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Abstract

A classical problem in mastery testing is the choice of passing score and

test length so that the mastery decisions are optimal. This problem has

been addressed several times from a variety of view-points. In this paper

the usual indifference zone approach is adopted with a new criterion for

optimizing the passing score. It appears that, under the assumption of

the binomial error model, this yields a linear relationship between optimal

passing score and test length, which subsequently can be used in a simple

procedure for optimizing the test length. It is indicated how different

losses for both decision errors and a known base rate can be incorporated

in the procedure, and how a correction for guessing can be applied. Finally,

the results in this paper are related to results obtained in sequential

testing and in the latent class approach to mastery testing.

Key-words: Mastery Testing, Passing Score, Test Length, Domain-Referenced

Testing, Decision Theory.
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Passing Score and Length of a Mastery Test:

An Old Problem Approached Anew

The notion of a mastery test has arisen in the context of modern

learning strategies such as learning for mastery and individualized

instruction, where at several points in the instructional process decisions

have to be made whether students have reached certain learning objectives

or not. In most instances, this involves the administration of criterion-

referenced tests and the use of decision rules assuming the form of passing

scores on the test. Students with test scores exceeding the passing score

are considered having reached the learning objectives (the "masters"); they

are allowed to proceed with the unit or to take up a subsequent course.

Students below the passing score the "nonmasters") have to relearn the

unit and to prepare for a new test.

A usual conceptualization in the area of mastery testing is that of

tests as samples randomly drawn ,rom a domain of tasks covering a well-

defined learning objective. Mostly, the concern is then with the propor-

tion of correct item responses, II, say, to be expected when the entire

domain would have been administered. Let ir

m
denote the passing score on

this domain score variable ("mastery score"), X the number of items correct,

and c the passing score on the test. A student is a true master if n > Trm

and a nonmaster otherwise, but mastery is declared if X z c and nonmastery

if X < c. A classical problem in mastery testing is to choose a value n*

for the test length n and a value c*.for the passing score on the test c

such that, for a given value of ffm, the mastery decisions are optimal.

Several authors have addressed the above problem, all using one of

6
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the binomial models for relating test scores, X, to domain scores, ff. Millman

(1972, 1973), for example, assumes that the simple binomial model

(1) p(x) (rpnx(1-11.)n-x

can be used for this purpose and provides tables which for a chosen value

of arm, test length, and passing score, display the probability that a per-

son with a given domain score is classified correctly or incorrectly. Using

these tables, it is possible to optimize passing score and test length

simultaneously for a selected domain score. Comparable approaches have

been followed by Klauer (1972) and Kriewall (1972).

Fhaner (1974) introduced the notion of an indifference zone in the

present problem. An indifference zone arises when the mastery score, arm,

is replaced by an interval, (no, ni), so that examinees with II) ni are

considered a master, those with II g no a nonmaster, and we are indifferent

with respect to examinees with no < II < 111. The interval may be taken

symmetric about arm, but this is not necessary. For true masters and non-

masters the probability of a misclassification is largest for domain

scores n
1
and ire, respectively. Fhaner proposed as a solution to choose

the minimum value of n and a value of c for which the probabilities of

misclassification

(2)

and

n

a =
r (n)ix(i_n

0

)n-x

L ' 0
X= C



c-1

(3). a = (

x=0

Passing Score and Length

4.

are not larger than preassigned values a* And ThisThis is no closed-form

solution, and binomial tables must be entered to find the optimal values

of n and c. It is possible to use a normal approximation, however, and in

that case a closed-form solution is obtained (nailer, 1974). Wilcox (1976)

has adopted the same epproech and has suggested computer search routines

using the incomplete beta function to find the solution for the binomial

case.

As van den Brink and Koele (1980) have pointed out, it is possible

to correct the above solution for the possibility of guessing on multiple-

choice or ture-false items. To perform this correction, they adopt the

knowledge or random guessing model and simply replace the parameter it in

the binomial model by

(4) g + g(1 - 7 )9

1r being the domain score corrected for guessing and g the guessing param-

eter. For the latter they suggest the use of the reciprocal of the number

of item alternatives, q
-1

.

