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Abstract

Loglinear latent class models are used to detect item bias.

These models are formulated in such a manner that the

attribute to be measured or assessed may be continuous (as in

a Rasch model) or categorical as in Latent Class (Mastery

models). Further, the item bias to be studied may correspond

to a manifest grouping variable, a latent grouping variable

or both. Likelihoodratio tests for assessing the presence of

various types of bias are described and these methods are

illustrated through the analysis of a "real world" data set.
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Test items are biased if the item score of equally able

examiners from different groups (e.g., race, sex and age) are

systematically different. If several items in a test are

biased in favor of a specific group, the test may lead to an

unfair advantage for that group with regard to their assessed

level of performance, when its members are compared with

members of other groups. This inequity can hopefully be

rectified by deleting or improving the biased items.

The basic problem in the detection of item bias is to

differentiate between discrepancies in item difficulties

across groups which are due to bias as opposed to differences

in level on the assessed attribute. Since groups frequently

differ on the assessed attributes, bias and ability are often

confounded. For this reason it is hard to tell whether,

observed differences in probabilities for positive item

responses among groups are a result of item bias or

differences in ability across the groups. Linn and Drasgow

(1987) have shown that neglecting this confounding and

deleting items on the basis of differences in group

performance can lead to removal of valid items and may, thus,

result in poor tests.

Many item bias detection methods have been proposed.

Reviews are given by Osterlind (1983); Rudner, Getson and

Knight (1980) and Shepard, Camilli and Averill (1981). In the

earlier item bias detection methods such as the analysisof

variance method (Cardal & Coffman, 1964; Cleary & Hilton,

1968; Hoepfner & Strickland, 1972; and Jensen, 1980) and the

transformeditemdifficulty methods (Thurstone, 1925; Angoff,

7
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198z; Angoff & Ford, 1973) there was no rigorous control for

differences in ability across groups. In chi square methods

(Scheunemann, 1979; Mellenbergh, 1982; Camilli, 1979;

Nungester, 1977; Holland & Thayer, 1986) ability is

controlled by comparing item performance for a given total

test score. In IRT methods (Lord, 1980; Durovic, 1975) there

is control for ability via the person's ability parameter is

the model. Items are considered biased if the item parameters

vary across group.

Kelderman (1985) proposed the use of a loglinear

formulation of the Rasch (1980) model (Cressie & Holland,

1983; Duncan, 1984; Kelderman, 1984; Tjur, 1982) to study

item bias. Various aspects of item bias can be modeled by

adding parameters to the loglinear formulation of the Rasch

model. These parameters can then be estimated using maximum

likelihood procedures and hypotheses about the occurrence of

item bias can be tested using likelihoodratio tests of fit.

Several grouping variables can be included in the model and

various relevant models may be specified by the investigator

depending on the particular problem at hand. Used in this

way, loglinear models provide a very flexible modeling

framework for detecting item bias. In this paper the above

mentioned loglinear modeling system is extended. Our purposes

are three fold: a) develop procedures for use in the

assessment of item bias that may be used when the grouping

variable with respects to which bias occurs is not observed,

b) develop bias detection procedures that relate to a

conceptually different kind of assessed trait, namely a

3
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categorical attribute, and c) exemplify the use of these

developed procedures with real world data.

Haberman (1979) developed a theory of loglinear modeling

that allows for the inclusion of unobserved categorical

variables, or latent classes in loglinear models. This theory

allows for the study of item bias with respect to unobserved

or latent grouping variable. Using this kind of latentclass

loglinear model it became possible to extend the (loglinear)

Rasch model to include a latent category dimension. Using

this result we formulate a latent class/latent trait model

where the assumption of local independence among items, which

underlies the model, is conditional on the joint levels of

both latent variables (i.e., the level of continuous measured

trait and the level of the latent grouping variable). This

extended loglinear Rasch model which incorporated a latent

grouping variable may have different item difficulties for

the various latent groups. If for a certain item the

difficulty parameter is larger for one latent group than

another, it is concluded that the item is biased with respect

to the latent grouping variable.

Item bias detection procedures are also possible when

the latent attribute being assessed is categorical. Under

such circumstances the relation between latent and manifest

variables may be specified through the use of latent class

models (Lazarsfeld & Henry, 1968). In this paper, we will

deal only with two state latent class models, however the

procedures here described are directly applicable to other
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types of latent class models (e.g.. Goodman. 1975 and Dayton

and Macready. 1976).

The two state mastery model is particularly appropriate

for assessing attributes whose acquisition is assumed to be

an "allnone" process in which individuals are of one of two

possible latent types : "Masters" (i.e.. individuals who have

the necessary and sufficient skill/ability to correctly

respond to all items which are used to assess the attribute

of interest) and "nonmasters" (i.e.. individuals who do not

have the skill/ability to respond correctly to any item

within the content domain of interest). However, under this

model it is assumed that response "errors" may result in

"masters" missing items or "nonmasters" responding correctly

the items.

Item bias may be investigated within a state mastery

modeling framework by studying differences in omission and

intrusion error rates across levels of a grouping variable

with respect to which bias is suspected. If for a certain

item the omission error rates and/or the intrusion error

rates differ across groups, the item in question is biased

with respect to the grouping variable. As in the case of a

continuous measured variable, item bias may be studied with

respect to either manifest or latent grouping variables,

through the use of latent class loglinear models.

The use of latent grouping variables in the search for

item bias, has the advantage of being applicable even when an

observed grouping variable is not available. In addition, it

allows for the assessment of item bias without tying that

0
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bias to any specific variables or set of variables. Thus, it

may be possible following the investigation of bias to make a

more definitive statements regarding its presence. Finally,

the use of latent grouping variables allow an investigator to

explore how various manifest grouping variables may be

related to latent grouping variables with respect to which

bias occurs.

In the next section of this paper, the various variables

that are used in modeling are formally presented and the

general loglinear model which is of interest is defined. By

considering various restricted forms of this general model it

is possible to make model comparisons which are useful in the

assessment of item bias.

