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Abstract

The paper identifies and addresses four methodological
weaknesses common to most previous studies that have used
LISREL confirmatory factor analysis to test for the factorial
validity and invariance of a sinple measuring instrument.
Specifically, the paper demonstrates the steps involved in (a)
conducting sensitivity analyses to determine a statistically
best-fitting, yet substantively most meaninpful baseline model,
(b) testing for partial measurement invariance, (c) testing for
the invariance of factor variances and covariances, given
partial measurement invariance, and (d) testing for the
invariance of test item and subscale reliabilities. These
procedures are illustrated with item response data irom normal
and gifted children in grades 5 and 8, bhased on the Peizeived

Competence Scale for Children.
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Testing the Factorial Validity and Invariance of a Measuring
Instrument Using LISREL Confirmatory Factor Analyses:

A Reexamination and Application

In substantive research, an important assumption in
single-group analyses is that the assessment instrument is
measuring that which it was désianvd to measure (i.e., it is
factorially valid), and in multigroup analyses, that it is
doing so in exactly the same way across independent samples
(i.e., it is factorially invariant). Traditionally, the factor
structure of a measuring instrument has bheen validated by means
of exploratory factor analysis (EFA). and its invariance tested
by the comparison of EFA factors across groups using diverse ad
hoc procedures (for a review, see Marsh & llocevar, 1985;
Reynolds & Harding, 1983). At this point in time, however, the
limitations of EFA are widely known (see e.g., Fornell, 1983;
Long., 1983; Marsh & Hocevar, 1985), as are the issues related
to tests of factorial invariance based on EFA factors (see
Alwin & Jackson, 1981).

A methodologically more sophisticated and statistically
more powerful technique for such analyses is the confirmatory
factor analytic (CFA) procedurce proposed by Joreskog (1969),
and now commercially availtho through the LISREL VI computer

program (Joreskog & Sorhbom, 1985). The LTSREL CFA approach
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allows researchers to test a sevies of hypotheses related to
(a) the factoriél validity of an assessment instrument, aqd (b)
the equivalenc; of its factorial structure and measurements
across groups. While a number of construct validity studies
have applied the technique to multitrait-multimethod analyses
of assessment measures (e.g., Bachman & Palmer, 1981; Flamer,
1983; Forsythe, McGaghie, & Friedman, 1986; Marsh & Hocevar,
1984; Watkins & Hattie, 1981}, few have used it to evaluate the
factorial validity or factorial invariance ;f a single
measuring instrument; of these, most have been incomplete in
terms of model fitting procedures and tests of invariance. The
purpose of the present paper, in broad terms, is to address
these limitations in a demonstration of LISREL CFA procedures
for testing the factorial validity and invariance of a single
measuring instrument.
LISREL Confirmatory Factor Analysis

Factor analysis, in general terms, is a statistical
procedure for determining whether covariation among a set of
observed variables can be explained by a smaller number of
latent variables (i.e., factors). In contrast to FFA, where the
only hypothesis tested concerns the number of factors
underlying the observed data (Bentler, 1978), CFA permits the

testing of several hypotheses; the number and degree of

specificity being determined by the investigator. As such,
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based on his/her knowledge of theoretical and empirical
research, the investigator postulates a priori, a particular
factor analytic model and then tests the model to determine
whether or not it is consistent with the observed data;
minimally, model specifications would include the number of
latent factors, the pattern of factor loadings, and relations
among the latent factors. ‘

The LISREL CFA framework incorporates two conceptually
distinct models --- a measurement model and a structural model.
The first of these specifies how the observed (i.e., measured)
variables relate to the underlying latent (i.e., uncbserved,
unmeasured) factors; the second specifies relations among the
latent factors themselves. In LISREI notation, this means that,
typically, the factor leading (lambda, A), error (theta, ©) and
latent factor variance-covariance (phi,¢ ) matrices are of
primary importance. More specifically, A is a matrix of
coefficients regressed from latgnt factors to observed '
variables, and 0 {s the variance-covariance matrix of
error/unicuenesses. These matrices make up the measurement
aspect of the mode13 ® is the factor variance-covariance matrix
and constitutes the structural part of the model? Since a
number of papers are availabhle to readers that (a) specify the

statistical theory underlying LISREL CFA (e.g., Joreskog, 1969

Long, 1983), (b) outline basic notation and steps in using the
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LISREL program (e.g., lLomax, 1982; Long, 1983; Wolfle, 1981),
and (c) summarize advantages of LISREl. CFA over traditional EFA
procedures (e.g., Long, 1983; Marsh & Hocevar, 1985), these
details are not provided here.

The.process of validating the factorial structure of a
measuring instrument and then testing for its invariance across
groups involves two separate analytical procedur-:; the first
is a prerequisite for the second. The initial step entails the
estimation of a haselinc model; since this procedure involves
no between-group constraints, the data are analyzed separately
for each group. The baseline model represents the most
parsimonious, yet substantively meaningful and best-fitting
model to the data. Since instruments are often group-specific
in the way they operate, these models are not expected to be
identical across groups. For example, whereas the bhaseline
model for one group might include correlated measurement errors
and/or secondary factor loadings, this may not be so for the
second group? A priori knowledge of such group differences, as
will be illustrated later, is critical in testing for
equivalencias across groups.

Having determined the baseline model for each group, the
investigator may then proceed to tests of féctoria] invariance.

Since these analyses involve the imposition of constraints on

particu‘ar parameters, the data from all groups must be

-1
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analvzed simultancously to obtain efficient estimates (Joreskon
& Sorbom, 1985)., Tt is important to note, however, that ‘the
pattern of fixed and free parameters remains consistent wilh
the bhaseline model specification for each group. (For a review
of LISH®EL CFA invariance testine applications, sce Byrne,
Shavelson & Wuthsn. in nress; for details of the procedure in
rencral, see Alwin % Jackson, 1981; Dyrne et al., in press;
Joreskog, 1971a; Marsh & Hocevar., 1985; Rock, ¥Werts & Tlaugher,
1978.

