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Abstract

A loglinear IRT model is proposed that relates

polytomously scored item responses to a multidimensional

latent space. Each item may have a different response

function where each item response may be explained by one or

more latent traits. Item response functions may follow a

partial credit model (Andrich, 1*8; Masters, 1982) a

multidimensional Rasch model (Rasch, 1961; Andersen, 1973,

1983) or other :orms of response functions to be defined by

the user. Conditional maximum likelihood estimates are

derived and the models may be tested generally or against

alternative loglinear models. The latter tests are sensitive

to deviations from local independence subgroup invariance or

assumptions about the form of the operating characteristic

curves.

Key words: Multidimensional item response theory, Loglinear

model, polytomous responses, graded response

models, goodness of fit testing.



Polytomously Scored Items

2

Loglinear Multidimensional IRT models

for Polytomously Scored Items

Loglinear models have been used for the estimation and

testing of IRT models (Cressie and Holland, 1983; Duncan,

1984; Kelderman, 1984; Tjur, 1982). They have proved useful

in the solution of practical psychometric problems such as

item bias detection (Kelderman, 1985) and equating

(Kelderman, 1986). All loglinear IRT models considered so far

are dealing with a one dimensional latent trait and

dichotomously scored items. In many testing situations,

however, different subjects may give responses that differ in

psychologically weaningful ways. To produce one answer may

require quite another ability from the examinee than tv

produce another answer. And even if both responses are

related to the same latent trait, one response may be more

difficult to give than another or one response may require

the repeated application of the same ability whereas another

response may require only a single application of that

ability.

In the present paper, a loglinear IRT model is proposed

that applies to the situation of polytomously scored test

items that may be explained by a multidimensional latent

space. The flexibility and generality of loglinear IRT

modeling enables the analyst to formulate a model that is

precisely tailored to the particular items in the test. In

the proposed model each item may have a different number of

response categories each of which may be relates in a

7
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different way to the latent traits. Item response functions

may be specified according to a multidimensional Rasch model

(Rasch, 1961; Andersen, 1973, 1983) or to a graded response

model (Andrich, 1978; Masters, 1982) or another response

function to be defined by the user. The usual assumption of

local independence of the item responses given the latent

traits is made. The parameters are estimated by the

conditional maximum likelihood method and the models are

tested either generally or against special alternative models

that contain parameters describing deviations of local

independence, subgroup invariance and the specified operating,

characteristic curves.

The Model

Suppose that each of N subjects respond to k test items

where the answers of subject i to item j may be any of rj+1

responses xij (xij=0,..,rj). The response pattern of subject

i on all k test items is denoted by the vector xi = (xii,

xi2 xik. The corresponding random variables are denoted

by capital letters Xij and Xi. Let Oiq be a value of subject

i on a latent ability continuum q=1 ..... s and let Oi =

(0i1.0i2.,9is) be the vector of ability values.

To produce a score xij on item j, subject i must perform

certain operations where each operation depends on a certain

proficiency on a latent trait. For example to produce a

correct answer on the item "What is the square root of
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fifteen minus six?", involves three operations. First, the

expression J(15-6) must be obtained from the verbal

formulation. Second, the subject must make the subtraction

15-6=9. And finally, the square root J9=3 must be taken. It

may be hypothesized that to perform the first operation

successfully, the subject must have a certain level on a

verbal ability trait Oil, and to perform the second and the

third operation, a latent numerical ability 0i2 is needed.

Producing tho correct answer '3' requires ability Oil once

and ability 0i2 twice. Producing the partially correct

response '9' requires ability Oil and 0i2 each once.

Producing the formula '1(15-6)' requires only Oil.

