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Abstract

A nonlinear version of redundaucy analysis is

introduced. The technique is called REDUNDALS. It is

implemented within the computer program for canonical

correlation analysis called CANALS (Van der Burg & De leeuw.

1983). The REDUNDALS algorithm is of an alternating least

squares (A S) type. The technique is defined as minimization

of a squared distance between criterion variables and

weighted predictor variables. With the help of optimal

scaling the variables are transformed nonlinearly (cf. Young.

1981). An application of redundancy analysis is provided.

Key words: redundancy analysis, canonical cor..elation

andysis, optimal scaling, nonlinear transforrAerion.
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Nonlinear Redundancy Analysis

Introduction

In many situations data are available from different sources.

Suppose the data are of the form: objects x variables, and

let us suppose the data from one source correspond with a

subset of variables. In case two (sub)sets of variables are

available a possible technique to relate the sets to each

other is canonical correlation analysis (CCA). This technique

is described in many multivariate analysis textbooks (e.g.

Tatsuoka. 1971. chap_ 6:. Gbanadesikan, 1977. chap. 3.3). In

CCA the two sets of variables are treated syncetrically_ But

a symmetric treatment is not always natural. It also happens

that it is clear from the data which variables are predictors

and which ones are criteria. In such cases redundancy

analysis (RA) is a possible technique.

The name redundancy analysis originats from Van den

Wollenberg (1977). Although he was the first one to name the

technique. it actuallydates back from an earlier period_ De

Leeuw (1986) discusses the history of RA. We briefly

summarize it. Borst (1955). Rao (1962). Stewart & Love (1968)

and Glahn (1969) all propose the Redundancy Index. Rao (1964)

and Robert & Escoufier (1976) discuss techniques for

decomposing this Redundancy Index to uncorrelated components

Fortf.r (19E6) proposes 'simultaneous lirear pr fictions"

which is equivalent with RA (cf. Ten Berge. 1985). Izenman

(3975) and Davies & Tso (1982) also treat RA. but under the

7
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name Reduced Rank Regression. So far the discussion of De

Leeuw (1986). Johansson (1981) proposes several forms of RA.

which vary with orthogonality constraints, and DeSarbo (1981)

disscusses a technique which is a mixture between CCA and RA.

Van de Geer (1984) places various types of RA in a larger

framework of k sets CCA. Israels (1986) treats RA with

various normalizations and rotations. Meulcan (1986. chap.

5.2.1) discusses a version of RA which can be shown to be a

generalization of Van den Wollenberg's RA. However Meulman

uses a completely different approach. formulating RA in terms

of distances between objects or individuals. We come will

back to this later.

A nonlinear version of RA has been proposed by Israels

(1984). His technique makes it possible to incorporate

qualitative variables by the use of dummies'. Also Meulman

(1986. chap. 5.2.1) discusses a nonlinear version of RA.

dealing with variables on an ordinal measurement level. I/4

this paper another version of nonlinear RA is proposed. A

larger choice of measurement levels is possib1p for each

variable than in case of israeis (1934).

As the algorithm for nonlinear redundancy analysis

shows may correspondences with the algorithm for nonlinear

CCA proposed by van der Burg & De Leeuw (1983). the computer

program for nonlinear R.A. called REDUNDALS. is e=bedded in

the canonical correlation analysis prooram. called CANALS.
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Redundancy analysis

Suppose the daLa consist of observations for n objects on m

variables, and assume that the n variables can be divided

into sal criterion variables and m2 predictors. In addition

assume that each variable is standardized. i.e. it has zero

can and unit variance. Collect the criterion variables in

the matrix H1 of dimensions (n x ml) and the predictors in H2

(n x =2). The Redundancy index of Stewart & love (1968) is

obtained by a rzuiti.--ariare rmItiple regression of hi. the

colt -n5 of Hi. (i =1 r.1) on H2. Thus

(1) minimize E71. (h; - H2b;r(h; - H2bi)/n.m1
2=1

over .

where the vector bi (22.2 elements) consists of regression

weights. The squared distance or loss is divided by a factor

nn for the sake of cn,r2P-ing the various techniques. The

matrix formulation of (1) is:

(2) ninimize tr(B1 - B23).(B1 - B23)/=.1 over B

This expression is minimized by

(3) B = (142-B2)-412.31
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provided that H2'H2 is of full rank. Substitution of (3) in

(2) gives the minimum:

(4) tr(Hl'Hi - Hi'H2(H2'82)-1H2'H1)/nal

Denoting R11 for and R12 and R22 for HI'H2/n and

H2'H2/n respectively, expression (4) is equivalent to

(5) 1 tr(R12R221R21)/n1-

The expression tr (R12R22- R21)/n1 is equal to the Redundancy

index of Stewart & Love (1968). Thus minimizing (1)

corresponds to cocputing the Redundancy Index.

However this is not the same as performing a redundancy

analysis in the sense of Van den Wollenberg (1977). He

searches for (normalized) weights that optimize the explained

variance between criterion variables and weighted predictors.

These weight vectors v (ra2 elemens) are eigenvectors of the

matrix R22 R 21-1-R12 Denote the corresponding eigenvalues by

y. Then

(6) R22-1R21R12v = pv with v-R22v = 1.

