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Abstract

The use of Bayesian decision theory to solve problems in

tdstbased decision making is discussed. Four basic decision

problems are di_tinguished: selection, mastery, placement and

classification. For each type of decision, further

restrictions or generalizations may hold, namely multivariate

test scores, sequential testing, multiple criteria, multiple

populations or quota restrictions. In some applications,

combinations of the basic types of decisions may occur.
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Applications of Decision Theory to

Testbased Decision Making

Historically, the use of tests has its roots in the necessity

of selection and placement decisions in education, the army,

and the public administration. This is excellently

demonstrated in DuBois's <1970) historiography of such cases

as Binet's pioneering work on developing a test for the

assignment of retarded children to special education, the

testing of conscripts for placement in the army during World

War I, and the examination of applicants for the civil

service in ancient China. It is no coincidence that in each

of these fields decision making is characterized both by a

high visibility and a massive number of examinees. In such

cases it seems logical to use tests to base decisions on.

Inspired by these early successes, decision makers have

been using tests ever since. Nowadays, the use of tests has

pervaded such fields as the admission of students to schools,

the selection of personnel in public as well as private

settings, the assignment of clients to therapeutic

.sreatments, the choice of careers in vocational guidance

situations, passfail decisions in instructional units,

certification, personnel review, tracking decisions in

individualized study systems, and the evaluation of training

programs. Although their contents and format may vary, it is

inconceivable that the use of tests will ever leave these

fields.



Applications of Decision Theory

4

It is conspicuous that, although the practice of testing

has its roots tirmly in decision making, test theory has been

developed mainly as a theory of measurements. This was

already manifest in Spearman'r, pioneering work on what is now

known as classical test theory. In this theory, test scores

are modeled as a linear combination of a true score and an

error of measurement and the concern is primarily in

quantities such as the reliability coefficient, the standard

error of measurement -- as well as in their properties as a

function of test length, item selection, and the like. Modern

item response theory shows the same concern with measurement

(ability estimation), and was not conceived as a theory of

decision making either. The history of test theory shows a

few exceptions, though, of which the publication of the

TaylorRussell (1939) tables, with their subsequent influence

on the testing literature, and Cronbach and Gleser's (1965)

Psychological tests and personnel decisions deserve special

mention. To date, the latter has been the first and only

monograph attempting to provide testbased decision making

with a sound theoretical basis.

Recently, however, the situation has changed somewhat

and some test theorists are now seriously involved in

attempts at modeling and optimizing the use of test scores

for decision making. A major impetus for this has come from

the introduction of modern instructional systems as

individualized instruction, learning for mastery, and

computeraided instruction. In such systems, testing

C
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primarily serves instructional decision making, and an

important task of their developers is to design optimal

decision procedures. A seminal paper by Hambleton and Novick

(1973) was the first to point at the challenge of these

developments to classical test theory.

Although test theory has long ignored decision problems.

at a more abstract level the study of optimal rules- for

decision making has had a long tradition in statistics dating

back to early publications such as von Neumann and

Morgenstern (1944) and Wald (1950). More uptodate

treatments of statistical decision theory can be found in

DeGroot (1970) and Ferguson (1967): a short but excellent

introduction is given in Lindgren (1976, chap. 8). It is the

primary intention of this paper to demonstrate how the

various types of decision making problems in testing can be

solved using the framework of statistical decision theory. In

particular, in doing so. an (empirical) Bayesian point of

view will be assumed. In the next sections, first some

decisiontheoretic notions will be introduced. Then, a

classification of all possible types of testbased decisions

will be given. Subsequently, the main part of this paper

showing how problems with respect to the various types of

decisions can be solved using Bayesian decision theory is

addressed. In the final section some results will be

presented on the application of decision theory to the

problem of simultaneous optimization of combinations of
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different types of decisions in individualized instruction

systems.

Elements of a Statistical Decision Problem

Statistical decision problems arise when a decision maker is

faced with the need to choose a preferred action; the outcome

of the action depends on the state of nature about which only

partial information is available. A simple example is the

vacationer who has to decide whether or not to go for the

beach, but must rely on a forecast for information about the

weather;, a more sophisticated one is the researcher who has

to decide on the basis of sample data which of his/her

hypotheses holds for a given population.

The set of all possible states of nature relevant for

the decision problem is known as the state space in decision

theory. This set will be denoted by f2 whereas a numerical

parameter co will be used to index the 1 individual states

in f2 (When Q is discrete, cos. s = 1. S. will be used.)

Let A be the set of all possible actions from which the

decision maker can choose. Technically. A is known as the

action space. Individual actions will be denoted by a

(continuous action space) or at, t = 1, T, (discrete

action space). For each action a e A. the decision maker is

confronted with certain consequences. These consequences

depend not only on the action chosen but also on the

(unknown) state co a S2 nature is in. Some of these

0
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consequences may be positive; others negative. It is supposed

that the decision maker is able to summarize the consequences

of his/her actions given the true state of nature into an

evaluation on a numerical scale. As this scale is assumed to

run from negative to positive evaluations, it is what is

technically known as a utility scale. So in the following,

the existence of a utility function u(o),a) on S2 x A is

supposed. For each possible combination of an action and a

state of nature this function indicates how positively the

decision maker evaluates the outcomes. When A is discrete,

the utility function will be notated by ut(w).

