DOCUMENT RESUME

ED 309 762 IR 013 939

RUTHOR Swan, Karen

TITLE Programming Jbjects To Think With: Logo and the
Teaching and Learning of Problem Solving.

PUB DATE Mar 89

NOTE 35p.; Paper presented at the Annual Meeting of the

American Educational Research Association (San
Francisco, CA, March 25-30, 1989).

PUB TYPE Reports - Research/Technical (143) —--
Speeches/Conference Papers (150)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS *Computer Assisted Instruction; Hypothesis Testing;
xInstructional Design; Intermediate Grades;
xIntermode Differences; Models; Pretests Posttests;
*Problem Solving; =Programing; Programing Languages;
*Skill Development; Transfer of Training

IDENTIFIERS xLogo Programing Language

ABSTRACT

Unfortunately, much of the research devoted to Logo
and problem solving has not supported the claim that Logo provides an
environment in which children will develop problem solving skills,
but the literature suggests that direct instruction and mediated Logo
programning practice can result in the acquisition and transfer of
certain problem solving abilities. The research reported in this
paper was des’ 1ed to test such an hypothesis by differentiating
between interventions combining direct instruction and mediated
practice and discovery learning approaches, and with assessing the
importance of programming within that model. Subjects were 100
students in the fourth through the sixth grades who had ail had at
least one year (30 hours) of prior experience programming in Logo.
All subjects were pretested on their ability to solve problems
requiring the use of each of the five problem solving st—ategies
under investigation, and randomly assigned by grade to o-~e of three
treatment conditions--a Logo graphics condition, a cut-puger
manipulative condition, or a discovery learning, Logo projects
condition. Results reveal that the model can indeed support the
acquisition and transfer of four problem solving strategies--subgoals
formation, forward chaining, systematic trial and error, and
analogy--whereas neither discovery learning in a Logo environment nor
direct instruction with concrete manipulatives practice can
accomplish that. Indications are that the model can support the
teaching and learning of alternative representation strategies as
well. The findings support claims for the efficacy of Logo as a
melium conducive to the teaching and learning of problem solving, and
argue ror the use of knowledge-based instructional design and
computing environments in the creation of problem solving
interventions. (33 references) {Author/BBM)

* Reproductions supplied by EDRS are the best that can be made]

x from the original document. x
ﬁ**************************

U S DEPARTMENT OF EDUCATION
Ottice of Educationat Research and improvement
EDUCATIONAL RESQURCES INFORMATION

CENTER (ERIC
!LTms document nas veen reproduced as
recewved 1rom the person or organization
onginating it
~ Minor changes have been made 10 1mprove
reproduction quahty

o Points of view OF Opinions statea in this docu
ment G0 nNAt necessanly represent ot rial
OERI position Of poticy

PROGRAMMING OBJECTS TO THINK WITH:
LOGO AND THE TEACHING AND LEARNING OF PROBLEM SOLVING

Karen Swan
SUNY Albany

paper presented at the Annual Meeting of the American Educational Ressarch
Association, March, 1889, San Francisco

“PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Karen Swan

&S

BEST COPY AVAILABLE

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC).”

Abstract

The Logo computer programming language has been described
as an environment in which children will develop problem solving
skills. Unfortunately, much of the research devoted to Logo and
problem solving has not discovered such a connection, but a
careful reading of the literature suggests that direct instruction and
mediated Logo programming practice can resuit in the acquisition
and transfer of certain problem solving abilities. The research
reported in this paper was designed to test such hypothesis. In
particular, it was concerned with differentiating between
interventions combining direct instruction and mediated practice
and discovery learning approaches, and with assessing the
importance of programming within that model. Results reveal that
the model can indeed support the acquisition and transfer of four
problem solving strategies - subgoals formation, forward
chaining, systematic trial and error, and analogy - whereas
neither discovery learning in a Logo environment nor direct
instruction with concrete manipulatives practice can. Indications
are that the model can support the teaching and learning of
alternative representation strategies as well. The findings support
claims for the efficacy of Logo as medium conducive to the
. teaching and learning of problem solving, and argue for the use of
knowledge-based instructional design and computing
environments In the creation of problem solving Interventions.

“Stated most simply, my conjecture is that the computer can concretize
(and personalize) the formai. Seen in this light, it is not just another
powerful educational tool. It is unique in providing us with the means for
addressing what Plaget and many others see as the obstacle which is
overcome in the passage form child to adult thinking. | believe that it can
allow us to shift the boundary separating concrets and formal.”

- Seymour Papert (1980, 21)

Seymour Papert maintains that computers are a truly revclutionary educational
medium because they support “transitional objects to think with,” computer representations
of abstract ideas that can bc manipulated in seemingly concrete ways to help bridge the
gap between concrete and formal thought. He further argues that this transition will take
place automatically and painiessly when students are provided with well-structured
computer environments rich in such computer manipulativas, environments such as the one

he himself designed, the programming language Logo.

At least as it concerns Logo and the teaching and learning of problem solving, the
literature reports no such automatic acquisition of problem solving skilis. Indeed, multipie
studies have reportsd no significant increases whatsoever in problem solving abilities
among students involved in Logo programming (Papert, Watt, diSessa, & Weir, 1979; Pea &
Kuriand, 1984, 1987; Leron, 1985; Salomon & Perkins, 1887; Johanson, 1968). Indications
are, however, that problem solving skills may be enhanced through direct instruction and
mediated practice in Logo programming environments (Gorman & Bourne, 1983; Clements
& Gulio, 1984; Clements, 1887; Carver, 1987; Lehrer & Randle, 1887; Thompson & Wang,
1968). Indeed, our own plict ressarch found that students’ scores on measures of five
problem solving strategies — suogoals formation, forward chaining, systematic trial and
error, alternative representation, and analogy — wers significantly increasad following an
instructional intervention that combined direct problem solving instruction with mediated
practice in & Logo programming environment (Swan & Biack, 1888).

