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Abstract

A loglinear IRT model 1is proposed that ielates

polytomously scored item responses t0 a multidimensional
latent space. Each item may have a different response
function where each item response may be explained by one or
more latent traits. Item response functions may follow a
; partial credit model (Andrich, 1998; Masters, 1982) a
multidimensional Rasch model (Rasch, 1961; Andersen, 1973,
1983) or other .orms of response functions to be defined by
the user. Conditional maximum likelihood estimates are
derived and the models may be tested generally or against
alternative loglinear models. The latter tests are sensitive
to deviations from local independence subgroup invariance or
assumptions about the form of the operating characteristic

curves.

Key words: Multidimensional item response theory, Loglinear
model, polytomous responses, graded response

models, goodness of fit testing.
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Loglinear Multidimensional IRT models

for Polytomously Scored Items

Loglinear models have been used for the estimation and
testing of IRT models (Cressie and Hclland, 1983; Duncan,
1984; Kelderman, 1984; Tjur, 1982). They have proved useful
in the solution of practical psychometric problems such as
item bias detection (Kelderman, 1985) and equating
(Kelderman, 1986). All loglinear IRT models considered so far
are dealing with a one dimensional latent trait and
dichotomously scored items. In many testing situations,
however, different subjects may give responses that differ in
psychologically meaningful ways. To produce one answer may
require quite another ability from the examinee than tu
produce another answer. And even if both responses are
related to the same latent trait, one response may be more
difficult to give than another or one response may require
the repeated application of the same ability whereas another
response may require only a single application of that
ability.

In the present paper, a loglinear IRT model is proposed
that applies to the situation of polytomously scored test
items that may be explained by a multidimensional latent
space. The flexibility and generality of loglinear IRT
modeling enables the analyst to formulate a model that is
precisely tailored to the particular items in the test. In
the proposed model each item may have a different number of

response categories each of which may be relatea in a
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different way to the latent traits. Item response functions
may be specified according to a multidimensional Rasch model
(Rasch, 1961; Andersen, 1973, 1983) or to a graded response
model (Andrich, 1978; Masters, 1982) or another response
function to be defined by the user. The usual assumption of
local independence of the item responses giQen the latent
traits is made. The parameters are estimated by the
conditional maximum likelihood method and the models are
tested either yenerally or against special alternative models
that contain parameters describing deviations of 1local
independence, subgroup invariance and the specified operating*

characteristic curves.

The Model

Suppose that each of N subjects respond to k test items
where the answers of subject i to item j may be any of rj+1
responses Xj 4 (xij=0,..,rj). The response pattern of subject
i on all k test items is denoted by the vector x; = (xj1.
Xi2,...+Xjk. The corresponding random variables are denoted
by capital letters X;j and X; Let 0iq be a value of subject
i on a latent ability continuum g=1,...,s and let 0 =
(841,952,....8035) be the vector of ability values.

To produce a score xjj on item j, subject i must perform
certain operations where each operation depends on a certain

proficiency on a latent trait. For example to produce a

correct answer on the item "What is the square root of
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fifteen minus six?", involves three operations. First, the
exﬁression v(15-6) must be obtained from the verbal
formulation. Second, the subject must make the subtraction
15-6=9. And finally, the square root v9=3 must be taken. It
may be hypothesized that to perform the first operation
successfully, the subject must have a certain level on a
verbal ability trait 6;4, and to perform the second and the
third operation, a latent numerical ability 6;5 is needed.
Producing the correct answer ‘3’ requires ability 0jq once
and ability 035 twice. Producing the partially correct
response ‘9’ requires ability 037 and 0jp each once.
Producing the formula 'v(15-6)' requires only 0j4.

