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Introduction

The relevance of research in Cognitive Science to the focus of this
handbook, Knowledge Engineering, is in its contribution to the
understanding of problem solving processes. Cognitive Science has links to
Artificial Intelligence, to cognitive psychology, to information processing,
to language-based information systems, and a variety of other areas. For
this discussion, however, the focus will be on Cognitive Science as a model
for understanding the application of human skills toward efficient,
effective problem-solving. ¥nowledge engineering questions lie within a
framewcrk of information processing and of how a camprehensive analysis of
critical skills can assist in moving novice performance to expert
performance in as efficient a manner as possible.

The Cognitive Science model has been applied most broadly at the
variable level for analyzing the scope of a problem and for specifying the
perfommance skills that relate to each variable. For example, when a
research team wanted to analyze the relationship between school performance
an mathematics achievement and the students’ language skills, the questions
could have been addressel by considering individual topics that relate to
math and language perfcmance. Application of a cognitive science model, by
contrast, began by addressing the problex state (what was knuwn) and the
goal state (what was to be leamed) and then framing the problem broadly in
terms of relevant variables (Cocking & Chipman, 1988).

The beginning point in this analysis was to take a systematic lock at
the relationshipe between math achievement and language status variables.
This approach required an examination of the relevant variables that relate
to these children’s conceptual, developmental, and linquistic status for
receiving and utilizing clessroom instruction. The aspects of the problem
were schematized alang the lines of Input to the children and Output (i.e.
child perfomrance). On the Input side are Cognitive Ability Patterns
(inclwding math learning, language skills, reading); Bducational Opportunity

L) (including time on math tasks, quality of inst-uction, receptive language,

“ﬁ parental assistance, parental education); and _Motivation to Engaqe

(,i) (including cultural values, parental influence, expectations for reward,
motiviational nature »f instruction interactions, equitable treatment). On
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the Output side are Measurement Issues (including sensitivity to
developmntal status, culture fairness), Lanaquage of Test (including
instructions for what to do), and Performance Variation (including types of
mzth problems - word versus camputational problems, and math versus other
cognitive skills of performance).

Input/Output variables, however, frame the problem only in the most
global temms. Specific skills are associated with the array of variables
and it is at this next level of analysis - at the level of information
processing skills - that the Cognitive Science model builds upon research
fixam cognitive and developmental psychology and where implications for
Knowledge Engineering emerge. A brief overview of the variety of cognitive
skills that are important in the Cognitive Science model will be laid out
next, and then specific focus will be directed toward problem-solving.
Problem-solving is by no means the only aspect of the cognitive science
model that applies to Knowledge Engineering; however, this discussion will
be limited to the problem-solving issues, with occasional contrasts brought
in fram other related areas, such as leaming.

An_Infermation Procesing Framework

The starting point for the information processing framework is to ask,
What are the basic behavioral proceses that enable humans to make sense out
of envirommental information? This means specifying how humans attend to
information, select critical information, and interpret their environments.
In short, how do people respond in an orderly way to their enviromments, as
opposed to dealing with a "scrambled" world? FProcesses of attention,
perception, emotion, and language are basic mechanisms for filtering the
environment. What are the associated learned skills that utilize these
basic mechanisms?

The Infommation Prc.essing framework is useful for identifying the
critical behavioral processes. The framework is sufficiently broad to allow
casting these questions from perspectives of the social enviranment, the
emotional environment, and the intellectual/cognitive enviromment. For
example, major concems within behavioral science include how people learn
the information that is essential to their adaptation and mental growth, how
they store or remember experiences, and how their performmance is improved or
becaomes more adaptive. The information that is learmed, remambered, or
used can be social information, information about how they feel (their
emotions), or cognitive skills. The basic processes of language,
perception, camprehension/interpertation, categorical grouping, attention,
etc, apply across domins of information. In a listing, then, the following
questions group into 4 major classes that imply different skills and
oparations: (1) How is information learned? (acquired); (2) How is
information stored? (represented or encoded); (3) How is information
remembered? (retrieved or decoded); and (4) How is information used?
(applied). '

The framework suggests looking at camponents of behavior, such as the

learmning issues, the encoding or storage issues, the memory issues, and
perhaps most relevant to our discussion of problem-solving, the performance
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icxues. This framework links perfarmance to the other issues, such as to
learning and to memory so that ane can begin to target sources of
perfomance ehancement or deficits at the learning {aoquisition) or the
memory (retrieval) stages of processing information. The same questions
apply regardless of the damain of knowledge, since the underlying details we
want to know are about the behavioral processes of leaming, namely how
information is stored, how information is remembered, and how performance is
improved with learmning experiences. In addition, the basic behavioral

are further layered onto these questions by addressing concems
such as how attending (attention processes) selactively influences
understanding an event. Thus, processes of selective attention, awareness,
inferences, and interpretation apply to any evert, whether the event is
social, affective, or purely cognitive in nature.

