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Abstract

This study examines the abstractness of children's mental representation of counting, and

their understanding that the last number word used in a count tells how many items there are

(the cardinality principle). In the first experiment, 24 2- and 3-year-olds counted objects.

actions, and sounds. Children counted objects best, bi it most were also able to count actions

and sounds. This shows some ability to generalize counting to novel situations, suggesting

that at a very young age, children begin to develop an abstract, generalizable mental

representation of the counting routine. When asked "how many" following counting, only older

children (mean age 3:6) gave the last number word used in the count a majority of the time.

suggesting that before this age children do not understand the cardinality principle. In the

second experiment, the same children were asked to give a puppet 1, 2, 3, 5, and 6 items from

a pile. The older children succeeded at this task for all the numerosities, and spontaneousl

counted how many items they gave, showing a clear understanding of the cardinality pnnciple.

The younger children succeeded only at giving 1 arid sometimes 2 items, and never
spontaneously counted: this suggests that they were simply recognizing the correct number

when asked for 1 or 2 items, not using the cardinality principle. In the third experiment, 18 2-

and 3-year-olds were asked several times for 1, 2, 3, 5, and 6 items, to determine the largest

numerosity at which each child could succeed. Results indicate that children learn the
meanings of smaller number words before larger ones within their counting range, up to the
number three or four. They then appear to make a general induction that every number word

within their counting range refers to a specific numerosity. This induction occurs in
conjunction with children's acquisition of the cardinality principle at about 3-and-a-half-years
of age.
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Children's Understanding of Counting

Because counting Is one of the very earliest number-related activities, it may shed light

on the young child's concept of number. Much research currently revolves around whether

domain-specific knowledge of number underlies children's counting. or whether it is through

general cognitive capacities that children learn to count, and thus come to understand
number. The two main theories regarding this question are outlined below.

'Principles-Before' Theory

There has been growing interest over the past 15 years in a domain-specific theory of the

basis of counting. developed by Gelman and her colleagues (e.g. Gelman & Gallistel. 1978.

Gelman & Greeno, 1987; Gelman & Meck, 1983; Gelman, Meck & Merkin, 1986: Greeno, Riley

& Gelman, 1984). The claim (outlined in detail in Gelman & Gallistel, 1978) is that there are

innate, number-specific principles that underlie children's ability to count. The following

"How-to-count" principles define the counting procedure: The One-to-one correspondence

principle states that there must be a one-to-one correspondence between things to be counted

and number words (or, more generally, between things to be counted and members of the set of

symbols used for counting); the Stable-Order principle states that the set of symbols used to

count with (e.g.. number words) must have a fixed order in which they are consistently used:

and the Cardtnality principle stipulates that the last number word used in a particular count

represents the numerosity, or cardinality, of the collection of items counted.' These principles

exist before children have any experience with counting, and do two main things for children.

First, they define the equivalence class of correct counting behavior, allowing children to

recognize and group together all instances of counting as a specific kind of activity. Second,

they serve as guidelines for counting, so that children can initiate, monitor, and correct their
own counting.

'Principles-After' Theory

Briars and Siegler (1984), Fuson (1988), and Fuson and Hall (1983), among others, are

advocates of the following account of children's counting: Young children first learn counting

as a routine activity. Counting is modeled for them by parents, teachers, etc., and they begin

4
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to imitate it. At this point it is an activity without meaning. much like a game of patty-cake.
Children do not distinguish between different components of the counting routine; all
components are equally essential. They must learn different routines for different counting
contexts; counting objects arranged in a circle, for example. entails a different procedure than
counting objects in a line. Once they have learned many such routines, children eventually
generalize over all these routines, abstracting out what all have in common -- namely. the
counting principles. Only after this has happened do children have principled knowledge.

On this view, how do children come to understand that counting is related to
numerosity? Children cannot learn why we count (to determine numerosity) just by learning
how we count. Subitization, the ability to recognize some numerosities without having to count
them, may be at the root of this accomplishment. Adults and children can subitize small
numerosities, up to four or five for adults and two or three for 3-, 4 -, and 5-year-olds (Chi &
Klahr. 1975: Schaeffer. Eggleston & Scott, 1974; Silverman & Rose, 1980). It has been
suggested (Klahr & Wallace. 1973. 1976) that by applying the initially meaningless counting
routine to sets of items within the subitizing range, children come to associate words (e.g.
"one", "two ", "three") with those numerosities they can recognize (e.g. one, two, three), and thus
come to relate the counting activity with the concept of numerosity.

At issue in the above debate is the very young child's mental representation of the
counting routine. If it is represented in terms of abstract components. such as the counting
principles, as the Principles-Before theory states, then it can potentially be generalized to a
wide variety of dissimilar tasks. If, however, it is represented as a specific procedure, in terms
of a series of precise, concrete steps as the Principles-After theory states, then it will not be
widely generalizable because different tasks require different procedures. Examining the
extent to which children can generalize their counting to new contexts can therefore shed light
on the form of representation of the counting routine.

It has been shown that children as young as 3-and-a-half can catch and correct genuine
errors that a puppet makes in counting, in which the puppet violates one-to-one
correspondence, fails to use the standard stably-ordered count list, or gives a number other
than the last tag used when asked, after a count, how many objects there are. More
interestingly, they can distinguish these genuine errors from unusual but correct counts by the
puppet which, while differing significantly from a 'normal' counting routine, remain true to the
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counting principles (e.g., starting a count in the middle of an array of objects, proceeding to the

end of the array. then going back and counting the remaining objects; or counting every

alternate object, then turning around and counting back the other way, getting the ones

missed) (Gelman & Meck. 1983; Gelman et al., 1986). Thus children are applying knowledge of

counting to these apparently novel counting situations. However, these results have not been

consistently obtained (Briars & Siegler, 1984). Furthermore, although the "correct but
unusual" ways to count were chosen to be novel to the children, it is quite possible that
children may have seen things counted out of order at one time or another. In fact, the
counting contexts in these experiments were quite similar to those children encounter when

being shown how to count; they all consisted of counting objects arranged linearly, of roughly

the same size and proximal distance, with merely the order of counting altered. Finally, the
mean age of the younger children in these experiments was over 3-and-a-half. Some children
start learning to count as early as their second birthday. It is therefore possible that these
experiments reflect knowledge /earned about counting rather than knowledge underlying the
learning of counting.

As a more stringent test of children's counting abilities under novel circumstances,
consider all the types of entities other than objects that are countable: sounds, actions.
abstract entities such as thoughts or mental representations, properties of objects, etc. There
have been only a few studies of children's counting of entities other than objects. To determine

how much of the list of number words their subjects could recite, Schaeffer et al. (1974) asked
children to count to taps of a drum, saying a number word in time with each tap, for up to 10
taps. If the child increased the pace of saying the numbers, the experimenter increased the
pace of drum tapping. The mean number of taps that their younger two groups of children
(mean ages 3:5 and 3:8) counted to was about 6.5. In comparison, these children counted sets
of 1 to 4 objects correctly about 74% of the time, and sets of 5 to 7 objects correctly 43% of the

time. They thus appear to count drum taps and objects about equally well, which suggests
that they have an abstract, generalizable representation of counting. However, it is not clear
what children considered the task to be -- we ;*e they actually counting the drum taps, or were

they simply reciting a list in time to the beat of the drum?

In another set of experiments, children's counting of parts and properties of objects was
examined (Shipley & Shepperson, 1988). When some of the objects in the array of, e.g., cars,

6



Children's Understanding of Counting
6

to be counted were cut in half, children under about 5 years of age. when asked to count the

cars, tended to count each individual item rather than each complete car. When children
(mean ages 3:1 and 3:8) were asked to count attached parts of objects, such as the total
number of ears on several toy bears, they frevently either counted the number of ears
separately for each bear ("one, two, one, two, -M. or counted the number of bears rather than

ears. When children (mean age 3:11) were asked to count properties of objects (the number of

different color, sizes, or kinds of objects). they instead predominantly counted trie individual

objects, though performance improved with tutoring. Children thus showed a strong bias to
count physically separate entities and/or discretewho':: objects rather than parts or properties
of objects. This could be because children's counting routine is usually applied to separate
discrete objects. and children may represent this as an integral component to the c -minting

routine and are therefore unable to generalize their counting to entities other than separate
objects. Alternatively, it could be that young children have a general bias to interact with
discrete physical objects that is not limited to nor derived from counting. Further experiments

(Shipley & Shepperson. 1988) support the hypothesis that children have a general discrete
object bias, so children's poor counting in these experiments is not necessarily due to lack of

an abstract, generalizable representation of the counting routine.

