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Enpert systems can be used to aid decision making. A computerized
adaptive test (CAT) is one kind of expert system, though not commonly
recognized as such. A new approach, termed EXSPRT, was devised that
combines expert systems reasoning and sequential probability ratio test
stopping rules. EXSPRT-R uses random selection of test items, whereas
EXSPRT-I incorporates an intelligent selection procedure based on item
utility coefficients.

These two new methods are compared to the traditional SPRT and to
an adaptive mastery testing (AMT) ,approach based on item response
theory (IRT). Three empirical studies with different tests and
examinees were carried out. Results indicated that the EXSPRT-I is
more efficient or as efficient as the AMT model. When the distribution
of examinees was not clustered near the mastery cut-off, all four
methods made accurate mastery classifications.

Although further research is needed, the EXSPRT initially appears
to be a strong alternative to IRT-based adaptive testing when
categorical decisions about examinees are desired. The EXSPRT is less
complex conceptually and mathematically, and it appears to require many
fewer examinees to establish empirically a rule base, when compared to
the large numbers required to estimate parameters fur item response
functions in the IRT model.



THEORETICAL ISSUES

An Overview of Expert S.stems

One of the more practical results from extant research in
artificial intelligence is the application of expert systems reasoning
to aid in decision making o: problem solving. Expert systems have been
developed, for example, to help physicians identify t %pes of bacterial
infections, to aid investor decisions on buying and selling stock, for
aid in assembling components of computer systems, for making decisions
about where to drill for oil, f^r assisting underwriters in making
insurance policies, and for diagnosing causes of equipment failures to
help repairpersons (c.f., Winston PA Prendergast, 1984).

An expert system consists of a set of production rules or frames,
often called a 'knowledge base'. The name, 'expert system', was coined
because a knowledge base is typically constructed by interviewing one
or more experts in some domain of knowledge. An attempt is made to
capture their reasoning processes, when they solve problems in that
knowledge domain, in the form of "If..., then..." rules. For example,
in MYCIN, a famous early expert system for diagnosing bacterial
infections, one of the rules is:

IF 1) the gram stain of the organism is negative, and
2) the morphology of the organism is rod, and
3) the aerobicity of the organism is anaerobic,

THEN there is suggestive evidence (.7) that the identity
of the organism is Bacteroides. (Davis, 1984, p. 34)

This particular rule is one of 400 to 500 such rules that comprise the
MYCIN knowledge base. A computer program, called an 'inference
engine', uses this rule set as data to help physicians identify unknown
bacteria. The program makes inferences by using both the rule set and
specific answers to questions it asks the physician about properties of
the current situation (e.g., patient symptoms, white blood cell count,
and other lab test results). MYCIN has been shown to be more accurate
in its identifications of bacteria than typical practicing physicians,
particularly in identifying those bacteria which are rarely observed.

Expert systems are not usually viewed as replacements for human
decision makers, bat as aids or tools for such persons. Expert systems
obviously cannot perform in areas not covered by the knowledge base.
Furthermore, decisions reached by expert systems can be no better than
the accuracy of the knowledge or rules that comprise the database.

In education and training, expert systems principles have been
applied mostly in intelligent tutoring systems (Kearsley, 1987; Sleeman
8, Brown, 1982). As an example, GUIDON was later developed from MYCIN
in an attempt to teach physicians how to identify different kinds of
bacteria (Clancey, 1987).

Similarities between Expert Systems and Adaptive Tests

One efficient and empirically validated approach to computerized
adaptive testing (CAT) is based on item response theory (e.g., Weiss &
Kingsbury, 1984). An adaptive test is no longer than necessary to
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obtain a satisfactory estimate of an examinee's ability, and items are
selected which are close to his or her estimated ability level. For
example, if a person misses a question, a somewhat easier question is
next asked. On the other hand, if a question is answered correctly,
then a slightly more difficult question is subsequently selected. A
computerized adaptive test does not waste time administering questicns
that are too hard or too easy for a particular individual. Adaptive
tests tend to be shorter than conventional fixed-length tests and the
results are as reliable if not more so (e.g., Weiss & Kingsbury, 1984).

Expert systems And adaptive computer-based tests have many
properties in common:

1. The rule base for a CAT is a set of item characteristic curve
estimated from prior test administrations. That is, each item
characteristic curve is a compact way of saying, "If the examinee
ability level is X, and item Y is asked, then the probability of a
correct response is predicted to be Z."

2. Both expert systems and CATs use inference engines that are
often Bayesian or Bayesian-like. Even if rules do not have
probabilities (or confidence factors) associated with them, they can
still be treated as a special Bayesian case where associated
probabilities are either one or zero (c.f., Heines, 1983).

3. The goal of an expert system is to choose from a number of
alternatives (e.g., causes of equipment failure) using the rule base
and answers to questions it selects and asks of a particular user. The
goal of a CAT is to estimate an examinee's achievement or ability level
with enough precision to make a decision such as pass/fail or a grade
classification using a rule base of item characteristic curves and
answers to questions it selects and gives to examinees.

4. An expert system selects which questions it asks by using
forward or backward chaining and the rule base. A CAT can select
q_estions on the basis of the amount of information they provide,
depending on the ability of an examinee. For example, Weiss and
Kingsbury (1984) use a maximum information search and selection (MISS)
procedsre.

Thus, although not widely recognized at this time, an adaptive
testing system is 'ne type of an expert system. The first author
realized this when developing computer code for an expert system,
having already developed code for Bayesian decision methodologies and a
computer-based testing system.

On hindsight, expert systems and adaptive tests have much in
common. Yet in the research literature it appears that these two
threads of development have been almost entirely independent. One camp
has grown out of an artificial intelligence movement and the other from
a psychological testing and measurement perspective. A recent computer
search of numerous bibliographic databases only turned up thirteen
articles where the terms, 'expert systems' or 'artificial intelligence'
and 'adaptive' or 'computer' and 'testing' or 'test' were used as
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descriptors. The two camps not only use different language to describe
their activities, but also tend to publish in different journals and
attend different conferences.

The Development of EXSPRT

A problem with the IRT-based approach to adaptive testing faced by
many practitioners, however, is that a relatively large number of
examinees must be tested in advance in order to estimate accurately
item parameters of difficulty, discrimination, and lower asymptotes
(200 to 1000 depending on the model used and the number of items in a
pool). Furthermore, proponents of the Rasch model (one-parameter IRT
model) have indicated that there is no valid way of estimating item
discrimination and lower asymptotes for the two- and three-parameter
models without imposing arbitrary constraints (c.f., Wright, 1977).

The first author has previously investigated the predictive
validity of the sequential probability ratio test (SPRT) for making
mastery decisions, where the lengths of tests were adapted according to
student performance (Frick, 1989). He demonstrated that mastery
decisions reached with the SPRT, when used conservatively, agreed
highly with those based on total test results. Nonetheless, the SPRT
does not explicitly take into account variability in item difficulty,
discrimination or chances of guessing as does the three-parameter IRT
model. Moreover, items are selected randomly in the SPRT, rather than
on the basis of their characteristics and estimated examinee ability or
achievement level as in the MISS procedure.

Is there some middle ground between the relatively simplistic SPRT
decision model and the relatively sophisticated IRT-based approach?
When considering the problem from an expert systems perspective, a
solution became apparent. Instead of considering a continuum of
alternatives, as is the case in IRT-based CAT, it was hypothesized that
if the goal of an adaptive testing system is to choose between a few
discrete alternatives (e.g., mastery or nonmastery; grades of A, B, C,
etc.), then it should be possible to develop a satisfactory rule base
from a smaller sample of examinee test data--compared to the IRT model.

An Example of Expert Systems Reasoning during Computer-Based Testing

Suppose that we have developed a pool of test items which match a
particular instructional objective and that our goal is to decide
whether or not a particular student has mastered that objective (e.g.,
Mager, 1973). Suppose further that our aim is to administer no more
questions than are necessary to reach a mastery or nonmastery decision,
and yet we want to be highly confident in our decision.

First, we need to construct a rule base. There are various ways
that this could be done, but let us use a straightforward empirical
approach. We obtain a sample of students representative of those who
would be likely to be learning the instructional objective, who are
learning, and who have learned (e.g., third grade students and
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multiplication of two-digit numbers; college freshman taking a course
in probability theory; graduate students in education learning how
computers work).