The research reported Iin this paper was concermed with validating the success of
that instructional model with respect to Papert's claims for Logo; in particular, with
differentiating bstween that model and a discovery learning approach, and with assessing
the importance of computer manipulatives within it Two research questions were

acddressed:
2

)
o
i

1. Is explicit instruction and mediated practice in particular problem solving
strategies superior to discovery leaming for supporting the acquisition and
transfer of problem solving strategies from within Logo programming
environments?

2. Is the Logo programming environment particularly supportive of the
acquisition and transfer of problem solving skilis?

Problem Soiving Strategies

A number of distinct problem solving strategies can be distinguished from general
problem solving behaviors (Neweil & Simon, 1972; Wicklegren, 1974). Certain of these
seem more applicable to programming problems in general, children’s programming in
particular (Clements & Gulio, 1984; Lawler, 1985; Clement, Kurland, Mawby & Pea, 19868).
The research reported in this paper was concerned with the teaching and leaming of five
such strategies — subgoeis formation, forvard chaining, systematic trial and efTor,
alternative representation, and analogy. General definitions and explicit deacriptions of
each of these foliow. Strategy descriptions are basad on an extended version of Polya's

(1873) description of gereral problem solving. They break . the problemn soiving process
into four parts - problem definition, speclifying the goal and initial state of a problem, pian
W“MWmamwlmMmamlar
strategy, evaluation, checking to see that domain operators and general strategies have
been correctly appiied, and recursion, reapplying a strategy at a variety of ieveis.

Subgoals formation
Subgoals formation refers to breaking a single difficult problem into two or more

simpler problems. Subgouls formation might thus be seen as the defining of a problem
space. Even when no obviously solvable subgoals can be found, breaking a problem into
its constituent parts makes its soiution less formidabls, more manageabie, and less
susceptible to errors. Subgoals formation can be described by the following four steps:
1. Probiem definition. Specify the problem.
2. Stbdivision. Examine the probiem specification to see where it can be
broken into smaller, seif-contained problems. Specify these and their
connections to the iarger problem.

5)

3. Evaluation. Test the subproblems generated for grain size and further
decomposition. If the subproblems are manageable or cannot be further
decomposed, solve them. Recombine these partial solutions into the total
solution using the connections specified in step 2.

4. Recursion. Otherwise, repeat the second and thir~ steps for sach of the
subproblems generated. Continue the process untii no more smaller
problems can be generated for any of the subproblems.

While subgoals formation might seem an obvious strategy to adults, it is not at all
obvious to many children (Carver & Klahr, 1888). Moreover, of all the problem solving
strategies, it can most clearly be impiemented and concretized in Logo programming. In
Logo, small subprocedures gre easily written and placed in the workspace. Because these
can be called from anywhere in a program, a program can simply be a list of such
subprocedures, a very concrets representation of the subgoals that maka up a
programming solution.

Forward chaining

Forward chaining invoives working from what Is given in a probiem towards the
probiem goal in step-by-step, transformational increments that bring one progressively
closer to that goal. The forward chaining process can be decomposed into the following

steps:

1. Problem definition. Specify the problem goal. Specify what is given.
Specify the constraints, if any.

~ 2. Transformation. Use domain operators tc manipulate the givens to bring
them closer to the goal state.

3. Evaiuation. Compare the desired goal, the givens, and the
transformation. Test to see whether the transformation is really closer to
the goal than the givens. If it is not, redo step 2.

4. Recursion. Make the transformation a new given. Repeat steps 2 and 3
using the new given. Continue in this manner until the goal state is
reached and the problem s solved.

A programming environment, especially an interpreted environment like Logo, is
inherently supportive of the forward chaining process. Transformations can be

implemented, their effects accessed, and successful changes instantiated as partial
proarams, with reiativ® 6ase and Ilme nNSK. A program can us be aeveioped In

ERIC 4 5

incremental steps and such development provide a concrete model of the forward chaining
process. An important part of forward chaining, however, invoives the ability to choose
appropriate transformations and evaluate whether or not these actually bring one nearer
problem solution. Forward chaining thus requires soma sort of mental model of the
probiem space, and Is not, therefore typically a novice technique (Greeno & Simon, 1984).

Systematic trial and error
Systematic trial and error invoives the recursive testing of possible solutions in a

systematic, guided fashion, and the problem reduction and/or refinement resutting from
such tests. The steps involved in the systematic trial and error process include:

1. Probiem definition. Specity the probiem goal.

2. Approximate solution. Create and implement a plan to soive the
probiem.

3. Evaluation. Compare the probiem goal with the instantiated solution. If
there nre no discrepancies bstween them, the problem i3 solved.
Otherviise, gencrate a description of the discrepancies bstwesn the
desired goal and the instantiated solution.

4. Recursion. Use the deacription of goal/solution discrepancies to revise
the plan, and reapply steps 2 and 3. Continue in this manner until the
instantiated soiution matches the desired goal.

Piaget (Qinsburg & Opper, 1980) betieved that the application of systematic trial
and error strategies was an Important determinant of formal operational ability. Systematic
trial and error, then, is an obvious candidate for testing Papert's (1980) notion that
programming environments support the concretizing of the formal. Certain types of
graphics programmir.g, moreover, are paradigmatic of systematic trial and error strategies.
Debugging aiso makes use of, and provides symbolic representations for, such technig.:es
(Carver, 1967). '

Alemastive representation

Alternative representation Invoives conceptualizing a problem from differing
perspsctives. Polya (1973) writas that often the way a probiem Is stated is really all that
makes it difficult, that simpie restatement will make its solution obvious. Alternative
representation is thus the antidote to functional fixedness (Dunker, 1845). It can be
decomposed into the following four-step description:

7 S

1. Problem definition. Specify the problem.

2. Alternative representation. Generate an alternative problem
specification

3. Evaluation. Test to see whether the new problem specification suggests
probiem solution. If it does, solve the problem.