An Overall Loglinear Modeling Framework

Variables which may be included in Models

In this paper the following types of variables may be

included in the models which are considered. First the

dichotomously scored responses Xj (j=1 ..... k) to each of the

k test items are included within all models considered. Note

that the score of any ith individual, Xij={0,1}, is 0 if the

jth item is scored as incorrect, and 1 if it is scored as

correct. In addition to item responses, these models include

two other kinds of variables: the latent variable being

measured (or assessed) and the grouping variable with respect

to which bias may occur.
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The measured (or assessed) variable may correspond to

either a continuous or discrete categorical attribute. When

this latent variable is continuous, a Rasch model (Rasch,

1980) is assumed to specify the relation between item

responses and the level of the measured variable. Within the

framework of loglinear modeling, this model must include as

an independent variable the total score, T=X1+...+Kk (see

Kelderman, 1984, for a discussion). In the case of an

assessed attribute, L, which is categorical, a two state

latent class model is assumed to specify the relations

between item responses and the latent categories of mastery

(i.e., whether an individual is a "master" or "nonmaster")

on the assessed attribute (See Macready & Dayton, 1980, and

Bergan, 1983, for general reviews of this class of models,

and van der Linden, 1978, for a discussion of how they relate

to IRT models).

The variables which are used to model item bias can be

either observed or unobserved grouping variables. Such a

variable is designated as G when its r levels are actually

observed (as in the case of studying sex or race as having a

possible biasing effect). Although more than one such

variable may be included in these models, only one will be

considered in this paper. If a grouping variable is not

observed, a latent grouping variable, U, may be included in

the model. In general, the number of levels of U is s and

must be specified by the investigator. In this paper we will

consider U to be dichotomous.

12
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The General Mode].

Haberman. (1979) presents a general loglinear model

which specifies the relations among a set of observable and

unobservable categorical variables. Such models explain the

structure of the contingency table that is formed by cross

classifying the set of variables of interest. This is

accomvlished by specifying a linear decomposition of the

natural log of expected contingency table frequencies. The

components which define this decomposition may include "main"

and "interaction" type effects corresponding to various

margins (or cells) of the contingency table. If el the types

of variables which are mentioned above are simultaneously

considered, we haveaXixX2x xXkxTxGxUxL
contingency table with !requencies:

fxl...xktgur

x1=0.1; ... ; xk=0.1; t=x14-...+xk; g=1 ..... r; u=1 ..... s;

1=1 ..... q.

The so-called saturated model which contains all

possible main and interaction effects among the variables

considered above is:

13
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UL
u .ul = 0' El Pul = .
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where Oa_ ,) are the expected cell frequencies

obtained under the model and where pxl is the parameter
xi

designating the main effect of response xi of item one,

2
p
X1X

is the parameter designating the interaction effect
xix2

of the combination of response xi of item one and response

x2 of item two etc.

This general model is an incomplete loglinear latent

class model (see Haberman, 1979, p.554). It is termed

14
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incomplete because the contingency table contains cells with

frequencies which are structurally zero. This occurs as a

result of the dependence of the total score on the item

responses. The cells (xl...xktgul) for "hich t is not equal

to x1+...+xk are by definition structurally zero. It is a

loglinear model because the natural logarithm of the expected

cell frequencies is specified by a linear model. Finally, it

is a latent class model because the categorical variables U

and L are not observed.

All models considered in this paper can be obtained from

model (1) in either of two ways. First, one or more of the

above types of variables may not be considered. That is, the

variables in question are not used to construct the

contingency table and the model does not have components

related to them. For example, if G, U, and L are not

considered, we have a Xi x X2 x x Xk x T contingency

table, and models related to this table do not contain the

components in model (1) that depend on G, U, and L.

Second, constrained forms of the saturated model defined

in (1) may be specified by setting one or more of its

components to zero. This will always be done in a

hierarchical fashion. That is, if a component is set equal to

zero, all higher order interaction components containing that

component will also be set to zero. For example if px ix2 is
xix2

set to zero, the term RX1X2X2 must also be set to zero. This

means that if an interaction term is present in the model,

all lower order relatives must also be present. Therefore, to

indicate a hierarchical model, one does not have to

1 5
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explicitly specify the complete model of interest. Only the

highest order interaction terms found in the model need to be

designated (Goodman, 1973). Thus a shorthand notation for

model (1) is

(3) (X1X2...XkTGUL),

where the set of variables between braces indicates that the

model contains all possible interaction effects (as well as

main effects) among those variables. The notation

(4) {X1}.{X2}...(4),(TGU),(GUL)

denotes a model with main effects for item 1 through k, and

all possible interaction (and main) effects among T, G, and U

as. well as for G, U, and L. In the remainder of this paper we

will designate models of interest using this shorthand

notation.

Maximum likelihood estimates of the parameters defining

these models are, in general, intractable directly. However,

such estimates may be obtained using a variety of iterative

estimation procedures. This includes the Iterative

Proportional Fitting algorithm (Goodman, 1974a,b; Haberman,

1979) as well as Fisher's (Method of) Scoring algorithm

(McHugh, 1956; Haberman, 1979).

To assess the fit to data provided by a given model, the

likelihoodratio statistic, G2, may be used. This statistic

is defined as

16
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(5) G2 = E EEEEE f_
-1...xktgul

ln(
x 1...xktgul

).

xl...xktgul xl...xktgul

G2 is asymptotically distributed as chi-square with degrees

of freedom equal to the difference between the number of

structurally nonzero cells in the contingency table and the

number of independently estimated A parameters in the model

of interest.

Additionally, it may be possible to assess the relative

fit provided by two models, given that certain regularity

conditions are met. The most important of these conditions is

that the pair of models be "hierarchically" related (Alvord &

Mac- lady, 1982). This meens that one of the two models, say

M, must be able to be defined in terms of the second model,

say M*, by imposing one or more constraints on the parameters

defining the second model (i.e., M is a special constrained

form of M*). Under these circumstances it is possible to test

whether M* fits the data significantly better than M. This

may be statistically tested with the difference of the

likelihood-ratio statistics for the two models:

2 2
(6) GD = Gm - Gm*.