Let qu(x) be the number of times that a person has to
apply latent trait g to produce a response x on item j and
let ¢j(x) be a parameter describing the easiness of response
x of item j. The probability that subject i has a response x

on item j can now be written as:

s
exp{ L 1eiq Byq(x) + ¢5(x)}
a=

1) P(Xij=x) =
g { Es 0ig Bsgly) 0s(y)}
exp 3ql¥) + 05(Y

=0 q=1 iq ®jq J

I

By choosing the functionms qu(.), different models can

be chosen for the dependence of item responses on latent

traits. In the sequel, the function Byq(x) for x=0.....rj
and q=1,...,s will be called the item scoring function (ISF)
of item j.

i s e
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Figure 1, gives some examples of item scoring functions
that might be employed in model (1). In figure 2 each of
these ISF’'s are showed in a diagram, where a latent variable
is depicted in a circular box and an observed response in a
square box. An arrow is drawn from a latent trait to an item
response if that response depends on the latent trait. The
value next to the arrow denotes corresponding value of
qu(x).

ISF (a) describes the dichotomous Rasch model. A wrong
response (x=0) is scored le(O)=0 and a correct response
(x=1) is scored Bj1(1)=1 indicating that a successful
application of trait 1 is required. It is easily shown that
with ISF (a) model (1) reduces to the dichotomous Rasch model
(see Appendix I)

In ISF (b) three responses are scored where response x=0
corresponds to a wrong response and the responses x=1 and x=2
are both right responses involving one successful application
of the latent trait. Both responses, however, may not be
equally likely as the parameters ¢j(1) and ¢j(2) may differ.

ISF (c) describes the partial credit model (Andrich,
1978; Masters, 1982)(see Appendix II). The response x=2 has
the score 2 indicating that the latent trait has to be
applied twice to obtain the correct answer. The response x=1
corresponds to a partial answer, for which the latent trait
has to be applied only once.

In ISF (d) through (h) two latent traits are involved,
In ISF (d) the response x=1 and x=2 each depend on a

different latent trait. This is the multidimensional Rasch

i0
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model described by Rasch (1961) and Andersen (1973)(see
Appendix III). In ISF (e) each response depends on its own
latent trait but the item scores are not all equal to one.
This model corresponds to Andersen’s (1983) generalized Rasch
model.

ISF (£f) describes a multidimensional partial credit
model where each operation depends on a different latent
trait. The correct response x=2 requires two operations
depending on latent trait 631 and 6j5 respectively. The
partial response x=1 requires only one operation depending on
the latent trait 039 This might be an alternative ISF for
the item +V(15-6) where the first latent ability is
subtraction and the second latern: trait is taking the square
Toot.

Obviously a combination of (c¢) and (f), where there are
different latent traits but some operations depend on the
same latent trait, is also possible. ISF (g), for example,
may model the item V(20-5-6) where there are two subtractions
and one square root.

ISF (h) is a two dimensional model for a dichotomous
item. Finally, ISF (i) is the null function. The variable
does not measure an underlying latent trait. This ISF may be
used to add background variables (e.g. sex) to the model.
Adding background variables may be useful to study subgroup
invariance of the psychometric model. This will be discussed
in the section on goodness—of-fit testing.

We have discussed some examples of ISF's. There may be

many more ISF’'s than are shown here that make sense in a

11
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particular application. Also in one test each item may have

its own ISF.

Estimation

,
Assuming local independence, the simultaneous distribution of

X; = (Xj1., ..., Xjk) given 03 is

k
(2) P(Xg = xy[09) = T P(X, =x, |0 =

k nk !
2z ¢ (x c— (91.¢j)

S
0, ¢t )} .
oxp {2 ) %1 tigt Fp 0T 521

where ¢4 = (¢j(0).....¢j(rj)).

rj S
c(8;, ¢3) = X exp{Z ) quP

(v) + ¢ (N}
Y:O g= 1 q

J J

and

k

tiq = 23=1 Bja(x;,)

Note that (2) is an exponential! family model and the
sums of scores tjq. ---'-fis are sufficient statistics for

the latent ability parameters 631, ..., 0j35. That is, all

12
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information about those latent ability parameters is
contained in the sums of scores. The simultaneous
distribution of the sum sc. e variables taking values tj =

(til, ...tis) is

119y xy |ty 118y

s k -
v(ti., ¢) . exp{y, Oiqtiql T c-1(84, ¢4)
a=1 iqtiq 4u1 i 93

kY

with
k

(4) y(ti, ¢) = X exp{Z $5(xij)}.

x|ty =1
where ¢= (91, ..., ¢,) and where zxilti means summation over
those values of x, for which (Ej le(xi).....ZBBjs(xi)) is
equal to t;. The conditional distsibution of Xjq, ..., Xjp
given ty1, ..., tig is
(5) P(Xi = xilti) = P(Xi = !ilei) / f(tilei)

k
exp (Zs=1 ¢j(xij)) / Yei, 9),

which does no longer depend on 6.
If it is assumed that individuals respond independently

¢f one another, model (5) describes a multinomial
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distribution of the response patterns x for each score

pattern t, where the subject index i is dropped.