The decision problem would be easy if the true state of

nature were known. If nature is in state coo, the best action

is the one for which u((.00.a) is maximal. In most decision

problems, however, nature does not fully disclose its true

state; all we have at hand are fallible data -- for example,

information from a sample, or subjective beliefs. A neat Way

of formalizing this is to assume the existence of a random

variable Z representing the outcome of some experiment or

measurement conducted to get known the true state of nature,

and whose distribution depends on co. In the following it is

assumed that the family of probability distributions of Z

with distribution functions F(z) m Fz(z:(1)) is known.

If the true state of nature is not known with certainty,

the decisions based on A are likely to be less than optimal.

A rational approach, then, is to look for a decision rule

that optimizes the outcomes across repetitions of the same
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decision problem, but with nature in possibly different

states. The main purpose of decisior theory is to find such

rules and to study their properties. Formally, a

(nonrandomized) decision rule is a prescription specifying

for each possible value z of Z which action a e A has to be

taken. Hence, a proper notation is to write the decision rule

8 as a mapping from the data Z to the action space A:

A = 8(Z). Due to the fact that Z is a random variable, using

8 implies that the actions are also random. At first sight

this may seem embarrassing. However, there is no way to

escape the random nature of our data about w. Moreover, the

decision maker is free to choose whatever rule we would like

to have from the set of possible mappings from Z to A. which

gives him the opportunity to select an optimal one.

It is obvious that our criterion for selecting an

optimal decision rule should have to do with the utilities of

the decision outcomes, u(w,a). The function A = 8(Z) implies

that these utilities must be considered as realizations of a

random variable U = u(w.8(Z)). In such cases it is natural to

replace this variable by its expectation. Therefore, we

define the expected utility as:

(1) R(w.8) E Eru(w.8(Z)))

= J u(w,8(z))dF(z)

If nature is in state w and decision rule 8 is adopted, then

(1) shows the utility to be expected. However, the actual

1 j
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actions still depend on the values taken by Z. so their

utility usually will vary about the value of (1).

payes rules

It is still not possible to define a criterion for a

uniformly best decision rule 8 using the expected utility

function in (1). The reason is its dependency on the unknown

value w. One way out of this problem would be to make a

sensible choice for this value, say 00. and to select a 60,

such that the expected utility R(w0,8) is maximal. This

approach is taken, for instance, in minimax theory where wo

is selected as a value of f2 that represents the least

favorable state of nature to the decision maker. As a

consequence. the decision maker is guaranteed that the

minimum expected utility for 80 is never smaller than

RW0,80.

Another approach is not to select one special state fl

of nature, but to assume a distribution function G(w) over

C2. This may represent the decision maker's subjective

probabilities of the possible states of nature or its

empirical distribution. For both interpretations G(w) is

known as the a priori distribution (or prior) because it

represents knowledge about w available before the data Z = z

are observed. Having G(w). we are now able to define the

kayes 1.LtIlity of decision rule 8 as
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(2) B(8) a E[R(m.8)]

= f R(m,8)dG(m).

In the literature this quantity is also known as the Bayes

risk of the decision procedure, although, strictly speaking,
- - -,

this name is only proper if a loss function instead of a

utility function is used.

The Bayes utility in (2) only depends on the decision

rule. It now seems obvious to select from the class of

possible rules the one, say 8*, that maximizes the Bayes

utility:

(3) B(8*) = max B(S) .

8

Rules satisfying (3) are known as naves rules. Throughout

this paper it will be assumed that the quantities used in the

atiove definition of a Bayes rule exist for the problem at

hand (though it will not necessarily be true that the problem

has a unique Bayes rule).

Monotone Baves rules

For the actual maximization in (3) it would be helpful if the

(possibly infinitively) large set of all possible rules S

could be restricted to some subset of a tractable form.

In addition to this technical consideration, there also

is a somewhat less lofty reason for which the attention

I
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sometimes has to be restricted to a subset of possible rules.

This has to do with the acceptability of some types of rules

among those involved in the decision procedure. In education,

for example, students, teachers and administrators are

familiar with selection decisions in which the decision rules

have a monotone form: students are admitted to a program if

their gradepoint average or their test score are above a

certain cutting point and rejected otherwise. It would mean a

shock to all parties if some institutions changed the form of

their selection rule and started, e.g., admitting students

with low or high scores while rejecting those with

intermediate ones. However, the restriction to monotone rules

is only correct if they constitute an essentially complete

class (Ferguson, 1967, p. 55): otherwise rules with a higher

expected utility are wrongly ignored.

The conditions under which a class of monotone rules is

essentially complete are known (Chuan, Chen & Novick, 1981;

Ferguson, 1967, sect. 6.1). Two conditions have to be met:

First, the socalled posterior distribution of co given Z = z

should be stochastically increasing, that is, if F(colz) is

the distribution function of co given Z = z, zi z2 must

imply F(colz1) s F(colz2) for all co. Second, there should be

an ordering of the actions for which the difference between

the utility functions for adjacent pairs of actions changes

sign at most once. For the decision problems dealt with in

this paper. the conditions will be made more specific below.
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A Classification of Testbased Decision Making

The use of test scores for decision making in education and

psychology can be classified in a simple way (van der Linden,

I985a, I985b). In each of these settings three basic elements

can be identified and each type of decision making can be

viewed as a specific configuration of these elements. In

general, four different types of decision making can be

distinguished. Further, for

restrictions or refinements

each of these types four possible

can apply. This classification of

testbased decision making will now be elaborated. In the

next sections it is then shown how Bayesian decision theory

can be applied to the problems in this classification.

Basic Elements of Testbased Decisions

Each type of decision LAking can be identified as a specific

configuration of one or more of the following elements:

(1) A test that provides the scores on which the decisions

are based;

(2) One or more treatments with respect to which the

decisions are made;

(3) One or more criteria by which the successes of the

treatments are measured.