A review of previous stadies using CFA LISREL procedures to
validate assessment measures reveals several limitations.
First, with three exceptions (Byrne, in press; Marsh, 1987)h;
Tanaka & Huba, 1984), researchers have not considered alternate
model specifications beyond the one initially hypothesized (sce
Benson, 1987; !larsh, 1985, 1937a; Marsh & Illocevar, 1985; Marsh
& 0'Neill, 19834; Marsh, Smith & Parnes, 1985). In other words,
rescarchers have (a) postulated a model, (h) tested its fit to
the observed data. (c) araued for the adequacy of meadel fit,
and (d) evaluated factorial validity on the basis of this a
priori model. Such validity claims, however, may he considered
dubious for at least two recasons: (a) in many cases, model fit
was only mareinally goad? and (b) thesc models did not allow

for sample-specific artifacts such as nonrandom measurement

error (i.e., correlated error) and/or secondary factor
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loadinas, two'findings not uncommon to measures of nsycho-
lopical constructs (see e.yn., Byrne, in press; Pyrne & .
Shavelson, 19863 'luba, Vinpard, & Bentler, 1981: NMewcomb, !luba,
“ Bentler, 1986; Tanaka & I'uba, 1984). Hore appropriately,
model }itting should continue beyond the initially hypothesized
nodel until a statistically, hest-fitting model is determined:
additional analyses can then he conducted to establish which
parameters are statistically, as well as substantively
important to the CFA model. TIn so doinp, hoth practical and
statistical sianificance are ta%en into account (Muth@én,
personal communication, January, 1987; sce also. lluba et al.,
1931; Tanaka & Tluba, 1984).s

While some have criticized such post hoc model-fitting
practices (e.n., Mrowne, 1982; TFornell, 1033; liacCallum, 1987),
Tanaka and lluba (1984) have argued that the process can be
substantively mcaninaful. For example, if the estimates of
major parqmntcrs undergo no appreciable change when minor
paramcters are added to the model, this is an indication that
the initially hypothesized model is empirically robust; the
more fitted model therefore represents a minor improvement to
an already adequate model and the additional parameters should
be deleted from the model. If, on the other hand, the major
parameters undergo substantial alteration, the exclusion of the

post hoc parameters may lead to hiased estimates (Alwin &
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Jackson., 1980; Joreskon, 1933); the minor parameters should
therefore he retained in the model.

One method of estimating the practical significance of post
hoc parameters is to correlate major parameters (the A 's and
$'s) in the initially hypothesized model with those in the
hest-fitting post hoc nodel (c.f. ilarsh, 1987h). Coefficients
close to 1.00 arque f{or the stability of the initial model and
thus, the triviality of the minor parameters in the poast hoc
model. Tn contrast, cocfficients that are not close to 1.00
(say, <.90) are an indication that the major parameters were
adversely affected, and thus argsues for the inclusion of the

post hoc parameters in the final baseline model.

A second limitation of previous research relates to tests
of factorial invariance. In particular, rescarchers have
conducted such tests at the matrix level only; when confronted
with a noninvariant A, or ¢, they have not continued test:ng to
to determine the aberrant parameter(s) that contributed to the
noninvariaﬁce (see Benson, 1987 'larsh, 1985, 1687b: Marsh &
Hocevar, 1985: Marsh et al., 1985). Conscquently, readers are
left with the impression that given a noninvariant pattern of
factor loadings, further testing of invariance is unwvarranted.
This conclusion, however, is unfonnded when the model

gpecificatinn includes multiple indicators of a construct

1y
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(Huth@n % Christoffersson, 1981)., (For an extended discnssion,
review of the literature, and application, see Ryrne et al., in
press; for an applicatio. involving dichotomous variables, sce
Muthen & Christoffersson, 1931),

In éxamining factorial validity, partial measurement
invariance is important because it bears directly on further
testing of measurement and/o; structural equivalencies. For
example, the researcher may wish to test wh:ther the
theoretical structure of the underlying contruct is equivalent
across groups; the invariance of factor covariances, then, is
of primary interest (sce e.g., MNarsh, 1985; Harsh & llocevar,
19835). Alternatively, the investigator may be interested in
testing for the invariance of item or subscale reliabhilites; in
this case, the invariance of factor variances is of interest
(see Cole & Maxwell, 1985; Rock ct al., 1978). In testing for
the invariances of facter variances and covariances, equality
constraints are imposed on only those factor loadings known to
he invariant across groups; this may include all, or only a
portion of the factor loading parameters.

A final limitation concerns studies that have investigated
the invariance of item (Benson, 1987; Marsh, 1985, 1987b; Marsh
& lNlocevar, 1985; Marsh et al., 1985) or subscale (Byrne &
Shavelson, 1987) reliahilities across proups. Three additional

studies (Corcoran, 1980; Mare & Mason, 1980; Wolfie &

11
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Robertshaw, 1983) are reported here for sake of completeness;
the focus here, however, was on the equivalence of response
error, rather than on spocific test item or subscale
reliabilities. Fach of these studics tested fo~ the invariance
of measurement reliahlities by placinpg constraints on both the A
and the @ parameters. llowever, this procedure is valid only
when the factor variances arc known to he cquivalent across
groups (Cole & Maxwell, 1985; Rock et al., 1978). When
variances are noninvariant, it is necessary to check the ratio
of truec and error variances in testing for the cquivalence of
reliabhilities (sce Werts, Rock, Linn, & Joreskog, 19706).

In sum, four meLhodological weaknesses are evident with
previous LISRFL CFA validity studies of measuring instruments.
First, model-fitting procedures have hecen incomplete in the
determination of adequately specified baseline models. Second,
testing for partial measurement invariance has not been
considered. Third, given the failure to Lest for, and identify
partially invariant item scaling units, researchers have not
heen able to proceed with testing for the invariance of
structural parameters. Finally, tests for the invariance of
item (or subhscale) reliabilities have assumed, rather than
tested for, the equivalency of factor variances. As such,
testinp for the invariance of reliabhilities has been

incomplete, and in many cases, incorrectly executed. The
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purpose of thig paper is to address these limitations by
demonstrating the steps involved in: (a) conducting a
sensitivity analysis to determine a seline model that is
statistically best-fitting, yet substantively most meaningful,
(b) testing for, and testing with partial measurement
invariance, and (c) testing for the invariance of subscale and
item reliabilities.

