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Understanding Students' Beliefs About Probability

Probability is a particularly slippery concept. What makes it uniquely

troublesome is the territory it stakes out. Through probability, we attempt

to demarcate the amorphous state somewhere between the imagined extremes of

total ignorance and perfect knowledge. And it is trying to keep one's footing

in this nowhere land that is particularly disturbing. Like a frictionless

surface, it not only trips you up, but keeps you sliding once you're down.

According to Hacking (1973), prior to the 17th century such a middle

ground between belief and knowledge did not exist, yet the term "probability"

had already been around for some time. Hacking's thesis is that in the early

to mid 17th century the concept of evidence changed such that information

about the nature of things could, for the first time, be found in the things

themselves. Prior to this, there existed a class of phenomena that could be

known through demonstration (scientia) and another class that could only be

testified to either by men of authority or through God-given signs (opinio).

The word probability was associated with the latter class such that an opinion

was probable tf it had received the stamp of approval of some authority. This

meaning was still around as late as the early 18th century as evidenced in

Daniel Defoe's 1724 novel Roxana, in which a woman describes her living

arrangements thus:

This was the first view I had of living comfortably indeed, and it was a
very probable way, I must confess, seeing we had very good conveniences,

six rooms on a floor, and three stores high.

A "probable" belief (or circumstance) was thus an "approved" one. But

no amount of approval could ever make an approved belief a matter of

demonstrable knowledge. Hacking argues that a bridge was created between

belief and knowledge as a result of a change in, or enlargement of, the
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concept of evidence. The old term, probability, took on the function of

describing the distance a belief had traveled from total ignorance to certain

knowledge. At the same time, however, it also began to be used to refer to

the tendency of certain phenomena (like coin flips or die rolls) to produce

stable frequencies over many repetitions. ',his dual usage was no accident,

for frequency data were a special variety of this new type of evidence that

permitted degrees of belief separate from opinion. Now whether a belief was

probable had less to do with approval of authority than with the approval of

data.

If we were to meet a 16th century ancestor, we would no doubt get bogged

down trying to understand what we each meant when we said that something was

probable. Unfortunately, we need not do any time traveling to observe or

engage in a confusing dialogue about probability: We need only to walk into a

classroom where probability is being taught to find two parties floundering in

an attempt to understand one another. If Hacking is correct in his analysis,

a conversation with an early ancestor would be less troublesome because of our

having understood, through Hacking, their concept of evidence and what it

meant to "know" versus to "believe." Similarly, I will argue in this paper

that understanding how students think about probability before and during

instruction can facilitate communication between the student and teacher of

probability.

'Facilitate' is actually too weak a verb -- 'permit' perhaps is more

appropriate. As has been stressed throughout this volume, information cannot

be picked from the external environment like apples from a tree. What a

student mentally carries away from a teaching episode is not information that

is received directly, but that is constructed. The construction involves the

student weaving selected and interpreted teacher outputs into an existing
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fabric of knowledge. What a student learns from a given classroom experience

is both limited and, at the same time, made possible by what he or she already

"knows."

Of course, the role of prior knowledge in learning is only half the

picture. If I believed that there were no mechanism by which the external

environment could impose itself in some way upon a persons' conceptions, I

certainly would not be writing this paper, nor would I be concerned with any

other social, collective activity. I would be condemned, or delivered up,

depending on one's point of view, to my own internally isolated world. The

nature of this "accommodating" mechanism is discussed by Piaget, von

Glasersfeld, and others, and has to do with the fact that some conceptions

allow me to accomplish certain goals while others conceptions do not. The

fact that I cannot pick up an apple until I have learned to accommodate my

hand to certain of its properties prevents me from traating the apple in a

totally arbitrary way if I indeed want to grasp it. Now, of course, I'm

arguing that we in fact do acquire information from the environment much like

we pick apples from trees. But I hope that in the process of contradicting

myself, I have alerted the readers to what might be involved in the act of

apple-picking -- that it involves a reciprocal relation between the apple and

the picker which is more complex than we ordinarily grant.

Constructivist educators are of the opinion that the student-teacher

relationship is more complex than a casual analysis would lead us to believe,

and that while apple-picking can continue well enough without critical

analysis, teaching cannot. While this is a debatable point, my purpose here

is not to defend that opinion. I state it here as an assumption and proceed

instead to demonstrate how investigations into student understandings of

probability can be of pedagogical value.
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While I don't want here to defend my point of view, it wi,1 serve my

purposes to exemplify what I regard as a contrary one. The following

quotation is from a chapter in Cherry (1968) and is part of an introduction to

Carnap's logical-relations theory of probability:

As with all mathematics, there is no need of definition of the basic
concepts, but only of the :ormulation of rules for using them. We do
not need to know what probabilities "are," but rather how to combine
them. But, nevertheless, it helps most people to have intuitive notions
of the basic concepts, though such notions can become a hindrance to the
expert. (p. 234)

This quotation is grounded in a paticulAr philosophy of mathematics, a

theory of mathematics education, and a view of mathematical expertise. The

philosophy of mathematics is one that has dominated mathematics since the

1920s, according to which mathematics does not address questions concerning

the interpretation or meaning of mathematical objects, but focuses attention

instead on the validity of operations on those objects. Mathematical

expertise thus involves facility with abstractions, and not necessarily with

being able to apply the mathematics to some real-world problem. This

philosophy has encouraged the view that to engender mathematical thinking, the

teacher ought to divorce the activity in the first place from real-world

experience. While it may sometimes help to provide some grounding intuitions,

these are viewed as temporary supports rather than as foundation stones.