Let Bjq(x) be the number of times that a person has to

apply latent trait q to produce a response x on item j and

let 4i(x) be a parameter describing the easiness of response

x of item j. The probability that subject i has a response x

on item j can now be written as:

(1) P(Xii=x) -

exp( E Oia Bjq(x) + 4,i(x))
q=1

rj
E exp( E Oia Bjq(y) + 4,i(y))
y=0 q=1

By choosing the functions Bjc4(.), different models can

be chosen for the dependence of item responses on latent

traits. In the sequel, the function Bjq(x) for x=0,...,ri

and q=1,...,s will be called the item scoring function (ISF)

of item j.

9
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Figure 1, gives some examples of item scoring functions

at might be employed in model (1). In figure 2 each of

hese ISF's are showed in a diagram, where a latent variable

s depicted in a circular box and an observed response in a

quare box. An arrow is drawn from a latent trait to an item

response if that response depends on the latent trait. The

value next to the arrow denotes corresponding value of

Bjq(x).

ISF (a) describes the dichotomous Rasch model. A wrong

response (x=0) is scored B31(0)=0 and a correct response

(x=1) is scored Bj .1(1)=1 indicating that a successful

application of trait 1 is required. It is easily shown that

with ISF (a) model (1) reduces to the dichotomous Rasch model

(see Appendix I)

In ISF (b) three responses are scored where response x=0

corresponds to a wrong response and the responses x=1 and x=2

are both right responses involving one successful application

of the latent trait. Both responses, however, may not be

equally likely as the parameters j(1) and j(2) may differ.

ISF (c) describes the partial credit model (Andrich,

1978; Masters, 1982)(see Appendix II). The response x=2 has

the score 2 indicating that the latent trait has to be

applied twice to obtain the correct answer. The response x=1

corresponds to a partial answer, for which the latent trait

has to be applied only once.

In ISF (d) through (h) two latent traits are involved.

In ISF (d) the response x=1 and x=2 each depend on a

different latent trait. This is the multidimensional Rasch

10
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model described by Rasch (1961) and Andersen (1973)(see

Appendix III). In ISF (e) each response depends on its own

latent trait but the item scores are not all equal to one.

This model corresponds to Andersen's (1983) generalized Rasch

model.

ISF (f) describes a multidimensional partial credit

model where each operation depends on a different latent

trait. The correct response x=2 requires two operations

depending on latent trait Oil and 0i2 respectively. The

partial response x=1 requires only one operation depending on

the latent trait Oil. This might be an alternative ISF for

the item 1(15-6) where the first latent ability is

subtraction and the second later,: trait is taking the square

root.

Obviously a combination of (c) and (f), where there are

different latent traits but some operations depend on the

same latent trait, is also possible. ISF (g), for example,

may model the item 1(20-5-6) where there are two subtractions

and one square root.

ISF (h) is a two dimensional model for a dichotomous

item. Finally, ISF (i) is the null function. The variable

does not measure an underlying latent trait. This ISF may be

used to add background variables (e.g. sex) to the model.

Adding background variables may be useful to study subgroup

invariance of the psychometric model. This will be discussed

in the section on goodnessoffit testing.

We have discussed some examples of ISF's. There may be

many more ISF's than are shown here that make sense in a
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particular application. Also in one test each item may have

its own ISF.

Estimation

N,

Assuming local independence, the simultaneous distribution of

Xi = (Xii, Xik) given Oi is

(2) P(%i = xilei) =
j=1

P(XJ = x ei) =

exp as 9 t + (x » . 11 c-1(9
j
)

q=1 iq iq j=1 j=1

where (0i = 00j(0) ..... (0j(ri)),

and

c(0i, (0j) = Er'' expa! 9 B (y) + (1))
y=0 q=1 iq

tic/ = E By/(x ii)
j=1

q = 1, s

Note that (2) is an exponential family model and the

sums of scores tn, tis are sufficient statistics for

the latent ability parameters Oil, Ois That is, all

12
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information about those latent ability parameters is

contained in the sums of scores, The simultaneous

distribution of the sum sc, e variables taking values ti =

(tn. ...tis) is

(3) f(t 10 ) = E f(x.10i) =
xilti

k
y(ti. 0) . exp(n eigtiq) n c-1(6. j)

q=1 J =1

with

k
(4) y(ti. 0) = E exp{E jocip}.

xilti J=1

where 0= (01. 4) and where Exit means summation over

those values of x
i

for which (/ B
j1

(x ) yjs(xi)) is

equal to ti. The conditional distribution of Xii. Xik

given tn, tis is

(5) P(Xi = xilti) = = xilti) / f(til0i)

k
= exP {I 0 (x )} / y(ti. 0).