Novick and Lewis (1974) and de Gruijter (1979) present a Bayesian

approach to the present problem extending the model with the beta dis-

tribution as a prior for the binomial parameter Ir.

As several authors (e.g., Wilcox, 1976) have. noted, different

preassigned values a* and a* can be selected to allow for differences in

loss between misclassifying a true master and a nonmaster. In this paper, we
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will take a somewhat different approach and represent possible differences

in loss not indirectly -- by manipulating both probabilities of misclas-

sification -- but via the introduction of explicit parameters. But before

doing so, we will prepare this approach and consider the case of a decision -

maker who is indifferent to both classification errors. It appears that

in this case there is a simple linear relation between the optimal passing

score and test length. This can be utilized to find the solution in this

particular case but also plays an important part in the more general case

of different losses.

Indifference to Both Clastification Errors

In the Wilcox solution a number P*, 1/2 < P *< 1, is chosen, and next

values for n and c are determined so that the value for b is minimal and

both._ a and a are not larger than P*. The fact that the same restriction

P* is imposed on a and 0 reflects that both misclassification errors are

considered equally serious. But tbis,can also be expressed in another way;

If there is equal loss in misclassifying'a true master and a nonmaster,

only the size of the probability of misclassification and not the type

of misclassification concerns us. If so, it seems natural not to look

for values of n and c for which (2) and (3) are both below the same

predetermined number P* but for values for which their average

1

(5)

c

/ (X)fflx(1 711)n-x (FX)710x(1-1T0)n-x] /2
x=0 x=c

9
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meets such a requirement.

We first assume n to be fixed and look For the value of c minimizing

the new target function defined in (5). The constant factor 1/2 may there-

by be ignored. Adding terms to the first sum in (5) and subtracting these

from the second yields

(6)

n

i

r ("x%7 A(1-71)n-x -

x7.0 1

1 (n ) 71

x

(1-71)n-x 7ox(1-70)n-x
x=c

x

[

Since the first sum is equal to 1, the value of c for which (6) is

minimal depends only on the bracketed factor in the second sum. We know

that the binomial probability function has monotone likelihood in x (Fer-

guson, 1967, sect. 5.2), which implies that the ratio 71x( 1-71)n-x/

7
0

x
(1-7

0
)
n-x

is monotone increasing in x. So there is a value OfIx.:for

which the sign of this factor changes from negative to positive. If we

set c equal to this value, the second sum in (6) contains all positive

terms and (6) is minimal. Thus, (6) is minimal for the value c* obeying

Trc *( 1-7
0
)n-c

n-c
= 7

c
(1-7

1
) .

Logarithmizing both sides and simplifying, it appears that
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1
-n0

In

(7) c
* 1-Tr

1

n

In
ff1(1-TrO)

Tr0(1-7r1)

This result is most interesting: The left-hand side is the optimal

value of c expressed as a relative score. The right-hand side is a constant

which is independent of test length and only a function of the boundary

values of the indifference zone. Thus, whenever an indifference zone is

established, we can easily compute (7) from its boundary values and

immediately know the optimal passingscore for any test length.

We now use the linear relation between c* and n to find an optimal

value, n*, for the latter and thereby follow a simple procedure analogous

to the one in the Wilcox solution. First, a number P*, 1/2 < P
*

< 1, is

selected which serves as an upper bound to (5). The value n* is determined

as the smallest value of n for which (5) is not larger than P*. Second,

the ratio ce /n is computed from the indifference zone via (7). Third, a

trial value for n* is chosen, and (de)cumulative binomial tables are en-

tered with this value and the implied value of c* to compute (5). Fourth,

if this computation yields a value smaller than P*, a lower trial value

for n* is selected and step three is carried out again. For values of (5)

larger than P*, a larger trial value is selected. This proces is repeated

until the smallest value of n is found for which (5) is not larger than

P. This is n*.

In the above procedure, trial values for n* may be chosen not in-

volving an integer value for c*. As follows from (6), in that case the

11
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first integer value above c' must be used. (The choice of integer value

below c* would imply adding negative terms to the second sum in (6) making

this suboptimal.)

