
ED 302 410

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

REPORT NO
PUB DATE
GRANT
NOTE
PUB TYPE

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

SE 050 245

Ohlsson, Stellan; Rees, Ernest

An Information Processing Analysis of the Function of
Conceptual Understanding in the Learning of
Arithmetic Procedures.

Pittsburgh Univ., Pa. Learning Research and
Development Center.

Office of Educational Research and Improvement (ED),
Washington, DC.
TR-KUL-88-03
Aug 88

ONR-N00014-85-K-0337
101p.

Reports - Research/Technical (143)

MF01/PC05 Plus Postage.

Computation; *Computer Simulation; *Concept
Formation; Educational Research; Error Patterns;
*Learning Theories; *Mathematical Models;
*Mathematics Instruction
Mathematics Education Research

Children learn arithmetic procedures by rote, rather
than by constructing them with an understanding of numbers. Rote
learning produces lack of flexiiility, nonsensical errors, and other
difficulties. Proposed is a theory of conceptual understanding and
its role in learning and executing arithmetic procedures. The basic
hypothesis is that principles constrain the possible states of
affairs, thereby enabling learners to monitor their own performance
and correct errors. A new knowledge representation is proposed, the
state constraint. The theory has been implemented in the Heuristic
Searcher, a computer model that learns arithmetic procedures on the
basis of general principles encoded as constraints on search states.
Simulated is: (1) the discovery of a general counting procedure in
the absence of either instruction or solved examples; (2) flexible
adaptation of a counting procedure in respose to changed task
demands; and (3) correction of subtraction errors in the absence of
external feedback. The theory provides novel answers to several
questions on conceptual understanding, generates testable predictions
about human behavior, deals successfully with technical issues, and
fares well on evaluation criteria. Future work will focus on how
knowledge and experience interact in procedural learning. Over 110
references are included. (Author/MNS)

* Reproductions supplied by EDRS are the best that can be made *
* from the original document. *

***********x***

An Information Processing Analysis of
the Function of Conceptual Understanding
in the Learning of Arithmetic Procedures

Steffan Ohisson and Ernest Rees

The Center for the Study of Learning
at the Learning Research and Development Center,

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Technical Report No. KUL-88-03
August, 1988

EI

U S DEPARTMENT OF EDUCATIONor,, E w, a, yr ar rr p, tvempnt
F T.,-.NAL PF 1 R E 1,4F ,RMAT,-;"EkirEA EP_

rr s nos nee- el.- Oa 14 Cl asrer eveo ,-rr De's, r rgan,Eort.,nirryrrar ny
"trot nanges nave nee- ',der e,pr-,ve'EO,Aktcr.ur ot,aory

- Perms nt spw vo,urs slated r Ns rfoc,,meet dc not ,ecessa,ty
-epreser,r officialOERI Position or policy

An Information Processing Analysis of
the Function of Conceptual Understanding
in the Learning of Arithmetic Procedures

Ste Ilan Ohisson and Ernest Rees

The Center for the Study of Learning
at the Learning Research and Development Center,

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Technical Report No. KUL-88-03
August, 1988

Reproduction in whole or in part is permitted for any purpose of the United States Government. Approved
for public release; distribution unlimited.

Cop/right © 1988 Ste Ilan Ohlsson

Preparation of this manuscript was supported by ONR grant N00014-85-K-0337, by the OERI institutional
grant for The Center for the Study of Learning, and by the Xerox University Grant to the University of
Pittsburgh. The opinions expressed do not necessarily reflect the position of the sponsoring agencies,
and no endorsement should be inferred.

BEST COPY AVAILABLE

ji1CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
--,..

Form Approved
OMB No. 0704-01U

l& RPORT SECURLT.Y ClASSIFICATION
Unclassified

lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY- 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approval for public release,
di stri buti on unl imi ted2b. DECLASSIFICATION /DOWNGRADING SCHEDULE

4. PEKORMING ORGANIZATION REPORT NUMBER(S)

UPITT /LRDC /ONR /KUL -88 -03

5. MONITORING ORGANIZATION REPORT NUMBER(5)

6& NAME OF PERFORMING ORGANIZATION
Learning Research & Developmerr:
Center, University of Pittsburgh

6b. OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITORING ORGANIZATION
Cognitive Science Program

Office of Naval Research (Code 1142CS)
6c. ADDRESS (City, State, and ZIP Code)

3939 O'Hara Street
Pittsburgh, PA 15260

7b. ADDRESS (City, State, and ZIP Code)
800 North Quincy Street
Arlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-85-K-0337

8t. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

:,

61I53N

PROJECT
NO.

1RR04206

TASK
NO.

RR040206 -OA

WORK UNIT
ACCESSION NO.

NR442a-54
11. TITLE (Include Security Classification)

AN INFORMATION PROCESSING ANALYSIS OF THE FUNCTION OF CONCEPTUAL UNDERSTANDING IN THE
LEARNING OF ARITHMETIC PROCEDURES (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
Stellan Ohlsson and Ernest Rees

13a. TYPE OF REPORT
Technical

13b. TIME COVERED
FROM TO

14. A OF REPORT (Year, Month, Day)
198TE8, August

15. PAGE COUNT

16. SUPPLEMENTARY NOTATION

Partial funding by OERI institutional grant for The Center for the Study of Learning,
and the Xerox University Grant to the University of Pittsburgh

17. COSATI CODES 18. SUBJECT TERMS (Continu± on revers* if necessary and identify by block number)

Arithmetic, Computer simulation, Constraints,
Declarative knowledge, Machine learning,
Mathematica_education

FIELD GROUP SUB-GROUP

05 10

23 02
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

School children learn arithmetic procedures by rote, rather than by constructing them on the basis of
their understanding of numbers. Rote learning produces lack of flexibility, nonsensical errors, and
other difficulties in learning. Mathematics educators have proposed that if arithmetic procedures were
c'nstructed under the influence of conceptual understanding of the principles of arithmetic, then
procedure acquisition would not suffer from these difficulties. However, little effort has been
investigated in conceptual analysis of this hypothesis, or in proving its viability. We propose a theory
of conceptual understanding and its role in the learning and execution of arithmetic procedures. The
basic hypothesis of the theory is that principles constrain the possible states of affairs, and thereby
enable the learner to monitor his/her own performance and to correct his/her errors. We propose a
new knowledge representation, the state constraint, which captures this view of principled knowledge.
(Continued on back)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT
ag UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21. tfrova$Lifigcr CLASSIFICAi ION

22a. NAME OF RESPONSIBLE INDIVIDUAL

Susan M. Chipman

...---,
22b. TELEPHONE (Include .tea Code) '
02-696-4318

22b434PICE IY_MBOL
1142pt

_
Form 1473, Previous editi'ns are obsolete.

4

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

M.AOSTRACT'

(Continued from Report Documentation Page, Block 19)

The state constraint theory has been implemented in the Heuristic Searcher (HS), a compiler modelthat learns arithmetic procedures on the basis of general principles encoded as constraints on searchstates. We have simulated (a) the discovery of a correct and general counting procedure in the absenceof either instruction or solved examples, (b) flexible adaptation of an already learned countingprocedure in response to changes in the task demands, and (c) the correction of errors in multi-column subtraction in the absence of external feedback. The state constraint theory provides novelanswers to several questions with respect to conceptual understanding in arithmetic, generates counter-intuitive but testable predictions about human behavior, deals successfully with technical issues thatcause difficulties for other explanations of the function of knowledge in learning, and fares well onevaluation criteria such as generality and parsimony. Th3 state constraint theory is incomplete; it doesnot explain how procedure acquisition proceeds in the absence of conceptual understanding, or howlearners overcome errors that can not be described as violations of principles. Future work will focuson the question of how knowledge and experience interact in procedural learning.