Furthermore, these intuitions seem to be regarded as notions that the teacher

may chose to develop. My assumption is that students have intuitions about

probability and that they can't check these in at the classroom door. The

success of the teacher depends in a large part on how these notions are

treated in relation to those the teacher would like the student to acquire.

Additionally, I think it is a myth that mathematics, either as a discipline or

in the mind of a mathematician, develops independently from concerns about



objects and relations that are believed to have real-world referents. This

was certainly not so in the case of the development of probability theory.

Formal Interpretations of Probability

Our present concept of probability took form around 1660 when Pascal,

Huygens, Leibniz, Fermat, and others somewhat independently developed

formalizations for treating such diverse phenomena as games of chance, legal

decisions and annuities. In a letter to Fermat, dated October 27, 1654,

Pascal reviewed their independently-arrived-at solutions to a problem of how

to divide stakes fairly in an interrupted game of chance. He demonstrated

that while on the surface their approaches appeared different, they were, in

fact, comparable. He concluded with the statement, "Now our harmony has begun

again." (Maistrov, 1974, p. 39)

What came into being at that time was a new tune. What was not so new

were the lyrics -- "How probable is it that...." Since that time we have been

plagued (some would argue) with a concept of probability that has at least two

different, but related, aspects. On the one hand it is a degree of subjective

belief in the truth of some proposition; on the other, it refers in a precise

way to an objective property (frequency of occurrence) of certain types of

events.

There are several schools of probability, each with a somewhat different

interpretation of probability. The first interpretation to which students are

typically exposed is the classical interpretation according to which the

probability of an event is simply the ratio of the number of alternatives

favorable to that event to the total number of equally-likely alternatives.

Thus, the probability of rolling a 3 with a fair die is 1/6 since only one

alternative out of a total of six is favorable to the outcome. The classical

interpretation is often referred to in introductory textbooks as "theoretical
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probability." This interpretation is obviously limited to trials with objects
such as coins, dice, and spinners, that are composed of equally-likely

alternatives. It is also logically flawed in that its definition of

probability is circular: Probability is defined in terms of equally-likely
alternatives, yet what can be meant by

"equally-likely" other than "equally-
probable?"

Perhaps the most pervasive
objective theory of probability is the

fre uentist interpretation, which defines probability in terms of the limiting

relative frequency of occurrence of an event in an infinite, or near infinite,
number of trials. Thus the probability of rolling a 3 with a particular die
is the ratio of trials resulting in a 3 to the total number of trials

(actually the limit of this ratio as the number of trials approaches

infinity). In introductory textbooks, the frequency
interpretation is

sometimes referred to as "empirical probability." While this interpretation
can be applied to events that are composed of non-equally-likely alternatives,
it is restricted to setups such as coin tossing and urn drawings with which

"identical" trials can be repeated indefinitely. In addition, since

probabilit; is defined as frequency in the long run, it is meaningless from
this perspective to talk about the probability of an event occurring on a
particular trial. It should be pointed out that even though this

interpretation is refered to as an objective theory, this does not mean that
it is free from

subjective judgments. Most importantly, this interpretation
requires an observer who can count a series of events, and in order accumulate
a sum of

event-occurences, that observer must consider the events which are

counted to be of the "same type." If each flip of a particular coin is

considered unique in an essential way, and there are certainly grounds for
considering it so, then the frequency

interpretation cannot be applied.
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One advantage of various subjectivist interpretations of probability is

that they can be applied to a wide range of phenomena since, according to this

view, probability is a measure of belief in the truth of a proposition.

According to a subjectivist view, different people could validly assign

different values to the probability of rolling a 3 with a particular die.

These values would presumably reflect different beliefs about the fairness of

the die, the character of the person doing the rolling, the technique used in

rolling, etc. However, in formalizing subjectivist interpretations, theorists

have adopted various adjustment mechanisms (e.g., Hayes' Theorem) that lead to

the revision of initial probabilities given new information such as results of

actual trials. Given enough data about the frequency of occurrence of 3 with

a particular die, the various subjective probabilities held by different

people would all begin to converge on the frequentists' limit.

The meaning of the probability value in a subjectivist interpretation

can be thought of in several ways. One of the most common is to describe the

value as a measure of a person's belief in what would constitute a fair bet.

Thus, a person estimating the chance of rain at 70% would as quickly bet $7 to

win $10 if it did rain as they would bet $3 to win $10 if it didn't rain.

