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Abstract

Various maximum likelihood estimation procedures in the Rasch

model are reviewed. It is shown that semiparametric estimation

allows simultaneous estimation of the item parameters and the

distribution function of ability. Moreover, both the item

parameters and the distribution function of ability are estimated

consistently.

Key words: Rasch model, Incidental Parameters, Structural

Parameters.
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Semiparame'ric Estimation in the Rasch Model

In the framework of latent trait theory, the Rasch (1960) model

has become increasingly popular over the past decade. This is not

only aue to its wide applicability (Fiscner, 1977; Lord, 1983), but

also to the fact that statistically nice procedures for estimating

its parameters have been developed.

The purpose of this toper is to examine yet another method for

estimating the parameters of the Rasch model. In contrast with

other methods, the unknown quantities in this method are the item

parameters and the distribution function of the latent trait over

the population. In this sense, the method is equivalent to marginal

maximum likelihood estimation where the prior distribution function

(of the latent trait in the population) is completely unspecified

and has to De estimated from the data.

As an introduction, in the second section, we will shortly

review the different maximum likelihood estimation procedures that

have previously been used, with the Rasch model. These procedures

are unconditional maximum likelihood (UML), conditional maximum

likelihood (CML) and marginal maximum likelihood (MML). In

addition, the new estimation procedu-e developed in this paper is

introduced.

The new estimation procedure is based on a method suggested by

Kiefer and Wolfowitz (1956). In the paper, they show that if the

number of parameters increases with the number of observations,

then UML estimation does not always yield consistent estimates for
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all parameters. Two kinds of parameters are distinguished,

structural and incidental parameters. A parameter tnat appears in

all the distribution functions will be called structural, while all

others are called incidental. Within this context Kieier and

Wolfowitz show that, under fairly general conditions, one is axle

to consistently estimate the structural parameter and the distribu-

tion function of the incidental parameters simultaneously. The

essence of their paper, and some links to the Rasch model will be

given in tne third section.

The fourth section serves to check Kiefer and Wolfowitz' condi-

tions in the specific case of the Rasch model.

Finally, a discussion and an example will be given in the last

section.

Maximum Likelihood Estimation in the Rasch Model

We assume that a group of V examinees are administered k dichot-

omously scored items and that all items measure the same unidimen-

sional (latent) trait or ability.

In the Rasch model, the item response function, i.e., the proba-

bility that examinee v answers item i correctly, takes a simple form:

exp(Ov-oi)

(1) P(Xvi.110v,04)
' 1 + exp(Ov-ci)

where 0
v

is the person's ability parameter and 0
i

is the item

difficulty parameter. On the usual conditional independence
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assumptions, the probability that person v's response pattern is

xv
(xv1,"xvk) is given by

explxvi(Ov-ai)l

(2) P(X
v
=X

v
le

v'
a) II

i 1 + exp(Ov-ai)

where xvi = 1 if item i is answered correctly and xvi = 0

otherwise, and a = (01,...,ak). Hence, the joint probability

distribution of the response vectors for all examinees is given by

exp{x
vAO v

-a
i

)}
,

(3) P(x
1
=x ...,X

v
--x

v
le

I'
...,e

v'
a) = fl Il .

v i 1 + exp(Ov-ai)

If both item and person-parameters are unknown, then the objective

is to estimate both sets of parameters. Some standard methods of

estimation will be briefly reviewed; recall that we are dealing

with maximum likelihood estimation only.

The first method is unconditional maximum likelihood estimation

(UML), where all the parameters are estimated simultaneously, by

maximizing the joint likelihood function (3) over all parameters.

But this leads to inconsistent item parameter estimates, as was

shown by Andersen (1973). This is the link to Kiefer and Wolfowitz

(1956), since in the Rasch model we are dealing with structural

(item) and incidental (person) parameters.

The second method is conditional maximum likelihood estimation

(')
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(CML). In this method, one uses the fact that the total score for

person v, i.e., the total number of correct responses, is a

sufficient statistic for that person's ability. Therefore, one can

condition the likelihood function on the sufficient statistics so

that the (incidental) person parameters are no longer part of it.

Hence, the likelihood is now a function of the item parameters

only, which can be estimated consistently by maximum likelihood.

Using these estimates, the person parameters can now be estimated.

The third method is marginal maximum likelihood estimation

(MML). In this method, a prior distribution for the person para-

meters is specified and the (incidental) person parameters are

integrated out of the likelihood function, so that again one is

able to estimate the item parameters. The specification of the

prior distribution can De done in several ways; usually one assumes

a special parametric form for the prior distribution, say f(xla),

and the parameter vector a is estimated along with the item para-

meters.