J =1

which does no longer depend on Oi.

If it is assumed that individuals respond independently

cf one another. model (5) describes a multinomial

13
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distribution of the response patterns x for each score

pattern t. where the subject index i is dropped.

Let

(6) mxt = Nt2(x=x1t)

xi = 0, ..., ri; ...; xk = 0, ..., rk; x = (xi, ..., xk)

ti = E B (x ); ...; is = E B, (x, ); t = (t1 s) )

j=1 j=1 js j

be the conditional expected frequency of the response pattern

x given score vector t and let fxt be the corresponding

observed frequency. Taking logarithms we have the loglinear

model:

(7) log mxt = at ,i(xj)'

where at = log(y(t, )/Nt) is a fixed normalizing constant

and the parameters i(xj) (j = 1. k; xj = 0, ..., rj)

are considered random parameters.

Model (7) is a quasiloglinear model for an incomplete

item 1 x item 2 x x item k x score 1 x x score s

contingency table. The table is incomplete because the cells

for which tq * Blq(xl) + B2q(x2) + + Bkq(xk) are

structurally zero (Bishop. Fienberg and Holland, 1975; see

5.4; Haberman, 1979, see 7.3).

Unless further restrictions will be set on the 0

parameters they will not be identifiable. To formulate

identifiability conditions for model (7) first rewrite it as

14
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where log is an element-wise operator and mt is the vector

of expected counts with sumscores t, = (.1(0), ..., .1(r1),

k(0), .k(rk)) and Dt is the design matrix with

zero's and ones in the appropriate places. The identifia-

bility criteria are then (Imrey, Koch and Stores, 1981)

(9) rank [1 Dt] = 1 + rank [Dt]

and

(10) rank [D] = a

where D' = [D'0, D'tmax] and a is the number of columns

of D, i.e. the number of parameters.

Condition (10) ensures that the 4 parameters are not

linearly dependent upon each other and condition (9) ensures

they are not linearly dependent on the sumscore parameters.

If D does not satisfy these identifiability conditions

certain columns must be removed, which is equivalent to

setting the corresponding parameters to zero. To derive the

likelihood equations, it is assumed that the identifiability

conditions are met.

The conditional likelihood of model (7) is

15
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(11) Lc = log nit rixitt( Nt! P(X = xlt)fxt) / fxt!])

= It IxIt (fxt(j.1 (xi) y(t . 0)) + constant

Xj

=
j 1

$ (xj) f
xj t

N
t

'y(t. $) + constant.
=

11

X
where f xi 4 is the marginal observed frequency of response xj

on item j.

Model (11) is an exponential family model with

sufficient statistics f xXi . Maximum likelihood equations can

be obtained by taking the derivatives of the loglikelihood

for $ and setting them to zero. This yields the equations

(Andersen. 1980; Haberman. 1975)

(12) f
Xj

= mgt
xj xj

T
f = N .

t t

xj = 0 ..... rj; i = 1 ..... k.

V t .

Solving (12) for the parameters 0j(xj) yields maximum

likelihood estimates of the parameters.

The system (12) can be solved iteratively by a Newton

Raphson Algorithm (Adbey and Dempster. 1974) or iterative

proportional fitting (IPF) (Goodman. 1968; Bishop et all.

1975. p.189). Kelderman (1987) uses a version of IPF that

does not require to internal storage of the full table of

observed and expected counts and use's a special algorithm

that considerably reduces the amount of computation to obtain

16
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expected marginal tables. The method is implemented in the

LOGIMO (Loglinear IRT modeling) program.

