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Preface

The appropriate statistical method to use is often an

issue of debate. It sometimes requires more than one

approach to analyze data. The rationale for choosing

between the alternative methods of analysis is usually

guided ly:

a. p=pose of the research
b. research hypothesis or question
c. mathematical characteristics of the variables
d. sampling procedures
e. statistical assumptions
f. model validity

Multiple linear regression as a general linear model

technique provides an excellent educational framework in

which to analyze univariable and multivariable research

questions (Newman, 1988). The present paper extends the

relationship of multiple linear regression to various

multivariable techniques: path, factor, LISREL, and

discriminant analyses. The primary focus of which is to

indicate the use of the standardized partial regression

coefficient (beta weight) in these multivariable techniques.

This paper did not concern itself with issues of

standardized versus unstandardized regression coefficients,

Type I and Type II error rates, R-square shrinkage,

suppressor variables, number of predictors,

multicollinearity, curvilinearity and trend analysis, and

many other issues related to general linear model research.

Although, model specification and measurement error were

addressed as an advantage of the LISREL approach.

3
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INTRODUCTION

Multiple Regression or the general linear model approach

to the analysis of experimental data in educational research

has become increasingly popular since 1967 (Bashaw and

Findley, 1968). In fact today, it has become recognized as

an approach that bridges the gap between correlational and

analysis of variance thought in answering research

hypotheses (McNeill Kelly, & McNeil, 1975). Statistical

textbooks in psychology and education often present the

relationship between data analysis with multiple regression

and analysis of variance (Draper & Smith, 1966; Williams,

1974; Roscoe, 1975; Edwards, 1979). Graduate students

taking an advanced statistics course are.therefore provided

with the multiple linear regression framework for data

analysis. Given their understanding of multiple linear

regression techniques applied to univariate analysis (one

dependent variable), their understanding can be extended to

the relationship of multiple linear regression to various

multivariate statistical t-thniques (Kelly, Beggs, McNeil,

with Eichelberger & Lyon, 1969, pps 228-248). The present

paper will expand upon this understanding and indicate the

importance of the standardized partial regression

coefficient, (beta weight) in multiple linear regression as

it is applied in path, factor, LISREL and discriminant

analyses.
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MULTIPLE REGRESSION

Multiple Regression techniques require a basic

understanding of sample statistics (n, mean, and variance),

standardized variables, correlation (Pedhazur, 1982, pp 53-

57), and partial correlation (Cohen & Cohen, 1975; Houston &

Bolding, 1974). In standard score form the multiple

regression equation is:

A
z = z

y x

The relationship between the correlation coefficient, the

unstandardized regression coefficient and the standardized

regression coefficient is:

a

I z z s
x y x

= = b --- = r
2 s xy

E z y
x

For two independent variables, the regression equation with

standard scores is:

A
z = z + a z

1 1 2 2

And the standardized partial regression coefficients are

computed by:

a
1

r r r r - r r
yl y2 12 y2 yl 12

2 2 2
1 -r 1 - r

12 12
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The correlation between the original and predicted

scores is giveA the special name Multiple Correlation

Coefficient. It is indicated as:

R n = R
Y Y y.12

And the Squared Multiple Correlation Coefficient is related

as follows:

2 2
R n= R =(3 r+Pr
y y y.12 1 71 2 y2

MULTIPLE REGRESSION EXAMPLE

A multiple linear regression example using a correlation

matrix as input ¶SPSSX User's Guide, 3rd Edition, 1988,

Chapter 13) is provided in Appendix A. The results are:

2
R = r
y.123 1 yl

2
R
y.123

+ p r
2 y2

+ p r
3 y3

= (.423) .507 + (.363) .481 + (.040) .276

.40

A systematic determination of the most important set of

variables can be accomplished by setting the partial

regression weight of each variable to zero. This approach

and other alternative methods are presented by Kelly (1969)

and Darlington (1968).