Let
(6) My = NgP(X=x|t)
xp =0, ..., T9: .05 Xk = Oi e T X = (X9, ..., Xg)
k .
tq = B (x,): ...:.t =2 B (x): t=(, ..., t)
1 23=1 3173 s 4=1 Js J 1 S

be the conditional expected frequency of the response pattern
x given score vector t and let fy. be the corresponding
observed frequency. Taking logarithms we have the loglinear

model:

k
(75 log myy = Oy + 23=1 ¢j(xj).

where oy = —log(y(t, ¢)/Nt) is a fixed normalizing constant
and the parameters ¢j(xj) (3 =1, .... k; xj =0, ..., rj)
are considered random parameters.

Model (7) is a quasi-loglinear model for an incomplete
item 1 x item 2 x ... x item k x score 1 x ... x score s
contingency table. The table is incomplete because the cells
for which tg # Bigq(x1) + B2q(x2) + ... + Bkq(xk) are
structurally zero (Bishop, Fienberg and Helland, 1975; see
5.4; Haberman, 1979, see 7.3).

Unless further restrictions will be set on the ¢
parameters they will not be identifiable. To formulate

identifiability conditions for model (7) first rewrite it as

14
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Dy S

(8) log mg = oy + Dtd,

e e

T

Fook

Ve

where log is an element-wise operator aud my is the vector

of expected counts Y}th sumscores t, ¢ = (¢,(0), ..., ¢,(ry),

FRECE e

Cees ¢k(0), e ¢k(rk)) and Dt is the design matrix with

Py
v

zero's and ones in the appropriate places. The identifia-—

I pa
L

bility criteria are then (Imrey, Koch and Sto'es, 1981)

i et T

(9 rank [1 D¢l = 1 + rank (D)

i st

and

LRI RO AT R LT
e o h

ar8A 2

(10) rank [D] = a

L4 b AT

where D' = [D'g, ..., D ] and a is the number of columns

"tmax
of D, i.e. the number of parameters.

TeAd fee AT

Couadition (10) ensures that the ¢ parameters are not

VRN GBS T A SRR YT

linearly dependent upon each other and condition (9) ensures
they are not linearly dependent on the sumscore parameters.

If D does not satisfy these identifiability conditions
certain columns must be removed, which is equivalent to
%‘/’ settiag the corresponding ¢ parameters to zero. To derive the
: likelihood equations, it is assumed that the identifiability
conditions are met.

The conditional likelihood of model (7) is

T ST ST 2T o it
I [ '
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(11) I

. f
log Mg Tly|[C Nl P(X = x|t) Xty / fxel])

k
(£ X (x,) — y(t, ¢)) + constant
Ty Ix|e (£, 3=1¢J y) = ¢

5 ocxy £9
= X
3= 9 Ty

s - Et N£ y(t, ¢) + constant,

X
where fxg is the marginal observed frequency of response Xy

on item ).

Model (11) is an exponential family model with
sufficient statistics fig . Maximum likelihood equations can
be obtained by taking the derivatives of the loglikelihood
for ¢ and setting them to zero. This yields the equations

(Andersen, 1980; Haberman, 1975)

X
(12) ij = mxj . xy = 0,...,rj: J=1,....k,
T
f =N ., Vt.
t t

Solving (12) for the parameters ¢j(xj) yields maximum
likelihood estimates of the parameters.