Another way to think about the meaning of the value is to consider as a

collection all those events to which a person would assign the probability

70%. We could then look to see how many of these predicted events actually

occurred. If only 50% of the events which had been assigned 70% probability

actually occurred, then we would conclude that this person was, in general,

overconfident in his or her predictions. If 90% of the events actually

occurred, then the person would be underconfident. The nearer the percentage

of predicted events came to 70%, the more expert we would regard the person in

arriving at aubjactive probability judgments. In the lingo of decision theory
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such a person would be "well-calibrated." Thus, if we assume that a person is

well-calibrated, we should expect that when this person assigns probability 2

to events, 0 of those events occur.

Notice that the subjectivist theories are normative theories, specifying

how "rational" people ought to formulate and alter their beliefs in the light

of new information; they are not descriptive theories of how people actually

formulate and alter subjective probabilities. I use the term 'normative' in

this chaptc.- to refer to theories or beliefs that are held by those regarded

as experts. When I speak of 'normative theories of probability,' I will be

referring not to any particular theory of probability but collectively to all

those theories that are considered by experts in the field as deserving

serious attention. Thus, the term "normative" is not synonymous with

"correct," but is very similar to the 16-century neaning of probable, i.e.,

"approved."

These various interpretations are mentioned here primarily to provide a

context for evaluating various beliefs about probability held by students. I

want to proceed by suggesting that elements of Hacking's account of the

development of the modern conception of probability have direct implications

for teaching probability. First, probability is viewed by Hacking as a

concept that exists in a web of discourse and related concepts. Thus, the

modern concept related to frequencies of occurrence could not "emerge" until

the related concept of evidence changed. Secondly, once a new, objective,

notion of probability had appeared, it wasn't totally divorced from its prior,

epistemological, meaning. Hacking claims that concepts "play out their own

lives in, as it were, a space of their own (p. 15)." Concepts are not freely

created and revised at will. Rather, they are subject to restrictions that

are inherent in the web of concept-relations in which they are embedded. The

10
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meaning of a word cannot ba directly enforced; it emerges from and is

supported by a tenuous consensus among those who use the word. Despite

efforts of advocates of both objective and subjective schools of thought to

annex the concept of probability, it maintains even today its Janus face.

I want to argue that the above description also applies to

communications between students and teachers regarding probability. The

teacher has a particular concept of probability and intends to communicate, in

some way, this concept to the students. Ideally, the teacher's view is

similar to one of the interpretations summarized above. To the extent that

the conceptual frameworks of the teacher and the student are compatible, a

sense of mutual understanding is possible Where those frameworks are

incompatible, however, communication will become problematic. The teacher

cannot, by virtue of his or her authority, enfcrce (i.e., teach) a normative

view. The primary reason for this inability to transfer a concept from

teacher to student is that the student has no other option than to interpret

what the teacher says or does in light of what they already understand of

probability. As Fisher and Lipson (1985) have written:

..what we perceive is strongly influenced by our beliefs and
expectations. The constructive nature of thought has the consequence
that every observation is an !nterference and is dependent upon our
existing knowledge of the world. In spite of this, we frequently become
aware of differences between our expectations and observations. As a
result we are more or less constantly engaged in assessing the
"goodness-of-fit" between our mental models and our erperlence with the
world around us (p. 50).

Not only does this quotation clearly express the idea that what we

perceive and experience as existing in the external world is dependent on our

prior knowledge, it also inadvertently demonstrates the very point. The word

"interference" in the second sentence ought to read "inference." Whether or

not a reader notices and resolves this error depends on prior knowledge. Some

readers, like the authors of the article, who are very familiar with the

11



expressed idea, are likely to see what they expect to see and read the word as

"inference." Others read the word as interference, but knowing the point

that the authors are makin; can fairly quickly replace it with the intended

word. In this way they validated the claim made in the last part of the

quote. Those totally unfamiliar with the authors', or the view of perception

they espouse, are more likely to read the word as "interference" and perhaps

create an interpretation with which this word fits. Perception can, in fact,

be thought of as interference. However, this view will probably not fit well

with other statements made in the article.

Long before their formal introduction to probability, students have

dealt with countless situations involving uncertainty and have learned to use,

in common discourse, words str..h as probable, random, independent, lucky,

nhance, fair, unlikely. They have a coherent understanding that permits them

to ttter sentences using these words that are comprehensible to other language

users in everyday situations. It is into this web of meanings that students

attempt to integrate and thus make sense of their classroom experience.

Unfortunately, since much of formal theory does not fit well into the informal

understandings that students already possess, misunderstandings, serious

confusions, and other breakdowns in communication between the teacher and

student, result, with each party too often blaming the other for the problem.

If a teacher can come to see how students view probability, that teacher will

be better able, emotionally as well as conceptually, to aid the development of

a normative concept. With this goal in mind, I describe in the net section

some of the non-normative beliefs and perceptions about probability that have

been found to be commonly held.