In summary, the framework breaks down into learning, memory /iwo
aspects being representation anc retrieval), and application or usage of
skills and information. Problem-solving is largely the last camponent,
though it has aobvious links to learning and memory for achieving expert
status of efficient and effective performance. Next we will consider the
relevant aspects that lead to expert perfummance and follow with a
discussion of same additionai critical aspects of perfonmance that set
experts apart from novice problem--solvers.

Performance Differences

The most rudimentary, initial phase of analyzing a problem is to
characterize the subject matter -- the damain. Wwhile there are general
intellectual skills that are generic to all or most intelligent behavior,
identifying the domain of pmblem-solving (mathematics, geametry, measuring
ingredients before baking a cake) is to distinguish the relevant information

to the task at hand. Second, it is critical to impose same
organizational structure on the relevant skills. Thus, the beginning point
is to acknowledge damain specificity, and further to acknowledge that there
are identifiable, qualitative differences in ways for performming the task
that set experts apart from unskilled or semi-skilled problem-solvers.

The Expert-Novice distinction can be apparent in many forms: in how
easily or laboriously learning occurs; in differences in how information is
represented; in storage differences; in temms of access or retrieval
efficiency; and in temms of skilled application or vision for potential
application of damain-specific knowledge. Experts differ in terms of their
information levels, as would be expected, but additionally they appear to
employ more sophisticated and efficient learning strategies, they categorize
the problem types and analytic strategies for solving a problem differently
fram novices; they remember problems in different ways; and they go about
problem solutions differently. For example, Novices tend to work backward
from goal states in their attempts to construct solutions to problems. As a
consequence, they may perfoim adequately by solving a problem, but their
periommance is oftern so problem-specific that it may have little or no
generality (transferability to new situations). Experts, by contrast, work
forward, starting from general principles and moving toward more specific
procedures for applying the principles; in doing so, they thoroughly explore
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the problem space. In addition to considering a wider array of variables
trilute to the problem, end up leaming about types of
related problems in a damain and hence, experts are different from novices
in both leaming and problem-solving akills.

It is important to think about the Expert-Novice distinctions in order
to address the differences between novice perfommance and expert
performance. Although the Expert-Novice distinctions discussed above appear
to be too general to be of any practical use, we will re-visit them below in

Knowledge Engineering is to move novice performance toward skilled, expert-
like parformance, it is necessary to ask, first, what is it that experts do
and then to ask how ane can move a novice toward the desired performance
level. This leads us to two important considerations in Cognitive Science:
Schema theory and general issues of _Learning.

Schema Theory

Information has to be organized in same way in order to be meaningful
or useful. Cognitive psychologists have developed models of how knowledge
is represented in people’s minds (e.g., Bower, 1975; Rumelhart & Norman,
1975; Schank, 1975; Schank & Abelson, 1977). These models help define the
kinds of knowledge people have, how knowledge is aocquired, how people
retrieve knowledge, and how information is used (Dehn & Schank, 1982). One
theoretical model for how humans learn about organizational features of
events in their worlds is schema theory.

ot

Schank & Abelson (1977) asked a simple question to guide their model:
“What do we know about typical life events that we use for making inferences
and predictions?* They devised a descriptive model of what people know
about typical events so that inferences can be drawn. The Schank & Abelson
model, termed schema theory, specifies sequences of actions that are linked
tamporally and causally. The key element in the model is the script, which
is "a basic level of kncwledge r.presentation in a hierarchy of
representations that reaches upward through plans to goals and themes"
(Nelsan, 1982, p. 101). A scheme describes a present-state framework into
which actions are organized, in effect a structure into which new
infommation can be incorporated or accanmodated (Sigel & Cocking, 1977;
Cocking, 1983). The scripts or schemes are well-specified and are concrete,
in contrast to abstract levels of goals and themes (Nelson, 1982).

tal studies have used this model for studying memory and
results indicate similar recall organization for children (Nelson, 1978) and
adults (Bower, Black & Turner, 1979). These memory studies illustrate
similarities in event elements, event structure, sequences, rvferences to
implied but unstated related elements, common inferences, and general rather
than specific episodic themes. Scripts, therefore, are general in fomm,
tamporally organized, consistent over time, and socially accurate (Nelson,
1982, p. 103). Research in recent years has expanded the model to include
how scripts, as gemeric organizational frames, are aocquired and applied.
Research on application of schema theory-related topics includes concept
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development,, conceptual thinking, classification skills, crganizational
strategies, etc. (Garhard, 1975; Cocking, 1983; Friedman & Cocking, 1986).
In all of these manifestations, the underlying argument is that organization
of information is a critical device for knowledge represention and storage.
Experts utilize broader "chunks" as they encode information and these
chunks are semantically organized (that is, they are meaningful units).
Experts, further, can identify more subcomponents to the broader group; that
is, the storage system is more efficiert in that it subsumes related
infommational units. In essence, efficiency for storage and retrieval means
ﬂmtmcpertsamcapableofﬂumdngaxﬂramberiminlazgarcawepmal,
categorical classes into which lesser information can be incorporated. The
net effect of this approach, and that which distinguishes experts from
novices, is, ir a word, efficiency.