1

Ohisson & Rees 1 Rational Learning

Knowledge and Understanding in Human Learning

Knowledge and Understanding in Human Leaming (KUL) is an umbrella term for a loosely connected set
of activities' lead by Steffan Ohisson at the Learning Research and Development Center, University of
Pittsburgh. The aim of KUL is to clarify the role of world knowledge in human thinking, reasoning, and
problem solving. World knowledge consists of general principles, and contrasts with facts (episodic
knowledge) and with cognitive skills (procedural knowledge). The long-term goal is to answer four
questions: How are new principles acquired? How are principles utilized in insightful performance? How
are principles utilized in learning to perform? How can instruction facilitate the acquisition and utilization of
principled (as opposed to episodic or procedural) knowledge? Different methodologies are used to
investigate these questions: Psychological experiments, computer simulation, historical studies,
semantic, logical, and mathematical analyses, instructional intervention studies, etc. A list of KUL reports
appear at the back of this report.

August
6

KUL-88-03 1988

1

Ohisson & Rees

N Abstract

2

Table of Contents

Rote vs. Meaningful Learning in Arithmetic

Rational Learning

3

4

The State Constraint Theory of Understanding
8Hypotheses about understanding
9Hypotheses about performance

12Hypotheses about learning
15Summary of hypotheses
17

A Computer Model
19

The performance mechanism
19The learning mechanism
21Discussion
24

Computational Results
28

Constructing a procedure for an unfamiliar task 28
Adapting a procedure to a change in a familiar task 43Correcting errors in a symbolic algorithm

50Discussion
57

Relations to Previous Research
60

Planning net analyses of arithmetic procedures 60
Simulation models of empirical learning in arithmetic 65Discussion

67

General Discussion
69Summary
69

Strengths of the state constraint theory
70

Weaknesses and future directions 74

References

List of KUL Reports

August KUL-88-03

7

78

85

1988

Ohisson & Rees1------ 3 Rational Learning

Abstract

School children learn arithmetic procedures by rote, rather than by constructing them on the basis of
their understanding of numbers. Rote learning produces lack of flexibility, nonsensical errors, and other
difficulties in learning. Mathematics educators have proposed that if arithmetic procedures were
constructed under the influence of conceptual understanding of the principles of arithmetic, then
procedure acquisition would not suffer from these difficulties. However, little effort has been investigated
in conceptual analysis of this hypothesis, or in proving its viability. We propose a theory of conceptual
understanding and its role in the learning and execution of arithmetic procedures. The basic hypothesis
of the theory Is that principles constrain the possible states of affairs, and thereby enable the learner to
monitor his/her own performance and to correct his/her errors. We propose a new knowledge
representation, the state constraint, which captures this view cf principled knowledge. The state
constraint theory has been implemented in the Heuristic Searcher (HS), a computer model that learns
arithmetic procedures on the basis of general principles encoded as constraints on search states. We
have simulated (a) the discovery of a correct and general counting procedure In the absence of either
instruction or solved examples, (b) flexible adaptation of an already learned counting procedure in
response to changes in the task demands, and (c) the correction of errors in multi-column subiraction in
the absence of external feedback. The state constraint theory provides novel answers to several
questions with respect to conceptual understanding in arithmetic, generates counter-intuitive but testable
predictions about human behavior, deals successfully with technical issues that cause difficulties for other
explanations of the function of knowiedge in learning, and fares well on evaluation criteria such as
generality and parsimony. The state constraint theory is incomplete; it does not explain how procedure
acquisition proceeds in the absence of conceptual understanding, or how learners overcome errors that
can not be described as violations of principles. Future work will focus on the question of how knowledge
and experience interact in procedural learning.

August KUL-88.03 1988

Ohlsson & Rees 4 Rational Learning

Rote vs. Meaningful Learning in Arithmetic

School children tend to learn arithmetic procedures by memorizing them, rather than by constructing
them on the basis of their understanding of numbers. Consequently, they execute those procedures
mechanically, as sequences of physical actions on written characters rather than as abstract operations
on numbers. If they arrive at correct answers, it is because they recall the relevant procedure accurately,
not because they understand the underlying mathematical concepts and principles.

Rote learning of arithmetic procedures has several negative consequences. Memorized procedures
are brittle. They lack the flexibility required to transfer to unfamiliar problems or even to minor variations
of familiar problems. Students often fall on a novel task that Is conceptually equivalent to, but
procedurally distinct from, some other, already mastered task. Inability to adapt a procedure to changes
in the task implies that each new task has to be learned separately.

Memorized procedures are also prone to nonsensical errors. For instance, in the so-called
SMALLER- FROM - LARGER error in multi-column subtraction (Brown & Burton, 1978; Burton, 19d2), the
student subtracts the smaller number from the larger within each column without regard for which number
belongs to the minuend and which number belongs to the subtrahend. In the so-called FRESHMAN error
(Silver, 1986, p. 189) in the addition of fractions the learner adds the denominators as well as the
numerators, and in what we might call the OECIMAL -AS- INTEGER error, the learner judge:, the relative size of
decimal fractions on the basis of their integer values (Hiebert & Weame, 1986, p. 205). These errors are
nonsensical because they violate the meaning of the corresponding arithmetic operations. Nonsensical
errors slow down learning because they resist remedial instruction.

Finally, memorized procedures resist being incorporated as subprocedures into higher-order
procedures. Students often fail to perform steps A and B in combination, even though they are capable of
performing both A and B in isolation. For instance, we have observed in our field studies children who
know how to put two fractions on the same denominator and who also know how to add two fractions with
equal denominators, but who nevertheless are unable to figure out how to add two fractions with unequal
denominators.1 Since mathematics is a hierarchically organized ;iibject matter, inability to build on
previously mastered procedures severely limits the mathematics that can be learned.

The working hypothesis that dominates current research in mathematics education is that conceptual
understanding is the cure for these negative effects. We will refer to this belief as the Conceptual
Understanding Hypothesis. If children understood what they are doing, this hypothesis claims, children
could discover procedures on their own, learned procedures would be flexible, nonsensical errors would
be corrected spontaneously (or at least not be persistent to remediatIon), and already mastered
procedures would easily combine -to form higher-order procedures. The Conceptual Understanding
Hypothesis claims that procedures can be derived from the learner's knowledge, in contrast to being

tOur empirical research on the learning of fractions will be reported elsewhere.

August KUL-88-03 1988

9

Ohisson & Rees 5 Rational Learning

derived either from experience or from an external source such as a teacher or a textbook. In previous
work we called this type of learnim rational learning (Ohlsson, 1986, 1087b; Ohisson & Rees, 1987). The
Conceptual Understanding Hypothesis extends the idea of rational learning by claiming that procedures
which are derived from knowledge are more flexible and less error-prone than procedures that are
learned In other ways.