It would be interesting to see whether 2- and 3-year-old children can generalize their

counting to novel situations, by comparing children's counting of objects (a familiar counting

context) with their counting of actions and sounds (novel counting contexts). The counting of,
e.g., rings of a bell is different from counting objects arranged in a row in several important
respects. Objects have material existence and can be seen, touched, and pointed to, while
sounds are not visually but aurally accessible. Objects have continuous existence and are
separated from each other in space, while sounds have a momentary existence and are
separated from each other in time; one can therefore choose the order in which to count
objects in a way that one cannot for sounds, which are already temporally ordered. Perhaps

most importantly, one has perceptual access to the entire set of objects to be counted
simultaneously, while one has perceptual access to only one element at a time of the set of
sounds to be counted, and cannot anticipate the final element in the set. Thus the procedural

requirements for counting sounds (and actions) are very different from those for counting
objects. If children can count sounds, then, they must be representing the counting routine at
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a relatively abstract level.

However, even if it turns out that young children do have an abstract representation of

the counting routine that honors principles of counting, they may not have a set of
number- specfic counting principles. Children may be capable of representing some abstract

components of the counting routine, such as one-to-one correspondence, without having any

knowledge of number. Children as young as 2 years old honor one-to-one correspondence in

many situations -- they can point to each picture in a page exactly once when asked to (Potter

& Levy, 1968), can give one cookie to each person in the room, can name each person in a

photograph exactly once while pointing, e.g., "Mummy, Daddy, me!", can put one sock on each

foot or one spoon in each dish, can learn turn-taking games, etc. In some sense it appears

that children know that they must point to each picture on the page exactly once; that they

must name everybody, and that once is enough; and that everyone must get exactly one cookie.

As these kinds of tasks vary so widely and occur so frequently in children's activities, it is very

likely that children have a general cognitive ability to recognize and represent a one-to-one

correspondence between two sets of entities. Similarly, children exhibit sensitivity to a stable

ordering of entities every time they recite the alphabet, learn a stable ordering of actions such

as, say, a game of patty-cake, learn the list of the days of the week or the months of the year,

or learn a nursery rhyme. Children are capable of easily and quickly recognizing and

representing stable orderings of words or events at a very young age. Thus, studying whether

young children represent the one-to-one correspondence and stable-order principles in

counting will distinguish between the Principles-Before theory and the Principles-After theory

only if it turns out that children do not represent them; if children do represent these principles

as part of counting, it could be either because they have unlearned knowledge of counting, or

because of their ability to recognize and represent these principles as components of many
activities.

The cardinality principle, however, is qualitatively different from the other two
How-to-count principles. It is relevant only to counting, not to other activities; this is true by

definition of the cardinality principle. An understanding of the cardinality principle depends

on an understanding of the significance of the counting activity, that counting determines

numerosity. Thus the ultimate test of the two theories must concentrate on whether very

young children do in fact understand cardinality. It is entirely possible that young children
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mentally represent one-to-one correspondence as part of the count:ng routine, and know the
correct order of the counting word list, but do not at first connect this routine with any concept
of numerosity, If children understand the cardinality principle, however, they must be granted
number-specific knowledge of counting.

It has been considered evidence of possession of the cardinality principle (Gelman &
Gallistel, 1978) if children (a) emphasize the last tag used in a count, (b) repeat the last tag
used in a count. (c) state the correct numerosity of a set without counting after that set has
been counted earlier, or (d) respond with the correct number word without counting when
asked how many items there are. It has been found that most children as young as
2-and-a-half display one or more of these behaviors at least sometimes when counting sets of 2
or 3 items (Gelman & Gallis`Lel, 1978). However, repeating or emphasizing the last tag, or
stating the correct numerosity without counting after the set has been counted previously,
could result simply from imitating adult counters, who tend to emphasize, repeat, and
otherwise direct attention to the last tag when instructing children in counting. Emphasis of
the last tag could also simply be signalling the end of the routine. Just giving the correct
number word when asked how many items there are could indicate that a child associates a
particular number word with the perception of that numerosity (i.e., that a child has subitized
the set without counting), which does not require an understanding of the cardinality principle
(e.g., Fuson & Hall, 1983). Also, children often produce wrong number words when asked how
many items there are. Given that the sets were of only 2 or 3 items, and that children are
more familiar with number words that refer to small numbers and are therefore more likely to
produce them, if children were responding with random number words one would expect that
occasionally they would respond with the right one. Thus none of these behaviors is a clear
indication of possession of the cardinality principle.

Some studies, however, do offer more conclusive evidence of children's possession of the
cardinality principle. In one experiment, children were shown cards with different numbers of
items on them and asked how many things there were on each card. They used words for
larger numbers to describe larger numerosities, even if the number of items on a card was too
large (up to 19 items) or the exposure time of the card too short (as little as 1 second) for the
child to accurately determine the numerosity (Gelman & Tucker, 1975). These children thus
apparently understood that a number word's position in the number word list is related to the

9
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number of items that word refers to, which suggests an understanding of the cardinality

principle. It has also been shown that children can correct a puppet who gives a response

other than the last number tag used in a count when asked, after the count, how many items

there are (Gelman & Meck, 1983). In another experiment, a puppet counted a set of items

twice and was asked "how many" after each count. Both times, the puppet gave the last tag

used for that count, but in the second count it had surreptitiously made an error, so that the

last tag differed in the two counts. Most of the children said the puppet's second response was

wrong, even though they had not caught the puppet's surreptitious error. When asked to

justify their judgement, children often expressed the belief that the answer should still be the

same as the puppet gave the first time (Gelman et al., 1986). However, the mean age of the

youngest children in each of these three experiments was over 3-and-a-half, so all that can

safely be concluded from these studies is that by age 3-and-a-half, children understand the

cardinality principle.

As evidence for the claim that children do not start out with an understanding of the

cardinality principle, children were asked to put 1 to 7 candies in a cup from a large pile of

candies, and to tap a drum 1 to 7 times (Schaeffer et al., 1974). It was found that the youngest

two age groups (mean ages 3:5 and 3:8) gave the correct number of candies only about 45% of

the time, and the correct number of drum taps only about 25% of the time. Children were

especially poor on the larger numbers, and did not in general count aloud while responding on

any of the trials. This suggests that they were using subitization to obtain the correct number

when giving the correct amount rather than using the cardinality principle. However, it is not

clear exactly what children's strategies were -- they may have been estimating the number of

candies they took or drum taps they made, and just not getting the exact number. Also, these

same groups of children in another task on average only rtt.;,....d the number word list to "five"

or "six". Thus many of the children were sometimes being asked for more candies or taps than

they could reliably count to, so one would expect them to do poorly on these numbers. These

results therefore do not clearly indicate whether or not children possess the cardinality
principle.

It has been found that many children will recount a set of objects when asked "how

many" following a count, rather than repeating the last tag used in the count, thus apparently

not applying the cardinality principle (Fuson & Mierkiewicz, 1980). However, children may

10



Children's Understanding of Counting
10

simply view the question as a request to count, whether or not they understand the cardinality

principle. After all, one way of asking a child to count a set of things in the first place is to ask

how many there are. To test this hypothesis, Schaeffer et al. (1974) asked children "how many'

after covering up the set of objects the child had just counted, thus preventing the child from
recounting the t. They found that most 3-year-olds did not respond with the last tag used in

the count, suggesting that they lacked the cardinality principle. However, asking a "how many"

question just after a child has counted a set may be pragmatically strange; after all, the child

has (2/ready indicated how many there are, by counting. Children may take the question as an

indication that their first result was wrong, and change their answer. Furthermore, hiding the

objects and then asking "how many" may seem strange to the child; if the adult wants to know

how many there are, why cover them up?

Experiment 1 studies the generalizability of children's counting routine by comparing
children's counting of objects. actions, and sounds. Experiments 1, 2, and 3 study children's
understanding of the cardinality principle. In Experiment 1, children's responses to "How
Many?" questions following the counting of objects, actions, and sounds are examined. In

Experiment 2, the same children are tested for the cardinality principle in a different way, to
rule out alternative explanations for children's performance in Experiment 1. Experiment 3
examines how children learn the meanings of the number words, and the relationship between

their understanding of number words and their understanding of the cardinality principle,
using a variation of the task given in Experiment 2.