Next, we give the whole test to this sample of students. We must
then decide on a cut-off score for determining mastery and nonmastery.
Suppose we are satisfied that anyone who scores 85 percent or higher on
the test has minimally mastered the instructional objective being
tested. This allows us to sort students into a mastery group and a
nonmastery group. We now construct a rule set for each test item. For
example (these are fictitious data, used for illustration only):

Rule 1.1. If the student is a master and item Al is selected,
then the estimated probability of a correct response is .92 (the
proportion of masters in the sample who successfully answered the
question).

Rule 1.2. If the student is a master and item Al is selected,
then the probability of an incorrect response is .08.

Rule 1.3. If the student is a nonmaster and item Al is selected,
then the probability of a correct response is .47.

Rule 1.4. If the student is a nonmaster and item Al is selected,
then the probability of an incorrect response is .53.

A quadruplet of such rules can be constructed for each item on the
test, based on the proportions of masters and nonmastery, respectively,
who answered the item correctly and incorrectly. We will assume that
our student sample is large enough and representative enough of the
population of those students of interest that we have sufficient
confidence in the data used to derive the rules. The rules can be more
conveniently summarized in tabular format. Some hypothetical data are
provided below:

Item P(CIM) 12(-,CIM) P(CI,M) P(-,C1-44)

1 .92 .08 .47 .53

23 .81 .19 .24 .76

38 .98 .02 .86 .14

47 .75 .25 .21 .79

63 .89 .11 .65 .35

76 .82 .)8 .51 .49

etc.

where: P(CIM) = Probability of a correct response, given a master,
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P(-C1M) = Probability of an incorrect response, given a
master,

P(C141) = Probability of a correct response, given a
nonmaster:

and P(-C1-44) = Probability of an incorrect response, given a
nonmaster.

New. we will use the above rule base to make a decision about the
mastery status of a particular student about whom we presently know
nothing with respect to her mastery or nonmastery of the instructional
objective assessed by the test items. Therefore, our prior
probabilities of mastery and nonmastery are equal to .50 for this
student.

Observation 1. We randomly select an item from the pool (1163).
We administer it to this student, who answers it incorrectly. Our
expert systems inference engine will reason according to Hayes' Theorem
as follows (c.f., Schmitt, 1969):

Prior Prob.
Alternative of Alternative

Prob. Joint
-,Cdtem 631Alt. Prob. Posterior Prob.

Mastery .50 X .11 = .055 /Sum = .239
Nonmastery .50 X .35 = .175 /Sum = .761

Sum = .230

The prior probability of each alternative is multiplied by the
probability of the observation, given that the alternative is true.
The probability of an incorrect response by a master for item *63 is
.11, which when multiplied by .50, yields a joint probability of .055.
Similarly, the probability of an incorrect response by a nonmaster for
item *63 is .35, and when multiplied by the prior probability of
nonmastery (.50), results in a joint probability of .175. The joint
probabilities are normalized by dividing each by the sum of the joint
probabilities. After this observation, the posterior probability for
mastery is now .055/.23 = .239. The posterior probability for the
nonmastery alternative is .175/.23 = .761. At this point, the
nonmastery alternative is about 3 times more likely than the mastery
alternative.

Observation 2. We continue testing by selecting another item at
random from the pool. We give item *23 to the studert under
consideration, who answers it correctly. We update as follows, only
this time we use the most recent posterior probabilities as our new
priors:
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Prob. Joint
C, Item 231Alt. Prob. Posterior Prob.

Mastery .239 X .81 = .194 /Sum = .515

Nonmastery .761 X .24 = .183 /Sum = .485

Sum = .377

This time in the third column we use the probability of a correct
response to item *23, given each alternative. The odds of nonmastery

mastery have now become about equal, given the two observations made
thus far.

Observation 3. This time we select at random item *1, which the
student answers incorrectly. We update, as before, using the most
recent posterior probabilities as our new priors.

Prior Prob. Prob. Joint
Alternative of Alternative Item 11Alt. Prob. Posterior Prob.

Mastery .515 X .08 = .041 /Sum = .138
Nonmastery .485 X .53 = .257 /Sum = .862

Sum = .298

The odds are a little over 6 to 1 in favor of nonmastery at this point.

Observation 4. We select anothcr item, #38, at random, which our
student also misses.

Pricr Prob. Prob. Joint
Alternative of Alternative Item 38IAlt. Prob. Posterior Prob.

Mastery .138 X .02 = .003 /Sum = .024

Nonmastery .862 X .14 = .121 /Sum = .976

Sum = .124

After the fourth observation, the posterior probability of the
aormmastery alternative is about .98, roughly 40 times as great as the
probability that the mastery alternative is true. Should we stop the
test now? If so, on what basis should we do so? It appears that it is
ext-emely likely that this particular stuck .t is a nonmaster, given
just four test items, selected at random from the pool, given the
response pattern [wrong, right, wrong, wrong], and given the Bayesian
reasoning methods we have been employing with the item rulebase.

The decision as to when to terminate the test depends on how
willing we are to make false mastery and false nonmastery decisions
(type I and II errors). A type I error, a, is the probability of
choosing mastery when the nonmastery alternative is really true. A
type II error, is the probability of choosing the nonmastery
alternative when the mastery alternative is really true. We will adopt
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the rules developed by Abraham Wald (1947) for the Sequential
ProbaLility Ratio Test (SPRT):

Stooping Rule 1. If the ratio of the posterior probabilities of
the two alternatives (mastery vs. nonmastery) derived from Hayes'
Theorem is greater than or equal to (1 1)/a, then stop making
observations and choose the first alternative (mastery in this
context).

Stooping Rule 2. If the ratio of the posterior probabilities of
the two alternatives (mastery vs. noneastery) derived from Reyes'
Theorem is less than or equal to qp(1 - a), than take no more
observations and choose the secoti alternative (nonmastery).

Continuation Rule. If the ratio of the posterior probabilities of
the two alternatives is neither greater than or equal to (1 -
&Vag nor less than or equal to ff/(1 - a), then take a new
observation, update the posterior probabilities using Hayes'
Theorem, and apply the three rules once again.

Suppose that we set a = L3 = .05. The threshold for the first rule
is (1 -.05)/.05 = .95/.05 = 19. The threshold for the second rule is
.05/(1 - .05) = .053. During the above observations, the first three
result in posterior probability ratios which fall between the two
thresholds. However, the ratio of the posterior probabilities after
the fourth observation is .024/.976 = .025, which is less then .053,
the threshold for stopping rule 2. Therefore, we would conclude that
the present student is a nonmaster, knowing that we would tend to be
wrong about 5 percent of the time, since we set Ea priori at .05.

In summary, this example illustrates how data-based decision
making could be made by a computer-based testing system, using expert
systems reasoning--in particular, Bayesian reasoning--and rule
quadruplets which were constructed from data derived from testing a
representative sample of students who are masters and nonmasters. In

effect, this approach combines Bayesian reasoning with empirically
based rules and SPRT stopping rules. The new approach, which combines
both expert systems and SPRT principles, is called EXSPRT-R, since
items are selected randomly.

Intelligent Item Selection: EXSPRT -I

The second author was not satisfied with EXSPRT -R, since it did
not use information about test items in the selection process. This
stimulated the joint development of an item selection procedure that is
modeled after basic principles used by Weiss and Kingsbury in the MISS
(maximum information search and selection) procedure. Though the
principles are comparable, the mathematical approaches are quite
different.

In the EXSPRT-I (i.e., with "intelligent" item selection), the
reasoning is as follows:
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Item discrimination. If we are trying to choose between mastery
or nonmastery alternatives, then an item is more discriminating when
the difference between probabilities of correct responses by masters
and nonmasters is greater. For example, if the probabilities of a
correct response to item #5 are .90 for masters and .25 for nonmasters,
then item *5 is very discriminating (difference = .65). On the other
hand, if the probability of a correct response to item #53 is .85 for
masters and .75 for nonmasters, then this item is much less
discriminating (difference = .10). Or if the probability of a correct
response to item *12 is .60 for masters and .80 for nonmasters, then
such an item is negatively discriminating (difference = -.20).

Thus, the discrimination index for item i is defined:

Dt = P(CtIM) P(CkIN) (1)

where P(CtIM) = estimate of the probability of a correct
response to item i by a master;

and P(CtIN) = estimate of the probability of a correct
response to item i by a nonmaster.

The estimates of probabilities of correct responses to items by masters
and nonmasters are determined as follows:

1. Give the pool of test items to a representative group of
examinees, about half of whom are expected to be masters and
half nonmasters--i.e., for whom you expect a wide range of
scores on the test.

2. Choose a mastery cut-off score (e.g., .85).

3. Divide the original group into a mastery group and nonmastery
group based on their total test scores and the mastery cut-
off.