12
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Studr.at Conceptions

The view that statistics and probability are conceptually difficult

topics for the untutored is r latively recent. Up through the 196Cs it was

generally assumed that whta people reasoned in ever/day situations about

uncertainty they usest methods similar to those a statistician would use, but

less carefully (Peterson & Beach, 1967). Piaget and Inhelder (1951) claimed

that by the age of 12 most children could reason probabilistically about a

variety of randomizing devices and had developed wound statistical notions

including the Law of Large Numbers.

More recently, cognitive psychologists have found pervasive and

persistent errors in peoples' reasoning under uncertainty. Contrary to the

earlier assumptions, research indicates that people arrive at their

"prob.bilistic" judgments via considerations that are qualitatively different

from the statisticians'. Daniel Kahneman and Amos Tversky (1973) have offered

the most comprehensive account to date of why peoples' judgments often differ

from accepted theory. They suggest that because of limited information-

processing capabilities, people use various judgment heuristics that allow

them to summarize large amounts of data and quickly arrive at decisions.

While these heuristics usually produce adequate estimates, they are

limited in the amount and type of information to which they are sensitive.

This, in turn, leads to predictable judgment errors in some situations. For

example, most people iorrectly believe that the ordered sequence MMMMMM of

male and female births in a family is less likely than the ordered sequence

MFFMMF. One possible explanation of this belief is that people confuse the

!attar sequence with the unordered outcome three Ms, three Fs. If the precise

order of births is disregarded, 4c is certainly the case that three Ms, three

Fs is more likely than 6 Ms. (There are 20 different arrangements of 3 Ms and

13
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3 Fs and only 1 arrangement of 6 Ms.) Kahneman and Tversky (1972) suggest,

however, that MFFMMF is judged as more likely through the application of what

they term the "representativeness heuristic." According to this heuristic,

the probability of a sample is estimated by noting the degree of similarity

between the sample and parent population. Since the sequence MFFMMF is more

similar to the population proportion of approximately half males and half

females and also appears to better reflect the r'.ndom process underlying sex

determination, it is judged as more likely.

This heuristic, as well ns others that Kahneman and Tversky have

described, are useful in explaining why so many results of probability theory

seem counter-intuitive and incorrect to the student. In fact, it has been

demonstrated that even experts in probability can be led to the unconscious

application o. heuristics for situation which they know call for a

probabilistic analysis (Tversky & Kahneman, 1971). Heuristics thus appear to

be deeply held, and, in many cases, automatically applied. They have been

compared to optical illusions, where even though one may know better, the

situation cannot be ',erceived veridically.

Another way to describe these heuristics is that they provide an account

of how people with no formal training derive an estimate of the probability of

an event. Hidden in the heuristic account is the assumption that regardless

of whether one uses heuristics or the formal methods of probability theory,

the individual perceives the goal as arriving at the pro;ability of the event

in question. While the derived probability value may be non-normative, the

meaning of that probability is assumed to lie somewhere in the range of

acceptable interpretation.

I have been studying a pattern of errors that are more fundamental, in

some respects, than these judgment heuristics. Rather than exploring how

14
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people arrive at probabilistic judgments, I have been interested in how people

interpret a question about probability or a probability value. Results of

interviews with students reasoning aloud about situations involving

uncertainty indicate that for many people a question about probability is

interpreted in a way that is, from a normative view, non-probabilistic

(Konold, in press).

I have attempted to understand this alternative interpretation by trying

to make sense of student utterances and responses that seem contradictory or

incomprehensible from a formal perspective. I have developled a model of

informal reasoning under uncertainty such that from the perspective of the

model, student utterances could be understood and seen as non-contradictory.

According to this model, the "outcome approach," the primary goal in

situations involving uncertainty is to successfully predict the outcome of a

single trial. Given this objective, a question that explicitly asks for the

probability of an outcome is interpreted as asking whet.Aer the outcome will,

in fact, occur on the next trial. For example, asked to explain a weather

forecaster's prediction of 702 chance of rain, many people respond that they

take that to mean that it will rain. Asked what they would conclude if it did

not rain, these same people hold that the forecaster's predictior. would then

have been wrong. They also will argue that a forecaster is perfo...ming sub-

optimally when it rains 702 of the days for which 702 chances were given.

People who show this preference for predicting individual as opposed to sample

outcomes also tend to rely on causal as opposed to chance explanations of

outcome occurrence and variability. For example, some people believe that the

number in the estimate "70% chance of rain" refers to a measure of some factor

that causes rain. Thus they believe that the 70% implies 70% humidity, or 70%

cloud cover. More typically, numbers are simply interpreted in terms of their

15
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proximity to the anchor values of 100%, 0%, and 50%, which have the respective

meanings of "yes," "no," and "I don't know." Thus people will reason that 70%

is sufficiently close to 100% to warrant the assertion, "It will rain

tomorrow."

While predictions in the outcome approach are often based on inferences

about causality, frequency information is often ignored. For example, I gave

students an irregularly-shaped bone to ro]l and asked them which side was most

likely to land upright. As mentioned above, many of the students appeared to

interpret the question as a request to predict the outcome of a single trial

and accordingly evaluated their predictions as being correct or incorrect

after one roll of the bone Even after conducting several trials with the

bone and having access to the summary results of 1000 trials, some students

preferred to base their predictions on a visual inspection of the bone rather

than on the available data.