This statistic is also asymptotically distributed as chi -

quare with degrees of freedom equal to the difference in

degrees of freedom for the two models in question.

1 7
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In what follows we consider models that may be used to

detect item bias when the measured latent variable is

considered to be either continuous or categorical.

General Categories of Models

to be Considered for Assessing Item Bias

Models Where the Measured Trait is Continuous

In this paper.the Rasch Model is used to specify the relation

between items and the continuous latent variable being

measured. When this model is specified as a loglinear model

as described by Cressie and Holland (1983). Duncan (1984).

Kelderman (1984). and Tjur (1982), then the model may be

designated (X1}.(X2) ..... (X0.(T) for a k item test (e.g.,

Model 1 in Table 1), where the contingency table for this

model has the dimensions X1 x X2 x x Xk x T. As mentioned

above, this table contains structural zeros for the cells

where the sum of the item responses is not equal to the total

Score.

Insert Table 1 about here

The model is a quasiindependence model (see Goodman.

1968), that is, a model where there are no interactions among

variables beyond those imposed by the incompleteness
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structure of the table (i.e.. the pattern of structurally

zero and nonstructurally zero cells). Kelderman (1984) has

shown that a quasi independence model where there are no

interactions among the item responses and the total score is

equivalent to the Rasch model. By introducing one or more

grouping variables in the contingency table as well as in the

model, it is possible to study item bias with respect to that

grouping variable.

Models Where the Grouping Variable is Manifest

When it is of interest to explore the presence of item

bias relative to a specified manifest grouping variable

(e.g., sex or race), we may attempt to model the frequencies

in the observed X1xX2x xXkxTx0contingency table.

Using a loglinear model for this incomplete table, we can

study the relation of the grouping variable G with the other

variables. A general review of the procedures for assessing

item bias in this case is provided by Kelderman (1985).

Models 2, 3, and 4 of Table 1 are loglinear Rasch type

models which contain a manifest grouping variable. In model 2

there is only one interaction effect. {TM. That is, the

grouping variable influences the distribution of the score

but not their responses to tha items. This model is a Rasch

model in all subgroups. Since there are no interactions

between the item responses and the grouping variable, the

model assumes that items have the same difficulty levels

across subgroups. Therefore, if this model is able to

1 9
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effectively account for the contingency table data, it is

reasonable to conclude that the items are not biased.

For model 3 which is described in Table 1, there are

interaction effects between the item responses for each item

and the grouping variable. Therefore, all items may have

different difficulty levels across subgroups. Model 3 may be

used to study item bias since it may be considered to be a

Rasch model where the item difficulties may differ across

subgroups and thus specifies the presence of item bias. The

Rasch model with equal item parameters over subgroups (model

2 in Table 1) is a constrained form of the Rasch model with

different item parameters over subgroups (model 3 in Table

1). Thus, the relative fit provided by these two models may

be compared by using the difference likelihoodratio

statistic specified in (6). The statistic yields a test for

the presence of item x subgroup interactions. If a

statistically significant outcome is obtained, it may be

concluded that the items have different difficulty Levels for

the different subgroups. (i.e., that one or more of the items

is biased).

If one has concerns about bias for only some items, it

would seem more appropriate to incorporate interaction terms,

{Xp}, in the model, for only those items. Following this

guideline, model 4 incorporates this interaction terms for

only the last three items. This model also subsumes model 2

as a constrained form. A comparison of the relative fit

obtained under models 2 and 4 may be implemented to test for

the presence of item bias among the last three items. If the

4:n
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value of the statistic is found to be significant, there is

support for the contention that item difficulty levels for

the last three items vary across subgroups.

Since model 4 is also a constrained form of model 3, it

is possible to test for item bias in the first three items.

Note that this test, however. is made conditional on the last

three items being biased.

Models Where the Grouping Variable is Latent

When no grouping variables are actually observed, either

because a) grouping information is not available for the

variable of interest. or b) because one does not wish to tie

the concept of bias to any specific manifest variable, the

assessment of item bias should be based on the unobserved and

incomplete X1 x X2 x x Xk x T x U contingency table. Note

that what is actually observed is the incomplete X1 x X2 x

x Xk x T contingency table. The categories of the latent

grouping variable are then latent classes and the appropriate

kind of model is an incomplete latent class model, as

described by Haberman (1979, p. 554). Although several latent

classes can be specified, we will limit our discussion to two

such classes.

Models 5 and 6 of Table 1 are identical to models 3 and

4 respectively, except that the manifest grouping variable,

G, is replaced by the latent grouping variable, U. Model 5

has interaction effects between the latent grouping variable

and each item, while model 6 only has interaction effects
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between the latent grouping variable and the last three

items.

The appropriate null , model (i.e.. the model

corresponding to absence of item bias) to test models 5 and 6

against is model 1. Model 1 is the same as model 5 if there

is only one latent class in model 5. Thus, model 1 is a

restricted form of model 5. Similarly, model 1 is a

restricted form of model 6. Comparing the fit of models 1 and

5 provides a test for item bias in all items. Similarly.

comparing the fit of model 1 and 6 yields a test for item

bias in only the last three items.

Finally, comparing the fit of models 5 and 6 yields a

test for item bias in the first three items with respect to

the latent grouping variable.

Models With Both a Manifest and a Latent Grouping Variable

If a grouping variable. G. is observed, but it is conjectured

that the items may also be biased with respect to some

unavailable or unknown (i.e., latent) grouping variable, U.

we have an incomplete loglinear model for the unobserved

X1 x X2 x x Xk x T x G x U contingency table. Models 7,

8, and 9, described in Table 1, are examples of this kind of

model. These models explain the same observed X1 x X2 x

x XkxTxGcontingency table as models 2, 3, and 4.