In summary, regression techniques have been shown to be

robust (Bohrnstedt & Carter, 1971); applicable to contrast

coding (Lewis & Mouw, 1978); dichotomous coding (McNeil,

Kelly, & McNeil, 1975); and ordinal coding (Lyons( 1971)

research situations. Multiple regression can also be viewed

as a special case of path analysis.
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PATH ANALYSIS

Sewall Wright is credited with the development of path

analysis as a method for studying the direct and indirect

effects of variables (Wright, 1921, 1934, 1960). Path

analysis is not a method for discovering causes, rather a

model must be specified by the researcher, similar to

hypothesis testing in regression analysis. The specified

model establishes causal relationships among the variables

when:

a. temporal ordering exists
b. covariation (correlation) is present
c. other causes controlled for

Model specification is necessary in examining multiple

variable relationships. In the absence of a model, many

different relationships among variables can be postulated

with many different path coefficients being selected. For

example, in a three variable model, the following

relationships could be postulated:

(a) X (b) X X
2 1

(c) (d)

9

Y
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The four different models have been considered without

reversing the order of the variables. How can we decide

which model is the correct one? Path analysis doesn't

provide a way to specify the model, but rather estimates the

effects once the model has been specified "a priori".

Path coefficients in path analysis take on the value

of a product-moment correlation and/or: standardized

regression coefficients in a model (Wolfle, 1977)*. For

example given model (d):

THEN:

P
1
= P P= P r = p

yl 2 y2 12 12

A different set of terms is also-used to describe the

relationships among variables. The following terminology

should help:

endogeneous - dependent variable

exogenous

P

P
e

- - >

< - >

- independent variable

- path coefficient

- path coefficient error

- causal path

- correlated path

10



7

A path model is specified by the researcher based on

theory or prior researnh. Variable relationships once

specified, in standard score form, become standardized

regression coefficients. In multiple regression, a

dependent variable is regressed in a single analysis on all

the independent variables. In path analysis one or more

multiple regression analyses are performed. Path

coefficients are computed based upon only the particular set

of independent variables that lead to the dependent variable

under consideration. As in regression analysis, path

analysis can handle dichotomous and ordinal data, but

special coding and interpretation is necessary (Boyle, 1970;

Lyons, 1971) .

MODEL SPECIFICATION

Path models permit diagramming how a particular set of

independent variables lead to a dependent variable under

consideration. How the paths are drawn determine whether

the independent variables are correlated causes

(unanalyzed), mediated causes (indirect), or independent

causes (direct). The model can be tested for the

significance of path coefficients (Pedhazur, 1982, pp 58-62)

and a goodness-of-fit criteria (Marascui_.0 & Levin, 1983, pp

169-172; Tatsuoka & Lohnes, 1988, pp 98-100) which reflects

the significance between the original and reproduced

correlation matrix. This process is commonly called

11
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decomposing the correlation matrix (Asher, 1976, pp 32-34)

according to certain rules (Wright, i934).

PATH ANALYSIS EXAMPLE

A four variable model path analysis is presented in

Ap2endix B. In order to calculate the path coefficients for

the model, two regression analyses were performed. The

model, with the path coefficients is:

p us .224
21

p -.07
31

p = .593
32

p = .362
Y2

X

p = .423
Y1

-----p gm .040
Y3

2

The original and reproduced correlations are presented

in matrix form. The upper half represents original

correlations and the lower half the reproduced correlations

which include only the regression of direct paths linking

independent variables to the dependent variable.

VARIABLE
1

X
2

X
3

1.000 .507 .481 .276
X
1 .423 1.000 .224 .062 Original
X Correlations
2 .362 .224 1.000 .577