In the remainder of this section I will present and discuss in some

detail a few excerpts from conversations with students about probability. My

purpose is to edmon-trate how statements that otherwise would be regarded as

contradictory nt.Triensible, can be understood if one assumes that

students ale lcArl..,nli according to the outcome approach. More generally, I

want to sugtest twat understanding how students are thinking about a tcpic, in

this case probability, puts the teacher in the position of belL,g able to

initiate conversations and design tasks that can facilitate the development of

probabilistic concepts. Without this type of careful attention to student

thinking, instruction in probability will, for most, have no lasting impact.

Making Confusing_ Statements Understandable

The excerpt presented below demonstrates how statements that would

otherwise seem disconnected and incomprehensible can be seen, with the /OA of
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a model of student reasoning, as both comprehensible and connected. The

conversation took place in an experimental setting in which the student had

been asked what a 70% chance of rain meant, and is here responding to the

follow-up question:

I: Suppose you wanted to find out how good a particular forecasters'predictions were. You observed what happened on ten days for which a
70% chance of rain had been reported. On three of those ten days therewas no rain. What would you conclude about the accuracy of uhis
forecaster?

The student first responded to this probe by concluding that the

forecaster was "very accurate" but then began to question whether, in this

instance, one could look beyond the prediction of an individual day in

assessing accuracy:

S: I was just wondering whether -- if you're taking a ten-day span and, as
you said, three of the days it didn't rain, if that can really relate towhen he's looking at an individual day -- that particular day. And I
suppose it can if you're looking at a ten-day span with 70% chance of
rain every day, with the same setup.

When ..iced if the forecaster could have been any more accurate she

apparently encoded the question as, "Should the forecaster have predicted

higher than 70% chance?" She responded that giving higher proportions does

not imply higher accuracy:

S: No, I don't think so. No cause when he says there's going to be 70%
chance of rain, he really can't be more -- I don't think he can be more
predictive than that. Cause that's a proportion. If he said 50% chance
of -- that's, you know, not any more accurate than if he said 70% chanceof rain.

I: Saying 50% chance of rain is no more

S: Yeah.

I: accurate? In terms of what?

S: I guess, as I said, he must have certain standards to go by when he
picks a chance of rain.

1 7
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In an attempt to get her to clarify her statements, she was further

probed:

I: Say the forecaster predicted 50% chance of rain on those ten days.
What would have happened if the forecaster was really good? If you kept
track, what would you expect in terms of the number of days it would
rain and the number of days it wouldn't rain?

S: Actually, you couldn't really expect anything. Because he is looking
at an individual day, 50 and 50%. So let's say if it rained that day,
then he had a -- he was -- I don't know, cause you're looking at
individual days, really, so it could have rained all the time, it could
have rained not one day out of ten days, and then it could have been
50/50, like five days it rained, five days it didn't rain, and he
wouldn't be -- and it would be the same, actually. It would come out
the same, I guess, cause he is looking at individual days.

I: Tell me again what would come out the same. If over ten days it didn't
rain at all --

S: Yeah, and if it did rain. Cause he's looking at a particular day. And
it's 50% chance rain, 503 not. So he wouldn't be more or less accurate
in any of those situations, I don't think.

The3e rather confusing statements become fairly comprehensible when the

student is viewed as interpreting the 50% in a way that is consistent with the

outcome approach. According to the outcome approach, 50% is the mid point of

the yes/no decision continuum, and thus it means that anything can happen --

in this particular example 50% means, "It may rain, or it many not rain. Who

knows?" Under this interpretation the 50% does not imply anytAng about

frequency of rain. As a result of considering the meaning of a 50% forecast,

this student confirms her conclusion that assessing accuracy over days is

inappropriate. She is apparently aware of the implications of assessing the

accuracy of a forecast of 70% chance of rain by looking at the frequency of

rain on days for which a 70% chance is given. To be consistent with this

procedure, one would have to expect five days rain and five days no rain in

the case of a 50% forecast. But this interpretation of accuracy would

contradict the use of 50% as an indicator of "anything-could-happen" since

according to the latter interpretation, any imaginable result of a tell-day

18
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sample would seem equally consistent with a forecast of 50% rain. This

reasoning makes her more certain that individual days is the appropriate unit

of analysis, and accordingly, when asked to summarize what she believed, she

responded:

S: Well, he's looking at an individual day -- particular day -- and he's
setting up percentages on one day. And you can't really extend that to
an amount of time.