A conczete example illustrates the application of schema theory in
teaching organizational and cammnication skills. Gerhard (1975) uses
paragraph writing as a way of teaching categorical thinking strategies. One
first considers the range of elements to be included in presenting same
information on a topic. The next task is to decide which one of the list of,
say 6 items, is to be the organizing theme and to write a topic sentence.
The net effect of writing a sentence about each of the 6 elements after
deciding which is to be the arganizing item leads to a topically organized
sequence of related items. In essence, schema theory posits that this is
how efficient storage-encoding and memory-decoding operates: only the
organizational category needs to be encoded or retrieved which results in
cognitive econamy of informational structure. This, in effect, is also the
operational definition of a schema -- a superordinate organizational
fronework.

Learning
The discussion implies that schemas are critical components of problem-
solving. Ex;u.?lly cbvious, then, is the importance of schema acquisition to

Knowledge Engineering, since the goal is to move people in the direction of
becoming effective problem-solvers.

One possible mechanism for influencing leaming and ~ognition is
instruction. Vygotsky (1978) argues that children learn %o solve problems
through opportunities to solve them with more expert individuals. These
experts structure the problems to be anly slightly more difficult than
problems the child can solve on his or her own, and they direct the child’s
problem-solving 8o as to allow the child to function at the upper ability
limits. Same (Feuwerstein, Rand, Hoffman, & Miller, 1980) posit that
parents mediate experiences for children by giving new experiences structure
and by responding to aspects of the environment so that there is a more
systematic, planful and logical structure. Research indicates that mothers
help children solve problems, classify cbjects, and prepare and check
mamories for what is being learned.

But not all learning is influenced by experts who show or tell novices
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how to reason, plan, or solve important questions, however. Considerable
buman learning occurs without instruction, through sensory systems ‘wired’
into the uman neural network for picking up critical environmental
information (J. J. Gibeon, 1966). E.J. Gibson (1982) writes that
perceptual-based learning is "initiated through exploration motivated both
intrinsically and extrinsically.” Piaget’s work focuses on many aspects of
learning that occurs with relatively little intrusion from expert
instruction or guidance (Sigel & Cocking, 1977). Thus, cognitive
psychologists who extoll the virtues of exploration and learning by
discovery are making a distinction between knowledge that is directed toward
a specific goal (knowing the date of an historical event) and non-specific
knowledge goals of general characteristics of a damain (detemining if an
ice cube melts faster sitting an a saucer or in a dish of roam-temperature
water). This distinction is an important one in effective problem-solving,
as will be pointed out in a subsequent section.

Thus, most people consider it self-evident that instruction is
necessary or that it is at least the most efficient manner of transmi.tting
values and for conveying the symbol systems of a culture (Gardner, 1386;
Gardner, 1984). Reading, writing, and mathematice most probably cannot be
picked up without instruction. Specific systems of reasoning and problem-
solving such as those represented by the scientific method probably cannot
be aocquirted without instruction and tutoring. Evidence fram cross-cultural
research and from training studies clearly demonstrates that instruction
facilitates learmning and cognitive functioning. This is true for a variety
of learming tasks, including perceptual, memory, and logical reasoning
tasks, free-racall, classification, recognition memory, and so forth (see
Rogoff, 1981 for a detailed review). while much of the debate surmmx:lmg
whether schooling actually alters cognitive development and results in
inpmvedcognitivafmlctiomng the fact is that instruction has been shown

to change performance on specific cognitive tasks. Specifically,
instruction has been shown to lead to improved cognitive performance on
tasks such as physics and mathematics problem-solving (Larkin, Heller &
Gr.veeno, 1980); writing (Bereiter & &ardamlia, 1978; Gerhard, 1975);
reading (Brown, Campione & Day, 1981); and cognitive skille such as

thinking, problem-solving, and reasoning (Meichenbaum, 1977; Nickerson,
Perkins & Smith, 1980).

It is commonly assumed that practice on a large number of typical
problems is the optimal method of acquiring problem-solving skills. That
is, zotaleaming-by-domgmthodsofemmtimamassmedtobemebest

exercises. Sweller (1988) and others question this assumptiaon,

7iven what Cognitive Science research models have begun to indicate about
Liow domain-specific knowledge affects problem-solving. There is reason to
believe that practice skills are useful for certain learmers (e.g., children
who have a limited skills repertoire and a limited arsenal of past

from which to draw), but the Cognitive Science literature for
adult learmers clearly challenges the myths of routine practice exercises as
an efficient means of pramoting expertise.

Owen & Sweller (1985) showed that nonspecific goal-oriented problem-
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solving could be contrasted with conventional means-ends problem-solving
strategies to illustrate critical, meaningful differences between the two
approaches. The fommer approach is termed “forward working,* whereas means-
ends problem-solving is temmed "backwards working." Forward working is an
expert system that is schema-d—-iven. In this approach, the problem state is
analyzed and the necessary operations as well as options are specified for
moving toward a problem-solution of a goal state. This type of analysis
sets ur a contrast between present conditions with what is needed to reach a
specified desired set of circumstances. A means-ends approach, by contrast,
tends to invaoke all of the steps of achieving a goal without regard to
redundancy or irrelevancy of certain steps. A forward-moving approach also
focuses upon possibie alternatives through exploring the problem and
discovering features that make ane problem type different fram another.