X
3 .040 -.070 .593 1.000

Reproduced
Correlations

12
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The original correlations can be completely "reproduced" if

all effects: direct (DE), indirect (IE), spurious (S) and

correlated (C) are included. For example:

r = p .224
12 12

C

r =P +PP .062
13 31 32 21

DE IE

r =P +PP .577
23 32 31 21

DE

r mr, + P P +PP +PPP .507
lY Yl Y2 21 Y3 31 Y3 32 21

DE IE IE IE

r =P + P P +PP +PPP .481
2Y Y2 Y3 32 Yl 21 Y3 31 21

DE- IE

r +PP +PP +PPP+PPP= .276
3Y Y3 Yl 31 Y2 32 Yl 21 32 Y2 21 31

DE

In summary, path analysis can be carried out within the

context of ordinary regression analysis and does not require

the learning of any new analysis techniques (Asher, 1976,

p32; Williams, 1974). The advantage of path analysis is

that it enables one to specify direct and indirect effects

among independent variables. In addition, path analysis

enables us to decompose the correlation between any two

variables into simple and complex paths of which some are

meaningful. Path coefficients and the relationship between

the original and reproduced correlation matirx can also be

tested for significance.

13
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FACTOR ANALYSIS

Path models and the associated test of significance

between original and reproduced correlations are used in

confirmatory factor analysis. Factor analysis assumes that

the observed (measured) variables are linear combinations of

some underlying source variable (factor). In practice, one

estimates population parameters of the measured variables

from a sample (with the uncertainties of model specification

and measurement error). A linear combination of weighted

variables relates to multiple regression in a single factor

model and to a linear causal system (path analysis -

"multiple" multiple regressions) in multiple factor models.

Path diagrams therefore permit representation of the causal

relationships among factors and observed (measured)

variables in factor analysis.

In general, the first step in factor analysis involves

the study of interrelationships amonTvariables in the

correlation matrix. Factor analysis will address the

question of whether these subsets can be identified by one

or more factors (hypothetical constructs). Confirmatory

factor analysis is used to test specific hypotheses

regarding which variables correlate with which constructs.

14
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FACTOR MODELS

Factor analysis assumes that some factors, which are

smaller in number than the number of observed variables, are

responsible for the covariation among the observed

variables. For example, given a unidimensional trait in a

single factor model with four variables the diagram would be

(Kim & Mueller, 1978a, p 35):

WHERE:

p . .677
Y

13 .402
1

d = .735

d = .917
.cL---1
1 1

d = .600

2 2 2

d = .843
X 4---3 U

p . .535 3 3
3

0 = standardized regression coefficient;
i path coefficient; or common factor

loading

d residual coefficient; path error
i coefficient; or unique factor loading

The variance of each observed variable is therefore

comprised of the proportion of variance determined by the

common factor and the proportion determined by the unique

factor, which together equal the total variance of each

observed variable. Therefore:

2 2 2
S = p + d = 1i i i

15



The correlation between a common factor and a variable

is:

r = p
FIXi

The correlation between a unique factor and a variable

is:

U,Xi
The correlation between observed (measured) variables

sharing a common factor is:

r = 13 0
X ,x i j

j

And finally, the variance attributed to the factor as a

result of the linear combination of variables is:

2
2 p 2
h = i = R

F.1234-
M

Where: M = number of variables
2

p = squared factor loadings

2
Note: E p = eigenvalue

2

p . communality

16

12
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FACTOR ANALYSIS EXAMPLE

A single factor model analysis with four variables in a

correlation matrix format is in Appendix C. The path

diagram is the same as above (Kim & Mueller, 1978, p 35)

with the weights as follows:

. .677 f3 . .402 p . .800 f . .535
Y 1 2 3

And, factor scores computed as:

F = (3 y + 13x + 13x + fix
y 1 1 2 2 3 3

Multiplying the coefficients between pairs of variables

gives the following correlation matrix:

CORRELATION MATRIX

VARIABLE Y X X X
1 2 3

2
p .27 .54 .36
1

2
1 .27 p .32 .22

2

2

3

2
.54 .32

f3 .43
3

2
.36 .22 .43 p

4

The common factor variance is:
2

E p2
R
F.1234

M

The unique factor variance is:
2

2 E (1 p )
1 R i =

F.1234
M

17

.46 + .16 + .64 + .29 = .39

4

.54 + .84 + .36 + .71 = .61

4



In summary, factor loadings (variable weights) are

standardized regression coefficients. As such, linear

weighted combinations of variables loading on a factor are

used to compute factor scores. The weights are also the

correlation between the observed (measured) variables and

the factor (hypothetical construct). If the variable

correlations (weights) are squared and summed, they describe

the proportion of variance determined by the common factor.