Standard errors for the parameter estimates can be

obtained by taking the inverse of the Fischer information

matrix I which has elements

(13)
d2log Lc

d $j(x) d $1(y)

j = 1. k; 1 = 1. k; x = 0, rj; y = 1. . . ri

where j-* 1 or x * y.

The Fischer information matrix I provides a practical

Lcthod of checking the identifiability of the model. A

poibly indeterminate solution can be obtained via the IPF

algorithm, since IPF does not require the model to be.of full

rank. This solution can be used to calculate the information

matrix I. If I is not of full rank, rows (and columns) that

are linearly dependent on the preceding columns may be

successively deleted from the matrix I until a full rank

matrix is obtained. The parameters corresponding to the

deleted columns are not identifiable and they are removed

from the model by setting them to zero.

Testing

The overall goodness of fit of model (1) can be tested

by the Pearson statistic

17
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or the likelihood ratio statistic

(15) G2 = 2 fxt ln(mxt / fxt).

Polytomously Scored Items

13

Both statistics are asymptotically distributed as chi

square with degrees of freedom equal to the difference

between the number of logically nonzero cells and the number

of estimable parameters. If any of the expected counts become

to small, however, the approximation of the distribution of

X2 and G2 by a chisquare distribution becomes inappropriate

(Lancaster, 1961; Koehler, 1977, 1986; Larnz, 1978). Although

the distribution of X2 is generally closer to chisquare than

G2 (Cox and Plackett, 1980; Larnz, 1978). The traditional

criterion for the size of ths expected counts is five but if

the distribution is smooth the minimum expected count could

be as small as one (Cochran, 1952).

This, however, would still mean that the overall

statistics (14) and (15) are only useful with small numbers

of items. Suppose for example we have ten trichotomous items.

We would have 59049 non logicallyzero counts.

If the number of items is large, we choose to test the

model against specific alternative loglinear models that

contain model (7) as a special case and also contain

parameters describing a particular deviation. Let m*xt denote

18
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the expected counts under a particular alternative model. The

likelihood ratio test statistic is then

(16) G2(m,m *) = -2(Lc-L*c)

and is asymptotically distributed as chi-square with degrees

of freedom equal to difference in numbers of estimable

parameters of both models. Any loglinear model (8) that

arises by extending the design matrix D with columns'and

extending the parameter vector with parameters might be

chosen as alternative model, provided that the

identifiability conditions (9) and (10) are met.

Three types of alternative models may be used, models

that are sensitive to deviations from the operating

characteristic curves, models that are sensitive to

violations of the local independence assumption and models

that are sensitive to deviation of subgroup invariance.

In the first type of the model, parameters describing an

interaction between one or more sum scores tq and an item

response xj may be added to model (7). For example, the model

(17) Log mxt = at + E Si(xj) + $qj(tqxj)
j=1

contains a model term $qj(tqxj) describing the interaction of

the score tq and item response xj comparing (17) against (7)

using the likelihood-ratio test (16) yields a test for ',he

hypothesis that this term is different from zero. It means
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that the operating characteristic curve of this item with

respect to latent trait q deviates from that expected by the

model. If one wants to look only at the operating

characteristic of one answer category, say y, the parameter

may be set to zero for all other item responses xj * y, the

model

k
(18) log mxt = at E

=1
(x

j
) +

j1
(x

j
x
1

)

j

may be compared with model (7). The parameter 43l(xix1)

describes an interaction between both items that cannot be

explained by the original model. Terms describing the

interactions between other item pairs of items and terms

describing triplets of items may be added to the models.

If xj is not an item but a subgroup variable the term

(x 3x
1

) in model (18) describes deviations from subgroup

invariance of item 1. In that case the item scoring function

of item xj must be the null function (see Figure 1(i)). If

43l(x3x1) is not zero, the parameters differ from subgroup to

subgroup. These subgroupdependent item parameters may be

used to study item bias with respect to, for example, ethnic

group or sex.

