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A CONNECTIONIST NETWORK THAT LEARNS TO PROCESS
SOME (VERY) SIMPLE SENTENCES

Tariq Samad

Corporate Systems Development Division, Honeywell Inc.,
1000 Boone Avenue North,

Golden Valley, MN 55427

ABSTRACT

Connectionist networks are becoming popular models for research in
natural language processing. This paper describes an application
of the "back-propagation" learning algorithm to the task of
determining the right set of features corresponding to the words
in an input sentence. Features that are specific to particular
nouns and verbs, that indicate whether a nominal constituent is
singular or plural, and definite or indefinite, and that furnish
case-frame information, are included. On examination of the
network after learning, it appears that the network has learnt
concepts appropriate for the . domain. The learning also
generalizes well to novel sentences. Three related experiments
are described. The shortcomings of the network are discussed,-and
some ideas are suggested for an alternative model that should
overcome some of these shortcomings.

I. Introduction

Much interest has been generated by recent work in
connectionist networksnetworks that consist of densely
interconnected but functionally simple processing units. There is
optimism that connectionism can provide a promising alternative to
the rule-based, symbolic-processing framework that has been
dominant in artificial intelligence (and computational
linguistics). Such aspects of human cognitive function as the
sequence of learning stages, the acquisition of concepts,
tolerance of error and noise in sensory input, and graceful
degradation in the face of minor damage, have been problems that
have eluded clean solutions in tne traditional framework. Work in
connectionism, on the other hand, has demonstrated that these
problems can be solved almost as a side-effect of the
problem-solving architecture.

Connectionism seems particularly appropriate for a domain
such as natural language processing, which defies attempts at
cleanly structured approaches, and in which "errors" in the input
(such as ungrammaticality and, in writing, misspellings) are
frequently encountered.

This paper describes some initial results of an ongoing
investigation of a particular connectionist architecture as
applied to the task of learning features corresponding to the
words in a simple sentence. These features include case-role
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information. A connectionist network has been developed as the
vehicle for this investigation. Unlike some other connectionist
approaches to natural language processing, the input to this
network is not pre-processed--i.e., it is a textual sentence, not
the output of a parser.

The next section briefly reviews some previous work on
connectionist approaches to natural language processing. Section
III outlines the "back-propagation" architecture on which much
recent work, including this one, is based, and it describes the
details of the network that I have been using. Section IV
describes three experiments that have been conducted with the
network. Section V discusses the features and limitations of the
current model, and Section VI sketches out an alternative model
that should work better.

II. Previous Work

Parsing, case-role assignment, and word-sense disambiguation
have all been investigated in the context of connectionism. Waltz
and Pollack (1985) describe a connectionist network that
disambiguates words based on semantic associations with other
words in the sentence. These semantic associations are modelled
by the complementary processes of "spreading activation" and
"lateral inhibition". The disambiguation process is not
"rule-based"; instead there are links (excitatory and inhibitory)
between concept nodes (concepts include words such as "shot" and
"bucks", "readings" such as "shot", "fire", "resist", and
syntactic categories such as "N" and "VP") and the concept nodes
have real-valued activation levels associated with them. Through
an iterative relaxation procedure, the network settles into a
stable state. Waltz and Pollack show how their network can
account for the context-sensitive readings of ambiguous words, and
how the non-monotonic change in activation level can explain the
phenomenon of garden-path sentences. In the context of this work,
there are two limitations of their model: the issue of how the
links are formed is not discussed (the appropriate links have to
be hard-coded for each sentence), and the parsing mechanism is
still a traditional chart parser.

Selman (1985) has developed a connectionist network that is
based on a context-free (and non-recursive) grammar. Given an
input "sentence" such as "noun verb preposition determiner noun,"
the network is put through a simulated annealing stage. At the
point of equilibrium, the active unius in the network (those
representing syntactic categories- -there are also "binder" units
in the network that are used to inhibit competing parse-fragments)
trace out the parsed structure. Selman's network is limited to
finite-length sentences, and the question of how the structure of
the network can be learnt is not addressed (a compiler transforms
a rule specification of the grammar into a network).