4. Recursion. Otherwise, repeat steps 2 and 3 by generating and
evaluating other problem specifications until a problem solution is found.

Programming is conducive to the development of alternative representations both
because there are never single correct solutions to programming problems, and because
differing representations can quite easily be instantiated and pragmaticslly tested in
programming environments. indeed, Clements and Gulio's (1984) study of the effects of
Logo pragramming on young children’s cognition found significant increases in their ability
‘o produce afternative representations. Statz’s (1973) finding of significant increases on
permutation tasks may also suppott this view.

Anslogy
Analogy invoives the discovery of a particular similarity between two things

otherwise more or less unlike, and “a mapping of knowiedge from one domain (the base)
onto another (the target) predicated on a system of relations that holds among the objects of
both domains.” (Gentner, 1887) An important factor in this process, aspeciaily in probiein
solving contexts, is goal-relatedness, how one domain is like another with respect to a
specified goal (Holyoak & Koh, 1987). The use of analogy in probiem solving can be
decomposed into the following steps:

1. Problem definition. Specify the desired goal. Specify the base and the
target systems.

2. Mapping. Perform a mapping between the base and target systems.

3. Evaluation. Test the soundness of the match in terms of both structural
similarity and pragmatics (goal related conditions). it the.analogy
generated meets the goal conditions, and the structural similarity between
the bass and the target hoids, the mapping s sound. Use the base
domain solution to generate a solution in the target demain.

4. Recursion. Otherwise, return to step 1 and specify a new base domain.
Apply steps 2 and 3 t0 it. Continue in this manner until an adequate
representation is discovered.

8

A

Programming environments inherently support the development of analogy In thax
one is always mapping between computer code (a formal representation) and program '
output (a concrete representation). Indeed, Doug Clements (1967) found significantty
better analogical reasoning among students with prior Logo experience.

These five problem solving strategies — subgoals formation, forward chaining,
systematic trial and error, alternative representation, and analogy can be concretely
represented, then, within a Logo programming context. We accordingly designed our
instruction and our testing procedures around them. The instruction was split into units, one
for each strategy. Each unit included first instruction focused on a particular strategy
(declarative knowledge) followed by mediated practice sotving problems designed to be
particularly amenabie to solutions empioying that strategy {procedural knowledge). We
likewise created six separate tests, each designed to measure students’ facllity in applying
specific strategies to non-computing problems. Our goal was for stude:ts to transfer the
strategies learned in the intervention to the paper and pencil tasks of the probiem solving
tests.

Methodology

Subjects
Subjectsmonehundmdsmaentslnﬂnfwrmmmghsixmcrmdapdvata

suburban elementary school. All subjects had at least one year (thirty hours) prior
experience programming in Logo.

Procadure
Allwb]ectswampwtestedonﬂnlrabllﬂymmpmbbmmqulﬂngmuseof

mhdmmmmmmmumimm.wnndomlymlgmdby
grade to one of three treatment conditions — a Logo graphics condition, 2 cut-paper
manipulatives condition, or a discovery learning, Logo projects condition. Students in the
first two conditions received the same basic probiem sotving instruction but differing
practice environments. Students in the Logo graphics group received practice problems

" Involving Logo granhics programening, while students in the cut-paper manipulatives group
worked on similar problems involving the use of cut-paper manipulatives. Students in the
third, Logo projects group received Logo programming probiems to work on, but did not

Q 7

receiva direct problem solving instruction.

All subjects were post-tested upon completion of the intervention using different but
analogous probierm solving strategy tests. Differe:ces between pre- and post-test scores
were examined using analysis of variance with repeated nrasures. Indeperdent variables
were test, strategy, and treatment group. The dependent variables were the scores on the
tests of each of the probiem solving strategies. A more compiete description of these tests
and of each of the three treatment conditions follows.

Testing

Probiem solving strategy tests ccnsistad of sets of paper and pencil problems
whose solutions required correct application of the particular strategles being investigated.
Two different but analogous versions of each test were deveioped and randomly assigned
by condition on the pre-test. Students were then assigned the alternative form of each test
on the post-test. They were aliowed as much time as they feit they needed to compiete
each test, but were required to work independentty with no help from sither the teachers or

their peers.

Subgoals formation. (Figure 1) Our measure of students’ subgoals formation
qbility consisted of mathematical word problems that required decomposition for correct
soiution. Students were asked not only 10 soive the problems but 1 show how they broke
them into parts, and were given creditfor correctly identified subgoals, as well as for the
COfTect answer.

Forward chaining, (Figure 2) The test designed to measure subjects’ forward
chaining skills was a paper-and-pencil version of the computer program Rocky’s Boots
(The Leaming Comipany, 1882). in Rocky’s Boots, symbolic and, or, and not gates are
combined to produce machines that respond to targeted attributes and sets of attributes (eg.
biue diamonds, crossas or green circles, efc.). Combinations of gates must be built up in a
forward chaining manner tO achieve correct solutions. Our version had subjects draw the
required connections.

Syatematic trial and error. (Figure 3) Cryptography invoives systematically trying
and testing different symboi combinations to attaln coherent decoding systems. We choose

8
i,

R o4
\“(

two decoding exercises to test subjects’ ability to systematically utilize trial and error
strategles. The first of these was a shifted alphabet code. The second involved variations)
on a number code problem from Newell and Simon (1971).

Figure 1
Subgoals formation problems

i%.'&wgi& :a/h.'“" She bowght 2 motsbooks that

o 2butboots)x #.50+ #3700

@ Sfoneds) x Tas ¥/ &
@ +%2.50 (bnt)

G

walks (0 the park cach morning and rides the
The round trip
both ways?