There is a tendency for teachers when confronted with a statement from a

student that is apparently incorrect to inform the student of the error and

perhaps state the correct point of view. So for example, one can imagine at

some point in the above discussion telling the student, "No, 50% would mean

that the forecaster would expect rain on 5 out of 10 such days, just as 70%

means that rain would be expected on 7 out of 10 such days." The view that

these statements are, however, not isolated beliefs that the student holds but

are reflections of a more general conceptual framework leads one to be

skeptical about the effectiveness of these types of local interventions; they

do not get at the heart of the problem. An analogous situation would involve

correcting the assertion that a ship would fall off the earth if it ventured

too far from shore by negating the assertion or citing evidence to the

contrary rather than focusing on the apparent underlying belief in a flat

rather than spherical planet. The outcome approach and the nature of various

judgment heuristics are perspectives that the teacher can employ to see

beneath superficial features of various student claims.

Statements That Sound Incorrect

The following is an example of a claim that seem patently incorrect.

The conversation took place between myself and a high school student who was

participating in a summer mathematics program at Mount Holyoke College. This
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brief interchange occurred spontaneously about half way through a two-week

workshop on probability:

S: I don't believe in probability.

I: Why?

S: Because even if there is a 20% chance, it could happen.

I: Yes.

S: Even 1%, it could happen. I don't believe in probability.

On first reading, this student's claim seems baffling. If the

assumption is made, however, that this student uses the term "probability" in

a way consistent with the outcome approach, then it ought to be given the

approximate meaning, "predicting single trials." Indeed, if that phrase is

substituted for the word "probability," Lhe claim becomes not only

comprehensible but normative. My interpreacion is that this student is

beginning to question tta validity of her prior outcome-oriented view of

probability. She is saying that she no longer believes that one can predict

with certainty the outcome of a chance event. She isn't yet aware, however.

that the word probability can mean something different than single-trial

prediction.

It should be pointed out that the outcome approa-h is relsonab:y

consistent with one of the common meanings of the re: :ed w-d "probable." A

probable event is, in everyday usage, one that it ley to occur. Fcr

example, George Shultz was reported in The New York Times (October 1, 1987) as

saying, "I think there's not just a possibility, I think there's a

probability," in response to a question about the likelihood of an eventual

arms embargo against Iran by the Soviet Union. When asked to define

probability, students often provide definitions of the type, "Probability is

the chance of one thing occuring instead of another," or "Probability is what
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is most likely to be." This usage of the word probability to imply that some

event is more likely than not to occur fits well with students' outcome-

oriented belief that mathematical probability involves deciding whether an

event will occur rather than quantifying how often that event will occur.

Two Views in Conflict

While students can often fit what they are taught in the classroom into

their preconceived notions of probability, conflicts between their view and

the view being advocated by the teacher frequently arise. For the

constructiyist teacher, these conflicts are welcomed occasions. In the

attempt to resolve the conflict, students often alter their understanding,

bringing them into closer agreemeilt with the normative perspective. An

awareness of the student's beliefs permits tne teacher to understanding the

nature of the conflict and possibly help the student to successfully navigate.

In the first excerpt discussed above, the student was experiencing some

conflict over the appropriate unit of analysis in deciding the accuracy of

weather forecasts. She resolved the conflict not by modifying her notion of

probability but by reaffirming her belief that individual predictions are the

appropriate unit. The excerpt below involves a student who experienced a

similar conflict in responding to the probe about the accuracy of weather

forecasts. He could not, during this conversation, come to a resolution,

moving back and forth between viewpoints in what he called a "logic swirl."

S: Oh, it seems as though they were pretty much right on because in thewhole of the ten days they were right on three of the occasions, whichwould be 30Z it didn't rain, and that's what they kind of predicted,almost. Maybe.

I: What are you thinking?

S: Well, they didn't predict a ten-day span. They predicted eachindividual day. And so it seems as though when each day comes up, it'sa whole in itself and it's not necessarily put together in a unit.
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S: ...It kind of gets back to the idea that they were pretty much right
getting seven out of ten right. Maybe it's not fair to judge it that
way. Maybe you should just judge each one. But I guess you can add
them together because they're all the same. They're all like 70%.

I: ...Would they have been more accurate had it rained on all ten of the
days? Would that be more impressive to you?

S: Well, that's weird cause it almost seems that...they're going over and
they're wrong the other way. It's raining more than they really
predicted. But it's not like they predicted that it would rain on 70%
of the next ten days. It's like they predicted rain for each day. And
if they were 70% sure...that it was going to rain on each day...if it
rained on more of those days, then as you increase the number above
seven, then they would be less accurate.

The interaction described below is another example of a student

experiencing conflict. It took place during a lab on probability that was

being run in conjunction with a remedial-level mathematics course at the

University of Massachusetts. This particular episode is interesting both

because of the extreme attempt made by the student to maintain his single-

trial interpretation and also because by the end of the semester he had

formulated a normative interpretati,m. In talking with the student at the end

of the semester, he reme=bared this episode as being particularly important in

the development of his understanding of probability.

The lab activity involved students guessing at the probabilities

associated with a thump tack landing with the point up (U) or the point down

(D). For most thumb tacks, the probability of U is a bit greater than D.

After making a guess as to the probabilities, each student conducted And

recorded the results of 100 trials with the tack and then used these results

to evaluate and, if necessary, revise their probability estimates. This

particular student had initially guessed that the probability of U was .70.