Application of LISREL Confirmatory Factor Analyses

The Measuring Instrument

The Perceived Competence Scale for Children (llarter, 1982)
is used here for demonstration purposes. This 28-item
self-report instrument measures four facets of perceived
competence: cognitive competence (i.e., academic abilir ),
physical competence (i.e., athletic ability), social competence
(i.e., social acceptance by pecers), and seneral sclf-worth
(i.e., global self-esteem). Fach 7-item subscale has a 4-point
"structured alternative" question format ranging from not very
competenc (1), to very competent (4). (For a summary of
psychometric properties, sece Byrne & Schneider, 1988; llarter,
1982).

Data Rase
Data for the present demonstration came from a larger study

that examined social relation differences hetween gifted
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students and their non-vifted peers (sce Schneider, Clean,
Byrne, Ledinghim, & Crombie, in press). Following listwise
delertion of missing data, the sample for the present paper
comprised 241 erade 5 (129 normal, 132 nifted) and 230 grade 8

(113 norénl, 117 pifted) children from the two public school |
systems in Octawa, Canada. Overall., an examination of item
skewness and kurtosis revealed a distribution that was
approximately normal for each aroup (see Muth®n & Kaplan,
1985).‘(For detnils concerninae descriptive statistics,

selection criteria and sampling procedures, sce Dvrne &

Schneider, 1988).

Analysis of Lhe Data

Analyses are conducted in two major stages. First, the
facrLorial validity of the PCSC is tLested separately for grades
5 and 8 in the normal and pifted samples, and a baseline model
established for each of the fonr aroups. Second., tests for the
factorial invariance of item responses across prade are
cord.cted separately for the normal and gifted samples.

Analyses are based on an item-pair structure (with the
exception of one item in each subscale). As such, the seven
items in each subscale are paired off, with items 1 and 2
forming the first couplet, items 3 and 4 the second couplet,
and items 5 and 6 the third couplet; item 7 remains a

singleton. The decision to use item-pairs was based on two

14
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primary factors: ‘a) the lov ratio of number of subjects per
test item for each subsample, and (b) preliminary EFA results
derived from single-item analyses indicating, for the most
part, that items were reasonahly homogeneous in their
domain-épecific measurements of perceived competence (see Byrne
& Schneider, 1988). Furthermore, Marsh, Barnes, Cairns, &
Tidman (1984) have argued that the analysis of item-pairs is
preferable to single items for at least four additional reasons
--- item-pair variahles are likely to: (a) be more reliable,
(b) contain less unique variance since they arec less affected
by the idiosyncratic wording of individual items, (c) be more
normally distributed, and (d) yield results having a higher
degree of generalizability.

The CFA model in the present study hypothesizes a priori
that: (a) responses to the PCSC can be explained by four
factors, (b) each item-pair (and item singleton) has a non-zero
loading on the perceived compctence factor that it is designed
to measure-(i.e., tarset loading), and zero loadings on all
other factors (i.e., non-target loadings). (c) the four factors
are correlated, and (d) error/uniqueness terms for the

item-pair (and item singleton) variables are uncorrelated.

Parameter specifications are sumnarized in Table 1.
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Covariance structure analysis has traditionally relied on
the X ‘likelihood ratio test as a criterion for assessing the
extent to which a proposed model fits the obhserved data; a
nonsignificant yx? indicates a‘weli—titting model. llowever, the
sensitivity of the x? statistic to sample size, as well as to
various model assumptions (i.e., linearity, multinormality,
additivity) are now well known (sec e.g., Bentler & Bonett,
1980; Fornell, 1983; lluba & llarlow, 1987; Joreskog, 1982; Ma-sh
& Hocevar, 1985; Muthén & Kaplan, 1985; Tanaka, 1987). As an
alternative to x2 , other goodress-of-fit indices have bheen
proposed (see e.g., Bentler & Bonett, 1980; loelter, 1983;
Tanaka & Huba, 1985; Tucker & lLewis, 1973). Researchers,
however, have been urged not to judge model fit solely on the
basis-of X2 values (Bentler & Bonett, 1980; Joreskop & Sorbom,
1985), or on alternative fit indices (Sobel & Bohrnstcedt,
1985); rather, assessments should he based on multiple
criteria, including "substantive, theoretical and conceptual
considerations" (Joreskog, 1971, r. 421; see alsc, Sobel &
Bohrnstedt, 1985).

> Assessment of model fit in the present example is bhased on

(a) the x? likelihood ratio test, (b) the Xz/df ratio, (c)

16
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T-values, normalized residuals and modification indices

provided by LISREL VI, and (d) knowledae of substantive and

thecoretical resecarch in this area.

Fittine the Bascline liodel

Since parameter specifications for the hypothesized
4-Tactor model do not include equality constraints between
various subsamples, all anal&sos are pe.formed on the observed
correlation matrix for each garoup. Results of the model-fitting
process are reported in Tables 2 and 3 for the normal and
gif.2d samples, respectively.

Normal sample. As shown in Table 2, the initial model

(Model 1) represented a fairly reasonable fit to the observed
data for grade 5 students ( Xx%/df = 1.55). llonctheless, an
examinaton of the modification indices revealed three

of f-diaponal valuecs in the 8 matrix that were preater than 5.00
(see Joreskog & Sorbom, 1985). These parameters represented
error covariances betveen item variables, both within (PSC4,
PSC2) and across (PPC4, P’SC3; PCCl, PGS3) suhscales. Such
findinps, as noted earlier, are ol{ten c¢ncountered with models
of psychological phenomena, but are particularly evident when
the model represents items (i.e., obhserved variables) and
subscale factors (i.e., latent variables) from a sinple
measuring instrument (seec e¢.g., Byrne, in press; Ryrne &

Shavelson, 1987): error covariances in these instances are
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considered substantively plausible since they indicate

nonrandom error introduced by a particular measurement mecthod

such as item format.