Common sense strongly supports the Conceptual Understanding Hypothesis, but, as Brooks and
Dansereau (1987, pp. 134-136) point out in their recent review of what they call content-to-skill transfer, It
has been the subject of a surprisingly small amount of systematic research. There are scattered studies
that demonstrate a facilitating effect of understanding a principle on subsequent problem solving (Egan &
Greeno, 1973; Mayer, Stiehl, & Greeno, 1975; Katona, 1967). However, the strongest case for
conceptually based procedure acquisition has been made by Gelman and co-workers with respect to
counting (Gelman & Gallistel, 1978; Gelman & Meck, 1983, 1987; Gelman, Meck, & Merkin, 1986;
Greeno, Riley, & Gelman, 1984). Gelman and Gallistel (1978) formulated a set of principles that
determine the correct procedure for counting. The three most important are the One-One Mapping
Principle, the Cardinal Principle, and the Stable Order Principle. The One-One Mapping Principle states
that oath object should be assigned exactly one number. The Cardinal Principle states that the last
number to be assigned to an object is also the answer to the counting problem. The Stable Ord 3r
Principle states that the numbers have to be considered in numerical order. Gelman and co- wormers
have presented evidence for the hypothesis that children know these principles before they have a
procedure that enables them to count correctly, and That they construct their counting procedures on the
basis of these prindpies. The evidence includes the facts that children typically acquir the correct
procedure for counting without formal instruction in counting, and that their counting procedures are
flexible. Children readily adapt their procedures for counting to non-standard counting tasks, such as
counting objects in a particular order, or in such an order that a specified object is assigned a specified
number (Gelman & Gallistel, 1978). Greeno, Riley, and Gelman (1984) and Smith, Greeno, and Vitolo (In
press) have proposed a theoretical analysis that shows how flexible counting performance can be derived
by a planning mechanism from a set of action schemata that embody the counting principles, thus lending
support to this interpretation of the evidence. In short, research suggests that the normal acquisition of
counting in our culture exemplifies the Conceptual Understanding Hypothesis.2

If counting represents a dear example of knowledge-based procedure acquisition In arithmetic, then

2The conclusion that children know the counting principles before they team counting procedures is not uncontested. Plaget
(1952) concluded on the basis of his research that children do not understand number In the pre-oporational stages. because the
construction of number Is coordinated with the construction of logical operations. Brainard (1979) has argued on the basis of
extensive empirical studies that the notion of ordinality develops before the notion of cardinality, a conclusion which complicates the
relation between counting and the Cardinality Principle. Both Fuson & Hall (1983) trx1 Briars and Siegler (1984) have proposed
accounts of childrens' counting that assume that procedures are learned before primipies. Baroody & Ginsburg (1986. pp, 76.78)
agree with this view. This view is further supported by recent studies by Douglas Frye, Nicholas Bralsby, John Lowe. Celine
Maroudas, and Jon Nicholls at the University of Cambridge. England (personal communication). Since our purpose in this report is
to present a computational interpretation of the Conceptual UnderstandingHypothesis, rather than to make a critical appraisal of the
empirical literature, we have adopted the principles first view Ers our working hypothesis. Clearly, the Conceptual Understanding
Hypothesis retain its interest as a pedagogical stance, even if the.feto about children:' counting should ultimatei, be resolved in
favour of the procedures first view.

August KUL-88-03 1988

Ohisson & Rees 6 Rational Learning

multi-column subtraction represents the opposite. The evidence for ro"- learning is particularly strong
with respect to this procedure. Over one hundred distinct error types have been identified in childrens'
subtraction performances, most of them as nonsensical as the prototypical SMALLER-FROM-LARGER error
mentioned above (Brown & Burton, 1978; Burton, 1982; Young & O'Shea, 1981). Kurt VanLehn has
proposed a theory that assumes that understanding of, say, place value does not enter Into the
acquisition of the procedure for multi-column subtraction as it actually occurs in the classroom (Brown &
VanLehn, 1980, 1982; VanLehn, 1983a, 1983b, 1985a, 1985b, 1986). According to his theory, children
pay little attention to, or are intellectually unequipped to make much use of, teachers' explanations of the
subtraction procedure. Instead, they construct the procedure by Induction over the solved examples
provided by textbooks and teachers. If the resulting procedure is incomplete, the learner may encounter
situations In which the procedure cannot be executed, so-called impasses. The learner is hypothesized
to respond to such difficulties by making local changes In the procedure. VanLehn's theory explains a
significant proportion of the empirically observed procedural errors for multi-column subtraction, thus
strongly supporting the notion that children learn the subtraction procedure by rote.

In summary, research has provided us with in-depth analyses of two contrasting examples of
procedure acquisition in arithmetic. The case of counting exemplifies procedure acquisition based on
understanding of the relevant principles, and the ease of subtraction exemplifies procedure acquisition
through memorization. The subtraction research is silent on the question of whether conceptual
understanding could facilitate the learning of subtraction. It only makes the case that the acquisition of
the subtraction procedure as it currently occurs in schools does not, in fact, engage the learner in the
mathematics that underlies that procedure. The pedagogical hope expressed In the Conceptual
Understanding Hypothesis is that the subtraction procedure could be acquired in the same intelligent
manner as the counting procedure, if only children understood the principles of subtraction as well as they
understand the principles of counting.

The obvious Instructional Implication of the Conceptual Understanding Hypothesis Is that we need to
find ways of teaching children to understand the conceptual underpinnings of arithmetic procedures. A
significant proportion of research In mathematics education is directed towards this goal (see, e. g., Bell,
Costello, & Kuchemann, 1983; Davis, 1984; Hebert, 1986; Romberg & Carpenter, 1986; Shoenfeld,
1985; Silver, 1985).

The research reported here has a different purpose. Our goal is to clarify the nature of the
hypothesized link between conceptual understanding and procedure acquisition. How does conceptual
understanding facilftate procedure acquisition? In a major review of the psychology of mathematics
Resnick and Ford (1981) summarised the state of the research with respect to this questions as follows:

August KUL-88-03 1988

Ohlsson & Rees 7 Rational Learning

The relationship between computational skill and mathematical understanding Is one of the oldest
concerns In the psychology of mathematics. it is also one that has consistently eluded successful
formulation as a research question. ... Instead of focusing on the interaction between computation and
understanding, between practice and insight, psychologists and mathematics educators have been busy
trying to demonstrate the superiority of one over the other. ... The relationships between skill and
understanding were never effectively elucid....ed. What is needed, and what now seems a possible research
agenda, is to focus on how understanding influences the aquisition of computational routines

(Resnick & Ford, 1981, p. 246)

Informat!.on processing analyses of human cognition imply that an analysis of the relation between
conceptual understanding and performance consists of two components: A representation for conceptual
understanding plus a computational machinery that can derive a procedure for a particular task from that
understanding (Greeno, Riley, & Gelman, 1984; Smith, Greeno, & Vitale, in press). Such an analysis
should explain how conceptual understanding is represented In memory how it functions in performance,
and how it can facilitate teaming. The work reported here is based on Ls formulat;on of the problem.