@1//?— - /7 bus one wey
@ 1-ly= % welk one way
@ ZxXJ = |y ik Ioth s

s deck
bus ride takes 1/2 howr. How loag

HF

Figure 2
' Forward chaining problems

@db‘ Eﬂ”ﬂ'* @‘0) ’A i A gnlev)r these

argets

WitCiccles e
5-%:
Sensod

guen

' “use 48 miany drd
@ T ste iarodie

"Al'k g} enw! melad lsw Jcrq kafyk.”

WS > i ant)| the Koy SIS
wit) ‘“ﬁ V
This s @ quotatica you oli know, It (s written tn @ shifte¥ g, odi
created by shifting the leiters of the al “ole (]
S et e DT L BT o

Figure out the code end ds:-de the quot
aiphadet derivetion a7 ;irtied solutions. ation. Shew ell your work, tncluding the

Abcdefahi jkimnop
.S&uxwx;za{c.dcaiﬁh
rs A W Xxu 2
?J‘LI Mmnopqr
DONA LTS
GERA L DS

Rouag:o DS

This & en eddition prodlem written in code. Rech letter stands for a number, dut

thqmnthmlc“d relationship to esch other. The D stands for 5. Your

job &3 te figure out t code and to give the problem ta mumbers. Show all your

:orat“b::.ludmthokrtuﬁonoltudm:z).l.!.l.‘.&lﬂ.’.tcndnmd
¢

1

Alemative represeritation. (Figure 4) The measure of students’ ability to create
alternative representations we used was des.sed from the figures subtest of the Torrance
Test of Creative Thinking (Torrance, 1972). Students were given sets of either parallel lines
or circles and asked to use these as a basis for producing as many interesting and unusual
drawings as they could. Thess were scored for quantity, diversity, originality, and
elaboration.

Analogy. (Figure 5) Subjects’ skill at analogical reasoning was measuted with
completion exercises comprised of items representing both verbal and visual analogy.
They were given one analogy and asked to compiete a second according to the
relationship invoived in the former.

Troatment

All subjects in all groups worked in pairs during their regular computer classes. A
teacher and/or an intern were availabie for help on all problems. Both maintained a
mediated learning approach toward student assistance, sliciting student and/or modeling
their own cognitive processes as they guided stidents toward problem solution. Student
pairs also heiped each other solve problems. In gensral, ciasses met for two forty-five
minute periods each week. The entire intarvention took approximately two and one half
months.

Direct instruction in each of the particular problem solving strategies wus given to
students in the Logo graphics and cut paper manipulaiives conditions ard were exactly the
same for both groups. Wall charts based on the task analyses of the problem solving
strategies but transiated ino children’s language were made and used to introduce each
strategy unit. Figure 6, for axampie, shows the chart for forward chaining. For each unit, the
appropriate chart was produced and each step of the strategy explained and discussed. An
example of how the stratagy might be applied to heip soive a problem was given and
student examples elicited. The chart was then hung on the wall, problem sets distributed,
and work on them begun.

n A

wiley el

Dlam

3

& | O

<trcas o\l

¢ f\s_%q,._? .-_mgenmsg_

5

o
{

’

C

nrga__gad\
731z
9
\

©0.a

_?_9_-[51)!).__. —

0

donis lall llncket ball

OO0 [0

13

@ B [F vl - AX

@ TAP: PAT :: SToP: PoTs
@ ABC: V8V :: XYZ: 2

@&)’%“ﬁ’%}
0 TS ¢
e xOnC: #O

.

- B®- B
2

q0) RocK : HARS >: Plitow ¢
Gr) TALK 3 WALK 2 ° MUTE *

1 ..__ﬁf:_
(12) CALF: CoW 22 RuPPY :
(B) APPLE : ORANGE * kzo :—bﬁ'—”m"

() Now:THEN :: PRESENT: sk —
(8) Lemel : woRrD -“-mm:z,:m’\ ,m.gu#
Y FoOT: HANO 2% TOE ¢ _.{’-ng-

(7?) TRerac: FIowER :: PEmiL
TR CANOLL : CANDLE :: FLAME : FLAME

14

EQRWARD CHAINING

1. What is the problem?
What le the problem goal?
What Is given In the problem?

2. How can you change what is given so it is
more like the goai?
Tey iR,

3. Is itreally closer to the goal?
i not, redo step 2.

4. If it is, make your change the new problem
given. Go to steps 2 and 3 and redo for the
new given. When the given matches the goal,
you are done.

Students in the Logo graphics condition were given unit problem sets comprised of
four graphics programming problems each and asied to solve them in Logo. Students in
the cut-paper manipuigtives condition were given unit sets comprised of four cut-paper
manipulatives problems each, and provided with construction paper, rulers, scissors, and
rubber cement with which 1o soive them. The purpose of the problems was to provide a
pmmmmmmmwummummpmmam
problem soiving strategies being taught. Thus, problems in each set were designed to he
particularly amenabie to solutions invoiving the use of the strategy under discussion, and
difficult enough % be a genuine problem. Whenever possible, similar p.oblems were used
in both conditions. Figures 7, 8, and 9, for exampie, show subgoals formation problems for
both conditions.

17

SUBGOALS FORMATION — GRAPHICS

1. House.

Put together @ TRIANGLE and ¢ SQUARE procedure to draw a HOUSE.

2, Neighborhood,
Put together many HOUSES to drow a NEIGHBORHOOD.,

3. Saiboat. .
Use ¢ TRIANGLE and @ HALF.CIRCLE procedure 1o draw @ SAILBOAT.

4. Face.

Put together oarfous shapes of your own choosing to draw @ FACE.

ST.3GOALS FORMATION - |

Cu! a triangle and & square out of eonstruction paper. Put them together te make
a houte. Paste your house here.

SUBGOALS FORMATION - 2 .

