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model for estimating growth curves when individual differences and
reliability are varied, when profile size and reliability are varied,
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data characteristics affected the ability of the models to estimate
the profiles. It is concluded that longitudinal studies must be
carefully designed if data are to be used to estimate individual
growth curves. (RH)

**********************************************************X************
Reproductions supplied by EDRS are the best that can be made

from the original document.
*************************************x********************x************



U S DEPARTMENT OF EDUCATION
Othce 01 E kls,:al,oa Reseatet, and improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER IERIC$>,TMs clOcumeI has been 0.0n:doted as

ecer.ect from the person or organdahon
c., oar.,.) .1

C M,hor changes ha.e been made tor,. pro.e
reprodocbon qua' 4.

Pc. vs of oono+,sstatea.ntts.sdocu
nerd do not hecessanty represent orhc,a1

OERI posit On Or Poi ey

Comparison of Models for Estimating Individual Growth Curves

Margaret R. Burchinal

Frank Porter Graham Child Development Center

Bypass 54 West (072A) CB #8180

University of North Carolina at Chapel Hill

Chapel Rill, N.C. 27599-8180

Paper presented at the Biennial meeting of the Society for Research in Child Development, April 1989, Kansas City.

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

_CL`C

`11

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC):



Comparison of Models for Estimating Individual Growth Curves

Growth curve models are a useful tool for developmentalists because they can estimate an attribute's developmental

function by providing a mathematical description of growth on an attribute over time. However, selecting an appropriate

growth curve model to estimate individual developmental functions is problematic; the ideal model is the one that most

precisely estimates individual developmental functions from the profile data but profile data often violate model

assumptions. The effects of these violations may be known asymptotically, but often are not well understood with relatively

small sample sizes. Accordingly, commter simulations were run to identify which types of models provide the most precise

descriptions of developmental functions with various types of profile data. These simulations will be discussed after a few

introductory comments.

The type of growth curve methods that I examined describe change acrlss time on one attribute that had been measured

with an interval or ratio level scale. The ability to measure the attribute and the appropriateness of the model limit the

ability to estimate individual growth curves. The "true" developmental function can be estimated only when the attribute has

been measured isomorphically and the appropriate growth curve function has been selected. However, too often in child

development we can not measure attributes of interest isomorphically (i.e., scores indicate how much of the attribute the

individual has at that time) instead we use relativistic measurement (e.g., scores indicate the relative ranking of the

individual within some normative population). While the "true" developmental function can not be estimated with relativistic

scores, individual patterns of change can stilt be estimated when appropriate growth curve models are selected.

Selection of the growth curve model also depends on the investigator's assumptions and knowledge about growth of the

attribute. I classified methods along 3 dimensions: type of function, for whom the function is estimated, and type of

estimation. Developmentalists have estimated linear and nonlinear functions, but nonlinear functions are usually necessary

to describe the growth periods. "Inherently" nonlinear functions usually provide the most information about growth because

they are based on assumptions about tha growth process and have intrinsically meaningful parameters such as the asymptotic

level, rate of change, and time at which half of the growth has occurred. Polynomial growth curve (PGC) models such as the

quadratic or higher-order curves can provide gaud approximations of the inherently nonlinear functions, at Least during the

growth period. However, an appropriate "inherently" nonlinear function such as the logistic or exponential curve provides

more information about the growth process.

These PGC and inherently nonlinear functions can be estimated to describe growth within an entire population or an

individual. Population models are growth curve models that estimate a single curve for a given population. They assume that

individual differences are trivial. Individual models estimate separate growth curves for each individual. They assume that

individuals vary and that each individual may show a different pattern of change over time.

These models can be estimated with ordinary least squares, weighted least squares, or maximum likelihood methods.
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In addition, prototypic growth curve methods can identify individuals with similar patterns of change without

requiring specification of a function. Cluster, p-type factor, or principal components analysis can be used to identify

prototypic patterns of change within a sample. In this case, it is assumed that a relatively small number of patterns will

characterize development for the sample of interest. This approach provides less information about the growth process; only

predicted values are estimated, not the growth curve and its parameters.

I examined the "best-case" situation; the simulations corresponds to the study in which the attribute was measured

isomorphically with random error. The most appropriate growth curve model, a good PGC approximation, and the prototypic

growth curve model were estimated from the data.

In the simulations, profile data on hypothetical individuals with known developmental functions were created. within a

sample either alt of the individual developmental functions were logistic growth curves

Yij = di / Cl + expf-gi (Tip - ai)]),

or half of them were logistic and half were exponential,

Yid = di * (1 - expt-gi (Tij - ai)]).