JUst recently, McLelland and Kawamoto ('986) describe a
system that takes as :nput a parsed sentence (except that
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prepositional phrases are not attached) and that produces the

case-role assignments for the nominal constituents. Words in the

input are represented by sets of "micro-features". Theirs is a

learning system; the system is trained on a set of examples, and

then tested on novel sentences (and on novel sets of

microfeatures). McLelland and Kawamoto discuss as a possible

extension of their system a multi-layer network that learns the

microfeatures themselves. The network described in this paper

does just that. (My research was carried out in ignorance of

[McLelland and Kawamoto, 1986], which I obtained as this paper was

being written.)

III. The Back-Propagation Architecture

A fair amount of recent work in connectionism, including

(McLelland and Kawamoto, 1986) and this paper, is based on the

"back-propagation" architecture (Rumelhart, Hinton, and Williams,

1985), which is an elaboration of perceptron learning (Minsky and

Papert, 1969) to multi-layer non-linear networks.
Back-propagation networks partition units into layers: an

input layer, zero or more "hidden" layers, and the output layer.

Usually, all connections are from units at a lower layer (the

input layer being the lowest), to units at a higher layer.
Usually, then, back-propagation networks that have been built have

been "feed-forward" networks, with no cycles or feedback. The

connections between units have real-valued weights on them, and

each unit has a threshold associated with it. The output of a

unit i in a hidden or output layer is a non-linear function of the

weighted sum of its total input.
The attraction of the back-propagation architecture is the

presence of a learning procedure that can be used to discover an

appropriate set of connection-weights and threshold-strengths.

The learning procedure requires the generation of a set of

input-output pairs which serves as the training set. For each

element of the training set, the learning procedure essentially

consists of the following (for a three-layer network):

1. Present an input to the network.

2. Have the network compute its output.

3. Compare the actual output to the expected output.
If they differ (within some tolerance), then:

Adjust the connection-weights between the hidden and

output units, and adjust the output thresholds.
Adjust the connection-weights between the input and

hidden units, and adjust the hidden thresholds.

The amount by which each weight is adjusted is given by the

learning algorithm. Details can be found in (Rumelhart, Hinton,

and Williams, 1985). After iterating through the training set

some number of times, the network can often discover a set of

weights and thresholds that result in error-free performance on

5



the training set. Novel sentences can then be given to the
network and its response tested.

The network I have been using is a three-layer one, with one
layer of hidden units. In the first two experiments described
later, the network is fully connected; that is, each unit in a
layer is connected to each unit at the next higher layer.

The input layer can be thought of as a seven-word "window" on
the sentence: the sentence is "rippled" through the input layer.
At any point, the center word in the window is being processed;
the three preceding and three succeeding words (all or some of
which can be "nil" for words at or near the beginning or end of
the sentence) determine the "context" that is available to the
network (since there are no cycles or feedback, there is no
mechanism for "memory" in the network). This "rippling" scheme,
originally used by Sejnowski in his NETtalk system (Sejnowski and
Rosenberg, 1986), overcomes the restriction of finite length
inputs. The figure at the end of this paper shows the structure
of the network.

In the first two experiments described in this paper, each
word in the input window is represented by eight units (thus in
these cases there are fifty-six input units). Each word in the
lexicon has an eight bit binary encoding. The input units for
each window-position are assigned the encoding for the word in
that position (thus the value of an input unit is always 1 or 0).
The encodings were derived without any bias, except that all and
only plural words hal their eighth bit set to "1".

For each word in a sentence, the network computes the values
of the hidden units first, and then the values of the output
units. Again in two of the three experiments described, each of
the output units represents a "feature". The set of features
activated for a particular word in a sentence is the output for
that word. For example, the word "John" in the sentence "John
gave Mary a book" should activate the following features: JOHN,
DEFINITE, SINGULAR, $AGENT (where $AGENT refers to the case-role
of "John"). There is one output unit labelled "*WAIT*" which is
the desired output for all determiners, prepositions, and
auxiliaries.