Make many houses from triangles and squares, Paste them together here to make a
neighborhood.

in some cases, however, the uss of probisms with similar surface features would
result in highly disparate degrees of cogritive difficulty. The Logo graphics problems in the
unit on systomatic trial and error, for example, had students perform a variety of screen
formatting activities — drawing a double border around the screen, a target, an aerial view
of city blocks, and a house plan — which required the testing and refining of Logo
procedures. Such activities could be done much easier with cut paper. Petitamino puzzies
which likewise required the testing and refining of possible solutions, but were of similar
cognitive difficulty, were therefore substituted.

For each problem they solved, students in both groups were required to fill out a
probiem solving worksheet that showed the givens, the goal, and the soiutions steps for that
probiem. Figures 10 and 11 show exampies of compieted worksheets. Students in the
Logo graphics condition were aiso required to tumn in a listing and a run of their programs.
Students in the cut-paper manipulatives condition were required to turn in their compiated
designs.

Students in the Logo projects condition were not given direct probiem solving
strategy instruction and were not required to flil in probiem solving worksheets. They
worked on Logo programming projects they selected from lists covering four areas of
programming concepts — procedures, variables, conditionals, and recursion. Projects
linvoived both graphics and list manipulation problems and were chosen to represent the
range of picyecis typically assigned in Logo classes. Exampies of these are given in
Figures 12 and 13. Students in this condition were required to work on one or more project
from each list, progressing through the lists at their own speed and as time allowed. Their
projects couid be as simple or as compiex, and utilize whatever programming and/or
problem soiving strategies they desired. Just like students in the Logo graphics condition,
students in the Logo projects condition were required to turn in a listing and a run of their

programs.

o

17

21

19_\

LOGO PROJECTS

1. Write procedures that draw regular shapes. Put the shapes togethes
in a superprocedure that draws a picture or a design.

2. Write procedwes that draw the parts of a face (i.e. EYE, LIPS,
NOSE, EAR). Put them together in a superprocedure that draws 8
FACE.

3. Write a procedure that PRINTs a poem. Include it in a
superprocedure that illustrates your poem.

4. Write proceduses that draw all the letters in your name. Put them
together in a superprocedure that writes your name on the screen.

5. Write a superprocedure that humorously illustrates an idiom (i.e.
“His head was in the clouds’, You drive me up a wall). Include
animation in your idiom illustration.

6. Write a superprocedure that draws a sign or a poster. Use letters
and drawing in it.

()()

20

|

. FRiC

R dod by erc [-
£y ST e N _
A R 5 L e ives

Logo projects condition

PROJECTS WITH VARIABLES
1. Write procedures to draw variable sized shapes.

2. Write procedwres to draw variable sized shapes filled with whatever
color the person wants,

3. Write a procedure that wriles a name the person types in all over
the screen.

4. Write a MADLIBS procedure that asks the person to type in various
words (i.e. an adjective, a name, a place, a verb, etc) and then prints
out a funny story using those words.

S. Write a procedure that draws a variable-sized house.

6. Write procedures to create a variable sized alphabet.

e SO N

g
S v g
o

Students were tested before and atter treatment on measures of each of the five
problem solving skills. Two different but analogous versions of aach test were developed.
Students were randomly assigned one or the other version of each test by condition on the
pre-test, and then were given the alternative version of each test on the post-test to assure
pre- to post-test reliability. Mean pre-test scores were compared between groups using
one-way analysis of variance and found to be statistically equivalent (F2,97 =0.33,p >.10),

hence the groups were assumed to be generally equal in problem solving ability before
treatment.

Raw scores on all tests except those for alternative representation wera converted
to percent correct scores and compared using three-way analysis of variance with repeated
measures. Because they had no maximum possible scores and so no percentage correct
could be caicuiated for them, alternative representation measures were evaluated

seperately using two-way analysis of variance with repeated me asures.

Results

The resuits of the various analyses argue that expilicit instruction and mediated
Logo programming practice is superior to both similar instruction with cut-paper
manipulatives practice, and discovery leaming within Logo programming domains for
supporting the aquisition and transfer of subgoals formation, forwaid chaining, systsmatic
trial and error, and analogy strategies. Within this contaxt, it appears that such combination
is most supportive of the tsaching and learning of subgoals formation strategies among
students in the age groups studied. Results involving the teaching and les:ning of
altsrnative represeritation stratsgies were more probiematical and require further

S RN NI L. K YENSY S8 | It -1 ‘"L [IS S IS t.* [HERA

Means and standard deviations for tha three-way analysis of variance comparing
Scores on measures of subgoals formation, forward chaining, systematic trial and error, and
analogy are given in Tables 1 and 2, The resuiting ANOVA table is shown in Tabile 3.

24
22

STE
POST
ANAL PRE
POST

(GROUP)Y

PRE
POST
PRE 18.1
POST 17.0
PRE 25.0
POST 218
PRE 114
POST 8.8

'S ¥od
P |

23

758
76.5
455

162
16.8
1.7
274
14.1
14.6

81.5
7.5
47.1

18.8

279
212
124
16.0

SS DF MS E e
MEAN 2074909.0 1 20749990 1568.08 0.0000
GQROUP 33907.5 2 16953.7 12.81 0.000
ERROR 1283579 97 13233
TEST 1676.6 1 1576.68 554 0.0188
TG 6871.7 2 3437.3 12.98 0.0000
ERROR 257250 97 2856.2
STRATEQY 283190.9 3 94397.0 207.11 0.0000
sG 13478.5 8 2248.4 493 0.0001
ERROR 13286309 97 4558
TS 2742 3 768.1 3.64 0.0132
TSG 743.4 6 1229 06 0.7338
ERROR 605408 97 208.0
The independent variables in the research design were test, stralagy, and

treatment group. The dependent variables were the scores on the tests of each of the four
problem solving strategies submitted for analysis. There was one between-subjects factor,
treatment group, and two within-subjects factors, wa anc stratagy. Significant main effects
were found for ail these factors (group, F2,g7 = 12.81, p <.01; test, Fq g7 = 5.84, p <.05;
strategy, F3 g7 = 207.11, p <.01), indicating significant differences along &l these
dimensions. Of thess, only the group effect is particularly meaningful. Because the groups
were statistically equivaiant before, but not after recelving the interventions, the group effect
indicates differences in scores resuiting from treatment. This result favors the Logo graphics
condition which had an overall mean score of 60.2 percent correct, compared with the
cut-paper manipulatives group whose mean score was 46.5 percent correct, and the Logo
projects group whose mean score was 47.1 percent correct.