Considerations of this sort are generally avoided if one’s eyes are fixed
anly on an end goal state of a means-ends strategy. Sweller and his
colleagues (Sweller, et al, 1983) replaced specific goal-oriented directions
in a problem set with non-specific goals (e.g., “calculate as many variables
as you can* versus "calculate a race car’'s acceleration"). The effect
proved beneficial in schema acquigition, that is in learning. While the
practice may be questionable for performance (that is, it is not as fast or
as direct), this altermative approach clearly taught the leamers more
about the task than the traditional set of instructions. The net effect was
faster acquisition of expert-like schemas and schema-driven approaches to
prablem solving.

Sweller accounts for this leaming efficiency in temms of the reduced
menory load required for forward working problem-solving, a: campared to
what is required in means-ends approaches. From this and other studies
conducted by the group, Sweller concluded that "Problem solvers [who
arganize] a problem according to means-ends principles, suffer from a
cognitive overload which leaves little time for other aspects of the task.
The overload can be manifested by an increase in the mmber of ...errors"
(Owen & Sweller, 1985; Sweller, 1988, p. 276). Sweller also points out that
trying to leam problem-solving strategies (acquiring schemas) at the same
time as solving problems via means-ends strategies is akin to doing two
things at once. Solving the problem is the primary task, while trying to
figure out what may be useful to know in the future is a second task. The
questiaon, then, is whether there a dual task when one is "leaming by

doing?"

The test of the "dual task theory" was to look at both phases of
performance. If the primary phase of means-ends strategies places a heavy
cognitive processing load, the net effect should be lovered support or

effects for the secondary phase. By contrast, if experts use
cognitive classification strategies to remember and access meaning for

similar types of problems, then one might expect facilitation across the two
phases. Experimental results indicated no differences in the total time it
took to solve the problems, but that there was a heavier cognitive
processing load in the conventional means-ends approach—-that is, the dual
task interferred with the secondary task unless a more expert-like schema-
driven strategy was employed. The conclusion was that

there was more learning during "doing” (that is, during parformance) when
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the doing was schama-driven.

This raises the question, Why is there interference? The answer lies
in the differences between leaming schemas and means-ends analyses. Two
critical mechanisms underlie learning and problem-solving: (1) attention
and (2) processing capacity. In the Cognitive Science model, acquisition of
information and application of informaticn are distinct processes; hence,
learming and problem-golving are seen as largely unrelated processes. For
mea.'s-andis analyses, a problem solver attends to differences between a
current problem state and a goal state. Previous states, in this framework
are relevant only for preventing repetitions or retracing steps. By
contrast, in schema aocquisition a problem solver needs to be able to
recognize and classify a problem as belonging to a class of problems.
Within this framework, previous problem solutions represent a problem state
for that particular problem and as such a represented solution may be an

t component of problem-solving. But the goal state is not the only
critical feature for understanding the problem (as it is in a means-ends
representation). What is important in schema theory is the role of
representations in memory for purposes of aocquisition. That is, there is a
structure into which new information can be incorporated. Piaget temms the
acquisition of new information "assimilation,® while the molding of that new
information into an existing structure is an "accomnmodative" process. By
this account, then, variables of structure that relate to perception and
perceptual pick-up are likely to be most associated with schema acquisition,
while variables related to meaning are most relevant for encoding and
retrieval in performance tasks.

Memory is also important to schema aoquisition in that categories are
memory-related, but this is not to say that leaming categories of
information is dependent upon memory. This distinction, while subtle, is a
radical one that is revolutionizing instruction. For example, math teachers
can present a problem set which capitalizes upon classroam examples which a
student has to recall, recognize, and remember for their unique or relevant
features. Such a routine is preferred to repetitive practice sets because
it draws upon memory for matching past problem types with current demands.
A math problem which requires youngsters to make same measurements and to
convert those measurements into fractions prior to setting up the problem
for solution means that the student asscs: 28 problem-state and goal-state
and identifies relevant variables without recourse to memory skills of
matching present end-goal states with renembered goal-states. In the
Cognitive Science model, therefore, memonic skills (memory) are relatively
more important to schema acquisition than to problem-solving. Memory, in
fact, may be an important source of interference in performance or schema-
application when the wrong problem prototype is pulled from memory. This
conclusion is certainly counter-intuitive to those who believe that
performance is based upon matching a
problem-solving strategy to the problem type as classified on surface-level
problem features. .

