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Abstract

Many multidimensional -item response models have been

proposed in literature. The models and various methods for

estimating the item parameters are reviewed briefly. In a

simulation study these methods are compared with respect to

their estimates of the item parameters. It is concluded that

a common factor analysis on the matrix of tetrachoric

correlations yields the best estimates.

Additionally, a procedure based upon the mean squared

residuals of the correlation matrix is presented for the

assessment of the dimensionality of the model.

Key words: Common Factor Analysis, Dichotomc - Variables,

Item Rerlonse Theory, Multidimensionality,

Tetrachoric Correlations.
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Empirical Comparison between Factor

Analysis and Item Response Models

Introduction

One of the main problems in constructing Rasch (1960)

scales from a large number of dichotomously scored items is

the multidimensionality of the itempool. Usually, the Rasch

model does not fit the whole itempool. Procedures for

constructing Rasch scales which start from the entire

itempool are not very promising (cf. Knol, 1987b). A more

promising procedure is to identify the main dimensions of the

itempool and to start an (iterative) procedure on the

different subsets of items separately. Verhelst (1983) and

Knol (1987b) describe such iterative procedures.

To identify the main dimensions of an itempool, a

multidimensional representation of the items can be useful.

Many multidimensional models can be used for that purpose.

Roughly, the models can be distinguished to the extent in

which they make use of the information of the data matrix.

For continuous variables, a classic:'_ common factor analysis

(Fa.) on the matrix of productmoment correlations can be

used. However, for dichotomous items, the matrix of pairwise

(tetrachoric) correlations is not sufficient (Mood, Graybill

& Boes, 1974. pp. 299-314). Therefore, several models have

been proposed, which do use all the available information

contained in the response vectors. Because these socalled

7
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fullinformation (cf. Bock, Gibbons & Muraki, 1985) models

suffer from numerical difficulties, an approximation has been

proposed by McDonald (1985).

The purpose of the present paper is to compare the so

called fullinformation models with the models which use only

pairwise information. For simulated data, various estimations

of the item parameters will be compared. Furthermore a

procedure to estimate the dimensionality of the models will

also be presented.

Firstly, a short review of multidimensional item

response theory (IRT) models will be given. Then the various

FA models'for dichotomous variables are described.

Multidimensional IRT Models

Several multidimensional IRT models for dichotomous data

have been proposed (Bock & Aitkin, 1981; Pock & Lieberman,

1970; McDonald, 1985; Mulaik, 1972; Rasch, 1961 Reckase,

1973; Sympson, 1978; Whiteley, 1980). Generally, the models

can be classified into socalled compensatory models, which

allow high ability values on one dimension to compensate for

low abilities on other dimensions, and noncompensatory

models. These last mentioned models (Sympson, 1978; Whiteley,

1980) do not allow high ability to compensate for low ability

on other dimensions. Apart from the psychological

meaningfulness of these models, the most important practical

U
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disadvantage of noncompensatory models is that no efficient

algorithms for the parameter estimates are available.

The compensatory model of Bock and Aitkin (1981) is

relatively simple and a marginal maximum likelihood (MM1)

procedure for the estimation of item parameters has been

developed* Let X = (X1 Xn)' be a random vector of

response patterns to n dichotomous items, where each Xi

(i = 1 n) is defined as

f1, if item i is correctly answered
(1) Xi =

( 0, otherwise .

Under the (usual) assumption of local independence the

marginal probability of the response vector X = x is given by

(2) P(X = x) = II 1Poi(i)1

xi
(1 pi(e)]

1xi
g(8)dk

i=1

where pi(Q) is the item characteristic function (ICF) of item

g(Q) is the density function of the unobserved mcomponent

random vector of abilities 8, and the integration is taken

over the entire multidimensional ability space. It is assumed

that Q is multivariate normally (MVN) distributed with mean Q

and covariance matrix I. In the multidimensional two

parameter normal ogive (M2PNO) model the ICF of item i is

given by

(3) pi(k) = F(ai'l 0i) ,
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where ga is the m x 1 vector of discrimination parameters for

item i, Oi is the difficulty parameter for item i (i=1 n)

and F(.) is the cumulative standard normal distribution. An

iterative procedure to obtain MML estimates of the item

parameters via the EM algorithm (Dempster, Laird & Rubin,

1977) has been implemented in the computer program TESTFACT

(Wilson, Wood & Gibbons, 1984).

An IRT model that uses only information contained in the

pairwise proportions is based upon McDonald's (1985) harmonic

analysis. A computer program NOHARM II (Fraser, 1988) is

available in which the pairwie proportions

nij = P(Xi=1, Xj=1) are approximated by minimizing the

unweighted least squares function

(4) f(A, fi) = E E (pij vij(gi.5i,gj,Pj))2 .

i<j

where A = (gi, gn)' A = (01.....0n)'. Pij are the sample

proportions and the ICF's are approximated by a third degree

HermiteTchebycheff polynomial.

Because of the wellknown relationship between the

logistic distribution function L (cf. Mood, Graybill & Boes.

1974, p. 542) and the cumulative standard normal distribution

function F

(5) IF(z) L(1.7z)1 < 0.01

10
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for all z (Haley, 1952), it is possible to approximate the

normal ogive ICF (3) by the logistic ICF

exp(c(2i'a Pi)]
(6) pi(Q) - L[c(2i'l -.

