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differences between the known and estimated item parameters. The most
striking result of the simulation study was that common factor
analysis programs outperformed the more complex programs TESTFACT,
MAXLOG, and NOHARM. It was apparent that a common factor analysis in
the matrix of tetrachoric correlations yielded the best estimates. A
procedure based on the mean squared residuals of the correlation
matrix was also present.d for assessing the dimensionality of the
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45-itenr list of references is included. (SLD)

AXXX XXX XXX RE AR AX A A XIXAXRXAA R AR AR XAXARRRARAXRXRXRRARRARRRARXRXRXRXAXRXRXRXRXRRRRRRRRRRRRRXIRRRRKR

x Reproductions supplied by EDRS are the best that can be made x
x from the original document. x

EXXXXXXXXXXXRRXAXRARS AXXRARXR XXX XRXXRRRRXRRRRRARRRRRERRRRRRRRRXRXRXARRXARRXXRRRRR XXX




Empirical Comparison between Factor

Analysis and ltem Response Models Research
Report
88-11

U S DEPARTMENT OF EDUCATION ~PERMISSION TO REPRODUCE THIS

Oftce of € i R hanc t MATERIAL HAS BEEN GRANTED BY
EDUCATIONAL RESOURCES INFORMATION

/ CENTER (ERIC) : ] A)EL I.Sé'é‘l\/

®Tnis document has been reproduced as =

recewved ‘tom the person or orgamzation
onginatng 1t

£ Minor changes have been mage to mprove
reproduchon gualty

ED309185

8 POInts Of view O Opmons Stated in thrs docu TD THE EDUCATIONAL RESOURCES

t 9o t necessafily represent othcial .
G R sean or soncy INFORMATION CENTER (ERIC)

Dirk L. Knol
Martijn P.F. Berger

University of Twente

Division of Educational Measfxreme.r\t
and Data Analysss . .~ -
L ‘,




Project Psychometric Aspects of Item Banking No.37

Colofon:
Typing:
Cover design:

Printed by:

Dirk L. Knol

Audiovisuele Sectie TOLAB Toegepaste
Onderwijskunde

Centrale Reproductie-afdeling




Empirical Comparison between Factor

Analysis and Item Response Models

Dirk L. Knol

Martijn P.F. Berger

TSN




Empirical comparison between factor analysis and item
respcnse models / Dirk L. Knol & Martijn P.F. Berger —
Enschede : University of Twente, Department of Education.
July, 1988. — 38 pages




O

ERIC

Aruitoxt provided by Eic:

Empirical Comparison

1

Abstract

Many multidimensional .item response models have been
proposed in literature. The models and various methods for
estimating the item parameters are reviewed briefly. In a
simuiation study these methods are compared with respect to
their estimates of the item parameters. It is concluded that
a common factor analysis on the matrix of tetrachoric
correlations yields the best estimates.

Additionally, a procedure based upon the mean squared
residuals of the correlation matrix is presented for the

assessment of the dimensionality of the model.

Key words: Common Factor Analysis, Dichotomc - Variables,
Item Reswonse Theory, Multidimensionality,

Tetrachoric Correlations.
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Empirical Comparison between Factor

Analysi< and Item Response Models

Introduction

One of the main problems in constructing Rasch (1960)
scales from a large number of dichotomously scored items is
the oultidimensionality of the itempool. Usually, the Rasch
model does not fit the whole itempool. Procedures for
constructing Rasch scales which start from the entire
itempool are not very promising (cf. Knol, 1987b). A more
promising procedure is to identify the main dimensions of the
itempool and to start an (iterative) procedure on the
different subsets of items separately. Verhelst (1983) and
Knol (1987b) describe such iterative procedures.

To identify the main dimensions of an itempool, a
multidimensional representation of the items can be useful.
Many multidimensional models can be used for that purpose.
Roughly, the models can be distinguisned to the extent in
which they make use of the information of the data matrix.
For continuous variables, a classic’' common factor analysis
(Fa) on the matrix of product-moment correlations can be
used. However, for dichotomous items, the matrix of pairwise
(tetrachoric) correlations is not sufficient (Mcod, Graybill
& Boes, 1974, pp. 299-314). Therefore, several models have
peen proposed, which do use all the available information

contained in the response vectors. Because these so-—called

7
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full-information (cf. Bock, Gibbons & Muraki, 1985) models
suffer fr;m numerical difficulties, an approximation has been
proposed by McDonald (1985).

The purpose of the present paper is to compare the so—
called full-information models with the models which use only
pairwise information. For simulaced data, various estimations
of the item parameters will be compared. Furthermore a
procedure to estimate the dimensionality of the models will
also be presented.