This is traditionally known as the coefficient of

determination, but termed communality in factor analysis.

When all variables are standardized, then the linear weights

are called standardized regression coefficients (regression

analysis), path coefficients (path analysis), or factor

loadings (factor analysis). The factor analysis approach is

distinguished from regression or path analysis in that

observed variable correlation is explained by a common

factor (hypothetical construct). In factor analysis

therefore the correlation between observed variables is the

result of sharing a common factor rather than a variable

being the direct cause (path analysis) or predictor of

another (regression analysis).
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LISREL

Linear structural relationships (LISREL) are often

diagrammed by using multiple factor path models where the

factors (hypothetical contructs) are viewed as latent traits

(Joreskog & Sorbom, 1986, pp 1.5-1.7). The LISREL model

consists of two parts: the measurement model and the

structural equation model. The measurement model specifies

how the latent variables or hypothetical constructs are

measured in terms of the observed (measured) variables and

describes their measurement properties (reliability and

validity). The structural equation model specifies the

causal relationship among the latent variables and is used

to describe the causal effects and the amount of unexplained

variance. The LISREL model includes or encompasses a wide

range of models, for example; univariate or multivariate

regression models, confirmatory factor analysis, and path

analysis models (Joreskog & Sorbom, 1986, pp 1.3, 1.9-1.12).

Cuttance (1983) presents an overview of several LISREL

submodels with diagrams and explanations. Wolfle (1982)

presents an indepth presentation of a single model to

introduce and clarify LISREL analysis. The LISREL program

therefore permits regression, path, and factor analysis

whereby model specification and measurement error can be

assessed.

19

:0,0"..urvmvswm.kamm*PmMmowe,,,,Pm1m,....k#M,....z4W.
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MEASUREMENT ERROR

Fuller (1987) extensively covers LISREL and factor

analysis models and especially extends regression analysis

to the case where the variables are measured with error.

Wolfe (1979, pp 48-51) presents the relationship between

LISREL, regression and path analysis especially in regards

to how measurement error effects the regression coefficient

(path coefficient). Errors of measurement in statistics has

been studied extensively (Wolfe, 1979). Cochran (1968)

studied it from four different aspects: (a) types of

mathematical models, (b) standard techniques of analysis

which take into account measurement error, (c) effect of

errors of measurement in producing bias and reduced

precision and what remedial procedures are available, and

(d) techniques for studying error of measurement. Cochran

(1970) also studied the effects of error of measurement on

the squared multiple correlation coefficient.

LISREL-FACTOR ANALYSIS EXAMPLE

A LISREL factor analysis model program with a

correlation matrix as inp' 7. is given in Appendix D. The

factor analytic model in matrix notation is:

X = A 4 +
x 8

Where: X = observed variables
A = structural weights (factor loadings)
= latent trait (factor)
= error variance (unique variance)

8

20
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The LISREL results are:

a. A = LAMBDA X (structural weights-factor loadings)

Y== .677 X= .402 X= .800 X= .535
1 2 3

b. 0 = THETA DELTA (unique factor variance)
8

Y = .54 X = .84 X = .36 X = .71
1 2 3

2 2
c. Q = LAMBDA X (common factor variance)

Y = .46 X = .16 X = .64 X = .29
1 2 3

The concept of model specification and goodness of fit

pertains to the original correlation matrix and the

estimated correlation matrix. The estimated correlation

matrix is:

.272
.542 .321
.362 .215 .427

The original correlation matrix is:

.507
S .481 .224

.276 .062 .577

The Goodness of Fit Index (GFI) usimj the unweighted least

squares approach OYLS) is then computed as:

2
GFI = 1 - 1/2 trace (S -

2
GFI = 1 - 1/2 (1.308 - 1.02)

GFI = 1 - .041

GFI = .959



LISREL-REGRESSION ANALYSIS EXAMPLE

A L'ZSREL regression model program with a correlation

matirE as input is given in Appendix E. The regression

model in matrix notation is:

Y = r x

Where: Y = dependent variabler = gamma matrix (beta weights)
X = independent variables
= errors of prediction (error variance)

The LISREL results are the same as in the previous

regression program:

2 r r +r r + r r
y.123 1 yl 2 y2 3 y3

2
R = (.423) .507 + (.363) .481 + (.040) .276
y.123

2

R = .40
y.123

22

18
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DISCRIMINANT ANALYSIS

The general approach in both two group and multiple-

group discriminant classification is to construct a linear

combination of variables which optimally classifies or

assigns subjects to known groups (Huberty, 1974; 1975). In

the tw group dependent variable case where only one

discriminant function is needed, regression and discriminant

analysis are the same (Kerlinger & Pedhazur, 1973, pp 336-

340; Thayer, 1986). They are compared and presented in

Appendix F. They differ in the multiple group case where

more than one discriminant function is computed.

The linear combination of weighted variables can be

expressed as:

L = p x + p x
i n n

with B values chosen to provide maximum discrimination

between two populations. The J's are constructed as linear

combinations of the differences between variable means in

the two groups:

d== X - X
j lj 2j

WHERE: VARIABLE GROUP MEANS
1 0

X
1

X
2

5.2

2.8

3.6

2.4

1.6

.4

23
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The pooled sample covariance is represented as:

n
2 j

7, X ) 3 "c" )
jq i=1 1 =1 ijk ij iqk iq

S

n + n - 2
1 2

To provide maximum discrimination, the variation of

values in L between the two groups should be greater than

the variation in the values of L within the two groups. In

fact, this is just the case:
n

2 2 2 j 2SS 2.gEn( E L) ss-EE (LE)
B i=1 i i W i=1 k=1 ik i

The ratio of these two can be thought of as a measure of the

discriminatory power of L, in the sense that the larger the

value of sums of squares between, to sums of squares within,

the more L is reflecting between population variance as

opposed to within population variance.

The multiple regression and discriminant statistics are

therefore related as:

SS / df
= B 1

SS / df
W 2

SS / p
reg 1.194/ 2

SS / n + n p 1 1.306/ 7
error 1 2

nn (n + n - p - 1)
1 2 1 2

(n + n ) (n + n - 2 ) p
1 2 1 2

2
* D = 3.20



AND:

SS
2 reg 2

= c * D = .1632 (2.928) = .4778
SS
total

(note: SS = Npq = 2.5)
total

The Mahalanobis D-squared and constant value are

computed as:

2 P P iclD= EEdds
j=1 q=1 j q

(n + n ) ( n + n - 2)
1 2 1 2

n n
1 2

n n
1 2

2
R

2
1 - R

21

= 2.928

n + n n n
1 2 1 2 2 2.5

c . + *.D . = .1632
(n + n - 2) n + n 15.319

1 2 1 2

Regression weights are compared to discriminant weights

. regression weights; b=discriminant weights) as:

13

i
b =

c

.1389 .1204
b = = .8511 b = - .7375
1 .1632 2 .1632
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AND:

b = -.5 (I; L) = -.5(7.080 + 4.153) = - 5.617
0 1 2

WHERE:

=b37 +brc = .8511(5.2) + .7375(3.6) = 7.081
1 111 210

Y", =b5-c +b3e = .8510(2.8) + .7375(2.4) = 4.153
1 21 2 20

The formulae indicate that the regression procedure can

be used to produce a linear combination of weights which

only differ by a constant value c (the choice of coding

values for the dependent variable will change the value of

c). The quantity D-squared is called Mahalanobis D-squared

and it represents a mersure of the distance between two

means.