Like the loglinear IRTmodel alternative loglinear

models may be estimated by solving likLlihood equations of

the form (12) where again the sufficient statistics of the

extra parameters are set equal to their expectations, in

terms of the parameters.

20
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Likelihoodratio tests can be used to compare the fit of

two models if one model is nested within another model. If

two models are not nested, Akaike's (1977) information

criterion is used:

AIC = G2 + 2 (# of parameters) + C,

where C is a constant that is the same for all models fitted

to the same data. The model with the smallest AIC (or AICC)

is chosen as the best fitting model.

An Example

Van Kuyk (1988) developed a test to identify learning

problems in children from four to sixandahalf years old.

The tests measures the application of antonimic dimensional

size concepts such as longshort, highlow, thickthin (see

Figure 3). Fifteen items are administered to 66 children of

age 4 to 5, 132 children of age 5 to 5.5, and 65 children of

5.5 to 6 years old.

The figures were shown and pointed at by the test

administrator, while (s)he said "here you see some shirts,

they gradually become a bit ... (shorter)". the answer was

rated correct if the right size concept (e.g. longshort) was

given and was correctly applied (e.g. shorter rather than

longer). Small children may be unable to produce the correct

specific concept (e.g. longshort) but use the general size

21
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concept 'big-small' instead. If 'big-small' is correctly

applied (e.g. the shirt is smaller) the answer is rated

partially correct. All other answers are rated incorrect.

Three ISF are applied to this data: the one dimensional

partial credit model (1PC, Figure 1c), the two dimensional

partial credit model (2PC, Figure lf) and the two dimensional

Rasch model (2RM, Figure 1d). In the 1PC it is hypothesized

that one spatial ability has to be applied twice to obtain

the correct answer: once to know the extensiveness of the

objects (e.g. small or large) and once to identify the

correct dimension (e.g. short-long).

In the 2PC model both processes are supposed to depend

on distinct abilities, an extensiveness ability and a

specific concept ability. To produce the correct answer both

abilities have to be applied once. To produce the partially

correct answer (small) only the first ability is needed.

Finally in the 2RM model two latent abilities are

conjectured: a general extensiveness and a specific

extensiveness ability. The general extensiveness ability is

applied to get the partially correct answer and the specific

extensiveness ability is sufficient to produce the correct

answer. The difference between the 2PC and the 2RM model is

that 2RM does not require an application of a general

extensiveness ability to produce the correct answer but the

2PC does.

For all three ISF's two models are fitted: model (7)

where the item response parameters are invariant over

subgroups:

22
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with constraints $j(0) = 0. i = 1. 16. and model (18).

where the item response parameter vary from subgroup to

subgroup:

(20) log mxt = at + 401(x1) + + 4015(x15) + $16(x16)

401.16(xix16) + + 4015.16(x15.x16)

with constraints $j(0) = 0. i = 1. 16 and Sj.16(0.x16) =

$j16(xi.1) = 0. i = 1. 15. Thus the parameters are

normed such that $j(xj) (i = 1. 15) are the item

response parameters in the youngest age group (-x16-1) and the

Sj.16 (xixits) are deviations of those parameters for older age

groups.

Table 1 presents the test results of the six models. It

is seen that the subgroup dependent versions of the models

have a significantly better fit than the subgroup invariant

versions. The likelihoodchisquare statistics are all very

large relative to the degrees of freedom.

Since the 1PC. 2PC and 2RM models are not nested their

fit is compared with Akaike's information criterion. The AIC

values are given plus a constant to produce a relative small

number. The best fitting model according to the AIC criterion

is the 2RM model closely followed by the 2PC model.

23
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The maximum likelihood estimates of the age dependent

2PC model are given in Table 2. The 2RM model shows a similar

picture. It is seen that the easiness of the partial response

and the correct response changes positively for some items

and negatively for other items. For example item 13, showing

bags with different amounts of candy, becomes relatively more

easy as children get older.