—— vy - ——— D = = e - W  ——

Insert Table 2 about here

To determine the statistical and practical significance of
these error covariances, then, model fitting continued with the
specification of three alternative models (Models 2-4). In each
model, the error covariance in question was specified as a
free, rather than as a fixed parameter. Siqce a difference in x* |
( Ax?) for competing (i.e., nested) models is itself y? = |
distributed with degrees of freedom equal to the difference in %
degrees of freedom, this indicator is used to judge whether the ‘
reestimated model resulted in a statistically significant
improvement in fit. Model 4 ultimately yielded the model of
best fit (x* = 117.57, p>.05:X%/df = 1.24) and also
demonstrated a significant improvement in fit (sz1 = 8.96,
_p<.0t.

Hovever, given the known sensitivity of the x? statistic
discussed ecarlier, some researchers have preferred to look at

differences between (a) the absolute magnitude of estimates

(Werts et al., 1976), (b) the magnitude of estimates expressed

as Xz/df ratios (see e.g., Marsh & llocevar, 1985), or (c) the

-
1%
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x2/df ratios of nested nodels, as a morc realistic index of
model improverent (see e.g., llarsh, 1985, 1987b). An
examination of differences between the ledf ratios in the
present data showed values of .11, .12 and .08 (Models 2-4,
respectively). suggesting that the impact of the post hoc
parameters on the specified model was fairly trivial. This
notinn was supported by three additional pieces of evidence.
First, the error covariance estimates, while statistically
significant (T-values > 2.00), uere of relatively minor
magnitude (mean 6 = .006). Second, visual inspection of the
factor loadings and factor covariances in jModels 1 and 4
revealed little fluctuation in their estimated values. Third,
the factor loadings in Model 1 were highly correlated with
those in Model 4 (r = .95); likewise, for correlations computed
hetween the factor variance-covariances (r = .99). Since the
addition of the error covariance parameters to the model
altered neither the m~asurement parameters (sce Bagozzi, 1983),
nor the structural parameters (see Fornell, 1983), their impact
on the model was clearly trivial. These resnlts thus verified
the parameter stahility of the initially hypothesized model;
Model 1 was, therefore, considered as baseline for grade 5 in

all subsequent analyses.

The hypothesized 4-factor model for grade 8, as shown in

Table 2, represented a good fit to the data ( x2/df = 1.35).
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Although an examination of the modification indices sugpested
possible model-fit improvement if error terms between t@o item
variables were allowed to covary, the fit differential was not
statistically significant ( AX21= 3.33, p>.05); Model 1,
thoro{ore, was considered basiline for the grade 8 normal
sample.

Gifted sample. Model-fitting results for the gifred

differed substantially from those for their normal peers. These
results are presented in Table 3. let us look first at the fit
statistics for grade 5. We can sec that the initially
hypothesized 4-factor model (Model 1) does not represent a
particularly good fit to the data (nge = 160.43). To
investigate the misfit, model fitting proceeded as before with
the normal sample. A substantial drop in x2 was found when jtem
PPC4 ( Ax’l= 25.57, p<.001) and item PGS4 (Ax’l= 17.99, p<.001)
were free to cross-load on the social (PSC) and cognitive (PCC)
factors, respectively., '

Insert Table 3 about here
In contrast to the post hoc error covariances encountered
with the normal sample, these parameters represented fairly
major alterations to the initial 4-factor model and bear

importantly on the factorial validity of the llarter instrument.
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The decisicn to accept tiodel 3 as %“aseline for the grade S
gifted was based on three primary considerations. First, the

secondary loadings of PPC4 on the PSC factor ( X“ 3). and PGS4
’

on the PCC factor ( A~2 ) vere hoth highly significant (T-values

= 4.97; 4.09, respectively) and of fairly high maanitude (A
.61l: .65, respectively). Second, the factor loadina correlation
between todels 1 and 3 was :63. suapesting that the tlodel 1
measurement estimates were somevhat unstahbhle; the structural
parameters, on the other hand, appeared to he very stable (r =
.99), Finally, the findings were consistent with an earlier EFA
of the data which indicated evidence of the same crnss-loading
pattern (see Byrne & Schneider, 1988).

A review of the model-fittine results for prade 8 (sce
Table 3) reveals the secondary factor loadings noted earlier,
to be common tq both groups of gifted students. However, a
well-fitting model for the grade ] subsample was realized only
when two further restrictions on the hypothesized model (Model
1) vere relaxed; these inctuded one error covariance between
Item 4 and ltem-pair 1 on the perceived cognitive competence
subscate (PCC4, PCCl; Ax’l= 25.74. p<.001) and one secondary
factor leading (PGS2 on PSC; AX21= 14.14, p<.001).

Follovwing these analyses, llodel 5 was considered baseline
for the grade 8 nifted. As with the previous subsamples, this

decision was linked to several factors. First, the secondary

D0
e




Factorial Validity

21

loadings of PPC4, PGS4 and PGS2 on the PSC, PCC and PSC
factors, respectively, were statistically significant (T-values
= 4,74, 4.05, 3.80, respectively); thf factor loading estimates
were also of substantial magnitude ( A s 45, .35, .34,
respectively). Second, the error covariance estimate, unlike
those for the normal sample, was highly significant (T-value =
5.76) and fairly large ( 8 = ,43); given the size of this
estimate, it was considered risky to constrain the parameter to
zero since this specification could have an important bhiasing
effect on other parameters in the model (Alwin & Jackson, 1980;
Joreskog, 1983). Third, fluctuation of the factor loading |
estimates, albeit more modest than for grade 5, was evident
between Models 1 and 5; this instability was verified by a
correlation of .87 between A parameters in the two models; as
with the grade 5 findings, the structural parameters were shown
to be fairly stable (r = .94). Finally, the cross-loading of
factors for the grade 8 sample was consistent with findings by
Byrne and Schneider in the EFA study noted earlier.

