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Abstract

Latent class models for mastery testing differ from continuum models in that

they do not postulate a latent mastery continuum but conceive mastery and

nonmastery as two latent classes each characterized by different probabili-

ties of success for the test items. Several authors, including Emrick and

Adams (1969), Besel (1973), Davis, Hickman, and Novick (1973), and Macready

and Dayton (1977), give a simple latent class model which is basically a

simultaneous application of the binomial error model to both mastery clas-

ses. Reulecke (1977) presents a version of this model in which it is

assumed that the nonmasters guess blindly, with a probability of success

equal to the reciprocal of the number of alternatives . Assuming a loss

ratio, these models enable us to derive an optimal cutting score for

separating masters from nonmasters. In order to compute this cutting score

the model parameters must be estimated. Emrick and Adams suggest a method

which is based on the average inter-item correlation but which, because of

its assumptions, is only of restricted applicability. The sample applies to the

maximum likelihood method inasmuch this involves estimation equations which

can only be solved iteratively.
In this paper it is shown how the method

of moments can be used to obtain "quick and easy" estimates. In addition,

an endpoint is discussed which assumes that the parameters can simply be

estimated from the tails of the sample distribution. A Monte Carlo experiment

demonstrated that the method of moments yields excellent estimators and beats

the endpoint method uniformly.

Key-words: Mastery Testing, State Models, Random Guessing, Latent Class

Analysis
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Simple Estimators for the Simple

Latent Class Mastery Testing Model

All existing models in mastery testing can be classified as either

continuum or state models (Meskauskas, 1976). Models of the former type

postulate a latent or true score continuum underlying the observed test

score and assume that a point can be denoted dividing the continuum into a

mastery and a nonmastery region. State models differ from continuum models

in that they do not postulate a latent continuum but conceive mastery and

nonmastery (is two latent classes etch caaracterized by different probabili-

ties of a correct response to the test items. Ideally, these probabilities

would be equal to one for a master and to zero for a nonmaster, but the

influence of extraneous factors can be expected to introduce a bias making

these probabilities differ from their ideal values.

Besel (1973) and Macready and Dayton (1977) have given a latent class

model for mastery testing which can be regarded as the most general model

known so far. For each of the two latent classes, it has a different para-

meter for each of the items representing the probability of a successful

reply to the item. Denoting the probability of a successful reply to item

i for a nonmaster and a master by ai and Si, respectively, this model des-

cribes the probability of the jth response vector on an n-item test as

1411

n

i=1
8.

1

n

1

a .

.a 1-a.,
a. 1(1 - ai)

1

1-aij

(1

Si)

1J1 +
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where p represents the probability of a master, and aii = 1 if the response

to the ith item for the jth vector is right and a1 = 0 otherwise. The ob-

served score distribution generated by (1) is a mixture of two compound

binomial distributions (Walsh, 1953, 1959, 1963; Lord & Novick, 1968, sect.

23.10) with u as mixing parameter.

The simple latent class model for mastery testing follows from (1) on

assuming ai = a and Si = B for all items. Written not in response vector

form but as a model for the observed score distribution, it is equal to

(2) p(x) = (X4(1- p )0(1 - a)n-x + pe(1 - On-x].

From this expression it is clear that this model involves an observed score

distribution which is a mixture of two simple binomial distribution with success

parameters a and a and mixing parameter 11. The simple latent class mode was

introduced in the area of mastery testing by Emrick and Adams (1969), and

also given by Davis, Hickman, and Novick (1973) and Macready and Dayton (1977).

Dayton and Macready (1976) consider a further simplification of (2) which

is obtained by assuming a = 1 - es. This amounts to the notion that the devia-

tions of a and 8 from their ideal values of one and zero are equal to each

other. They also show the possibility of incorporating hierarchical relations

into the aforementioned models and using them for validating behavioral

hierarchies.