Firstly, a short review of multidimensional item

response theory (IRT) models will be given. Then the various

FA models for dichotomous variables are described.

Multidimensional IRT Models

Several multidimensional IRT models for dichntomous data
have been proposed (Bock & Aitkin, 1981; Rock & Lieberman,
1970: McDonald, 1985; Mulaik, 1972: Rasch, 1961 Reckase,
1973; Sympson, 1978; Whiteley, 1980). Generally, the models
can be classified into so-—called compensatory models, which
allow high ability values on one dimension to compensate for
iow abilities on other dimensions, and noncompensatory
models. These last mentioned models (Sympson, 1978; Whiteley,
1980) do not allow high ability to compensate for low ability
on other dimensions. Apart from the psychological

meaningfulness of these models, the most important pracctical

&)
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disadvantage of noncompensatory models is that no efficient
algorithms for the parameter estimates are §vai1able.

The compensatory model of Bock and Ritkin (1981) is
relatively simple and a marginal maximum likelihood (ML)
procedure for the estimation of item parameters has been
developed¥ Let X = (X;,....X;)' be a random vector of
response patterns to n dichotomous jitems, where each X3

(i =1,...,n) is defined as

J 1, if item i is correctly answered
(1) X; =
i l 0. otherwise .

Under the (usual) assumption of local independence the

marginal probability of the response vector X = x is given by

n Xi 1-xj
(2) PX =X%x) = _Ua[pi(ﬁ)] [1 — pi(8)] g(elds ,
1l=

where p;(8) is the item characteristic function (ICF) of item
i, g(8) is the density function of the unobserved m—Component
random vector of abilities §, and the integration is taken
over the entire multidimensional ability space. It is assumed
that € is multivariate normally (MVN) distributed with mean 0
and covariance matrix I. In the multidimensional two—
parameter normal ogive (M2PNO) model the ICF of item i is,

given by

(3 pi(8) = F(a;'8 - By) .

D
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where g is the m x 1 vector of discrimination parameters for
item i, B; is the difficulty parameter for item i (i=1,...,n)
and F(.) is the cumulative standard normal distribution. An
iterative procedure to obtain MML estimates of the item
parameters via the EM algorithm (Dempster, Laird & Rubin,
1977) has been implemented in the computer program TESTFACT
(Wilson, Wood & Gibbons, 1984).

An IRT model that uses only information contained in the
pairwise proportions is based upon McDonald’'s (1985) harmonic
analysis. A computer program NOHARM II (Fraser, 1988) is
available in which the pairwi*e proportions
T3y = P(X3=1, X4=1) are approximated by minimizing the

unweighted least squares function

(4) f(A, 8) = L L [pj3 — mij(a3.B5.04.85012 .
i<j
where & = (gy.....209)", B = (B1.....Bg)". Pij are the sample

proportions and the ICF's are approximated by a third degree
Hermite~Tchebycheff polynomial.

Because of the well-known relationship between the
logistic distribution function L (cf. Mood, Graybill & Boes.
1974, p. 542) and the cumulative standard normal distribution

function F

pd

P4

(5) |F(z) — L(1.72)| < 0.01
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for all 2z (Haley, 1952), it is possible to approximate the
normal ogive ICF (3) by the logistic ICF

explc(a;‘'8 - B;)]
(6) Pi(8) = = Llc(a;'8 - B3))
1 + explc(a;'8 ~- By)]

The computer program MAXLOG (McKinley & Reckase, 1983) yields
estimations of the parameters of the multidimensional two—
parameter logistic (M2PL) model. Because the program uses the
method ¢f joint ML estimation, problems such as the so—called
drift of the discrimination parameters may be encountered and
estimation may be cumbersome when the number of subjects N is
large.

In all three programs mentioned above the numbers of
variables and dimensions are limited. This makes the programs

not very useful for large scale applications.

FA for Dichotomous Items

In FA for dichotomous variables (Christoffersson, 1975;
Muthén, 1978), the response variables X; are assumed to be
governed by the unobserved continuous variables Y; and
thresholds 75 as

{ 1. if Yi > 74
(7 X; =

0, otherwise ,

S,

[
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where
(8) I=A8+E.
and X = (Y;,....Y5)'. Model (8) is the usual random factors

FA model., the only difference being that Y is unobserved.

Under the assumptions

(9a) 9 ~ MWN (0, I) ,

(9b) E ~ MVN (0, ¥2)

where Y2 is a diagonal matrix with positive diagonal

elements, and

(9c) cov(f, E) = 0 ,

the covariance matrix I among Y variables is given by

(10) L=AA" + W2 |

Hence,

(11) ¥ ~ NVNCO, AA' + ¥2)

In FA for dichotomous variables the marginal probability of

response pattern X = x is

Smed,
'3 W)
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(12) P(X=X) = J; h(I)4Y .

where h(.) is the MVN (0, AA‘ + ¥2) density and Z is the
multidimensional integration region defined by the Cartesian
product of Zj, such that Zj = (7j, «) if X; =1 and Z; = (-,
Ty) if X3 = 0.