An extension t( the multiple group discriminant case

using eigenvalues also relates the sums of squares approach

to several multivariate statistics (Marascuilo & Levin,

1983, Chapters 7 and 8). For the two group case

( = .91489):

a. Roy's criterion

0

SS
2

MM..

1 + SS
T

= R = .4778
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b. Fisher's F

N - p - 1 0
F = = 3.20

2
c. Hotelling's T

2 al - 2) 0
T = = 7.32

1- 0

Cautionary Remark

Mueller & Cozad (1988) discuss standardization

procedures used in SPSSX, BMDP, and SAS to determine

standardized discriminant coefficients. They indicated that

the within-group variance (SPSSX, BMDP) should be used

rather than the total variance (SAS) because it removes

between-group differences from the estimate. Moreover,

because standardized weights are computed differently it

causes erroneous interpretations of results (SPSSX and BIM?

use the diagonal elements of the within-group covariance

matrix; SAS uses the diagonal elements of the total

covariance matrix). These major "canned" statistical

programs have inconsistencies between them and also within

them.

2`7
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CONCLUSION

The appropriate statistical method to use is often an

issue of debate. It sometimes requires more than one

approach to analyze data. The rationale for choosing

between the alternative methods of analysis is usually

guided by:

a. purpose of the research
b. research hypothesis or question
c. mathematical characteristics of the variables
d. sampling procedures
e. statistical assumptions
f. model validity

The multivariable methods discussed in this paper have

in common the general linear model and are the same in

several respects. Fiket, they identify, partition, and

control variance. Second, they are based on linear

combinations of variables. And third, the linear weights

can be computed based on standardized partial regression

coefficients.

The- multivar iablemethods-howevehave different

applications. Multiple regression seeks to identify and

estimate the amount of variance in the dependent variable

attributed to one or more independent variables

(prediction). Path analysis seeks to identify relationships

among a set of variables (explanation). Factor anlaysis

seeks to idenfify subsets of variables from a much larger

set (common/shared variance). LISREL determines the degree

of model specification and measurement error. Discriminant

analysis seeks to identify a linear combination of variables

28
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which can be used to assign subjects to groups

(classification). The different methods were derived

because of the need for prediction, explanation, common

variance, model and measurement error assessment, and

classification type applications.

Multiple Regression techniques are robust except for

model specification and measurement errors (Borhnstedt,

1971). Multiple regression techniques are useful in

understanding path, factor, LISREL, and discriminant

applications. LISREL permits regression, path, and factor

analyses whereby model specification and measurement error

can be assessed. LISREL also permits univariate or

multivariate. least .squares-analysis in- either single- sample

or multiple sample (across populations) research settings.

An understanding of multiple regression and general linear

model techniques can therefore greatly facilitate one's

understanding of the testing of research questions in

multivariable situations._

Multiple linear regression is also related to canonical

correlation analysis, under which all parametric tests are

subsumed as special cases (Knapp, 1978; Marascuilo & Levin,

1983). A recent presentation suggested that multivariate

analyses are really univariate analyses and further

illustrates that an understanding of multiple regression

facilitates an understanding of multivariable methods

(Newman, 1988). Some authors have presented multivariate

analysis of variance using multiple regression methods

29
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Woodward & Overall, 1975), while other authors (Huberty &

Morris, 1987) present an argument for a truly multivariate

analysis.

As a final comment, it is well known that the

correlation matrix has a central role in the analysis of

multivariable data. In fact, it was used in the numerous

computer program examples which assumed standardized

variables. The inverse of the correlation matrix, however,

also has important interpretations in multiple regression,

factor and discriminant analyses (Raveh, 1985). Two main

roles are: (a) near a diagonal matrix as p, the number of

variables, increases in order for factor analysis to be

meaningful; and (b) the estimated coefficients in multiple

regression and discriminant analysis are obtained from the

inverse matrix and thus conditioned on p specific variables.
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APPENDICES

The follow..ng appendices contain computer program

examples based upon correlational input (SPSSX User's Guide,

3rd ed., Chapter 13, 1988) with the exception of

discriminant analysis. These programs were run on a

mainframe computer (with some modification they can also run

on the personal computer version). A PASCAL program was

written and compiled to generate random variables (Borland,

1988), and is in APPENDIX G. The random variables were then

correlated using a SAS PC program (SAS, 1988) in APPENDIX H.