Experiment 1: The "Novel Entities" Study
In this experiment, children's performance in the counting of objects (a familiar counting

context) is compared to their performance in the counting of actions and sounds (novel
counting contexts). Having children count objects, actions and sounds also allows an
interesting test of their understanding of cardinality; children cannot construe a "how many"
question about a set of sounds or actions just counted as a request to recount, because the set

is no longer available. To reduce the pragmatic effect of asking "how many" right after the child
has just counted, children were introduced to a puppet who "had forgotten how to count", and
were encouraged to help show the puppet how. The assumption is that the question is more
natural when the child is in the role of teacher to an ignorant puppet.

11
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Method

Subjects

Subjects were 8 2-and-a-half-year-olds (mean 2:7; range 2:4 - 2:8), 8 3-year-olds (mean

3:0; range 2:10 - 3:2), and 8 3-and-a-half-year-olds (mean 3:5; range 3:4 - 3:7), labelled Age I,

Age II, and Age III, respectively. There were roughly equal numbers of girls and boys in each

group. They were from day-care centers in the greater Boston area with a predominantly

middle-class population.

Procedure

There were four conditions; Object, Cave, Jump, and Sound (described below), each with

four trials, one each of set sizes 2, 3, 5, and 6. The set sizes 2 and 3 were chosen to be within

young children's subitizing range, those of 5 and 6 to be outside. The two smaller set size

trials were always given first, in counterbalanced order, followed by the trials with set sizes 5

and 6, again counterbalanced. The order of conditions was counterbalanced between children

within each age group. Roughly two-thirds of the trials in each condition were randomly

designated as "How-many" trials, in which children were asked "how many" after counting. (It.

was felt that to designate all the trials as such might make the children worry too much about

having to justify their responses.)

Object condition: Children were asked to count objects linearly arranged. Toy

dinosaurs were used, about 4 cm long, glued to a board with about 3 cm space

between each one. A different kind of dinosaur was used for each trial; within

each trial, only one kind of dinosaur was used.

Cave condition: Children were asked to count toy dinosaurs as they were moved

from one cardboard box into another box which they could not see inside of, a

"dinosaur cave" with a small hole in the lid. For each trial, the experimenter

moved one dinosaur at a time from the first box into the cave, at a rate of about 2

seconds per dinosaur. This condition is procedurally similar to the counting of

sounds. It thus controls for the possibility that children might perform poorly on

the Sound condition not because they haven't the correct procedures at their

disposal, but because they do not consider sounds as countable entities. Here.
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children are still counting objects which they can see and which have a permanent

existence.

Jump condition: Children were asked to count the jumps of a puppet (Big Bird

from the children's TV show "Sesame Street"). The experimenter made the puppet

jump so that each jump took one-half to 1 second, with roughly an additional

second between jumps. This condition is more novel than the Cave condition;

although children can see the jumps, each jump exists only for an instant in time.

Sound condition: Children were asked to count sounds played on a tape recorder.
Four sounds, one per trial, were used: an "elephant" roaring (actually a person's
voice): a single-chime doorbell ringing; a splash in a bathtub: and the beep of a

computer. Sounds occurred about 2 seconds apart. This condition is the most
novel, as children cannot even see the items they are counting.

At the beginning of the experiment, the child was introduced to Big Bird and told: "Big

Bird has a problem. He's forgotten how to count, and he needs someone to show him how.
Would you like to help Big Bird, and show him how to count? Can you help him count his
toys?" Then the child was presented with the first trial, e.g.: "Look what Big Bird has, some
dinosaurs! Can you show Big Bird how to count how many there are?" Children were
frequently reminded that Big Bird did not know how to count and needed help. A trial was
started ,..ver again if a child was obviously distracted in the middle of a trial, i.e., if the child
started telling a story, ran off, or otherwise interrupted the trial. On the "how many" trials,
children were asked after counting, "So how many dinosaurs are there/how many times did it
ring?" etc. Sometimes the puppet asked the question: sometimes the experimenter did, often
adding "can you tell Big Bird how many'?". This was to make it seem that the object of the
question was to help inform the ignorant puppet. The experiment was usually conducted over
two sessions for each child (sometimes one session); sessions were typically between 1 and 3
days apart. Big Bird's problem was explained at the beginning of each session.

Results and Discussion
Counting of novel entities

In the early stages of counting, many children consistently use an idiosyncratic list of

13
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the counting words, e.g., "One, six, seven, eleven" (e.g., Fuson & Mierkiewicz, 1980; Gelman &

Gallistel, 1978). The fact that children have such lists is consistent with the claim that

children understand the stable-order principle. Even if children start out with the counting

principles, they must still learn the number word sequence. For this reason, children who

used a different list than the standard number word list were not automatically considered to

be counting incorrectly. A set was considered correctly counted if:

the child started the count with the first number word in his or her own

stably-ordered list (for almost all children, the first number word was "one");

for sets of 3, 5, and 6 items, the trial contained no more than one of the following

mistakes: double-counting or skipping an item (one-to-one correspondence

mistakes), or skipping or repeating a tag in the child's own stably-ordered list

(stable-order mistakes);

for sets of 2 items, the trial contained no one-to-one correspondence mistakes, and

no more than one stable-order mistake.

A 3(Age group) by 4(Condition) by 2(Set Size -- Large or Small) ANOVA was performed.

There was a significant Age effect, F(2, 21) = 11.017, p < .001. A contrast analysis on the three

age groups showed a strong linear trend for older age groups to count more trials correctly

(mean number of correct trials out of two was 0.67 for Age I, 1.22 for Age II, and 1.64 for Age

III), t(21) = 4.681, p < .0001, one-tailed. Set Size was also significant (smaller set sizes were

easier to count -- the mean for small Set Size was 1.33 and for large Set Size was 1.02), F(1,

21) = 13.636, p < .001. There was a Condition effect, F(3, 63) = 4.684, p < .005. It might be

asked whether there was a trend for children to perform more poorly the more novel the

condition (from Objects to the Cave condition to Jumps to Sounds). This was so; the mean

number of successful trials (out of 2) for each condition (over all children and both set sizes)

was 1.42, 1.29, 1.10, and 0.90 respectively. A Newman-Keuls post-hoc means comparison

showed that performance in the Object condition and performance in the Cave condition were

both significantly better than performance in the Sound condition, p < .05. There was a

marginally significant Age X Size interaction: F(2, 21) = 3.045, p = .069; for older children there

was less difference in performance on large versus small set sizes. Figure 1 shows the
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percentage of trials which were correctly counted in each condition for each age group.

INSERT FIGURE 1 ABOUT HERE

The Condition effect indicates that children are worse at counting in quite novel

circumstances. However, even if children do have an abstract counting routine, one would not

expect them to perform equally in both familiar and novel contexts. Practice in applying the

counting routine in different contexts will improve performance. For instance, children who

have counted objects but not sounds will have had practice coordinating their words with their

pointing, but will not have had practice coordinating their words with entities that occur one

after another in time. Thus, if children have an abstract, generalizable counting routine, they

ought to apply it in novel contexts, but not necessarily with equal facility.

Almost all of the younger children could count the non-Objects to some extent. Only the

3 youngest children (mean age 2:5) failed to count at all in any of the non-Object trials. They

seemed not to understand what was being asked of them, appearing bewildered, even though

they counted and appeared comfortable during the Object condition. All of the other children

counted for the non-Object trials, and all except one Child counted at least 25% of the

non-Object trials correctly. The percentage of correctly counted non-Object trials increases

steadily with age (the 5 Age I children who counted on the non-Object trials had a mean of 38 °/o

correct non-Object trials per child; Age II children's mean was 60% per child; Age III children's

mean was 79% per child). This suggests that very early on, children begin to develop an

abstract, generalizable representation of the counting routine that they can apply to new
counting situations. However, the fact that the 3 youngest children did not count at all for the

non-Object trials suggests that children may not start out with a generalizable counting
routine. But what about those children who counted at least some of the novel entities
correctly, thus showing that they have developed at least the beginnings of an abstract mental

representation of counting? This representation may or may not encompass an understanding

of the significance of counting -- that counting determines the numerosity of a set. The

"How-many" test for the cardinality principle addresses this question.