An example of this "matching to memory® strategy and the errors it can

lead to has been shown in math word-problems (Clement, 1982; Mestre, 1988).
The structure of English grammar leads one through a left-to-right

9



strateqy that carrespands to the left-right reading scheme. This
surface-level feature, encoded as a basic memory unit, often leads to errors
far solving 2 certain class of algebra problems, since English syntax often
transposes subject and object, or in algebra problems, the x and y
variables. Mestre presents the following example that evokea the tendency
for using the left-to-right reading strategy to parse an algebraic statement
into an algebraic equation: "Write an equation using the variables S and P
to repreeent the statement ‘there are 6 times as many students as professors
at this university.’* The cammon error, temed the variable-reversal error,
consists of the answer 6S-T, even though the respondents acknowledged that
there were, in fact, more students than professors. The error stemmed from
focusing on the problem’s surface features coupled with the highly practiced
habit of parsing a sentence using a sequential left-to-right strategy. If
students had focused on the problem’s deep structure, this error could have
been avoided. Memory, as invoked in means-end strategies by novices,
illustrates how selective attention to surface level details can lead to
misclassifying both the problem type and relevant strategies.

Another source of interference during learning is from the demands
placed on the cognitive system -- or the cognitive load. Means-ends
analyses usad by novices also have a "cognitive load" associated with them
that potentially interferes with learmming. Means-ends solutions may be
"efficient" in the sense that the strategy generally leads to few dead erds.
However, Sweller contends that there is a price for this efficiency: the
strategy requires the problem solver similtaneously to consider the problem
state, the goal state, the subgoals, and all the problem-solving operators.
The net effect of this coordinaticn is a heavy toll on a limited procesing
capacity. Sweller believes that all of this effort leaves little cognitive
capacity for attention to schema acquisition (learning). So much effort is
devoted to problem-solving that little cognitive capacity is allocated to
learning and explaring the problem space.

Evidence that there is such a thing as cognitive load has been cbtained
by looking at a number of criterial variables relating to Memory.
Evidence for increased, excessive, and unnecessary cognitive load imposed by
means-ends approaches in problem-solving has came from analyzing the kinds
of strategies emploved; the categories of viable, usable solutions; the
speed of solution; errors in subsequent prcblems; and modeling techniques
(Sweller, 1988). It should be pointed o't, however, that same of these
criteria fit perfopmnce better than jeaniing objectives. Is speed of
problem solution critical? It depends. In planning-related tasks
(Friedman, Scholnick & Cocking, 1987) the criterion of efficiency in
carrying out -<erformance was often preferred to a criterion of speed when
accuraCy Or appropriateness was not altered. Error types, another
criterion, may reflect developmental gtatus of the task performer. In an
exanple such 28 solving a language-related problem, same error types are
"more sophisticated" and represent advanced developmental stages of language
growth than earlier errors,.though both, on an absolute scale of
right/wrong, are classified as errors. Cognitive load and processing
capacity, therefore, have to be considered relative to standards for
specific problems and problem-solvers. That is, not all problems are of
equal difficulty and expert systems, while specifying no age-relatedness,

10
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generally imply adult status.

Apolication:
The Expert-Novice Paradigm As A Means of Studying
Problem-Solving

mu\issectimweelaborammmofmeganemlcmcapudiscussed
thus far. Again,thefocusiamumri:gmﬂcmtrast!mﬂ\ebehaviorof

should illustrate how Cognitive Science arriveé at the models of knowledge
acquisition, knowledge representation and retrieval, and knowledge usage
discussed above.

gain insights on the salient features of expertise and novicity, and thereby
gain insights on efficient instructional methods for moving novices toward
expertise. Although indications are that expertise is very
context-dependent (Brown, Collins & Duguid, 1989; Perkins & Salomon, 1989)
and generally does not transfer from one domain to the next (e.g., an
expert mathematician will not be able to use his or ner mathematical
expertise in the damain of chess and vice versa), results from expert-novice
studies are generalizable acroes domains. That is, there are many
camonalities in the way that experts from different damains acquire, store
and use damain-related knowledge to solve problems.

Historical Beginniigs -- Chunking ‘

Findings from expert-novice studies offer suggestions for the design of
efficient instructional approaches in prawting expertise. Same of the
first studies of expertise were conducted in the domain of chess (Chase &
Simen, 1973; de Groot, 1965; Newell & Simon, 1972). The task that separated
strong fram weak players was a memory recall task where players were shown a
chess board configuration for a very short period of time and asked
subeequmtlytorepmduoeasnudxofﬂnboaxdcmfigumtimastheycould.
Experts were able to reproduce the position of the majority of the chess
pieces on the board, mereaswealoerplayerscmldmtmtchtheexperts'
recall ability. Memorization ability had to be discarded as an explanation
because strong and week players were equally poor at recalling board
configurations made by randamly arranging chess pieces.