Although binomial tables for values of n up to 150 are available

(Ordnance Corps, 1952), tables in most text-books do not go further than

n = 20. It is known, however, that indifference zone methods are rather

conservative and that, for strong requirements on (5) or narrow indifference

zones, values of n* larger than 20 can be expected. (For an impression, see

Table 1 in Fhaner, 1974). When longer tests are needed and no spetial.tables

are available, one has to resort to a computer or a calculator for the above

procedure. The programming involved is compartively simple, though, and

some calculators posses even hardware facilities for binomial probabilities.

Another possibility is to use an approximation to the binomial

distribution function which is simple enough for hand calculation. A

straight - forward approximation, based on the central limit theorem, is to

replace (5) by

(8)

dIEffi(1-7T1)/r1] 1/2 j [Eno(1-17100/n]

c/n - ri ¶0 - c/n

0 denoting the standard normal distribution function. Using this normal

approximation, we need not compute (8) completely for each trial value for

n'. Substituting (7) into (8), it appears that this can be written as

(9) [,(an1/2) 0(bn1/2)]

with

12



[

(10) a E I1(1-11)

-1/2

In

and

11(1-101
-1

and
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1-7r
0

)
1-Tr

1

I-r

(11) b E [1(1-10) lnjIn
¶1(1-7T

I0(1-11)

0

J7T0.1 \r'd
Tr
0 (1-71

-1/2 1-I

The last two expressions depend only upon he indifference zone boundaries,

Tro and Tr1. Once a and b are calculated from these boundaries, the iterative

procedure can be applied directly to (9). The reader who is familiar with

the cumulative normal distribution can use well-known reference values as,

for example, 4( -1) .1587, 4)(0) .5000, and 4)(1) .8413, to s ickly

establish whether trial values for n* meet the restriction P imposed on

(9).

it is known that the normal approximation in (8) can be lass accurate,

notably when it is used for approximating tail probabilities of skew

binomial distributions. This situation arises when both indifference zone

boundaries are larger than .70, say, and strong requirements are Imposed on

(5). A variety of better approximations are given in Molenaar (1973). When

choosing one, we are, however, faced with a dilemma. Generally, the more

accurate the approximation, the more cumbersome its calculation. Most

approximations can be used in combination with the iterative procedure for

test length determination only if one has access to a computer, but in that

case the procedure can as well be carried out directly with (5). A reasonable

accurate approximation to (5), which is not too complex, is

13
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1/2 1/2 1/21/2
(12) [(4c + 3) (4n - 4c - 1)

4.(4n - 4c - 1)

(for a discussion and some numerical results, see Molenaar, 1973, eq. 3.20,

pp. 111 - 114). It is recommended that this approximation be used when strong

requirements are imposed on (5) and the choice of the indifference zone

entails skew binomial distributions. In order to reduce the calculations,

a good strategy is to use (8) until it gives a solution and next to use (12)

to find out whether it can be improved.

As noted before, the worth of the procedure proposed in this paper

lies in the ease with which binomial tables can be consulted. It utilizes

a simple linear relation between optimal passing score and test length so

that for each trial value for n* results for only one passing score need to

be obtained. In the other indifference zone methods several trial values for

c* must be tested for each trial value for n* until fie combination (c*, n*)

meeting the requirements is found. The fact that c* has a simple relation to

n gives (7) value in its own right. It can be used, for example, to find

yptimal passing scores on new tests when test length has to be fixed for

some practical reason, or to establish whether passing scores that have

already been used in practice satisfy the optimality condition considered

in this paper. As will be shown in the next section, another advantage of

the present procedure is the possibility of incorporating different losses

for false positive and false negative decisiur:;,

4
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Different Losses for Both Decision Errors

So.far it has been assumed that the loss incurred for a false positive

decision (granting the mastery status to a nonmaster) is equal to the loss

for a false negative decision (granting the nonmastery status to a master).