POUT QITTere Tt KNBraclon SMBCts Were also 8Xamined Dy IS aesian.

24 26

Significant st by group, (F2,g7 = 12.96, p < .01), tsst by strategy (F3,g7 = 3.64, p < .05), and
strategy by group (F3 g7 = 207.11, p < .01) interactions were found. No estby strategyby
group interaction was discovered (p > .10).

The interaction of greatest interest is test by group. it indicates differences in
pre- to post-test changes in scores resulting from the differing treatments. The tests by group
interaction was examined in greater cetail by assessing the simpie tast effects at each lsvel
of group. A strong test effect was found for the Logo graphics group (F1,g7 = 28.95, P <.01),
indicating significant pre- to post-test changes among students receiving that treatment, but
not for the other two groups (p > .10). Table 4 shows the mean differences between pre-
and post-test scores by group and strategy. Marginal group means reveal that students in
the Logo graphics group improved an average of 11.1 percentage points on the four
measures, while the scores of students in the cut-paper manipulatives group remained
essentially the same, and the scores of students in the Logo projects group actuaily declined
slightly (although not significantly). These results argue strongly that the Logo graphics
intervention, and the Lcgo graphics intervention alone, resulted in improvements in
students’ problem solving abilities. it is interesting to note that mean pre- to post-test
increases among students receiving the Logo graphics treatment were nearly identical to
those observed in our piiot research indicating a consistant treatment effect, and adding
support to conclusions arguing for the efficacy of the intervention.

SG 19.1 6.0 -06 79

FC 7.0 5.4 -4.9 -13

STE 11.3 -5.4 -0.5 25
ANAL 72 3.1 -20 15
{GROUP) 11.1 0.7 -20 2.7

Because the various problem solving strategy measures were not designed to be
equivalent, the two interaction effects involving the strategy dimension are not necessarily
meaningful. The test by strategy interaction is the more interesting of the two. It indicates
that students hed greater pre- to post-test changes on certain strategy measures than on

S 27

%

others, but, because the measures were not equivalent, any comparison of mean
. differences across strategies is probiematical. Looking at the mean differences table with
this in mind, notice that students showed by far the greatest increases on subgoals formation
tests, and that part of the reason far this Is that students in the Logo graphics group improved
on these measures, whereas neither they, nor students in the Logo projects group improved
on any of the others. An examination of the simpie t8st offect at each level of strategy
reveals that indeed subgoals formation measures were the only ones on which the majority
of students exhibited significant pre- to post-test differences (Fg g7 = 11.59, p <.01) Such
findings at least suggest that subgoals formation strategies were more easily acquired by
students in this age group, a finding which concurs with the results of our piiot research.

The strategy by group interaction indicating differing scores reiative to students in
other groups on differing strategy measurss. Were thos measures equivalent, or were
patterns of differences found on the pre-tast radicaily different from overall patterns, then the
differing efficacies of particular treatments for supporting the acquisition and transfer of
specific strategies could be argued. Neither, however, was the case. The result, then, is
significant, but not meaningtul.

Aliomative egresenigtion

The tests of students’ ability 1 create altermnative representations had o maximum
possible correct. Total scores on these tasts ranged from a low of 21 to highs of over 250
points, thus the variance on this measure was very large. The probiem was compounded by
the facts that students in all groups showed improvements on this measure, and that a
comparison of pre-test group means reveais they were not statistically equivaient (F2 g7 =
4.96, p < .01}, hence that the groups were equal in altsmative representational ability before
treatment. Means and standard deviations of raw scores on these fests are given in Tables
5 and 8. The analysis of variance for alternative representation is given in Table 7.

Table 7
Means Table for alismative represeniation

GRAPHICS CUT-PAPER PROQJECTS (TEST)
PRE 70.7 108.2 83.3 86.8
POST 108.1 123.1 84.9 108.7

(GROUP) 89.9 1147 80.8 g7.8

26

Standand Dovigtions o7 aitsmative faprosortation
GRAPHICS CUT-PAPER PRQJECTS
PRE 30.2 58.3 45.0
POST 434 53.9 53.5

S§ DF MS E B

MEAN 1913256.6 1 19132586 583.35 0.0000

GROUP 28058.5 2 14028.3 413 0.0000
ERROR 3204318 97 3396.2

TEST 24818.1 1 248111 10.56 0.0016

TG 6631.9 2 33159 2.57 0.06821
ERROR 1253838 97 1292.4

The analysis of variance for tests of alternative representation reveals significant
manform(Fz'gy = 4.13; p <.06) &nd test (F1 g7 = 19.20; p <.01). Neither of
these are particularly meaningful in themseives. The group effect is not meaningful because
the groups were not equivalent to begin with, The test effect does indicate significant overall
mwmdmmmmmmmmmmmmmwmm
on this measure. Because all groups showed improvments, what is not and cannot be

hmbwmmlmmpmmwlmbamlmormmﬁnrmemunof
practics and/or maturation.

What would be meaningful would be a solid tests by group interaction effect.
Unfortunatety the analysis of variance reveals only weak interaction (F2 g7 = 2.67; .06> p <
10). TommlmmuwmmlngdeMI,mmmmWas
assessed at each level of group. A strong test effect was found for the Logo graphics group
(F1,97 = 18.91; p < .01), whereas only a weak test effect was found for the cut-paper
manipulatives group (F1,97 = 3.81, .06 > p <.10), and no test effect at all was found for the

g 27

Logo projects group (F1.g7 = 1.81; p > .10). it is interesting to note that these results mirror
the findings for subgoals formation and perhaps indicate that direct instruction was a more
significant factor in the success of the intervention than Logo programming, aithough both
appear necessary for transfer to take place.