The output of the network, then, is an association of
features with words in the sentence; the output is not a
parse-tree. It is not obvious how a traditional parse of a
sentence could be realized by such a network. However, the
case-frame information provided by the network may be sufficient
for most subsequent processing needs.

The maximum and minimum possible values for units were 1 and
0 respectively. During the learning phase, an output unit was
considered ON when its value was above 0.8, and OFF when its value
was below 0.2. During the testing phase, these activation
thresholds were relaxed; a unit was considered ON if its value was
above 0.6, and OFF otherwise. The network is implemented in
Zetalisp on Symbolics' 3600/3640 computers.

6
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IV. Three Experiments

IV.1 Experiment 1

There were 25 hidden units and 21 output units in this
experiment. Each output unit represented one of the following
features: JOHN, JACK, JOAN, JILL, MAN, WOMAN, CHILD, GIRL, BOOK,
NOTE, PAPER, STORY, DEFINITE, INDEFINITE, SINGULAR, GIVE, $AGENT,
$OBJECT, $RECIPIENT, $PRED, *WAIT*.

The training set consisted of 47 sentences conforming to the
following grammar:

S --> <animatc -NP> gave <animate-NP> <inanimate-NP>

<animate-NP> --> <proper-noun> I <det> <animate-CN>

<inanimate -NP> --> cdet> <inanimate-CN>

<proper-noun> --> John I Jack I Joan I Jill

<det> --> a I the

<animate-CN> --> man I woman I child I girl

<inanimate-ON> --> book I note I paper I story

The sentences were not randomly generated from the grammar;
there were some deliberate omissions. 47 sentences constitute
less than five percent of the total number (1,152) of distinct
sentences that can be generated with the above grammar/lexicon.

The network took 108 iterations through the 47 sentences to
learn perfectly. After the network had learnt, the hidden units
were examined for "patterns". A couple of observations can be
made:

i) It was fairly obvious how the network was identifying
features such as DEFINITE and $AGENT. There were particular
hidden units that were in one state when there was a definite noun
in the center of the window, and in the complementary state when
there was an indefinite noun. Similarly for other features such
as $AGENT, $OBJECT, and $RECIPIENT. Most of these "hidden"
feature detectors were independent of the central word itself.
For instance unit 6 was ON for all indefinite nouns, and OFF for
all but one definite nouns (including proper nouns). For some
nouns, definiteness was redundantly encoded by other units as
well.

ii) The network learnt the concepts of "proper-noun",
"animate-common-noun", and "inanimate-common-noun". There were
patterns of hidden unit activity that were unique for each of
these. (Note that the network was not "asked" to learn these
concepts; no output units were labelled with these grammatical
abstractions.) There were overlaps between the concept patterns.

7



460

Proper nouns and animate common nouns had 10 hidden units with
common activity, inanimate common nouns and animate common nouns
8, and inanimate common nouns and proper nouns 7. (Seven hidden
units were in fact always in one state--an indication that 18 or
fewer hidden units are sufficient for this task.) Thus along with
discovering these abstractions, the network did in some sense
discover that there was less in common between inanimate common
nouns and proper nouns than either of the two other pairings.
(Animate common nouns and proper nouns had the same case-role
constraints, and inanimate common nouns and animate common nouns
both required preceding determiners, whereas proper nouns and
inanimate common nouns differed in both these respects.) Since
there were units that were in one state of activity for inanimate
and animate common nouns, and in the complementary state for
proper nouns, the network had also learnt to distinguish between
common nouns and proper nouns.

The network was tested on 12 "difficult" sentences, composed
for the most part to complement the training set. The errors
exhibited on these sentences were due to the insufficiency of
training set coverage, as the following examples illustrate:

i) All "Joan gave <proper-noun> <inanimate-NP>" sentences
(there were three of them) in the training set had "Jack" as the
"<proper-noun>". Two of the test sentences were of the same form
and had "Jill" and "John" as the "<proper-noun>". In both these
cases, the correct unit for the recipient was activated, but at a
below activation threshold level. In both, the unit JACK was at a
higher activation level than the correct unit.

ii) There was only one sentence of the form "The child gave
<det> <animate-CN> <inanimate-NP>" in the training set, with "man"
as the animate common noun and "the paper" as the inanimate noun
phrase. On the test sentence "The child gave the woman the note,"
the WOMAN unit was not activated to a threshold level for the word
"woman". NOTE was correctly identified.

iii) There were no training sentences of the form "Jill gave
<det> <animate-CN> <inanimate-ill>," and the network could not
recognize "woman" in the test sentence, "Jill gave the woman a
paper."