Takane and De Leeuw (1987) showed the formalL equivalence
of the marginal 1likelihood (2) of the M2PNO model with
6 ~ MUN(Q, I) and the likelihood (12) of FA for dichotomous
variables. The parameters of the IRT formulation g&; and Bj
(i=1,....n) can be expressed in cerms of the parameters of

the FA formulation A, Ti and yj as

(133) ai = Li/\vi
and
(13b) Bi = Ti/\vi

(Takane & De Leeuw, 1987), where ;' denotes row i of A and
wiZ is the i-th diagonal element of w2, Reversely, the FA

paran.eters can be expressed in terms of the IRT parameters as

(14a) A5 = (1 + gi'ai)—%ai ,

(14b) (1 + o @) 4B

-
[on
"
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and
(14c) Vi = (1 + gi‘aj)-% ,

cf. also Knol (1987a).

The parameters of the FA formulation can be estimated
with the program LISCOMP (Muthén, 1985), using the method of
generalized least squares (GLS). Since LISCOMP is not yet
available for a VAX computer the FA model for dichotomous
items will not be treated throughout this paper.

Common to the models treated above 1s the usage of all
available information from the data matrix. If we are willing
to use only information of the one-way marginals
(percents—correct) and the two-way marginals Pij. it 1is
possible to approximate the above models by more classical
models, e.g. models in the realm of common FA.

If the latent continuous response variables 1.
underlying the manifest dichotomous response variables X, are
MVN distributed, then the ML estimator of the product-moment
correlation between the (bivariate normal distributed)
variables Y; and Y3 is given by the tetrachoric correlation
between X; and Xj. Hence it seems reasonable to perform a
common FA on the matrix of estimated tetrachoric correlations
in order to obtain estimates for the FA parametrization of
model (3). Estimates of the IRT parametrizatica of the M2PNO
model can be obtained by the transformations (14). There are,
however, some problems connected with this approach. As

already noted, the matrix of sample tetrachoric correlations

1

b
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is not sufficient, and the estimates become unstable when the

proportions of the 2 x 2 table are extreme, or the number of

observations is low. Furthermore the matrix of tetrachoric
correlations is not necessarily positive definite, and this
makes the matrix inappropriate for the ML and GLS FA methods.
Finally, the possible occurence of one or more unique
variances approximately equal to 2zero, i.e. Heywood (1931)
cases, may be encountered. See Mislevy (1986) for an
excellent review of these problems.

Various FA programs are available. In SPSSX (1986),
iterative principal FA (Harman & Jones, 1966),' minimum
residuals or unweighted least squares FA (Harman & Jones,
1966), generalized least squares FA (Jdreskog & Goldberger,
1972), maximum likelihood FA (Jdreskog, 1967), and alpha FA
(Kaiser & Caffrey, 1965) are implemented. These methods will
be denoted by IPF}, ULS, GLS, ML and ALPHA, respectively. In
LISREL VI (Jéresk%g & Sérbom, 1984) ULS, GLS and ML methods
are available. Additionally, an adjusted minimum residuals
(MINRES) FA method (Harman & Jones, 1966; Zegers & Ten Berge,
1983). in which arbitrarily lower bounds can be set on the
unique variances (see also Knol, 1987a), has been used in the
simulation study. An advantage of MINRES is the possibility
to avoid Heywood cases.

For each method estimations of the? parameters
A= Qg0 ¥ = (w292, 1= (T1,....T0)",
A=1(x.....00)" and B = (By.....By)’ can be obtained by
either the transformations (13) for the FA models or (14) for

the IRT models.

LY
(|
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A Simulation Study Comparing Methods

To compare the various methods, data matrices were
generated with known discrimination and difficulty
parameters. The item parameters of four dif{erent sets of
items are given in Table 1, where the groups of items which
have the same discrimination parameters, have difficulties

-2, -1, 0, 1 and 2, respectively.

Insert Table 1 about here

Multidimensional abilities § have been drawn from the
MVN (0.I) distribution using the procedure GOSEZF of the NAG
(1984) program library. The binary response of observation v

(v=1,...,N) on item i was obtained by

{ 1, if pi(6y) > uvi .

0, if pi(8v) < uvi .

where uy; is randomly drawn from the vuniform [0,1)
distribution and p;(8y) is given by (3). To verify the
effects due to the samp” > size, the nw.. .r of subjects was

set equal to 250, 500 and 1000. For each set of

LEY
(W]
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itemparameters and each sample size, 10 replications were
generated.