The new estimation method is Dased on MML, the only difference

being that no assumptions on the prior distributions are made.

Hence, this method can be called semiparametric marginal maximum

likelihood estimation (Wellner, 1985).

Structural and Incidental Parameters

The notion of incidental and structural parameters was intro-

duced rigorously Dy Neyman and Scott (1948). Suppose that we have
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independent random variables Xii (j =1, k i=1,2,...), such that

Xil,...,Xix (i=1,2,...) are identically distributed witn a distri-

bution function of the form f(x)0,00, where a and ei are possibly

vector valued. Then Neyman and Scott (1948) called the parameter

a, upon which all the distributions depend, structural, whereas the

parameters 0i 1 are called incidental. They Showed that the maximum

likelihood estimator of a, in the presence of the incidental para-

meters 00, need not be consistent. They also gave the following

nice and easy example:

-Example: Let Kip i=1,...,n, j=1,...,k be independent random

)

variables such that Xil,...,Xik are normally distributed with

mean . and variance a
2

(i=1,...,n). Now consider the problem of

estimating a
2

(as n 4. co). The maximum likelihood estimates of the

parameters are then given Dy

u.=l1x../ke xi., for i = 1,...,u.
. J
J

a2 = (xij-xi.)
2
ink E S

2
.

i j

However, it is well known that E(S2) = ka2/(k-1), and hence the

maximum likelihood estimate of 02 is not consistent.

This problem was investigated, among others, by Kiefer and

Wolfowitz (1956) [henceforth denoted as KW (1956)] and Andersen

(1973). Note that there is an intuitive explanation for the above

10
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phenomenon; with each new group of observations we get additional

information about the structural parameter, but we also introduce a

new incidental parameter and thereuy more 'bias'.

Now KW (1956) proved that the maximum likelihood estimator of

the structural parameter is (strongly) consistent, when the

(infinitely many) incidental parameters are iid with a common

distribution function. Furthermore, this distribution can also be

estimated consistently. Tne following is a heuristic explanation

for their results: "a sequence of chance variables is more

'regular' than an arbitrary sequence".

A different route was followed by Andersen (1973), who solved

the problem by using and developing the Neyman and Scott method of

conditional inference. In this set up, one needs to have sufficient

statistics for the incidental parameters to be able to estimate tne

structural parameter consistently.

It is the purpose of this paper to explore KW (1956) ideas and

use their method in one specific case: the Rasch model. Note that

all maximum likelihood estimation methods mentioned in the second

section fit into KW's (1956) framework; in the Rasch model one has

structural and incidental parameters which can be estimated simul-

taneously (UML), after conditioning on a sufficient statistic

(CML), or marginally (MML).

To proof consistency, KW (1956) need the fulfillment of several

assumptions. Since their proof is of the Wald-type (i.e., no

differentiability assumptions for the underlying density function

are assumed), their assumptions and proof are essentially a

ii
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modification of Wala's (1949) proof of the consistency in the

ordinary case (only a finite number of parameters).

Let us review Kiefer and Wolfowitz assumptions briefly. Note

that the parameters in KW (1956) are the structural parameter (a)

and the common prior distribution of the incidental parameters

P(0). KW (1956) consider the densities

(4) f(xiI0,P) = f f(xilc,e) dP(e); i = 1,2,...

Now suppose that Q is a set of priors P such that the true prior Po

is in Q; the true structural parameter is denoted by 00. Next, KW

(1956) define a maximum likelihood estimator for (0
0'

P
0
) as a pair

(0,11,PnI) such that

(5) n f(xi lcs
n
',P

n
1) > n ?(x10,P)

i

for all a and all P. It is KW's (1956) main intention to give con-

ditions such that on' 4. a0 and Pn' 4. P0. In doing so, an important

role is played by the identifiability assumption:

If (0 p
1

) (c2,P2) then there is a value y for which

(6)
Y y
f i(xicr1,P1) dp * 1 T(xla0,P2) dp .

..00 .-02

If these conditions are fulfilled, then KW (1956) are able to proof

the consistency of the ML estimates.

There is a problem with the size of the set of priors Q; if Q is

'2
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too large, the identifiability assumption may not be fullfilled or

no prior Pn may De found such that (5) is true, and if Q is too

small, the true prior Po need not be an element of Q. Therefore,

additional conditions on the set of priers Q are needed.

