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Abstract

Two optimization models for the construction of tests with a

maximal value of coefficient alpha are given. Both models

have a linear form and can be solved using a branchandbound

algorithm. The first model assumes an item bank calibrated

under the Rasch model and can be used, for instance. when

classical test theory has to serve as an interface between

the item bank system and a user not familiar with modern test

theory. The second model has wider applicability and can be

used with any item bank for which estimates of the classical

item parameters are available. The models can be expanded to

meet practical constraints with respect to test composition.

An empirical study with simulated data was carried out to

evaluate the model assumptions.
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Algorithmic Test Design

Using Classical Item Parameters

A useful phenomenon in educational and psychological measure

ment is the construction of customized tescs from item banks.

An item bank is a large collection of test items all

measuring the same ability or domain of knowledge, stored in

a computer together with empirical estimates of their

properties. The fact that the item properties are known

allows the test constructor to have explicit control of them

and select optimal tests.

If the properties of the items are modeled using an item

response theory (IRT) model, estimates of parameters repre

senting such properties as item difficulty, discriminating

power, and the effect of random guessing are stored in the

item bank. Although item selection can be based on these

parameter values, a more advanced procedure uses the item and

test information function from IRT. Birnbaum (1968) and Lord

(1980) suggested a procedure in which the test constructor

first specifies a target for the test information function

and then selects the items such that the sum of their

information functions meets the target. Theunissen (1985)

presented c. zeroone programming model for selecting a test

of minimal length subject to the condition that its

information function is not below the target. The model can

be solved using one of the branchandbound algorithms

available in the literature (e.g
, Wagner, 1975). Alternative

models and procedures have been given by Adema (1988),
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BoekkooiTimminga (1987). BoekkooiTimminga and van der

Linden (1987), Theunissen (1986), Theunissen and Verstralen

(1986), van der Linden (1987), and van der Linden and

BoekkooiTimminga (1988a, 1988b).

Although item banking and IRT are natural partners (van

der Linden, 1986a), this does not necessarily imply that test

construction has to be based solely on information functions.

The following two examples refer to practical cases in which

item selection based on parameters from classical test theory

may be helpful:

1. The item bank has been calibrated under an IRT model,

but some of the users are not familiar with the theory

and want to have the option of using classical item

parameters. In such cases, it is possible to use the

classical test theory as an interface between the item

bank system and its users. The system then predicts the

classical parameter values for the population of

examinees concerned (see the Appendix) enabling the

users to select tests with optimal values for the

parameters.

2. The examinees are sampled from a population with a fixed

ability distribution. Therefore, for certain appli

cations the use of classical item parameters may be

feasible. For example, the classical index it roughly

orders the difficulties of the items for a random

examinee, and the availability of estimates of the item

it values is considered as sufficient to base test

construction on. Item banking with classical item

r.)
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parameters is dealt with extensively in de Gruijter

(1986).

The present paper was motivated by an item banking

project, in which the need of the option ir the former example

was felt. The first test construction model presented below

deals with this case. The second model is more general and

also has applicability in other cases where item selection is

based on classical parameters. Both models are zeroone

programming models that maximize (a linearized version of)

the wellknown coefficient alpha. Results from an empirical

study with simulated data to verify the model assumptions

follow the presentation of the models.

Maximal Test Reliability as a Classical Goal

A classical goal in test construction is maximization of the

reliability of the test for a given population of examinees.

Since the reliability coefficient can only be estimated from

hardtorealize replicated measurements, in practice

coefficient alpha, a wellknown and simple lower bound to the

test reliability, is mostly used.

Let ail denote the variance of the scores on item i for

the given population, and let pix represent the itemtest

correlation. For a test of n items, coefficient alpha is

defined as:

(1) a = n(n 1)
-1

(1 (e o:2 )a,
2

i=1 1 A

a
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(Lord & Novick, 1968, sects. 4.4). Since

_n
(2) a2v = (L aP.v)

2

A i =1 1 lA

(Lord & Novick, 1986, sect. 15.3), the righthand term in the

bracketed expression is equal to

9 A
(3) (I

n
cr:)(/ a. p.v)-2 .

i=1 1 i=1 1 1"

For a test of fixed length. maximization of alpha is equi

valent to minimization of (3).