The sample tetrachoric correlations were computed by
means of the procedvre BECTR from the IMSL (1984) program
library. In BECIR, a tetrachoric correlation is computed as
the root of a sixth-degree equation. If there was no
solution, a solution was obtained by adding un observation to
each cell =% the 2 x 2 frequency table (cf. Mislevy, 198¢&).
In the case of multiple roots, the root with the smallest
absolute value was used.

In the next section six criteria to assess differences

among knowrn: and estimated item parameters will be given.

Six Criteria

All models will be compared with respect to estimates of
both IRT and FA parameters. The criteria will be in terms of
mean squared differences between the known and estimated item
parameters.

In the case of orthogonal abilities §, the n x m matrix
A of factor loadings is determined up to an orthogonal
transformation T. If Ay, Yo2, Io., Ao and Bo are the xmown
item parameters, where the dimensionality m is known., then

the first criterion is given by

(16a)  g1(A, T) = {(om)=1tr(AT — Ag)' (AT — Ag)}% |

umd
~J
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where (16a) is minimized as a function of T under the
constraint that T is orthogonal. If PAQ' = A'A, denotes the
singular values decomposition of the matrix A’A,. then the
minimum of (1léa) is attained for T = PQ’ (Green, 1952). The
criteria for the unique variances mz and the thresholdis 1

are
(16b)  ga(u?) =(.-1(w2 - wy2)' (w2 — y 2))%

and

(16c)  g3(x) = {n~I(x —10)'(x -1 )% |

respectively. In the case of orthogonal § the n x m matrix A
of discriminatiorn. is also determined up to an orthogonal
transformation, and the first criterion for the IRT
parametrization is

(16d)  gq(A, T) = {(nm)~ler(AT — BA,)'(AT - B 0% ,

where (16d) is also minimized as a function of T under the

constraint that T is orthogonal. The criterion for the

difficulties 8 is
(16e)  gs5(B) = {n~1(B - Bo)'(° - B)}% .

The last criterion is given by the mean squared difference

between the values of the generated and estimated ICF's

13
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N n \
(16£)  gg(A, B) = {(Nm)—1 zl -81 [Pi(8y) — Piol8y))21%
v= 1=

where p;jo(8y) = F(aj5'8y — B4) and 8, (v=1,...,N) are assumed

to be known.

Results

In order to apply the GLS and ML common FA methods, the
matrix of tetrachoric correlations has to be positive
definite. If the matrix of tetrachoric correlations R is
indefinite or ill-conditioned with respect to inversion, a
smoothing procedure has to be used. Let R = KDK' be the
eigendecomposition of R, where D is an n x n diagonal matrix
containing the eigenvalues dj of R in descending order and X
is the matrix of corresponding normalized eigenvectors. Then
a nonnegative definite correlation wmatrix R*(8) can be

obtained by

(17) R*(8) = (Diag KD*K')#KD*X'(Diag KD*K')—%

where d;* is diagonal element i of D* (i=1,....,n) with
dj* = max(d;, ) and & 2 0. Note that if § = 0, ED*K' is the
least-squares approximation to R of rank r, where r is the

number of positive eigenvalues of R (cf. Rao, 1973). Note
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also that R*(0) coincides with Frame's (1978) smoothing
procedure.

To investigate the effects of the smoothing procedure
the common FA methods that do not require positive
definiteness of R (i.e., IPFA, ULS, MINRES and ALPHA) were
applied to 10 indefinite matrices obtained from dataset 2
(cf. Table 1) with N = 250 and various values of &. The

results are given in Table 2.

Insert Table 2 about here

Only for MINRES a slight increase is observed. From the
results in Table 2 it can be inferred that the effect of
smoothing is negligible. Additionally a small decrease of the
total number of variables with estimated unique variances
smaller than .2 is observed for increasing values of &.
Therefore it was decided to perform all common FA on the same
smoothed tetrachoric correlation matrix R*(.005), ensuring
that the matrix to be analyzed is sufficiently well
conditioned.

In Table 3 the mean values of the six criteria over 10
replications for the different methods are given for
generated data corresponding to the unidimensional data set

1,
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Insert Table 3 about here

Because the ULS procedures of SPSSX and LISREL and IPFA of
SPSSX gave the same results, only the IPFA procedure of SPSS¥
has been reported in the tables. Only the GLS procedure from
LISREL is reported, because it gives consistently better
results then the correspondent SPSSX* procedure. The ML
procedure of SPSS* procedure was chosen because the
corresponding LISREL procedure often did not converge to a
proper solution.