Checking the KW-assumptions in the Rasch Model

In the Rasch model, we consider a = (al,...,ak) (the item

parameter) as the 'structural' parameter, whereas 61, (the person

parameters, v=1,2,...) are the incidental parameters. Note that the

number of items is usually fixed and small, and the number of

examinees is large ; with eacn new examinee we also introduce a

new, unknown person ,lrameter.

Furthermore, in the Rasch model, the vector of item parameters

is multidimensional, while in KW (1956) paper the structural

parameter is unidimensional. This is no serious problem however.

Note that the Rasch model itself is unidentifiable; acJing the

same number to both all item and the person-parameters does not

change the probability in (3). Therefore, a constraint has to De

Imposed on the parameters. A common one is I a = 0. For our

i'
purposes, as will become clear later on, it is easy to take the

constraint a
1

= 0.

Assumption 1: f(xla,5v) is a density with respect to a sigma

finite measure p on a Euclidean space of which x is

a generic point.

3
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Now, if we take X = Nk, A(X) = (2N)k the sigma field of all sub-

sets of Nk, and p as the product of the k counting measures on

(N,2N), this assumption can be snown to be fulfilled for the Rasch

model. Let Yi be Bin (1,exp(Ov-ai)/(1+exp(Ov-ai))) and X be H Yi
i

distributed. Then X generates a probability measure P on (X,A(X))

with dP/dp = f and

(7) f(xv) =

explxvi(8v-a01 if x
vi

=0 or 1

(1=1,...,k)

otherwise

n
i 1 + exp(0

v
-a

i

)

L °

This shows the validity of assumption 1.

In order to proof the validity of assumption 2, some additional

definitions are needed. Note that Rk is the space of values that a

can take and that R is the space of possible values of O. Denote

the set of all cumulative distribution functions G with finite

second moment by Q. Later on, it will become clear that more

assumptions on Q are needed, but for the time being this definition

will do. Let a0 and Go De the true value of the parameter a and the

true distribution function of 8 respectively. Assume that (a0,G0)

is in (Rk,Q) and denote this true parameter by po = (a0,G0).

Now, let p = (a,G) be a generic point in Rk x Q. Define

14
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(8) f(x1P) = J f(xid,z)dG(z)
R

and

(9) 45404") = 64(a.,G1),(a",G")1
v*.

= Iarctan dil - arctan di"1

+ J IGI(z)-G"(z)lexp(-1z1)dz
R

Then, 6 is a metric in Rk x Q. The completed space of Rk x Q

(Rk x Q together with all the limits of its Cauchy sequences in the

sense of the metric 6), will be denoted by Rk x Q.

Note that we have a well-known connection (Billingsley, 1977)

between weak convergence and the metric 6, given by the following

lemma:

LEMMA The weak convergence of distribution functions is metrisized

by

(10) d(F,G) = f I F(x)-G(x)lexp(-1x1)dx

i.e., Fn converges weakly to F iff d(Fn,F) + 0.

Now we are ready for assumption 2.

1J
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Assumption 2 It is possible to extend the definition of f(x10) so

that the range of p will be Rk x Q and so tnat for

any 0102,... and p* in R k x Q, pi 0 implies

that T(x113i) T(x1p*), almost sure T(x100).

First, the definition of f for (a,9) in Rk x Q is completed by

f(x1o,0) = 0 whenever 101 = . or if 1110.1 = . (one or more of the
i'

a's are plus or minus .0. Now, note that f is continuous in ai (for

all i) and that f is bounded between 0 and 1. Furthermore, weak

convergence of Fn to F is equivalent with E h(Xn) E h(X) for all

bounded measurable functions h (where E stands for expectation).

But this means that (ai,Gi) (a *,G *) implies T(x101) T(x10*).

Assumption 3: For any p in Rk x 9 and any T > 0, w(x1p,T) is a

measurable function of x, where w(x10,T) =

sup ?(x10'), the supremum taken over all p' in

Rk x Q for which o(p,r) < T.

Since T(x1p) > 0 only for countable many values of x, w(x10,T)

can be replaced by g(x10,T) where

w(x10,T) when f(x10) > 0

(11) g(x1p,T)
0 otherwise

Now g(x1p,T) is obviously a measurable function of x (Wald, 1949).

Let X be a chance variable with density T(x100); the operator E

will always denote expectation under po.

6
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Assumption 4: For any 0 in Rk x Q we have

(12) lim E log [
(w(op.=))

T+0 if(x100)1

This assumption is also called the integrability assumption. Since

w(xI 0,T) < 2 for all T, it suffices to prove that

E log[2/f(x100)]+ < =. But this is immediately clear since X can

only assume a finite number of values.