The system (12) can be solved iteratively by a Newton
Raphson Algorithm (Adbey and Dempster, 1974) or iterative
proportional fitting (IPF) (Goodman, 1968; Bishop et all.
1975, p.189). Kelderman (1987) uses a version of IPF that
does not require to internal storage of the Z£ull table of

observed and expected counts and uses a special algorithm

that considerably reduces the amount of computation to obtain

A et w3 vt

P
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expected marginal tables. The method is implemented in the
LOGIMO (Loglinear IRT modeling) program. :

Standard errors for the parameter estimates can be

o & A LTI DT PR S

obtained by taking the inverse of the Fischer information

YR PR

matrix I which has elements

ULy
et

S AR TS s adv kT s by

d2log Lg
(13
d ¢5(x) d ¢1(y)
& j=1, .... k; 1 =1, .... kix=0, ..., Iy v = 1, ..., ry° 3
é where j-# 1 or x # y. é

The Fischer i:formation matrix I provides a practical

ksl

method of checking the identifiability of the model. A

LS

po..ibly indeterminate solution can be obtained wvia the IPF

R R S
"

b F s

i

algorithm, since IPF does not require the model to be.of full §

rank. This solution can be used to calculate the information

¥ PR A KR

matrix I. If I is not of ful' rank, rows (and columns) that
are linearly dependent on the preceding columns may be
successively deleted from the matrix I until a full rank
matrix is obtained. The parameters corresponding to the
deleted columns are not identifiable and they are removed

from the model by setting them to zero.

Testing

The overall goodness of fit of model (1) can be tested

by the Pearson statistic
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(f3¢ — Myt )2

(14) X2 -3 Txb  xb

x Myt

or the likelihood ratio statistic

(15) G2=-23 £ 1n@m, / £..).

Both statistics are asymptotically distributed as chi-
square with degrees of freedom equal to the difference
between the number of logically nonzero cells and the number
of estimable parameters. If any of the expected counts become
to small, however, the approximation of the distribution of
X2 and G2 by a chi-square distribution becomes inappropriate
(Lancaster, 1961; Koehler, 1977, 1986; Larnz, 1978). Although
the distribution of X2 is generally closer to chi-square than
G2 (Cox and Plackett, 1980; Larnz, 1978). The traditional
criterion for the size of tha expected counts is five but if
the distribution is smooth the minimum expected count could
be as small as one (Cochran, 1952).

This, however, would still mean that the overall
statistics (14) and (15) are only useful with small numbers
of items. Suppose for example we have ten trichotomous items.
We would have 59049 non logically-zero counts.

If the number of items is large, we choose to test the
model against specific alternative loglinear models that
contain model (7) as a special case and also contain

parameters describing a particular deviation. Let m*xt denote
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the expected counts under a particular alternative model. The

1 'kelihood ratio test statistic is then
(16)  G%(m.m*) = -2(L-L*c)

and is asymptotically distributed as chi-square with degrees
of freedom equal to difference in numbers of estimable
parameters of both models. Any loglinear model (8) that
arises by erxtending the design matrix D with columns ' and
extending the parameter vector ¢ with parameters might be
chosen as alternative model, provided that the
identifiability conditions (9) and (10) are met.

Three types of alternative models may be used, models
that are sensitive ¢to deviations from the operating
characteristic curves, models that are sensitive to
violations of the local independence assumption and models
that are sensitive to deviation of subgroup invariance.

In the first type of the model, parameters describing an
interaction between one or more Ssum scores tq and an item

response xj may be added to model (7). For example, the model

k
(17 Log myy = Op + 23 . 645(x3) + ¢q3(tgxy)

contains a model term ¢qj(thj) describing the interaction of
the score tq and item response x5 comparing (17) against (7)
using the likelihood-ratio test (16) yields a test for “he

hypothesis that this term is different from zero. It means

13
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that the operating characteristic curve of this item with
respect to latent trait q deviates from that expected by the
model. If one wants to 1look only at the operating ;
characteristic of one answer category, say y, the parameter
may be set to zero for all other item responses Xy # Y, the

model

Sunlod W

k

(18) log myy = Op + 23=1¢j(xj) + ¢jl(xjxl)

atin P s hod it

may be compared with model (7). The parameter ¢jl(xjx1) %
descrikes an interaction between both items that cannot be :
explained by the original model. Terms describing the
interactions between other item pairs of items and terms
describing triplets of items may be added to the models.

