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ABSTRACT

The purpose of this paper is to introduce the reader to some of

the control-charting techniques used in Statistical Process

Control. The types of control charts covered are the X-, R-, X-,

MR-, p- and u-charts. These charts provide the researcner with a

combined graphical/hypothesis testing procedure for assessing the

stability of various types of data collected across time. The

paper describes the details of constructing each of these charts

and the methods for hypothesis testing. Educational examples are,

given throughout.
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Introduction

Statistical Process Control (SPC) methodology is a collection

of graphical and inferential statistics techniques used to study

the progress of phenomena (e.g., the output of a particular

machine or a specific behavior for an emotionally impaired

youngster) over time. SPC began in the 1930's with the

development of control charting techniques by Shewhart (1931),

but it has not been until the last 15 years that SPC has become

popular in the United States, although it has been used

continuously in some American industries (e.g., Western Electric)

since the 1930's. It should be noted that the popular use of SPC

in Japan began approximately 40 years ago. Further, the use of

SPC techniques both in Japan and the United States seems to have

been restricted in the past, as well as the present, almost

entirely to industrial settings.

The popularity of the SPC methodology in industrial settings

can be seen by examining introductory statistics textbooks

written for business and engineering students. Almost all of

these textbooks have from a section to one or more chapters

dealing with SPC techniques. To the best of the author's

knowledge, statistics textbooks in education, the behavioral

sciences and the social sciences do not, however, mention these

techniques at all. This even includes books with chapters on the
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analysis of longitudinal data. Further, a computer-assisted

search of the education literature (via the ERIC system) revealed

only two published articles and no unpublished literature that

dealt with any aspect of SPC. Each of the articles only dealt

with a very narrow application of only the same small piece of

SPC methodology. Hence, there is a need for an expository paper

that introduces SPC methodology to the educational research

community.

The main purpose of this paper is to introduce the reader to a

large subset of Statistical Process Control methodology known as

Control Charting. Some of the moze popular types of control

charts used presently in Statistical Process Control will be

described in detail and ways in which these charts might be used

to analyze educational data will be suggested. Where

appropliate, the theoretical statistical underpinnings for the

control charts will be discussed. It should be noted up front

that the author has only recently learned the details of control

charting. Hence, this _aper is more of a beginning rather than a

definitive review of the methodology. It is hoped, however, that

others will still find this paper useful.

If- and R-charts

The most commonly used SPC technique is the combination of

the R-chart and the R-chart. The data collected for use with

this technique are of the following form. A constant number, n,
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of observations, with n 2 2, are collected on some process at a

number of time points, k, usually with k 2 25. The time points,

may or may not be, equally spaced. The observations at each time

point must arise from a well-defined process and must be a sample

from the total (i.e., population) output of the process. This

sample may be a simple random, systematic, cluster, or stratified

sample or arise from some combination of these sampling methods.

The dependent variable measured on each unit (e.g., a part or a

child) should have an underlying continuous distribution or, at

the minimum, should be measured on an interval scale. Some

examples of data sets where the technique of and R-charting is

appropriate, are:

1. The weights of or number of pieces in a box of candy.

2. The thickness of a metallic coating.

3. Daily/weekly quiz scores for a class.

4. Weights of people using some behavioral modification

technique.

As the data are collected, the mean (denoted X
i

) and the Range

(Ri) are computed for each sample, i = 1, 2, ..., k.

After a sufficient number of baseline samples (usually k 2 25)

are collected an estimator of the population standard deviation

is computed based on the Ri's. Although estimating the standard

deviation using the ranges may seem strange at first, it is

actually an excellent estimation technique. First, X- and R-

charts are often compil'd by workers on production lines as part

of their duties each shift. The computing of the range takes a

6
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few seconds, while the computing of a standard deviation (even

with a calculator with statistical capabilities) takes much

longer. Second, the range can be computed even without a

calculator, if absolutely necessary, by most production workers.

In educational settings, as will be discussed more below, one of

the more obvious applications of control charting is in the

analysis of data arising from single-subject designs implemented

in a school or other institutional setting. The data e 2 often

collected by teachers or other professional personnel to help

them evaluate the behavior(s) of a student or small group of

students. For these professionals, computing the range instead

of the standard deviation advantageous time-wise because of the

multiple demands of their time. Third, the concept of a range is

easier for people to understand than is the concept of a

standard deviation. Besides its simplicity, the use of ranges

leads to estimators of the population standard deviation that

have desirable statistical properties. For the folling

discussion and for much of the remainder of this paper, the focus

will be on the analysis of data collected when no treatments are

being applied (i.e., when baseline data are being collected).