Furthermore, models 7, 8, and 9 may be obtained from models

2. 3, and 4, respectively, by simply adding main effects for

the latent grouping variable plus interaction effects which

are the same as those already present, except that they also

22
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include the latent grouping variable. Note that models 7, 8,

and 9 are identical to models 2, 3, and 4, respectively, if U

is assumed to consist of only one latent class (i.e., U is a

constant). Thus the latter models are each constrained forms

of the former models. In model 7, the item responses interact

with the latent grouping variable, U, but not with the

manifest grouping variable, G. This indicates that, for this

model, the items may be biased with respect to the latent

grouping variable, but not with respect to the manifest

grouping variable. To test whether the items are biased with

respect to the latent grouping variable, the fit of models 2

and 7 may be compared.

In model 3, item responses may interact with both the

latent and the manifest grouping variables jointly as well as

separately. Thus an item may have a different difficulty for

one combination of the latent and manifest grouping variable

than for another combination. Model 8 may be compared with 3

to assess whether the inclusion of a latent grouping variable

accounts for additional item bias that cannot be explained by

the manifest grouping variable alone. On the other hand,

model 8 may be tested against model 7 to explore whether the

manifest grouping variable, G, accounts for item bias that

cannot be explained by the latent grouping variable, U,

alOne.

In model 9, all item responses may interact with the

unobserved grouping variable, but only the last three items

may interact with the manifest grouping variable. Comparing

model 9 with model 4 may be used to test the hypothesis that
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the latent grouping variable accounts for item bias beyond

that attributable to the manifest grouping variable on the

last three items. Comparing model 9 with model 7 provides a

mears of assessing whether there is any manifest item bias

related to the last three items in addition to the latent

item bias which affects all items. Finally, comparing the fit

of model 9 with that of model 8 allows for an assessment of

manifest item bias for the first three items in addition to

that which is related to the last three items.

Obviously the models in Table 1 are only a small

selected sample of the possible models

considered (see Kelderman, 1984, 1985).

would appear to be some of the more

exploration and detection of item bias.

that could have been

However, these models

useful for both the

Models Where the Assessed Attribute is Discrete

Now consider models where the attribute being assessed is

assumed to be categorical. We shall restrict our discussion

in this paper to the case where the assessed attribute has

only two levels. This class of models may be particularly

appropriate when the latent variable of interest is narrow in

scope (i.e., it is a highly specific skill, behavior, or

attribute) and may reasonably be assumed to exist at two

mutually exclusive and exhaustive levels (i.e., mastery vs

non-mastery; pathologic vs non-pathologic, and domin-nt vs.

recessive). The unconstrained two state latent class model

which is described by Macready and Dayton (1977) may be

specified as a latent loglinear model as pointed out by

24
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Haberman (1979). This rather simple model within the

loglinear modeling framework may be specified as

{LX1} ..... {LX6} for the unobserved X1 Y X2 x x Xk x L

contingency table, where L is the two state latent attribute

which is to be assessed. This model may be used to. explain

the structure of the observed X1 x X2 x x Xk contingency

table. Note that the basic underlying assumption for this

model is local independence, which here means that, within

each of the two latent classes, items are independent.

Within the framework of latent structure models, the

parameters which may alternatively be used to define this

model are a) the conditional probabilities for positive item

responses given latent class membership, and b) the latent

proportions of individuals within each of the latent classes.

In mastery modeling, the conditional probabilities for

correct item responses by individuals in the "Nonmastery"

class are interpreted as "intrusion" errors (i.e., errors due

to factors such as guessing and cheating). Conversely, the

conditional probabilities for for incorrect item responses by

individuals in the "Mastery" class are interpreted as

"omission" errors (i.e., errors due to such factors as

carelessness and fatigue). As was the case for a continuous

measured variable, the above model and table can be extended

to take into account the effects of_ manifest and latent

grouping variables. In Table 2, some models are considered

where the latent attribute being assessed is categorical.

These models are formulated in an analogous fashion to those

for continuous measured variables, and similar comparisons
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between these models may be considered. It may also be noted

that models in Table 2 are assigned the same number as the

model in Table 1 to which they correspond. This is because

these pairs of similarly numbered models contain the same

kind of bias effects (or lack thereof).

Insert Table 2 about here

The models for assessed categorical attributes differ

from the models for continuous latent traits in that the

relation between the item responses, XJ, and the latent

trait, L, appears explicitly in the model through the

interactions, flip (see, for example, model 2 in Table 2).

For the continuous latent trait models, these relations are

implicitly specified by the incompleteness structure

(t=x14-...+xk) found in the models.

In addition to the nine models in Table 2 which

correspond to those in Table 1, there are four additional

models which are considered: models 3', 4', 4*. and 9'. Model

3' (4') is the same as model 3 (4) in Table 2 except that an

extra side condition is imposed, namely that the proportion

of "Masters" is the same for both manifest groups. Similarly,

model 9' is the same as model 9 in Table 2 except that an

additional side condition is added. This condition specifies

that the joint proportions of level of "Mastery" with the

level of the latent grouping variable are the same across
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both levels of the manifest grouping variable. Model 4* will

be discussed in the sequel.

The relative fit provided by models 3' versus 3. 4'

versus 4. and 9' versus 9. can be compared to address the

hypothesis that the distribution of the latent variables are

the same across both levels of the manifest grouping

variable.

Suggested Strategies for Using the

Proposed Modeling System

An effective, systematic investigation of the presence

of item bias using the models described in Tables 1 and 2

requires some preliminary decisions regarding the general

nature of the assessed trait (i.e.. Is the trait more

reasonably represented by a categorical or by a continuous

underlying variable?) as well as the sequence of comparisons

among models which should be considered. The first issue that

must be addressed is whether the attribute of interest is

more accurately represented by a continuous or categorical

variable. Models based on a discrete underlying assessed

variable may be preferred when it is reasonable to assume

that a finite number of latent acquisition states underlie

the attribute of interest. This may be the case, for example,

when the attribute is narrow in scope. Conversely, when the

assessed attribute may more reason ably be thought of as
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being gradually acquired, models which incorporate a

continuous measured underlying variable will be preferred.