"How-many" cardinality task

If children understand the cardinality principle, they should repeat the last number
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word used in a count when asked, after counting, how many items there are. However, they

may be less likely to give the last tag used if they have little confidence that they obtained the

correct value when counting, because in an incorrect count the last number word does not

indicate the cardinality of the set. Therefore, except where stated otherwise, only "how many"

responses following correct counts (as determined by the criteria above) are included in the

analyses.

Children in the younger two age groups, When asked "how many" after counting a set of

physical objects, preferred recounting the set to saying the last tag used in the count.

However, there was no consistent trend to increase the likelihood of cardinality responses in

the non-Object conditions where recounting was not possible. Table 1 shows the proportions

of "how many" responses where children repeated the last tag used in counting, and the

proportion of responses in the Object condition where children recounted (indicated in square

brackets).

INSERT TABLE 1 ABOUT HERE

The percentage of responses to "how many" questions which were cardinality responses

was determined for each child (or of the Age I children was not asked "how many" after any

correct counts because almost all of her counts were incorrect, so is not included in this

analysis). The mean of children's percentages of cardinality responses was 26% for Age I, 25%

foi Age II, and 53% for Age III. Children in Age III did not all perform equally well; 4 gave

cardinality responses more than 50% of the time (mean 78%) while the other 4 did not (mean
28%). There was a significant difference between the Age I and Age II children's mean

percentages and the Age III children's (t(21) = 2.194, 2 <.05, one-tailed). These results suggest

that children learn the cardinality principle at about 3-and-a-half years of age, and that the
younger children's ability to apply their counting routine to the non-Object conditions is not
due to unlearned knowledge of counting.

It could be objected that perhaps children learn by observing adults that the correct
response to a "how many" question is just to repeat the last tag used, without understanding

that this tag refers to the numerosity of the set; older children may have just learned this

better than younger children. This account would explain the results without having to credit
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any of the children with an understanding of cardinality. However, there is a wealth of
independent evidence that 3-and-a-half-year-olds do understand the cardinality principle (e.g.,

Gelman & Meck, 1983; Gelman et al, 1986; Gelman & Tucker, 1975).

Alternatively, it could be that even the younger children understand that 4 counting is
about determining the cardinality of a set, but simply do not understand that the question
"how many" is asking about cardinality. There is a large body of research indicating that
young children do not understand until quite late terms such as 'less", "more", "the same", and
other quantifiers (e.g., Carey, 1982; Clark & Clark, 1977; Donaldson & Balfour, 1968; Palermo,
1973), and it is plausible that they also have trouble with "many" and/or "how many". Finally,
although the experiment was designed to reduce the possible pragmatic effects of asking how
many items there were immediately after the children have just counted them, this might not
have been completely successful. Experiment 2 was designed to address all of these concerns.

Experiment 2: The "Choose" Study
Method

Subjects

Subjects were the same 24 children who participated in Experiment 1. They were given
the Choose task at the end of their final session of Experiment 1. Two children, one in Age I
and one in Age II, did not want to finish this task and were dropped from Experiment 2, leaving
22 subjects.

Procedure

After the final condition of Experiment 1, 15 toy dinosaurs were placed in front of the
child in a pile, and the puppet and child began to play with them. The child was then asked to
give the puppet a certain number of dinosaurs. Children were first asked to give 1, then 2 and
3 in counterbalanced order, and then 5 and 6, also counterbalanced. The request was of the
form: "Could you give Big Bird two dinosaurs to play with, just give him two and put them here
(experimenter pats a place in front of Big Bird, within easy reach of the child), can you get two
dinosaurs for Big Bird?" The request was repeated until the child responded (usually children
responded right away).

After responding, children were given "follow-up" questions. They were asked to "check
and make sure" that they'd given the correct number, and were reminded how many had been
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asked for. Any child who did not spontaneously count the objects was prompted to count

them, e.g. "Can you count and make sure there are two?' Children who counted and obtained

a different number than what they had been asked for were then prompted, e.g. "But Big Bird

wanted two. How can we make it so there's two? How can we fix it so that Big Bird has two?"

Children's further responses were followed up until the child seemed to be getting bored or

uncomfortable.

Results and Discussion

Children were divided into two groups on the basis of the initial strategies they used.

"Counters" were those who, on at least four of the five trials, responded in one of the following

three ways:

They counted the items as they gave them, using their own stably-ordered list,

and stopped at the number word asked for (they were allowed to make a single

one-to-one correspondence mistake when counting);

They silently gave the correct number of items one by one. What was considered

the "correct" number of items was determined by the child's own stably-ordered

list. For example, if a child regularly counted "one, three, four, five, six", then,

when asked for "three dinosaurs", a correct response would be to give 2 one at a

time; when asked for "six dinosaurs", a correct response would be to give 5 one at

a time, as the word "six" is the fifth word in the child's list;

They spontaneously counted the items they had grabbed and, if necessary,

adjusted them (within plus or minus one) to the number asked for, according to

their own stably-ordered list.

All other children were "Grabbers", and their strategy was generally to grab and give a

handful all at once, or, occasionally, to give some other number of items silently one at a time.

The results are divided into three sections. First, children's initial performance on the

Choose task is analyzed. Second, the Grabbers' performance in Experiment 1 is compared

with that of the Counters. Finally, children's responses to the follow-up questions are

examined.
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Initial performance on Choose task

There were 4 Counters, all in Age HI. All used the standard count word list. Every

Counter gave a correct response on all five trials. In three cases Counters, when checking how
many items they had given, counted a number different than that asked for; in all of these
cases they either added or took away items as appropriate, and then counted again, repeating
if necessary until they counted the number asked for. Thus the Counters showed a clear
understanding of the cardinality principle.

All of the children in the younger two age groups, and half those in the oldest age group.
were Grabbers, and tended either to simplygrab a handful of items and give them all, or to give

an apparently random number of items one at a time. However, it is possible that despite their

poor strategy. Grabbers could be grabbing the number asked for. Table 2 shows the number of
Grabbers who gave each number when asked for 1, 2, 3, 5, and 6 items. There were only 3
Grabbers whose stably-ordered lists differed from the standard list. Two of them alternated
between the correct word list, and that list with one word omitted ("two" was omitted half the
time in one case, "five" in the other). On no trial did either child give a number of items that
would be correct according to their list with the omission -- their responses were either the
correct number according to the standard list, or incorrect by both lists. The third child
counted correctly up to five, but had no consistent list beyond that. He gave 5 items when
asked for 6 (and 8 items when asked for 5). Thus, these children's data do not distort the
results in Table 2.

INSERT TABLE 2 ABOUT HERE

All Grabbers gave the correct number when asked for 1 item, while tending not to give 1
when asked for more than 1 item. Thus one seems to be a number readily identified by
children as young as 2:4. Grabbers also gave 2 more often when asked for 2 than when asked
for 3, 5, or 6. However, this was not significant, by a Wilcoxon Signed Ranks test comparing
the percentage of time individual Grabbers gave 2 items when asked for 2, with the percentage
of time they gave 2 when asked for 3, 5, or 6 items.

Grabbers did not give 3, 5, or 6 items more often when asked for one of those numbers
than when asked for other numbers. Furthermore, Grabbers do not even appear to be
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approximating the number of items they grab, when asked for 3, 5, or 6 items. The correlation

between the number asked for (3, 5, or 6) and The number given is r = .12 (NS) for Age I, r = .03

(NS) for Age II, and r = .42 (NS) for Age HI Grabbers. Table 3 shows the mean number of items

initially given by Grabbers and Counters of each age group.

INSERT TABLE 3 ABOUT HERE

The problem is not that the children could not count this high. For each Grabber, the

largest correctly counted set of objects in the Object condition was determined. The mean

largest correct trial for Age I was 4.5 objects, for Age II was 5.0 objects, and for Age HI was 5.8

objects. Thus even the youngest group of children can count to four or five accurately, yet they

fail even at giving 3 items. Thus, except for 1 and possibly 2 items, Grabbers do not give the

number asked for, nor do they appear even to be approximating the number asked for. Even

in those cases where Grabbers did give the correct number of items when asked for 2 or 3, they

never counted the items aloud as they gave them. This suggests that they were not applying

the cardinality principle to get the right number, but were either subitizing the .:orrect number,

or getting the right number by chance. This indicates that, before around 3-and-a-half years of

age, childr-n do not understand the cardinality principle.