The term "test" is used here mainly because of the focus of

this paper. It could easily be replaced by any other

measuring instrument or source of data without invalidating

the content of this paper. Likewise, "treatment" is a generic
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term here, referring to whatc:er manipulation, experiment, or

program is used to change the condition of individuals.

Examples of treatments in educational and psychological

settings are instructional programs, applications of AV

materials, psychological therapies. It shoula be noted

that information about the success of the treatment on the

criterion may be provided by any source. In this paper it is

assumed that the information is quantitative by nature. In

practice, the criterion is often measured by another test.

Types of Decisions.

Four basic types of decisions are distinguished. Each type of

decision can be represented by a unique flowchart containing

one or more the above elements.

(1) Selection decisions. In selection problems the decision

is the acceptance or rejection of individuals for a

treatment. A typical feature of the selection decision is

that the test is administered before the treatment but that

the criterion is measured afterwards. Wellknown examples of

selection decisions are selection of personnel in industry

and admission of students to educational programs. Figure 1

gives a flowchart displaying the structure of the selection

Insert Figure 1 about here

I
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decision. Selection research ha.; had a long tradition in

educational and psychological testing in which the selection

decision was viewed as a prediction problem. Until Cronbach

and Gleser (1965), the usual approach was to establish

regression lines or expectancy tables to predict criterion

scores anc to accept individuals with predicted criterion

scores above a given thresaold value.

(2) Mastery decisions. Unlike selection decisions. mastery

decisions are made after a treatment. The content of the

decision is whether or not individuals who followed the

treatment are successful on the criterion. A further feature

is that the criterion is internal and not external tothe

test. It is the unreliability of the test as a representation

of the criterion that creates the mastery decision problem.

Due to measurement error, the possibility of falsenegative

and falsepositive decisions exists, and it is the task of

the decision maker to uinimize their consequences. Figure 2

shows the formal structure of the mastery decision problem.

Insert Figure 2 about here

Examples of mastery decisions are passfail and certification

decisions in education.

(3) Placement decisions. In placement problems, several

alternative treatments are available and it is the lecision

JG
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maker's task to assign individuals to the most promising

treatment. The same test is administered to each individual

and the success of each treatment is measured by the same

criterion. Placement decisions differ from selection

decisions by the fact that more than one treatment is

available and that each individual is assigned to a

treatment. The case of a placement decision with two

treatments is shown in Figure 3. Examples of placement

decisions can be found in individualized instruction where

Insert Figure 3 about here

students are allowed to follow different routes through

instructional units but, regardless of routes, the same

criterion is appropriate. Aptitudetreatment interaction

(ATI) research has given the main impetus to interest in the

placement problem. In ATI research, the traditional approach

has been regression analysis with a separate regression line

for each treatment assigning individuals to the treatment

with the largest predicted criterion score.

(4) Classification decisions. As is clear from Figure 4, the

Insert Figure 4 about here

17
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difference between placement and classification decisions is

that in the latter, each treatment has its own criterion.

Further properties of the two types of decisions are equal.

Examples of classification decisions arise in vocational

guidance situations where most promising careers or training

programs must be identified The most popular approach to

classification decision.; has been the use of linear

regression techniques. Each criterion is then mapped on a

common utility scale and the decision rule is to assign

individuals to the treatment with the largest predicted

utility.

Further Restrictions and Generalizations

It should be noted that the above types of decisions are not

always met in their pure form:. These decisions often occur

in combinations; also, further restrictions or

generalizations may apply. An example of a combination of two

types of decisions arises in a selection problem where the

criterion is unreliably measured. If success on the criterion

is defined by a threshold value, then, in fact, after the

treatment a mastery decision has tobe taken, and the problem

is a selectionmastery decision problem. A combination of a

selection and a classification problem is met if more than

one treatment is available but not all individuals are

accepted for a treatment. In individualized instruction for

instance, as implemented in CAIsystems decision making can
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be viewed as guiding students through a network of several of

the above decisions. The simultaneous optimization of such

networks will be discussed in the final section of the paper.

vor each basic type of decision, one or more of the

f'llowing restrictions or generalizations may apply:

(1) Multivariate test score. Instead of a single test, a

battery of tests may be used to base the decision on. The use

of test batteries has had a long history in the practice of

personnel selection and vocational guidance. Formally, the

use of test batteries implies decision rules defined on a

vector of test scores instead of a single score.

(2) Sequential testing. In a sequential testing strategy,

test items are administered until a decision can be made with

a desired level of certainty. The recent introduction of the

computer in educational and psychological testing has

stimulated the interest in sequential testing strategies for

decision making. If tests are used in this mode, sequential

Bayesian procedures can be used (Lindgren, 1976, sect. 8.5).

(3) Multiple criteria. In some applications, the success of a

treatment has to be measured on more than one criterion. Each

individual criterion is then supposed to reflect a different

aspect of the treatment. Formally, the presence of multiple

criteria implies the necessity to define utility functions on

a vector of criterion scores instead of a single score.

(4) Multiple populations. The presence of different popula

tions of examinees reacting differently to the test items may

create the problem of "fair" decision making. In education,
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the problems of fair selection and mastery decisions have

been struggled with for a long time, in particular for

populations defined by race or sex. Formally, the presence of

populations reacting differently to test items implies

different probability distributions of test and criterion

scores for each population. In addition, the decision maker

may have different utilities associated with different

populations. As a result, a separate decision rule has to be

established for each population.

(5) Quota restrictions. So far it has been assumed that the

number of vacancies in each treatment is free. Due to the

shortage of resources, however, these numbers may be

constrained. Consequently, Bayes rules for quotarestricted

decisions have to be found by methods of constrained

optimization.