If xj is not an item but a subgroup variable the term

¢jl(xjxl) in model (18) describes deviations from subgs.up

invariance of item 1. In that case the item scoring function
of item xy must be the null function (see Figure 1(i)). If
¢jl(xjxl) is not zero, the parameters differ from subgroup to
subgroup. These subgroup—dependent item parameters may be
used to study item bias with respect to, for example, ethnic
group Or sex.

Like the loglinear IRT-model alternative loglinear
models may be estimated by solving lik.lihood equations of
the form (12) where again the sufficient statistics of the
extra parameters are set equal to their expectations, in

terms of the parameters.

<0
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Likelihood-ratio tests can be used to compare the fit of
two models if one model is nested within another model. If
two models are not nested, Akaike's (1977) information

criterion is used:

AIC = G2 + 2 # of parameters) + C,

where C is a constant that is the same for all models fitted

to the same data. The model with the smallest AIC (or AIC-C)

is chosen as the best fitting model.

An Example

Van Kuyk (1988) developed a test to identify learning
problems in children from four to six—and—a-half years old.
The tests measures the application of antonimic dimensional
size concepts such as long-short, high-low, thick-thin (see
Figure 3). Fifteen items are administered to 66 children of
age 4 to 5, 132 children of age 5 to 5.5, and 65 children of
5.5 to 6 years old.

The figures were shown and pointed at by the test
administrator, while (s)he said "here you see some shirts,
they gradually become a bit ... (shorter)”. the answer was
rated correct if the right size concept (e.g. long-short) was
given and was correctly applied (e.g. shorter rather than
longer). Small children may be unable to produce the correct

specific concept (e.g. long-short) but use the general size
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concept 'big-small’ instead. If ‘big-small’ is correctly
applied (e.g. the shirt is smaller) the answer is rated
partially correct. All other answers are rated incorrect.

Three ISF are applied to this data: the one dimensional
partial credit model (1PC, Figure 1c¢), the two dimensional
partial credit model (2PC, Figure 1f) and the two dimensional
Rasch model (2RM, Figure 1d). In the 1PC it is hypothesized
that one spatial ability has to be applied twice to obtain
the correct answer: once to know the extensiveness of the
objects (e.g. small or laige) and once to identify the
correct dimension (e.g. short-long).

In the 2PC model both processes are supposed to depend
on distinct abilities, an exteusiveness ability and a
specific concept ability. Tq produce the correct answer both
abilities have to be applied once. To produce the partially

correct answer (small) only the first ability is needed.

Finaily in the 2RM model two latent abilities are

conjectured: a general extensiveness and a specific
extensiveness ability. The general extensiveness ability is
applied to get the partially correct answer and the specific
extensiveness ability is sufficient to produce the correct
answer. The differeance between the 2PC and the 2RM model is
that 2RM does not require an application of a general
extensiveness ability to produce the correct answer but the
2PC does.

For all three ISF's two models are fitted: model (7)

where the item response parameters are invariant over

subgroups:
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(19) log mgg = Op + ¢1(x1) + ... + P15(x15) + d16(x14)

with corstraints ¢j(0) =0, J=1, ..., 16, and model (18),

where the item response parameter vary from subgroup to

subgroup:

(20) log mye = Op + 01(x1) + ... + ¢d15(x15) + d14(x14)

+01,16(x1x16) + ... + 015,16(x15.x14)

with constraints ¢j(0) =0, J =1, ., 16 and ¢j.16(0'x16) =
¢3,16(x3.1) = 0, J = 1, ..., 15. Thus the parameters are
normed such that ¢j(xj) (J = 1, ..., 15) are the item

response paramecers in the youngest age group (xj4-') and the
¢4,16(x)x16) are deviations of those parameters for older age
groups.

Table 1 presents the test results of the six models. It
is seen that the subgroup dependent versions of the models
have a significantly better fit than the subgroup invariant
versions. The likelihood-chi-square statistics are all very
large relative to the degrees of freedom.