Grabbers' vs Counters' performance in Experiment 1

If it is true that the Counters possess the cardinality principle while Grabbers do not,

this should be reflected in their performance on the How-many task in Experiment 1 --

Counters should give more cardinality responses than Grabbers. This is in fact the case.
There were 17 Grabbers who had "how many" responses following correct counts (the 18th was

not asked "how many" following a correct count because almost all of her counts were
incorrect). The mean percentage of individual Grabbers' cardinality responses was only 25%,

while the mean percentage of Counters' cardinality responses was 78% (t(19) = 4.147, p <
.0005, one-tailed). Figure 2 shows the mean of individuals' percentages of cardinality

responses given by Counters versus Grabbers on the How-many task in Experiment 1. There

is no increase with age in the proportion of cardinality responses to "how many" questions.

Rather, there is a very sudden shift from a cardinality response rate of one-quarter of the time

to a cardinality response rate of over three-quarters of the time, that coincides with the shift
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from Grabber to Counter.

INSERT FIGURE 2 ABOUT HERE

Yet another prediction can be made about Grabbers' versus Counters' performance on
the How-many task in Experiment I.. If it is indeed the case that Counters understand the
cardinality principle while Grabbers do not, one would predict that Counters would be less
likely to give the last tag used in the count in cases where they were uncertain of the accuracy
of their counting. Thus they should give cardinality responses less often after incorrect counts
than after correct counts. Grabbers, on the other hand, should not understand the

relationship between accuracy of counting, and likelihood that the last tag in the count
represents the cardinality of the set, so there should be no difference in their rate of cardinality

responses following correct versus incorrect counts.

This prediction too is borne out by the data. Fourteen of the Grabbers and 3 of the 4

Counters had "how many" responses following both correct and incorrect counts. Figure 3
shows the means of these individuals' percentages of cardinality responses following correct
versus incorrect counts, for Counters and Grabbers.

INSERT FIGURE 3 ABOUT HERE

Grabbers were actually slightly less likely to give cardinality responses after correct
counts than after incorrect counts, though this difference is not significant. In comparison,
Counters were three times as likely to give cardinality responses following correct counts (84°/o
of the Lime) as they were following incorrect counts (28% of the time), t(4) = 3.503, 2 < .05,
one-tailed. This indicates that Counters understand the relationship between accuracy of
counting, and likelihood that the last tag in the count indicates the cardinality of the set.
Grabbers appear not to appreciate this relationship, further supporting the conclusion that
Grabbers do not understand the cardinality principle while Counters do. These findings
provide a firm basis for the claim that children do not understand the cardinality principle
before about 3-and-a-half years of age.

Age III Grabbers and Counters were equally successful at counting the novel entities in
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Experiment 1. Counters gave correct counts on 83% of the non-Object trials, while Age III

Grabbers gave correct counts on 75% of the non-Object trials; this difference does not

approach significance. Thus, children appear to acquire considerable skill at counting before

understanding that counting determines the numerosity of a set.

Responses to follow-up questions

As previously stated, Counters, when prompted to check how many items they had

given, always counted them and, if necessary, added or took away items as appropriate.

Grabbers, on the other hand, revealed several strategies that reinforce the conclusion that they

do not understand the cardinality principle. In most cases, the experimenter succeeded in

getting Grabbers to count what they'd given. There were several ways they attempted to

reconcile the discrepancy between what they had oeen asked for, and what they counted:

1) Naming or Tagging the Last Item With the Number Asked For: Seventeen

responses by 9 Grabbers (4 Age I children, 3 Age II children, 2 Age III children) were to count

so that a number word said (usually the last one) was the number asked for. For example, a

boy who had given 2 items when c.3ked for 6 counted them "one, six!". A girl who gave 2 items

when asked for 5 counted them, "five, five!". Three responses by 2 children clearly appeared to

be naming particular items with the number tags, e.g. the following interaction between a child

and the experimenter after the child was asked to give 5 objects, and had grabbed and given 3:

Experimenter: So how many are there?

Adam: (Counting the 3 objects which are in a triangular arrangement) One, two, five!

E: So there's five here? (pointing towards the 3 items)

A: No, that's five (pointing to the item he'd tagged "5"). One, two, five (counting them in

the original order).

E: So there are five altogether?

A: No, one, two, five (counting them again in the original order).

E: So does Big Bird have five?

P.: Yeah, this is five (pointing to the item always tagged "5" in his counting). One, two,

five (counting again, in the same order as before).

E: What if you counted this way, one, two, five? (experimenter counts the objects in a
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different order than Adam has been doing)

A: No, this is five (pointing to the one he has consistently tagged "5").

E: That one's five? (pointing to the one Adam called "five").

A: Yes.

E: Why is this one five?

A: Because, one, two, five (counting them once again, in the same order).

2) Denial: Eight responses by 8 Grabbers (2 Age I children, 4 Age II children, 2 Age III
children) were to count what they'd given, and deny that there was any discrepancy. For
example, one girl gave 3 when asked for 6. When asked to "count and make sure" there were
6, she counted them correctly, saying, "one, two, three. That's six!" This is a direct violation of
the cardinality principle.

3) Changing the Number of Items: Eighteen responses by 10 Grabbers (2 Age I
children, 7 Age II children, 1 Age III child) were to change the number of the items, in all but
one case by adding more to what they'd given. In only 10 of these cases had the children first
counted the number of items they'd given or indicated that they believed they'd given an
incorrect number (e.g. by saying "that's not five! "). In six of these cases the children changed
the number in the right direction; in the other four, the children changed the number in the
wrong direction (e.g. giving and counting 4 items after being asked for 3, and then adding
another item).

4) Silence/No Justification: Twenty-nine responses by 14 Grabbers (5 Age I children. 6
Age II children, 3 Age III children) were to remain silent, or say it was the number asked for
without justification, when prompted to check what they'd given.

The first strategy is particularly interesting. It strongly suggests that some children have
a sort of "cardinality rule". They understand that the last number word is the answer to "how
many" there are, but do not understand "how many" in the same way we do. They do not yet
have the cardinality principle, i.e., they do not yet understand that the last tag indicates the
numerosity of a set, or even that the last tag refers to some property of the entire set as a whole
rather than to a particular member of the set. They simply have the heuristic that "the last
number word in a count is 'how many' there are". Thus, if counting items the usual way does
not end with the correct number word, they 'count' the items in a way that does end with the
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correct number word.

One would expect that if these Grabbers did have a "cardinality rule" which states that

"the last number word is how many items there are", they should apply it in the How-many

task in Experiment 1. In particular, they should respond, more often than the other Grabbers,

with the last number word in the count when asked "how many". This appears to be the case.

Eight of the 9 Grabbers who employed Strategy 1 had "how many" responses following correct

counts (the 9th was not asked "how many" following any correct counts, because almost all of

her counts were incorrect). They gave cardinality responses on the Hcw-many task on average

34% of the time, while th other 9 Grabbers gave cardinality responses average only 18% of

the time (this is a marginally significant difference: t(15) = 1.414, p = .089, one-tailed). Thus,

about half the Grabbers do appear to have such a "cardinality rule".

However, they did not give cardinality responses to the extent that the 4 Counters did.

The difference between their mean of 34% and the Counters' mean of 78% is significant, t(10) =

2.995, 2 < .01, one-tailed. This is consistent with the interpretation that these Grabbers are

giving cardinality responses for a different reason than are the Counters, who appear to

possess, rather than a meaningless "rule", a principled reason for stating the last tag when

asked "how many". Fuson (1988) has also proposed that some children have such a

"cardinality rule", on the basis of several empirical results. For example, whe asked to count

very large sets, some children gave a very small number as a response to a "how many"

question, if that number word was the last said in the count: e.g., a child counted a set of 26

items, "one, two, three, six, seven, eight, nine, one, two." When asked "how many", she

responded, "two". In another study, after counting n soldiers, 2- and 3-year-olds were asked to

choose between the last soldier and all the soldiers in response to either the question "Is this

the soldier where you said n?" or the question "Are these the n soldiers?". Children tended to

choose the last soldier more often than all the soldiers in answer to both questions, often

saying things like, e.g., 'This one's the five soldiers", while pointing to the last one.

These results indicate that before about 3-and-a-half years of age, children do not

understand the cardinality principle. Grabbers' responses to the Choose task show that they

have no understanding that the last number tag refers to the numerosity of the set, or even to

some property of the set as a whole.