Most errors could be related to gaps in the training set.
There were eight errors (incorrect output unit values) in the
twelve sentences. Learning for INDEFINITE/DEFINITE, for SINGULAR,
for the verb-unit GIVE, and for the $PRED and case-role units, for
all of which of course the network had many more examples than it
did for specific nouns, seemed perfect.

IV.2. Experiment 2

Output units PLURAL and READ were added. The number of
hidden units was still 25. The grammar was significantly extended
to include the dative construction for the verb "give", passives
(both variations in the case of "give"), and yes-no questions (for
both active and passive voices). The grammar is given below:
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S --> <animate-NP> gave ranimate-NP> <inanimate -NP
<inanimate-NP> to <animate -NP>

i

S --> Did <animate-NP> give <animate-NP> <inanimate -NP>

)
<inanimate-NP> to <animate -NP>

S --> 0 1 <animate-NP> read <inanimate-NP>
Did3

S -->

{

<inanimate-sing-NP> was given to <animate-NP> by <animate-NP>
Was <inanimate-sing-NP>

<inanimate-pl-NP> were
Ware <inanimate- pl -NP>

1

S --> <animate-sing-NP> was given <inanimate-NP> by <animate-NP>
Was <animate-sing-Np>1
eanimate-pl-NP> were T
Were <animate-pl-NP> 3

{

S --> <inanimate-sing-NP> was read by <animate-NP>
Was <inanimate-sing-NP>
<inanimate-pl-NP> were
Were <inanimate-pl-NP>

The lexicon was a superset of the lexicon for Experiment 1:
"read" was added as a transitive verb, the plurals for all common
nouns were added, "some" was added as the indefinite determiner
for plurals, and the preposition "to" and the auxiliaries were
added. Since the grammar in this case was more complex, 500
sentences were (randomly) generated from its and used as the
training set. (Duplicates were not discarded during tne
generation; there were 483 unique sentences.) 500 is less than
one percent of tas total number of unique sentences that can be
generated with the above grammar and the lexicon.

Learning took 29 iterations through the 500 sentences.
(About 15,000 sentences were processed, as contrasted to about
5,000 for Experiment 1.)

Most of the patterns noticed in Experiment 1 were apparent
here too. There were additional patterns that were due to the
more complex grammar. For example, a particular unit was ON for
passivized agents, and OFF otherwise. The particular encoding for
plurality (bit 8 of the word representation set to 1), was learnt;
when the representation for a proper noun was changed by making
bit 8 equal to one, the PLURAL unit was activated (although in a
few cases some other output units were affected as well).

The network was tested on 1000 randomly generated sentences.
Learning was remarkably good. There were only 12 unit-errors for
the 1000 sentences, and only 8 word-errors (some words had more
than one wrong feature). I also took this opportunity to judge
the choice of 0.6 as the activation threshold for testing
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purposes. A choice of 0.5 or 0.4 would have reduced the errors
almost by half, as the table below shows:

Threshhold Unit Errors Word Errors
0.8 221 184
0.7 25 18
0.6 12 8
0.5 6 5
0.4 6 5
0.3 24 17
0.2 317 254

IV.3 Experiment 3

One problem with the network structure of the previous
experiments is that although the activated output units are
associated with the central word in the input window, yet there is
no reason for the network to prefer associations with the central
word over associations with non-central words. One mechanism for
effecting such a preference would be to have relatively more
connections with the central word and relatively fewer ones with
the others. Thus as a third exneriment, about 35% of the
connections between the non-central words in the window and the
hidden units were permanently set to zero (i.e., they were not
adjusted during the learning process). The connections to be
zeroed were chosen at random. (The experiment was also repeated
with 50% and 43% zeroed peripheral connections; in both cases the
network ended up stuck in a local minimum and could not learn the
training set perfectly.)