1 + exp[c(2i'l pin

The computer program MAXLOG (McKinley & Reckase, 1983) yields

estimations of the parameters of the multidimensional two

parameter logistic (M2PL) model, Because the program uses the

method of joint MI. estimation, problems such as the socalled

drift of the discrimination parameters may be encountered and

estimation may be cumbersome when the number of subjects N is

large.

In all three programs mentioned above the numbers of

variables and dimensions are limited. This makes the programs

not very useful for large scale applications.

FA for Dichotomous Items

In FA for dichotomous variables (Christoffersson, 1975;

Muthen, 1978), the response variables Xi are assumed to be

governed by the unobserved continuous variables Yi and

thresholds Ti as

1, if Yi > Ti
(7) XI =

Sl 0, otherwise ,

11
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where

(8) / = Ai + E .

and I = (Y2 Yn)'. Model (8) is the usual random factors

FA model, the only difference being that Y is unobserved.

Under the assumptions

(9a) a - MVN (0, I)

(9b) E MVN (0. 44)

where T2 is a diagonal matrix with positive diagonal

elements, and

(9c) cov(1. E) = Q

the covariance matrix E among I variables is given by

(10) E = AA. + xF2 .

Hence,

(11) / MVN(Q. AA* + 412) .

In FA for dichotomous variables the marginal probability of

response pattern X = x is

12
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(12) P(X = x) = h(/)d/

8

J Z

where h(.) is the MVN (Q, AA' + W2) density and Z is the

multidimensional integration region defined by the Cartesian

product of Zi, such that Zi = (Ti, if Xi = 1 and Zi =

Ti) if X. = 0.

Takane and De Leeuw (1987) showed the formai equivalence

of the marginal likelihood (2) of the M2PNO model with

0 - MVN(Q, I) and the likelihood (12) of FA for dichotomous

variables. The parameters of the IRT formulation gi and pi

(i=1,,n) can be expressed in cams of the parameters of

the FA formulations, Ti and yi as

(13a) ai = Xi/wi

and

(13b) pi =

(Takane & De Leeuw, 1987), where Xi' denotes row i of A and

y12 is the i-th diagonal element of 'P2. Reversely, the FA

parameters can be expressed in terms of the IRT parameters as

(14a) Xi = (1 +

(14b) Ti = (1 + gi'ai)

J t.)
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(14c) = (1 + gi'gi)%
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cf. also Knol (1987a).

The parameters of the FA formulation can be estimated

with the program LISCOMP (Muthen, 1985), using the method of

generalized least squares (GLS). Since LISCOMP is not yet

available for a VAX computer the FA model for dichotomous

items will not be treated throughout this paper.

Common to the models treated above is the usage of all

available information from the data matrix. If we are willing

to use only information of the oneway marginals

(percentscorrect) and the twoway marginals pig, it is

possible to approximate the above models by more classical

models, e.g. models in the realm of common FA.

If the latent continuous response variables X,

underlying the manifest dichotomous response variables X, are

MVN distributed, then the ML estimator of the productmoment

correlation between the (bivariate normal distributed)

variables Yi and Yj is given by the tetrachoric correlation

between Xi and Xj. Hence it seems reasonable to perform a

common FA on the matrix of estimated tetrachoric correlations

in order to obtain estimates for the FA parametrization of

model (3). Estimates of the IRT parametrization of the M2PNO

model can be obtained by the transformations (14). There are,

however, some problems connected with this approach. As

already noted, the matrix of sample tetrachoric correlations
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is not sufficient, and the estimates become unstable when the

proportions of the 2 x 2 table are extreme, or the number of

observations is low. Furthermore the matrix of tetrachoric

correlations is not necessarily positive definite, and this

makes the matrix inappropriate for the ML and GLS FA methods.

Finally, the possible occurence of one or more unique

variances approximately equal to zero, i.e. Heywood (1931)

cases, may be encountered. See Mislevy (1986) for an

excellent review of these problems.

Various FA programs are available. In SPSSx (1986),

iterative principal FA (Harman & Jones, 1966), minimum

residuals or unweighted least squares FA (Harman & Jones,

1966), generalized least squares FA (Joreskog & Goldberger.

1972), maximum likelihood FA (Joreskog. 1967), and alpha FA

(Kaiser & Caffrey, 1965) are implemented. These methods will

be denoted by IPFA, ULS, GLS, ML and ALPHA, respectively. In

LISREL VI (Joreskog & Sarbom, 1984) ULS, GLS and ML methods

are available. Additionally, an adjusted minimum residuals

(MINRES) FA method (Harman & Jones, 1966; Zegers & Ten Berge,

1983), in which arbitrarily lower bounds can be set on the

unique variances (see also Knol. 1987a), has been used in the

simulation study. An advantage of MINRES is the possibility

to avoid Heywood cases.

For each method estimations of th? parameters

A = (11 lia)'. 1112 = (W12, Wn2)'. T =

A = (21, 2/0' and & = (01 ..... 0/0' can be obtained by

either the transformations (13) for the FA models or (14) for

the IRT models.