A zeroone programming model for maximization of alpha

can now be formulated as follows. For each item i = 1. ..., I

the decision variable xi is defined:

(4)
0 if item i is not in the test

x. =

I 1 if item i is in the test.

A maximal value of alpha is obtained for a solution to

the following problem:

(5) minimize (I
i=1

ax.)(/
=1 1

a.
1

p.vx. )
-2

,

1 1 1 lA

subject to

(6)
1=1 1

x. = n,



(7) x
i
e 0. 1) .
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i = 1, .... I.

Although the model is of the zeroone type, it has a

nonlinear objective function. Efficient algorithms for

solving such models are not known (Garfinkel & Jemhauser,

1972). In addition, a minor problem in (5) is the dependency

of pix on the unknown test score. As is usual in classical

test construction, this problem will be ignored. Also. for an

item bank system with an underlying IRT model, it is easy to

predict the correlation between the item score and the

numberright score for the complete bank. This constant could

be substituted for pix in (5).

Two alternative linear models will be give: for which

practical algorithms do exist In the first model, a

condition for alpha to be maximal is inserted as a linear

constraint into the model. The condition can be shown to

apply for an item bank calibrated under the Rasch (1980)

model. The second model does not assume any IRT model. In

this model, a linearized part of (3) is used as objecLive

function, whereas the remaining part serves as a linear

constraint. The two models will now be derived.

Maximal Alpha as a Linear Constraint

For the twoparameter normalogive model, a simple relation

between the discrimination parameter and the itemability

correlation exists. Also, it is known that the logistic

1
,
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function approximates the normal ogive excellently. On these

two findings the following derivation of a sufficient

condition for alpha to be maximal is based.

Derivation of the Condition

For an ability 0, the normal-ogive model is defined as:

J(8) pi(e) = j (2n) lexp(-u
2
/2)du .

.-.

where ai and bi are the parameters for the discriminating

power and difficulty of item i. and pi(0) is the probability

of a correct response on i for an examinee with ability e.

If latent response variables Yi. i = 1. .... I, are

assumed such that Yi 2: yi generates a correct response, but

Yi < yi an incorrect one. and the distributions of Yi given 0

are normal with linear regression functions and

homoscedasticity. the following relation exists between ai

and the item-ability (biserial) correlation pio:

(9)

/
pie = ai(1-fai2)-1/2

(Lord & Novick. 1968. sects. 16.8 - 16.10). Since. for a

scale factor 1/1.7 in (8). the logistic and normal-ogive

curves are known to approximate each other by less than 0.01

uniformly in 0 (Haley. in Lord & Novick. 1968, sect. 17.2:

for improvements on this well-known result, see Molenaar,

12
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1974) and the Rasch model is a logistic model with ai = 1 for

all items, it follows that in the Rasch model pie js

approximately constant. Hence, if for all items pix has the

same relation to pie, it is also a constant. In this case (2)

reduces to

n
(10) a

X
2

= c(
ai)

2

with c 0. It follows that

n
(11) aX = c(I1=1 1

0.2 + a )

.i*j 1 j

Substituting this result into (3), yields

(12) c-1(1 + I a. )(I a 2 T1 Fl .
i*j

a
1 J 1=1 I

Observe that (12) now is invariant under multiplication of

(al, an) by c constant. Without loss of generality,
n

I a. can therefore be taken to be equal to a constanti=1 1

k > 0. This shows that minimization of (12) amounts to

maximization of c.c-E.*j However. (11) implies that this1 j

is also equivalent to maximization of ax. Hence, it follows

from (10) that (3) has a minimum for the value of

(al, . , an) maximizing

(13) a.
Ii=1 I

3



under the condition tha-.