For shorter execution time (each iteration in Experiment 2
took over one and a half hours), three other changes were made to
the model. The number of hidden units was reduced to 15, words
were expressed in 5 bits inst6ad of 8, and the output units were
encoded into 8 bits: N1-4, D1, C1 -3. The "N" units encoded the
12 nominals, the "D" unit encoded the definite/indefinite
distinction, and the "C" units encoded the caseroles $PRED,
$AGNT, $OBJ, and $OBJ2, as well as *WAIT*. There were no output
units for the verbs ("give" and "read" again).

The learning corpus consisted of 100 active, declarative
sentences. Both the dative (e.g., "John gave a book to Jill") and
the indirect-object constructions (e.g., "John gave Jill a book")
were allowed. No plural words were allowed. A set of 1000
sentences was similarly generated and used as the testing set.

The experiment was performed with both a fully connected
network, and with the modified network. With a fully connected
network, learning took 122 iterations. There were 352 unit-errors
in the 1000 sentences. If we assume an average sentence length of
six words, `.hen 1000 sentences correspond to 1000 * 6 * 8 = 48,000
units, a (.aan) error rate of about 0.7%. The more conservative
word-error rate comes out to be about 4.5% (there were 269 word
errors).

I
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With the modified network, learning took 171 iterations.
Unit errors dropped to 234 (0.5%), and word-errors to 193 (3.2%).
Thus, when the network was forced to pay relatively more attention
to the central word, performance was significantly better.

It was expected that for the fully connected network, there
would be -fewer errors with those output units that depended on
non-central words for their correct determination. This was borne
out by the fact that mistaken attributes of
definiteness/indefiniteness were more prevalent in the modified
network. However, the proportion of errors of case-role
identification were relatively greater for the fully connected
network, somewhat surprising since case-role identification does
not depend only oil the central word. (Note though that
determination of the OBJECT case-role unit did not in fact
require any context, since the words that were possible objects
could not fill any other case-role.)

The experiment was also repeated for non-encoded output units
(i.e., with 19 output units). There were no disabled connections
in this case. The network took 136 iterations to learn, and made
the fewest of any errors on the 1000 sentence test set--311
unit-errors, 206 word-errors.

V. Features and Limitations

Let me first summarize some of the points made above.
i) It is interesting that learning based on .,elatively few

sentences can generalize so well to other sentences. In
Experiment 2 we saw that with a training set of less than one
percent of the possible input sentences, the network made
remarkably few errors (the unit-error rate comes out to less than
0.01%) on others.

ii) The network learnt by "discovering" concepts that were
appropriate for the domain. Commonalities in the training set
resulted in the hidden units abstracting these concepts. It is
again remarkable tnat, with no other access to a pre-determined
grammar than a fraction of the possible sentences that that
grammar can generate (in particular, with no "innate" notion of
the structure of the grammar), the network can discover the
non-terminals that were used in the grammar. Although it is much
too early to wake any such claims today, research in connectionism
may someday present Ln alterilative to the traditional linguistic
assumption that learning language requires a tightly constrained
mental structure.

iii) Performance after learning is better if the activation
thresholds for the output units arc relaxed to a value around 0.5.

iv) Delloded output units are better than encoded ones. The
difference between the encoded network and the decoded network in
the number of iterations required to learn is not really
significant, and the other qualification that (about 20%) more
weights have to be modified per iteration is only relevant for
serial simulations.