We now assume that both losses take in different values and incorporate this

in the procedure by replacing the average in (5) by the weighted average

(13)

c-1

1 Jo ()ndnix(1-ni)n-x /0 (x)/T0(1-no)
"
-xl (/0 /1)-1'

x=0 x=c

where ko is the loss of misclassifYing a nonmaster and of a master.

Following the same derivation as before, (13) is minimal for the value

c° given by

(14) c°

n

in

In n1(1-n0) nln
n1(1-n0)

70(1-nd n0(1-nd

A denoting the loss ratio konl.

Comparing (14) with (7), several things can be noted: The right-hand

side of (14) displays an additive structure consisting of two different

parts. The first part is equal to (7), and thus again a constant dependent

only upon the indifference zone boundaries; the second part represents the

influence of the loss ratio on the optimal passing score and is, as opposed

to the first part, dependent on test length. When different losses for

both misclassifications have to be reckoned with, the optimal passing

15
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score (expressed as a relative score) is thus equal to the one for the

case of equal losses plus a test length dependent correction. For loss

ratios larger than one this correction is positive, while it is negative

for ratios smaller than one.

It should be noted tnat in the second term of (14) test length figures

only in the denominator. This implies that the longer the test is the

smaller the absolute size of the influence of the loss ratio on the optimal

relative passing score will be. Table 1 shows this for loss ratio values

Insert Table 1 about here

from 1:4 to 4:1. For example, the relative passing score on a 10-item test

must be raised by .173Ao account for a loss ratio X = 3, while this is

only .035 for a 50-item test.

In view of the determination of optimal test length, it is helpful

to rewrite (14) into

(1-70)
In In X

(1-70
(15) c° n

In
ff1(1-7r0)

In
Tr1(1-1T0)

ff0(1-7r1) ir0(1-T1)

This expression again shows a linear relation between c° and n. It has (7)

as slope and this time a non-zero intercept which is a function of the loss

ratio. Table 2 shows values of this intercept for loss ratio values from

Insert Table 2 about here
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1:4 to 4:1 and indifference zones which can often be encountered in the

practice of mastery testing. The entries in this table are thus to be

added to the optimal passing score for the equal loss case, c*, when loss

ratios unequal to one are used.

The determination of optimal test length proceeds along the same lines

as in the previous section. First, the number P° is selected as the upper

bound to (13). Its minimum value is no longer equal to 1/2. (In the

previous section, this value could always be realized by randomly assigning

the examinees to the mastery and nonmastery state.) Now it is equal to

(.6) max to/(2,0+21), 21/(L0411)

these two values being obtained by always assigning the examinees to the

mastery and nonmstery state, respectively. Second, the slope and inter-

cept in (15) are computed. (For the latter Table 2 can be used.) Third, a

trial value for n°, the optimal test length, is chosen, and the associated

value of c° is computed from (15). Binomial tables are entered with the

value of c° to obtain the (de)cumulative probabilities in (13), and once

these are found (13) is computed. Fourth, the value computed for (13) is

compared with P°. If it is smaller (larger) than P°, a lower (larger) trial

value for n° is selected, and the previous step is repeated. The process

is stopped when the smallest value of n is met for which (13) is not larger

than P°. This is n°.

When a normal approximation is needed, we replace (8), analogous to

(13), by a weighted average of (de)cumulative normal probabilities.

Substitution of (14) in this new target function results in

7
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112 -1/2 1/2 -1/2

[

-1(17) 2.10(an + cn ) + 2.04)(bn - do ) (20 + kl)

with a and b given by (10) and (11), respectively, and c and d by

-1/2

711(1-70) -1(18) c E 71(1-71) in In X
70(1-71)

and

-1/2

En 71(1-701

-1

(19) d E [0(1-701 in A

70(1-71)

In the above procedure, we first compute a, b, c, and d from 70, 71,

and A, and next substitute our trial values for n° directly into (17). If

necessary, we can use the approximation in (12) to find out whether the

solution thus obtained can be made more accurate.