An important property of the simple latent class model is that it allows

the derivation of a simple rule for separating masters from nonmasters. This

rule, which in statistical terminology is a monotone, nonrandomized Bayes rule,

has the form of a cutting score on the test, c say, so that students with
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X = c are declared to be a master and those with X < c a nonmaster. This

cutting score is equal to

hiP
T.--a- n

+
i-a 1In in

"1-p

(3) c
*

ln 21111-1

(1 -a)8

where A is the loss ratio 21 /R.
0'

2,

0 being the loss associated with misclassi-

fying a nonmaster and 21 with misclassifying a master (Emrick & Adams, 1969,

for a derivation, see also van der Linden, 1980a).

Estimating the Model Parameters

In order to be able to use the above cutting score, the model para-

meters a, a, and p must be estimated from a sample of test scores.

In this paper we will review the use of some of the available estimation

methods for the simple latent class model and report results from a Monte

Carlo investigation into the statistical properties of two classes of

estimators -- one known as moment estimators and another as endpoint

estimators. But before proceeding, we observe that the optimal cutting

score given in (3) can also be used when not a latent class model but a

continuum model with indifference zone is adopted. In that case no para-

meter estimation is involved. This possibility has been worked out else-

where (van der Linden, 1980b), and will not be considered here.

Emrick and Adams (1969) and Emrick (1971) show how estimators for a

and 8 can be obtained via the square root of the interitem correlation.

Their method does not yield an estimator for p but, on the contrary, assumes
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that p is a priori known and has a value equal to .50. It also assumes an

a priori known ratio of the two success parameters, a and B. Since there

will hardly be situations for which these two assumptions hold, Emrick and

Adams' method is of restricted applicability and will be disregarded further

in this paper.

From a statistical point of view, maximum likelihood estimation is an

attractive method. The use of maximum likelihood estimation for the para-

meters of the simple latent class model for mastery testing has become

available through the computer programs by Dayton and Macready (1978; see

also, Macready & Dayton, 1979). Maximum likelihood estimates for the para-

meters of this model are by no means simple, however. The estimation

equations are intractable and can only be solved using iterative procedures

as implemented in Dayton and Macready's programs. Since in this paper the

emphasis is on simple estimators, to be computed by hand or with the aid

of a pocket calculator, the possibility of maximum likelihood estimation

will, in spite of its favorable properties, be disregarded further in this

paper as well.

As noted earlier, the model given in (2) is a mixture of two simple

binomial distributions. Mixtures of binomials have been extensively studied

in the statistical literature (e.g., Blischke, 1962. 1963, 1964; Pearson,

1915; Rider, 1961), and on several independent occasions the method of moments

has been used to derive estimators for mixtures of two binomials with results

applying to the mastery testing model dealt with in this paper.

Generally, the method of moments expresses the parameter to be estimated as

explicit functions of population moments and next substitutes the corresponding

sample moments to obtain estimators for these parameters. The method of

9
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moments ordinarily yields simple, closed-form estimators, which are con-..

sistent under mild conditions (Rao, 1972, p. 351).

As can be verified from, for example, Blischke (1962, 1964), the method

of moments yields the following estimators for mixtures of two binomials

(6)

with

1 1
a = - 7.(A

2
- 4AF1 + 4F2)

1/2
;

1 2
-211 + .2(A - 4AF + 4F2)

1/2
;

F
1

a

1 n x(x - 1)...(x - k + 1)
(7) Fk

0(x);
n(n - 1)...(n k + 1)

F
3

- F
1
F
2

(8) A

F
2

- F
1
2

and where m is the sample size, 0(x) the observed frequency of X = x and

F
k

is an expression which is, up to the factor (n - 1)...(n - k + 1) in the

denominator, equal to the kth factorial moment (see also, Johnson & Kotz,

1969, sect. 3.11). For data sets normally encountered in mastery testing

(7) can be computed easily by hand for k = 1, 2, 3. Once A has been calcul-

ated from (8), (4) - (6) give the desired estimates for a, B, and U.
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In some applications of the model in this paper, it may be meaningful

to take a "mastery or random guessing" point of view and to assume that

the students either master the items or not master them and guess blindly.