(14)
n

0.2 = k.
1 =1 1
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Maximization using Lagrange multipliers results in the

following system of equations:

(15) 1 + 2A.61 . = 0, i = 1, ..., n;

(16)
2

i = 1, n.
1=1 1

Since k is arbitrary, the system is solved for

(17) 0 < 01 = . = 011.

Thus, provided the assumptions leading to (10) are satisfied,

coefficient alpha is maximal if and only if

(18) 0 < xi = = Xn < 1.

where xi = ni or 1 ni, and ni is the classical difficulty

parameter for item i. Without loss of generality, in the

following only the case of equal ni values will be

considered.

IL
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Dependent on the composition of the item bank, the

sclution need not be unique and simultaneous optimization

with respect to another goal can be possible. This result is

used in the following linear programming (LP) model.

LP Model

It is assumed that the estimates of the item n values are

rounded to a significant digit such that larger classes of

items with the same rounded value exist. The sets of indices

of items in the same class are denoted as

As an example of simultaneous optimization with respect to a

second goal, it is assumed that realistic estimates of the

time needed to solve the items in the bank exist and that the

goal is to minimize the total administration time needed for

the test. Let ti be such an estimate for item i, e.g., an

estimate of the 95th percentile in the distribution of time

needed to solve item i for the given population.

The following linear model realizes (18) at the same

time minimizing the total administration time ot the test:

(19) minimize t. x.
i=1 1 1

subject to

(20) E.lEIj
x. - ny. j = 1, J,



(21) Ii=1 x.

(22) x1 .. yj E (0, 1)
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i = 1. .... I.

j = 1. . J.

The additional decision variable yj in the model indicates

from which class the items are selected. The constraints in

(21) guarantees that exactly n items are selected from the I

items in the bank. The constraints in (20) and (21) together

allow yj to take the value one exactly once. The model in

(19) through (22) is linear and can be solved by a standard

branchandbound algorithm from the operations research

literature. Adema (1988) gives a modified branchandbound

procedure that reduces the CPUtime needed for a standard

procedure considerably.

The above model is too simple to deal with most test

construction problems. In practice. usually various kinds of

restrictions with respect to, e.g., item content,

simultaneous inclusion of different items, or ranges of

possible item parameter values exist. This point will be

taken up alter the presentation of an alternative model.

A Linearized Version of Alpha as Objective Function

In the previous model, a maximal value of alpha was realized

j adopting a special constraint in the model. The following

model explicitly maximizes alpha by a direct attack of (3).

I n
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Inspection of (5) shows that both of its sums are linear

in the decision variable. This suggests an approach in which

one of these expressions is used as objective function and

the other as a constraint. Since for a wide range of possible

values of n, the numerator of (3) varies less than the

aanominator, alpha can be expected to depend stronger on tt?

latter. This ef.:ect is verified empirically in Ebel (1967).

Therefore. it seems seLsible to maximize the denominator of

(3) constraining the numerator to a low value. This is

realized in the following model

(23) maximize E
i=1 o. p., x.

subject to

I
(24)

i
a.

2
x.

=1 i

I
(25) E x. = n,

i=1 1

(26)x.e(0, 1), i = 1, I.

where v > 0 is a constant. Again, the model is linear and can

be solved for (xl. x1) by one of the branchandbound

algorithms referred to earlier.

The choice of a value for v can be motivated as follows.

.1 7
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I
The maximal possible value of I a.2 in the model is equal

i=1 1

to n/4. In addition, the numerator and denominator of (3)

have ai as a common factor. Therefore, if v approaches its

maximum, a maximal value will be found, but at the same time

the numerator will tend to be too large. On the other hand.

if v approaches its minimum, a minimal value for the

numerator will be attained but at the cost of a constrained

denominator. Now this is due not only to the common factor

ai, but also to a restrictionofrange effect on pig. Hence.

the optimal value of v will tend to be closer to n/4 than to

zero. This issue will be Fuisued further in the section on

empirical results below. It should be noted that by varying v

all possible tests of length n can be produced as a solution

to the model. So in principle the structure of the model does

not preclude any possible test from showing up as optimal.