Incorporating a Known Base Rate

If a priori knowledge about the proportion of masters is available,

for instance, from previous testing programs or experiences with comparable

groups of students, it may be prudent to incorporate this in the decision

Procedure as well.

Ignoring the examinees in the indifference zone for a while, let

denote the proportion of masters so that 1 - p equals the proportion of

nonmasters. We now use p and 1 - p as weights in our target function and

replace (13) by
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c-1

(20)

[I
Z (x)114^(1-wdn-x

x =O

i -1
iii pl

+
x =c

Following the same derivation as before, the optimal passing score c'

proves to be given by

(21)
n

In

1 -u

In

In

711(1 -710)

nln
711(1 -710)

n1;1

711(1 -7r0)

710(1-711) 710(1-711) 710(1-711)

This result is equal to (14) extended with a term containing the base

rate, (1 - ') h. For base rate values larger than one, this term is

positive, while is is negative for values smaller than one.

The roles played by (1-p)/p and A in (21) are fully identical. For

a quantitative impression of the last term in (21), Tables 1 -2 can be

consulted with (1-p)/p substituted for A.

To find the optimal test length in the present case with an explicit

base rate, the same procedure as in the previous section can be followed.

Even the same formulae (and Table 2) may be used. This stems from the

fact that the last two terms in (21) can be reduced to the same denominator,

whereupon (21) has the same structure as (14). The only modifications

needed are the substitution of A(1-0/11 for A and the replacement of (16)

by

(22) max (1 -p)2,0/I(1 -p)Ro+pti], 11211(1-142,0+1.41] ,

9
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which now is the minimum value of the upper bound P' to (20).

Guessing

As noted earlier, van den Brink and Koele (1980) proposed to use the

knowledge or random guessing model to correct Fhaner's (1974) approach for

the possibility of guessing on multiple-choice or true-false items. The

same can be done in the approach given in this paper. We then first

establish the indifference zone on the ab lity scale corrected for guessing,

i.e., as (ngo, no), and next apply transformation (4) to obtain the

values (n
0'

n
1
) with which we enter the formulae given in this paper.

It should be noticed, however, that experience with the knowledge or

random guessing model in item response theory shows guessing parameter

values somewhat less than the reciprocal of the number of alternatives,

q
-1

(Lord, in press). For example, items with four alternatives typically

result in values of .22 or .23 rather than .25. It is recommended that

this be taken into account when setting the guessing parameter value.

Discussion

The results presented in this paper relate to results obtained in two

other areas.

The first is the tent class approach to mastery testing. In this

approach it is assumed that mastery and nonmastery are two latent states

underlying the test score, each entailing different probabilities of a

successful reply to the items. Im Emrick's latent class model (Davis,

Hickman, and Novick, 1973, pp. 32-47; Emrick, 1q71; Emrick and Adams, 1969;

Fricke, 1974; Macready and Dayton, 1977) two latent success probabilities
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are assumed, one representing the mastery and the other the nonmastery

state. Emrick and Adams (1969) give an optimal passing score which, al-

though derived and presented in a different way, is quickly seen to be

equivalent to c' given in (21).

This equivalence is only formal, however. In Emrick's model the latent

success probabilities, which correspond with no and n1 in (21), must be

estimated from the test data. (For a review of available estimation proce-

dures, see van der Linden, 1980.),In this paper, no and n1 represent no

latent classes and need not be estimated; they are boundary values of an

indifference zone on the domain_score continuum which are set on educational

grounds.

Fricke (1974) has given proofs that the correction of Emrick's passing

score needed for loss ratio and base rates unequal to one are independent

of the base rate and the loss ratio, respectively, and of the test length.

However, this follows immediately from inspecting the structure of (21)

which can be viewed as a linear decompotition of c'. Van der Linden (1978)

has proposed a correction for guessing for Macready and Dayton's (1977)

version of Emrick's model which corresponds with the correction for guessing

proposed in the previous section.