From the results in Table 3 it can be concluded that
MAXIOG performs very badly. The GLS and ML procedures also
perform badly. As expected TESTFACT is the best procedure and
NOHARM also performs quite good. The procedures IPFA and
MINRES give approximately the same results.

The results of the various methods obtained from che
multidimensional datasets 2, 3 and 4 are given in the Tables

4, 5 and 6, respectively.

Insert Tables 4—6é about here

It has to be noted that the GLS procedure applied to data set
4 never converged to a proper solution; hence, the outcomes

are not reported in Table 6.

o 97
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Essentially the same conclusions can be drawn from the
results for these multidimensional datasets. However. for the
three-dimensional datasets 3 and 4 the performances of NOHARM
and TESTFACT decrease, and in fact become even worse than the

simple common FA procedures IPFA and MINRES.

The Dimensionality of Binary Scored Items

The dimensicznality of binary items has been a source of
debate in educational and psychological 1literature, and
various aspects have been discussed by Goldstein (1980),
McDonald (1981) and Hattie (1985), among others.

The increasing interest in IRT and the widespread use of
the one, two- and three-parameter IRT models, which all
assume a unidimensional ability space, has increased the need
for a clear definition of dimensionality. Moreover. reliable
indices to assess the dimensionality of a set of binary
scored items are needed.

Both Goldstein (1980) and McDonald (1981) discuss the
dimensionality of binary items in relation with che principle
of local independence. The formal requirement of the
independence of the item responses éxl,...,xn) is that the
Joint distribution of the responses given a vector of
abilities 8 is equal to the product of the marginal

distributions of the items given 8, i.e.:

O
'aw)
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m
(19) P(X = x|9) = 1“1 P(X; = x3]|9)

Goldstein (1980) states that a distinction should be
made between the ronditional distribution of the item
responses, given 9 and the conditional distribution of item
responses given both § and the responses to the other items.
A unidimensional model can be assumed with or without local
independence. The assumptiorn of local independence is really
very strong, and Goldstein (1980) doubts whether this
assumption is actually met in real life situations.

On the cther hand, McDonald (1981) argues that the
principle of local independence and the definition of
dimensionality are related to each other. If a subject from a
given population is completely characterized by one or more
abilities 6 =(81....,8y), then the scores of that subject
with the abilities § on the n items are mutually
statistically independent. This means that, if these
abilities span the complete ability space in the population,
all mutual statistical dependencies among the n items are
explained by thkase abilities (8y,...,85). If, however, a
model is specified with a number of abilities, which do not
span the complete ability space, then there will still remain
mutual dependencies among the items. An adequate method to
specify the dimensionality of a set of binary items is
therefore needed. Unfortunately. no all-round index to

identify the dimensionality of binary items is available.
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Dimensionality Indices

The most frequently applied procedure to verify the
dimensionality of binary items is to compute tetrachoric
correlations and to inspect the eigenvalues of the
corresponding matrix. Sometimes even phi—coefficients are
used (Hambleton & Rovinelli, 1986), but it is well-kmown that
these coefficients are affected by the difficulties of the
items. As already mentioned above, the use of tetrachoric
correlations has some disadvantages.

Dimensionality indices obtained from linear factor
analysis will not be optimal, since IRT models for binary
data are intrinsically nonlinear, i.e. nonlinear in the item
parameters and in the ability parameters.

Up to date, there are no widely accepted tests of fit
for models formulated on binary items which are comparable
with the xz—test and the residual analysis in common FA and
research is needed on the assessment of misfit of
multidimensional IRT models. Perhaps, the use of a formal x2~
test should be avoided, because of the distributional
problems connected with the xz—test for small samples and
because the use of a test statistic is never in itself a
sufficient justification for the acceptance or rejection of a
certain model,

Hambleton and Rovinelli (1986) compared some methods for
the determination of the dimemsionality ¢ a set of items and

concluded that linear factor analysis based on phi-

2

be
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coefficients tended to overestimate the number of uaderlying
abilities and that inspection of the residuals obtained from
a nonlinear factor analysis would be a promising approach to
assess dimensionality.

Hattie (1985) reviewed the rationale of various methods
and concluded that too many indices were developed on an ad
hoc base. Hattie (1984) reported that indices based on
residuals obtained from nonlinear factor analysis could very
well distinguish a unidimensional set of items from a set
with more than one dimension and recommended the use of the
mean squared or mean absolute residuals as a suitable loss
function.

Tucker, Humphreys, Lloyd, and Roznowski (1986) compared
some indices based on the eigenvalues of the tetrachoric
correlation matrix with some indices based on the local-
independence principle. Their preliminary results seem to
indicate that the indices based on the eigenvalues do not

work very well.