Figure 1 displays the expected growth curves from the simulations. The individual differences among developmental functions

were either nonexistent or small (i.e., the parameters of the individual functions were sampled from normal distributions

with small variances). The individual's error-free profile was created by observing the values that the developmental

function assumed at either 5 or 10 time points. Independent random error was added to the error-free profiles such that

reliability was either very high (.95) or moderate (.80). Thirty individual developmental functions were generated for each

of 1000 replications of seven independent cells.

The effects of varying both data and model characteristics on the relative ability of selected growth curve models

to estimate the developmental functions from the errorful profile data were examined. Table 1 lists the selected growth

curve models. The population logistic growth curve was estimated from the sample's data with ML, using iterative OLS

estimates (Gallant, 1975a) and using SUNR (Gallant 1975b). The population cubic curve was estimated from the entire sample's

data using the multivariate approach and orthogonal polynomial contrasts, using OLS (Potthoff & Roy, 1964) and WLS (i.e., the

higher order contrasts were included as covariates, Rao (1966)). The individual logistic curves were estimated from each

individual's data separately with ML (iterative OLS) only. The individual cubic curves were estimated first by OLS (i.e.,

fitting the cubic model to each individual's data separately with OLS) and using the Empirical Bayes Mixed Model approach

(Fearn, 1975; Laird & Ware, 1982). Finally, prototypic growth curves within the sample were estimated with a truncated

principal component; analysis (Overall & Klett, 1972; Nunnally, 1962; 1978).

Three analyses examined the effects of manipulating various data characteristics on the ability to estimate

developmental functions (see Table 4). The primary criterion was the mean squared distance between the "true" and estimated

growth curve. The first analysis asked which model "best" estimated the individual growth curves when the degree of

individual differences and reliability of measurement were varied. The second analysis identified which model best



estimated the growth curves when profile size and reliability Jere manipulated. The final analysis examined the effects of

mixing developmental functions.

In general, the results indicated that the growth curve model that most closely approximates the developmental

functions and whose assumptions are least likely to be violated by the data tended to provide the best fit to those data.

Table 3 displays the results form analyses 1-3. Analysis 1 indicated that models that estimated a population growth curv:

were dramatically effected by whether nontrivial individual differences existed, but not by the reliability of the data. In

contrast models that estimated separate curves for each individual provided much better estimates when data were highly

reliable, but not by whether individuals differed. Only the prototypic and EB cubic curve models were effected by both.

Analysis 2 suggested that the individual growth curve models provided better estimation when data were highly

reliable or when many observations per individual were collected. Precision was markedly poorer when these models were fit

to less reliable data consisting of 5 observations. This trend was also observed with the PCA approach, by not with most of

the population models.

Analysis 3 demonstrated that even seemingly minor violations of certain assumptions resulted in very poor fits.

Using the parametric family of the developmental functions (LGC) was .1.1early preferable to using an approximation, but only

when the data are all fr-m that parametric family.

Table 2 displays the mean squared distance between error-free and predicted profiles. The columns of this table

correspond to the 7 types of data examined while the rows list mean squared distances for the selected growth curve models.

The boxes encompass the types of data in which that a given model provided the among the best estimation of the error-free

profile data. Individual developmental functions tend to be estimated with relative precision when the selected model is fit

only to the individual's data ( individual PGC or LGC) if the developmental functions vary nontrivially and to the entire

sample's data (population LGC or PGC) if individual differences are trivial. In addition, the prototypic growth curve model

tends to recover the error-free scores well from all types of data examined in this study, but provide less information about

the growth process. Finally, comparisons of OLS and approximate WLS methods suggest that OLS uniformly provides more precise

estimates when individuals vary nontrivially. These findings suggest that the number of observations in each profile and the

reliability of measurement will interact with both the type of growl. curve model used for analysis and whether individuals'

error-free profiles differ significantly across time.

These results imply that careful design of longitudinal studies is necessary if the data are to be used to estimate

individual growth curves. Factors that should be considered during the design stage include selection of growth function

(i.e., ideally these should an appropriate nonlinear function if the attribute was measured isomorphically and a PGC if

scores do not represent the attribute isomerphically.
The investigator should determine whether individual differences are

nontrivial. If they are, then reliability should be high and/or profile size should be large. This study suggests precise

estimation of individual growth curves can occur only when the design factors such as reliability and profile size were

considered before data were collected.



In conclusion, the simulations indicate that one should select the growth curve model whose assumptions are least

likely to be violated by the profile data and whose function mostly closely approximates the "true" individual growth curve.