A second factor to be addressed in choosing which models to

consider is the availability of blocking variable information

on variables for which the issue of bias may be of interest.

If no grouping variables are available for observation, or if

it is not desirable to tie the phenomenon of bias to an

specific manifest variable, only models of the types 1, 5,

and 6 described in Tables 1 and 2 should be considered. If

the null model 1 does not fit the data, item bias with

respect to a latent grouping variable may be studied by

considering models 5 and 6.

If a grouping variable is observed, the remaining models

2, 3, 4, 7, 8, and 9 (in Table 1 or 2) may be considered. An

investigator may choose to start by considering models with

only a manifest grouping variable. If none of these yields

acceptable fit, models with both manifest and latent grouping

variables may be considered.

Of the models which incorporate a manifest variable, the

null model 2 should be tested first. If this model does not

provide adequate fit it may be compared with models 3 and 4

to see if fit is improved by taxing manifest item bias into

account. If neither model 3 nor model 4 provides acceptable

fit, the best fitting of these three models may be compared

with models 8 and 9 to investigate whether the lack of fit

can be explained by item bias with respect to a latent

grouping variable. In addition, it may sometimes be

informative for an investigator to explore the possible
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presence of latent bias, even when reasonable fit is provided

by models 2, 3, or 4. This may provide valuable information

regarding the possible presence of bias which is independent

of the manifest grouping variable being investigated.

A third consideration to be taken into account in model

selection concerns prior knowledge regarding which items may

be biased. If certain items are believed to be biased, first

the fit of the model (e.g., model 4) with only those items

biased is considered. Then the fit of this model may be

compared to that of a model with all items biased. If no

prior knowledge regarding possible item bias is available, an

investigator may wish to first consider the model with all

items biased and proceed in an exploratory fashion based on

overall model fit and the observed values of parameter

estimates. This may, in some cases, result in the

consideration of models with one or more unbiased items.

Example Applications

Kok (1982) experimentally studied item bias in multiplication

items by manipulating the test takers' skill on a possible

biasing factor. Multiplication items were administered to 286

Dutch undergraduates. The items that were administered varied

in format. For some items the numbers to be multiplied were

written out in Dutch, while for others, Roman-numerals were

used. Knowledge of Roman numerals was expected to be a

biasing factor, since Dutch undergraduates show differences
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in their ability to decipher Roman Numerals. Bias was further

related to a manifest grouping variable by giving 143

randomly selected undergraduates some training regarding

Roman Numerals. It was expected that the Romannumeral items

would be more difficult for the untrained group than for the

trained group.

Insert Table 3 about here

Six items were selected from the total set of items

administered by Kok (1982). This set included three native

language items and three Romannumeral items. The item

contents and pvalues are presented in Table 3. The six

chosen items were selected based on the nature of their

multiplication content. All six items had the following

common properties: (a) there is a single digit multiplier

which is greater than five, (b) there are three or more

digits in the multiplicand, (c) there is at least one carry

operation involved in correctly solving the multiplication

item, and (d) the product of the highest "place" digit in the

multiplicand and multiplier is a two digit number. These

criteria were used to obtain a reasonably homogeneous item

set. From Table 3 it can be seen that the Romannumeral items

are easier for the trained group than for the untrained

group. The Romannumeral items are, however, easier than the

nativelanguage items, even for the "untrained" students.
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Since the multiplication task differed very little

across items, it might reasonably be expected that there are

two latent ability states. "mastery" or "non-mastery". The

mastery model therefore seems most applicable in this case.

The data, however, will be analyzed with both continuous and

categorical .models for the assessed latent attribute.

Moreover, the data are analyzed both with and without a

manifest grouping variable in order to better exemplify the

applications of these modeling techniques.

First, consider the case of a continuous measured

variable and no manifest grouping variable. In Table 1, the

likelihood-ratio chi square statistics, degrees of fraedom,

and the corresponding right-tail probability values are

presented for this case. Based on these results, it may be

concluded that the Rasch model (model 1) does not adequately

fit the data. Knowing that the last three items are presented

as Roman-numeral items, it is hypothesized that the last

three items are biased. This is te3ted by comparing the fit

of model 1 with that of au..lel 6.

Insert Table 4 and 5 about here

In Table 4, the differences in likelihood-ratio statistics,

the difference in degrees of freedom, and the corresponding

right-tail probability values are given for possible pairs of

hierarchically related models. Looking at Table 4, we see

V.* 31
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that the comparison of model 1 with model 6 yields a large

likelihood-ratio chi-square. relative to its degrees of

freedom. This suggests that the Roman-numeral items are

indeed biased. Adding item-subgroup interactions, however.

for the first three items as in model 5 does not

substantially improve model fit. The comparison of model 5

with model 6 in Table 4 does not show a significant

difference between these models (i.e., the subsumed model 6

fits statistically no worse than model 5 which subsumes it).

Since model 6 also provides satisfactory fit to the data, it

may be concluded that the Rasch model in'each latent subgroup

with different item difficulties for the three Roman-numeral

items across latent subgroups, provides an acceptable

explanation for the data.

Insert Table 6 about here

In Table 6 are the Rasch item difficulty parameters that

can be calculated from the 0 parameters of model 6. The

parameters are calculated via the formula:

(7) 6iu = dpi - 0fi i = 1, 2. 3

and

6iu = (41 pge) pxiu)

, 9

i= 4, 5, 6.
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where 6iu is the item difficulty of item i for the u th

latent group (Kelderman, 1985). To fix the scale, the

difficulty of the first item is set equal to zero by setting

the corresponding parameter equal to zero. Looking at Table

6 we see that all Romannumeral items are less difficult for

the first latent class than for the second. This first class

corresponds to what we might expect from students who have

the Romannumeral training or otherwise have acquired a skill

of working with Roman Numerals, while the second class

appears to contain students who do not have this skill.