In that case the success parameter a can be treated as a knOwn parameter

and set equal to reciprocal of the number of item alternatives. This point

of view has been taken by Reulecke (1977a, 1977b) and was alluded to in an

example by Emrick (1971). If a may be supposed to be a known parameter, the

method of moments can still be used but now leads to a different set of

estimators since only the first two sample moments are needed for estimating

the remaining success parameter, 8, and the mixing parameter U.

As can be verified from van der Linden (1980c), the method of moments

yields the following estimators for mixtures of two binomials with one known

success parameter

(F2 - a
2

)

(9) S

F
1
-a

F
1

a
0

(10) p
O

-

where F
1
and F

2 are again obtained from (7) by substituting k = 1, 2.

Reulecke (1977a) has proposed a method of estimation in which a is

treated as a known parameter and a and p are estimated from the frequencies

in the right-hand tail of the sample distribution. This method can also be

used when a is to be considered an unknown parameter, however. Then a is
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estimated similarly from the left-hand tail of the sample distribution

(van der Linden, 1980b).

More in particular, this "endpoint" method of estimation assumes that

the tails of the sample distribution are virtually unmixed and that the

parameters can be estimated from the ratio of the observed frequencies in

the two outmost categories in each tail as

0(1)
(11) a

n0(0) + 0(1)

nO(n)
(12) s

0(n -1) + nO(n)

(13) T1 = 0(n)
+ nO(n)

n

nO(n)
m ,

where m still denotes the sample size, n the test lenght, and C(.) the ob-

served frequences.

The estimator for 11 in (13) is based on the observed frequences of

X = n - 1 and X = n. It is also possible to derive an estimator for p from

the frequences of X = 0 and X = 1. However, the problem this creates can be

circumvented by using neither of the two and instead substituting a and

in the first moment equation. This results in

(14) ;

F1-a

-

12
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(van der Linden, 1980a).

We finally observe that each of the above sets e estimators can be

used to obtain an estimate of the cutting score c* given in (3).

Results from Monte Carlo Experiments

Using random procedures from the NAG Fortran Library (1977), Monte

Carlo experiments were run in which we varied the two success parameters,

the mixing parameter, test length, and sample size and determined the conse-

quences for the expected error of estimation and the risk function using

squared error loss. This was done for both sets of moment estimators, the

endpoint estimators and the corresponding estimators for the optimal cutting

score c
*

The results can be found in Tables 1 - 5 at the end of this paper. In

these tables e is a generic symbol for an error of estimation and Ee and

Eel denote the estimated expected error of estimation and the estimated

risk function, respectively. As indicated by their subscripts, the results

for the estimators of the optimal cutting score c* are reported for loss

ratio values equal to .25, 1, and 4. Each figure in Tables 1 - 5 is based on

1,000 replications.

From the results presented in Tables 1 - 5 the following conclusions

can be drawn:

(1) On the whole, the results for the moment estimators with a unknown

(equations 4 - 6) are excellent and suggest estimators which can safely be

used in most practical situations. The results are better the larger the

difference between a and 0, the closer 0 to .50, the longer the test, and

13
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the larger the sample size. To see a result typical of what was encountered

in our experiments, for example, the center column of Table 3 can be used.
A A A

The values of Ec and Ee2 for a, 8, and p differ only in their third decimal

from zero, while the values for e*, although somewhat larger, are almost

equally good. The only exception to this favorable conclusion has to be

made for the results for p and er for (a, 0) . (.40, .60) in Table 1. This

set of parameter values represents a situation in which our model comes close

to a single binomial, and in that case it is clearly difficult to estimate

the mixing parameter and the optimal cutting score reliably.