The question of how to detect treatment effects will be addressed

later in this paper.

Statistical Background

Let aX denote the population standard deviation for the

dependent variable of interest. Construct a new variable, Wi ,

7
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with Wi = Ri/ox. Interestingly, when the Xi's are distributed

independently as normal random variables with identical means and

variances (i.e., they are i.i.d.), the expected value (i.e.,

population mean) of each of the Wi's is solely a function of the

sample size, n (Montgomery, 1985). Denote this expected value by

the symbol d2. So, la= E(Wi) = E(Ri/ax) = E(111)(tax. Hence, ax=

E(Ri)/d2. Summing over the k samples, ax = (E( E Ri /k)) /d2. Let
i =1

R equal the mean of the Ri's (i.e., it- = Ri/k).- Then ax =
1-1

E(R) /d2 = E(R/d2). Hence, R/d2 is an unbiased estimator of ax.

Some comparison of this estimator to an estimator based on the

2usual least squares estimators, S
2

, of 9k seems appropriate

here. Let S
i

= (.3E
1
(X

ii
- ))/(n-1) denote the usual least=

squares estimator of ax for sample i. Then Si is an unbiased
2

estimator of o
2

'
but Si = Si is not an unbiased estimator of ax X'

When the Xi's are independent and are distributed with identical

normal distributions then the bias of each of the

Si's is well known, and an unbiased estimator of 9k is given by

Si /c4, where

c4 . r(n/2)
n-1 r((n-1)/2)
k

Let S = E Si /k. Then -6/c4 is an unbiased estimator of 9c. Even
1=1

though 1T/d2 and S /c4 are both unbiased estimators of ax, R /d2 is

not as efficient as g/c4. Montgomery (1985, pg. 174) gives a

table comparing the relative efficiency of R /d2 to 6/c4 for

various values of n. Montgomery (1985) and others also give

tables of the values of d2 and c4. None of these textbooks,

however, gives a formula for d2 or a reference to the origin of
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the table. Table 1 of this paper reproduces the values of d2,

c4, and the relative efficiencies for n S 10. Since the relative

INSERT TABLE 1 ABOUT HERE

efficiency of R/d2 (when compared to S/c4) is approximately equal

to 1 for n S 5, and since it is rare to have samples of size

n > 5, it is common practice to use R/d2 instead of §/a4 because

of its simplicity of computation. Hence, an unbiased estimator

of a, the mean of population standard deviation of the sampling

distribution of each of the fi's, is given by aK= W/(dv/E) and

it is this estimator that is used when constructing control

charts.

Finally, an estimator is needed of a
R'

where a is the common

population standard deviation of the distributions of the Ri's.

The population standard deviation of Wi, where Wi = Ri/ax, is

solely a function of n (Montgomery, 1985) and is usually denoted

by the symbol d3. Hence, d3 = Var(Wi) = Var(Ri/ax) = Var(Ri)/(4

= 02R /02. Solving for ail gives, ail = d3a. Thus, an unbiased

estimator of all is given by (d3R)/(d2), since d3 is a constant

and R /(d2) is an unbiased estimator of ax. The values of d3 are

given in last column of Table 1.

Hypotheses Tested

The null and alternative hypotheses tested by those using X-

and R-charts are:

9
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Ho: The process is in control (stable)

Ha: The process is NOT in control (NOT stable)

where "in control" means that the X 's are identically

independently distributed (i.e., i.i.d.) normal and the Ri's are

i.i.d. also. In educational settings these same hypotheses are

often of interest with respect to the baseline observations on a

single-subject or a same group of subject because, if the

baseline is not stable, then there is no known statistical

methodology that can always separate treatment effects from what

would happen naturally in the absence of treatments (Huitema,

1986). It should be noted that there are, of course, a variety

of methods other than the methods to be described in this paper

that have been developed for ascertaining whether a baseline is

stable (see e.g., Hersen & Barlow, 1976; Huitema, 1986). To test

the null hypothesis versus the alternative hypothesis, two

separate charts, the and the R-chart are constructed. Once

the charts are constructed, a series of rules is then applied.

The construction of these two charts will be discussed next and

willbe followed by a discussion of the series of rules used for

hypothesis testing. It should be pointed out to the reader that

it is rare to find the idea of hypothesis testing mentioned when

this series of rules is applied. In reality, however, it is a

hypothesis test that is being performed.