He then conducted 100 trials, and in spite of the fact that he had obtained 55

Us and 45 Ds, he concluded that D was more likely. I asked:

I: Supoose you had to bet on whether you'd get more Ds or Us 'n another
100 trials. What would you bet on?
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S: I'd bet on D.

I: Why?

S: Because I got more Ds when I dropped it.

I: According to your results you got 55 Us and 45 Ds.

S: [Long pause while he verifies this result.] Well, ya. But I think D

is more likely.

I: 'an you explain why you think that, even though you got more Us?

S: Because it seemed like D came up more often when I dropped it once.

I: Which would be more likely if you dropped it 100 times?

S: OK. Well I guess U is more likely if I do it 100 times, but if I did

it just once, D would be more likely.

This student eventually saw tne inconsistency in his reasoning, but his

last effort to salvage his belief that D was more probable by adopting

opposite predictions for a single trial vs. 100 trials is a dramatic

demonstration of the preference for thinking about probability in terms of

single trials.

After resolving this conflict, the student became curious about why,

havirig begun thinking U was more likely, he ended up thinking D was more

likely even though he got more Us. He finally noticed that the first fey

trials were predominately Ds and remembered that this had surprised him. He

reasoned that thereafter he had "paid more attention" to trials resulting In D

than those resulting in U. Forgetting for the moment whether his self-

analysis was accurate, his explanation is quite sophisticated and is

consistent with an effeut that Tversky and Kahneman (1973) have described as

resulting from the "availability heuristic." According to this heuristic, the

probability of an event is estimated by assessing the relative ease of

bringing that event to mind. Thus a person may determine the probability o

winning a lottery by trying to recall people they know, or know of, who have
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won. Presumably, this is one reason that state lotteries and sweepstakes like

to advertise using the names and homey photos of past winners -- to provide us

with a set of instances of wi-Iners who we sort of know or perhaps can imagine

knowing. One of the factors that can influence the ease of recalling event-

instances is the vividness or saliency of an event. Witnessing a horrible

traffic accident can, for awhile, elevate a persons' subjective sense of the

probability of being in an accident. This student's account of why he came to

think that the thumb tack was more likely to land with the point down appears

consistent with the above account. Seeing what he didn't expect caused him to

"pay more attention" to subsequent occurrences of the same type such that his

memory of the frequency of that event was distorted.

Instructional Approaches

I have suggested that students come into their first course on

probability with a reasonably coherent and deeply engrained point of view

abcoAt probability. One component of students' prior knowledge about

probability involves judgment heuristics that operate much like visual

perceptions. Thus, HTTHT just looks to most people as a more likely result of

flipping a fair coin than HHHHH. In addition to these perceptions, students

also have a different conceptual understanding of the goal in situations

involving uncertainty -- predicting individual outcomes. Together, these

cognitions make learning the normative view difficult.

While these informal models and methods pose a serious challenge to

those trying to teach and learn probability, there is emerging evidence that

instruction in misconception-rich domains can be effective. In physics, where

students also have strong prior conceptions, it has been suggested that it may

be effective to encuuraic stlylAnts to recognize and resolve conflicts between

normative concepts and erroneous intuitions (McDermott, 1984). Several
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researchers, including Minstrell (1982), Clement (1987), and Hake (1987), have

demonstrated that physics instruction specifically designed to address various

misconceptions can be effective. Their approach includes laboratory exercises

designed to demonstrate counter-intuitive results and promote student

discussion, problems that require qualitative rather than quantitative

solutions, as well as presentations that explicitly contrast normative with

non-normative physics concepts.

Inspection of the various classroom techniques being used to overcome

physics misconceptions reveals three general types of criteria against which

students are encouraged to evaluate their current beliefs: the fit between

their beliefs and 1) the beliefs of others, 2) their other, related beliefs,

and 3) empirical observations. I conclude this chapter with a brief

discussion of these criteria in the belief that if instruction in probability

is to be effective, the teacher will need not only to be attuned to student

intuitions but to structure activities that encourage students to evaluate

those intuitions in accord with these criteria.

1. Do my beliefs agree or fit with the beliefs of others? A typical

starting point for the presentation of some physics concept or principle is to

invite students to discuss among themselves what they believe about a

particular situation. For example, Minstrell (1982) asks students to

determine the forces that are acting on a book lying on a table. After

allowing some time for students to individually think about the question and

to draw a diagram showing all of the forces acting on the book, he has

students share their answers with the class. This sharing leads to a

dialogue, vity students questioning and challenging one another. It should be

pointed out that discussions that allow for the expression and defense of

differing points of view are not common in the everyday experiences of the
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students. They are certainly not the norm in the classroom nor do they occur

in typical social situations. As Stubbs (1983) ohserves,

...there is a general rule in our society that demands that interaction
proceed at a smooth flow: silences are often considered embarrassing
and disagreements must normally be mitigated. So speakers immediately
counteract departures from the smooth ongoing of normal face-to-face
interaction by making (if necessary, violent) attempts to restore the
ritual equillibrium (p. 241).