These findings have been reproduced in the domains of electronics (Egan
& Schwartz, 1979) and camputer programing (Ehrlich & Soloway, 1984). For
example, expert electronic technicians are capable of reproducing large
portions of complicated circuit diagrams after brief exposures, whereas less
experienced technicians could not. Similarly expert programmers could
zacalllargaeacdmsofpmgrmafterhriefexpoeureaﬂmmvice
programmars could not. As in the chess experiments, skilled electronic
tednuciumdidmtmmme-smadvantagewarnwicesmﬂ\emcanof
clmultsompoeedofnxﬂunlyamngadsynbols,arﬂexpartpmgmmm
aspoo:umvicaeinmcalm\g"mame"oa@terpmgzmcmpoaedofa
series of randamly arranged programming statements.
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‘‘hese differences were explained in terms of experts’ ability to group
together clusters of information according to same underlying principle or
pattem. In chess, the experts grouped together clusters of chess
according to same underlying strategy or goal of the game, and thus recalled
the board configuration by first recalling the strategic clusters and then
the individual pieces within each cluster. In electronics, the
grouped together clusters of individual components (e.g. resistors,
capacitars, diodes, etc.) into functional unit clusters (e.g., amplifiers,
rectifiers, etc.). The mechanism by which itams are grouped by same
underlying goal or principle is called chunking.

has also been cbserved in problem solving tasks among expert
physicists (Larkin, 1979). Expert physicists engaged in solving classical
mechanics problems could generate clusters of relevant equations in spurts,
suggesting that these clusters were accessed in memory via same underlying
principle or concept. In contrast novices generated equations individually
with time gaps separating each equation generated.

Fram Chunking to Hierarchical Menmory Networks

The chunking mechanism cbserved in experts is a precursor to the schema
ﬂmzydescribedearnermichiasousefulindescribingwexperta'
knowledge is stored in memory. The experts’ damain knowledge in memory can
be thought of as a hierarchical network where there is & pecking order of
importance associated to where a piece of information is stored in the
hierarchy. At the top of the “ierarchy are a small number of *umbrella”
concepts to which are attached relevant ancillary concepts, facts, and
procedures for applying related knowledge in problem solving situations; the
mbmllacaweptamdﬂ:e&associateddachntiveaxﬂpmcedumlhmledge
can also be described in terms of schemas (or schemata). Unlike experts,
the novice’s memory store is more amorphous in structure.

That experts have a conceptual hierarchy is also manifested in
experiments of problem categorization. One cammonly used paradigm for
problem categorization experiments is to give the subject a stack of cards
each containing a typed problem, and ask the subject to place the cards into
piles accarding to similarity of solution; that is, those problems that
would be solved similarly should end up in the same pile. Findinges from
ca:dsorthxgmperlnmtsmvealﬁmtmcpertsmmthemderlymgcmcept
or principle that needs to be applied to solve the problem as the
categorization criterion (Chi, Feltovich & Glaser, 1981; Hardiman, Dufresne
& Mestre, in press; Schoenfeld & Herrmann, 1982); this is referred to as
cuing un problems’ deep stiucture. For exanple, expert physicists will
place problems requiring the application of Newton’s Second Law into one
pile, problems requiring the Work Energy Thecrem in another pile, and so on.
In contrast, novices appear to cue on problems’ superficial similarity in
deciding solution similarity. For example, novice physics students tend to
make problem piles in which the problems share sume cammon object,
terminology or cther superficial attribute (e.g. problems having to do with
inclined planes are placed in the same pile, those having to do with
friction are place in another pile, those having to do with rolling cbjects
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are piaced in a thirxd pile, ard so on). For cbvious reasons, this is
refarred to as cuing on problams’ surface features.

Glaser and his collaborator: (Chi & Glaser, 1981; Glaser, 1984, 1989;
Rabinowitz & Glaser, 1985) discuss a profile of expertise that incorporates
many of the constructs discussed already. Among the salient features of
expertise are a large, highly specialized knowledge base, *he rapid
perception of meaningful pattems and fast access to relevant knowledge fram
emory te for the recognized pattemms, a rich arsenal of
procedures for implementing principles in a forward fashion frram givens to
goals, and a self-monitoring mechanism by which experts regulate/evaluate
the validity of problem solving moves.

In quantitative damains such as mathematics and physics, many of the
Expart-Movice distinctions in problem-solving style became readily apparent.
For exrple, novices clearly display their tendency for using the
backwerd-working means-end anaiysis when solving problems (lLarkin,
McDermott, Simon & Simon, 1980a, 1980b; Simon & Simon,1978). Unlike
novices, experts’ problem solving style is more forward-working and
principle-based. Experts appear to begin the process of constructing a
poblam’s solution by performing a qualitative analysis of the problem in
temms of principles and heuristics thac they may wish to apply (i.e., they
use the problem’s deep structure in performing the qualitative analysis).
The result of this analysie can be thought of as a high level strategic map
allows the experi tc efficienty move forward from the problem’s givens
the selected principle(s) and heuristics toward the goals. That
om qualitatfiife analyses is an expert trait was illustrated
experts and novices were asked to articulate the approach
solve problems (Che, et al., 1981). It was found that
eloquent in stating the principle that they would apply
procedures they would use to instantiate the principle, whereas
did not discuss a strategy for solution; rather, novices jumped into
solution itself, stating equations they would use in solving the problem
without discussions of general principles or procedures.
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At this point the attentive reader might reason that a quick and easy
method for moving novices toward expertise is to make them aware of experts’
characteristics and the powerful metlx 's that they use to solve problems.
This approach is naive. Simply telling novices what whe expert’s
characteristics are does not mean they will be able to employ them or
emulate them. The arsenal of procedures possessed by experts to solve
problems is tied to a rich knowledge base. Thus, novices
genaralized expert-like heuristics, even if they understand them and are
eager to apply them, is inc ifficient if they do not know how and when to
apply them within the context of the damain. Powerful problem solving
techniques must be accampanied by the knowledge base within which to apply
the techniques (Schoenfeld, 1985). Recent research on instructional
approaches based on cognitive reeearch findings indicate that there are more
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eificient methods for helping novices reacn expert status.