Next, consideration is given to the case where the

grouping variable is manifest. The null model (model 2),

here, is the Rasch model with equal item difficulties across

the two training groups (i.e., the trained students and the

untrained students). This model does not acceptably fit the

data. Comparing model 2 with model 4 (i.e., the model with

the last three items biased) results in a chi square value

(see Table 4) that is large relative to its degrees of

freedom (i.e., model 4 provides significantly better fit than

model 2). Adding itemgrouping variable interactions for the

first three items as in model 3 does not give a statistically

significant improvement in fit over that obtained with model

4. Moreover, model 4 provides a satisfactory fit to the data.

For this reason, it is concluded that only the last three

items are biased with respect to the manifest grouping

variable.
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Insert Table 7 about here

In Table 7, the Rasch item difficulties for each of the

training groups are presented. These difficulties can also be

obtained from the p parameters by use of equation (7).

From Table 7 it may be seen that the Roman-numeral items are

easier for the trained than for the untrained group.

Furthermore, the pattern of item difficulties closely

corresponds to those obtained with latent subgroups. This

compatibility of outcomes should increase the confidence we

have in the unobserved subgroup results.

The third case which we consider involves the Two State

Mastery model which incorporates no grouping variables (see

model 1 in Table 2). It may be noted that this model does not

fit the data well. If item-grouping variable interactions are

added for the Roman-numeral items as in model 6 (see Table

2), the model fit improves substantially. Table 5 shows that

the likelihood-ratio chi square statistic related to the

difference in fit provided by models 1 and 6 is large

relative to its degrees of freedom. This indicates that the

Roman-numeral items are biased with respect to the latent

subgroups. From Table 2, however, it may also be seen that

model 6 does not effectively fit the data. Adding item-

subgroup interactions for items 1 through 3 to model 6, as in

model 5, further improves fit. Again, it may be noted that

the difference in fit provided by this pair of models is
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significant. Since model 5 also fits the data, it may be

concluded that the latent biasing effect extends across all

six items.

In Table 8, parameter estimates for latent class model 5

are presented. These estimated values correspond to the model

parameters used when the model is formulated within a latent

stzucture framework. The de2ining parameters within this

framework are the conditional probabilities of positive item

responses, given the specified latent class (i.e., "Masters"

or "Non-masters") and the latent class proportions. These

parameter estimates can be calculated from the p parameters

via the following equations (see Haberman, 1979, p. 551):

Xi EiU
exp(8 + p )

1 lu

Xi XiU Xi EiU
exp(8 + p ) + exp(8 + p )

1 lu 0 Ou

i=1 ..... k for the conditional probabilities of having a

positive response to item i given latent class u, and

U X1H XkU
E E exp(8 + p + + p )

xl...xk 1 x11 xki

U X111 XkU
E E E exp(8 + p + + p )

xl...xk u u x1u xku

the probability of being in latent class 1 (i.e., latent

class proportion).

15
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The estimated conditional probabilities presented in

Table 8 are difficult to interpret in terms of the latent 2 x

2 joint levels of mastery and grouping. A possible

interpretation for each latent class is specified between

parentheses (see the latent class headings in Table 8).

Classes 1 and 2 have relatively high conditional

probabilities for correct item responses for the Roman

numeral items, whereas classes 3 and 4 have low corresponding

probabilities. It may therefore be conjectured that classes 1

and 2 correspond to latent groups of students which have some

facility at working with Roman numerals (this, to a large

extent, may includa students in the trained group), whereas

classes 3 and 4 do not have this facility. Furthermore, the

nativelanguage items tend to have higher conditional

probabilities for classes 1 and 3 than for classes 2 and 4.

This supports the conjecture that classes 1 and 3 correspond

to "masters", and classes 2 and 4 to "nonmasters". The

conditional probabilities for the Romannumeral items,

however, do not conform to the masterynonmastery

interpretation. In the "experienced/trained" group (i.e., the

combined classes 1 and 2), the conditional probability for

item 6 is lower in value for mastery class 1,1) than for non

mastery class (2). Moreover, in the "inexperienced/untrained"



Loglinear-Latent-Class Item Bias

32

group, the conditional probabilities for items 4 and 5 are

smaller in mastery class (3) than in non-mastery class (4).

The parameters, therefore, are not fully interpretable in

terms of a combination of mastery and bias classes.

We next consider the case of two-state mastery models

where the grouping variable is observed. It may be seen in

Table 2 that the simple two-class mastery model does not
,

provide good fit. Adding the item-grouping variable

interaction terms for bias on the Roman-numeral items, as in

model 4, does not significantly improve the fit of the model

(see Table 5). However, model 4 does not yield a satisfactory

overall fit to the data. Adding item-grouping variable

interactions for bias on the native-language items 1, 2, and

3, such as in model 3. also does not significantly improve

fit. Nor does it yield a model with acceptable overall fit.

It may therefore be concluded that it is not sufficient to

completely attribute the lack of fit of the two-class mastery

model to item bias with respect to the manifest grouping

variable, "training". Note from Table 5 that differences in

fit provided by models 4 ane 4', and models 3 and 3' are not

significant, indicating that the proportion of "masters" are

equal across levels of "training". This is to be expected,

given that students were randomly assigned to training

groups.

Continuing to assume that the latent attribute being

assessed is dichotomous, we may next consider models with

both a manifest and a latent grouping variable. Adding the

latent grouping variable U to all the interactions in models

97
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2, 3, 4 and 4' from the previous analysis yields models 7, 8,

9, and 9', respectively. Note that, with the exception of

model 7, all of these models provide particularly good fit to

the data. To determine which of the effectively fitting

models is to be preferred, tests of their relative fit were

considered (see Table 5). Based on these comparisons it is

concluded that model 9' is to be preferred.

Insert Table 9 about here

Presented in Table 9 are the conditional probabilities

and the latent class proportions related to model 9'. Based

on the magnitude of the conditional probabilities related to

each latent class, it would appear that classes 3 and 4 in

the "trained" group, and classes 4 and 8 in the "untrained"

group might reasonably be interpreted as mastery classes.