The fact that all the children gave 1 item when asked for 1, and most gave 2 when asked

24



Children's Understanding of Counting
24

for 2. suggests that children learn the meaning of the word "one" very early, followed by the
word "two". It may be that in general children learn the meanings of smaller number words
before larger ones, even for number words well within their counting range. At some point.
children must realize that every counting word refers to a distinct numerosity -- this is the
adult competence. But children may learn this for particular number words before making a

general induction. Experiment 3 tests this hypothesis, and begins to explore when children do
make the induction that every counting word refers to a specific numerosity.

Experiment 3: "Choose" Follow-up
In this study. children are asked several times for each of a number of arimals (1, 2. 3.

5. and 6). so the consistency of individual children's responses for different numerosities is
obtained. If children do learn the meanings of smaller number words before those of larger
number words within their counting range, then two things should occur. First, individual
children should succeed when asked for a number of items up to a certain numerosity, and
then fail for all higher numerosities (e.g.. there should be no children who consistently succeed
at 1 and 3 but not at 2). Second. different children should have different numerosities at
which they start to fail. There should be some children who succeed consistently only when
asked for 1. and others who succeed consistently when asked for 1 and 2. Whether there are
children who succeed when asked for 1, 2, and 3 items but not more. or even 1, 2, 3, and 5
items but not 6. depends at what point children make the general induction that all the
counting words (within their counting range) refer to particular numerosities. Once they make
this generalization. children should succeed at all the numerosities within their counting
range.

This study also examines the relationship between children's understanding of the
cardinality principle and their understanding of the meanings of number words, and tests
children's ability to perform some of the number-irrelevant task demands of the Choose task.

Method

Subjects

Subjects were 18 2- and 3-year-olds (mean age 3:3: range 2:4 - 4:0) from schools and
day care centers in the Greater Boston area. About half were girls. Five more children were
tested but not used as subjects: one had a hearing impairment and had trouble understanding
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the experimenter, three stopped before the end of the experiment, and the data from one child

were lost due to equipment failure.

Procedure

There were three tasks given to the subjects:

"Sticker game": This, was a variation of the Choose task. Children were asked to

give 1, 2, 3, 5, and 6 animals to the puppet, and were given a sticker to put on a

piece of paper after each trial to keep them motivated (each sticker was different).

The numbers 1, 2, and 3 were chosen because they are within children's

subitizing range; 5 and 6, because they are outside the subitizing range. The

number 4 was not asked for because to do so would have risked boring children

before obtaining a sufficient number of trials of each numerosity. The goal was to

determine the maximum numerosity each child could succeed at. Thus the exact

procedure differed for different children. All children were first asked for 1 item

and then for 2 items. Depending on their success, they were then asked for 3

items, or asked again for 1 or 2 flews. What children were asked for on a trial

depended partially on their success in the previous trial. Children who failed on a

trial were then asked for a numerosity at which they had previously succeeded.

This served two purposes; to determine the consistency of a childs performance

on a particular numerosity, and to avoid discouraging children. All children were

asked at least twice for 2 and 3 items. The experimenter concentrated on the

highest number a child succeeded at reliably and on the next highest number, so

children got more trials for these than for other numbers. At some pant in the

task, however, all children were asked for the larger numerosities at least once
(usually twice). The exact number of trials depended largely on a child's
willingness to keep playing. The experimenter followed up children's responses by

asking questions such as, "Is that three?'. "Can you count and make sure ?' etc.

The number of follow-up questions for a particular trial depended on the child's

willingness to continue that trial.

"Giue-someptgs" task: Children were asked to give the puppet Big Bird some pigs

(or other kind of animal) from a pile containing four kinds of animals, from 4 to 10
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of each kind. The kinds of animals were easily recognized and named even by

2-year-olds (pigs, dogs. dinosaurs, horses). Many of the same task demands are
present in the Choose task: children must (a) construct a subset of the entire pile

of animals, and (b) give that subset to the experimenter. No particular animal

need be included in the subset for either task; for example, any three animals are
okay for the Choose task, and any of the pigs are okay for the Give-some-pigs

task. Children who succeed at the Give-some-pigs task but fail at the Choose task

cannot be failing from an inability to construct a subset and give it to someone.

They must be failing due to an inability to construct a set of a certain numerosity.

0 "Count/How-many" task: Children were asked to count 3, 2, 5, and 6 linearly
arranged items (the same stimuli used in the Object condition in Experiment 1), in
that order. After counting each set, children were asked how many items there
were.

All children played the Sticker game last. About half the children received the
Give-some-pigs task first, half the Count/How-many task first. When given the
Count/How-many task, children were told that Big Bird had "forgotten how to count" and were
asked to help him count his toys. At the beginning of the Sticker game, children were first
given a sticker to put on a piece of paper, and then told that: 'The way this game goes is that
Big Bird is going to ask you for a certain number of animals, and when you give him the right
number, you get another sucker. So it will go like this: Big Bird is going to say, 'Can you give
me one animal?"' This was the child's first trial. The experimenter repeated the question in
different ways until the child gave one or more animals. Though told they would be given a
sticker after giving "the right number", children were actually given a sticker after every trial.

Results and Discussion
Only 1 child (age 2:4) failed at the Give-some-pigs task. He also failed to count correctly

on any of the four Count/How-many trials, and failed on all numerosities in the Sticker game.
This child is not included in the following analyses. All of the other children carefully picked
out some or all members of the kind of animal asked for in the Give-some-pigs task; they never
just grabbed a handful of animals.
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For each of the 17 remaining children, the numerosities at which they succeeded

consistently in the Sticker game were determined. The criterion for "consistent success" on a

certain numerosity was as follows:

On a. least two-thirds of a child's trials for that numerosity, the child's final

response was either the correct number according to his or her own stably-ordered

count list, or the correct number plus or minus one if the child had counted aloud

from the pile to the number word asked for, but had erred in the counting by

either double-counting or skipping one item. Two-thirds was chosen as the

criterion for success because many children were given three trials of a particular

numerosity, so it is a natural cut-off point. Children's final responses were used

rather than their initial responses because children occasionally corrected a wrong

response, but rarely changed a response that was initially correct.

The child responded with that number when asked for other numerosities no more

than half as often, percentage-wise, as he or she did when asked for that number

itself. For example, a child who gave 2 items 80% of the time when asked for 2,

was scored consistently correct on 2 only if he or she gave 2 items no more than

40% of the time when asked for 1, 3, 5, and 6 items. This was to prevent children

who had a preference for giving, e.g., 2 items no matter what they were asked for,

from being considered to know the meaning of the word "two".

Children fell into five groups according to the numerosities at which they succeeded.

Table 4 shows the number and ages of children in each group, and how high the children in

each group could count (determined by averaging children's highest correct counts in the

Count/How-many task). The criterion for a correct count in the Count/How-many task was
the same as that used in Experimet. 1: Children had to start the count with the first elemdnt

in their own stably-ordered list, and were allowed a single one-to-one correspondence or

stable-order mistake on sets of 3, 5, and 6 items, and a single stable-order mistake on sets of 2
items.
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INSERT TABLE 4 ABOUT HERE

It can be seen that each child succeeded up to a certain numerosity, and then failed for

all higher ones.2 Children's failures are not a result of not being able to count that high. All of

the 10 children that failed at some numerosities could correctly count set sizes larger than
they could correctly give when asked. (Only one child had a count word list differing from the

standard count list; she omitted the word "four" from her list. She did not succeed for any of

the numerosities, and when asked for "five" and "six" items, did not give 4 and 5 respectively.

which would be correct by her list, but gave 1 item.) These results support the hypothesis that

children learn the meanings of smaller number words before those of larger ones, even when
they use those larger words capably in counting.

The pattern of children's ages also supports this hypothesis. Children who succeeded at
larger numerosities are in general older than those who succeeded only at smaller
numerosities. The correlation between children's ages in months and the highest numerosity
they succeeded at is r = .64 (t(15) = 3.218, p < .005, one-tailed). Thus children appear to learn

the meanings of the number words one at a time, for progressively larger numbers. However,

this pattern of learning does not continue indefinitely. All 7 children who succeeded at giving 5

items also succeeded at giving 6 items, while 4 children succeeded at giving 3 items but not
more. This suggests that by the time children learn the meaning of the word "five", but after

they have learned the meaning of "three", they make the general induction that all the number
words within their counting range refer to specific numerosities.