10
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Construction of the 51 and R-charts

Two charts are constructed simultaneously in order to test the

hypotheses stated above. The first chart, the 2-chart, is

constructed by plotting ordered pairs with the sample number

(i.e., the i's) as the first coordinate and the Y s as the

second coordinate. Seven parallel horizontal lines are then put

on the chart. These lines are:

(1) The Center Line, X, where !represents the grand mean

(i.e., E =

1 =1
Z]3- kj/k );

(2) Sc (3): 57 cri

(4) & (5): - 2a_

A
(6) & (7): X- 3a-

and

and

and

fc + ak ;

X 4. 28 ;

X

X + 3a-
X '

where 6- ii/(d
2
jr1). The 31 - 3 6- and the. + 38- lines areX

usually called the Lower. Control Limit (LCL) and the Upper

Control Limit (UCL), respectively. They are often also referred
=

to together as the 3-a limits. The X I. 2a_ lines are often
X

referred to as the 2-a limits, while the X j:16*- lines are often

referred to as the 1-a limits. It also seems to be customary to

draw in the Center, the LCL and the UCL lines heavily and draw in

the 1-a and 2-a lines either lightly or not at all.

Table 2 presents a data set that will a used to construct an

example of an 5i-chart (as well as an R-chart). Each sample in

the data set is composed of the measurements taken every half-

hour of the voltage produced by four different supply units. If

the reader prefers an educational example, these data can be

thought of as the number of words read per minute by four

11
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,different individuals as measured on 25 consecutive Monday

mornings. For these data, k = 25, n = 4,11 = 349.808 and R =

2.512 . From Table 1, d2 = 2.059. Hence, S. = 2.512/(2.059g) =

.6100 . This yields an UCL--
X
of 351.638, a value of 351.028 for X

+
' .X

2S
X a value of 350.418 for r + 8, a Center Line of 349.808, a

value of 349.198 for - 8R, a value of 348.588 for 31 - 2a and

a LCL
K

of 347.978 . The X -chart is given in the upper portion of

Figure 1.

INSERT TABLE 2 AND FIGURE 1 ABOUT HERE

The R-chart is constructed in a manner similar to thel-chart.

The points graphed are the ordered pairs (i, Ri). The Center

Line is given by R. The UCL is given by R + 3aR , where =

/d312)/d2, and the LCL is given by the maximum of {0, T1 - 3&R}.

This definition of the LCL is advantageous since, by definition,

the Ri's are always nonnegative. The other four lines are given

by R + 2 &R, R + laR, Max {0,R - trill and Max{0, 2CIR}. For the

data set presented in Table 2, R = 2.512 . From Table 1, d2 =

A
2.059 and d3 = .8798 . Hence aR = (.8798'2.512)/2.059 =

1.0734 . Thus, UCLII = 5.7322, R + 2c = 4.6583, R aR = 3.5854,

the Center Line = 2.5120. if - 8a = 1.4386, it - 26R = .3G52, and

LCLR = 0. The bottom portion of Figure 1 gives the R-chart for

these data. It should be noted that some authors (e.g., Wheeler

& Chambers, 1986) prefer to say that LCLR "does not exist" when

the value of 3aR < 0.

1w
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Hypothesis Testing

The null hypothesis that a process is stable is rejected if

any of the following 12 conditions are met (Western Electric,

1956, pp. 25-26). The first six conditions are:

(i) One of more points on the 2-chart are beyond the 3-a
_ _ A

limits. That is, for some i, IX - XI > 30-.

(ii) Two out of three successive points on the X-chart are

beyond the same 2-a limit. That is, for some i, at least two of
--- A

i X{Xi-2 '
T

'

it I are less than X - 20- or at least two of {i
i-2'

RI} are greater than X +

(iii) Four out of five successive points are beyond the same

1-a limit.

(iv) Eight successive points fall on the same side of the

Center Line.

(v) A run up (i.e., nondecreasing X's) or a run down (i.e.,

nonincreasing X's) occurs for seven out of eight successive

points.

(vi) An unusual or non-random pattern emerges for the X's.

For example, if the observations were taken daily and Mondays

were always high and Fridays were always low.

Conditions (vii)-(xii) are analogous to conditions (i)-(vi)

except that X is replaced by R throughout.