24
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APPENDIX I: The Dichotomous Rasch Model.

Using ISF a (Figure 1) with Model (1) we obtain:

Pj(rij=110i) -
erp(Oi + .j(1)}

exp{0i0+.j(0)} + exp(Oi+,j(I)}

exp(Oi 8j)

1 + expk 8j}

20

where Sj = (.j(0) ,j(1)). This is identical to the

dichotomous Rasch model.

25
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APPENDIX II: The Partial Credit Model.

Since there is only one latent trait, the subscripts q

are omitted. With ISF (c) model 1 becomes

Pj(Xii=x18i) =
exp{8ix + ,j(x)}

riI " exp{8iy + 41J(y)}
y=0

Dividing numerator and denominator by exp{$J(0)} and writing

41)(x) = ($j(x) $j(0)) we obtain:

where

exp{Oix vi(x)}
PJ(Xij=xI8i) =

ri
m exp{8iy + vi(y)}

y=0

exp{2c (01.4j1)
1=1

ri
1 + E " exp{Y (01.-8j1)}

y=1 1=1

x-1832c=e8j1E:
8'11

=(ylj(x) xifj(xl))
1=1 1=1

which is the Masters (1982) model.

26
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APPENDIX III: Rasch's C19611 Multidimensional Model

Using ISF (d) (Figure.1) in (1) yields

P(Xij=p10i) =
exp (0ip+ j(p))

I '
exp(Oig + ,j(p)}

g=1

exp 0ip 8jp)

ri

g=1
exp(Oig 8jg )

22

with Oil = O. where 8jp = -40j(p). which is equivalent to

Andersen's (1973) Rasch model for polytomous responses.

27
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Tattle 1

ess of Fit Statistics for Six Models on the Buyk Data

- - -

Itim Subgroup Invariant Param. Subgroup Dependent Param. DifferenceS6ring
Ohation LR # of param. AIC-C LR # of param. AIC-C LR DF p-value

3436.51 108 652.51 3280.01 165 610.01 156.50 57 .00

20C 3298.51 152 602.51 3141.92 209 559.92 156.59 57 .00

Pd3291.86 156 603.86 3132.94 213 558.94 158.92 57 .00 o

31



Polytomously Scored Items

27

Table 2

Parameter Estimates of the Age Dependent Two Dimensional

Partial Credit Model (2PC)

j

Response Effect Response X Age Effect

Partial Response Correct Response

Part.R. Corr.R. 4-5 5-5.5 5.5-6 4-5 5-5.5 5.5-6

1 0.85 2.39 - 0.52 0.17 - 1.36 0.10
2 1.00 -1.00 - -0.94 -1.50 - -0.43 -1.14
3 2.35 2.78 - 0.21 0.26 - 1.00 -0.00
4 0.58 2.77 - -0.96 0.42 - -0.90 -0.03
5 2.36 3.42 - -1.51 -2.19 - -0.83 -0.54
6 -0.41 -0.27 - 1.25 2.30 - 0.17 1.39
7 -0.96 -2.15 - 1.35 1.82 - 1.80 2.75
8 -1.76 -0.43 - -1.72 0.49 - 0.57 1.32
9 -0.42 0.47 - 1.25 2.10 - 1.06 2.82
10 0.63 -1.09 - 1.36 2.60 - 1.52 2.77
11 1.02 1.47 - 0.82 0.11 - 1.03 0.25
12 0.77 1.95 - 1.27 1.88 - 1.26 2.20
13 1.18 -1.69 - 1.70 2.53 - 2.96 4.86
14 0.16 1.53 - 0.64 0.52 - 0.92 1.27
15 2.42 -0.19 - 1.24 0.91 - 0.87 1.47
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Figure Caption

Figure 1. Examples of item scoring functions.

Figure 2. Diagrams for the item scoring functions in Figure 1

Figure 3. An item from nyk's size concept test.
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