4. For each item in the mastery group, estimate the
probabilities of correct and incorrect responses by the
following formulas (see Schmitt, 1969):

P(CtIM) = (#rk. + 1)/(#ri. + #wk. + 2) (2.1)

PU,CtIM) = 1 P(CtIM) (2.2)

where *r,,,, = number of persons in the mastery group
who answered the item correctly;

and *wt. = number of persons in the mastery group
who missed the item.

5. Do likewise for the nonmastery group for each item:

P(CtIN) = (#rk, 1)/(#rk. + *wk. + 2) (3.1)
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P(-'C, IN) = 1 P(CtIN)

No'.e that the estimates of these probabilities of correct responses to
items by masters and nonmasters will never be one or zero. This means
that, in the EXSPRT Bayesian updating process during the administration
of a test to an examinee, the probabilities of the mastery and
nonmastery alternati,s will never be ze.12 or one, though these
extremes may be closely approadied.

Item/examinee incompatibility. Not only do we want to select
highly discriminating items, but also we want to select items that are
matched to an examinee's estimated achievement or ability level. In

theory, we gain little additional information by administering items
which are very ea_ very hard for a given individual. Better items
would be those wgich a person has a 50/50 chance of answering
correctly--i.e., which are very close to her or his achievement level.
For example, if an examinee's achievement level is estimated to be .80
(on a scale from zero to one), then a good item would be one that was
answered incorrectly by 80 percent of the examinees in the item
parameter estimation sample P(CI) = .20 for masters and nonmasters
combined 1.

item:
Thus, the item/examinee incompatibility index is defined for each

I" = abs((1 P(C1)) - E(43)) (4)

where E($3) = (Wr3 + 1)/(tr3 + (1w4 + 2) (5)

and P(C1) = + 1)/(*ri + *ph + 2) (6)

Note that #r.) and tmij are the numbers of questions answered correctly
and incorrectly, respectively, thus far in the test by the current
examinee. Note also that the estimate of P(Ct) is based on the total
number of persons in the parameter estimation sample for item i,
irrespective of mastery status. Thus, itri is the number of persons who
answered item i correctly and 41211 is the number who answered it
incorrectly. Finally, note that the item/examinee incompatibility
index is based on the absolute value of the difference between the
estimate of the probability of an incorrect response to the item and
the estimate of the current examinee's achievement level (proportion
correct metric).

Item utility. As a test proceeds, item utilities are re-
calculated for all items remaining in the pool, in order to select and
administer a new one that now has the most utility for an examinee:

U" = DIM" + 8) (7)

12
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where S - some arbitrary small constant (e.g.,
.0000001), to prevent division by zer' in
case Ii3 0.L

Thus, each utility value is simply the ratio of the discrimination of
item i and its incompatibil"ty with person is achievement level. The
item that is selected nex ao the EXSPRT -I !intelligent selection) is
the remaining one with the greatest utility at that point, for that
particular examinee. This means that .he item selected next is the one
which discriminates best between masters and nonmasters and which is
least incompatible with the current estimate of that examinee's
achievement level. Note that item utilities change during a test,
depending on an examinee's performance which affects the estimate of
his/her achievement level in the item/examinee incompatibility index.
In effect, the EXSPRT -I is comparable to the two-parameter item
response theory moil DIRT- -see below) in that both item discrimination
and item difficulty are considered in the item selection process.

IRT-Based Adaptive Mastery Testing

In classical item analysis, estimation of item difficulty and
discriminatian is heavily aependent on the sample of examirr.es who have
taken the test. For example, if we administered the test only to
persons who were masters mf the instructional objective, then the item
analysis would reveal that most of the items appear to be quite easy
(low difficulty). On the other hand, if the sample consisted of only
nonmasters, the analysis .41uld reveal that items tended to be quite
high in difficulty.

Such considerations are addressed in item response theory (Lord &
Novick, 1968). In essence, it is assumed that there is a relationship
between the probability of a correct response to an item and an
underlying (or latent) trait, and these item characteristics somehcw
enter into this relationship. The 'trait' is what we are trying to
indirectU: measure by elicitirst responses to test questions (e.g.,
mastery of a particular instructional objective). Persons who have
more of this trait should be more likely to answer a question correctly
than people who have 1_,ss of this trait. Furthermore, some items may
be useful for 'orting out individuals who are high in this trait, but
these same items would tell us practically nothing about people who
have little Lf the trait we are trying to measure.

The relationship between the probability of e correct response to
a test item and the underlying ait is assumed to follow a particular
kind of mathematical function, called a logistic cumulative density
funct.an:

'Alternatively, 41, could be considered as some kind of "guessing"
factor or the item. However, this will not be considered in the
present paper.

13
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exp(X)

1 + exp(X)
(8)

where exp(X) means raising the mathematical constant, e (=2.71828...),
to the Xth power. This function is somewhat S-shaped in form (called
an ogive). On a particular test item, there will usually be a range of
examinees who are high in the trait and who all are very likely to
answer it correctly (i.e., prob(CIHigh Range) s 1.0.). This is the
upper asymptote of the function. On the other hand, there will usually
be a range of examinees who are low in the trait and whose probability
of a correct response is at or near the chances of guessing (i.e.,
prob(CILow Range) s chances of guessing). This is referred to as the
lower asymptote of the function. In between these two extreme ranges,
there will be a middle range of examinees for whom the probability of a
correct response will ideally vary linearly with the so-called amount
of the latent trait (X) they possess- -i.e., prob(CIMiddle Range) = mX +
E6 where se is the slope of the line (Aprob,/ AX) and 8 is a constant.
In other woras; those who are at the higher end of the middle range
should have a greater probability of a correct response than those who
are at the lower end of the middle range.

This relationship between the probability of a correct response to
a particular item, Rt. and a" underlying trait, 0, is depicted by an
item characteristic curve (ICC), later referred to as an item response
function (IRF) by Lord. The formula for this function is:

where:

and

exp(L)

prob(R110) = ct + (1 - ct) (9)
1 + exp(L)

L = 1.7a,(0 - bt),
at = discriminatory power of item i,
bt = difficulty level of item ip
ct = lower asymptote of item i (chances of guessing).

Theta, 0, can theoretically vary between zero and a very large value
Lut it is typically scaled as a standardized variable with a mean of
zero and a variance of one (i.e., z-scores). The parameters at, bt,
and st are fixed for a given item, i. These parameters are estimated
7rom empirical data, having administered the item to a very large
number of examinees. The scaling factor of 1.7 is used so that the
logistic ogive will approximate a normal oqive.

The st parameter affects how stew the ICC is in the middle
portion, the bt param ter etfeLls tne horizontal displacement of the
middle portion of the curve, and the ct parameter affects the vertical
displacement of the lower portion of the curve. This formulation of do
item characteristic curve is known as the three-parameter model. In

order to obtain fairly accurate estimates of the at, tit, and ct
parameters, it is recommended that approximately 1000 individuals be
tested with the item pool (c.f., Hambleton & Cook, 1983).
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If we do not confider chances of guessing as part of an item
characteristic, then cA becomes zero for all items. The probability of
a correct response for a given 0 is then simply the ratio of
I exp(L)/(1 + exp(L)) ]. This is known as the two-parameter model,
involving difficulty level and discriminatory power only. All lower
asymptotes of ICC's are zero in this model. A minimum of 500 examinees
is recommended for estimating the at and bi parameters for an item
pool.

If we consider all items to be equally discriminating and also do
not consider chances of guessing, this is equivalent to setting at to a
constant for all items and c1 to zero as above. This is known as a
one-parameter model, equivalent to the Rasch model. All lower
asymptotes are zero, and the middle portions of each ICC all have the
same slope. The only thing that will differ is the horizontal
displacement of the ICC's depending on the values of fix's. A minimum
of 200 examinees is recommended for estimation of the bi parameters in
the one-parameter model (though see Lord, 1983).

Item information. As discussed earlier, not all items will
provide us with useful information for all individuals. For example,
if we are trying to discriminate between two or more examinees who have
little of the trait being measured, then highly difficult test items
will provide no useful information about these low-in-the-trait
individuals, since they would be expected to answer correctly such
items at a chance level only. It would be more desirable to choose
items for these low-in-the-trait individuals which more closely match
their ability--if our goal is to more precisely estimate the amount of
the trait they possess. In other words, we want to find test items
which have difficulty levels near the theta levels of the persons in
question. Moreover, we want to find items which are highly
discriminating and have a low probability of being answered correctly
by chance for a range of difficulty levels that match the range of
theta values of concern. These items will provide us with the most
amount of information for the individuals in question--i.e., will allow
us to sort out these individuals more precisely in terms of the amount
of the trait being measured.