The probabilities of violating conditions (i) through (iv)

when H
0

is true (i.e., the probabilities of a Type I error) can

be easily calculated when one assumes that the Xi's are i.i.d.

normal, although none of the sources consulted for this paper

13
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derived these probabilities or even simply gave the probabilities

without proof. For condition (i), the probability of a Type I

error for any particular value of i is equal to P(12i - X) > 3Ge)

= P(1z1 > 3) = .00270 , where z is a stanlard normal random

variable. For condition (ii), the probability of a Type I error

for any particular i is equal to P(Two of {Xi
-2' Xil > X +

) + P(Two of < = (1)(P(z > 2) )2+

(z.10(z < -2))2= 2(3P(z > 2e= .0031054 . Similarly, for

condition (iii) the probability of a Type I error for any

particular i is equal to 2(()(P(z > 1))4) = .0063368 . Finally,

for condition (iv) the probability of a Type I error for any

particular i is equal to 2(P(z > 0)8) = .0078125 . The

probabilities of a Type I error associated with conditions (v)

and (vi) were not discussed in any of the references used for

this paper, nor does this author know of a good way of estimating

them. Under Ho, however, these errors logically seem to be rarer

than those associated with conditions (i) to (iv). Hence, a

rough approximation is available to the probability of one or

more Type I errors occurring when the family consisting of

conditions (i) to (vi) is applied. This approximation is given
iv

by a = 1 - (1 -P(Type I error associated with condition (j)).

This approximation assumes that conditions (i) to (iv) are

independent and ignores conditions (v) and (vi). To the extent

that conditions (i) to (iv) are not independent, the

approximation overestimates a and to the extent that conditions

(v) and/or (vi) hold, this approximation underestimates a. Using
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this approximation, a value of .0198151 is obtained. Hence, the

probability of a Type I error using this set of conditions on the

8 -chart is approximately .02 . None of the references used

discussed the probability of a Type I error associated with the

application of conditions (vii) to (xii) to the R-chart. The

derivation of the probabilities would be much more complicated

than for conditions (i) to (vi) because the sampling distribution

of the R's is positively skewed. Further, no mention was made in

any of the references studied by the author of the power

associated with this hypothesis testing procedure; but, this is

not all that surprising since this procedure is rarely thought of

as being a hypothesis testing method in Quality Control

textbooks.

Some Examples

Returning to the data from Table 2 (and whose corresponding

control charts are portrayed in Figure 1), it can determined from

visual inspection of the 2 :J. ts or of the 5i-chart that none of the

conditions (i) to (v)` is violated. Condition (vi) is

subjective, but in this author's opinion is not violated in this

data set. Conditions (vii) to (xi) are also not violated here,

as can be determined by visual inspection of either the Ranges in

Table 2 or the R-chart. Condition (xii) is also subjective and

in this author's opinion does not seem to be violated. Hence,

since none of the 12 conditions is violated, Ho is not rejected

and it can be concluded that there is not yet enough evidence to

15
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conclude that the process is not stable. If the data from Table.

2 are thought of as reading rates for four children measured over

a 25 week period, then it would be concluded that there is not

yet enough evidence to conclude that the students' reading rates

are unstable.

As a second example, consider the data presented in Table 3.

INSERT TABLE 3 ABOUT HERE

These data are the means and ranges, for samples of size n = 2,

for the weights of a particular product for k = 30 observation

times. Similar to the above example, the reader can think of

reading rates as the dependent variable instead of weights and

the observations as being rates for two randomly selected

passages read by a single individual at 30 different times. For

these data, X = 278.3333, R = 31.333, d2 = 1.128 and d3 = .8525 .

Hence, 61= ii/(d2 45 = 19.6418 and aR = d3R /d2 = 23.6805 . So,

UCLT = 337.2587, X + 26T:= 317.6169, X + aR = 297.9751, the
= =

Center Line = 278.3333, X - = 258.6915, X - 2a--
X
= 239.0497,

and LCL-
X

= 219.4079 .

Condition (i) is not violated since none of the 30 Xis are

beyond the Upper or Lower Control Limits. Condition (ii) is

violated for i = 5, since the for both times 4 and 5 are
=

below X - 2a5i. . Since, condition (ii) is violated, we can reject

H0 and conclude that the process is unstable.

16
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For the purposes of this paper it was decided to continue to

investigate violations of the conditions further in order to help

the reader understand the 12 conditions better. Also, it is

common practice in Statistical Process Control to investigate all

12 conditions since each violation might have arisen from a

different cause and the more causes that can be identified and

corrected the better the final product will be. It is the

author's opinion that this same argument holds for educational

data; the main difference, however, is that causes are often

harder to identify in educational settings than in industrial

settings. But, perhaps with practice using control charts,

educators will improve their abilities to identify causes, since

the violations of the 12 conditions explicitly point out where

and in what direction changes have occurred rather than simply

indicating there has been some change.