A Simulation Study Assessing Dimensionality

Following the suggestion made by Hambleton and Rovinelli
(1986) and Hattie (1984, 1985), the residuals were used as a
measure for dimensionality.

If Ay is the estimated matrix of factor loadings from a
solution with k estimated common factors, then the matrix of

residuals R* = [rij‘] is

N
)
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(19)  R* = R = ApAy’

and the mean squared and mean absolute residuals are

(202) e = 2(n(a-1))"1 £ T (rjp?
i<)
and
L ]
(200) ey = 2(n(n-1)1"1 L T [ryyf .
i<)
re.pectively.

For each of the firs% three datasets given in Table 1,
with one, two and three dimensions, respectively,
5 datamatrices were generated for sample sizes 250, 500 and
1000. In the Tables 7, 8 and 9 the mean squared residuals are
given for the three datasets, after an analysis was performed

with assumed dimensionality ranging from one to five.

Insert Tables 7-9 about here

Since the dean absolute residuals and the mean squared
residuals lead to the same conclusions, only the mean squared

residuals are given. To verify the sizes of the obtained

26
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residuals, the mean squared residuals for datasets with all
correlations among the variables equal to zero, i.e. no
common factors, are also given. In the Tables 7 through ¢
only the results for MINRES, NOHARM and TESTFACT are given,
Although the results of an ordinary principal components
analysis (PCA) will generally not give a satisfactory fit
when applied to binary data, the pattern of residuals might
give an adequa“e indication of dimensionality. Therefore the
residuals obtiined after a PCA are also given in the Tables.
From the Tables 7 through 9 relatively high values of
the mean squared residuals ej can be observed when datasets
have been analyzed with a smaller dimensionality than the
generated dimensionality. This applies to all methods. Also,
a large drop of e can be observed between the analyses with
m-1 and m dimensions (where m is the generated dimensionality
of the dataset). No such drops of e; are observed for
analyses with higher assumed dimensionality. Hence, it seems
that the dimensionality of a dataset can be assessed by
inspecting the mean squared residuals obtained from different

assumed dimensionalities of the methods.

Discussion

The most striking result of the simulation study in
which various IRT and FA programs were compared, is that the
common FA methods outperformed the more complex programs

TESTFACT, MAXLOG and NOHARM, despite their theoretical

27
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advantages. Also, quite remarkable is the failure of the ML
and GLS FA procedures compared with IPFA, ULS or MINRES. Of
course this may be due to the implementation of the specific
methods. Nevertheless, since no other programs are available,
it is advised to use IPFA, ULS or MINRES. An additional
advantage is that these programs can handle relatively large
numbers of variables and factors. Because IPFA has some
algorithmic drawbacks (cf. Gorsuch, 1974, p. 98) and MINRES
(or ULS) perform equally well as IPFA, it is advised to avoid
the usage of IPFA. An advantage of MINRES compared to ULS is
that MINRES avoids Heywood cases. Therefore, in large—scale
applications it is advised to use MINRES on the (possibly
smoothed) matrix of tetrachoric correlations.

A possible drawback of MINRES could be that no
statistical goodness of fit measure is available, hence the
estimation of the dimensionality of the model can be
problematic. Therefore, a non-s.atistical procedure for
assessing the dimensionality of the model is proposed,
leading to essentially the same results as TESTFACT and
NOHARM .
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Table 1

Discrimination parameters of the four different data sets
(each group of five items with the same discrimination
parameters has difficulty parameters -2, -1, 0, 1, and 2)

Set n m A4

1 15 1 (5x) 1.00
(5x) 1.25
(5x) 1.50

2 15 2 (5x) 1 1
(5x)
(5x) 0 1

3 15 3 (5x) 1 1
(5x%)
(5x)

o -
-

4 30 3 (5x)
(5x)
(5x)
(5x)
(5x)
(5x)

O O O K -
O r» O+ O
- O O +» » O

(A
s
a
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Table 2

The total number of estimated unique variances <.2 and the
mean values of two FA criteria for four CFA methods for data
set 2 and various R*(§) with N = 250

5
Crit Method  dg 0 .001  .005 .01 .05
#y;2<.2 IPFA 4 3 3 3 3 3
ULS 4 3 3 3 3 3
MINRES 3 1 0 1 2 2
ALPHA 9 7 7 6 6 4
A IPFA 096  .096 .096 .096 .096 .096
ULS .096  .096 .096 .096 .096  .096
MINRES .095 .096 .096 .096 .096 .096
ALPHA .104  .103  .103  .103  .103  .103
w2 IPFA 125 125 .125  .125  .125  .125
ULS 125,125 125  .125  .125  .125
MINRES  .121  .124  .124 .124 .124 .124
ALPHA 144 1141 141 .141  .141  .140
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Table 3
Mean values of the six criteria for different N and various ;
methods for data set 1