Brown and Weiss (1977) incorporated this concept of item
information in selecting test items during ichievement testing. Having

some current estimate of an examinee's 0 level, a computer program
searches the pool of remaining items for the item which has the most
information for this value of 9. This procedure is termed, 'maximum
information search and selection' (MISS). The item which will have the
most information is the one which has a difficulty level closely
matching the current estimate of 0, and at the same time has the
highest discriminatory power and lowest probability of being answered
correctly by simply guessing.

Kingsbury and Weiss (1983) calculate information for item i for a
given value of $ in their adaptive mastery testing (AMT) model using
Birnbaum's formula:

5
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and

It(0) =
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(1 - ct)d2at2ELPD32

[LPD] + ctELCP32
9 (10)

at, 1)1 and ck, and L are defined as above,

d = 1.7 = constant scaling factor,

exp(L)
LPD = = logistic probability density, (11)

I 1 + exp(L) ]2

exp(-L)
LCP = = logistic cumulative probability. (12)

1 + exp(-L)

This part of item response theory, while complex, is fairly
straightforward, assuming we have trustworthy at, lit, and ct parameter
estimates. The catch is that the probabilities of a correct response
to an item and the information values of an item vary as a function of
2,1 the underlying trait that we cannot directly measure or observe for
some examinee. How can is estimate the value of 0 for an individual
during an adaptive test?

Bavesian posterior 0 estimation. If we begin a test with a prior
estimate of an examinee's 0 level and its variance, and if we give an
item to an examinee and know whether it was answered correctly or not,
then we can determine the posterior distribution of $ and the variance
of that distribution by using formulas developed by Owen (1975). The
posterior estimate of theta given a correct response to the current
item is:

(' - ct)V. / W gau(X)
E(01C) = M. + ( (13)

where 1,; for 0 estimate,

V. = prior variance of 0 estimate,

W = I (1/at2) + V. 3"°, (14)

X= ( bt - M. ) /W (15)

1

= ( ) exp( -(X2)/2 ) ], (16)gau(X)
12111/21

Y = ct + (1 - st)[ logist( - -1.7X ) ], (17)
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exp(Z)
and logist(Z) = (18)

1 + exp(2)

The estimate of 0 given an incorrect response to item i is defined:

E(01-1,C) = M. - (

tVe /W] I gau(X)

logist( 1.7X )

). (19)

Although these formulas for Bayesian updating of the estimate of 0
are complicated, the principle is simple: If the examinee correctly
answers a question, then the prior estimate of 0 is incremented by an
amount that is related to characteristics of the item and to the prior
variance of O. If the examinee misses the question, then the prior
estimate of 0 is decremented.

On the other hand, the Bayesian updating of the variance of 0 is
multiplicative, not additive or subtractive. The variance of 0 will
tend to decrease as more items are administered. The estimate of the
variance of 0, given a correct response is defined:

(1 - ct)Egau(X)3

) - X
(1 et)(gau(X)3

V(01C) = V. El - ( )(

where:

)3,

(20)

U = 1 + (1/(40V0)3. (21)

The estimate of the 0 variance, given an incorrect response is defined:

gau(X)
) + X

gau(X) logist( 1.7X )
V(011C) = V. Cl - ( ) ( )1. (22)

U logist( 1.7X )

Another observation is that the "guessing' factor, c,, enters into
to the updating process of both 0 and its variance when a question is
answered correctly, but the et-related terms drop out if the question
is answered incorrectly.

Finally, the posterior estimate of 0 and its variance become the
new priors after another test item is administered. Then new posterior
estimates of 8 and its variance are estimated, and so on, until the
posterior variance of 8 becomes small enough. How small that needs to
be is discussed next.
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The We have still not addressed the basis for
ending a mastery test under the AMT model and reaching a decision.
Weiss and Kingsbury (1984) recommend using a test response function
(more commonly referred to as a test characteristic curve, TCC) as
follows:

exp(L)

prob(C1,10) = ( E1 Eck + (1 - cl) 3) / n (24)

1 + exp(L)

where n = number of items in the total pool,

and L = 1.7a1( 0 - b ), as before.

The TCC can be seen as an average of all the ICC's (see formula (9)).
Normally, we think of a mastery level in terms of a proportion of
correct answers (e.g., .85). However, in the AMT we are dealing with a
0 metric. The problem is to convert a proportion correct as a mastery
level to a corresponding theta cut-off, 0.. This can be accomplished
through use of the TCC by simply going up the TCC curve until a point
is reached where the probability of a correct response is equal to the
proportion correct wanted for the mastery level,

Once 6§6 is determined, then after each test item is administered
and a new posterior 9 and variance estimate is calculated, we simply
check to see whether or not the .95 confidence interval contains 0..

If I E(0) - 1.96(1(0)1'12) > 0., then choose mastery. (25.1)

If E E(e) 1.96(Y(e)"') ] < 0.9 choose nonmastery. (25.2)

That is, if the confidence interval does not contain 0., then we stop
the test and choose mastery if the lower bound of the interval is above
0., or choose nonmastery if the upper bound is below 62.

If I E(0) - 1.96(1(0)1'a) ec E E(e) 1096(V(e)1/e)
then continue testing. (25.3)

Thus, if confidence interval does contain gp we continue the test by
using the MISS technique to choose the next item. Note that choosing a
Bayesian confidence interval of .95 is the same as setting a = I.= .025
(see above discussion of the SPRT and EXSPRT).

An alternative to Owen's Bayesian method of estimating 9 is
maximum likelihood estimation, assuming that an examinee has answered
at least one question correctly and one incorrectly. Since we will
compare the AMT to other Bayesian approacheu (SPRT, EXSPRT-R, EXSPRT
I), maximum likelihood estimation is not discussed here.

Basic Questions Addressed

Three empirical studies were conducted to compare IRT -based
adaptive mastery testing, SPRT, EXSPRT-R and EXSPRT -I approaches. Of

major 4:nncern was the accuracy with which each adaptive model could
predict decisions based on total test scores. Does each adaptive



Expert Systems Reasoning in Testing 16

method make mastery and nonmastery decisions with no more errors than
would he expected by a priori error rates? Second, how efficient is
each adaptive method in terms of average test lengths for mastery and

nonmastery decisions? Are any of the methods more efficient than
others?

FIRST STIJIIV

Digital Authorina Lanouaoe Test

A computer-based test on the structure and syntax of the Digital
Authoring Language was constructed, consisting of 97 items, and
referred to as the DAL test. This test was comprised of multiple-
choice, binary-choice, and short-answer questions. The test was highly
reliable (Cronbach a = .98). The DAL test was also very long, usually
taking between 60 and 90 minutes to complete, and it was very difficult
for most examinees (mean score = 63.2 percent correct, S.D. = 24.6).

Examinees

The persons who took the DAL test were mostly either current or
former graduate students in a course on computer-assisted instruction
taught by the first author. Those students who were currently enrolled
at the time took the DAL test twice, once about mid-way through the
course when they had some knowledge of DAL--which they were required to
learn for developing CAI programs--and once near the end of the course
when they were expected to be fairly proficient in DAL. The remainder
of the examinees took the DAL test once. Since the test was long and
difficult, no one was asked to take the test who did not have some
knowledge of DAL or other authoring languages.

Test Administration

The DAL test was individually administered by the Indiana Testing
System (Frick, 1986). As an examinee sat at a computer terminal, items
were selected at random without replacement from the total item pool
until all items were administered. Students were not allowed to change
previous answers to questions, nor was feedback given during the test.
Upon completion of test, complete data records were stored in a
database, including the actual sequence in which items were randomly
administered to a student, response time, literal response to each
item, and the item scoring (correct or incorrect). Examinees were
informed of their total test scores at the end of the test. There were
a total of 53 administrations of the DAL test in the first study.

Experimental Methods

The basic procedure was to re-enact each test, using actual
examinee responses in the database, for each of the four adaptive

1 .9
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methodologies: 1) IRT-based adaptive mastery testing (AMT--with
maximum information search and selection (MISS]), 2) sequential
probability ratio test (SPRT), 3) EXSPRT-R (random selection of items),
and 4) EXSPRT-I (intelligent selection of items--see above
descriptions).