These differences are iiiustrated by Figure 14 which shows the mean pre- to
post-test differences for sach group on alternative representation measures. it can be seen
that the Logo graphics group showed improvements nearly twice as great as those of the
group with the next highest improvements, the cut-paper manipulatives group. However,
because students in the Logo graphics group had much lower pre-test scores than students
in the other two groups, the greater gains they made might be accountsd for by differential
ability levels as well as by treatment effects. The most we can conciude, then, is that it is
possible that students in the Logo graphics group showed an increased facility for
alternative representation, and that such possibiiity argues for further investigation with niore
evenly matched groups.

110 | - CONTROL
o GRAPHICS
0\
100 |
90 |
‘. b and
80 |
70 -
| | .
PRE-TEST POST-TEST

Discussion

In terms of our research questions, we ¢an concilide that, direct iRstruction was
more effective than discovery leaming in supporting the acquisition and transfer of problem
solving skills from Logo programming to non-computing domains, and that the Logo
programming envrionment was an improtant factor in such acquisition and transfer. The
resuits argue quite strongly, then, for the superiority of direct instruction and mediated Logo
programming practice over both similar instruction with cut-paper manipulatives practice,
and discovery learning in similar paractice environments, for the acquisition and transfer of
four problem solving strategies — subgoals formation, forward chaining, systematic trial and
error, and analogy — among middie school students. Indications are that such instruction
and practice may likewise be most effective for the teaching and leamning of alternative
representation measures, although further research with more evenly matched groups is
needed to determine its effectiveness in this area.

Such findings argue that the intervention we designed does, in fact, support the
mmhlmammlmdpmmmm.matlmmmpmbmmmm
measures resutted from it and not from the effects of practice and/or maturation. They aiso
lend support to our analysis of the Logo/problem solving literature, in that direct instruction
and mediated programming practice resulted in students’ acquision and transfer of
problem solving skilis whereas Logo programming practice alone did not. Indeed,
indications are that direct instruction may be a more important factor than Logo
programming in the success of the intervention we designed. Both factors, however, appear
necessary, as students in the group receiving direct instruction with cut-paper manipulatives
practice fared littie better than students in the Logo discovery group.

Two issues raised by the research results deserve further comment. The invoive the
efficacy of knowledge-based instructional design for the teaching and learmning of problem
solving, and the mediational nature of computer programming enviroriments, the Logo
programming environment in particular.

Knowledge-based instructional design refers to premising the design of instruction
on desired knowledge cutcomes rather than on desired behaviroal outcomes. The
distinction is a real one. The desired outcome of probiem solving instruction, for example, is
increased problem solving abilities. When such abliities ars conceived in terms of desired
behaviors, they are understood as being able to soive particular kinds of probiems and are
not broken down any further because they are not conceptualized beyond this behavioral
level. Problem solving ability is seen as its behavioral manifestation, hence, the prescribed

31 29

I e

e s

S T T Y
[

instruction has correspondingly invoived practice soiving such problems. Littie emphasis is i
\ placed on the general knowledge structures which underiie their solution, and the
particulars of specific strategies ara not addressed. This sort of instruction, especially in the
context of computer programming, has not been successful in increasing students’ problem
solving abilities (Abbott, Satter & Soloway, 1986; Shaw, 188S; Patterson & Smith, 1986;
Mandinach & Linn, 1887). They are not successful because compiex cognitive behaviors
like problem solving invoive more than their manifest behaviors and must be addressed at a
deepar level, at the level of the knowledge structures which support such behaviors.

indeed when one conceives of problem soiving instruction in terms of knowledge
outcomes, the desired outcome is understood as the knowledge necessary to soive
particular kinds of problems. The focus is not on the behavior but on the knowledge
supporting the behavior. The knowledge supporting probiem solving behviors is the
procedural knowledge of the specific steps involved in particular problem solving strategies.
That such knowledge underiies problem solving has besn demonstrated by problem solving
computer programs (Newell & Simon, 1972; Anderson, 1983). Moreover, such knowiedge
has a deciarative as well as a procedural component (Anderson, 1965; Flavell, 1685). At
least in the case of the instruction we designed, a direct focus on a declarative knowledge of
the steps invoived in the particuiar problem solving strategies was a necessary factor in the
success of the intervention. Because it focuses on behaviors and not knowledge,
behvaiorally-based instructional design ignores this important, perhaps critical, declarative

knowledge component.

Knowiedge-based instructional design played a critical role ir the success of the
instructional mode! we developed. It may well be a more useful approach to the design of
probiem solving instruction in general, perhaps to the design of any instruction concerned
with complex cognitive behaviors. It clearly deserves further careful study.

The mediational nature of computing environments refers to the way in which
computers can be used to support what Papert (1980) refers to as “transitional objects to
think with.” Papert maintains that computing environments can support quasi-concrets,
dynamic representations of abetract ideas, representation that can be manipulated and
tested and which provide immediate concieie feedback conceming the soundness of their
formuiation. Such fepresentations are transitional in that they can heip bridge the gap
between condrete and formal thought. They are mediational in that they support abstract
thinking which might otherwise overwheim working memory.

Such a view is supportsd by the finding that students given direct problem solving

instruction and mediated practice in a non-computing enwvrionment did not lsam the problem
solving etrategios as well as did students given similar dirext instruction and modiatod Logo

.ERIC 30 .32

practice. Lehrer and Randle’'s work (1987) also suggests such a view. If computing
environments can be designed to support such transitional objects for thinking, they might
play an important role in education. The notion certainly deserves further investigation.