However, seemingly minor violations of model assumptions can produce poor fits. All examined data characteristics (number of

parametric families, presence of individual differences, profile size, and .eliability) effected the ability of the selected

growth curve models to estimate the error-free profiles. The amount of information provided about development was inversely

related to the variety of conditions that goodness of fit criteria were met. Finally, recent work in linear and nonlinear

mixed models looks very promising in terms of increasing the precision of estimation for individual growth curves, even in

the presence of missing or mistimed observations, when individual curves are normally distributed about the population curve.
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EXPECTED LOGISTIC AND EXPONENTIAL GROWTH CURVES
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Table 1

Selected Growth Curve Models

Population Logistic Growth Curvea

Population Polynomial Growth Curveb

Individual Logistic Growth Curvea

Individual Polynomial Growth Curveb

Prototypic Growth Curvec

E(Yij) = d / (1 + exp (g * (Tj a))),

E(Yij) = B0 + Bi*Tj + 82*Tj2 + B3 Tj3

E(Yij) = di / (1 + exp (-gi * (Tij ai))),

E(Yij) = B
01

+ B
1.
*Tij + B

21
*T-j 2 +

3-
T.j

3

E(Yij) = Pli Fij + P2i F2j + + Pri Frj

Note:
a

id is the asymptotic level, g is a rate of change parameter, and a is the age at which half of the growth hasoccurred
b

the 3 parameters are the intercept, linear slope for age, and quadratic slope respectively

c
P is a weight matrix and F is a matrix whose columns represent the prototypic growth curves.

Table 2

Manipulated factors in three analyses.

Analysis 1

Analysis 2

Analysis 3

Manipulated Factors

Parametric Individual Reliability Profile
Family Differences of data Size

logistic none or small 95% or 80% 5

Goal: Identify the "best" model for estimating growth curves when individual
differences and reliability are varied

logistic small 95% or 80% 5 or 10

Goal: Identify the "best" model for estimating growth curves when profile size
and reliability are varied

logistic or small 95% 5
logistic and exponential

Goal: Identify the "best" model for estimating growth curves when more than one
parametric family is sampled



Table 3

Effects of manipulated data characteristics.

Analysis Growth Curve Model

Population Individual Prototypic
LGC PGC LGC PGC PCA

OLS WLS OLS WLS OLS OLS WLS OLS

1: Effects of Reliability and Individual Differences

Reliability ns ns ns ns *** *** *** **

Individual

Differences *** *** *** *** ns ns ** ns

Reliability

* Ind. Dif. ns ns ns ns ns ns * *

2: Effects of Profile Size and Reliability

Profile Size ns ns ns ** ** *** ** *

Reliability ns ns ns * *** *** *** **

Profile Size

* Reliability ns ns ns * * ** ** ns

3: Effects of Sampling More than One Parametric Family

Parametric

Family xxx xxx xxx xxx xxx ns

Note: * p(F(1,3996)) < .0001, ** F(1,3996) >1,000, *** F(1,3996) >10,000

x p(F(1,1996)) < .0001, xx F(1,1996) >1,000, xxx F(1,1996) >10,000

rt



Table 4

Squared Distance between Predicted and Error-free Profiles
Growth Curve Manipulated Factors
Models

Type of Developmental Function
LGC

I LGC & EGC

Individual Differences Ind. Dif.
None I Small I Small

Profile size Profile Size Profile Size
5 5 I 10 I 5

Reliability Reliability I Reliability Reliability
.80 1 .95 .80 1 .95 .80 .95 .95

Population m 0.07 0.02 13.85 13.72 13.57 13.67 60.79
LGC OLS std 0.06 0.01 3.22 3.29 3.27 3.29 5.22

Population m 0.07 0.02 13.88 13.74 13.65 13.74 68.86
LGC WLS std 0.07 0.01 3.23 3.30 3.29 3.31 6.10

Population m 0.10 0.02 13.96 13.82 14.15 14.25 54.63
PGC OLS std 0.07 0.02 3.25 3.32 3.28 3.29 5.16

a

Population m 0.10 0.02 14.40 14.30 17.34 25.57 56.28
PGC WLS std 0.08 0.02 3.35 3.43 4.30 8.85 5.34

Individual m 5.26 1.12 5.26 1.10 1.49 0.32 25.55
LGC OLS std 0.78 0.16 1.45 0.30 0.41 0.09 0.72

a

Individual m 14.04 3.00 14.20 3.10 3.30 1.48 3.08
PGC OLS std 1.81 0.38 3.73 0.81 0.65 0.17 0.87

Individual m 0.49 0.11 28.80 9.55 7.85 3.95 10.85
PGC WLS std 0.35 0.08 8.40 3.00 1.45 0.47 4.23

PCA m 4.27 0.94 3.32 1.54 2.23 0.61 1.79
std 1.80 0.38 1.29 1.94 0.80 0.13 0.44

note: superscripted letters indicate means that did not significantly

differ (p <.0001) in pairwise comparisons within condition. That is,
only the Population PGC WLS and Individual PGC OLS models when fit to
moderately reliable logistic data when rt5 end individual differences
were small did not differ significantly.