Although random data were generated, the relationships and

principles presented in this paper also apply to research

data.
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APPENDIX A

MULTIPLE REGRESSION ANALYSIS PROGRAM

TITLE REGRESSION WITH CORRELATION MATRIX INPUT
COMMENT VARIAELE MEANS=0; VARIANCES=1; CONSTANT=0
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.507 1.000
.481 .224 1.000
.276 .062 .577 1.000

END DATA
REGRESSION MATRIX=IN(*)/

MISSING=LISTWISE/
VAR/ABLES=Y X1 X2 X3/
DEPENDENT=Y/
ENTER X1 X2 X3/

FINISH
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APPENDIX B

PATH ANALYSIS PROGRAM

A. VARIABLE 3 REGRESSED ON VARIABLES 1 AND 2

TITLE PATH ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCES=1; CONSTANT=0
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.507 1.000
.481 .224 1.000
.276 .062 .577 1.000

END DANA
REGRESSION HATRIX=IN ( *) /

MISSING=LISTWISE/
VARIABLES =Y X1 X2 X3/
DEPENDENT=X3/
ENTER X1 X2/

FINISH

B. VARIABLE Y REGRESSED ON VARIABLES 1, 2, AND 3

TITLE PATH ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCES=1; CONSTANT=0
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000

.481 .224 1.000

.276 .062 .577 1.000
END DATA
REGRESSION MATRIX=IN(*)/

MISSING =LISTWISE /
VARIABLES=Y X1 X2 X3/
DEPENDENT=Y/
ENTER X1 X2 X3/

FINISH
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APPENDIX C

FACTOR ANALYSIS PROGRAM

30

TITLE FACTOR ANALYSIS EXAMPLE WITH CORRELATION MATRIX INPUT
COMMENT VARIABLE MEANS=0; VARIANCES=1; CONSTANT=0
MATRIX DATA VARIABLES=Y X1 X2 X3/N=100
BEGIN DATA
1.000
.507
.481
.276

1.000

.062
1.000
.577 1.000

END DATA
FACTOR vARIABLES=Y X1 X2 x3/

MATRIX=IN(COR=*)/
CRITERIA=FACTORS(1)/
EXTRACTIONt=ULS /
ROTAT/ONNOROTATE/
PRINT CORRELATION DET INITIAL EXTRACTION ROTATION/
FORMAT SORT/
PLOT=EIGEN/

FINISH
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APPENDIX D

LISREL ANALYSIS PROGRAM

31

TITLE 'LISREL FACTOR ANALYSIS WITH CORRELATION MATRIX INPUT'
INPUT PROGRAM
NUMERIC DUMMY
END FILE
END INPUT PROGRAM
USERPROC NAME=LISREL
DATA FOR GROUP ONE
DA NG=1 NI=4 NO=100
LA
'Y"Xl"X2"X3'
KM SY
1.000
.507 1.000
.481 .224 1.000
.276 .062 .577 1.000

MO NX=4 NK=1 TD=DI,FR PH=ST
LK
'FACTOR'
PA LX
4 * 1
OU ULS SE TV PC RS VA FS SS MI
END USER
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APPENDIX E

LISREL REGRESSION ANALYSIS PROGRAM

TITLE ' LISREL REGRESSION ANALYSIS WITH CORRELATION MATIRX'
INPUT PROGRAM
NUMERIC DUMMY
END FILE
END INPUT PROGRAM
USERPROC NAME=LISREL
DATA FOR GROUP ONE
DA NG=1 NI=4 NO=100
LA
'Y' 1X1' 'X2' 'X3'
KM SY
1.000
.507 1.000
.481 .224 1.000
.276 .062 .577 1.000

MO NY=1 NX=3 PS=DI
OU ULS SE TV PC RS VA SS MI TO
END USER
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APPENDIX F