The formal correspondence between Emrick's passing score and (21)

suggests the use for Emrick's model of the procedure for test length

optimitation developed in this paper. The only difference is then, of course,

that the success parameters no and ni, in (20) - (21) must be estimated

before the procedure can be applied and that, consequently, no exact but

estimated results are obtained.

The second area to whith the results in this paper relate is Wald's

sequential probability ratio test for binomial populations. Several expres-

21
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sions in Wald (1947) are reminiscent of the formulae given in this paper.

For example, formula (15) is equivalent to the critical numbers in the test

of u 4 n against w $ n
1

(Wald, 1974, eqs. 5.1,--5.2). The only exception0

is that the loss ratio A is replaced by a ratio based on the probabilities

of errors of type I and II. It must be borne in mind, however, that, just as

in the previous case, this equivalance is only formal and that different

interpretations are involved. In sequential. testing test length, or,

generally, the number of observations, is a random variable, and sampling

is not stopped until one of the critical numbers is exceeded. The purpose

of this paper was to find an optimal test length which is fixed prior to the

test administration. It should be; realized, however, that when sequential

testing strategies are possible this is certainly worth considering, since

substantial savings in the number of test items needed can be expected

(Wald, 1947, sect. 3.6).

As a final comment, we recall that the use of the binomial model

imposes certain restrictions:on the test items. These are, however dependent

on whether the item responses can be viewed as deterministic or stochastic

responses (van der Linden, 1979). Either conception of item responses

involves equal item difficulties. But, when the former conception is adopted,

this condition can be avoided by giving separate samples of items to each

student, whereas this cannot be done for the latter. When these conditions

are not met, the simple binomial model used in this paper must be replited

by the compound binomial model. It is known, however, that this entails a

smaller variance of test scores, so that the procedure of this paper will

result in conservative estimates of optithal test length.
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TABLE 1

Increase of Optimal Relative Passing Score Produced by

Loss Ratios Unequal to One for Some Values of

n and (no, nl) = (.75, .85)

A=2,
0
A

1

n .25 .33 .50 1 2 3 4

10 -.218 -.173 -.109 .000 .109 .173 .218

20 -.109 -.086 -.054 .000 .054 .086 .109

30 -.073 -.056 -.036 .000 .036 .056 .073

40 -.054 -.043 -.027 .000 .027 .043 .054

50 -.044 -.035 -.022 .000 .022 .035 .044

60 -.036 -.029 -.Q18 .000 .018 .029 .036
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TABLE 2

Ihcrease of Optimal Passing Score Produced by Loss Ratios

Unequal to One for Some Indifference Zones

.25 .33 .50

A2,
0

/2,
1

1 2 3 4

(.60, .65) -6.491 -5.144 -3.245 .000 3.245 5.144 6.491

(.60, .70) -3.138 -2.486 -1.569 .000 1.569 "2.486 3.138

(.60, .75) -2.000 -1.585 -1.000 .000 1.000 1.585 2.000

(.65, .70) -6.073 -4.813 -3.037 .000 3.037 4.813 6.073

(.65, .75) -2.891 -2.291 -1.445 .000 1.445 2.291 2.891

(.65, .80) -1.807 -1.432 -0.903 .000 0.903 1.432 1.807

(.70, .75) -5.516 -4.371 -2.758 .000 2.758 4.371 5.516

(.70, .80) -2.572 -2.038 -1.286 .000 1.286 2.038 2.572

(.70, .85) -1.562 -1.238 -0.781 .000 0.781 1.238 1.562

(.75, .80) -4.819 -3.819 -2.409 .000 2.409 3.819 4.819

(.75, .85) -2.180 -1.727 -1.090 .000 1.090 1.727 2.180

(.75, .90) -1.262 -1.000 -0.631 .000 0.631 1.000 1.262

(.80, .85) -3.980 -3.154 -1.990 .000 1.990 3.154 3.980

(.80, .90) -1.710 -1.355 -0.855 .000 0.855 1.355 1.710

(.80, .95) -0.890 -0.705 -0.442 .000 0.442 0.705 0.890
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