Item parameter estimation. Two random samples of examinees were
used to estimate item parameters (n = 25 and n = 50), the latter
containing the former. This was done to see if increasing the sample
size used for parameter estimation would result in fewer decision
errors in the four methods. Due to the relatively small sample sizes,
the one-parameter AMT model was used - -i.e., only PA estimates were
obtained for the two samples using program BICAL (Mead, Wright 6 Bell,
1979). For the EXSPRT-R and EXSPRT -I, the rule base for each parameter
estimation sample was constructed using formulas (2.1), (2.2), (3.1)
and (3.2). The mastery cut-off was set at 72.5 percent, half way
between the established .85 mastery level and .60 nonmastery level used
in an earlier study of the SPRT only (Frick, 1989). In the current
study, however, the mastery and nonmastery levels for the SPRT were
established empirically from the .725 cut-off and the two parameter
estimation samples. The mean proportion correct for masters was used
as the mastery level and the mean proportion correct for nonmasters was
used as the nonmastery level in each sample. In effect, the SPRT was
treated just like the EXSPRT -R, except Cast the rule quadruplets for
all items were the same in the SPRT, based on the sample means for
masters and nonmasters, respectively.

Test re-enactments. Once the parp2oter estimation samples were
chosen, then the latter two authors independently wrote computer
programs in two different languages (Pascal and DAL) to construct the
rulebases for the EXSPRT, and to carry out the four different adaptive
testing methods on the same 53 sets of test administrations. This was
done to reduce the possibility of error in coding these rather complex
methodologies, especially the AMT model. When results did not agree,
as was occasionally the case, this helped to identify and ameliorate
errors in coding. The one difference that was not correctable was
traced to the precision of arithmetic in DAL and Pascal on a VAX
minicomputer.

We discovered that on occasion the MISS procedure in the two
programs would begin to select different items in the AMT model after
15 to 20 items had been retroactively *administered to an examinee.
This occurred because the updating of the estimate of 0 and its
variance, and in turn the item information estimates for that 0
estimate, would tend to differ very slightly in the two code versions
as a test progressed. Consequently, the MISS procedure would
occasionally pick a different item in the two different versions when
estimates of item information were very close for two or more items
remaining in the pool. From that point on in a test, different item
sequences were observed. The average AM7 test length in the DAL
version tended to be about one item shorter, compared to the Pascal
version, but the decisions reached were the same with one exception.

"0
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These discrepancies do point out problem inherent in the IRT -
based approach, which contains numerous multiplications, divisions, and
exponentials (see formulas (9) to (25)). Very small errors due to
rounding or differences in precision of arithmetic can magnify
themselves rather quickly. This problem was not observed with the
EXSPRT -I, EXSPRT -R, or SPRT- -other than differences in the millionth's
decimal place when computing probability ratios.

1. ANT re-enactment. the mastery cut-off was converted to
using the test characteristic curve (see (24)) and the item parameter
database constructed from the respective parameter estimation sample
(either n - 25 or 50). The value of 6g6 was used as the initial prior 0
and the prior variance was set to one, as recommended by Weiss and
Kingsbury (1984). The MISS procedure was used to select the next test
item for the re- enactment for each examinee (see formulas (10) to
(12)). The correctness of the examinee's response to that item waf
determined by retrieving it from the database. Bayesian updating of 0
and its variance was accomplished with Owen's method (1975). See
formulas (13) to C22). After each item was "administered", the AMT
stopping rules were applied using a .95 confidence thterval (see (25.1)
to (25.3)). If a decision could be reached, the re- enactment was ended
at that point. The number of questions answered correctly and
incorrectly in the AMT and the decision reached for that examinee were
written to a computer data file. Also stored in that file were the
total test score for that examinee and the agreement between the ART
decision and the total test decision. If no decision could le reached
by the AMT modal before exhausting the test item pool, then a decision
was forced at the end of the test: If the current estimate of 0 was
greater than or equal to ec, the examinee was considered to be a
master; otherwise a noneastet.

2. SPRT. The mastery and nonmastery levels required by the SPRT
were empirically established from the parameter estimation samples, as
described above. Since the SPRT requires random selection of items,
test items were "administered" in a random order. Alpha and & levels
were set at 0.025, to make the overall decision error rate (.05)
equivalent to the .95 confidence interval method used in the AMT
approach. When the SPRT reached a mastery or nonmastery decision,
results were stored in a separate data file in the same manner as
described above for the AMT.

3. EXSPRT-R. As in the SPRT, items were "administered" in a
random order. However, the rulebases constructed from the parameter
estimation samples were used, of course, in the EXSPRT-R method of
Bayesian updating. For a description of EXSPRT -R procedures, see the
above section on an example of expert systems reasoning during
computer-based testing. When the EXSPRT-R reached a decision, the test
re-enactment was ended and results written to a data file as before.

4. EXSPRT-I. This method was the same as the EXSPRT-R, except
that items were selected intelligently, based on their utility indices
(see (1) to (7)). Thus, like the AMT, items were not "administered"
randomly for each re-enactment. Since no feedback was given during the
test it is unlikely that decisions reached bt both AMT and EXSPRT-I
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methods would be systematically affected by factors other than
differences in the adaptive methods themselves. One mitigating factor
might be examinee fatigue, where they were more likely to answer
questions incorrectly at the end of the long and difficult test.
However, since all test items were originally administered in a
different random order for each individual, it is very unlikely that
fatigue would systematically bias any findings.

Results from the First Study

For the DAL test, IRT item parameters (bi's) were estimated from
samples of 25 and 50 examinees. EXSPRT rulebases were also derived
from the same !ampler. Descriptive information is given about the two
samples in the left side of Table 1. It can be seen that there were
about the same proportions of masters and nonmasters in each sample.
In the sample of 50 there were 23 masters whose average test score was
87.3 percent, and 27 nonmasters who scored 45.1 percent correct.

We were interested in comparing the mean test lengths of each of
the four methods, variation in test lengths, and decision accuracies.
If the decision made by an adaptive method was the same as that reached
on the basis of the entire test item pool, this was considered to be a
"hit". Thus, the accuracy measures are the percent of correct
predictions made by each method. There were 28 nonmasters and 25
masters identified by the entire 97-item test, when the cut-off score
was set at 72.5 percent correct.

First, note that the parameter sample size seems to make little
difference in the mean test length within each method. For example,
within the AMT model 20.6 items were required for nonmastery decisions
when item parameters were based on a sample of 25, compared to a mean
of 18.3 for the sample of 50. For the EXSPRT-I, 5.6 items were
required for nonmastery decisions in the sample of 25, compared to a
mean of 5.9 for the parameter sample of 50. Please note--and this is
confusing--that the mean test lengths for each of the four methods are
based on the same 53 test administrations, where all 97 items were
originally given, and which were rt-enacted under each adaptive method.
The size of the parameter estimation sample refers to the number of
examinees randomly selected on whom the item difficulties were
estimated for the ANT model and on whom the item rulebases were
constructed for the EXSPRT-R and EXSPRT-I models.

Decision accuracies. For the 53 administrations of this DAL test
there does seem to be some difference in decision accuracies within
each model for the two parameter estimation sample sizes. The decision
accuracies tended to be high for all methods. Decision accuracies were
compared to expected values of .975 correct mastery decisions and .975
correct nonmastery decisions, using Chi-square goodness of fit tests
(e.g., see Blass 8, Hopkins, 1984). A significant Chi-square (g < .05)
means that the observed decision accuracies departed from what wa'a
expected according the as priori decision error rates that were
established for each of the four adaptive testing methods.

22



Table 1. Efficiency and Accuracy of the Four Adaptive Testing Methods in
the First Study.'

Item Parameter
Sample Description

Mean Score
(S.D.)

n

ADAPTIVE TESTING METHOD

ANT SPRT EXSPR1 -R

Mean Length Mean Length Mean Length
(S.D.) (S.D.) (S,D.)

Accuracy Accuracy Accuracy

EXSPRT -I

Mean Length
(S.D.)

Masters 87.46
( 7.90)

12

Nonmasters 42.66
(15.83)

13

Total 64.16
(25.99)

25

8.40
( 9.62)

100.0

20.57
(24.45)

96.4

14.83

(19.77)

98.1

8.72
( 5.16)

92.0

10.54
( 7.14)

85.7*

9.68
( 6.29)

88.7

7.56
( 3.22)

100.0

12.71
(15.46)

96.4

10.28
(11.65)

98.1

5.44
( 1.23)

100.0

5.64
( 2.02)

85.7*

5.55
( 1.68)

92.5

Masters 87.27
( 7.89)

23

Nonmasters 45.06
(16.25)

27

Total 64.47
(24.89)

50

8.28
( 8.19)

100.0

18.29
(24.43)

96.4

13.57

(19.14)

98.1

10.36
( 6.92)

96.0

10,11

(10.97)
89.3*

10.23
( 9.20)
92.5

8.44
( 5.74)

96.0

9.39
( 9.15)

92.9

8.94
( 8.94)

94.3

6.84
( 2.64)

100.0

5.93
( 2.28)

92.9

6.36
( 2.47)

96.2

*Percent accuracies were tested by goodness of fit, where .975 accuracy was
expected according to the a priori error rates for masters and nonmasters.
Only those percent accuracies which differed significantly from the expected
accuracies, according to a chi-square test (d.f. = 1, gL( .05) are marked with
an asterisk.