One study by Eylon and Reif (1984) investigated the influence of the
fomm in which a physics argument was presented. One group of subjects
received the argument in a hierarchical fommat (i.e., high level concepts,
pmoadureemﬂgoalsmseparatadfminfomttmderivmgfmnmehigh
lmlinfomatim),vt&leamﬂnrgzmpmcaivadﬂasmugmentina
linear, nor-hierarchical format. The group receiving the arqument in
hierarchical foam performed significantly better on both recall and problem
solving tasks. These vesults suggest that the organization of a
presentation can be ar important as its content in temms of people’s ability
toassimilateitinneanmgfulcmnﬂcsarﬁuseitinpmblansolving

settings.

In another study Heller and Reif (1984) trained novices to generate
qualitative analyses of physics problems involving Newton’s Second I-=-
before they were allowed to solve the problems. Subjects were trained to
perform a detailed analysis of a problem before attempting a solution, to
determine what relevant information should go into the analysis of a
problem, and to decide what procedures can be used in carrying out the
solution plan. This training resulted in substantial improvement in ability
to construct problem solutions. These researchers attributed the success of
the treatment to the explicit teaching of qualitative analyses that precede
experts’ problem solving, and accurately point out that qualitative analyses
are seldom taught in physics courses.

Finally, xore recent studies (Mestre, Dufresne, Gerace & Hardiman ,
1988; Touger, Dufresne, uerace & Mestre, 1987) investigated the possibility
of pramoting expertise with a treatment encompassing all of elementary
2lassical mechanics. The treatment used in this study consisted of
constraining novices who had performed reasonably well in a mechanics course
to follow a hierarchical, top-down analysis of physics problems. This
expert-like analysis began by asking the subject to select a fundamental
principle that could be applied to solve a problem under consideration.
After selecting a principle, the subject had to specify the principle
further (e.g. select ancillary principles and concepts), and instantiate the
principle through same appropriate procedure. No quantitative information
(1.e. equations) appeared throughout the analysis until the analysis was
campleted; at this point, the subject was shown the principle, and procedure
used to instantiate it, in equation form. This equation, or set of
equations, could then be used to generate a solution to the problem. In
order to streamline the analysis, the hierarchical approach was implemented
in a menu-driven, camputer-based environment. Subjects showed significant
improvements when compared to control subjects in ability to categorize
probless according to deep structure and ability to draw on principles in
perfomming a ralitative analyses of problems. What is interesting about
this study is chat subjects were neither trained to use the approach nor
provided with feedback to help them ascertain whether or not they were
actually performing the analysis correctly. Subjects were simply exposed to
the top-down, principle-based approach.

It therefore appears that exposing novices to approaches based on
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applying principles and procedurea in a forward manner helpes them appreciate
the role of principles in problem solving. A more recent extension of this
work indicates that those who stand to reap the most benefit from this
approach are novices who initially show medium to low proclivity toward
cuing on deep structure in problem categorization (Dufreene, Gerace,
Hardiman & Mestre, in preparation). This is encouraging since it implies
that thoee who improve most from exposure to expert-like approaches to
solving problems are novices who exhibit the least expert-like behavior.

Artifjcial Intolligent Tutors

An entirely different approach to pramoting expertise cambines the
power of technology with the advances in cognitive science: Artificial
Intelligent Tutors. An Al tutor is a computer-based system that "reasons”
about the leamer and tailors instruction to maximize learning. As such, an
AI tutor must model four separate entities: the damain knowledge, the
conmmunication environment (control system, screen design, menus, windows,
etc), the cognitive processes of the student, and the tutoring strategies.
The damain knowledge is modeled with the help of damain experts. To build
an Al tutor that teaches problem solving in physics, the design team would
include expart physicists whose job is to articulate all relevant knowledge
needed to teach the desired skills. Once this knowledge is articulated, it
must be coded and represented so that the camputer can use it to reason
about the damain. For example, the tutor must be able to decide whether or
not a student’s course of action is appropriate for solving a particular
problem in order to decide whether to leave the student alone, or to
interrupt with same intervention strategy.

Modeling the cammnication environment often involves a team of
camputer scientists, human factors engineers and cognitive psychologists.
In modeling the environment, the team must decide how the system will "hars
together.* Questions that must be answered before the cammunication
enviroment is modeled include: What actions will the student be allowed to
make?, What actions will the camputer make in cammmnicating with the
student?, How will the learming environemnt loock (i.e., will it be a
malti-window menu-driven environment, will it include graphics and
simulations, will it let the student explore the problem space, etc), How
will the domain knowledge, the commmnication environment, the cognitive
processes of the student, and the tutoring strategies be linked? (i.e., how
will a “"controller* decide how to move among these four entities?).
Modeling the envirorment is largely limited by technology, and recent
advances in processing speeds and in camputer graphics, displays and
similatios (together called *hypermedia*) make this a promising area for
future design of AI tutors. Perhaps the most important task in designing
the tutoring environment is to keep the student focused on the tutor’s qoal;
the danger lies in making the environemnt too rich so that the student gets

loat wandering through the hypermedia displays.