II 5
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A Simulation Study Comparing Methods

To compare the various methods, data matrices were

generated with known discrimination and difficulty

parameters. The item parameters of four different sets of

items are given in Table 1, where the groups of items which

have the same discrimination parameters, have difficulties

2, 1, 0, 1 and 2, respectively.

Insert Table 1 about here

Multidimensional abilities 9 have been drawn from the

MVN (2,I) distribution using the procedure GO5EZF of the NAG

(1984) program library. The binary response of observation v

(v =1, N) on item i was obtained by

(15) Xvi =
1, if pi(Qv) > uvi

0, if pi(9v) uvi

where uvi is randomly drawn from the uniform [0,1]

distribution and pi(9v) is given by (3). To verify the

effects due to the samp'N size, the nu._ of subjects was

set equal to 250, 500 and 1000. For each set of

6
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itemparameters and each sample size, 10 replications were

generated.

The sample tetrachoric correlations were computed by

means of the procedure BECTR from the IMSL (1984) program

library. In BECTR, a tetrachoric correlation is computed as

the root of a sixthdegree equation. If there was no

solution, a solution was obtained by adding an observation to

each cell the 2 x 2 frequency table (cf. Mislevy, 1986).

In the case of multiple roots, the root with the smallest

absolute value was used.

In the next section six criteria to assess differences

among known and estimated item parameters will be given.

Six Criteria

All models will be compared with respect to estimates of

both IRT and FA parameters. The criteria will be in terms of

mean squared differences between the known and estimated item

parameters.

In the case of orthogonal abilities 9, the n x m matrix

A of factor loadings is determined up to an orthogonal

transformation T. If A0, V02, To, Ao and 10 are the =own

item parameters, where the dimensionality m is known, then

the first criterion is given by

(16a) gi(A, T) = ((nm)ltr(AT A0)'(AT A0))14 ,

17
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where (16a) is minimized as a function of T under the

constraint that T is orthogonal. If PAQ' = A'Ao denotes the

singular values decomposition of the matrix A'Ao, then the

minimum of (16a) is attained for T = PQ' (Green. 1952). The

criteria for the uniquP variances 33x2 and the thresholds T

are

(16b) g2(12) =1.,-1(3x2 -vo2)'(W.2 W.02))14

and

(16z) g3(1.) = in-1(i -310)'(T -1-o0

respectively. In the case of orthogonal 8 the n x m matrix A

of discrimination- is also determined up to an orthogonal

transformation, and the first criterion for the IRT

parametrization is

(16d) g4(A. T) = f(nm)-ltr(AT - Ao)'(AT /10)0

where (16d) is also minimized as a function of T under the

constraint that T is orthogonal. The criterion for the

difficulties 1 is

(16e) g5(1) = (n-1(1 g0).(.° 10)0

The last criterion is given by the mean squared difference

between the values of the generated and estimated ICF's

1r
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N n
g6(A. = {(Nn) -1 E E (Pi(iv) Pio(ev)]2/3

v=1 1=1

14

where pio(ev) = F(gio'Av pi) and Iv (v=1 N) are assumed

to be known,

Results

In order to apply the GLS and ML common FA methods, the

matrix of tetrachoric correlations has to be positive

definite. If the matrix of tetrachoric correlations R is

indefinite or illconditioned with respect to inversion, a

smoothing procedure has to be used. Let R = KDK' be the

eigendecomposition of R, where D is an n x n diagonal matrix

containing the eigenvalues di of R in descending order and K

is the matrix of corresponding normalized eigenvectors. Then

a nonnegative definite correlation matrix R+(6) can be

obtained by

(17) R+(6) = (Diag KD+K.)-14KD+r(Diag KD+K.)IA

where di+ is diagonal element i of D+ (1=1 n) with

di+ = max(di, 6) and 6 z 0. Note that if 6 = 0, KD+K. is the

leastsquares approximation to R of rank r, where r is the

number of positive eigenvalues of R (cf. Rao. 1973). Note
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also that R+(0) coincides with Frane's (1978) smoothing

procedure.

To investigate the effects of the smoothing procedure

the common FA methods that do not require positive

definiteness of R (i.e, IPFA, ULS. MINRES and ALPHA) were

applied to 10 indefinite matrices obtained from dataset 2

(cf. Table 1) with N = 250 and various values of 6. The

results are given in Table 2.

Insert Table 2 about here

Only for MINRES a slight increase is observed. From the

results in Table 2 it can be inferred that the effect of

smoothing is negligible. Additionally a small decrease of the

total number of variables with estimated unique variances

smaller than .2 is observed for increasing values of 8.

Therefore it was decided to perform all common FA on the same

smoothed tetrachoric correlation matrix R4*(.005), ensuring

that the matrix to be analyzed is sufficiently well

conditioned.

In Table 3 the mean values of the six criteria over 10

replications for the different methods are given for

generated data corresponding to the unidimensional data set

1.

20
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Insert Table 3 about here

Because the BLS procedures of SPSSx and LISREL and IPFA of

SPSSx gave the same results, only the IPFA procedure of SPSSx

has been reported in the tables. Only the GLS procedure from

LISREL is reported, because it gives consistently better

results then the correspondent SPSSx procedure. The ML

procedure of SPSSx procedure was chosen because the

corresponding LISREL procedure often did not converge to a

proper solution.