1Alpha = I= 0.025 for the SPRT, EXSPRT and EXSPRT-I; a .95 confidence
interval was used with the AMT. There were 53 administrations of the DAL test
which were re-enacted for each of the four adaptive methods.
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When 25 examinees were used for parameter estimation, there were
two significant departures from expected accuracy. The EXSPRT-I was
85.7 percent accurate in nonmastery decisions, which significantly
differed from the expected 97.5 percent accuracy. At the same time,
however, the EXSPRT-I was reaching decisions when the other models were
requiring two to four times as many items. The SPRT accuracy for
nonmastery decisions was also significantly lower than expected.

When 50 examinees were used for parameter estimation, the AMT,
EXSPRT -R, and EXSPRT -! models ,yere within the expected range of
accuracy. The SPRT failed to make as many correct nonmastery decisions
as were expected. What is notable is how well all of the adaptive
methods predicted total test decisions, while using between 5 and 20
items from the 97-item pool to reach those decisions--a very
substantial reduction in test lengths (95 to 80 percent decrease).

Efficiency. A repeated measures ANOVA (MANOVA) was conducted to
see if there were significant differences among the mean test lengths
for the four adaptive methods. This was done for the results based on
the parameter sample of 50 for the 53 test administrations.
Hotelling's T° was significant at the .05 level. However, the
sphericity assumption was violated, due to the large differences in
variances among the four methods. A post hoc comparison procedure
suggested by Marascuilo and Levin (1983, pp. 373-381) for this kind of
situation was conducted for all pair-wise contrasts of mean test
lengths. One statistically significant difference was found. The mean
test length for the SPRT was significantly greater than that for the
EXSPRT-I. Even though some of the other contrasts have greater
magnitudes of difference, the within-method variances are very
different themselves. It can be noted that, overall, the AMT model
required about twice as many items to reach decisions (13.6) as did the
EXSPRT-I (6.4), though it was not statistically significant at the .05
level.

The variances in average test lengths within each adaptive method
were significantly different, as noted above in violation of the
sphericity assumption. The variance in test lengths for the AMT model
was approximately 60 times larger than that for the EXSPRT -I model
(19.1G"° vs. 2.47e). In the AMT model, tests tended to be longer before
nonmastery decisions were reached, and there was much more variation in
test lengths criipared to the remaining models. The variation in
lengths of tests with EXSPRT -I method was relatively small compared to
variation in the remaining models.

SECOND STUDY

Computer Functions Test

A computer-based test on how computers work, consisting of 85
items, was constructed. The COM test, as it is referred to here, was
comprised of about half multiple-choice, one-fourth binary choice, and
one-fourth fill-in type questions (Cronbach a = .94). Compared to the

24
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DAL test, the COM test was much easier for most examinees (mean score =
79.0 percent, S.D. = 13.6).

Examinees

About half of those who took the COM test were from two sections
of an introductory graduate-level course on use of computers in
education. The remainder were mostly volunteers from an undergraduate-
level course for non-educatior majors who were learning to use
computers. A small number of students were volunteers recruited at the
main library on campus.

Test Administration and Experimental Methods

The COM test was individually administered by the Indiana Tasting
System in the same manner as the DAL test. There were a total of 104
administrations of the COM test in the second study. The same four
adaptive testing methods were re-enacted from actual examinee test data
in the very same manner as described above for the DAL test.

Results from the Second Study

Since there were more administrations of the COM test, parameter
estimation samples of 25, 50, 75 and 100 were selected at random. Four

sets of tA coefficients were obtained for the AMT model and four
rulebases were constructed for the EXSPRT models based on the same four
parameter estimation samples. See the left sides of Tables 2.1 and 2.2
for descriptive information about the parameter estimation samples.

Accuracy of predictions. When the parameter estimation sample was
25, all four adaptive methods did not perform as well as expected in
correctly predicting nonmasters in the 104 administrations of the COM
test. Chi-square goodness of fit tests showed that all four methods
'significantly departed from the expected accuracy rates. EXSPRT-I had
the worst accuracy, but it should be noted that there were only seven
nonmasters in the estimation sample for creating the rulebase, so this
is not surprising.

When the parameter estimation sample was 50, the AMT and EXSPRT -I
models still made signi.icantly fewer correct nonmastery decisions than
expected a priori. On the other hand, the SPRT and EXSPRT --both of
which use randoc, selection of items vs. intelligent selection in the
AMT and EXSPRT -I - -predicted masters and nonmasters correctly within the
bounds of expected error rates.

When the parameter estimation sample was 75 (55 masters and 20
nonmasters when the cut-off was 72.5 percent correct), all models
predicted well except the AMT, which made significantly fewer correct
nonmastery decisions than were expected a priori.



Table 2.1. Efficiency and Accuracy of the Four Adaptive Testing Methods in
the Second Study.e

Item Parameter
Sample Description AMT SPRT EXSPRT-R EXSPRT -I

ADAPTIVE TESTING METHOD

Mean Score Mean Length Mean Length Mean Length Mean Length
(S.D.) (S.D.) (S.)).) (S.D.) (S.D.)

n Accuracy Accuracy Accuracy Accuracy

Masters 86.21 8.37 11.71 10.05 4.57
( 6.35) (13.59) ( 7.80) ( 5.42) ( 3.60)

18 97.4 98.7 98.7 98.7

Nonmasters 48.07 33.93 14.39 15.00 7.07
( 9.10) (31.83) (15.81) (10.41) ( 2.36)

7 82.1* 85.7* 82.1* 67.9*

Total 75.53 15.25 12.43 11.38 5.24
(18.84) (23.02) (10.55) ( 7.39) ( 3.49)

25 93.3 95.2 94.2 90.4

Masters 87.16 11.83 15.08 11.71 5.72
( 5.68) (18.23) ( 9.06) ( 8.28) ( 3.92)

35 94.7 96.1 98.7 96.1

Nonmasters 53.65 31.89 17.39 15.82 7.93
(10.44) (29.97) (14.50) (12.70) ( 6.21)

15 78.6* 92.9 96.4 89.3*

Total 77.11 17.23 15.70 12.82 6.32
(17.15) (23.61) (10.77) ( 9.78) ( 4.72)

50 90.4 95.2 98.1 94.2

*Percent accuracies were tested by goodness of fit, where .975 accuracy was
expected according to the a priori error rates for masters and nonmasters.
Only those percent accuracies which differed significantly from the expected
accuracies, according to a chi-square test (d.f. = 1, a ( .05) are marked with
an asterisk.

Inlpha = g, = 0.025 for the SPRT, EXSPRT-R, and EXSPRT-I; a .95 confidence
interval was used with the AMT. There were 104 administrations of the COM
test which were re-enacted for each of the four adaptive methods.
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Table 2.2. Efficiency and Accuracy of the Four Adaptive Testing Methods in
the Second Study (cont'd).

Item Parameter
Sample Description

Mean Score
(S.D.)

n

ADAPTIVE TESTING METHOD

AMT SPRT EXSPRT-R EXSPHT -I

Mean Length Mean Length Mean Length Mean Length
(S.D.) (S.D.) (S.D.) (S.D.)