Conclusion

The above classification of testbased decisions shows four

basic types of decisions that may occur separately or in

combination. Further, for each decision one or more

refinements or generalizations may hold. In addition, the

utility structure and probability distributions may vary from

problem to problem. However, the key to finding Bayes rules

for each possible decision is still the optimization of its

Bayes utility. This will now be illustrated for a sample of

decision problems.
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Selection Decisions with Linear Utility

In selection decisions, test scores are used to decide on the

acceptance or rejection of individuals for a treatment, with

success measured on a future criterion. In order to apply the

framework of Bayesian decision theory, the "unknown state of

nature" should now be interpreted as the individual's unknown

criterion score and the "data" about this state is provided

by the test score. For a randomly sampled individual, let the

criterion be a continuous random variable Y, w h as possible

stags, success (Y yc) and failure (Y < ye). The test score

is assumed to be a discrete random variable X with possible

values x = 0, 1, n (numberright score). The informatiOn

in X on Y is given by a joint probability function k(x,y).

Since the conditions for a monotone decision are assumed to

be met, the Bayes rule for the selection problem is a cutoff

score xc, with an acceptance and a rejection decision for X >_

xc and X < xc, respectively.

Formally, utility is a function defined on the true

state of nature with a possibly different form for each

action. A moment's reflection shows that in the present

problem utility should be an increasing function of the

criterion for the acceptance decision, but a decreasing

function for the rejection decision: The higher the criterion

score of an accepted individual, the higher the utility of

the decision; whereas the opposite holds for a rejected
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individual. A linear utility function that meets this

property is given in van der Linden and Mellenbergh (1977):

1 b0(ycy) + a0
(4) u(y) =

bi(yyc) + al

for x < xc

for x 11 xc, b0, bi > 0 .

This function, which is shown in Figure 5, consists of two

additive components:

(1) bo(ycy) and bi(yyc) represent amounts of utility

dependent on the difference between the criterion score

and success threshold Yc with constants of

proportionality b0 and bl;

(2) a0 and al are amounts of utility independent of the

criterion score but dependent on the decision. They can

be used, for instance, to allow for treatment costs.

Insert Figure 5 about here

When sampling individuals from the population, the Bayes

utility for decision rule xc is equal to

xc-1

(5) R(xc) = E f[b0(yc-y) + aO)k(x,y)dy +

x=0

22
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n

E i (b0(yYc) + al]k(x.y)dy.

x=xc

Using k(x.y) = g(y1x)h(x). J g(y1x)dy = 1 and

jyg(y1x)dy = E(YIx). it follows

xc-1

(6) R(x
c

) = E (b0[E(Y1x) yc] + a0)11(x)

x=0

E (bi(E(Y1x)-yci - a0)11(x).

x=xc

where E(Y1x) is the regression function of Y on X.

Completing the first sum

r.

(7) R(xc) = E (bo[E(ylx)-ycl + aO}h(x)

x =0

n

((b0 +bi)(E(11x)-yc) + (a0a1))h(x).

x=c
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Since the first sum is now a constant. b0 + b1 > 0, h(x) z 0

for all x, and the monotOnicity conditions guarantee that

E(Y(x) is increasing in x. (7) is maximal for the value of

the smallest value of xc for which

(8) (b0 +b1) IE(Y1x)Y0) + (a0+a1)

is not negative. If the monotonicity conditions are not

strict or it does not hold that h(x) > 0 in the neighborhood

of the solution, this value of x may not be unique.

Throughout this paper it will be assumed that conditions like

these are fulfilled.

The regression function E(Y1x) can easily be estimated

by drawing a sample from the population and administering the

treatment.

It should be noted that (8) is the difference between

the two conditional expected utilities given X = x associated

with the acceptance and rejection decision. This is clear

from inspection of the bracketed terms in (6) and (7). The

expectations are known as posterior expected utilities; they

can be considered the expected utilities after the

observation X = x has been made. For a monotone decision it

holds in general that the optimal cutoff score is located at

the point at which the posterior expected utilities cross

(e.g., De Groot. 1970. sect. 8.9). In the following, this

property will be used without further validation.
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A closedform solution exists if the regression function

is linear. that is, if

(9) E(YIx) = 0x + a

Then, it follows from (8) that xc is the smallest value

larger than

(10)
yc a a0 al

+ .

0 0(b0+b1)

An interesting case arises if a0 = al. Under this condition

the second term in (10) vanishes and the solution contains

the regression parameters only. For this and other properties

of the linear utility function, see van der Linden and

Mellenbergh (1977).

Multiple Populations

As noted earlier. the presence of multiple populations in

selection decisions creates the problem of fair selection if

each population reacts differently to the test items. In such

a case, the test items are often said to be "biased" against

one lr more of the populations.

The only thing needed to deal with multiple populations

in selection decisions seems to include separate probability

distributions of test and criterion scores for each

population in the model to allow for differential item
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properties. However, the problem of fair selection often

involves the notion of "disadvantagedness" as well, in

particular when some of the populations are defined by race

or sex. As Gross and Su (1975) and Novick and Petersen (1977)

argue, this aspect of fair selection is only a question of

utilities. A selection rule is "fair" if those involved in

the decision process accept the utility structure r erlying

the decision rule. Hence, in addition to separate p oability

distributions, separate utility functions are needed to allow

for different utility structures for the populations.