Thus, even though th.: instructor may say little during this discussion, they

play a critical role in keeping the conversation going, being supportive of

students' expression of their views, and at times helping to focus the

discussion, but above all, creating an atmosphere in which it is acceptable to

articulate an opposing view and to challenge what one does not understand or

believe.

The class discussion accomplishes a number of goals. First, it allows

students to make explicit to themselves what they believe about a ,Titlat'.on

before they know what the "expert" view is. Secondly, classroom discus-.71,m

provides a mot.vation for further explo7ation of the question. The act

articulating one's beliefs in a public font-, involves a persona' in---Istment in

the question... Students who express their view are no lcncer

th- 7. outcome of' the discussion -- they in general want to have ,,.ft..

"right" rather than "rrong." Third, discussion among st% snts provid--

opportunity for the instructor to gain further :.nsights into how -.tud^nts are

thinking about a particular topic. This !.nformation can be use to plan

future interventions and to monitor conceptual dPvelopment. F-;.na7.1y, the

discussion communicates to the student the value the instrucor placer on

students' understanding and expression of ideas.

Once students have made their own beliefs more explicit, the second

criterion can be applied:
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2. Are my beliefs internally consistent? In the proce's of trying to

convince one enother, students explore in greater depth the implications of

and interconnections among their own beliefs. At times this exploration can

lead students to discover inconsistencies in their beliefs or gaps i their

reasoning. For example, Minstrell (1982) asks a series of questions related

to the book-on-the-table problem mentioned above. About the same number of

students who believe initially that a table does not exert an upward force on

a book resting on the table, believe that an upward force is not exerted on a

book resting on an outstretched hand. However, more students subsequently

express a belief in an upward force as more books are added to the

iutstretched hand, and the majority of students believe that there is an

upward force on a book resting on a spring. As the students progr ss through

these questions, they are repeatedly asked about the book on -le table.

increasing nur'-.- indicate t"e pughe- up or 711 bo, *r.F.

students are .1ppary mot4.vated qi '/ng ee analog-us

there "o cc

In :_t.lon to aslzing student nd t*--,eLr P

related :.nstances, various probes can be --7ective in encouraFing

analyze c-Dns'.,tency and completeness -y7 t-eir

probes f the Corm,

There :nc1v4(

Why do you think that...?
How would you explain a situation
How does that relate to what you sal': earlier?
What would you say to a person who gave the following Irgumez.t...7

One reason that misconceptions are so difficult tc alter is that they

tend to comprise a coherent, self-consistent framework. "' the extent that a

persons' beliefs are self-consistent, they are imperious to this type of

challenge. This is one reason why the criterion 1.1 espec2ally

important.

27
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3. Do my beliefs fit with empirical observations? Beliefs about

physical, social and probabilistic phenomena are always to some extent based

on observations of events. These include beliefs that are regarded by the

"educated" as irrational: People who believe in astrology will argue that

predictions based on their astrological chart have come true, winners of the

lottery will claim that the w'ning number came to them in an intuitive flash,

and paranoid schizophrenics will cite numerous observations to support their

claim that others are conspiring against them. How is it then that the fit

between empirical observations and beliefs can be considered a criterion

against which a person can evaluate their beliefs? This is a complex question

which I cannot discuss adequately here. The fact that what one observes is

never independent of what one already knows or believes means that data cannot

serve as the arbiter of so-called "empirical questions." But there are two

things that people generally do not do that further weakens the informative

power of empirical observations: 1) they do not keep accurate reco7-de and 2)

they do not look for data that would , inconsistent with and thus disaffirm a

belief they hold. To be effective, classro--_,m demonstrations meant to

challenge students' bel'efs should inc',:?' these two fert.:-es as a minimum.

While demonstrations have been a tr"itional part of physics !nstruc...ion

they do not frequently involve students f -st speculating and making

predictions of what they think win hapoen based on their own understanding of

the situation. Minstrell (1982; 1984) has used eomonstratioms along w..th this

type of discussion and prediction very effectively. With the arrival of the

computer in the classroom, such demonstrations of probabilistic and

statistical phenomena are now practical. Large random samples can be quickly

and repeatedly drawn and summary results computed and displayed. By having

students first make predictions of what trey expect to observe, such
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simulations can be used to nhallenge non-normative beliefs about random

events.

These three criteria are appropriate for use in the constructivist

classroom not only because they are effective in inducing conceptual change

but also because they are the same criteria that define scientific activity.

Scientific theories that are worth further consideration must first be made

explicit, they must not contain internal contradictions, and they must fit

with past, as well as predict future, observations. Students with strong

prior conceptions are therefore treated in this instructional approach as

scientists, in as much as they are viewed as holding theories which they

should not be expected to abandon until these theories have proven

unsuccessful (and not just unsuccessful vis-a-vis course grades).

Furthermore, the testing of the adequacy of student beliefs should not be an

isclated, individual enterprise but, as in science, involve a dialogue that

takes place among a community who together negotiate the relative merit of

various perspectives.
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