The only assumption that needs to be verified is assumption 5,

the identifiability assumption. Tnis assumption does not hold for

the Rasch model without additional conditions.

Assumption 5: If 01 in Rk x Q is different from 00, then, for at

least one y,

(13) f T(xlpi)dp * f T(x100)dp

Note that in our case p is a counting measure, so that in fact

the integral-sign is just a sum-sign, and even over a finite number

of x's. Therefore, we can change the two "integration" ports.

Hence, it is sufficient to prove that f(xIa0,G0) = flxIa1,G1)

implies (00,G0) = (a1,G1). So, from

exp{xi(ai0-z)} exp{x.(a. -z)}
(14) dG

0
(z) = f n

11
dG

1
(z)

1+ exp(a10-z) R i 1 + exp(a -z)

7
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we want to conclude that a
0

= a
1
and G

0
= G

1,
where (14) holds for

all (xi ..... xi() in 10,11t.

Recall that the Rasch model is unidentifiable and that tnerefor*

a constraint has to be given. A common one is 1 0, = 0. For our

i

purposes it is easier to take the constraint a1 = 0, since then

(14) greatly simplifies. Now, let us rewrite and simplify (14). To

save space, only the left hand sine of the formulas will be given,

since the right hand side can then be written down easily with the

obvious changes.

exp{xi(aio-z)}

(15) f n dG0(z) =

R i 1 + exp(aio-z)

exp(-1x,z)

= exp(lx,a,"v ) fR 1
,1

dG
0
(z) =

11 {1+exp(aio-z)}

i

exp(-1xiz)

= exp(lx,a,) f I dG0(z)
i h(0

0,
z)

Now, let Xxi = 1, or in words, one item has been answered correctly

and recall that a
1
= O. Since (14) must hold for all x in 10,11 ,

we find for xi = 1:

exp(-z) exp(-z)

(16) I dG0(z) = f dG
1
(z)

h(a0,z) h(a
1
,z)

13
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and for xj =1 (all j * 1)

exp(-z)

(16a) exp(ao) f ----- dGo(z) =
4 z)

exp(-z)

= exp(041) f dGi(z)
4' h(a

l'
Z)

thus we now conclude that a.
JO J

= a.
1

for all j.2,...,k.

This holds for every pair of distribution functions G0 and G1.

So, (15) can be simplified further; the factors in front of the

integrals are equal, and the integrand is a function of the obser-

vations only through Ix.. Thus we have the following set of equa-
1 1

tions (for Ix; = 0,1,...,n):

i'

exp(-Ixz) exp(-Ix,z)

(17) 1

'

dG0(z) = f
1 61(z) ,

R R f 1 %I
El {l+exp(ai-z)} n ti+exptai-z)}

where aio = ail s ai all i).

Substituting Ixi = t, exp(-z) = u 6 (0,c), exp(ai) = 4i and

dG-(z) = dH .(u) for j=1,2 we can rewrite (17) as
J

u
t

u
t

.,

(18) f dH (u) = f
0

dH
1
(U), t=0,1 ..... n

0 41II(14-C u) 0 n(1.-+ .0
i

i i

19
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We want to conclude Ho(z) = H1(z) for all non negative z, where Ho

and H
I
are both distribution functions on the nonnegative reals.

Note that ..... are fixed but unknown constants.

Now it is time to look at tne set Q of distribution functions G.

We started by assuming almost nothing about this set Q : The

distribution function had only had to have a finite second moment.

But to solve (18) we must put more restrictions on Q. On the other

hand, we can not put too many restrictions on Q since tnen we would

overidentify the problem. An example for the latter would be to

assume that G is a normal distribution. This would enable us to

verify assumption 5, but then there may be no connection to the

"real world" anymore. One would like, however, Q to be a large

class, containing many distributions of different forms (e.g.,

normal, x
2
, Poisson).

On the other hand, there are only n independent equations in

(18), so that one can not expect to find a solution if the prior

distribution function has more than n "parameters". Since there are

only n items, it is clear that we cannot hope to estimate a

distribution function that has more than n "parameters" because we

have for each person only n independent observations.

If we take for Q the class of all discrete distribution function

with at most m steps, then there are 2m -1 free parameters (m knots

And rn-I weights) and thus if we choose m.(n+1)/2 for n odd and

m= (n +2)/2 for n even, then we may fulfill (18) in t, largest

possible class.

Note that (18) is a moment problem on the positive half line.