From the results in Table 3 it can be concluded that

MAXLOG performs very badly. The GLS and ML procedures also

perform badly. As expected TESTFACT is the best procedure and

NCE2RM also performs quite good. The procedures IPFA and

MIMES give approximately the same results.

The results of the various methods obtained from the

multidimensional datasets 2, 3 and 4 are given in the Tables

4, 5 and 6, respectively.

Insert Tables 4-6 about here

It has to be noted that the GLS procedure applied to data set

4 never converged to a proper solution; hence, the outcomes

are not reported in Table 6.
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Essentially the same conclusions can be drawn from the

results for these multidimensional datasets. However, for the

three-dimensional datasets 3 and 4 the performances of NOHARM

and TESTFACT decrease, and in fact become even worse than the

simple common FA procedures IPFA and MINRES.

The Dimensionality of Binary Scored Items

The dimensionality of binary items has been a source of

debate in educational and psychological literature, and

various aspects have been discussed by Goldstein (1980),

McDonald (1981) and Hattie (1985), among others.

The increasing interest in IRT and the widespread use of

the one, two- and three-parameter IRT models, which all

assume a unidimensional ability space, has increased the need

for a clear definition of dimensionality. Moreover, reliable

indices to assess the dimensionality of a set of binary

scored items are needed.

Both Goldstein (1980) and McDonald (1981) discuss the

dimensionality of binary items in relation with the principle

of local independence. The formal requirement of the

independence of the item responses (x1 xn) is that the

joint distribution of the responses given a vector of

abilities A is equal to the product of the marginal

distributions of the items given A, i.e.:
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(19) Pa 7: X1/) = = xilk)
i=1

Goldstein (1980) states that a distinction should be

made between the r.tonditional distribution of the item

responses, given a and the conditional distribution of item

responses given both 1 and the responses to the other items.

A unidimensional model can be assumed with or without local

independence. The assumption of local independence is really

very strong, and Goldstein (1980) doubts whether this

assumption is actually met in real life situations.

On the cther hand, McDonald (1981) argues that the

principle of local independence and the definition of

dimensionality are related to each other. If a subject from a

given population is completely characterized by one or more

abilities e =(81,,..,8m), then the scores of that subject

with the abilities a on the n items are mutually

statistically independent. This means that, if these

abilities span the complete ability space in the population,

all mutual statistical dependencies among the n items are

explained by these abilities (81 em). If, however, a

model is specified with a number of abilities, which do not

span the complete ability space, then there will still remain

mutual dependencies among the items. An adequate method

specify the dimensionality of a

therefore needed. Unfortunately,

set of binary items

no allround index

identify the dimensionality of binary items is available.

to

is

to
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Dimensionality Indices

The most frequently applied procedure to verify the

dimensionality of binary items is to compute tetrachoric

correlations and to inspect the eigenvalues of the

corresponding matrix. Sometimes even phicoefficients are

used (Hambleton & Rovinelli. 1986), but it is wellknown that

these coefficients are affected by the difficulties of the

items. As already mentioned above, the use of tetrachoric

correlations has some disadvantages.

Dimensionality indices obtained from linear factor

analysis will not be optimal, since IRT models for binary

data are intrinsically nonlinear, i.e. nonlinear in the item

parameters and in the ability parameters.

Up to date, there are no widely accepted tests of fit

for models formulated on binary items which are comparable

with the x2test and the residual analysis in common FA and

research is needed on the assessment of misfit of

multidimensional IRT models. Perhaps, the use of a formal x2

test should be avoided, because of the distributional

problems connected with the x2test for small samples and

because the use of a test statistic is never in itself a

sufficient justification for the acceptance or rejection of a

certain model.

Hambleton and Rovinelli (1986) compared some methods for

the determination of the dimensionality c a set of items and

concluded that linear factor analysis based on phi

24
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coefficients tended to overestimate the number of underlying

abilities and that inspection of the residuals obtained from

a nonlinear factor analysis would be a promising approach to

assess dimensionality.

Hattie (1985) reviewed the rationale of various methods

and concluded that too many indices were developed on an ad

hoc base. Hattie (1984) reported that indices based on

residuals obtained from nonlinear factox analysis could very

well distinguish a unidimensional set of items from a set

with more than one dimension and recommended the use of the

mean squared or mean absolute residuals as a suitable loss

function.

Tucker, Humphreys, Lloyd, and Roznowski (1986) compared

some indices based on the eigenvalues of the tetrachoric

correlation matrix with some indices based on the local

independence principle. Their preliminary results seem to

indicate that the indices based on the eigenvalues do not

work very well.

A Simulation Study Assessing Dimensionality

Following the suggestion made by Hambleton and Rovinelli

(1986) and Hattie (1984, 1985), the residuals were used as a

measure for dimensionality.

If Ak is this estimated matrix of factor loadings from a

solution with k estimated common factors, then the matrix of

residuals R* = frij*) is
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(19) = R AkAk'

and the mean squared and mean absolute residuals are

(20a) e1 = 2(n(n 1)] 1 E E (rij)
2

i<j

and

(20b) e2 = 2(n(n 1)] 1 E E Iriji
i<j

re..?ectively.

For each of the first three datasets given in Table 1.

with one, two and three dimensions, respectively.