Also, the conditional probabilities for correct responses to

Romannumeral items are larger for the "trained" group than

for the "untrained" group. The remaining structure, comparing

class 1 with class 2, 3 with 4, 5 with 6, and 7 with 8, as

the two values for an additional latent grouping variable U,

is difficult to interpret. Looking at the conditional

probabilities for the Romannumeral items, the classes

differentiate between individuals who answer item 5 correctly

and individuals who answer items 4 and 6 correctly.

Considering the nativelanguage items, conditional
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probabilities increase with class 1, 2, 3, and 4 and also

with class 5, 6, 7, and 8, suggesting a multistate, discrete

latent variable being measured in each group.

The model with a continuous measured trait and bias on

the Romannumeral items with respect to the manifest grouping

variable (see model 4 in Table 1) did fit the data.

Therefore, it may be expected that the corresponding model

with a categorical assessed trait would better fit the data

if the number of levels of mastery were increased. Model 4*

in Table 2 is the same as model 4', except that there are

three rather than two latent levels of mastery. This new

model flLs the data very well.

Insert Table 10 about here

Presented in Table 10 are the conditional probabilities

and the latent class proportions which correspond to model

4*. Based on the mean values for the conditional

probabilities on the nativelanguage items for each latent

class, we might interpret latent classes 1, 2, and 3,

respectively, as corresponding to "non- trastery" (NM), "mixed

mastery" (MM), and "mastery" (M) states. Since in this model

there are no interaction effects among training, ability, and

the responses to the nativelanguage items, the same

respective interpretation may be used with classes 4, 5, and

6. In considering the conditional probabilities for the
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Romannumeral items, it is seen that these items generally

have higher probabilities (given the same latent class),

especially for the "nonmastery" and "mixed mastery" classes.

It is somewhat peculiar that item 6 has a greater probability

for a correct response by a students in the "mixed mastery"

class than one from the "mastery" class.

Discussion

In this paper, we have shown that it is possible to

explain item bias through differences in item difficulties or

error rates across levels of grouping variables. This

approach is viable when the assessed attribute of interest is

either continuous or categorical and the grouping variables,

with respect to which bias may occur, are manifest, latent or

both.

The model which is presented is quite general and can be

easily extended to include several observed and unobserved

grouping variables. Also this model is capable of

incorporating additional interaction effects which we have

not considered. One should however be cautious when

considering the inclusion of additional effects within models

especially when the grouping variable is latent, since many

such models will not be identifiable. For example, it is

easily shown that adding a term (X4 X5 X6} for the

interaction between Romannumeral items to mriel 6 which

includes interaction effects (X0), (X5U), (X6U) between

40
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those items and the latent grouping variable U, is not an

identifiable model. This is because item interactions with U

already explain the interaction among the observed responses

on the Romannumeral items.

A practical problem that occurs with this general

modeling approach when latent categorical variables are

present is computational infeasibility when more than just a

few variables are included in a model. This is because the

minimal sufficient information for parameter estimation is

the contingency table frequencies the number of which

increase exponentially with number of variables. Note that

for k dichotomous variables the number of cells in the

contingency table is 2k. For example, if k=20 there are more

than a million cells in the contingency table. For this

reason it may not be feasible to analyze all items on a test

simultaneously. Instead the test may need to be partitioned

into carefully chosen subsets of items, where each subset is

analyzed separately. The subsets may be chosen on the basis

of content so that items similar in content are placed within

the same subset. This increases the likelihood that unknown

biasing variables might be :'rtnd.

Another practical problem related to estimation is that

the number of iterations required to reach a solution may be

quite large or in some cases it may be difficult to reach an

acceptable solution. This is especially true when the model

under consideration is complex and/or the initial values used

in the iterative estimation process are not themselves quite

accurate. For example, 449 iterations where needed to obtain
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estimates for the Rasch model with the Roman-numeral items

biased with respect to a latent grouping variable (see model

6 in Table 1). The starting values used in estimation for

this model were arbitrary and the stopping criterion was six

decimal places of precision. For the corresponding mastery

model (see model 6 in Table 2), the number of iterations was

1501 to obtain a precision of five decimal places. An

advantage of the Iterative Proportional Fitting algorithm,

however, is that iterations may be very quickly implemented.

This is because, relative to other procedures, the required'

operations necessary for completing an iteration are

relatively simple and small in number. In the case of the

mastery model 6, the required CPU time was less than 15

seconds. Additionally it may be noted, that estimation with

this algorithm is far less sensitive to the values selected

as initial parameter estimates than is the case with other

algorithms. This dramatically reduces the likelihood of the

above mention problem of not obtaining acceptable

convergence.
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Models for a Continuous Measured Trait

LR DF p

No Grouping Variable

1. {X1} (4).(T) 86.23 52 .00

Manifest Grouping Variable

2.

3.

4.

{X1} (4).(TG) 159.38

(GX1) ..... (GX6),(TG) 124.08

{ X1},{X2}.{(3),(GX4),(GX5).(GX6).{TG} 128.23

109

104

106

.00

.09

.07

Latent Grouping Variablt-'

5.

6.

{lni} ,{U4},(TU) 51.63

(X1),(X2).{X3),(UX4).(DX5),(DX6).(TU) 55.55

40

42

.10

.08

Manifest and Latent Grouping Variable

7.

8.

9.

(UX1),....(DX6),(TGD)

{GUXI} ..... (GUX6),{TGU}

(13X1).{U1(2).{DX3}.

(GUX4),(GUX5).(GDX6),(TGU)

An
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Model Side

Conditions

LR DF p

No Grouping Variable

1. (LX1} {Lgo) None 91.17 48 .00

Manifest Grouping Variable

2. (LX1} (LX6}.{GL} None 177.56 112 .00

3. (GUI) ..... (GLX6} None 126.34 100 .04

3'. (GUI) ..... Eq.L.C.Props. 128.24 102 .04

4. (LX1).(LX2}.(LX3}.