In order to further examine children's understanding of the cardinality principle, and its
relationship to their understanding of the meanings of number words, children were divided
into Counters and Grabbers on the basis of their strategies in the Sticker game when asked for
3 or more items. (For 2 items, many children just gave 1 in each hand, and it was impossible
to determine whether they had counted them silently or not; for 1 item, almost all children just
gave 1.) "Counting strategies" were to count the items while giving them and stop at the
number word asked for, to silently give the correct number of items (determined by children's
own stably-ordered lists) one by one, or to spontaneously count what was given and correct it if
necessary to within plus or minus one of the correct number.
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There was a bimodal distribution in children according to how often they performed

Counting strategies. Ten of the children (mean age 3:1; range 2:7 - 3:8) applied a Counting

strategy on 0% to 38% of their trials (the mean was 13%). These children were classified as

Grabbers. The other 7 children (mean age 3:7; range 2:11 - 4:0) applied Counting strategies on

86% to 100% of their trials (the mean was 96%). These children were the Counters. A t-test

on Grabbers' versus Counters' individual percentages of Counting strategies was significant,

t(15) = 13.019, p < .0001. two-tailed. The difference in the ages (in months) of children in the

two groups was also significant (t(15) = 2.366. p < .05, one-tailed).

This sharp division of children according to their strategies. with a dramatic increase in

the use of Counting strategies. indicates a sudden shift, occurring at about 3-and-a-halfyears

of age. in children's approach to the task. The 2 Grabbers who consistently succeeded at

giving 2 items did not tend to count out items aloud from the pile when giving 2, and the 4

Grabbers who consistently succeeded at giving 3 items did not tend to count out items aloud

from the pile when giving 2 or 3. These children did so, on average, only 6% of the time. This

suggests that their strategy was to subitize in order to give the right number. In contrast, the

Counters counted items aloud from the pile when asked for 2 or 3 items, on average. 45% of

the time (1(11) = 2.666. 2 < .05. one-tailed). Thus, children appear to be abandoning one

successful strategy for giving 2 or 3 items in favor of another. This suggests that a major

conceptual change occurs in children's understanding of counting at this age.3

There was again a relationship between being a Counter, and giving cardinality

responses when asked "how many" following counting. Counters gave cardinalityresponses an
average of 61% of the time following correct counts on the 4 Count/How-many trials, while

Grabbers gave cardinality responses an average of 22% of the time (t(15) = 2.345, p < .05.

one-tailed). Since there were so few incorrect counts, a comparison of Grabbers' and Counters'

responses following correct versus incorrect counts could not be made.

The 7 children who were consistently correct on all the numerosities in the Sticker game,

and thus appear to have made a general induction that all the counting words within their

counting range refer to specific numerosities, are also all Counters. They are thus the only

children who were clearly applying the cardinality principle to obtain the number of items

asked for. This suggests that children's acquisition of the cardinality principle coincides with

their making the general induction that all the counting words refer to particular numerosities.
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It would not have to be this way. Children could learn the cardinality principle first for those

numerosities whose number words they know the meanings of, before making a general
induction. If that were so, it would be expected that some of the children who only succeeded

on numerosities of 3 or less would have counted items out aloud from the pile to obtain the
correct number, when asked for 2 or 3 items. The fact that this did not occur suggests that

children's understanding of the cardinality principle, even for numbers within the subitizing

range, is intimately connected with their understanding that all the counting words refer to
numerosities.

General Discussion
In this section I will consider three main issues. First, I discuss children's

understanding that counting establishes numerosity of a set. Second, I examine the possibility

that children have a concept of number independent of the counting routine and the number
words, and relate it to the results of this paper. This is followed by a discussion of the
abstractness of children's mental representation of counting.

Results of the How-many and Choose tasks and the Sticker game strongly suggest that
children do not understand the cardinality principle, or the relationship between counting.

cardinality, and numerosity, until about 3-and-a-half years of age. Taken together. these
results indicate that the Principles-Before theory is incorrect -- children do not start out with a
set of principles which guide their counting behavior and constitute an understanding of the
significance of counting.

The conclusion that children do not understand cardinality until about 3-and-a-halfmay
at first appear to conflict with conclusions from other studies (e.g., Gelman & Gallistel, 1978:

Gelman & Meek. 1983; Gelman et al., 1986; Gelman & Tucker, 1975). However, the mean age
of the youngest children tested in these experiments was over 3-and-a-half, so their results are
consistent with the claim that children learn the cardinality principle at around 3-and-a-half.

Results from the Schaeffer et al. (1974) cardinality study, in which children were asked to put
1 to 7 candies in a cup and to tap a drum 1 to 7 times, support the conclusion that children
learn cardinality some time after their third birthday. While the first two groups of children

(mean ages 3:5 and 3:8) succeeded on the candy placement about 45% of the time and on the
drum tapping about 25% of the time, these numbers for the third group of children (mean age
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4:2) are 87% and 75% respectively, a dramatic improvement.

It could be argued that the poor performance of the younger children on the Choose task

and the Sticker game reflects performance demands, rather than competence. There are

several ways children can fail at a task. They can fail due to lack of conceptual understanding

(in this case, lack of knowledge of the cardinality principle). They can fail even if they have

conceptual competence, by not having learned appropriate procedures that instantiate their

conceptual competence in a particular context. Different counting situations require different

counting procedures in order to honor the counting principles. The counting principles are not

themselves procedures: children must learn appropriate procedures for different situations.

Finally, even if children have at their disposal procedures which are appropriate to a particular

counting context, children might not know which of their procedures to utilize, and fail at the
task (see Greeno et al., 1984, for a detailed discussion of what they term conceptual.

procedural, and utilizational competences: see also Gelman & Greeno, 1987). However. there

is strong support for the claim that children's failure in the Choose task/Sticker game is due to

lack of knowledge of the cardinality principle. This comes from the finding that success or

failure in this task is a good predictor of several things: (a) whether a child will respond a

majority of the time with the last number word used in a count when asked "how many"

following counting; (b) whether a child will give the last number word more often after correct

than incorrect counts when asked "how many"; and (c) whether a child will tend to count out

items aloud from a pile, when asked for a number that she or he is generally successful at

giving. The How-many task is procedurally very different from the Choose task/Sticker game,

so it is unlikely that there is a procedural requirement common to both tasks with which the

Grabbers were having difficulty. It is at the conceptual level that the two tasks are similar, and

therefore children's failure is almost certainly due to lack cir conceptual competence.

The general conclusion that young children 'do not have unlearned knowledge of

counting at their disposal also appears to conflict with studies suggesting that children do

represent one-to-one correspondence as a component of the counting routine, and are sensitive

to the stable ordering of the counting words. Children will say that a puppet has counted

wrong and will often correct the puppet, when it violates one-to-one correspondence in some

way (Gelman & Meck, 1983). Again, however, the mean age of the youngest childreil it hi hich

this has been shown was over 3-and-a-half, so these results could reflect knowledge arned
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about counting rather than knowledge underlying counting. Furthermore, as noted above,
given that young children appear to represent one-to-one correspondence as a component of so

many of their daily tasks, it is plausible that they have a general ability to quickly recognize
when it is part of an activity. Showing that very young children represent one-to-one
correspondence as a part of the counting routine, then, does not by itself show that they did
not learn this knowledge. It has also been found (Fuson & Mierkiewicz, 1980; Gelman &
Gallistel, 1978) that children as young as 2-and-a-half use consistently ordered lists of number
words when counting, even though these lists may not follow the standard order of the
counting words (e.g.; a child may consistently count, "one, two, six, eight, eleventeen."). This
indicates that children are sensitive to the fact that counting uses a stably ordered list of
words. However, as argued above, children of this age are sensitive to many other stable
orderings as well, such as the alphabet. There is no evidence that children represent the
(necessary) stable-ordering of the counting words any differently than the (arbitrary and
nonessential) ordering of the letters of the alphabet.