(2) The results for the moment estimators with a known (equations

9 - 10) are even better than those with a unknown. Especially the results
0

for c show a considerable improvement in their Ec and Ee2 values compared

with the results for el. The same trends as were observed for the case with

a unknown can be seen in Tables 1-4: The values of Ec and Ee2 tend to zero

when the difference between a and 0, the test length, and the sample size

increase and when p goes to .50. inspecting Table 1, it appears that the

moment estimators with a known get less upset when a and a approach each

other in value and the situation resembles that of a single binomial. Only

the values of. the risk function for C* are still too large, indicating that

in this situation inaccurate estimates of c* can be expected.

(3) The Monte Carlo results for the endpoint estimators show that

these are completely unreliable. From the great variety of parameter sets

we used, three are picked out and given in Table 5. Parameter set I

(a = .10, 0 = .90, p = .70, n = 10, m = 100) is the set with the best results

we have seen, parameter set II (a = .25, 8 = .75, p = .70, n = 10, m = 25)

was one of the worst sets, while results typical of what we normally

1A
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encountered were obtained for parameter set,III (a . .25, 6 = .75, p = .50,

n = 10, m = 100). Even for parameter set I the results are still too poor for

practical purposes.

(4) From Table 5, it can be concluded that the use of the endpoint/

moment estimator for p defined in (14) is in all cases a considerable

improvement on the use of p. As can be seen in the last three rows of this

table, substituting ;1 instead of '1-1 into the optimal cutting score results

in a remarkable gain in efficiency but not enough to yield an estimator

with errors of estimation that can be tolerated when used in practice.

(5) During the Monte Carlo experiments it was counted how often

inadmissible estimates, i.e., eLi.:mates lying outside the interval the

parameter is defined on, were met. For the moment estimators with a unknown

only one percent of the replications resulted in such estimates, while

such estimates were not at all encountered for the moment estimators with

a known. The situation was completely different for the endpoint estimators

p and p, however. Percentages of inadmissible
estimates exceeding 20 or 30

per cent were no exception, and in one case no less than 47 per cent of

the replications yielded values for T1 larger than one.

(6) A different problem was met for the endpoint estimators a and 3.

As is clear from (11) and (12), these expressions are indeterminate whenever

the tails of the sample distribution
are empty. This happened very often and

especially for a and a values close to each other, p values far away from

.50, small samples, and long tests. The largest percentage of indeterminote

estimators found in one experiment was equal to 48 per cent.

15
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Conclusion from the Results

The foregoing suggests that the moment estimators can safely be used

in most practical situations. The only exception which has to be made is

for the case parameter values can be expected for which the model comes

close to a single binomial. In that case less accurate estimates of the

mixing parameter and the optimal cutting score can be expected. When a can

be set equal to the reciprocal of the number of response alternatives, even

better results can be expected than when a is unknown, especially when the

model comes close to a single binomial. It must be taken into account,

however, that this only applies to the extent the model of blind guessing

holds for the nonmasters. If this is not the case, then the value of a is

specified incorrectly and the moment estimators given in (9) - (10) may,

in fact, be worse than those for a unknown.

It is not recommended to use the endpoint estimators in any situation.

Not only were they beaten by the moment estimators for all parameter sets

we used, they are also likely to lead to situations in which the estimates

are indeterminate or, if not so, take inadmissible values. The endpoint/

moment estimator for p given in (14) offers an improvement, but is still

too poor for applications in practice.
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TABLE 1

Results for Moment Estimators with Varying Success

Parameters and p = .70, n = 10, and m = 100

(a, a)

A

e
.25

e
1

e

c.25

0*
c
1

e

(.10, .90)

Ee Ee2

(.25, .75)

Ee Ee2

(.40, .60)