We approach this problem i;iy building a computer model of learning that instantiates the Conceptual
Understanding Hypothesis. Such a model Las many uses. First, the model can provide what is known as
a sufficiency proof (Newell and Simon, 1959, p. 5). The model can provide a concrete demonstration that
the kind of teaming mat mathematics educators envisioi s, in fact, possible. Second, the model can
serve as a tool for generating prodIctions from a particular:. t of hypotheses about understanding. Third,
it can serve as a focus of debate. Other researchers may not agree that our model represents learning as
it actually occurs in, say, the case of counting, or as it ought to proceed in the classroom. The formulation
of altemaeve interpretations of the Conceptual Understanding Hypothesis ought to be facilitated by
having something precise to disagree with. Fourth, our model can serve as a tool for the planning of
empirical studies of the role of conceptual understanding in the learning of procedures. Fifth, it can be the
basis of diagnostic instruments that focus on misconceptions rather than on bugs (Langley, Wogulis, &
Ohlsson, in press). Sixth, it can facilitate comparison between the Conceptual Understanding Hypothesis
and other hypotheses being explored in =rent research on learning. Seventh, it can be used to derive
Instructional implications that can be tested in classroom Interventions.

The report is organized es follows. We begin by stating a theory of conceptual understanding and Its
relation to performance and to procedure acquisition (The State Constraint Theory of Understanding, p.
8). In the secohd section we describe a computer model based on this theory (A Computer Model, p. 19),
and In the following section (Computations! Results, p. 28) ..e on three applications of the model:
(a) the construction of a counting procedure M the absence of explicit instruction or solved examples, (b)
the aoaptaticn of an existing counting procedure to changes in the counting task, and (c) the spontaneous
correction of prcedural errors in multi-column subtraction. We then compare our work with previous
efforts to simulate procedure acquisition in arithmetic (Relation to Previous Research, p. 60), and discuss
its implications (General Discussion, p. 69).

August KUL-88-03 1988

Ohlsson & Rees 8 Rational Learning

The State Constraint Theory of Understanding

A theory of the role of conceptual understanding in the acquisition of procedures consists, at the
broadest level of analysis, of two components: a representation for conceptual understanding and a
computational machinery that maps that understanding onto a procedure for a particular task (Greeno,
Riley, & Gelman, 1984; Smith, Greene, & Vito lo, in press): More specifically, such a theory should
acswer at least the following questions:

1. What is the nature of conceptual understanding, and how is it represented in the mind?
What kind of cognitive structures are we referring to when we speak of someone as
understanding, say, mufti-column subtraction?

2. What function does conceptual understanding have in performance? How does
understanding interact with the procedure during execution? What is the difference
between executing a procedure correctly and with understanding, as opposed to executing
it correctly but without understanding?

3. What function does conceptual understanding have in the learning of procedures? By what
mechanism does understanding enter into the construction of a procedure? How does
understanding enable the leaner to discover a procedure, to apply a procedure in a flexible

manner, to correct nonsensical errors, and to combine procedures into higher-order
procedures?

The theory proposed here is based on the idea that learners act with understanding when they
internally monitor their performance on a problem by comparing the successive states of the problem with
what they know about the task environment. According to this theory learners execute the procedure for,

say, multi-column subtraction with understanding when tLay think about each state of the subtraction
problem in terms of the principles of arithmetic. Learning occurs when an incorrect or incomplete
procedure generates a problem state that is inconsistent with the principles that govern the task
environments. Cognitive change is in the direction of greater consistency between the learner's actions

and the structure of the task environment (to the extent that the latter is known to the learner). For
instance, an incorrect subtraction procedure may result in a difference between two integers that is larger
than the minuend. To the extent that the learner knows that n - m = r implies r < n, the subsequent
revision of the regrouping procedure is in the direction of preventing violations of this principle in future
applications of that procedure, or so the theory claims.

The purpose of this section is to state our hypotheses about understanding, about performance, and
about learning. In the next section we describe a computer model that instantiates these hypotheses (A
Computer Model, p. 19). In a later section we describe some results obtained by running the model

3It may seem as if problem states that violate the principles of the environment are impossible in non-symbolic domains. For
Instance, one cannot construct, say, an electronic circuit that violates the principles of electricity. However, the term "problem state"
as used in our theory refers to the mental representation of the state of the problem, not to the physical problem situation. This point
will be clarified in the subsection that presents our performance theory (Hypotheses about performance, p. 12).

August
10. LI

KUL-88-03 1988

()Sisson & Rees 9 Rational Learning

(Computational Results, p. 28). The simulation runs show that the hypotheses stated here predict
learning behavior that is consistent with the Conceptual Understanding Hypothesis.

Hypotheses about understanding
In this report we use the term "understanding" to refer to a collection of general principles about the

environment, formulated as constraints on the possible states of affairs. We unpack this notion in four
steps.

Understanding consists of knowledge about the task environment

The Conceptual Understanding Hypothesis claims that correct and flexible performance is achieved
when the learner constructs the required procedure on the basis of his/her understanding. The type of
understanding that we focus on in this research is understanding of the domain in which a procadure
operates. To understand a domain is to know the principles that govern the objects and events in that
domain. For instance, to understand electricity is to know the principles that govern the behavior of
electric currents; to understand arithmetic is to know the laws of numbers. This type of understanding is
central to the learning-by-doing scenario, in which the learner constructs a procedure in the absence of
instruction.

An alternative view is that to understand a procedure is to know the purpose of each step in tho
procedure. Such an understanding is sometimes called a teleological semantics for the procedure
(VanLehn & Brown, 1980). A second view of understanding is that one understands X when one
subsumes X under some existing cognitive structure. We might call this representational understanding,
since it emphasizes the encoding of a problem opposed to the procedure for solving it). The
subsumption theory of understanding has been applied both to problem solving (Greeno, 1978, 1983;
Anderson, Greeno, Kline, & Neves, 1981), and to text understanding (e. g., Galambos, Abelson, & Black,
1986; Schank, 1986). Yet another view is that to understand a procedure is to know the justification for
the procedure. This conception of understanding is common among professional mathematicians. Both

teleological and justificatory understanding are crucial in the learning-by-being-told scenario, in which a
teacher demonstrates the execution of a procedure and then explains that procedure, i. e., verbally
communicates its teleology and its justification. A complete theory of understanding would specify the
nature and function of both conceptual, teleological, representational, and justificatory understanding.
Michener (1978) has proposed such a multi-facetted view of mathematical understanding.

Knowledge is declarative rather than procedural

Current cognitive theory recognizes two kinds of knowledge, declarative knowledge and procedural
knowledge (Winograd, 1975). This distinction is essential to the theory proposed here. For instance,
consider the assertion that

Uppsala Is ninety kilometers north of Stockholm.

This assertion Is not a procedure; it does notisppcify how to accomplish any task. But it is relevant for
-

August KUL-88-03 1988

Ohisson & Rees 10 Rational Learning

many different procedures4, such as if you are in Uppsala and your goal is to get to Stockholm, then
travel south for ninety kilometers and if you are in Stockholm, and your goal is to get to Uppsala, then
travel north for ninety kilometers. The set of procedures for which an assertion is relevant is open-ended.
As an example of a less immediate consequence of the above assertion, consider the procedure if you
are midway between Uppsala and Stockholm, and feel like getting as far away from both as possible,
then travel either straight west or straight east. The only limits on the set of procedures for which an
assertion is relevant are the limits on our imagination. As a second example, consider the following
arithmetic prindple:

A set of numbers always yield the same sum, regardless of he
order in which they are added.

This principle does not in itself specify how to accomplish any particular task, but the set of procedures for
which it is relevant is open-ended. For instance, the above principle is crucial for the standard procedure

for multi-column subtraction because it enables regrouping of the minuend.