Returning to condition (ii), it is also violated for i=17,

since the means for times 15 and 17 are both above X + 2a_.

Condition (iii) is violated for i=8 (since the means for times

4,5,6, and 8 are below 31 - 8i.) and for i=9 (since the means for
= A

a-times 5,6,8 and 9 are below X - R. Conditions (iv) and (v) are

not violated nor, by visual inspection, does condition (vi) seem

to be violated. Turning to the R-chart, UCLR = 102.3748, R + 2SR

= 78.6943, R + vR = 55.0138, the Center Line is It' = 31.3333, R -

â = 7.7528, Max{0,11- 2a
R
} = 0, and LCL

R
= 0. Since none of the

RI's are greater than 102.3748 (nor, of course, less than 0),

condition (vii) is not violated. Condition (viii)is violated for

1 7
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=17, since the ranges for times 15 and 17 are both greater than

78.6943. Condition (ix) is not violated. Condition (x) is

violated for i=30, since the RTs for times 23 through 30 are all

below R. Condition (xi) is not violated and, by visual

inspection, condition (xii) does not appear to be violated.

Moving Range Charts

In many educational, as well as industrial, settings only a

single observation (Xi) can be obtained on an individual or

machine at each time point. The if- and R-charts can not be used

directly in these cases. They can be modified, however, into a

useful set of charts by introducing the concept of a moving

range. Some examples of situations where moving range charts are

useful are:

1. An industrial process where each unit takes a long time to

produce.

2. Any single-subject research (i.e., n = 1) design where the

variable of interest is continuous (e.g., weight or time on

task).

In most circumstances the moving ranges (denoted MRiis) are based

on sets of two consecutive observations, Xi_1 and Xi, and are

defined as the range of these two observations (i.e., MRi =

Xil). The individual Xi's then play the role of theiiis

and the MRi's play the role of the RiTs from the and R-chart.

The charts used in this situation are referred to as the X-chart
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and the MR-chart. It is suggested practice (American Society for

Testing and Materials, 1976) to take moving ranges based on

exactly two observations. There is no difference in the

statistical bases used to analyze these charts if three or more

observations are used to compute the moving ranges.

The use of X- and MR-charts can be illustrated by using the

data from Table 3 and thinking of the "Weekly Averages" as

reading rates for one student over 30 weeks based on a single

passage (rather than two passages). Since now n = 1, the and

R-charts are not appropriate and the X- and MR-charts must be

used. Table 4 presents the moving ranges (and for convenience

INSERT TABLE 4 ABOUT HERE

the X
i
's). The mean moving range is denoted by MR and is equal
k

to ( E (MR) )/(k-1). For this example, MR = 36.2069. By the
1=2

earlier discussion of the statistical underpinnings of the 2-

chart, ax = MR/d2, where the value of d2 is determined from Table

1 using n = 2 (since each of the moving ranges is based on two

observations). That is, d2= 1.128. Further, am= d3MR/d2, where

d
3

is determined from Table 3 using n = 2. That is, d
3
= .8525 .

For this example, ox = 32.0983 and Gme 27.3638 . Hence, for the

X-chart, UCLK = 374.6282, 28k = 342.5299, X + ax = 310.4316,

the Center Line = 278.3333, "2" - ax = 246.2350, 1 - 2(3x =

214.1367, and LCLX = 182.0384 . For the MR-chart, MR + 3Q

118.2983, MR + 286 = 90.9345, MR + = 63.5707, the Center

1Q
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Line = 36.2069,MR - amR = 8.8431, and the -264ma limit and the LCLIIR

are both equal to zero. Figure 3 gives the X- and MR-charts for

this example.

INSERT FIGURE 3 ABOUT HERE

Applying the hypothesis testing procedure discussed earlier to

these charts, it can be seen that conditions (i) and (ii) are

not violated. Condition (iii) is violated when i = 8, since

observations 4,5,6, and 8 are all below (Ix. Hence, Ho is

rejected and it is concluded that the reading rates are not

stable. Continuing to investigate the violations of the 12

conditions (for the reasons cited previously), it can be seen

that condition (iii) is violated also when i = 9, since

observations 5,6,8, and 9 are all below X - Gx. Conditions (iv)

and (v) are not violated. By visual inspection, condition (vi)

does not seem to be violated. Turning to the MR-chart, none of

the conditions (vii) to (xi) are violated. Further, by visual

inspection, condition (xii) does not seem to be violated. This

example clearly shows the loss of power associated with the

hypothesis testing procedure when only one observation, instead

of even just two, is taken at each time point, since when the

data were considered to have two observations per time point

there were six violations of the conditions, while treating the

data as having only one observation per time lead to only two

violations.