Testing for Invariance

Tests of invariance involved specifying a model in which
certain parameters were constrained to be equal across groups
and then comparing that model with a less restrictive model in

which these parameters were frec to take on any value. As with

model-fitting, the Ax? hetween competinpg models provided a basis
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for determining the tenability of the hypothesized equality
constraints; a significant Ay? indicating noninvariance. Unlike
the model-fitting analyses, however, the simultaneous
estimation of parameters was based on the covariance, rather
than on -the correlation matrix for each group (see Joreskog &
Sorbom, 1985)< For purposes of the present demonstration,
invariance-testing procedure§ are applied to the gifted sample
only, since it is the more interesting of the two samples in
terms of model specification; analyses focus on equivalencies
across grades 5 and 8. We first test for the equality of item
scaling units (i.e., factor loadings; A's), components of the
measurement model. Once we have determined which item pairs
(and/or single items) are invariant, we can then proceed with
tests for the equality of subscale (i.e., factor) covariances,
components of the structural model. Finally, we test for the
equality of subscale and item reliabilities.

As noted earlier, once baseline models are determined, any
discrepancies in parameter specifications across groups remain
so throughout the analyses. In the present application, for
example, the secondary loading in the A matrix (Aza), and the
error covariance in the © pmatrix (9.5) for grade 8, remained
unconstrained for all tests of invariance. A summary of the
baseline model parameter estimates for the grades 5 and 8

gifted are summarized in Tables 4 and S5, respectively.
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Equality of item scaling units. Since the initial

hypothesis of equality of covariance matrices was rejected ( szas
= 209.81, p<.001), invariance testing procecded, first, to test
the equivalence of item scal}ng units. These results are
summarized in Table 6.

Insert Table 6 about here

The simultaneous 4-factor solution for each group yielded a
recasonable fit to the data (lego = 232.08). These results
suggest that for hoth grades, the data were well described by
the four perceived competence factors? This finding, however,
does not necessarily imply that the actual factor loadings are
the same across grade. Thus, the hypothesis of an invariant
pattern of loadings was tested by placing equality constraints
on all lambda parameters (including the two common secondary
loadings, Alﬁsand Auz. but excluding An' the secondary factor
specific to grade 8), and then comparing this model (Model 2)
with Model 1 in which only the number of factors was held

invariant. The differcnce in X? was highly significant (szm =

38.93, p<.001); thus, the hypothesis of an equivalent pattern




. Factorial Validity

24

of scaling units was untenable.

In order ‘to identify which scaling nnits were noninvﬁriant.
and thns detect partial measurement invariance, it seemed
prndent to first determinc whether or not the twn common
secondéry loadings were invariant across prade. As such,
equality constraints were imposed on Amﬂand Au. and the model
reestimated; this hypothesis was found tenable ( szz = 5.10,
P>.U5). Tests of invariance proceeded nevt to (a) test each
congeneric set of scaling units (i.e., parameters specified as
loading on the same factor) and then, given findings of
noninvariance, to (b) examine the equality of each item scaling
unit individnally. For example, in testinp for the equality of

all scaling units measunring perceived genceral self (PGS), An , A
A

3

A A . .
w1 » as well as 16,99nd “yowere held invariant across groups.

Given that this hypothesis was untenable ( Ax’;=2b.00, p<.o0nl),

each factor loading ( le. Ao, Xn) was tested independently to

31
determine whether it was invariant across arade; A _and X  were

_ 16,3 2

also held concomitantly invariant. These analyses detected one

item scaling unit (PGS2; An ) to be nonirvariant across grade.
In a similar manner, the scaling units of all remaining

item pairs (or singletons) were tested for invariance across

grade. As can he seen in Table 6, invariant factor loadings

were held cnmulatively invariant, thus providing an extremely

powerfnl test of factorial invariance. In total, only two item

0
ot
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scaling units were found to he noncquivalent --- one item pair

measurinpg perccived general self (PGS2; ) ) and one single item
- 21
measuring perceived social competence (PSC4; ) ).
: 12,3

Fauality of factor covariances. The first step in testing

for the. invariance of structural relations amonp subscales was
to constrain all factor covariances to be equal across grade.
Fquality constraints were subsequently imposed, independently,
on each of the phi parameters. It is important to note that
partial mcasurement invariance was maintained throughout these
testing procedures. In other words, the following measurement
parameters were held irvariant while testing for the equality
of the factor covariances: the two common secondary factor
loadings (Algs'xuz)' and all factor loadings excethZland Anp
The hypothesis of equivalent factor covariances was found
tenable ( szss 5.12, ﬂ).OS)i If, on the other hand, the
hypothesis had been found untcenable, the researcher would want
to investigate further, the source of this noninvariance. .Thus,
as demonstrated . .h tests of item scaling units, he/she would
proceed to test. independently, each factor covariance
parameter in the matrix; model specification, of course, would

include the partially invariant measurement parameters.

Fquality of retialilities. Generally speaking, in

multiple-indicator CFA models, testing for the invariance of

reliability is neither necessary (Joreskog, 1971b), nor of
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particular interest when the scales are used merely as CFA
indicators and not as measures in their own right, ignoring
reliability (Muth®én, pérsonal communication, Octoher, 1987).
Although Joreskog (1971a) demonstrated the steps involved in
testing for a completely invariant model (i.e., invariant A, ¢,
and O), this procedure is considered an excessively stringent
test of factorial invariance (Muth®n, personal communication,
Jannary 1987). In fact, Joreskop (1971b) has shown that while
it is necessary that multiple measures of a latent construct be
congeneric (i.e., bhelieved to measure the same construct), they
need not exhibit invariant variances and error/uniquenesses
(see also, Alwin & Jackson, 1980).