5 datamatrices were generated for sample sizes 250, 500 and

1000. In the Tables 7. 8 and 9 the mean squared residuals are

given for the three datasets, after an analysis was performed

with assumed dimensionality ranging from one to five.

Insert Tables 7-9 about here

Since the mein absolute residuals and the mean squared

residuals lead to the same conclusions, only the mean squared

residuals are given. To verify the sizes of the obtained

C



Empirical Comparison

22

residuals, the mean squared residuals for datasets with all

correlations among the variables equal to zero, i.e. no

common factors, are also given. In the Tables 7 through 9

only the results for MINRES, NOHARM and TESTFACT are given.

Although the results of an ordinary principal components

analysis (PCA) will generally not give a satisfactory fit

when applied to binary data, the pattern of residuals might

give an adequate indication of dimensionality. Therefore the

residuals obtained after a PCA are also given in the Tables.

From the Tables 7 through 9 relatively high values of

the mean squared residuals el can be observed when datasets

have been analyzed with a smaller dimensionality than the

generated dimensionality. This applies to all methods. Also,

a large drop of el can be observed between the analyses with

m-1 and m dimensions (where m is the generated dimensionality

of the dataset). No such drops of el are observed for

analyses with higher assumed dimensionality. Hence, it seems

that the dimensionality of a dataset can be assessed by

inspecting the mean squared residuals obtained from different

assumed dimensionalities of the methods.

Discussion

The most striking result of the simulation study in

which various IRT and FA programs were compared, is that the

common FA methods outperformed the more complex programs

TESTFACT, MAXLOG and NOHARM, despite their theoretical

27
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advantages. Also, quite remarkable is the failure of the ML

and GLS FA procedures compared with IPFA, ULS or MINRES. Of

course this may be due to the implementation of the specific

methods. Nevertheless, since no other programs are available,

it is advised to use IPFA, ULS or MINRES. An additional

advantage is that these programs can handle relatively large

numbers of variables and factors. Because IPFA has some

algorithmic drawbacks (cf. Gorsuch, 1974, p. 98) and MINRES

(or ULS) perform equally well as IPFA, it is advised to avoid

the usage of IPFA. An advantage of MINRES compared to ULS is

that MINRES avoids Heywood cases. Therefore, in largescale

applications it is advised to use MINRES on the (possibly

smoothed) matrix of tetrachoric correlations.

A possible drawback of MINRES could be that no

statistical goodness of fit measure is available, hence the

estimation of the dimensionality of the model can be

problematic. Therefore, a non statistical procedure for

assessing the dimensionality of the model is proposed,

leading to essentially the same results as TESTFACT and

NCEARM.

28



Empirical Comparison

24

References

Bock. R.D.. & Aitkin, M. (1981). Marginal maximum likelihood

estimation of item parameters: Application of an EM

algorithm. Psychometrika, 4Q. 443-459.

Bock, R.D., Gibbons. R., & Muraki. E. (1985). Full

Information Item Factor Analysis (MRC Report 85-1

(Revised]). Chicago, IL: University of Chicago, National

Opinion Research Center.

Bock, R.D., & Lieberman, M. (1970). Fitting a response model

for n dichotomously scored items. Psychometrika 21, 283

319,

Christoffersson, A. (1975). Factor analysis of dichotomized

variables. Psychometrika. AQ, 5-32.

Dempster. A.P.. Laird, N.M., & Rubin, D.B. (1977). Maximum

likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society, Series B, 39, 1-

38.

Frane, J.W. (1978). Missing data and BMDP: Some pragmatic

approaches. Proceedings of the Statistical_ Computina

Section (pp. 27-33). Washington, DC: American Statistical

Association.

Fraser, C. (1988) NOHARM II. A Fortran program for fitting

unidimensional and multidimensional normal ogive models of

latent trait theory. Armidale, Australia: The University

of New England, Centre for Behavioural Studies.

2



Empirical Comparison

25

Goldstein, H. (1980). Dimensionality, bias, independence and

measurement scale problems in latent trait test score

models. British Journal of Mathematical and Statistical

Psycholoav, 21, 234-246.

Gorsuch, R.L. (1974). Factor Analysis. Philadelphia, PA:

Saunders.

Green, B.F. (1952). The orthogonal approximation of an

oblique structure in factor analysis. Psychometrika,

429-440.

Haley, D.C., (1952). Estimation of the dosaae_ mortality

relationshic when the dose is subject to error (Technical

Report 15). Stanford, CA: Stanford University, Applied

Mathematics and Statistics Laboratory.

Hambleton, & Rovinelli, R.J. (1986). Assessing the

dimensionality of a set of test items. Applied.

Psychological Measurement, la. 287-302.

Harman, H.H., & Jones, W.H. (1966). Factor analysis by

minimizing residuals (MINRES). Psychometrika, /1. 351-368.

Hattie, J.A. (1984). An empirical study of various indices

for determining unidimensionality. Multivariate Behavioral

Research 12, 49-78.

Hattie, J.A. (1985). Methodology review: Assessing

unidimensionality of tests and items. Applied

Psychological Measurement, /, 139-164.

Heywood, H.B. (1931). On finite sequences of real numbers.

Proceedings of the Royal Society Series A 134, 486-501.

IMSL (1984). Library (9th ed.). Houston, TX: International

Mathematical and Statistical Libraries.