Accuracy, Accuracy Accuracy Accuracy

Masters 87.68 10.21 16.64 11.78 7.70
( 5.93) (16.96) (10.35) ( 6.34) ( 7.13)

51 94.7 97.4 97.4 94.7

Nonmasters 56 0 28.93 16.29 14.75 7.82
(10.17) (28.58) (16.96) (15.54) ( 4.85)

gq 82.1* 92.9 100.0 100.0

Total 79.23 15.25 16.55 12.58 7.73
(15.84) (22.21) (12.39) ( 9.71) ( 6.57)
75 91.3 96.2 98.1 96.2

Masters 87.47 13.75 16.97 13.58 7.64
( 6.33) (20.80) (10.75) ( 9.51) ( 6.12)
75 93.4* 96.1 98.7 94.7

Nonmasters 56.00 31.50 13.04 12 32 8.93
(11.34) (29.77) (13.66) (10.78) ( 7.41)
25 78.6* 92.9 96.4 100.0

Total 79.60 ,1.53 15.91 13.24 7.99
(15.77) (24.70) (10.92) ( 9.83) ( 6.48)
100 aia 75.2 98 1 96.2

*Percent accuracies were tested by goodness of fit, where .975 accuracy was
expected according to the a priori error rates for masters and nonmasters.
Only those percent accuracies which differed significantly from the expected
accuracies, according to a chi-square test (d.f. = 1, a ( .05) are marked with
an asterisk.
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When the parameter estimation sample was 100, the AMT model still
had problems with accuracy of nonmastery classifications. And
strangely enough, the AMT model also made significantly fewer correct
mastery decisions than were expected. The SPRT, EXSPRT-R, 'nd EYSPRT-I
all correctly predicted masters and nonmasters within the bounds of
expected accuracies. It should be noted that it is generally
recommended that a minimum of 200 examinees be used for estimating bt
pare aters in the IRT-based, one-parameter AMT model. Only half that
number were available in this study. Thus, it is not surprising that
the AMT model performed less well than it should, since estimation of
the item difficulty parameters was not as precise as desired.

Efficiency. Average test lengths of the four adaptive methods
were compared for the 100 examinee parameter estimation situation only.
See the bottom half of Table 2.2. A MANOVA again revealed that the
sphericity assumption was violated. and so the same procadure as
described above for the DAL test was used in post hoc comparisons of
the adaptive COM test length means (Marascuilo 6 Levin, 1983).

When nonmastery decisions were made, the AMT model required
significantly longer tests than either the SPRT, EXSPRT-R or EXSPRT -I.
The AMT model required about 32 items to reach nonmastery decisions,
compared to the EXSPRT -I, which required about nine items. Moreover,
the AMT made significantly fewer correct nonmastery decisions than
expected, as noted above. klen mastery decisions were reached, test
lengths for the SPRT and EXSPRT-R methods (15 and 12) were
significantly longer than the EXSPRT -I (6 items). Mean test lengths
for mastery decisions in the AMT and EXSPRT -I models were not
significantly different at the .05 level.

When looking at decisions overall, the following contrasts were
significantly different: the AMT, SPRT, and EXSPRT-R methods each
required significantly longer tests than did the EXSPRT-I model. The
AMT model required over twice as many items as did the EXSPRT-I (19 vs.
8).

Slmearv. It would appear from the COM test data that the EXSPR'-I
is significantly more efficient than the other adaptive methods.
Indeed, it is rather remarkable that the EXSPRT-I can sake such highly
accurate mastery and nonmastery decisions with relatively few test
questions. It is also notable that the EXSPRT-R and SPRT also made
highly accurate predictions, but were less efficient than the EXSPRT-I.
The AMT performed worst of all, not only resulting in longer adaptive
tests but also in making significantly more prediction errors than
theoretically expected.

One limitation of the first and second studies is that both
respectively used the same sets of test administrations for not only
estimating item parameters and rulebases, but also for re-enacting the
four adaptive testing methods. It would have been preferable to use
one set of test administration data for parameter estimation and
rulebase construction, and then to use an independent sample of
examinees to compare the four adaptive methods for efficiency and
accuracy. This latter strategy was followed in the third study.
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THIRD STUDY

The Comouter Literacy Test

A 55-item test was constructed for purposes of screening
undergraduate students at IndianA Wesleyan University. The eventual
goal is to use the test for deciding whether or not undergraduate
students must take a course in general computer literacy. A paper -and

pencil version of the test was initially given to 40 students.
Cronbach's a was .84, and the average test score was about 50 percent
with examinees distr'buted normally. This test is herein referred to
as the LIT test.

Examinees

A new sample of roughly half freshman and half sophomores was
obtained (n = 333). Fifteen different majors and a wide range of
academic ability levels were represented by this sample.

Test Administration

It was not feasible to test the 333 examinees by computer at the
time the data were collected. Instead, individual test booklets were
constructed for each examinee with one item per page. Each test
booklet contained a different random order of the 55 items. Examinees
were instructed to answer items in the order they appeared in the
booklet, and they were not permitted to flip back to previous pages
during the test. Most students completed the test in 30 to 45 minutes.

Tests were hand-scared and item-by-item results were entered into
a computer database so that it would be possible to conduct re-
enactments of the LIT test under the four adaptive conditions, as
described above for the DAL and COM tests.

Results of the Third Study

Four samples were selected at random from the 333 examinees for
estimating item parameters in the AMT model and constructing rulebases
in the EXSPRT malels (n = 25, 50, 75, 150). A cut-off of 59.5 percent
correct was chosen for sorting stu_ents into mastery and nonmastery
categories required for constructing the EXSPRT rulebases. Examinees
who were selected for each parameter estimation sample were

subsequently excluded, from further analyses of results from the four
adaptive testing methods. For example, when the parameter sample was
50, then 333 minus 50, or 283 administratewm ware re-enacted under
each adaptive method. S Tables 3.1 and 3.2.



Table 3.1. Efficiency and Accuracy of the Four Adaptive Testing Methods in
the Third Study.11

Item Parameter
Sample Description

ADAPTIVE TESTING METHOD

AMT SPRT EXSPRT-R EXSPRT -I

Mean Score Mean Length Mean Length Mean Length Mean Length
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

n AccurAgy Accuracy Accuracy Accuracy

n = 308
Masters 62.7 21.72 22.34 25.59 21.49

( 1.3) (26.62) (10.82) (15.60) (16.28)

2 95.3 100.0 89.5* 97.7

Nonmasters 39.9 20.80 38.23 33.02 27.10
(10.0) (18.18) (15.53) (15.44) (19.49)
23 89.2* 68.7* 77.5* 86.9*

Total 41.7 21.06 33.79 30.95 25.54
(11.5) (19.17) (16.03) (15.81) (18.80)

25 90.9 77.6 80.8 89.9

Masters 65.6
( 4.7)

6

25.40
(2080)
79.3*

Nonmasters 41.4 16.18
( 9.8) (17.15)

44 91.5*

Total 44.4
(12.2)

50

18.85
(18.72)

88.0

n = 283
23.40 25.26 24.07
(12.45) (15.78) (14.87)

100.0 89.0* 96.5

34.92 28.68 19.37
(16.43) (15.59) (18.11)

76.6* 81.1* 90.5*

31.58
(16.23)

83.4

27.70
(15.69)

83.4

20.73
(17.34)

92.2

*Percent accuracies were tested by goodness of fit, where .975 accuracy was
expected according to the a pric-i error rates for masters and nonmasters.
Only these percent accuracies which differed significantly from the expected
accuracies, according to a chi-square test (d.f. = 1, a ( .05) are marked with
an asterisk.

'Alpha = I. 0.025 for the SPRT, EXSPRT-R, and EXSPRT-I; a .95 confidence
interval was used with the AMT. There were (333 - parameter sample size)
administrations of the LIT test which were re-enacted for each of the four
adaptive methods.
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Table 3.2. Efficiency and Accuracy of the Four Adaptive Testing Methods in
the Third Study (cont'd).

Item Parameter

ADAPTIVE TESTING METHOD

Sample Description AMT SPRT EXSPRT-R EXSPRT-I

Mean Score Mean Length Mean Length Mean Length Mean Length
(S.D.) (S.D.) (S.D.) (S.D.) (S.D.)

n Accuracy Accuracy Accuracy Accuracy

n = 258
Masters 65.0 23.22 26.37 28.27 25.52

( 4.3) (19.20) (12.57) (16.22) (16.36)

11 90.9* 100.0 92.2* 93.5*

Nonmasters 43.8 18.72 44.69 31.11 19.72

( 9.8) (17.04) (13.22) (16.54) (18.61)

64 91.2* e5.1* gga* 91.7*

Total 46.9 20.07 34.36 30.26 21.45
(11.9) (17.80) (15.97) (16.46) (18.13)

75 91.1 89.6 85.7 92.2

n = 183
Masters 66.8 25.35 23.07 21.33 22.72

( 6.0) (21.03) (12.90) (13.69) (15.44)

34 96.3 100.0 98.1 98.1

Nonmasters 43.2 20.85 34.85 30.73 22.35
(10.4) (19.37) (15.69) (16.18) (18.58)

116 90.7* 85.3* 77.5* 92.2*

Total 48.6 22.18 31.38 27.90 22.46
(13.7) (19.92) (15.83) (16.04) (17.67)

150 92.4 89.6 83.6 94.0

*Percent accuracies were tested by goodness of fit, where .975 accuracy was
expected according to the a priori, error rates for masters and nonmasters.
Only those percent accuracies which differed significantly from the expected
accuracies, according to a chi-square test (d.f. = 1, p.< .05) are marked with
an asterisk.
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Not* the characteristics of parameter samples in relation to the
chosen cut-off of 59.5 percent correct on the left sides of Tables 3.1
and 3.2. For example, in the sample of 25, there were only two masters
and 23 nonmasters. In the sample of 150, there were 34 masters and 116
nonmasters. Also note that the average total test scores were well
below the chosen cut-off in the third study, as would be expected with
such a disproportionate number of nonmasters.

