4
and 6

13,13

invariant

19. Model 18 with 266.25 206 29.07* 14 1.29

114,4
and 6

14,14

invariant .
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tdf X2 /df

20. Model 18 with 261.04 206 23.86* 14 1.27
X
15,4

and 6
15,15

invariant

21. Model ie with 264.40 206 27.22* 14 1

A
16,/1

and 6
16,16

invariant

28

*p < .05 **p < .01 ***p < .001

a
difference in degrees of freedom equals one due to first loading for

being fixed to 1.00.

PGS =perceived general se ; PCC perceived cognitive competence;
social competence; PPC perceived physical competence.

J 0

ach factor

PSC =perceived

'. 1.