EE Eel

.000 .000 -.002 .032 -.012 .016

.000 .000 -.001 .001 .021 .007

.001 .002 .001 .004 -.149 .133

.000 .000 -.0C1 .000 -.002 .001

.002 .002 .001 .003 .024 .020

-.013 .067 .029 .182 .104 10.468

-.013 .064 -.029 .161 .433 10.734

-.012 .061 -.028 .145 .760 11.843

-.003 .024 -.013 .039 -.044 2.010

-.003 .027 -.015 .051 -.510 2.925

-.003 .031 -.017 .064 -.584 4.102

A
moment estimator with a unknown

° moment estimator with a known

20
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TABLE 2

Results for Moment Estimators with Varying Mixing

Parameter and a = .25, 0 = .75, n = 10, and m = 100

ii

A

e.25.

e*

e4

c25

C1C
1

e4

.50 .70 .90

Es Eel Ee Ee
2

Ee Ec
2

.001 .001 -.002 .002 .009 .011

-.001 .001 -.001 .001 .002 .000

.002 .004 .001 .004 -.020 .012

.000 .001 -.001 .000 .000 .000

.000 .004 .001 .003 .000 .001

.003 .115 -.029 .182 .006 .570

.000 .113 -.029 .161 -.004 .411

-.004 .116 -.028 .145 -.015 .291

.002 .048 -.013 .039 -.004 .079

.001 .067 -.015 .051 -.037 .088

.000 .090 -.017 .064 -.038 .099

moment estimator with a unknown

0
moment estimator with a known

21
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TABLE 3

Results for Moment Estimators with Varying Test

Length and a = .25, 0 = .75, p = .70, and m = 100

n

a

0 it
c.25

0*
c

1
0*
c
4

Ec

5

Ee2 Ec

10

Ee2

20

Ec Ee2

.001 .007 -.002 .002 .001 .000

.003 .002 -.001 .001 .000 .000

-.013 .012 .001 .004 .002 .002

.001 .001 -.001 .000 .000 .000

.000 .004 .001 .003 -.001 003

.004 .301 -.029 .182 .009 .156

.C15 .246 -.029 .161 .007 .144

.026 .209 -.028 .145 .005 .134

-.008 .039 -.013 .039 .004 .050

-.009 .056 -.015 .051 .005 .059

-.010 .078 -.017 .064 .005 .069

A
moment estimator with a unknown

° moment estimator with a known
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TABLE 4

Results for Moment Estimators with Varying Sample

Size and a = .25, 0 = .75, p = .70, and n = 10

a

S

11

c.25

c
1

0*

c

1

25 50 500

,EE Ec
2

Ec Ee2 EE GE

.007 .010 -.002 .003 .000 .000

.001 .002 .000 .001 .000 .000

.021 .021 -.002 .007 -.001 .001

.002 .002 -.001 .001 .000 .000

.005 .012 .002 .007 .000 .001

2 -.002 .859 -.031 .353 -.002 .032

-.002 .738 -.029 .303 -.002 .028

-.004 .650 -.028 .266 -.00P .024

-.031 .192 -.023 .087 .000 .007

-.031 .245 -.026 .112 -.001 .010

-.032 .308 -.029 .142 -.001 .012

A
moment estimator with a unknown

° moment estimator with a known

2A
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TABLE 5

Some Results for the Endpoint Estimators

Parameter Set I II III

EE EE
2

Ec EE
2

EE Ec
2

a

W

17

U

c
*
25

c
1

c
*
4

c.25

.*
c
1

.*
c
4

.009 .002 .386 .346 .072 .053

-.004 .001 -.240 .219 -.062 .041

.025 .015 -.180 .140 .102 .124

.001 .003 -.039 .119 .015 .085

-.159 .842 -.920 6.512 -1.507 12.257

-.166 .853 -.617 5.614 -1.304 9.923

-.172 .868 -.287 4.726 -1.096 7.993

.017 .270 -.395 1.828 -.032 6.585

.011 .254 -.168 1.633 -.009 6.352

.004 .241 .058 1.582 .026 6.401

endpoint estimator

endpoint/moment estimator

a = .10, 0 =

a = .25, 0 =

a = .25, 0 =

24

.90, p = .70, n = 10, m = 100

.75, p = .70, n . 10, m = 100

.75, p = .50, n = 10, m = 100

-
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