Declarative and procedural knowledge differ along three dimensions. First, declarative knowledge is

goal-independent, while procedural knowledge is goal-related. Declarative knowledge is knowledge
about what the world is like, while procedural knowledge is knowledge about how to attain particular
objectives. Declarative knowledge is potentially useful in reaching an infinite range of goals, including

goals that the learner had never thought of at the time of storing the knowledge in memory.

Second, declarative knowledge is context-free while procedural knowledge is situated. Uppsala is
always ninety kilometers north of Stockholm; the distance is not a function of the current situation of the
person who is making use of this fact. But the procedure for getting to Uppsala by travelling ninety
kilometers northward is only useful if the person finds himself/herself In Stockholm; it does not lead to the
goal if executed in any other situation. Similarly, a sum of a set of numbers is unique; it Is not a function

of the problem the agent is trying to solve. But the regrouping procedure is appropriate only with respect

to subtraction problems in which some minuend digit is larger than the corresponding subtrahend digit.

Third, declarative knowledge is assertive or descriptive, while procedural knowledge is exhortational

or imperative. Declarative knowledge relates objects and events in the world to other objects or events,

while procedural knowledge relates situation/goal pairs to actions. Procedural knowledge Is knowledge
about what to do In in order to obtain some particular state of affairs. It is neither true nor false, but more

or less effective; executing a certain action in a particular situation will lead to attainment of the relevant

goal with more or less expenditure of time, cost, or effort.

In the research reported here we take the stance that the term "procedural knowledge" is, strictly

4A procedure typically consists of a (possibly very large) collection of rules. The simple procedures discussed in this section
consist of just a single rule each.

August
y

KUL-88-03 1988

Ohisson & Rees 11 Rational Learning

speaking, a misnomer.5 Procedures do not encode knowledge; they encode dispositions to act in
particular ways under particular circumstances. Hence, understanding cannot be encoded in action
schemata, methods, operations, rules, or other procedural representations. The opposite stance is that
all knowledge is procedural. For example, the Soar simulation model by Allen Newell and co-workers
(Laird, Rosenbloom, & Newell, 1986) is build on the assumption that all knowledge Is encoded in
production rules; the Soar system does not have any other representational format. A compromise
stance is that knowledge can be either procedural or declarative. For example, the ACT' model
(Anderson, 1976, 1983) is build on the assumption that there are separate memories for propositions and
for rules.

Understanding consists of principled rather than factual knowledge

Declarative knowledge can be divided iito two types. Abstract or principled knowledge consists of
assertions about universals. The principle that the sum of a set of numbers is unique states something
about arithmetic sums in general. Factual knowledge, in contrast, consists of assertions about particular
objects or events. The statement that Uppsala is ninety kilometers north of Stockholm is an example of
factual knowledge. A factual assertion that refers to a particular spatiotemporal context is sometimes
classified as an instance of episodic knowledge.

Cognitive psychology has produced a wealth of information about the storage, retention, and retrieval
of factual, particularly episodic, information. However, the Conceptual Understanding Hypothesis
emphasizes principled rather than factual knowledge. The idea that we have explored in the research
reported here is that general principles can guide the construction of arithmetic procedures. Factual
knowledge is not foreign to arithmeticfor instance, three is an odd number Is a factual assertionbut it is
less relevant for our current purpose than principled knowledge.

There are severe philosophical problems associated with the concept of principled knowledge. For
instance, since abstract properties of the world are not directly perceivable, the question arises how we
can have knowledge about them. Furthermore, since a general principle is not tied to a particular
spatiotemporal context, it Is not clear what it means for such a principle to be either true or false. A
significant proportion of research in epistemology is devoted to clarifying these problems. However, the
research we report here does not presuppose solutions to the problems of philosophy. We are
investigating the psychological question of how the principles a student believes can guide his/her
procedure acquisition; we are not trying to decide whether he/she is justified in believing those principles.

The alternative hypothesis is that declarative knowledge consists mainly or exclusively of factual
knowledge. This hypothesis has the advantage of avoiding the philosophical problems associated with
principled knowledge. But we do not perceive a need to argue for the existence or the psychological
reality of principled knowledge as a preliminaryto the research reported here. On the contrary, we expect

55ince the use of the term "procedural knowledge" to refer to dispositions to act Is so widespread, we will adhere to that usagethroughout this report.

August KUL-88-03 0n1: 1988

Ohisson & Rees 12 Rational Learning

a conclusion about the usefulness of the concept of principled knowledge to be one of the outcomes of
our research.

Principles constrain the possible states of affairs

Traditional debates about the nature of knowledge assume that knowledge consists either of
descriptions ("All swans are white") or predictions ("The sun will rise tomorrow"). in this report we focus
on a different aspect of principled knowledge. We view principles as constraints on the possible states of
the world. An obvious example is the following common sense principle:

Two objects cannot occupy the same space at thesame time.

As a descriptive statement, this principle is not very informative; it does not tell us much about what the
world is Ilke.6 Nor is it predictive; it does not by itself assert that such and such an event will happen.?
The Impact of the above principle is to rule out certain states of affairs as impossible; it claims that
situations in which two material objects occupy the same physical space will not occur. Many physical
laws, e. g. laws of conservation, have the character of constraints (Feynman, 1965).

The notion of principled knowledge as consisting of constraints on the possible states of affairs is
particularly relevant for arithmetic. Arithmetic principles, e. g., the principles of commutativity and
associativity, do not predict which arithmetic operations will occur. Instead, they classify states of affairs
Into mathematically valid and invalid states, as it were. For instance, the- principle of commutativity of
addition claims that it cannot happen that we add two numbers in two different orders and get two
different answers.

An alternative hypothesis is that principled knowledge consists mainly of predictive principles (Hollan,

Holyoak, Nisbett, & Thagard, 1986). We are not claiming that all principles can be formulated as
constraints. We would expect an exhaustive investigation into principled knowledge to reveal many
different kinds of principles. We do claim that constraints are frequent and particularly Important in
arithmetic, a domain in which other types of principles, particularly predictive principles, are not relevant.

Hypotheses about performance
Learning is a change in performance. Hence, specific hypotheses about learning presupposes

specific hypotheses about the nature of performance. The purpose of this subsection is to state our
hypotheses about the cognitive machinery that executes a procedure, and about the function of principled
knowledge in such execution.

°It contrasts in this regard with a principle like planets travel in elliptical orbits, which does have descriptive content.

71t contrasts in this regard with a principle like the traditional Swedish saying that if the roenneberries turn bright red in the fall, the
winter will be very cold, which does have predictive content. (That fact that an assertion has predictive content obviously does not
imply that it also has predictive accuracy.)

August KUL -88.03
17 1988

Ohlsson & Rees

Thinking is heuristic search

13 Rational Learning

We have chosen to work within the theory of thinking proposed by Newell and Simon (1972). The
basic idea of their theory is that humans think by searching a problem space. A problem space is defined
by (a) the initial state of the problem, (b) the ensemble of operators available for processing the problem,
and (c) the criterion for what counts as a goal state. Searching such a space means tentatively applying
operators to states in order to find a sequence of operators that lead from the initial state to the goal state.
The search is guided by heuristics, rules of the general form when trying to obtain goal G, and the current
situation have properties P1, P2, ... , Pn, then consider action A. The reader is referred to the original
statement of the theory for details (Newell & Simon, 1972).