Now the above selection model can easily be adapted to

the case of multiple populations (Mellenbergh & van der

Linden, 1981). Let i = 1, p denote the populations in

the selection problem. Then, (4) has to be replaced by

boi(pcy) + aoi for x < xci

(11) ui(y)

bli(YYc) + an for x xci, b0i, bli > 0

and the probability functions ki(x,y). i = 1, p. are now

allowed to vary across populations. The Bayes utility for a

random individual is defined c.nalogous to (5) as Ri(xci). Let

Si be the relative size of 1)ulation i. Then, when sampling

randomly from the total population under consideration, the

Bayes utility is equal to
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P

R(xci x cp ) = 1 siP4(xci).

i=1

But this is just a weighted sum of the Bayes utilities of the

separate populations. Hence, the decision procedure is

optimal if, analogous to (5) to (8), for each population a

separate Bayes rule is derived.

An example of the model with real test data is given in

Mellenbergh and van der Linden (1981).

Mastery Decisions with Threshold Utility

In the mastery decision problem, the unknown state of nature

is the individual's true score on the criterion variable

measured by the test. The data are the observed test scores.

The true score is de -fined as the expected proportion of test

items a given individual solves correctly. The true score of

a random individual is denoted as T, with possible values

t E [0,1]. A mastery level '..c is assumed. and an individual

is considered to master the criterion if t >_ tc, and not to

master it otherwise. Unlike the selection problem, there is

no way whatsoever to measure the criterion variable directly.

Hence, a test model is needed to derive the statistical

relation of X to the true score T.

For the purpose of illustration, a threshold utility

function is chosen. Although Figure 6 shows that this

2
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function has a jump at tc that may be less realistic in some

Insert Figure 6 about here

applications, it has been studied extensively in the mastery

testing literature (Hambleton & Novick, 1973; Huynh, 1976;

Mellenbergh, Koppelaar, & van der Linden, 1977: van der

Linden, 1980, 1982; Wilcox, 1977). The threshold utility

`"action is defined by the following four constants

(12) u(t) =

u00

u10

u01

ull

t < tc, x < xc

t tc, x < xc

t < tc, x xc

t tc, x xc

However, since the derivation following below holds for any

positive linear rescaling of

convenience that u00 = ull = 0.

(12), it will be assumed for

Let the joint distribution of X and T be given by the

probability function k(x,t), and let g(tlx) E k(x,t)/h(x).

For the sake of illustration, the optimal cutoff score xc

will now be derived using a comparison of the posterior

expected utilities for the mastery and nonmastery decision.
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If the mastery decision is taken for a random individual

with test score X = x, the posterior expected utility is

equal to

1 tc

(13) El(u(t)lx) =
0 0

u(t)g(tlx)dt = u01 g(tlx)dt

For the nonmastery decision

fl

(14) Eo(U(T)Ix) =
J

u(t)g(tlx)dt
1u10 g(tlx)dt.

O tc

Suppose x were continuous. Then (13) and (14) would cross at

the value of x for which

JO

1

u
01

g(tlx)dt = f g(tlx)dt
0 tc

Or

(15) c
JO

g(tlx)dt
u10

u01 u10

However. X is a discrete test score. Therefore, the Hayes

utility is maximal if xc is chosen to be the smallest integer

value larger than the solution to (15).



Applications of Decision Theory

28

It should be noted that this solution holds for any test

model providing the probability function in the lefthand

side of (15), and that it can be calculated only once such a

model is specified.

A usual choice in mastery testing is the beta binomial

model (Huynh. 1976; Mellenbergh. Koppelaar. & van der Linden.

1977). In the model it is assumed that (1) the conditional

distribution of X given T = t is the binomial.

(16) f(x1t)
,n,tx(i_t)nx
'x'

and (2) the marginal distribution of T is the beta

distribution with probability density function

(17) b(t) a B 1(v.wn+l)tv 1(1 t)wn. v> 0, w> n-1.

1

where B(v.wn+1) s r tv(1t)wndt is the complete beta
0

function (e.g.. Johnson & Kolz, 1970, chap. 24). The choice

of (16) is motivated by the fact that the responses of a

fixed individual to a series of test items can often be

described as a sequence of Bernoulli trials, whereas (17)

defines a flexible family of distributions on [0,1) that

contains most truescore distributions occurring in practice.

Keats and Lord (1962) have shown that moment estimators of v

and w exist that are a simple function of µX and the KR-21

reliability coefficient. They also found a satisfactory fit

3J
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of the betabinomial model to test score distributions

ranging widely in form.

For integer values of v and w, it holds that

(18) f
0

tc

0

tc
g(tlx)dt = f(x1t)b(t)dt

vow
= f(YItc)

y=v+x

where f(.Itc) is the binomial probability function with

success parameter tc (Johnson & Kolz, 1970, sect. 24.6).

Thus, a suitable estimate of the integral in (15) can be

obtained via a table of the cumulative binomial.

A Numerical Example

Using the betabinomial model, the result in (15) was used to

calculate the optimal cutoff score xc for tests of length

n = 20, mastery threshold tc = 14, and utility ratio

u10/u01 = 1. The data were simulated such that the average

true sco:e µT and the KR-21 reliability coefficient varied

systemati .11y (van der Linden, 1984). Table 1 shows how xc

depends on these two parameters. For tests of high

Insert Table 1 about here
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reliability xc varies hardly with gT, but this robustness is

lost quickly for tests of lower reliability. For KR-21 = .05.

gT 5 13 yields xc 20, but the optimal cut-off score drops

immediately to below zero for gT > 13. Only tests of high

reliability yield stable cut-off scores.