Possible Additi'nal Constraints

As already noted, in order to solve most practical test

construction problems, the above models have to be made more

realistic. For example. a test constructor may want to have

control of such features of the test as its validity with

respect to several domains of content represented in the item

bank. This and all other possible demands can be adopted in

the above models. provided they are formulated as linear

constraints. The models can then still be solved by the same

class of algorithms and the solution always automatically
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meets the new constraints. An extensive review of possible

constraints from the practice of test construction that can

be formulated in a linear form is given in van der Linden and

BoekkooiTimminga (1988b). The review includes constraints

controlling the composition of the test with respect to

behavioral dimensions and item content and format; item

parameters like administration time, frequency of previous

administrations and item difficulty; curriculum differences

between groups; inclusion or exclusion of individual items;

and dependencies between the items. The following example

illustrates some of the possibilities.

Fxample

A test with maximal value of coefficient alpha has to be

constructed from a Physics item bank. From each of the topics

p = 1. P covered by sets of items. Vp. in the bank, the

test constructor wants np items in the test. The items have

also been classifier) with respect to a behavioral dimension

(e.g., knowledge of facts, concepts, application of rules)

and from each of the sets V
q'

q = 1. .... Q. at least nq

items should be in the test. The estimated time in minutes

needed to solve the items in the bank, ti, i = 1, .... I,

(see above) is known and the total administration time is not

allowed to exceed T minutes. Also, for each item it has been

recorded how often it was administered before, and only items

with a frequency of previous administration, fi, not larger'

than one are allowed in the test. Items with a multiple

choice format, collected in subset Vs, should be excluded

J9
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from the test. Finally, for some special reason the test

constructor wants item #115 in the test, and items #19 and

#203 may not be chosen together. All these demands are

realized in the following model:

(27) maximize X
i=1 clPiXxi

subject to

(28)

(29)

(30)

(31)

(32)

(33)

(34)

ZI
i=1

'-'1EV

Eie lr

1=1

f1 .x1 ...5

El.
Ev
,

115
x115

02
i

x.
1

x.
1

x.
1 1

1,

1
x.

1

X. < v,
1

= n

> nq ,

5 T.

= 0 ,

'

p =

q =

i =

1,

1,

1, ...,

Q,

I,

2a



(35) X19 + x203 < 1.

(36)2c.1 E (0. 1),
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1 = 1, ..., I.

It should be noted that when specifying the constants in

the model, certain relations ought to be obeyed. For
Q

instance, no feasible solution exists if I n > I!
q=1 q p=1 12.

Further. constraints (32) (34) do not enter the actual

optimization procedure; they only reduce the number of

decision variables.

Empirical Validation of Model Assumptions

Two item banks of 500 items were generated to evaluate the

model assumptions. For Item Bank 1, the underlying response

model was the Rasch model w,th item parameters drawn from the

d,ltribution N(-0.5, 1). For Item Bank 2, the underlying

model was the 3parameter model with item parameters ai and

bi drawn from the distributions U(0.5, 1.5) and U(-3, 1).

respectively. The guessing parameter ci was set equal to 0.1.

To estimate the item difficulties, pi, and item

discriminations (i.e., itemtest correlations, where the

whole item bank is considered as the test), rib, 1,000

examinees (0 N(0,1)) were generated to answer the items.

The program Lando (Anthonisse, 1984) was used to solve

the zeroone programming models on a DEC 2060 computer.

Because it takes too much time to find a zeroone solution

for the model in (23) to (26), the relaxation of this model

21
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was solved, i.e., the model with the constraints 0 :5 xi < 1,

i = 1, 2, ..., I instead of Xi E (0, 1). This could be done,

because it is known (Dantzig, 1957) that the number of

fractional values in the solution is not greater than the

number of constraints. Therefore, the solution to the model

in (23) to (26) was found by rounding at most two fractional

values.