The development of problem solving and critical thinking skiiis is a crictial problam
for education today. The research presented in this paper clearly demonstrates a successful
model for developing particular problem solving abilities among upper elementary student
populations, a model which, in itself, deserves further study. More importantly, it suggest
methods for. designing instruction that might deveiop such skills in a broad range of subject
area contexts, in particular, knowiedge-based instructional design and the mediational use
of computing environments. In today’s educational climate, such methods deserve
immediate serious attention.

-

Raferences

énderson. J. R. (1983) The Architecture of Cognition. Cambridge, MA: Harvard University
ress.

Anderson, J. R. (1985) Cognitive Psychology and Its Implications. NY: W. H. Freeman.

Carver, S. M. (1987) Transfer of Logo debugging skill: analysis, instruction, and assessment.
Computer Systems Group Bulletin, 14 (1) , 4-8.

Carver, S. M. and Klahr, D. (1986) Assessing children’s Logo debugging skills with a formal
model. Journal of Educational Computing Research, 2 (4), 487-525.

Clement, C. A., Kuriand, D. M., Mawby, R. and Pea, R. D. (1966) ical reasoning and
computer program.ning. Journal of Educational Computing Research, 2 (4), 73-94.

Clements, D. H. (1987 itudinal study of the effects of ramming on cognitive
abilities and achl(ovam)ont. rmal of Educational Oomputlmm, 3(1), 130_??

Clements, D. H. and Gulio, D. F. (1984) Effects of computer ramming on young
children’s cognitive abilities and achievement. Journal of Educggr?al , 78,
1051-1068.

Flavell, J. H. (1885) Cognitive Deveiopment. Englewood Cliffs, NJ: Prentice-Hall.

Gentner, D. (1 Mechanisms of Analogical Lsaming. Urbana, IL: University of liiinols,
Department o‘t&gpuw Science. e

Ginsburg, H. and Opper, S. (1980) Piaget’s Theory of Intsilectual Development. Engiewood
i, N0 Promice-ta. "

Gorman, H., Jr. and Bourne, L. E. (1 Leaming to think by leamni : rule leaming in
third-grade computer programmers. gae};)adn of the Psychonomic M, 165-167.

Greeno, J. G. and Simon, H. A. (1984) Problem Soiing and Reasoning. (Technical Report
No UPITTA.RDC/CNFR/APS-14). Washington, DC: Leaming Ressarch and Deveiopment
Center, Office of Naval Research.

Holyoak, K. J. and Koh, K. (1 Surface and structural simil | ical transfer.
mmywwgwog.h'w.a&@o. Milacty In analog

Johanson, Roger P. (1988) Computers, cognition and curriculum: retrospect and prospect.
mealdwg)rwm mﬁ 4 (1), 1-30.

Lawier, B. W. (1 mExﬂorbnxlnd nitive Developmont: A Child's Leami
InaW&mMYoﬂc alsted. oo e

Lehrer, R. and Randle, L. (1987) Problem solving, metacognition and composition: the
effects of imeractive software for first-grade chiidren. Journa/ of Educational Computing
Research, 3 (4), 406-428.

Lehrer, R., Sancilio, L. and Randle, L. (1968) Leaming pre-proof with . Paper
gmonhd at the annual mesting of the American E'?uauoml mymmn New

Leron, U. (1985) Logo today: vision and reality. The Computing Teacher, 12 (6), 26-32.

32 . I'} ‘4

Mandinach, E. B. and Linn, M. C. (1987) Cognitive consequences of programming:
achievements of experienced an1 talented programmers. Journal of Educational Computing
Research, 3 (1), 53-72.

Newell, A. and Simon, H. A. (1972) Human Probiem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

Papert, s. (1980) Mindstorms. New York: Basic Books.

Papert, S., Watt, D., diSessa, A., and Weir, S. (1979) Final Report of the Brookline Logo
Project, (Logo Memo 53). Cambridge, MA: Artificial Intelligence Laboratory, Massachusetts
Institute of Technology.

Patterson, J. H. and Smith, M. S. (1986) The role of computers in higher order thinking. in J.
A. Culbertson and L. L. Cunningham (Eds.) Microcomputers and Education. Chicago:
University of Chicago Press.

Pea, R. D. and Kurland, D. M. (1984) On the c$nitive effects of learning computer
programming New Ideas in Psychology, 2 (2), 137-167.

Pea, R. D. and Kurland, D. M. (1987) 0 programming and the deveiopment of planning
skills. In K. Sheingold and R. D. Pea (Eds.) Mirrors of Minds. Norwood, NJ: Ablex.

Polya, G. .. 373) How To So. % It. Princeton, NJ: Princeton University Press.

Salomon, Q. and Perkins, D. N. 51 987) Transfer of cogniﬁve skills from programming: when
and how? Journal of Educational Computing Research, 3 (2), 149-170.

Shaw, D. G. (1886) Effects of learning to program a computer in BASIC or Logo on problem
solving abilities. AEDS Journal, 19 (2/3), 176-189.

Statz, J. (1973) Problem Solving and Logo: Final Report of the Syracuss Logo Project.
Syracuse, NY: Syracuse University. ’

Swagalé. ang Black, J. Bm(t‘iIQBB‘)jThe prossF;contamm u'ansf%rt otfhgroblem s|olving sldllgf fromrg
com non-computing domains. Paper presented annual meeting
Americarr'lgEducaﬁonal Ressarch Associaﬁon,pﬁrew Orleans.

Thompson, A. D. and Wang, H. M. C. (1988) Effects of a Logo microworld on student ability
to transfer a concept. Journal of Educational Computing Research, 4 (3), 335-347.

Torrance, E. P. (1972) Torrance Test of Creative Thinking. Lexington, MA: Personal Press.
Wickeigren, W. A. (1974) How To Solve Problems. San Francisco: W. H. Freeman.

&g
4

’