20
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This is an important point for educational researchers to

note. Too often in single-subject research, researchers or

others collect (or record) only one observation per time point,

while it would be very little extra work in some cases to

collect two or more observations. The reading rates example is a

good example of this. The increased number of observations will

lead to increased power for detecting a non-stable baseline and

will thus save the researcher the time and money wasted by

applying a treatment in a situation where the baseline is not

stable.

Charts Based on Counts

In some cases the observations collected over time are

integer-valued counts that follow approximately either a binomial

or Poisson probability density function. The most common

industrial situations where counts occur are when one is

interested in the number of defective parts per lot (which

follows a binomial density) or the number of defects per unit

area, such as on a piece of material (which follows a Poisson

density). Some educationally oriented variables that follow a

binomial density are:

1. Daily class attendance

2. Number of students on task at any point in time

3. Number of students getting each of a series of test items

correct/incorrect. Here, the longitudinal dimension is the test

items rather than time.
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Some educationally oriented variables that follow a Poisson

density are:

1. Number of misbehaviors per day by an emotionally impaired

student.

2., Numbc4r of spelling errors per 100 words in an essay.

The analyses of counts that follow either a binomial or Poisson

density use the properties of the appropriate density to estimate

the appropriate standard deviations.

The Binomial Case

For the binomial case, only one chart is constructed per data

set. For both this case and the Poisson case, an unequal number

of observations is allowed per time point, as opposed to the X-

and R- charts and the X- and MR-charts cases where the sample

sizes were required to be equal across time. When the sample

sizes (denoted as the ni's, where i represents the time point

and i=1 to k, with k = number of time points) are unequal for the

different time points the chart used is a p-chart. When the

sample sizes are equal for the different time points either a p-

chart or an np-chart is used (depending upon the preference of

the researcher). The details of constructing p- and -np-charts

will now be described.

The data collected at each time point can be thought of as

arising from n trials where each trial Lapresents a single trial

of a binomial probability experiment performed on an individual

unit (e.g., a part or a student). Recall that a binomial
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probability experiment has the following properties (Johnson,

1988):

1. Each trial has two possible outcomes. These two outcomes

are called "success" and "failure"

2. P(Success) = p, P(Failure) = q, and pi-q=1 .

3. The random variable Xi represents the number of successes

in the n
i trials.

Next, define the variable pi to be equal to Xi/ni. Finally,
k k

define p = ( E Xi)/( E n) and = 1 -p. Recall that the variance
i=1 i=1

of pi is given by pq/ni . An estimator of this variance is given

by ikijni . Since the pi's may be based on different ni's and

since the estimated variances of the pi's are dependent on the

ni's, the control limits will be dependent on the n
i

's. The UCLI,

is defined as p--1- 3igogiTi, the 2-a upper limit as i5 2%64Tc,

the 1-a upper limit by g ,AS6;, the Center Line by p , the 1-a

and 2-a lower limits by p Vikl/ni and 15 - 2474.7r and the LCLpi

is defined as p - 34-i-/TIT. As with the R-chart, if any of the

formulas for the lower 1-a,2-a, or control limits yield negative

values, then a value of zero is used instead for these limits.

Table 5 gives some data that are appropriate for this type of

charting. Notice that for these data a success is defined as an

"incomplete invoice" while a failure is defined as a "complete

invoice". Although may seem strange at first, it is best for

ease of interpretation to define a success as that value of the

characteristic which is of most interest to the researcher.

Figure 4 gives the p-chart and the UCLpit.s and LCLI's for the data

2 3
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in Table 5. The 1-a and 2-a limits were not drawn in because

INSERT TABLE 5 AND FIGURE 4 ABOUT HERE

they make the chart overwhelming to lz,ok at. The hypothesis

testing procedure described in the Tr- and R-chart section can be

applied to p-charts by substituting the symbol "p" wherever the

symbol "X" appears in Conditions (i) to (vi). Conditions (vii)

to (xii) are, of course, ignored since there is only one chart

here. For the data of Table 5 and portrayed in Figure 4, it can

be seen that condition (i) is violated since for i=6, p6 is above

the UCI, . Hence, Ho is rejected and it is concluded that the
6

process (i.e., the number of incomplete invoices) is unstable.