~ Since the 1PC, 2PC and 2RM models are not nested their
fit is comﬁared with Akaike's information criterion. The AIC
values are given plus a constant to produce a relative small

number. The best fitting model according to the AIC criterion

is the 2RM model closely followed by the 2PC model.
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The maximum likelihood estimates of the age dependent
2PC model are given in Table 2. The 2RM model shows a similar
picture. It is seen that the easiness of the partial response
ard the correct response changes positively for some items
and negatively for other items. For example item 13, showing

bags with different amounts of candy, becomes relatively more

TN,

easy as children get older.
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%L
N APPENDIX I: The Dichotomous Rasch Model. 7
: Using ISF a (Figure 1) with Model (1) we obtain: ;

exp{8; + ¢35(1)}
exp(010+¢j(0)) + exp(01+¢j(1))

Pj(xi:):l |01)

exp{ei - 53)

1+ exp(’éi— 83)

.

» ' : w1 o » :
it e n e Wm0 Laihnb e s 0 29y 3 e

where 83 = (¢5(0) - ¢5(1)). This is identical to the

dichotomous Rasch model.

B Sl T .
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APPENDIX II: The Partial Credit Model.
Since there is only one latent trait, the subscripts q
are omitted. With ISF (c) model 1 becomes

exp{0;ix + ¢j(x))

Pj (Xi:):xlei) =

T
T7 expibyy + 63(1))
y=0

.

o 1™ e Xl Pl Wt 25 0 A A

Dividing numerator and denominator by exp{¢j(0)) and writing
\yj(x) = (¢j(!) - ¢j(0)) we obtain:

ALK S LA

exp{éix 4 \llj(!))
I
¥ J

Pj (Xi:):x]ei) =

»

exp{0;iy + V3(M}

B
)
&
M

f,
¢
e
3
5
{

x
exp{X (0;-041)
1=1 i3

e T A

T
1+2X J exp{I? (03-5841)}
y=1 1=1

where

X
8ix = 2 845 - 2 8:1 = —=(y3(x) - yy(x-1))
=T 81 -2 81 = —vy0 - vy

which is the Masters (1982) model.
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Andersen’s (1973) Rasch model for polytomous responses.

‘ 22
Using ISF (d) (Figure.1) in (1) yields
exp {0jp+ ¢4(p)}
P(X;4=p|63) = P~ )
I
by 31 GXP(eig + ¢3(P))
exp (85— 84p)
S epiagg - 8 )
exp - 3
A g=1 ig = Vg :
L with 857 = 0, where Sdp = -¢3(p), which is eqpivalent'to

. 27
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Subgroup Invariant Param. Subgroup Dependent Param.

Difference

# of param. # of param. AICC IR

DF p-value
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Response Effect Response X Age Effect ?
“ Partial Response Correct Response
j Part.R. Corr.R. 4-5 5-5.5 5.5-6 45 5-5.5 5.5-6
1 o0.85 2.39 -~ 0.52 0.17 - 1.36 0.10 3
3 2 1.00 ~1.00 - -0.94 -1.50 - -0.43 -1.14 :
3 2,35 278 - 0.21 0.26 - 1.00 -0.00
i 4 0.58 2.77 - =0.96 0.42 - <0.90 -0.03 2
3 5 2.36 3.42 - -1.51 -2.19 - —0.83 -0.54
i 6 -0.41 -0.27 - 1.25 2.30 - 0.17 1.39 }
s 7 -0.96 -2.15 - 1.35 1.82 - 1.80 2.75
¥ 8 -1.76 -0.43 - ~-1.72 0.49 - 0.57 1.32 © %
¢ 9 -0.42 0.47 - 1.25 2.10 - 1.06 2.82 i
3 10 0.63 -1.09 - 1,36 2.60 - 1.52 2.77
3 11 1.02 1.47 - 0.82 0.11 - 1.03 0.25 z
12 0.77 1.95 - 1.27 1.88 - 1.26 2.20 3
: 13 1.18 -1.49 - 1,70 2.53 - 2.96 4.86
: 14 0.16  1.53 - 0.64 0.52 - 0.92 1.27
15 2.42 -0.19 - 1.2 0.9 - 0.87 1.47
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