Criterion

N  Method A w2 T A B p
250 IPFA .091 .127 .097 .296 .231 .047
ALPHA .096 .133 .097 .311 .239 .048

ML .092 .128 .097 .294 .226 .047

GLS .122 .166 .097 .370 .284 .053
MINRES .091 .127 .097 .296 .231 .047
NOHARM .067 .098 .097 .264 .245 .043
TESTFACT .064 .093 .105 .244 .226 .045
MAXLOG .081 .124 .128 .454 .440 .056

500 IPFA .051 .075 .058 .188 .152 .030
ALPHA .053 .078 .058 .196 .157 .030

ML .050 .073 .058 .183 .151 .029

GLS .071 .102 .058 .244 .195 .034
MINRES .051 .075 .058 .188 .152 .030
NOHARM .047 .071 .058 .198 .188 .029
TESTFACT .044 .065 .058 .169 .166 .028
MAXLOG .066 .105 .101 .410 .414 .044
1000 1IPFA .031 .047 .044 .122 .108 .021
ALPHA .032 .048 .044 126 .109 .021

ML .031 046 .044 121 .108 .021

GLS .036 .054 .044 .140 .127 .022
MINRES .031 .047 .044 .122 .108 .021
NOHARM .029 .045 .044 .130 .120 .021
TESTFACT .028 .042 .044 .110 .104 .020
MAXLOG .048 .07¢9 .079 .340 .352 .034
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Table 4
Mean values of the six criteria for different N and various
methods for data set 2

Criterion

N Method A ye T A 8 P
250 IPFA .103  .130  .093  .239 .237 .057
ALPHA .103  .138  .093  .254 .238 .059

ML 119,149,093 .280 .288  .063

GLS J119 L1166 .093  .283  .271  .063
MINRES .103  .130 .093  .239 .237 .057
NOHARM .099  .136 .093 .284 .344  .059
TESTFACT  .093  .122 ,101 .258 .296  .059
MAXLOG 119,227 149 .724  .571  .102

500 IPFA .072  .093 .061 .181 .173  .041
ALPHA .073  .094 061 .186 .175 .042

ML .078  .101 .061 .193  .186  .043

GLS .080 .109 .061 .192  .189  .v42
MINRES .072  .091 .061 .179 .173  .041
NOHARM .070  .092 .061 .192 .210 .042
TESTFACT .070 .089 .065 .167 .181 .041
MAXLOG .104  .210 .106 .455 .496  .088
1000 IPFA .048  .057 ,050 .113 .102 .030
ALPHA .048  .057 .050 .114 .102  .030

ML .059  .073 .050 .139 .129  .035

GLS .052  .063 .050 .115 .115 .030
MINRES .048  .057 .050 .113  .102 .030
NOHARM .047 .058 .050 .120 .121 .030
TESTFACT .048 .061 .054 .116 .112  .031
MAXLOG .099  .205 .087 .404 .488  .082
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Table 5§
Mean values of the six criteria for different N and various
methods for data set 3

Empirical Comparison

Criterion

N  Method A y? I A 8 P
250 IPFA .095  .116 .086 .237 .218 .067
ALPHA .0%7 121 .086 . 245 .225 .069

ML .120 .148 .086 .289 .258 .081

GLS .135 .204 .086 .335 .309 .089
MINRES .095 112 .086 .235 .218 .067
NOHARM .087 .108 .086 .243 .283 066
TESTFACT .094 .119 .118 .324 .318 .078
MAXLOG .288 .415 . 497 .739 .739 .222

500 IPFA .063 .083 .069 .183 .189 .051
ALPHA .063  .083 .069 .184 .191  .052

ML .085 .110 .069 .228 .213 .064

GLS .089  .127  .069 .243  .243  .065
MINRES .062 .081 .069 .182 .189 .051
NOHARM .060 .079 .069 .182 .220 .051
TESTFACT .066 .098 .080 .207 . 225 .055
MAXLOG .260 .397  .498 694 .871  .218
1000 1IPFA .045 .057 .050 .126 .135 .037
ALPHA .045 .058 .050 .127 .134 .037

ML .045 .059 .050 .128 .140 .037

GLS .053 .076 .050 .148 .164 .041
MINRES .045 .058 .050 .126 .135 .037
NOHARM .043 .055 .050 .122 .136 .036
TESTFACT . 049 .082 .065 .147 .15¢4 .043
MAXLOG .287 .444 .467 .698 .682 .213

ag
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Table 6
Mean values of the six criteria for different N and various
methods for data set 4