1 1
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On the other hand, there are shortcomings of the network as
well:

i) Sentence fragments are inconsistently mapped: When given
a full noun-phrase as input (either "<proper-noun>" or "<det>
<common-noun>"), the appropriate (non-case-role) output units are
activated; with just a common noun as input, they are not. An
input consisting solely of "man", for example, will not activate
the HAN output unit. There is a plausible explanation for this
anomaly: In the learning phase, the network never sees common
nouns without a preceding determiner. The output units for a noun
(even those other than DEFINITE/INDEFINITE) are determined by some
joint function of the determiner and common noun. The function
that is learnt could be a more complex one than a more
compositional analysis, and one can say that the network has
settled to some non-global minimum. There might be two possible
approaches to force the network to find the global minimum:
decrease the number of hidden units to e. point where expressing
the more complex function is' impossible, or increase the
cardinality of the training set. I intend to investigate both
nese approaches in the near future. Incidentally, the network
has no problem with number disagreement: the number marking on
the noun is picked up.

ii) One layer of hidden units may not be enough for the
hidden units to learn to represent all the concepts implicit in
the training sentences. a is well known that not all possible
logical relationships among one layer of units can be expressed in
the next higher layer (Minsky and Papert, 1969). This was the
original rationale for a hidden layer, and if the hidden layer is
to be "meaningful" and "complete", another layer of units must be
inserted between the hidden layer and the input layer.

iii) The input to the network is constrained to be a simple
sentence. Handling multiple clauses is a problem sinco the output
units encode case-role information but do not indicate the verb to
which the case-role attaches. The more general problem is that
language has a nested, recursive structure. The model described
in this paper is, conversely, "flat".

iv) Related to the above point is the limited context
available to the network. The only information that the network
can rely on when determining the output features for a particular
word In a sentence are the three immediately preceding words and
the three immediately succeeding words. This is clearly
insufficient. In order to overcome this limitation in a
meaningful fashion, some notion of "memory" has to be
Incorporated. Without memory, the processing of previously seen
words cannot !nfluence the processing of the current word.
Incorporating a memory mechanism requires adding feedback
connections in the network (that is, connections from higher
layers to lower layers, or intra-layer connections). Such
connections have been used in other connectionist architectures
such as the Boltzmann machine (Hinton, Sejnowski, and Ackley,
1984), as well as in back-propagation (Rumelhart, Hinton, and

12
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Williams. 1985). However, the learning algorithms that have been
applied'..n these cases have been unfeasibly slow. There is some
evidence that a constrained context mechanism is present in the
human language facility, but the constraint has to be quantified
simply in terms of lexical items (Marcus, 1980).

VI. Towards a Better Model

Finally, it is important to note that the network described
in this paper, particularly in the first two experiments, is
"general-purpose". It has not been customized for natural
language processing. Essentially the same network has been used
earlier by Sejnowski and Rosenberg (1986) for the task of learning
the phonemic features of lexical and phonetic input.

In Experiment 3, the network was modified to make it
intuitively more appropriate for the task. This was a minor
modification, and did not address the more important issues raised
above. Nevertheless, it was encouraging to note that the
intuitively plausible modification resulted in significantly
better performance. (The modified network also took longer to
learn, but that statistic may be misleading--the value of the
learning rate constant was chosen after some experimentation
solely with fully connected networks.)

Experiment 3 suggests a further experiment. A network could
be constructed that is explicitly modelled after some structural
features of language (or English in particular). For example,
some aspects of the structural compositionality of English could
be captured by having units for nouns serving as input to units
for case-roles; similarly, units for determiners need not be
connected to words after the central word. Thus instead of
learning totally from scratch, there would be a bias in the
network appropriate for the task. The marriage of a somewhat
general-purpose learning algorithm and a somewhat special-purpose
network structure should lead to significantly better performance
after significantly fewer trials.

The memory mechanism for such a model need also not be
entirely general-purpose. Sentences with long-distance
dependencies are often difficult for people to understand, and it
would be a feature, not a flaw, of a model for which the same was
true. Some of the work on "deterministic parsing" would be
directly relevant here (Marcun,1980).

An "incremental" form of learning could also be investigated.
The network could first be given nouns to learn, then noun (and
prepositional) phrases, and finally full sentences. Some of the
connections used for earlier stages of learning could be "frozen",
so that learning a later stage does not cause the "forgetting" of
what was learnt before. Tying the stages to successively more
complex input should help the network make the right structural
distinctions.

There is, of course, much work to be done and many details to
fill out, but these seem promising ideas for future work.

13
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