20
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Karlin and Studden (1966) showed that if one restricts oneself to

canonical distribution functions, the solutions to this problem are

step functions: a lower and an upper principal representation. The

lower principal representation is the interesting one, since the

upper one places mass at infinity. This lower principal solution

has (n+1)/2 steps at different points for n odd and (n+2)/2 steps

at different points with one point set equal to zero for n even.

Since the functions vt = ut 11(1+u)-1 form a Tcnebycheff system
i 1

of Type II (v
t
(u)/v

;
(u) 3 0 for t.cs if u 4 0). This theory can be

applied in this special case. For more details on this matter, see

also the Leeuw and Verhelst (1986), who reached the same conclusion

from a different starting point.

Discussion

So far this metnod has been called "new". What is so new then

about this method? The strong relationship with nonparametric ML

has already been noted. The main difference is that in MML the item

parameters are estimated first and thereafter, using these

estimates the prior distribution of the person parameters is

estimated. The method in this paper shows that it is possible to

estimate these two quantities together, and that one gets

consistent estimates.

21
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An Example

Table 1 shows tne observed frequencies of response patterns to five

dichotomously scored items. The data consists of the responses on

the subtest measurement of the IEA Second Mathematics Study

(Pelgrum et al., 1983).

Insert Table 1 about here

For this data, the Andersen's Conditional Likelihood Ratio Test

(Andersen, 1973) gave a chi-square of 3.271 with 4 degrees of

freedom, so that the data fits the Rasch model pretty well.

For the distribution of the ability, a step function with 3

knots (values of at which the distribution function makes a jump)

was chosen. The probability masses at these points are denoted by w.

In table 2, the CML item parameter estimates are given together

with the estimates of the item parameters (a) and the estimates of

the parameters of the distribution function, using the method in

this paper.

Insert Table 2 about here

22
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Note that the item parameter estimates obtained by the new method

are close to the CML item parameter estimates and that the

distribution function is a step function with steps at different

points.

23



Semiparametric Estimation

20

References

Andersen, E.B. (1973). Conditional inference and models for

measuring. Copenhagen: Mentalhygienjnisk Forlag.

Billingsley, P. (1977). Probability and measure. New York: Wiley.

de Leeuw, J., & Verhelst, N. (1986). Maximum likelihood estimation

in generalized Rasch models. Journal of Educational Statistics,

11, 183-196.

Fischer, G.H. (1974). Einfuenrung in die Theorie psychologischer

Tests: Grundlagen and Anwendungen. Bern: Hans Huber.

Karlin, S., & Studden, W.J. (1966). Tcheqcheff systems: With

applications to analysis and statistics. New York: Wiley.

Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum

likelihood estimator in the presence of infinitely many

incidental parameters. Annals of Mathematical Statistics, 27

887-903.

Lord, F.M. (1983). Small N justifies Rasch model. In D. Weiss,

(Ed.), New horizons in testing. New York: Academic Press.

Neyman, J. & Scott, E.L. (1948). Constistent estimates based on

partially consistent observations. Econometrika, 16, 1-32.

Pelgrum, W.J. Eggen, T.J.H.M., Plomp, Tj. (1983). Tweede wiskunde

project: Beschrijving van uitkomsten [Second mathematics

project: Description of results]. Enschede, The Netherlands:

Department of Education, University of Twente.

Rasch, G. (1960). Probabilistic models for some intelligence and

attainment tests. Copenhagen: Paedagogiske Institut.

24

t.



Semiparametric Estimation

21

Wald, A. (1948). Estimation of a parameter when the number of

unknown parameters increases indefinitely with the number of

observations. Annals of Mathematical Statistics, 19, 220-227.

Wellner, J.A. (1985). Semiparametric models: Progress and problems.

[CWI Newsletter, No. 9]. Amsterdam: Centrum voor Wiskunde en

Informatica.

2 5



Semiparametric estimation

22

Table 1

Observed Frequencies for the measurement data

Response

Pattern Frequency

Response

Pattern Frequency

00000 14 10001 3

00010 26 10010 9

00011 3 10011 2

00100 4 10110 7

00110 11 10111 2

01000 10 11000 4

01001 2 11010 21

01010 62 11011 20

01011 22 11100 1

01100 3 11101 1

01101 2 11110 46

01110 28 11111 74

01111 18

26
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Table 2

Item and ability distribution estimates for the measurement data.

CML

.
a C

.
w

.849 .851 -.253 .547

-1.075 -1.079 -29.779 .024

.745 .748 2.259 .429

-1.990 -1.995

1.472 1.475
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