There are several reasons for selecting the theory of heuristic search as our performance theory.
First, we prefer building on previous research over inventing computational mechanisms ad hoc to suit
our current purpose. By choosing the main performance theory to emerge in recent research on thinking,
we integrate our efforts with other research efforts. Second, the theory of heuristic search is a general
theory. The mechanism of heuristic search is applicable to many task domains, not just to arithmetic. By
using a computational mechanism that has been applied to a wide range of tasks we increase the
plausibility of our theory. Third, the theory of heuristic search is precise enough to guide the construction
of a simulation model. Fourth, the theory of heuristic search is better grounded in psychological data than
any other current theory of human thinking. It has been used to explain why some problems are more
difficult than others (e. g., Kotovsky, Hayes, & Simon, 1985), why people perform differently on a
particular problem (e. g., Newell & Simon, 1972, Chaps. 7, 10, and 13), how procedures can be learned
from practice (e. g., Anzai & Simon, 1979), etc. Ira short, there is no other theory with comparable
generality, conceptual precision, and empirical grounding.

A further reason to select the hypothesis of heuristic search as our performance theory is that it
satisfies the following criterion of adequacy:

Criterion of Executability of Partial Procedures. Since procedure
learning is gradual, the performance theory underlying a learning
theory must enable a procedure to be executable at each stage
during its construction.

A cognitive procedure is not learned in an all-or-none fashion. Rather, the student learns some part of
the procedure, flounders, learns some more parts, makes mistates, etc., in a gradual progression through

different stages of competence until the procedure is completed.8 But at each moment in time during this
gradual construction the learner is capable of acting, of executing the procedure as it exists at that point
in time. This observation constrains the possible theories about the human performance system to those
which enable procedures to be executable at each stage of completeness:

'At this point. further practice may lead to the discovery of short-cuts, memorization of special cases, elimination of redundancies,
chunking of steps that always follow each other, etc. In the research reported here we aro concerned with the initial construction of
a procedure, rather than with its subsequent automatization.

August KUL-88-03 1 1988

Ohlsson & Rees 14 Rational Learning

The hypothesis 3f heuristic search satisfies the Criterion of Executabillty of Partial Procedures,
because the function of knowledge, according to this hypothesis, is to constrain search, and search can
be constrained to a higher or lesser dv.\gree. At the most constrained end of the scale the search follows
a single, unbranching path through the problem space. To an external observer the resulting behavior
looks algorithmic. At the other extreme, the problem space is searched by randomly selecting operators.
To an outside observer the resulting behavior looks like aimless floundering. A typical performance
during procedural learning is located somewhere between those extremes: The learner knows something
about how to search the relevant space, but not everything; hence, he/she proceeds In the general
direction of the solution, but makes mistakes along the way. A collection of search heuristics is always
executable, -egardiess of how Incompletely it represents the target procedure. The resulting behavior
might be ineffectual, but it will be task oriented.

An alternative hypothesis to heuristic search is what we might call the problem reduction theory,
following the classification by Nilsson (1971) of problem solving methods into search methods and
problem reduction methods. The problem reduction theory says that a procedure consists of a hierarchy
of goals and subgoals. Each goal acts like a procedure call in an applicative programming language like
(pure) LISP. A call to a procedure (goal) is executed by calling its subprocedures (subgoals), which leads
to calls to its subprocedures (subgoals), etc., until the procedure called Is a primitive operator that can be
executed without further reduction. In order for the problem reduction theory to satisfy the Criterion of
Executability of Partial Procedures, it must be augmented with an hypothesis about what happens when a
procedure call cannot be executed. The theory of repairs proposed by Brown and VanLehn (1980, 1982)
is such an hypothesis. Repair theory says that when a problem solver cannot execute a procedure call,
he/she edits the current control structure for the execution of that procedure in such a way that the
problematic procedure call is eliminated; normal execution then resumes.

Principles constrain search through state evaluation

Given the choice of heuristic search as our performance theory, and given our focus on principled
knowledge, the research problem we have posed can be re-stated as follows:

What role can principled knowledge play in a heuristic search
system? How can principled knowledge improve performance and
facilitate the revision of search heuristics?

Heuristic search consists of the execution of actions in the pursuit of some goal in a particular context;
where do principles, context-free knowledge items that do not relate to goals and that do not mention
actions, impinge on that process? The hypothesis of heuristic search suggests two different functions for
knowledge: Knowledge can enter into the generation of search steps and/or it can enter into the
evaluation of search steps. In accordance with our decision to view principles as constraints, we focus on
the evaluative function. We envision principled knowledge as a device for internal self-monitoring of
performance. Since this is the central notion of our theory, we will expand it'briefly here; more technical
details are provided in the section on the performance mechanism of our simulation model (The
performance mechanism, p. 19).

August

9
KUL-88.03 1988

Ohisson & Rees 15 Rational Learning

We hypothesize that principles are encoded in memory as state constraints, criteria which a search
state has to satisfy In order to be valid or correct. A heuristic search mechanism can compare each
search state with those constraints, and decide whether it satisfies the constraints. States that violate
one or more constraints are inconsistent with the system's knowledge and should be avoided; they are
the results of incomplete or incorrect procedural knowledge. The coKection of state constraints thus
constitutes a knowledge-based evaluation mechanism that enables the search system to monitor the
performance of its own procedural knowledge. For instance, an incomplete or incorrect arithmetic
procedure is likely to generate states of affairs that are not in accord with the laws of the number system.
A counting procedure that does not select a new object before generating the next number counts the
same object repeatedly, thereby violating the constraint that each objects should be associated with
exactly one number. A regrouping procedure that performs a decrement without performing the
corresponding increment will change the value of the number being regrouped, thereby violating the
constraint that the value of the minuend should remain conitant during subtraction. State constraints
enable a performance mechanism to catch itself, as it were, in making errors.

The hypothesis that the function of principled knowledge is to evaluate search states satisfies thts
Criterion of Executability of Partial Procedures. The search procedure may be more or less effective, but
at each level of effectiveness it is possible to classify the search states generated as either consistent
with the aveable constraints or as violating them. If the search procedure is nearly complete and correct,
then there will be few states that violate the system's constraints; if is radically incomplete or incorrect,
then many search states will cause constraint violations. But the system is executable regardless of the
level of completeness of its procedural knowledge. Principled knowledge can also be more or less
complete. If the system knows many constraints, then a large proportion of the invalid states will be
caught, as it were. If the system knows only a few of the relevant constraints, then invalid states will slip
through, possibly resulting in a wrong answer. But the computational mechanism does not cease to
function in the presence of incomplete knowledge.

. The atternative hypothesis is that principled knowledge impinges on heuristic search in the
generation, rather than In the evaluation, of search steps. This hypothesis is intuitively plausible, and it is
implicitly presupposed in many analyses of human thinking, e. g., in analyses of scientific problem solving
(e. g., Jones & Langley, 1988), medical reasoning (e. g., Patel & Groen, 1986), etc. There is no reason to
expect knowledge to have a single function in thinking and learning. Human beings obviously use
knowledge both in generating ideas about what to do and in evaluating the outcomes of their actions. A
complete cognitive theory must explain both the generative and the evaluative functions of principled
knowledge.