The model assumptions were first verified by comparing

tests from Item Bank 1 for different values of v and p. The

number of items in the tests was 20. Table 1 shows the values

of coefficient a. In this table, a* denotes coefficient alpIA

with itembank correlations replacing itemtest correlations,

-nereas a is the exact value of the coefficient calculated

after the test was selected.

Insert Table 1 here

Table 1 shows that the differences between values of a

of tests constructed for different vP'es of v were small.

Higher values of v gave the best results. The values of a for

the model with maximal alpha as a constraint were not as good

as for the other model. From Table 1 it is also clear that

the results were worse. the greater the difference between

the chosen value of p anj .5. The same trend was observed in

extensive simulations not reported here (see Adema, 1987).
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Apparently, the assumptions leading to the wellknown result

in (9) or the assumption of pix having the same relation to

pie for all items, are not entirely met for arbitrary data

sets.

For Item Bank 2 (3parameter model), only the model with

a. linearized version for a as objective function was

applicable. Again, tests were constructed for different

values of v. The results are displayed in Table 2.

le

Insert Table 2 here

Once more the best results were found for high values of v.

Therefore, it is possible to choose v maximal so that

constraint (24) is redundant and can be omitted.

Because the variances of the items are not Es important

as the item discriminations, the following zeroone

programming model was also'tried out:

I
(37) maximize/ p.,x

i=1 ln 1

subject to

I
(38) ! x. = n.

i=1 1

23



(39) xi . e (0, 1) ,
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i = 1, 2 ..... I.

In Table 3, values of a are shown for tests constructed

w:th model (23), (25), and (26) (v maximal) and with model

(37) through (39). The number of items in the tests was 20 or

40 and the models were applied to both item banks.

Insert Table 3 here

Table 3 demonstrates that model (37) to (39) gave very good

"results. The values of a were as good as for the best choices

of v in Table 1 and 2.

Table 1, 2, and 3 show that it is possible to construct

tests with item-test correlations replaced by item-bank

correlations, because generally tests with a high value for

a* also have a high value for a.

Discussion

Two models for maximization of coefficient alpha as a

function of classical item parameters were presented.

In the first model maximization of alpha was obtained by

inserting a special constraint in a linear programming model.

The fact that minimization of administration time was chosen

as explicit objective function was just for the purpose of

2.4
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illustration. Measures for other aspects, e.g., for

curricular fit of the test or uniform usage of the items in

the bank (van der Linden & BoekkooiTimminga, in press),

could also have been optimized. The important point to note

is that the model allows optimization with respect to two

different objectives. The model is based on a formalization

of the intuitive notion that an item bank conforming to the

Rasch model should consists of items with equal (classical)

discriminating power. However, the formalization, which

resulted in (18) as a condition for alpha to be maximal, also

needed extra assumptions in addition to the Rasch model. As

shown in Table 1, for items satisfying the condition in (18)

a tends to decrease if ni deviates from .50. For .30 < ni <

.70 the results are still satisfactory but outside this

interval a drops relatively quickly Since the data were

generated under the Rasch model, this phenomenon implies that

the extra assumptions are not tenable for all possible data

sets. Therefore, models as in (19) to (22) are only

recommended for items with values for ni in this interval.

The second model is universal in the sense that it does

not assume any IRT model or other assumptions about the

items. The model is a direct attack of the kernel of alpha in

(3); it maximizes the denominator at the same time

constraining the numerator. Ample experience with the model

for various types of data has shown that the solution

invariably produces the maximal value for alpha for v

close to n/4 (maximum of E1. I

1 i
, a.

2
in the model). For example,=

for n = 500, all simulations produced the maximum of alpha
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for v in the neighborhood of 95% of n/4. Also, the optimal

value of alpha increases monotonically with v to the point at

which the maximum is obtained and then shows a monotonic but

slight decrease. Therefore, for large item banks. n > 500.

say, it is recommended to set v at its maximal value.