When the multiple indicators of a CFA model represent items
from a single measnriﬁg instrument, however, it may be of
interest to test for the invariance of item reliahilities. For
example, this procedure was used hy Benson (1987) to detect
evidence of item bias in a scale designed to measure
solf-?oncept and racial attLitudes for samples of white and
btack eighth grade students, and by Munck (1979) to determine
whether the item reliability of items comprising two
attitudinal measures were equivalent across different nations.
In conlra.t to the conceptual definition of item bias generally
associated ..th cognitive instruments (ji.e., individuals of

equal ability have unequal probabilivy of success), item bias

2
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related to affective instruments reflects on its validity, and
hence, on the question of whether items gcnerate the same
meaning across proups; evidence of such item bias is a clear
indication titat the scores are differentially valid (Green,
1975) .-

In the present example, the invariance of factor variances
was tested first, in order éo estahblish the viabhility of
imposing equality constraints on the A and 6 for cach item or
whether, in light of nonequivalent factor variances, invariance
testing should be bhased on the ratio of true and error
variances (see Cole & Haxwell, 1985; Rock et al., 1978). The
hypothesis of equivalent factor variances was found tenable
( Aqun 5.20, p>.05; sce Footnote 10). As such, the reliability
of each item pair (or sinpleton) was tested for invariance
across grade by imposing equality constra_nts on the respective
Aand® parametcrs; as with previous tests of item scaling units,
equally reliable items were held cumulatively invariant

throughouf the testing scquence. These results are summarized

in Table 7.

Tests of invariance procceded, first, hy testing for the

equivalency of each subscale; only the Perccived Cognitive
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Competence subscale (PCC) was found to be equivalent across
grade (sz7 = 8.49, p>.05). Subsequently, the reliability,
equivalency of each item pair (or singleton) was tested? Had
tests of invariance revealed the factor variances to be
noncquivalent, on the other hand, it would have necessary to
test for itoem reliability by examining the ratio of true and
error score variances (-%-). kFor an explanation of this
procedure, sece Munck, 1979; Werts et al., 1976).
Conclusion

While the use of LISREL CFA procedures is becoming more
prevalent in construct validity research in general, relatively
few studies have applied this approach to the validation of
single measuring instruments, in particular. !lowever, of the
studies that have used the procedure for testing the factorial
validity and invariance of a single instrument, most share four
methodological weaknesses; these relate to the failure: (a) to
determine an adequately specified baseline model, (b) to test
for partial measurement invariance, (c) to test for the
invariance of structural parameters, given partially invariant
item scaliug units, and (d) to test for the equivalence of
factor variances prior to testinpg for the invariance of test
item reliabilities.

The present paper addressed these limitations in an

application to data comprising self-report responses to the

29
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Harter (1982) Perceived Competence Scale for Children by grades
S and 8 normal and gifted children. Specifically, the paper
demonstrated the steps involved in (a) the conduct of
sensitivity analyses to determine a statistically best fitling,
yet substantively most meaninpful baseline model, (b) testing
for partial measurement invariance, (c) testing for the
invariance of factor variances and covariances, given partial
measurement invariance, and (d) testing for the invariance of
test item and subscale reliabilities. These procedures,
historically, have rcceived scant attention in the literature.
Tt is hoped that the present illustration will be helpfd] in
providing guidelines to future LISREL CFA rescarch bearing on

the construct validity of an assessment instrument.
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Footnotes
If tests of factor means are of interest, the measurement
model would also include the regression intercept (nu,y ), a
vector of constant intercept terms. In the basic CFA model,
hodéver. variahle means are not of interest since they are
neither structured or explained by the constructs (Bentler,
1978).
For the same reasoa as noted ian Footaote 1, the gamma (T), a
vector of mean estimates, is not included in the structural
model.
Secondary loadings arec measurement loadings on more than one
factor.
The absolute X2/df ratio value that represents a reasonable
fit to the data remains a controversial issue. For example,
Muth@n (personal communication, October, 1987) contends that
a Xz/df ratio >1.50 indicates a malfitting model for data
that are normed to a sample size of 1000. On the othef hand,
Carminés and Mclver (1981) argue that an acceptable Xz/df
ratio can range as high a., 3.00. Taking a midpoint hetween
these two extremes, it scems likely that, with sample sizes

less than 1000, a coefficicent >2.00 is a fairly good

indication of model misfit.
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This post hoc fitting procedure has been referred to as
tests for "substantive invariance" (Tanaka & llnba, 1984) and

as "sensitivity analyses" (Pyrne et al., in press).

Ylean skcwness and kurtosis values were as follows: normal

(grade 5, SK = -.,47, XU = -,70; arade 8, SK = -.38, KU =
-.46); aifted (arade 3, SK = -.33, KU = -.50; erade 8, SK =

-.46, KU = ,01).
The reader is advised that if start values were included in
the initial input, these will likely nced to bhe increased in
order to make them compatible with covariance, rather than
correlation values.
Since x2and its correspondine degrees of freedom are
additive, the sum n[xz's (see Table 6) reflects how well the
underlying (actor structure fits the data across groups.
This model was compared with one in wvhich all items known to
be invariant were constrained cqual across grade (Model
12, see Tahle 6).
Although the PCC subscale, as a wholte, was found to bhe
invariant, tests of individual item parameters revealed the
first item pair (PCC1) to be noninvariant; this illustrates
the possibility of masking information when analyses are

conilncted at the more macroscopic subscale level.
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Table |
Pattern of LISREL Parameters for Model Fittin&