Hypotheses about learning
A theory of learning has two questions to answer. First, when does cognitive change occur? When

will the performance machinery roll on unchanged, and when will it undergo revision? Second, what
change will occur? Given the mental conditions that trigger learning, which knowledge structure will be
revised, and hew will it be revised?

20

,August KUL-98.03 1988

Ohisson & Rees 16 Rational Learning

Constraint violations trigger procedure revision

What events trigger the internal change mechanisms? Given a heuristic search system which is
equipped with a collection of state constraints and which can monitor its own performance by comparing
search states with those constraints, it is natural to assume that learning is triggered by constraint
violations. The constraints--the principled knowledge of the system--enables the system to know that its
procedure is incorrect and that revisions are needed. If the search procedure is correct and complete, it
should never generate a state that violates any constraint. A constraint violation indicates that the
procedure is faulty, and should be revised in such a way that application of that procedure In the future
will not lead to further constraint violations.

Many alternative hypotheses about the mental conditions that trigger learning are possible. Some
teaming theories assume that learning is continuous. For instance, Neves and Anderson (1981, p. 73)
investigated the assumption that whenever two procedural rules are applied in sequence, the procedure
is extended with the composition of those two rules. Traditional S-R theories (Neimark & Estes, 1967) as
well as connectionist learning theories (Hinton, 1987) also assume that learning happens on every trial.
Other learning theories tie learning to the goal structure of the procedure being executed. For instance,
the UPL model (Ohlsson, 1983a, 1987a) and the Soar model (Laird, Rosenbloom, & Newell, 1986) both
ieam when they succeed in satisfying a subgoal. A different triggering criterion was proposed by Neches
(1981, 1982, 1987). His model of heuristic procedure modification is based on the assumption that
teaming is triggered by the discovery of patterns in the internal trace of a procedure, patterns that indicate
that there are redundancies in the procedure that can be eliminated. The formulation of the triggering
condition for a particular theory obviously depends on the knowledge structures postulated by that theory.

Constraint violations inform procedure revisions

Given that the current search procedure has generated a search state that violates a constraint, what

change should occur? We postulate that a constraint violation not only signals that a revision is needed,
but also that it contains information about how the faulty procedure should be revised. We propose that
the required change can be derived from the system's knowledge. We have called this idea the Rational
Learning Hypothesis in previous work (Ohlsson, 1987b; Ohisson & Rees, 1987), because it claims that
the learning mechanism has rational grounds for the change that it brings about.

The learning mechanism of our simulation model can identify the circumstances that lead to a
constraint violation, and revise the relevant rule In the appropriate way. A precise statement of the
algorithm that accomplishes this will be given in the next section. The basic idea is as follows. Suppose
that state Si is consistent with all available state constraints, but that operation A transforms Si into state
S2, which does violate a constraint C. The cause of the violation is then to be found in the changes A
caused in Si. By looking at the those changes, and relating them to the violation, we can pinpoint the

reason why executing A in Si lead to the violation of a constraint. The rule that applied A can then be
revised in such a way that it recognizes situations in which A will have the effect of violating that
constraint, and avoids executing A in those situations.

August
..1

KUL-88.03 1988

Ohisson & Rees 17 Rational Learning

The hypothesis of rational learning contrasts with the two alternative hypotheses of learning by
Induction and learning by analogy. The dominant hypothesis in current learning theory is that new
cognitive structures are constructed by identification of the commonalities of a set of examples. When the
examples are successful problem solving steps, the inductive hypothesis becomes a theory of learning
through practice. A number of variaiions on this theme have been explored (see the collections of articles
edited by Anderson, 1981; by Bolo, 1987; and by Klahr, Langley, & Neches, 1987). Another alternative
hypothesis is that humans learn primarily f ;om factual or episodic knowledge. The solution to a novei
problem is hypothesized to be constructed by remembering the solution to some previously solved
problem, which is then edited, as it were, to fit the new problem. The hypothesis of learning by analogy
has been explored by a number of researchers (Adelson, Gentner, Hammond, Holyoak, & Thagard, 1988;

Carbonell, 1982, 1983; Gentner, 1987; Holyoak, 1984; Rumelhart & Norman, 1981). Human beings are
also capable of learning by being told (Hayes-Roth, Klahr, & Mostow, 1981). Both inductive learning,
analogical learning, and learning by being told are important psychological processes that will have to be
included in a complete theory of learning.

Summary of hypotheses
The theory of prindpled knowledge and its role in performance and learning that constitutes the basis

of the computer model that we describe in this report can be summarized as follows:
Hypotheses about the nature of understanding:

Conceptual understanding of a procedure consists of knowledge about the task
environment in which the procedure operates (rather than of the teleological semantics
of the procedure).

Knowledge is declarative, I. e., goal-independent, context-free, and assertive (rather
than procedural).

The type of declarative knowledge that is essential for procedural learning is

knowledge of general principles (rather than knowledge of facts and episodes).

Principles constrain the possible states of affairs (rather than describe or predict).

Hypotheses about performance:

A cognitive performance is a heuristic search through a problem space (rather than a
problem reduction).

Procedural knowledge consists of collections of search heuristics (rather than of

collections of subgoaling rules).

The function of principled knowledge in a heuristic search system is to facilitate the

evaluation of search states (rather than to facilitate the generation of search states).

Hypotheses about learning:

Learning is triggered when an incorrect or incomplete procedure generates a search

state that violates one or more principles of the relevant domain (rather than, for

instance, when two related rules fire in sequence).

2 2

August KUL-88-03 1988

Ohisson & Rees 18 Rational Learning

A faulty procedural rule is revised on the basis of information In the learner's principled

knowledge (rather than on the basis of the information in a collection of Instances).

As we have indicated in the presentation of these hypotheses, alternative hypotheses are possible
with respect to each issue. In principle, each constellation of hypotheses define a possible cognitive
model.9 The particular choices we made in constructing the above theory were guided by our purpose of
constructing a computational interpretation of the Conceptual Understanding Hypothesis. The next
section describes a computer implementation of these hypotheses (A Computer Model, p. 19), and a later
section describes the application of that model to the learning of arithmetic (Computational Results, p.
28).

°In practice, the design chokes are not completely me.dular. A choice with respect to one Issue sometImas limits the choices withrespect to others. For Instance, having choosen heuristic search as our performance theory, we are forced to assume that
knowledge enters Into either the generation or he evaluation of search states; there are no other options within that performance
theory. The view of peychologkal theory construction as proceeding through successive decisions with respect to a set of designissues was first made explicit In Moore and Newell (1974), and has been developed further by Langley (1983a) and by VanLehn,Brown, & Green (1982).

2 3
August KUL-88-03 1988

Ohisson & Rees 19 Rational Learning

A Computer Mode!

The theory presented in the previous section can be viewed as an abstract specification of an
information processing system. A computer model of the theory is a runnable program that satisfies that
specification. Implementation involves inventing computational mechanisms that work in accorduce with
the principles of the theory. We have implemented the Heuristic Searcher (HS), a computer model of the
theory presented above. We first describe the performance system of the model clnd then its learning
mechanism.

The performance system
HS is a production system architecture1° augmented with a representation for principled knowledge.

The system operates by searc;iing a problem space. It selects an as yet unexpanded search state, and
applies its current procedure to that state, thereby generating one or more new states. Search states are
evaluated on the basis of their consistency with the system's principled knowledge.