An unexpected phenomenon in Table 1 is the opposite

direction in which xc varies with gT. If the average true

score gT goes down, xc yes up. Hence, for low performing

populations the cut-off score should be set high, whereas it

should be low for high performers. At first sight, this goes

against our intuition. However, it is a logical consequence

of our criterion of maximal expected utility. An analysis of

(12) to (15) reveals the following: For high performing

populations, almost all individuals are above the mastery

threshold t,.. Therefore, the Bayes utility of the decision

procedure tends to consist only of contributions from true

masters and false nonmasters. Since the proportion of true

masters among these two categories depends on the cut-off

score xc, and the utility of a true master typically is

larger than the utility of a false nonmaster, xc will take a

low value. This phenomenon was dubbed the regression-from-

the mean effect" in van der Linden (1980). It is a reversion

of the well-known regression-to-the-mean effect due to the

fact that inthe derivation of (15) the conclusion goes from

the true score tc to xc instead of the other way around.
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Placement Decisions with NormalOgive Utility

The typical feature of the placement decision is the presence

of more than one treatment and the fact that each individual

is assigned to a treatment. As before, the unknown state of

nature is the individual's criterion score after a treatment.

Hence, although there is one criterion common to all

treatments, each individual has a different unknown state of

nature for each criterion.

Let Y be the criterion common to the treatments j = 1,

2, ..., m, and let X denote the test score again. It is

assumed that the treatments are ordered by the strict

monotonicity conditions for the placement decision given in

van der Linden (1981), so that an optimal cutoff score %i

exists for the decision between treatments j and j + 1. For

the sake of illustration, the normalogive utility function

introduced by Novick and Lindley (1978; see also Berhold,

1973) will be used (see also Figure 7):

(

ypj
(19) uj(y) = (t) ----

,,

aj

where 0 is the normal distribution function with parameters

gj and Gj.
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Insert Figure 7 about here

The relevant quantity is the posterior expected utility

for treatment j after test score X = x. This will be denoted

as Ej(uj(Y)Ix). It is assumed that the conditional

distribution of Y given X = x is normal with conditional mean

and variance EJ(Y1x) and Vari(Y1x), respectively. It follows

that

(20) Ej(uj(Y)Ix) = et)
Ej(Y1x) gj) 1

[Var (Ylx) + o2]'
i 3

The optimal cutoff score xj is now the smallest value of x

for which the posterior expected utility for treatment j + 1

is larger than for treatment j, that is,, the smallest value

of x for which

(21)

Ej +1(YIx) gj+1 Ej(Y1x) gj

4) (1)

[Var (Ylx) + 02 ]IA

j+1 j+1
[Var (Ylx) + 02)%

j 3

is positive. But this is also the smallest value of x for

which



(22)
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Ej4.1(Ylx) Ej(YIx) 4j

[Var (Ylx) + a2 (Var (Ylx) + 02)%
j+1 j+1

33

is positive. If it is known how the posterior expectations

and variances depend on x, the optimal cutoff score can be

found graphically or numerically from (22).

Suppose now that the posterior expectations are linear

and that homoscedasticity may be assumed. That is.,

(23) Ej(Ylx) = Pjx +

and

(24) Varj(Ylx) = Varj(Y.X)

j= 1, . . . , m

x = 0, .

j = 1 , . , m

where Varj(Y.X) = (1 [Corj(Y,X))2)Varj(Y) and Corj(Y.X) is

the linear corro;tion coefficient between Y and X for j.

Substituting (23) and (24) into (22) yields as a result that

xj is the smallest value larger than

(25) [9(gji.1aj4.1) cj+1(1J+9))/(9N+1-9.0.13j)

with

ei [Varj(Y.X)
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More theory on placement decisions is given in van der

Linden (1981).

QpotaRestricted Placement

In the above placement model, it was assumed that the number

of vacant places in the treatments was unrestricted. In

practice, however, quota restrictions regularly apply, and

then a modification of the decision rule is necessary.

Following Chuang, Chen and Novick (1981), three kinds of

quota restrictions are distinguished:

(1) Exactly NJ individuals should be assigned to treatment
n

j = 1, m, where Z Nj = N (number of examinees);
j=1

.2) At least Nj individuals should be assigned to treatment
n

j = 1, m, where Z Nj 5 N;
j=1

(3) At most NJ individuals should be assigned to treatment

j = 1, ..., al, where E NJ Lc N.

j=1
In a (strictly) monotone placement problem, the

posterior expected utilites of adjacent pairs of treatments

cross at most once in the range of test scores. Therefore, if

the N examinees are arranged in decreasing order of test

scores, the following placement rules maximize the Bayes

utility in the above three cases:

(1) Beginning with the highest scoring examinee, Nm places

in treatment m are filled, then N 1 places in treatment

m-1, and so on.

9.0
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(2) Suppose the (k-1)th examinee in the order of examinees

has been assigned to treatment j. Then the following

rule for k is optimal:

(i) If xk xj_i, assign k to treatment j.

(ii) If xk < xj-1 and treatment j has not received Nj

examinees, then choose from the following rules

the one with the larger posterior expected

utility: (a) assign k to j; (b) assign k to j-1,

reassigning the lowest scoring examinee in j+1

to j (and, if j+1 then has fewer than Ni+1

examinees, the lowest scoring one in j+2 to j+1;

etc.).

(iii) If xk < x3_1 and j has received NJ examinees,

then assign k to j-1.

(3) Again suppose the (k-1)th examinee has been assigned to

treatment j.

(i) If xk < xj_i, then assign k to the treatment in

(j-1, j-2 ..... 1) with the largest posterior

expected utility.