" ‘1 %2 %3 &
PGS 1* 0 0 o
PGS2 X1 0 0 0
PGS3 ‘a1 0 0 0
PGS4 M1 0 0 0
PCCl (] 1* (] 0
PCC2 0 Y2 0 0

b
PCC3 0 Xy 0 0
PCC4 A 0 Yo 0 (]
X
PSCl 0 0 12 0

S 0 0 A
et 10,3 0
PSC3 (] 0 x11’3 0
PSC4 0 0 x12’3 0
PPCI 0 0 0 12
PPC2 0 0 0 M4 4
PPC3 0 0 0 ‘15,4
PPC4 (] 0 0 )

i L 16,4
| [~ ~ 1 e —1
| PGS *1
pcC . %21 22
PsC 3 43 ¢33
¢, ¢ )
%41 42 43 ®4 _J
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P -
rcs2) o 5, |
PGS3 0 0 _ 533
pesal lo o o 5,
PCCl 0 0. 0 0 655
PCC2 0 0 0 o o0 666
PCC) 0 0 0. 0 0 0 677
I’CClohO6 0 0 0 0 0 0 0 688
PSC1 0 0 0 0 0 ‘ 0 V 0 699
PSC2 0 0 0 0 0 0 0 0 0 610'10
PEC3 0 0 0 0 0 0 0 0 0 0 6]1.11
PPC4 0 0 0 0 0 0 0 0 0 0 0 612.12'
PPCI 0 ) 0 0 0 0 0 0 0 0 0 0 0 613’13
PPC2 0 0 0 0 0 0 0 0 0 0 0 0 0 61&,14'
PPC3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 615.15 '
r_l’Ci ﬁ 0 0 0 0 0 0 0 0 0 0 0 0 0o 0 616,_1;2 1

*Fixed parameter

X = observed item measures for the Perceived Competence Scale for Children
(pcsc); Cl -8, = " perceived competence subscales (i.e. factors) of “he PCSC

(¢

1 = perceived genccral self; Ez' perceived cognitive competence; €3' perceived
social competence; Ca = perceived physical competence); Axt factor loading matrix;
¢ = factor variance - covariance matrix; q;=error varian 2 - covariance matrix.

PGS1-GS3 = paired items #4/b, 12/16, 20/24 measuring perceived general self

(PGS); PGS4 » item #28 measuring PGS; PCC1-PCC3 = paired items #1/5, 9/13, 17/21
measuring perceived cognitive competence (PCC' PCC4 = item #25 measuring PCC;
PSC1-PSC3 = paired items #2/6, 10/14, 18/22 measuring perceived social

competence (PSC); PSQﬁ = item #26 measuring PSC; PPC1-PPC3 = paired items #3/7,

11/15, 19/23 measuring perceived physical competence (PPC); PPC4 = item #27

42
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Table 2
Steps in Model Fitiing;for the Normal Sample
Competing Models ' x2 df P ax2  adf x2/df
. Grade 5
1 Basic 4-factor model® 152.26 98 .00 -—- -—- 1.55
2 Model 1 with correlated error 139.45 97 .00 12.81%%% ) 1.44
between PPC4 and PSC3
3 Model 2 with correlated error 126.53 96 .02 12.92%* 1 1.32
between PSC4 and PSC2
4 Model 3 with correlated error 1.7 57 95 .06 8.96"* 1 1.24
between PCC1 and PGS3
Grade 8
1 Basic 4-factor wodel” 132.13 98 .01 -—- -—- 1.35
2 Model 1 with correlated error 120.55 97 .05 3.33 1 1.24

between PGS4 and PGS3

*¥ o < .0l rEE D < .00l

%Final model considered as baseline

PPC4 = Item #27 measuring perceived physical competence; PSC3 = Paired items #18
and #22 measuring perceived social competence; PSC4 = item #26 meassuring
perceived “ccial competence; PSC2 = Paired items #10 and #14 measuring perceived
social competence; PCCl = Paired items #1 and #5 measuring perceived cognitive

competence; PGS3 = Paired items #20 and #24 measuring perceived general self;

PGS4 = item #28 measuring perceived general self.
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Table 3

Steps in Model Fitting for fifted Sample

Compet ing Models . x2 daf P ax? Adf x2df

Grade 5

1 Basic 4-factor wodel 160.43 98 .00 - -— 1.64

2 Model 1. with PPC4 loading 134.86 97 .00 25,57%%x ] 1.39
on PSC

3 Model 2 with PGS4 loading 116.87 96 .07 17.99%*% | 1.22
on PCC. ‘

Grade 8

1 Basic 4-factor model 197.77 98 .00 -— —— 2.20

2 Model 1 with PPC4 loading 175.:6 97 .00 22,.61%%x ] 1.81
on PSC

3 Model 2 with correlated 149,42 96 .00 25, 4%k ] , 1.56
error between PCC4 and PCCIl -

4 Model 3 with PGS4 loading  129.35 95 .01 20,07%%% ] 1.36
on PCC i ~

5 Model & with PGS2 loading 115.21 94 .07 14, 14%%x ] 1.23
on psc*

rwp < ,001

%Final model considered as baseline

N PSC = perceived socia. competence factor; PCC = perceived cognitive competence

factor; PPC4 = item #27 measuring perceived physical competence; PGS4 = item #28

measuring p ceived general self; PCC4 = item #25 measuring perceived cognitive

competence; PCCl = Paired items #1 and #5 measuring perceived cognitive

competence; PGS2 = Paired items #12 and #16 measuring perceived general self.
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Table &
Baseline Model Parameter Estimates for Grade 5 Gifted"
Measured : Subscale Factors
Item Variablesb PGS PCC PSC PPC Error/Uniqueness
PGS1 .72 0 0 .48
PGS2 .85 0 0 .28
PGS3 .83 0 0 .32
PGS4 22 .46 0 0 .62
PCC1 0 .12 0 0 .49
PCC2 0 .69 0 0 .52
PCC3 0 .69 0 0 .53
PCC4 0 .13 0 0 Y]
PSC1 0 0 .18 0 .39
PSC2 0 0 .66 0 .56
PSC3 0 0 .76 0 .42
PSC4 0 0 .61 0 .62
PPC1 0 0 0 .76 .43
PPC2 0 0 0 .19 .38
PPC3 0 0 0 .82 .33
PPC4 0 0 .47 .30 .57

Subscale (Factor) Correlations
PGS -
PcC .56 -
PSC .0l .42 -
PPC .31 .33 .43 -

8ractor loadings and factor correlations are presented in standardized form to
facilitate interpretation.

bltem variables 1-3 represent the first six items of each subscale, paired
consecutively; item variable 4 represents t'e seventh item of each subscale.