(GLX4}.(GLX5).{GLIe} None 134.92 106 .03

4'. (LI1}ALX2}.(LX3).
(GLX4}, {GLX5},(GLX6} Eq.L.C.Props. 135.13 108 .04

4*. (LX1}.{LX2}.(LX3). Eq.L.C.Props..

(GLX4).(GLX5}.{GLX6} 3 L.C.'s Per

Trc.ining Grp. 101.19 102 .50

Latent Grouping Variable

5. . None 41.66 34 .17

6. (LX1}.(LX2}.(LX3}.

(ULX4}.(ULX5}.(ULX6} None 59.89 40 .02

Manifest and Latent Grouping Variable

7. VULX1}. None 143.87 100 .00

S. (MAO ..... (GULX6} None 76.87 72 .33

9. (ULX1}.(ULX2}.(11LX3).

(GULX4}.(GULX5}.{GULX6} None 77.57 84 .68

9'. (ULX1}.{ULX2}.{133}.

{GULX4}.{GULX5}.(GULX6} Eq.L.C.Props. 81.64 88 .67
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Table 3

Homogeneous Multiplilation Items Presented in Native-language

and Roman-numerals Formats

% correct

Item Multiplication Presentation

Untrained Trained

1. 6 x 4123 Native language .37 .38

2. 7 x 974 Native language .33 .22

3. 7 x 3423 Native language .24 .23

4. 8 x 214 Roman Numerals .50 .68

5. 6 x 3107 Roman Numerals .43 .71

6. 9 x 351 Roman Numerals .48 .66
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Table 4

Comparison of Models for a Continuous Measured_ Variable

Subsuming Model Subsumed Model LR DF p

No Manifest Grouping Variable

1 5 34.60 12 .00

1 6 30.68 10 .00

6 5 3.92 2 .14

Manifest Grouping Variable

2 3 35.30 5 .00

2 4 31.15 3 .00

4 3 4.15 2 .13
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Subsuming Model Subsumed Model LR DF p

No Manifest Grouping Variable

1 5 49.51 14 .00

1 6 31.28 8 .00

6 5 18.23 6 .00

Manifest Grouping Variable

2 3 51.22 12 .00

2 4 42.64 6 .00

4 3 8.58 6 .20

2 7 33.69 12 .00

3 .8 49.47 28 .01

4 9 57.35 22 .00

3' 3 1.90 2 .39

4' 4 0.21 2 .90

9' 9 4.07 4 .40
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Table 6

Item Difficulty Estimates of Model all,a24.(MIAUX41.

(UX5}. tUX6). UM (Model 6) from Table 1

Latent Subgr

Subgr. Prop.

Item

Native Language Roman Numerals

1 2. 3 4 5 6

1. 0.34

2. 0.66

Difference

0.00

0.00

0.77

0.77

0.97

0.97

-1.58

-0.93

-0.65

-1.31

-0.89

-0.42

-7.39

0.16

-7.55
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Table 7

Item Difficulty Estimates of Model allAMIADJAGX41.

(GX5). {GU}. {TG} (Model 4) from Table 1

Item

Native Language Roman Numerals

Group 1 2 3 4 5 6

Trained

Untrained

Difference

0.00

0.00

0.65

0.65

0.93

0.93

-1.80

-0.59

-1.21

-1.97

-0.19

-1.78

-1.67

-0.47

-1.20
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Table 8

Parameter Estimates for Model {ULX1} (ULX6)

(Model 5) from Table 2

Item Item

No. Format

Latent Class

1 (TM) 2 (TN) 3 (UM) 4 (UN)

Conditional Probabilities

1 Natural 0.88 0.40 0.26 0.10

2 Natural 0.77 0.21 0.40 0.00

3 Natural 0.77 0.13 0.29 0.00

4 Roman 0.85 0.81 0.28 0.35

5 Roman 0.83 0.78 0.00 0.42

6 Roman 0.71 1.00 0.42 0.18

Latent Class Probabilities

0.21 0.30 0.12 0.37
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Table 9

Parameter Estimates of the Model (ULX1).{ULX2}.(ULX3).

(GUIX4). {GULX5 }. {GULX6} with Equal Latent Class Proportions

(Model 9') from Table a

Item Item

Latent Classes

Trained Group Untrained Group

No. Format 1 2 3 4 5 6 7 8

Conditional Probabilities

1. Natural 0.10 0.19 0.50 0.88 0.10 0.19 0.50 0.88

2. Natural 0.00 0.20 0.22 0.85 0.00 0.20 0.22 0.85

3. Natural 0.00 0.15 0.17 0.79 0.00 0.15 0.17 0.79

4. Roman 0.47 0.48 1.00 0.85 0.25 0.30 0.73 0.82

5. Roman 0.54 0.61 0.80 1.00 0.39 0.00 0.78 0.65

6. Roman 0.00 1.00 1.00 0.70 0.11 0.28 1.00 0.63

Mean 0.18 0.43 0.61 0.84 0.14 0.18 0.56 0.77

Latent Class Probabilities

0.14 0.14 0.12 0.10 0.14 0.14 0.12 0.10
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Table 10

Parameter Estimates of Model 4LX1).(LX2).(LX3).(GLX.44

10145) IGL4) with Three Mastery States and Equal Latent

Class Proportions Across Levels of Training (Model 4*)

Table 2

Item

No.

Item

Latent Classes

Trained Group Untrained Group

Format 1

(NM)

2 3 4 5

(MM) (M) (NM) (MM)

6

(M)

Conditional Probabilities

1. Natural .12 .52 .87 .12 .52 .87

2. Natural .07 .27 .87 .07 .27 .87

3. Natural .04 .21 .83 .04 .21 .83

Mean .08 .33 .86 .08 .33 .86

4. Roman .49 .89 .86 .27 .73 .79

5. Roman .59 .75 1.00 .21 .17 .61

6. Roman .42 1.00 .72 .17 1.00 .57

Mean .50 .88 .86 .22 .81 .66

Latent Class Probabilities

.52 .30 .18 .52 .30 .18
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