Criterion

N  Method A ye I A 8 P
250 IPFA .087 .113 .090 .183 .218 .057
ALPHA .089 .118 .090 .192 .223 .059
ML .087 .113 .090 .185 .224 .057

GLS
MINRES .087 .112 .090 .183 .218 .057
NOHARM .083 . .101 .090 .202 .263 .058
TESTFACT .092 .126 121 .209 .285 .067
MAXLOG .159 .211 .187 .747 .454 .140
500 IPFA .063 .075 .066 .138 .154 .043
ALPHA .063 .076 .066 .140 .156 .044
ML .063 .0717 .066 .140 .157 .044

GLS
MINRES .063 .075 .066 .137 .154 .043
NOHARM .063 .079 .066 .155 .193 .045
TESTFACT .0713 .103 .089 .161 .172 .053
MAXLOG .154 .194 .159 .670 .393 .130
1000 1IPFA .043 .055 .045 .104 .118 .031
ALPHA .044 .056 .045 .108 .120 .031
ML .043 .055 .045 .104 .120 .031

GLS
MINRES .043 .055 .045 .104 .118 .031
NOHARM .043 .054 .045 .107 .131 .031
TESTFACT .056 .095 .075 .137 .126 .044
MAXLOG .103 .165 .107 .552 .376 .094




Table 7
Mean squared residuals for different generated and assumed
dimensionality of the data and various methods with N = 250
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Generated Assumed Dimensionality
Dimension-
Method ality 1 2 3 4 5
PCA 0 .0184 .0163 .0147 .0125 .0101
1 .0111 .0081 .0061 .0048 .0039
2 0384 0102 .0072 .0056 .0041
3 .0347  .0165 .0060 .0045 .0034
MINRES c .0154 .0111 .0081 .0056 .0040
1 .0098 .0064 .0043 .0031 .0022
2 0338  .0083 .0053 .0037 .0027
3 -0331  .0148  .0046 .0032 .0024
NOHARM 0 .0072 .0042 .0029 .0022 .0015
1 .0038 .0024 .0013 .0007 .0004
2 .0169  ,0023 .0015 .0010 .0006
3 -0264 ,0112 .0027 .0017 .0011
TESTFACT 0 .0150 .0107 .0077 .0054 .0039
1 .0072 .0050 .0036 .0031 .0022
2 .0288  .0079 .0045 .0029 .0020
3 .0256 .0131 .0057 .0037 .0039

Y0
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Table 8

Mean squared residvals for different generated and assumed
dimensionality of the data and various methods with N = 500

Generated Assumed Dimensionality
Dimension—
Method ality 1 2 3 4 5
PCA 0 .0129 .0129 .0121 .0118 .0112
1 .0073 .0054 .0045 .0037 .0033
2 .0350 .0064 .0048 .0038 .0031
3 -0275  .0135 .0038 .0029 .0023
MINRES 0 .0096 .0073 .0050 .003¢ .0024
1 .0061 .0038 .0027 .0019 .0013
2 .0334 .00446 .0029 .0020 .0014
3 .0260 0119 .0024 .001¢6 .0012
NOHARM 0 .0038 .0C26 .0016 .0011 .0006
1 .0018 .0011 .0007 .0005 .0003
2 .0183 .0013 .0008 .0005 .0003
3 .0218 .007%4 .0011 .0007 .0004
TESTFACT 0 .0G9S .0069 .0es50 .0036 .0026
1 .0061 .0039 .0025 .0015 .0010
2 20303 .0057 .0034 .0021 .0015
3 20225 .0104 .0031 .0021 .0012
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Table 9
Mean squared residuals for different generated and assumed
dimensionality of the data and various methods with N = 1000

Generated Assumed Dimensionality
Dimension-—
Method ality 1 2 3 4 5
PCA o] .0080 .0090 .0100 .0106 .0113
1 .0042 .0040 .0039 .0036 .0033
2 .0307 .0044 .0037 .0031 .0029
3 .0298 .0153 .0027 .0021 .0018
MINRES 0 .0049 .0036 .0026 .0018 .0012
1 .0030 .0021 .0018 .0011 .0008
2 .029%0 .0026 .0017 .0011 .0008
3 -0283 .0136 .0014 .0009 .0006
NOHARM 0 .0017 .0012 .0008 .0006 .0004
1 .0009 .0005 .0003 .0002 .0001
2 .0159 .0008 .0005 .0003 .0002
3 .0225 .0105 .0008 .0004 .0003
TESTFACT .0050 .0036 .0026 .0018 .0013

0026 .0019 .0015 .0011 .0008
.0027 .0017 .0011 .0008
0124 .0024 .0014 .0010
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