When all the ni's are the same, the p-chart becomes much

easier to draw since the horizontal lines (e.g., UCLpi and LCLpi)

are the same for all values of i. When all of the ni's are equal

their common value is denoted by n. Further, when all the ni's

are equal, a chart called an np-chart is often drawn instead.

The np-chart is almost identical to the p-chart. The only

difference is that the vertical axis goes from 0 to 1 for the p-

chart but from 0 to n for the np-chart. That is, the distinction

between the np-chart and the p-chart is exactly the same as the

distinction between a raw frequency histogram and a relative

frequency histogram.
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The Poisson Case

As in the Binomial case, only one chart is constructed when

the characteristic of interest follows a Poisson distribution.

lole chart is called a u-chart, where u is the symbol for the

number of events (e.g., nonconformities, misbehaviors, misspelled

words) per "unit". The "unit" is defined by the researcher. For

example, if one is interested in misbehaviors, then the unit

could be a day. If one were interested in the number of

misspelled words in an essay, then a unit could be defined as a

50-word block. At each time point data may be' collected on some

number of units, ai, where aj is some nonnegative real number (ai

need not be an integer). Let ci denote the total number of

events occurring at time i and let ui = ci/ai . Let u =

(

1=
E
1
ui)/(

1=
E

1
ai). For a Poisson density the appropriate estimated

standard deviation of ui is given by 4/;;. The UCLui is given

by u + 3417ai, the upper 2-a limit by 24;;;, the Center Line

by 5, the LCLui by u - 3477a;,etc.. The statistical testing

methodology developed for the and R-charts is then applied

with slight modification by replacing "it" in conditions (i) to

(vi) by "u" and by ignoring conditions (vii) to (xii). If all

the ai's wce equal to one, then ci = ui, and the symbol c is used

throughout instead of c and the chart is known as a c-chart.

It should be noted by the reader that there is a slight

problem with the use of the 1-a, 2-a, and 3-a limits as defined

above for the Binomial and Pcisson cases. The problem is that

the Binomial and Poisson densities are not symmetric. Hence,
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when symmetric limits are used the probability of a Type I error

is a function of some unknown population parameter. This

parameter is p in the Binomial case and u (the population number

of occurrences per unit) in the Poisson case. Some people prefer

to use "probability limits" instead. The use of probability

limits is discussed in Grant & Leavenworth (1988).

Assessment of Treatment Effects

For any of the above cases (i.e., X's, Moving Ranges, or

Counts), the effects of some treatment can be assessed once a

stable baseline has been established. To do this, the researcher

computes the UCL, 2-a and 1-a upper limits, the Center Line, the

1-a and 2-a lower limits, and LCL based on the baseline data.

The treatment is then applied. Additional measurements are then

taken either during or after treatment (depending on the

treatment). The hypothesis testing procedures discussed above

for the various cases are then applied to the new measurements

using the UCL, Center Line, LCL, etc. computed from the baseline

data. If any of the conditions (i) to (xii) is violated, it can

then be concluded that there is a treatment effect. It is

realized by the author that this procedure is a conditional

procedure based on the correct decision being made about the

baseline. That is, if a Type II error occurs (i.e., the baseline

is truly unstable but the researcher wrongly concluded it was

stable) when testing the baseline data, then conclusions made

about treatment effects may not be correct since the baseline was

. 2 6
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unstable. It should be noted, however, that this procedure is

still better than visual inspection, which is the usual method

used by many researchers. Further, the procedures described in

this paper have the advantage over other procedures suggested in

the literature for the analysis of single-subject data that they

are understandable by non-mathematically oriented researchers.

The other procedures often 1, commended in the statistically-

oriented literature on single-subject design (e.g., time series

methods and randomization tests) are not easily understood by

these researchers.

Some Final Notes

1. All of the SPC techniques introduced in this paper can be

modified to allow for the analysis of data from one-way multiple

group designs and factorial designs.

2. This paper does not contain all of the control charting

techniques used in Statistical' Process Control. It does,

however, cover the ones that are used heavily in Statistical

Process Control. Fortunately, these are the same techniques that

are-useful in- educational zettings.. 'There are also StatiStidar

Process Control techniques (such as Process Capability Studies)

that are not based on control charting, but the author has yet to

come up with good educational applications of these techniques.