However, as already observed, the model in (37) through (39)

almost always produced comparable results. If no additional

constraints have to be met, this model can be solved by a

simple algorithm that picks items with the largest values for

their itemtest correlations. For such applications, the

model is strongly recommended.

Finally, it is observed that the advantage of a linear

programming approach to test construction lies not only in

its power to optimize a test parameter as coefficient alpha,

but also in the possibility to include additional practical

constraints. The example given earlier shows that the

presence of such constraints easily involves combinatorial

problems that cannot be solved by hand.

APPENDIX

The availability of a item bank system with items calibrated

under an IRT model allows the possibility to use classical

test theory as an interface between the system and a user not

familiar with IRT. For a given population of examinees the

r'ystem is able to predict the values of the classical

parameters for the items. These values can be used as the

input of one of the models in the paper. whereafter the

26
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system predicts the values for the test parameters of the

resulting test.

Jensema (1976) and Lord (1980) deal with the relation

between IRT and classical parameter values. The following

summarizes some of the results and adds the case of a

multidimensional item bank. A complete treatment is given in

van der Linden (1986b).

Let pi(0) be the probability of a .ect response on

item i for an examinee with ability 0 explained by the IRT

model and let F(0) be the distribution function for the

population of examinees under consideration. The basic

equations are:

(1) wi = I pi(e)dF(0)

(2) wii = I pi(e)pj(0) dF(0) .

The first equation gives the classical item difficulty; the

second equation uses the property of local independence and

is necessary to derive the itemtest correlation:

(3) PiX = criX (cri% 1

This follows from

(4) ai = iri(1 71) ,

27
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(5) aix = Ej(TriiTroi) ,

(6) ai = Eoi(1Tri) + Ei#j(ni,;TriTrj)
.

Case of Multidimensionality

Suppose the item bank falls apart into two different sets of

items and that for each set an IRT model holds. Let Ov and Ow

be the ability parameters spanning the items in each set.

while Fv(0v), Fw(Ow), and Fvw(8v,8w) are now the distribution

functions for the given population of examinees. If iv and iw

denote an arbitrary item in the two respective sets. then the

basic equations are

+.0

(7) Tri v = J piv (0 )dF
v (0 ) .vv

+00

(8) Triv w 0= I pi
v
(0
v ) p. (0 )dF (0

v 0 ) .w vw w

Equation (8) assumes the property of local independence for

response variables associated with items from different sets.

The property can be proven to hold as follows:

Proof. Let (Uiv) and (Uiw) be the response variables

associated with the two sets of items. Since for an IRT

model holds, ev spans this set completely. Thus, no partition

of the population of examinees is possible that introduces

differentdistributionsover{U.lv } for a given value of Ov.

Therefore, the values of (Uiw) cannot introduce such a

partition and the variables in (Uiv) are locally independent

of those in (Uiw).

0 0
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Table 1

Results for tests constructed from Item Bank 1

(Rasch model; n = 20)

Maximal a as Objective Maximal a as a Constraint

v a* a P a* a

5.0 .8096 .8478 .30 .6922 .7866

4.5 .8028 .8413 .40 .7245 .7956

4.0 .7803 .8252 .50 .7331 .8004

3.5 .7491 .8069 .60 .7373 .7997

.70 .7136 .7896

.80 .6441 .7559

.90 .4131 .6701

3 7



Algorithmic Test Design

29

Table 2

Results for tests colstructed from Item Bank 2

(Threeparameter model; n = 20)

V a'l a

5.0 .8201 .8579

4.5 .8252 .8607

4.0 .8199 .8551

3.5 .8045 .8460

3.0 .7874 .8386
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Table 3

Results for tests constructed with Model (23), (25), and (26)

and Model (37) (39) from Item Bank 1 and 2

Model (23), (25), (26) Model (37) (39)

Item

Bank n a* a as a

1 20 .8096 .8478 .8107 .8465

1 40 .9013 .9122 .9020 .9122

2 20 .8201 .8579 .8256 .8603

2 40 .9074 .9188 .9096 .9196

3
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