Decision accuracies. The most notable result is that all four
adaptive methods were unable to predict non;astery decisions as
accurately as expected across all four parameter estimation sample
sizes (25, 50, 75 and 150). When the parameter estimation sample size
was 50 or greater, both the AMT and EXSPRT -I correctly predicted
nomasimry decisions slightly more than 90 percent of the time.
Nonetheless, these were significant departures from the expected 97.5
percent accuracy rate.

When.the parameter estimation sample size was 150, all four
adaptive methods predicted mastery decisions within the bounds of the a
priori error rates. Interestingly, the SPRT was 100 percent accurate
in its mastery decisions when using mastery levels determined from each
of the four different parameter estimation samples.

It would appear from these data and the LIT test that, when a 59.5
percent cut-off is used, the tendency of each of the methods is to fail
to make as many correct nonmastery decisions as expected.

Efficiency. A MANOVA was run on the 183 examinees whose tests
were re-enacted using parameter information derived from a sample of
150 other examinees. See the bottom half of Table 3.2. Hotelling's T=
was highly significant. The mean test length for the SPRT (31.38) was
significantly greater than each cf the other three adaptive methods.
The mean test length for the EXSPRT-R (27.96) was significantly larger
than either the EXSPRT-I (22.46) or AMT (22.18). There was no
significant difference between the EXSPRT-I and AMT mean test lengths.

It is noteworthy that average adaptive LIT test lengths tended to
be much larger than those for the DAL and COM tests.

DISCUSSION

Wh Do the Ad tive Methods pear to Behave Inconsistentl

Adaptive tests tended to be shortest in the first study with the
DAL test. Sew Table 1. Of the 53 administrations of the DAL test,
there were 28 nonmasbers and 25 masters when the cut-off was set at
72.5 percent and when examinees answered all 97 items. The overall
average test score was 63.2 (S.D. = 24.6).

Next shortest were the adaptive tests in the second study with the
COM test. See Tables 2.1 and 2.2. There were 104 administrations of
this test, with 76 masters and 28 nonmasters when the entire 85-item

32



Expert Systems Reasoning in Testing 25

test was taken (grand mean = 79.0, S.D. = 13.6, mastery cut-off = 72.5
percent).

The LIT test resulted in the longest adaptive tests overall
(Tables 3.1 and 3.2). In the sample of 183 examinees there were 54
masters and 129 nonmasters based on total test results from the 55-item
pool. The cut-off for this test was 59.5 percent, and the overall
average score was 51.5 percent (S.D. = 14.2).

One thing that appears to affect the average test lengths is the
location and shape of the distribution of examinee achievement levels
in relation to the cut-off selected. In the first study, the
distribution was somewhat bimodal and relatively flat, with about half
the examinees scoring above and below the cut-off. In the second
study, the distribution was positively skewed, with about three-fourths
of the examinees scoring above the 72.5 percent cut-off on the entire
hest item pool. In the third study, over two-thirds of the examinees
were classified as nonmasters on the entire 55-item test. The
distribution of this group was close to normal, with the mean being
about 8 percent. ge points below the selected cut-off.

We have previously conducted a number of computer simulations
comparing the three-parameter AMT model with the SPRT and a third
adaptive method based on Bayesian posterior beta distributions (Frick,
1988; and Frick, Luk & Tyan, 1987). One important finding in those
studies was that none of the adaptive methods performed well as
expected --and average test lengths tended to be longer --when the
distribution of examinees was mostly clustered around the cut-off.
Adaptive tests were shorter and accuracies agreed wits theoretical
expectations when the distributions of examinee achievement levels were
much flatter. The same phenomenon appears to have occurred in the
present three empirical studies.

The second factor that apparently affected the results is the
number of test items in eacil pool and their properties. When there are
more test items, and there are more itLas available at each ability or
achievement level, then both the AM1 aid EXSPRT -I tend to be more
efficient and more accurate. In both adaptive methods which rely on
"intelligent" selection of items, Bayesian posterior estimates are
affected more dramatically when there are highly discriminating items
available whose difficulty levels are close to the current estimate of
an examinee's achievement level. A real problem occurs with relatively
small item pools (as was the case with the LIT test in the third
study): After the best items have been administered early in a test,
the remaining items tend to provide little additional information.
That is, there are diminishing returns after some point because there
are no really appropriate items left.

In the third study we observed a kind of "yo-yo" effect. Since
most of the examinees tended to be average in achievement, those items
of average difficulty were first chosen. After 10 to 15 items had been
administered, there were very few items left of average difficulty.
The remainder were either easier or harder. If a harder question was
next picked, it was answered --not to our surprise -- incorrectly. If an
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easier question was chosen next--guess what? In other words, the
remaining items tended to provide progressively less additional
information about an examinee, belaboring and elongating a test until a
decision could be reached. As a result, adaptive tests tended to be
longer in both the AMT and EXSPRT-I models in the third study (compared
to the first two studies), and the number of correct nonmastery
decisions was not as high as expected a grilri.

Summary

Expert systems can be used to aid decision makers. A computerized
adaptive test (CAT) is one kind of expert system, though not commonly
recognized as such. When item response theory is used in a CAT, then
the knowledge or rule base is a set of item characteristic curves
(ICC's).

Normally an expert system consists of a set of questions and a
rule base. An inference engine uses answers to the questions and the
rule base to choose from a set of discrete alternatives. If an
adaptive test is viewed this way, then it is possible to construct "If

then ..." rules about test items that are not functions, as are
ICC's. A new approach, termed EXSPRT, was devised that combines expert
systems reasoning and sequential probability ratio test stopping rules.
EXSPRT-R uses random selection of test items, whereas EXSPRT-I
incorporates an intelligent selection procedure based on item utility
coefficients.

These two new methods were compared to the traditional SPRT and to
an IRT-based approach to adaptive mastery testing (AMT). Three
empirical stu'les with different tests and types of examinees were
carried out.

In the zirst study the EXSPRT-I model required about half as many
items as did the AMT approach (6 vs. 14), though the difference was not
statistically significant. When 50 examinees were used for item
parameter estimation and rule base construction, all four methods (AMT,
SPRT, EXSPRT-R and EXSPRT-I) made highly accurate mastery and
nonmastery decisions.

In the second study the EXSPRT -I method again required about half
as many items as did the AMT model (8 vs. 19), and this time the
difference was statistically significant. When 100 examinees were used
for estimation purposes, the SPRT, EXSPRT-R, and EXSPRT -I correctly
predicts(( masters and nonmasters within the bounds of the expected
theoretical error rates. The AMT model, however, made significantly
more prediction errors than expected.

In the third study, the EXSPRT -I and AMT models each required
about 22 items to reach decisions, whereas the SPRT and EXSPRT-R
required significantly more test questions. None of the models was
able to predict nonmasters as well as expected by theoretical error
rates - -even when the parameter estimation sample was as large as 150
examinees - -though all models satisf.Ictorily predicted masters at that
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point. Two factors appeared to affect these outcomes. First,
examinees tended to be mostly clustered near the mastery cut-off.
Second, the item pool was much smaller in this study, and it appears
that the adaptive methods tended to run out of test items which were of
appropriate difficulty levels and also highly discriminating.

Overall, results indicated that the EXSPRT -I is more efficient or
as efficient as the AMT model. When the distribution of examinees was
not clustered near the mastery cut-off, all four methods were usually
able to make highly accurate mastery and nonmastery classifications.

Although further research is needed, the EXSPRT initially appears
to be a strong alternative to IRT-based adaptive testing when
categorical decisions about examinees are desired. The EXSPRT is less
complex conceptually and mathematically, and it appears to require many
fewer examinees to establish empirically a rule base--compared to the
large numbers required to adequately estimate parameters for ICC's in
the IRT model. On the other hand, the EXSPRT is vulnerable, as is
class:cal test theory, in that a representative sample of examinees
must be selected for constructing rule quadruplets. This seems to be a
small price to pay for the advantages of theoretical parsimony and
operational efficiency.
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