Parhaps the most difficult aspect to model is the student’s cognitive
processes. Despite the great strides cognitive science has made in the last
decade understanding the nature of learning, there is still much that is
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rot known. " In order to build a model of the student's knowledge, the tutor
needs information on a mltitude of factors. For example, the tutor needs a
method for deciding whether student errors are conceptual, strategic,
procedural, or due simply to skills-deficiency (1.e. poor algebraic skills).
The tutor also needs to know how much free reign to give the student, that
is, howlmgshmldﬂ\emtormitaftaranemriscumituedbefore

in the student; to interrupt too often interferes with learning,
but to let the student go too far astray is also counterproductive., Tied to
when and how cften to interrupt the student is the student’s intellectual
and emotional profile--does the student lack motivation?, Is the student
bright and motivated, and thus often bored with the pace of instruction or
with the same tutorial strategy? Although not very helpful in answering
these last questions, the research findings reviewed oarlier are the basic
ingredients needed to model the student’s cognitive processes. The perfect
design team for modeling the student’s cogntive processes would include
.cogrtive scientists, instructional designers, expert teachers and
psychologists.

The fourth factor needed is a model of the tutoring strategies that the
tutor will employ. Here one needs to decide how to structure the
student-camputer dialogue. Possible tutorial approaches include Socratic
dialogue, analogical reasoning, immediate corrective feedback, worked-out.
examples, etc. Of ocourse, the difficult part is deciding what particular
cambination of tutoring strategies work best for a particular student. This
is mﬂﬂmﬂmtthemtormstdecidedymmicallyas it works with the
student. If a particular tutoring strateqy does appear to be ineffective,
the tutor needs to switch to a different one. If one atrategy was effective
forawulehxtﬂxastudentismlmgerthrivugm\derit, it may mean that

To date, mauy AI tutors of varying sophistication have been built in
danains such as algebra (McArthur, Stasz & Hotta, 1987), geametry (Andersocn,
Boyle & Yost, 1985), elect:'mic trouble-shooting (Brown, Burton & De Kleer,
1982; white & Frederiksen, 353}, medical diagnosis (Clancey, 1982, 1986),
programuing languages (Ande.s.n & Reiser, 1986; Johnson & Soloway, 1984),
military equipment maintenance (Towne & Munro, 1988), camplex industrial
processes (Woolf, Blegen, Jansen & Verloop, 1986), and various other
damains. (For an overview of existing AI tutors, we refer the reader to
Woolf, 1988). As one can surmmise fram the foregoing discussion, designing
and building AI tutors is an expensive undertaking.

New Directions and Future Trerds

Wabagantmsdupterbydefirdngmfomatimhocessmgasﬂxelink
between Cognitive Science and Knowledge Engineering. The paradigm for IP
hasbemlanguage—based,byandla:ge,ascmldbeaeminthee:mples
cited (e.g., how experts analyze their skills - Chi, et al, 199%1; and how
variable-reversal errars confom to surface-level characteristics of English
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syntax - Mestre, 1988). New developments are beginning to explore other
sensory processing approaches of IP, such as optical scanning, tactile
responsiveness, auditory proceeses of echolocation, etc. While optical
scanning is currently mechanical both in paradigm and in concept, visual IP
and tactile IP are current research paradigms that hold considerable pramise

for future developments.

Clifton and Perris (1988), for example, is studying the roles of
audition versus vision in the development of infants’ guided reaching by
attaching infrared light-emitting diodes to their fingers and video-

movements when the infant is in a darkened roam.
toward sound stimli clearly cannot be visually-guided in such
situations. The research will aid in understanding developmental sensory
integration acroes projectile and ballistic reaching, vision, and auditory
information processing.

Rabotics is another application of Cognitive Science which is utilizing
dar-. cram human skills of sensory infonmmation processing. Friedman &
Cocking (1986) reviewed research on how blind persons were taught to
identify and to locate in space camplex forms, aobjects, figures, and faces
(Back-y-Rita, 1980; 1981; 1982; 1983). The blind persons received visual
information by contro’ling a television camera that delivered visual
information to the skin through an array of vibratory stimulators or
electrodes at the back, thigh, or abdamen. The authors reported that “the
subjective perception of the obtained information was not on the skin; it
was accurately located in the three-dimensional world in front of the
camera* (Friedman & Cocking, 1986).

Exploration of the wide array of sensory experiences and their
corresponding sensory systems will contribute to the Cognitive Science
revolution that is now underway. The Information Processing framewark is
only beginning to define what constitutes "information.* The associated
information processing skills and strategies for achieving expert use of
these skills in solving human factors-related problems are the challenge for
Cognitive Science in Knowledge Engineering.
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