(ii) If xk >_ xj_i and treatment j has received Nj

examinees, then choose from the following rules

the one with the larger posterior expected

utility: (a) assign k to j-1; (b) assign k to j

reassigning the highest scoring examinee in j to

j+1 (and, if j+1 ha lready Ni.+1 examinees, the

highest scoring one in j+1 to j+2; etc.)

01."1
0
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(iii) If xk ?._ xj_i and j has not received Nj examinees.

then assign k to j.

Classification Decisions with Threshold Utility

The same notation as for the problem of the placement

decision will be used. However, because every treatment now

has its own criterion, the criterion variable is treatment

dependent and will be denoted as Yj.

Suppose that for each criterion a success threshold dj

can be defined. Then the following threshold utility function

may be a proper choice:

=(26) u.(y.)
J J

1 wj

for yi ?.. dj

with

vj for yj < dj

Wi > Vi 3 = 1 , . . M

The last condition simply states that the utility of a

success on treatment gis larger than the one of a failure.

J
Let flA(djlx) I:

1
jgj(yjlx)dyj, where gj(yjlx) is the

probability density function of Yj given X = x and treatment

j. This quantity defines the probability of a failure on

criterion Yj after treatment j. Van der Linden (1987) shows
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that the following conditions are sufficient for a monotone

Bayes rule in a classification problem with threshold

utility:

(27) wj_.1 vj -1 5 wj vj j = 2. . . m

(28) flj(dilx) is decreasing in x j = 1. .... m

(29) fij_i(dj 11x) Oj(djlx) is j = 2, . m

increasing in x

The condition in (27) indicates that the releva7: order of

the treatments is with respect to wj vj. The other two

conditions state that the probability of a failure should be

decreasing in the test score, but that the difference between

these probabilities for two adjacent treatments should

increase.

The optimal cutoff score for a decision between

treatments j and j+1 is found by comparing posterior expected

utilities. If an individual with test score X = x is assigned

to treatment j. the posterior expected utility is equal to

(30) E3(u(Yj)lx) = Clj(djlx)vj + (1 C2j(djlx)lwj

The interest is in the value of x at which Ej(uj(Yplx) and

Ej4.1(uj.4.1)1x) cross, that is. the value of x for which
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Ili(djix)vj + [1-0i(djlx)]wj

= f2j+i(dj+1 I x)vj.+1. + [1-11j+i(dj+ilx)]wj+1

Or

(31) (wjvi)ai(djlx) (wj+1vj+1)0J+1(dj+11x)

+ n41. wj = 0

However, since X is discrete, the optimal cutoff score is

the smallest value of x for which the lefthand side of (31)

is positive. The conditions in (27) to (29) guarantee that

this expression is an increasing function of x. If it takes

the value of zero outside the range of possible test scores.

the cutoff score is set at its corresponding border.

An interesting case arises if the utility parameters wj

and vj do not vary across treatments. Then it follows that

wj vj = n41. vi.+1 and n41. wj = 0, and the lefthand

side of (31) reduces to

(32) Oj(djlx) a3 .i.i(dj+11x) .

This expression reminds us of (21). Analogous to the argument

following (21), it can be shown that for the choice of a

normal distribution function for 0j(.1x) together with

linear regression functions Ej(Y1x) = Pix + 9 and homosce-
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dasticity, an optimal value of xj equal to the smallest value

of x larger than

(33)
-1-

(d- 1 1)[Varj(Y.X)VA (djaj)[Varj+1(Y.X)]%
J-1-

a-

Pj+1[Varj(Y.X)]% P3[Varj+1(Y.X)]%

is obtained (van der Linden, 1987). This quantity can easily

be calculated if estimates of the regression parameters and

the pooled variances of Y given X = x are available.

Multivariate Test Scores

The use of a test battery instead of a single test was

mentioned earlier as a possible refinement of testbased

decision making. How Bayes rules can be derived in such cases

will now be shown for the problem of placement decisions.

It is assumed that the preceding theory of placement

decisions with threshold utility holds. However, in addition

to test score X, a second test score Z with information about

the criterion variables Yj (j = 1, m) is given. Z is

also assumed to be defined by numberright scoring and may

take the values 0, 1, r. Let ki(x,yi,z) be the joint

probability function of test scores X and Z and criterion

score.Y3. while p(z) is the probability function of Z.

Further, let Si denote the set of ordered pairs (x,z) for

which treatment j is assigned. The Bayes utility when

sampling from the population is defined as
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m

(34) R(S1....,Sm) = E E
J

J
y.uJ .(yJ .)kJ .(x z)dy.
J'

j=1 Si

It follows immediately that

m

(35) R(S1.....5m) = E E p(z) I uj(yj)q(x,yjiz)dyj.

j=1 Si

where q(x,yilz) is the probability function of (X,Yi) given

Z = z. Suppose now that (28) and (29) hold for each value of

z. Then, for each possible zcoordinate, (35) can be

maximized following (30) and (31) with respect to the x

coordinates in Si. Thus, the optimal sets Si are defined by a

series of (r+1)(m-1) cutoff scores. namely m-1 scores for

each of the r+1 possible values of z.

By symmetry, it holds that the zcoordinates of the

optimal sets Si can also be defined bir a series of cutoff

scores zl. .... zm_1 if the failure probabilities Qi(djlz)

have the properties in (28) and (29) for each value of x. In

the testing literature. classification rules that are

monotone in two distinct test scores are known as

"conjunctive rules". For classification into a given

treatment such ruies require that the examinee passes a

certain cutoff score on x as well as on y. In other words.

42
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it is impossible to compensate a failure on one test by a

high score on the other.