DISCRIMINANT ZNALYSIS

A. DISCRIMINANT ANALYSIS VIA REGRESSION PROGRAM

TITLE REGRESSION ANALYSIS WITH DICHOTOMOUS DEPENDENT
DATA LIST RECORDS=1 /1 Y 1 X1 3 X2 5
BEGIN DATA
1 8 3
1 7 4

1 5 5
1 3 4

1 3 2
0 4 2
0 3 1

0 3 2
0 2 2
0 2 5
REGRESSION VARIABLES Y X1 X2/

DEPENDENT=Y/
ENTER XI X2/
SAVE PRED (PSCORE)/

PRINT /1 Y X1 X2 PSCORE
EXECUTE
FINISH

B. DISCRIMINANT ANALYSIS VIA DISCRIMINANT PROGRAM

TITLE DISCRIMINANT ANALYSIS WITH DICHOTOMOUS DEPENDENT
DATA LIST RECORDS=1/1 Y 1 X1 3 X2 5
BEGIN DATA
I 8 3
1 7 4
1 5 5
1 3 4
1 3 2
0 4 2
0 3 1

0 3 2
0 2 2
0 2 5

DISCRIMINANT GROUPS= Y(0,1)/VARIABLES=X1 X2 /ANALYSIS=X1 X2/
METHOD=DIRECT/SAVE=CLASS=PRDv/
STATISTICS 11 12 13/

COMPUTE YHAT= -5.617 + .8510 * X1 + .7375 * X2
PRINT /1 Y X1 X2 PRDY YHAT
EXECUTE
FINISH
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APPENDIX G

a
PASCAL PROGRAM

program ran;
const

ns=100;
rxy=0.5;
al=2.505922;
a3=-15.73223;
a5=23.54337;
b2=-7.337743;
b4=14.97266;
b6=-6.016088;

var
allralsq,x1,x2,x3ally2,y3,z1lbrIr : real;
ix : longint;
outs : text;
kanteger;

procedure gauss ( var pgbr:real;var pgix longint);
var q,pgr:real;

pgiy:longint;

procedure* randu (prix:longint; var priy:longint;var
yfl:real);

begin
priy:=0;yfl:=0;
priy:=prix*65539;
if priy<0 then

priy:=priy+2147483647+1;
yfl:=priy; --

yfl:=yfl*0.46566130-9;
end;

(see- J. A. Byars & J. T. Roscoe- for algorithm explanation}

begin
pgiy:=0; pgr:=0;
randu(pgix,pgiy,pgr);
pgix:=pgiy;
pgr:=pgr-0.5;
q: pgr *pgr;
pgbr:=((a1+(a3+a5*q)*q)*pgr)/(n*(b2+(b4+b6*q)*q)*q);

end;

a
Special acknowledgement to Miguel Monsivais, a doctoral
student, in educational research who converted a prior
FORTRAN program into Pascal code.
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APPENDIX G (CONTINUED)

( see T. Knapp & V. Swoyer for algorithm explanation )

begin
ix:=0;
assign(outl,rcorr.dat');
rewrite (out l) ;
ix:=16875423;

alsq:=rxy*rxy;
all:=sgrt(1-alsq);

for k:=1 to ns do
begin

xl:=0;y1:=0;z1:=0;br:=0;
gauss (br,ix);
xl:=br;
br:=0;
gauss (br,ix);
z1:=br;
y1:=(rxy*x1)+(all*z1);

gauss(br,ix);
x2:=br;
y2:=(rxy*y1)-1-(all*x2);

gauss(br,ix);
x3:=br;
y3:=(rxy*y2)-1-(all*x3);
writein (outl,y1:10:6,x1:10:6,y2:10:6,y3:10:6);

end;
close(outl);
end.



APPENDIX H

A. SAS PC CORRELATION PROGRAM

data a;
infile 'c:corr.dat';
input y xi x2 x3 @@;
pros corr;var y xi x2 x3;
run;

40
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