30



Empirical Comparison

26

Joreskog, K.G. (1967). Some contributions to maximum

likelihood factor analysis. Psychometrike. Z. 443-482.

Joreskog, K.G.. & Goldberger. A.S. (1972). Factor Analysis by

generalized least squares. Psychometrika 21, 243 -260.

Joreskog. K.G.. & Sorbom. D. (1984). LISREL VI: Analysis of

linear structural relationships by the method of maximum

likelihood C Mooresville. IN: Scientific Software.

Kaiser. H.F.. & Caffrey, J. (1965). Alpha factor analysis.

Psychometrika, XI. 1-14.

Knol. D.L. (1987a). Het verband tussen itemresponstheorie en

factoranalyse voor dichotome items (Rapport 87-2) (The

relationship between item response theory and factor

analysis for dichotomous items]. Enschede, The

Netherlands: University of Twente, Department of

Education.

Knol. D.L. (1987b). Stapsgewijze itemselectieprocedures in

het Raschmodel (Rapport 87-6) (Stepwise item selection

procedures in the Rasch model]. Enschede. The Netherlands:

University of Twente, Department of Education.

McDonald, R.P. (1981). The dimensionality of tests and items.

British Journal of Mathematical and Statistical

Psychology. 100 -117.

McDonald. R.P. (1985). Unidimensional and multidimensional

models for item response theory. In D.J. Weiss (Ed.),

Proceedinas of the 1982 Computerized Adaptive Testing

Conference (pp. 127-148). Minneapolis: University of

Minnesota, Department of Psychology, Psychometrics Methods

Program.

3



Empirical Comparison

27

McKinley. R.L. & Reckase. M.D. (1982). The use of the

general Rasch model with multidimensional item response

data (Research Report ONR 82-1). Iowa Ci.;y, IA: The

American College Testing Program.

McKinley, R.L, & Reckase, M.D. (1983). MAXLOG: A computer

program for the estimation of the parameters of a

multidimensional logistic model. Behavior Research_Methods

& Instrumentation, 1, 389-390.

Mislevy, R.J. (1986). Recent developments in the factor

analysis of categorical variables. Journal of Educational

Statistics, 3-31.

Mood, A.M.,, Graybill, P.A., & Boes, D.C. (1974). Introduction

to the Theory of Statistics (3rd ed.). NewYork: McGraw

Hill.

Mulaik. S.A. (1972). A mathematica' investigation of some

multidimensional Rasch models for psycholoaical tests.

Paper presented at the annual meeting of the Psychometric

Society, Princeton, NJ.

Muthen, B. (1978). Contributions to factor analysis of

dichotomized variables. aychometZika .A.a. 551-560.

Muthen, B. (1985). TISCOMP. Mooresville, IN: Scientific

Software.

NAG (1984). Library (Mark 11). Oxford, UK: Numerical

Algorithms Group.

Rao, C.R. (1973). Linear statistical inference and its

applications (2th ed,). NewYork: Wiley.



Empirical Comparison

28

Rasch, G. (1960). probabilistic models for some intelligence

and attainment tests. Copenhagen: The Danish Institute for

Educational Research.

Rasch, G. (1961), On general laws and the meaning of

measurement in psychology. In J. Neyman (Ed.), Proceedings

of the Fourth Berkeley Symposium On Mathematical

Statistics and Probability (Vol. 4, pp. 321-333).

Berkeley: University of California Press.

Reckase, M.D. (1973). Development and application of a

multivariate logistic latent trait model. Dissertation

Abstracts International, 12.

SPSSx (1986). User's Guide (2nd ed.). NewYork: McGrawHill.

Sympson, J.B. (1978). A model for testing with

multidimensional items. In D.J. Weiss (Ed.), Proceedings

of the 1977 Computerized Adaptive Testing Conference (pp.

82-98). Minneapolis: University of Minnesota, Department

of Psychology, Psychometric Methods Program.

Takane, Y., & De Leeuw, J. (1987). On the relationship

between item response theory and factor analyses of

discretized variables. Esychometrika, 393-408.

Tucker, L.R., Humphreys, L.S., Lloyd, G., & Roznowski, M.A.

(1986). Comparative accuracy f five indices of

dimensionality. Urbana: University of Illinois, Department

of Psychology.

Verhelst, N. (1983). Automatische itemselectieprocedure in

hLtliattodel [Automatic item selection procedures in

the Rasch model). Utrecht, The Netherlands, University of

Utrecht, Department of Psychology.



Empirical Comparison

29

Whiteley, S.E. (1980). Multicomponent latent trait models for

ability tests. PsychometrIka, Al. 497-494.

Wilson. D.T., Wood, R.. & Gibbons. R.T. (1984). TESTFACT.

Test tgoring. item statistics. and item factor analysis.

Mooresville, IN: Scientific Software.

Zegers, E.E.. & Ten Berge. J.M.F. (1983). A fast and simple

computational method of minimum residual factor analysis.

Multivariate Behavioral Research 11. 331-340.