Combination of Basic Decisions

As noted before, a wellknown example of combinations of

basic decisions in education is an individualized instruction

system. Figure 8 shows a simple system in which a selection

Insert Figure 8 about here

decision is followed by a module wit: a mastery decision

after which a placement decision guides the students through

two possible sequences of mastery decisions. Reallife

systems often have a more involved structure.

In system3 Qf more than one aecision point. it is

possible to optimize decision rules simultaneously. In doing

..:lu, 1:.(,,.e efficient use of the data in the system can be made.

Also, more realistic utility structures can be used.

In order to illustrate the procedure, the simple case of

a system with one placement and one mastery decision (van der

Linden & Vos. 1986, Vos & van der Linden, 1987) will be dealt

with (see Figure 9). The placement test score is denoted as X
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Insert Figure 9 about here

(x = 0, 1, . , m), the observed mastery test score as Y

(y = 0, 1, n ), and the true mastery test score as T

(t E [0,1)). Further, the following definitions are made: xc

is a cutoff score on x, yc is a cutoff score on y, tc is

the mastery threshold on t, j = 1, 2 are the two possible

treatments and i = 0, 1 are the possible states of nonmastery

(T < tc) and mastery T tc), respectively. Without bothering

about conditions for optimality, a mouotone rule with maximum

utility is looked for; that is, from the pairs of cutoff

scores (xc,yc), the one with the largest Hayes utility will

be chosen, The following threshold utility function is

adopted:

(36) ulj(t) =

v00 + wj for t < d, y < c

v10 + wj for t d, y < c

v01 + wj for t < d, y c

v11 + wp for t d, y c, j = 1, 2.

The parameter v is dependent both on the mastery state and

the mastery decision, but it is independent of the treatment.

In addition, the treatmentdependent parameter w can be used

to allow for differences in, for instance, treatment costs.

Although this function could be made more realistic by

4
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replacing v by continuous functions of the true score t, it

nicely demonstrates how in a simultaneous approach a utility

function defined on the ultimate criterion of the system

(masterynonmastery state) can be brought into a previous

decision (placement decision).

The Bayes utility for assignment to treatment 1 and a

correct mastery decision is equal to

xc 1 yc-1 tc

(37) I I J (vpp+wi)y(x,y,t)dt,

x=0 y=0 0

where cp(x,y,t) is the probability function of (X,Y,T).

Combining the two possible treatments,, two possible mastery

decisions and two possible mastery states,, the total expected

utility when sampling from the population of individuals is

equal to the sum of eight expressions like (37). From van der

Linden and Vos (1986) it can be verified that this sum can be

reduced to the following posterior form:

n tc

(38) 12(xc.yc) = constant + I [( v00 vll) J Yo(tly)+NrillKo(y)

Y=Yc 0

+ Ivoo[f tc (Pl(tlx)Po(tlx)}dt + wi w0P,(x)
X=X c 0



Applications of Decision Theory

44

m n tc
+ E E I[voo+vii) 5 no(tlx.y)dt v11]T0(x,y)

x=xc Y=Yc 0

t

c[(v00 + v11)
J

ni(tlx,y)dt
o

viOni(x.y)]},

with p0(tly), pj(tlx), xj(tlx,y) being the posterior

probability density functions of T given Y=y, X=x and

(Y=y,X=x), respectively, and where iii(x,y), X(y) and Ki(y)

are the marginal probability functions.

To obtain the optimal values of xc and yc, (38) has to

be evaluated numerically for all possible pairs of values,

whereupon the pair for which (38) is maximal can be

determined. This can be done as soon as accurate estimates

for the three different posterior probabilities of a failure

in (38) are available. To obtain these estimates, a test

theory model is needed.

Conclusion

A review of the applications of Bayesian decision theory to

testbased decision making was given. Four basic types of

decisions were distinguished, each of which may be subject to

further restrictions or generalizations Decisions may also

be made separately or in combination. The test theory

literature contains many more results for selection and

mastery decisions than was presented in this paper The

4G-
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placement and classification decisions as well as some of the

possible refinements and generalizations and the case of

combinations of decisions have been largely unexplored. Of

paramount importance, however, is research on realistic

utility functions for testbased decisions. Such functions

should not only yields robust decision rules (Vijn &

Molenaar, 1981). but also be supported by empirical evidence

of their appropriateness (Vrijhof. Mellenbergh & van den

Brink, 1983). Developments in this field will be decisive for

the applicability of Bayesian theory to testbased decision

making.

G7
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Figure 1. Flowchart of a selection decision
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Figure 2. Flowchart of a mastery decision
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Figure 3. Flowchart of a placement decision

(case of two treatments)
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Figure 4. Flowchart of a classification decision

(case of two treatments)
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Figure 5. Linear utility function for a seiection decision
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Figure 6. Threshold utility function for a mastery decision
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Figure 8. Example of an individualized study system
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Figure 9. A system of one placement

and one mastery decision
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Optimal Cutoff Scores for Populations Varying in Average

True Score and Tests Varying in Reliability (n=20, tc=14,

u10/u01=1)

KR-21 Average True Score

1 3 5 7 9 11 13 15 17 19

.95 16 15 15 15 15 15 14 14 14 14

.80 F 19 17 16 16 15 15 14 14 14

.65 F F F F 17 16 15 14 13 12

.50 F F F 19 19 17 16 13 12 P

.35 F F F F F 20 16 13 P P

.20 F F F F F F 19 11 P P

.05 F F F F F F 20 P P P

Note F indicates a cutoff score larger than 20

(all students fail); P indicates a cutoff score

lower than 0 (all students pass).
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