3. As the author was finishing this paper she became aware of a

new textboe. in Statistical Process Control by Ryan (1989).
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Table 1

Values of Relative Efficiency, d2, Cy, and d3

.....

n Relative Eff. d cy

2 1.000 1.128 .7979

__E13_

.8525

3 .992 1.693 .8862 .8884

4 .975 2.059 .9213 .8798

5 .955 2.326 .9400 .8641

6 .930 2.534 .9515 .8480

7 2.704 .9594 .8332

8 2.847 .9650 .8198

9 2.970 .9693 .8078

10 .850 3.078 .9727 .7971

Note: The values for relative efficiency for n = 7, 8, and 9
were not reported in Montgomery (1985). The values for d
are from Grant and Leavenworth (1988).
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Table 2

Voltage Data

Subgroup
number

DC-voltage output at 20 mA

Average k- Range R

Sample letter

a b c d

1 .348.5 350.2 348.3 350.3 349.3 2.0
2 351.3 351.2 347.1 349.7 349.8 4.2
3 348.5 350.5 348.5 349.0 349.1 2.0
4 351.4 350.4 348.6 353.2 350.9 4.6
5 349.4 348.0 349.6 351.1 349.5 3.1

6 351.1 348.1 349.2 350.1 349.7 3.0
7 348.3 349.9 350.7 348.5 349.4 2.4
8 349.9 349.1 349.0 349.6 349.4 0.9
9 349.2 343.7 348.8 350.3 349.3 1.6

10 349.2 351.6 351.9 349.2 350.5 2.7

11 350.1 350.5 35J.2 347.9 349.9 3.3
12 350.4 350.8 350.3 352.6 351.0 2.3
13 347.7 349.6 348.6 349.3 348.8 1.9
14 349.0 351.1 350.2 348.0 349.6 3.1
15 350.7 349.3 349.3 350.2 349.9 1.4

16 350.0 351.8 352.3 349.8 351.0 2.5
17 350.1 349.8 '- 349.6 349.2 349.7 0.9
18 351.1 350.6 346.9 349.8 . 349.6 4.2
19 351.4 349.3 349.7 349.6 350.0 2.1
20 348.8 349.6 351.3,_ 349,2 . _ 349.7. 2.5

21 349.4 350.2 350.2 351.8 350.4 2.4
22 351.7 351.6 349.9 347.1 350.1 4.6
23 350.4 349.0 349.2 349.6 349.6 1.4
24 349.4 348.7 350.3 348.8 349.3 1.6
25 349.6 349.1 349.6 351.2 349.9 2.1

E 8.745.2 62.8

Note: Data taken without permission from Grant and Leavenworth
(1988).
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Table 3

Weight Data

Subgroup

28

No, Average Range

1 255 10
2 330 20
3 280 100
4 235 10
5 230 40
6 240 0
7 280 20
8 235 50
9 240 20

10 315 30
11 325 10
12 280 60
13 "260 20
14 275 50
15 330 100
16 250 40
17 320 80
18 260 60
19 275 30
20 295 30

21 225 30
22 300 40
23 330 0
24 275 10
25 290 20
26 295 10
27 265 10
28 280 20
29 285 10
30. 295 10

Note: Data taken without permission from Wheeler and Chambers
(1986).
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Table 4

Moving Ranges for Weight Data

Subgroup No. X

1

2

3
4

5
6
7

8
9

255
330
280
235
230
240
280
235

/ 240
10 315
11 325
12 280
13 260
14 275
15 330
16 250
17 320
18 260
19 275
20 295
21 225
22 300
23, 330
24 275
25 290
2'61 -2S5

27 i 265
28 280
2.9 285

30 295

MR

75
50
45
5

10
40
45
5

75
10
45
20
15
55
80
70
60
15
20
70
75
30

55 I15
5

30
15
5

10
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Table 5

Invoice Data

DAILY PROPORTIONS FOR INCOMPLETE INVOICES

Date

Number of
Incomplete

Invoices

Total

Number of

Invoices Pi

Date

Number of
Incomplete

Invoices

Total

Number of
Invoices Pi

9/27 20 98 .204 10/11 7 50 .140
9/28 18 104 .173 10/12 7 53 .132
9/29 11 97 .144 10/13 9 56 .161
9/30 16 99 .162 10/14 5 49 .102
10/1 13 97 .134 10/15 8 56 .143

10/4 29 102 .284 10/18 9 53 .170
10/5 21 104 .202 10/19 9 52 .173
10/6 14 101 .139 10/20 10 51 .196
10/7 6 55 .109 10/21 9 52 .171
10/8 6 48 .125 10/22 10 47 .213

Note: Data taken without permission from Wheeler and Chambers
(1986).
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Figure 3. X- and MR-charts for the Weight data when each time
point is considered to have one observation
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