Lt



Empirical Comparison

30

Table 1

Discrimination parameters of the four different data sets
(each group of five items with the same discrimination
parameters has difficulty parameters 2. 1. 0. 1, and 2)

Set n m Ao

1 15 1 (5x) 1.00

(5x) 1.25

(5x) 1.50

2 15 2 (5x) 1 1

(5x) 1 0

(5x) 0 1

3 15 3 (5x) 1 1 0

(5x) 1 0 1

(5x) 0 1 1

4 30 3 (5x) 1 1 0

(5x) 1 0 1

(5x) 0 1 1

(5x) 1 0 0

(5x) 0 1 0

(5x) 0 0 1
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Table 2

The total number of estimated unique variances <.2 and the
mean values of two FA criteria for four CFA methods for data
set 2 and various R*(6) with N = 250

6

Crit Method do 0 .001 .005 .01 .05

#W 2<.2 IPFA 4 3 3 3 3 3

ULS 4 3 3 3 3 3

MINRES 3 1 0 1 2 2

ALPHA 9 7 7 6 6 4

A IPFA .096 .096 .096 .096 .096 .096

ULS .096 .096 .096 .096 .096 .096
MINRES .095 .096 .096 .096 .096 .096

ALPHA .104 .103 .103 .103 .103 .103

V2 IPFA .125 .125 .125 .125 .125 .125

ULS .125 .125 .125 .125 .125 .125

MINRES .121 .124 .124 .124 .124 .124

ALPHA .144 .141 .141 .141 .141 .140

36
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Table 3

Mean values of the six criteria for different N and various,
methods for data set 1

N Method

Criterion

A V2 T A A

250 IPFA .091 .127 .097 .296 .231 .047
ALPHA .096 .133 .097 .311 .239 .048
ML .092 .128 .097 .294 .226 .047

GLS .122 .166 .097 .370 .284 .053

MINRES .091 .127 .097 .296 .231 .047

NOHARM .067 .098 .097 .264 .245 .043

TESTFACT .064 .093 .105 .244 .226 .045

MAXLOG .081 .124 .128 .454 .440 .056

500 IPFA .051 .075 .058 .188 .152 .030

ALPHA .053 .078 .058 .196 .157 .030
ML .050 .073 .058 .183 .151 .029
GLS .071 .102 .058 .244 .195 .034
MINRES .051 .075 .058 .188 .152 .030
NOHARM .047 .071 .058 .198 .188 .029
TESTFACT .044 .065 .058 .169 .166 .028

MAXLCG .066 .105 .101 .410 .414 .044

1000 IPFA .031 .047 .044 .122 .108 .021
ALPHA .032 .048 .044 .126 .109 .021
ML .031 ,046 .044 .121 .108 .021
GLS .036 .054 .044 .140 .127 .022
MINRES .031 .047 .044 .122 .108 .021

NOHARM .029 .045 .044 .130 .120 .021

TESTFACT .028 .042 .044 .110 .104 .020

MAXLOG .048 .079 .079 .340 .352 .034
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Table 4

Mean values of the six criteria for different N and various

methods for data set 2

N Method

Criterion

A 2 T A

250 IPFA .103 .130 .093 .239 .237 .057

ALPHA .103 .138 .093 .254 .238 .059

ML .119 .149 .093 .280 .288 .063

GLS .119 .166 .093 .283 .271 .063

MINRES .103 .130 .093 .239 .237 .057

NOHARM .099 .136 .093 .284 .344 .059

TESTFACT .093 .122 .101 .258 .296 .059

MAXLOG .119 .227 .149 .724 .571 .102

500 IPFA .072 .093 .061 .181 .173 .041

ALPHA .073 .094 .061 .186 .175 .042

ML .078 .101 .061 .193 .186 .043

GLS .080 .109 .061 .192 .189 .042

MINRES .072 .091 .061 .179 .173 .041

NOHARM .070 .092 .061 .192 .210 .042

TESTFACT .070 .089 .065 .167 .181 .041

MAILOG .104 .210 .106 .655 .496 .088

1000 IPFA .048 .057 .050 .113 .102 .030

ALPHA .048 .057 .050 .114 .102 .030

ML .059 .073 ,050 .139 ,129 .035

GLS .052 .063 .050 .115 .115 .030

MINRES .048 .057 .050 .113 .102 .030

NOHARM ,047 .058 .050 .120 .121 .030

TESTFACT .048 .061 .054 .116 .112 .031

MAXLOG .099 .205 .087 .604 .488 .082
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Table 5

Mean values of the six criteria for different N and various
methods for data set 3

N Method

Criterion

A w2 = A

250 IPFA .095 .116 .086 .237 .218 .067

ALPHA .097 .121 .086 .245 .225 .069
ML .120 .148 .086 .289 .258 .081

GLS .135 .204 .086 .335 .309 .089

MINRES .095 .112 .086 .235 .218 .067

NOHARM .087 .108 .086 .243 .283 .066

TESTFACT .094 .119 .118 .324 .318 .078

=CLOG .288 .415 .497 .739 .739 .222

500 IPFA .063 .083 .069 .183 .189 .051

ALPHA .063 .083 .069 .184 .191 .052
ML .085 .110 .069 .228 .213 .064
GLS .089 .127 .069 .243 .243 .065

MINRES .062 .081 .069 .182 .189 .051

NOHARM .060 .079 .069 .182 .220 .051

TESTFACT .066 .098 .080 .207 .225 .055

MAXLOG .260 .397 .498 .694 .871 .218

1000 IPFA .045 .057 .050 .126 .135 .037

ALPHA .045 ,058 .050 .127 .134 .037
ML .045 ,059 .050 .128 .140 .037

GLS .053 .076 .050 .148 .164 .041

MINRES .045 .058 .050 .126 .135 .037

NOHARM ,043 .055 .050 .122 .136 .036

TESTFACT ,049 .082 .065 .147 .154 .043

MAXLOG .287 .444 .467 .698 .682 .213
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Table 6