When all v's are solved, the sum of eigenvalues equals the

Redundancy Index (cf. Israels. 1934). In fact we can see Van

den Wollenbeng's analysis as a specialization of our

minimization problem (2). namely the case in which there are

rank restrictions on matrix R. i.e. E=VW' with v (n x r). w
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(m) x r), lsr:smin(mi.m2). and normalization constraints on v.

i.e. V1R.22V=I. Expression (2) is rewritten in terms of v and

K as follows

(7) minimize tr(Iii - B2Vw')'(B1 - B2VW')/nm1 over v and W

subject to the condition that v- R22v=/-

Some computational work shows that the columns of V

correspond to the vectors v discussed above. Note that Van

den Wollenberg has the choice of r. i.e. how many

eigenvectors v will be computed. In our case automatically

all weights B are solved for. as this is implicit to the way

(2) is formulated. Although (7) is more restrictive than (2).

we can argue that formulation (7) is the more general one, as

(7) can be solved for r=m1 (assuming that m1s=2). and for

lower values of r.

Expression (7) also shows the relation between reduced

rank regression and redundancy analysis. as reduced rank

regression corresponds to (7) with small r (c.f. De Leeuw.

1ooijaart is Van der Leeden. 1985). To recognize other forms

of RA it is necessary to formulate expression (7) in a

different way. Define matrix X (n x r) as 112V. Then we get

(8) minimize ttr(X-E2V)-(X-E2V) + tr(E1 -XW")-(B1-Xii.))/nr21

over X. V and U. subject to the conditions that
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X = H2v and Rxx = I.

Matrix Rxx is equal to X'X/n. Meulman (1986. chap. 5.2.1)

discusses the minimization of the loss as formulated in (8).

subject to the condition that only Rxx=I. Thus X does not

have to be in the column space of H2. De I.Peuw & Bijleveld

(1987) deal with the same loss function, but they use the

condition Rxx=a2I, where a is a parameter. They show that

different values of a correspond to various multivariate

techniques. e.g. a=0 boils down to principal component

analysis (PCA). and a >.. corresponds to reduced rank

regression.

Optimal scaling

In many ways nonlinear transformations can be implemented in

redundancy analysis. To do so Israils (1984) employed dummies

for variables measured on a nominal measurement level.

Meulman (1986, chap. 5.2.1) uses monotone regression in her

version of nonlinear RA. Monotone regression is a form of

optimal scaling (cf. Young, 1981). This means that the

transformations (scaling parameters) minimize the loss, and

at the same time measurement restrictions are maintained. We

also use optimal scaling. The nonlinear transformations

treated in this article are nominal and ordinal (a definition

will follow). In addition, of course, linear or numerical

transformations are dealt with. 'Dummy transformations', as

12
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employed by Israels (1984). are not discussed, however they

can always be obtained by simply coding variables as dummies,

and, in addition, by treating these dummies numerically.

Another way to obtain these 'dummy transformations' is by

using copies of a variable within the corresponding set and

by treating these copies as nominal. This gives a multiple

nominal (or dummy) transformation (cf. Gifi, 1981, chap.

5.2.7). Using copies instead of dummies has the advantage

that one may choose both the dimensionality of the

transformation and the measurement level of each copy

separately. More information about copies can be found in De

Leeuw (1984) and Van der Burg & De Leeuw (1987).

the nominal, ordinal and numerical transformations

employed in this article agree with the transformations used

by Van der Burg & De Leeuw (1983) in their version of

nonlinear CCA (CANALS). Together these three transformations

form the optimal scaling. Our definition of optimal scaling

corresponds to the definition of Young (1981). We mentioned

already that optimal scaling refers to the fact that

variables are optimally scaled in the sense of the model.

This means that the data matrices H1 and H2 are replaced by

parameter matrices Q1 (n x mi) and Q2 (n x m2) such that they

optimize the model, i.e. minimize the original loss, but at

the same time satisfy the measurement restrictions. The

original loss was formulated in (2). If the parameter matrix

Qi is subsituted for H1 and Q2 for H2. this expression can be

rewritten as follows. Denote the set of possible

transformations for the ith variable. i.e. ith column of

13



el.M1111,115 redemdanoy analysis

20

111.121. by CI and use the notation Si for tbe Stb column of

EQ1.4227 . Nonlinear redund=lry analysis is

(9) minimize vr(122. - Q2 (4r - Q231./rnrs

over GI- Q1 ard B. smbject so the condition that

c (5-1 m)

lrbe sets of possible tramsformatroms are dieser:mimed by tie

and normalization restrictions for nondsal Tariables. and. n

addition. by momotooe constraints for ordimal Tress or by

Iimear cmostraints for ==me_zcaa xeriabaes (cf_ Se Leeuw,

1977). Tie restrictioms imply that ties in the data

correspond to ties in the transformation so=a3d=t,icrn

restrictions result im standardised transformations (i_e,

zero uean and unit variamme)_ The mmoomome transformations

discus-ed here cmcreapond to the secondary pproach of

Kruskaa & Shepbard (1974)_ Fioally 2imear tratsfo=ations are

equal so the cariables itself. es ssandardicatiom of the

col-matrm5 of tae data matrix U2S supposed_ I nore extensiet

discussior of optimal scaling rest:1=1o= can be found

Youna. De Leerw & lecane (1976) and Tounn (19E) .
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