However, these conclusions ought not be taken as evidence that children have no
understanding of number at all. There is some evidence that children as young as
2-and-a-half do recognize at least small numerosities and can perform inductions on them. In
one experiment, children of this age were shown two plates, one with three toy mice on it
identified as the "winner" plate, and one with two mice identified as the "loser" (Gelman, 1977).
The plates were covered and shuffled, and children had to identify which was the winner plate.
Children could do this task. Then, surreptitiously, either the number of mice on the winner
plate was reduced to two mice, or a number-irrelevant transformation was made with the
winner plate such as replacing one of the mice with a soldier, or changing the spatial
arrangement of the three mice. When the covers were removed after shuffling, in the
number-irrelevant transformations children still chose the three-item plate as the winner,
while in the number-relevant transformations, children often declared that there was no
winner, and in some cases even fixed one or both plates to be winner plates by adding an extra
mouse. They had thus evidently represented the number of the array. There is also evidence
that even infants have some very basic knowledge of the numerosities two and three. When
habituated to many different pictures of two arbitrary objects, 3-month-olds will dishabituate
when shown a picture of three objects, and vice-versa (Starkey & Cooper, 1980). More
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impressively, when shown two pictures simultaneously, one of two objects and one of three

objects. and played a sound recording of either two knocks or three knocks, 7-month-old

infants show preferential looking at the picture with the same number of objects as the

number of knocks heard (Starkey, SpeLke, & Gelman, 1983).

These studies suggest that young children do have some basic concept of number, or at

least of smaller numbers. This in turn suggests that the child's task may be one of mapping

already existing concepts of oneness, twaness, and threeness with the number words "one",

"two", and "three", and with the counting activity. Results from the Choose task and Sticker

game indicate that children map smaller numbers onto their number words before achieving

such a mapping for larger numerosities. This is plausible. The word "one" occurs much more

frequently than other number words, and in many special contexts (e.g. "I want another one",

"give your brother one of those", "get me the little one", "which one do you want", etc.). It may

even be that children first learn the word "one", not as a number word but rather as a pronoun

that picks out a single individual, similar to "he", "she", or "it".4 Chiluren then map the word

"two" onto its corresponding numerosity, followed by the word "three". Further evidence that

children map number words onto their corresponding numerosities in order of increasing

numerosity comes from the subitizaticn literature; when shown small numerosities and asked

to tell "how many" there are, children's rate of correct response decreases as the number

increases (e.g., Gelman & Tucker, 1975; Silverman & Rose, 1975). It appears that, after
acquiring the meanings of the words "one", "two", and "three", children perform a general

induction over these instances, at about 3-and-a-half years of age, that all the words in the

counting list (at least within their counting range) refer to distinct numerosities. The child's

acquisition of the cardinality principle appears to occur in conjunction with this general
induction.

It should be stressed that in the 'Novel Entities" experiment, most of even the youngest

children were able to generalize their counting routine to sounds and actions, showing that

children have the ability to develop very quickly an abstract and sophisticated mental

representation of the counting routine. This is suggestive of strong powers of abstraction in

young children, and may point to unlearned abilities more general than knowledge of counting.

It has been proposed (Shipley & Shepperson, 1988) that certain general cognitive abilities, or

'operating principles', may underlie the development of the one-to-one correspondence
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principle, such as: a bias to operate on discrete whole objects rather than on parts or
properties of objects; a tendency to exhaust a set of things being operated on (e.g. to throw all
the toys out of the playpen); and an ability to match elements of one set to elements in

another. Further analyses of this sort could lead to an explanation of how children are able to

so quickly develop an abstract representation of counting. That many of the older children
performed at or near ceiling in counting both objects and other entities, while falling the
cardinality, tasks, suggests that there may be several levels of abstraction and representation of

the counting routine.

It appears that the development of children's understanding of counting is complex and
piecemeal. Infants may have some concept of one, two, and three, which they must map onto
the correct number words. Counting is at first a meaningless activity, something like a game
of patty-cake, from which children abstract out certain properties earlier, others later. One
property that some children learn is that the last number word used in a count is the answer
to "how many" items there are, even though they do not at first understand that "how many"
refers to numerosity. Children first map the word "one" onto its numerosity, achieving this
next for the word "two" and then the word "three". At around 3-and-a-half years of age, most
children induce that there is such a mapping for every word in the counting list. At the same
time they also come to understand that the last number word used in a count represents the
numerosity of the set, and thus learn the significance of the counting activity.
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Footnotes

'Gelman & Gallistel (1978) posit two further principles which specify a lack of
constraints on the application of the counting procedure. OrderIrrelevance principle: The same

result will obtain regardless of the order in which a set of entities is counted. Abstraction

principle: Any entities can be grouped together for a count. For example, we can count the
number of eyes, sneezes, and ideas in this room between 1:00 and 2:00 pm as a single count.

2Three children, after giving 1 item when asked for 1, were asked to "count to make

sure". Because it is an odd request to make for 1 item, children's responses to this question

were not included in the analysis. If responses to this question are included, then 1 child who

was successful at 2 was not consistently correct when asked for 1: for two trials she gave 1,

and upon being asked to count it she added some more items and counted them all. On the
other three trials in which she was asked for 1, her response was to give 1. If this child is
considered as going against the hypothesis, then a total of 16 out of 17 children performed in

the expected manner -- still a highly significant result.

3All the strategies employed by Grabbers in the Choose task in Experiment 2 were also

used by Grabbers in the Sticker game. Many children counted so that the last number word
said was the number asked for, and some children named an item the number asked for. For

example, one boy gave 2 when asked for 6. When asked to count them, he pointed to each of

them while saying, "One, this is six". The experimenter then asked him "How many are there

altogether?". to which he replied, pointing, 'This is six, and this is six. They're both sixes!"

Some children tried to "fix it" in new ways. One girl gave 2 when asked for 6. She then counted

them "six, six". When asked to count them "the normal way', she counted them correctly.
"one, two". She was then asked, "How can we fix it so there's six?" She picked them up.
turning them around and switching their places, and put them back down saying, "Maybe this

way". Some children, when asked to "flx it" to the correct number, used what could be called

"magic" strategies. A boy who had given 4 when asked for 6, picked up a toy dog and touched

each of the 4 animals with it, saying, 'There! The dog fixed it!". Another child "tickled" each of

3 a_nimals to "make it 5". Thus, Grabbers again show that they do not understand. that
counting determines the numerosity of a set. The children in these examples also did not
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appear to understand that they had been asked for a certain number of items; hence, the

number-irrelevant operations they performed in efforts to fix what they'd given to what had

been asked for.

41 am grateful to Paul Bloom for suggesting this possibility to me.
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TABLE 1

Proportion of cardinality and recount responses (recount responses

indicated by square brackets].

Age Group Object Cave Jump Sound Mean

Age I (2:7) .10 [.20] .44 .57 .00 .31

Age 11 (3:0) .301.501 .24 .18 .18 .22

Age III (3:5) .42 1.33) .69 .53 .50 .56
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TABLE 2

No. Grabbers Giving 1, 2, 3, 5, and 6 Items,

by No. Asked For

No. Asked For

No. Given 1 2 3 5 6

1 18 1 1 0 0

2 0 13 8 7 8

3 0 1 5 5 3

5 0 0 3 0 2

6 0 1 0 1 0
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TABLE 3

Mean No. of objects first given by Grabbers and Counters.

Number asked for

Age Group 1 2 3 5 6

Age I Grabbers 1.0 2.6 2.9 3.4 3.3

Age II Grabbers 1.0 3.6 2.9 3.3 2.9

Age III Grabbers 1.0 1.7 2.7 4.7 4.5

Age III Counters 1.0 2.0 3.0 5.2 6.0
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TAEIE 4

Patterns of Success in Sticker Game

Success Pattern No. of Mean Counting Ability

1 2 3 5 6 Children Age Mean Range

1 2:8 3.00 (3 - 3)

+ 3 3:0 4.67 (3 - 6)

+ + 2 2:11 4.50 (3 6)

+ + + 4 3:5 5.75 (5 - 6)

+ + + + + 7 3:7 6.00 (6 - 6)

(Note: "+" indicates success on a numerosity; "-" indicates failure.)
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Figure Captions

Figure 1: Percent of Successful Counts, by Age

Figure 2: Grabbers' vs Counters' Mean % Cardinality Responses

Figure 3: Mean % Cardina/ity Responses Following Correct vs Incorrect Counts

45

I



100-

so

60

40-

20-

0

90%

66%

57%

Ft E:so re._ 1

94%

66%

35%

50/0

66%
69% Age III

25%

19% Age I

Object Cave

46

Jump Sound



80

60

40

20

0

26% 25%
28%

78%

Ag. I Age H Ag. III Age III
Grabbers Grabbers Grabbers Counters

(2:7) (3:0) (3:5) (3:6)

7



100-

80

60

40

20 -

0

30%

28%

84% Counters

23% Grabbers

Incorrect Counts Correct Courts