Mean values of the six criteria for different N and various
methods for data set 4

N Method

Criterion

A2 = A

250 IPFA .087 .113 .090 .183 .218 .057

ALPHA .089 .118 .090 .192 .223 .059

ML ,087 .113 .090 .185 .224 .057

GLS

MINRES .087 .112 .090 .183 .218 .057

NOHARM .083 .101 .090 .202 .263 .058

TESTFACT .092 .126 .121 .209 .285 .067

MAXLOG .159 .211 .187 ,747 .454 .140

500 IPFA .063 .075 .066 .138 .154 .043

ALPHA .063 .076 .066 .140 .156 .044

ML .063 .077 .066 .140 .157 .044

GLS

MINRES .063 .075 .066 .137 .154 .043

NOHARM .063 .079 .066 .155 .193 .045

TESTFACT .071 .103 .089 .161 .172 .053

MAXLOG .154 .194 .159 .670 .393 .130

1000 IPFA .043 .055 .045 .104 .118 .031

ALPHA .044 .056 .045 .108 .120 .031

ML .043 .055 .045 .104 .120 .031

GLS

MINRES .043 .055 .045 .104 .118 .031

NOHARM .043 .054 .045 .107 .131 .031

TESTFACT .056 .095 .075 .137 .126 .044

MAXLOG .103 .165 .107 .552 .376 .094
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Table 7

Mean squared residuals for different generated and assumed
dimensionality of the data and various methods with N = 250

Generated Assumed Dimensionality

Dimension-

Method ality 1 2

PCA 0 .0184 .0163

1 .0111 .0081

2 .0354 .0102

3 .0347 .0165

MINRES C .0154 .0111

1 .0098 .0064

2 .0338 .0083

3 .0331 .0148

NOHARM 0 .0072 .0042

1 .0038 .0024

2 .0169 .0023

3 .0264 .0112

TESTFACT 0 .0150 .0107

1 .0072 .0050

2 ,0288 .0079

3 .0256 .0131

3 4 5

.0147 .0125 .0101

.0061 .0048 .0039

.0072 .0056 .0041

.0060 .0045 .0034

.0081 .0056 .0040

.0043 .0031 .0022

.0053 .0037 .0027

.0046 .0032 .0024

.0029 .0022 .0015

.0013 .0007 .0004

.0015 .0010 .0006

.0027 .0017 .0011

.0077 .0054 .0039

.0036 .0031 .0022

.0045 .0029 .0020

.0057 .0037 .0039

4 4
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Table 8

Mean squared residuals for different generated and assumed

dimensionality of the data and various methods with N = 500

Generated Assumed Dimensionality

Dimension-

Method ality 1 2 3 4 5

PCA 0 .0129 .0129 .0121 .0118 .0112

1 .0073 .0054 .0045 .0037 .0033

2 .0350 .0064 .0048 .0038 .0031

3 .0275 .0135 .0038 .0029 .0023

MINRES 0 .0096 .0073 .0050 .0036 .0024

1 .0061 .0038 .0027 .0019 .0013

2 .0334 .0046 .0029 .0020 .0014

3 .0260 .0119 .0024 .0016 .0012

NOHARM 0 .0038 .0C26 .0016 .0011 .0006

1 .0018 .0011 .0007 .0005 .0003

2 .0183 .0013 .0008 .0005 .0003

3 .0218 .0094 .0011 .0007 .0004

TESTFACT 0 .0095 .0069 .0050 .0036 .0026

1 .0061 .0039 .0025 .0015 .0010

2 .0303 .0057 .0034 .0021 .0015

3 .0225 .0104 .0031 .0021 .0012

42
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Table 9

Mean squared residuals for different generated and assumed
dimensionality of the data and various methods with N = 1000

Generated Assumed Dimensionality

Dimension

Method ality 1 2 3 4 5

PCA 0 .0080 .0090 .0100 .0106 .0113

1 .0042 .0040 .0039 .0036 .0033

2 .0307 .0044 .0037 .0031 .0029

3 .0298 .0153 .0027 .0021 .0018

MINRES 0 .0049 .0036 .0026 .0018 .0012

1 .0030 .0021 .0018 .0011 .0008

2 ,0290 .0026 .0017 .0011 .0008

3 .0283 .013 .0014 .0009 .0006

NOHARM 0 .0017 .0012 .0008 .0006 .0004

1 .0009 .0005 .0003 .0002 .0001

2 .0159 .0008 .0005 .0003 .0002

3 .0225 .0105 .0008 .0004 .0003

TESTFACT 0 .0050 .0036 .0026 ,0018 .0013

1 .0026 .0019 .0015 .0011 .0008

2 .0283 .0027 .0017 .0011 .0008

3 .0245 ,0124 .0024 .0014 .0010

3
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