PGS = perceived general self; PCC = perceived cognitive competence; PSC =

perceived social competence; PPC = perceived physical competence.
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Table 5
Baseline Model Parameter Estimates for Grade 8 Gifted”
Measured . Subscale Factors
Ttem Variableeb PQS PCC PSC PPC Error/Uniqueness
PGS1 .88 0 0 0 .23
PGS2 .63 0o .28 0 .37
PGS3 .91 0 0 .18
PGS4 .58 +30 0 0 .46
PCC! 0 .88 0 0 .23
PCC2 0 .66 0 0 .57
PCC3 0 .65 0 0 .58
PCC4 0 .89 0 0 .21
PSCl 0 0 .82 0 .33
PSC2 0 0 .83 0 .32
PSc3 0 0 .87 0 .24
PSC4 0 0 .55 0 .70
PPCl 0 0 0 .83 .31
PPC2 0 0 0 .89 .22
PPC3 0 0 0 .37 .22
PPC4 0 0 -3 .55 .38

Subscale (Factor) Correlations
PGS -
P X -
PSC .43 .16 -
PPC .40 .15 .45 -

8ractor loadings and factor correlations are presented in standardized form to
facilitate interpretation.

bItem variables 1-3 represent the first six items of each subscale, paired
consecutively; item variable 4 represents the seventh item of each subscale,

PGS = perceivcd general self; PCC = perceived cognitive competence; PSC =

perceived social competence; PPC = perceived physical competence.
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Table 6

Tests for Invariance of Item Scaling Units Across Grade for the Gifted

Competing Model ~ x? df ax? Adf x2/df

1 Four perceived 232.08 190 -—- —— 1.22
factors invarient

2 Model 1 with all factor 271.01 204 38.93mkx 14 1.33
loadings invariant®

3 Model | with 2 common 237.18 192 5.10 2 1.24
secondary loadings
invariant .

4 Model 3 with all PGS 256.74 195 24 .66 Wi 5 1.32
factor loadings invariant

5 Model 3 with PGS2 254.33 193 22 . 25%k* 3 1.32
invariant

6 Model 3 with PGS3 239.47 193 7.39 3 1.24
invariant

7 Model 3 with PGS3, 240,37 194 8.29 4 1.24
PGS4 invariant

8 Model 7 with all PCC 244.35 197 12.27 7 1.24
factor loadings invariant

9 Model 8 with all PSC 251.37 200 19.29* 10 1.28
factor loadings invariant

10 Model 8 with PSC2 245.20 198 13.12 8 1.24
invariant

11 Model 8 with PSC2, 245.45 199 13.37 9 1.23
PSC3 invariant

12 Model 11 with all PPS 248.69 202 16.61 12 1.23

factor loadings invariant

*p < ,05 *kkp < ,001

'including the 2 common secondary factor loadings

bThe first item-pair loading for each factor was fixed to 1.0 for purposes of
statistical identification. PGS = perceived general self; PCC = perceived

cognitive competence; PSC = perceived social competence; PPC = perceived

physical competence.
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Table 7

Tests for Invariance of Subscale and Item Reliabilities Across Grade for the

Compet ing Model x2 df sz Adf /2/df
1. Two common secondary factor 237.18 192 -— -— 1.24

loadings invariant
A

6,3 42

Subscales
2. PGS subscale Model 1 with 269.84 199 32.66%k* 7 1.36

Mg = Ay wnd 8y -6,

invariant
3. PCC subscale Model | with 245,67 199 8.49 7 1.23

gy = Agp and 85 - Sgg
invariant

4, PSC subscale Model 1 with 272.83 206 35.65%* 14 1.32
X93 - Xlz’3 and 699 - 612’12

invariant

5. PPC subscale Model 1 with 269.29 206 32, 11%* 14 1.31

A16,é and § )

’13,6 - 13,13 ~ 16,16

invariant

Items

6. Model 1 with 241.23 193

*11 and 611

invariant

7. Model 1 with 254,76 194 17,58%** 2 1.31

le and 622

invariant
8. Model ! with 246.48 194 9, 30%* 2 1.27

A
I and 633

4.05* 1 1.25

invariant
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Compet ing Model

df
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adf

adf

x2/df

9.

lo.

11.

12,

13.

14,

15.

16.

17.

18.

19.

Model 1 witb

A, and &,
invariant

Model 9 with

invariant
Model 9 with
162 and 666
invariant

Model 11 with

and §

g2 77

invariant
Model 12 with

xaz and 688

invariant
Model 13 with

x93 and 699

invariant
Model 14 with
and §

10,3 10,10

invariant

Model 15 with
and §

‘M1,3 11,11

invariant

Model 15 with
and §

‘2,3 12,12

invariant

Model 15 with
and §

M3 13,13

invariant
Model 18 with

4,6 2™ 814,14

invariant

242.88

245.56

244.82

245.08

249.19

249.19

254.92

265.15

266.52

258.14

266.25

49

194

1952

196

198

200

2012

203

205

205

204

206

5.70

8.38*

7.64

7.90

12.01

12.01

17.74

27.97%%

29, 34%*

20.96

29.07*

11

13

13

12

14

' 1.25

1(;6
1.25
1.26
1.25
1.24
1.26
1.29
1.30

1.27

1.29
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Competing Model x? df 8x2 bdf x2/df
20. Model 18 with 261.04 206 23.86%* 14 1.27
5,4 @ 815 15 -
invariant
21. Model il with 264.40 206 27.22% 14 1.28
Me,n 2™ 516 16
invariant
*p < .05 **kp < .01 kkkp < 001

3difference in degrees of freedom equals one due to first loading for each factor
being fixed to 1.00.

PGS = perceived general se ; PCC -~ perceived cognitive competence; PSC = perceived
social competence; PPC - perceived physical competence. .