Representation for procedural knowledge

A procedure in HS consists ci a collection of production rules. The condition of a production rule is
matched against the can int search state. The action of a production rule consists of a single problem
solving operator. An operator consists, in turn, of a deletion fist and an addition list. When the operator is
executed, the expressions in the deletion list are deleted from the current state and the expressions in the
addition list are added, thereby creating a new search state.

Production rules encode search heuristics. The intended interpretation of rule' R 0 is If the
current search state has property R, til,-nrt consider operator O." There is no distinction in HS between
search procedure5' and other kinds of procedures. An algorithm it a search procedure that is constrained
enough to generate a single path through the problem space. f....n.nce the action side of the production rule
consists of a problem solving operator, a production rule cannot write, edit, or delete expressions
arbitrarily from working memory. Each computation performed has to correspond to a step through the
problem space.

Representation for principled knowledge

Principles are represented In the HS system as state oonstraints. A state constraint C is an ordered
pair <Cr, C3> of patterns, each pattern similar to the condition of a production rule. The left-hand pattern
Cr. is called the relevance pattern, because it determines the class (.1 search states to which the constraint

1°Production systems consist of collections of condition-action rules that are executed by (a) comparing their conditions with thecontents of a working memory, (b) kirpritifyIng those rules that have their conditions satisfied by the current contents of working
memory, (1 selecting one or more of those rules, and 0) evoking the aciinni of the selected rule(s). Production systems were first
used in cognitive psychology by Newell (1966) but are widely used in the analysis of human cortays processes (Anderson, 1983;
Newell and Simon, 1972; Klahr, Langley, & Neches, 1987; Laird, Rosenbloom, & Newell, 1966). Computer Implementea productionsystem languages were first proposed by Newell (1972, 1973). The reader who Is urriamillar with the production system format isreferred to Neches, Langley, and Klahr (1987).

August KUL-88-03 2 4 1988

Ohisson & Rees 20 Rational Learning

Is relevant. The right-hand pattern Cs is called the satisfaction pattern, because It encodes the criterion
that a state must match In order to satisfy the constraint (given that the relevance pattern matches). The
relevance and satisfaction patterns are matched against the search states with the same pattern matcher
that matches the production rule conditions. No new computational machinery has to be postulated in
order to augment a production system architecture with this knowledge representation.

To illustra:e the difference between the relevance pattern and the satisfaction pattern, consider the
general principle traffic should keep to the right side of the road. This principle Is violated if a person finds
himself or herself on the left side of the road while driving. If the person Is not driving, the principle Is
irrelevant. The HS system would encode this principle as if HS is driving, then HS ought to be on the right
side of the road. If the current state does not contain the information that HS is driving, then the
relevance pattern of the constraint does not match and the constraint is irrelevant. If the constraint Is
relevant, then two cases are possible. Either the current state contains the information HS is on the right
side of the roar', in which case the satisfaction pattern matches and the constraint Is satisfied, or else the
constraint is violated.

The operating cycle

The system takes one step forward in the problem space during each cycle of operation. A cycle
begins by HS selecting an as yet unexpended search state as the current state. The content of that state
then becomes the effective working memory for that cycle. There is no other working memory than the
selected search state. The system then matches all production rules In the current procedure against the
selected state. One or more of those rules am evoked, and one or more new states generated. The
system then matches its constraints against each new state, and records which constraints, If any, are
violated by that state.

The reaction to a constraint violation depends urn whether the system is run in performance mode
or in learning mode." In performance mode HS executes a best-first search with the number of
constraint violations af: the cost function. The cost of a path is thus interpreted as the degree to which that
path contradicts the system's principled knowledge, rather than as the amount of computational effort
required to generate the path. Consequently, HS prefers solution paths that are more congruent with its
principled knowledge over those that are less congruent.

In learning mode HS executes a breadth-first search, because It stops to learn as soon as It
encounters a search state that violates a constraint. If a state violates some constraint, HS applies its
learning mechanism to the rule that produced the constraint violation, thereby revising it. If there Is more
than one constraint violation, HS selects one of them at random to learn from. After revising a rule, HS
backs up to the initial state and tries anew to solve the current problem.

The HS system can also run In diagnostic mode. The details of how HS can be used in cognitive diagnosis will be reported
elsewhere.

August KUL-88-03 1:38

P5

Ohisson & Rees 21 Rational Learning

The HS learning mechanism
A mechanism for procedural learning performs some editing operation on a procedure in order to

improve it. The HS learning mechanism operates by replacing single production rules with mom
constrained rules. Hence, it is a form of discrimination learning (Langley, 1983b 1985, 1987). HS learns
while doing, I. e., the learning mechanism operates in the context of the current state of the heuristic
search. A mechanism for learning while doing must contain a specification of when-under what
conditions--to pause and revise the procedure (the triggering proble.4- 1 criterion for which knowledge
item to revue (the assignment of blame problem), and an algorithm ior how to revise that 'ten (the
revision problem).

The triggering problem

Constraint violations indicate that the system's current procedure is not congruent with what the
system knows about the task environment. Consequently, HS learns when it generates a search state
that violates one or more state constraints. When a constraint violation occurs, the system terminator: the
current effort to solve its problem, applies its revision algorithm (see below), and then starts over from the
Initial state of the problem.

The assignment of blame problem

Given that the learning mechanism has been triggered, which rule should it revise? Wnich rule is to
blame for the generation of the invalid state? The construction of the HS system impiles that the
constraint violation was produced by the rule that fired the operator that lead to the current state. This is
shown by the following argument. Suppose that some operator further back In the search path generated
an invalid state. That state would then have triggered the learning mechanism, HS would have revised
the rule that lead to that state, and started over from the initial state. ft would never have generated the
current state. Hence, all states preceeding the current state are valid. The rule to revise is therefore the
last rule to fire before the current state.12

The revision problem

Given a constraint violation the HS system tries to revise the rule that lead to the violation in such a
way that future applications of that rule will not lead to violations of that constraint. The revision problem
can be stated as follows:

"This argument presupposes that all errors are principled errors. The argument does not hold in domains wisere there areprocedural errors. A procedural error is a stop that does not violate any principle of the domain, but which nevertheless Is not on the
correct solution. path. This point is discussed further ina later section (see p. 74).

August KUL.1:88103 1988

Ohlsson & Rees 22 Rational Learning

Let S1 and S2 be two consecutive states in a search path. Hence,
some production P with condition R was evoked in S1, and fired
some operator 0 with deletion list Od and addition list Oa, thereby
producing state S2. Assume that S2 violates constraint C with
rolevah 'e pattern Cr and satisfaction pattern Cs, I. e., that S2
matches the relevance pattern but not the satisfaction pattern.
What is the appropriate revision of production P?

Since HS learns as soon as it encounters a state that violates a constraint, Si does not violate C (or
any other constraint). Hence, there are two types of constraint violations. In a Type A violation C is
Irrelevant in S1, and it becomes relevant but not satisfied as the result of the application of operator 0. in
a Type B violation C is both relevant and satisfied in Si, and remains relevant but becomes unsatisfied as
the result of the application of 0. We discuss the revision needed to handle the first type of constraint
violation in detail.

Revision algorithm for a Type A violation. To repeat, In a Type A violation C 16 irrelevant In state Si,
and it becomes relevant but not satisfied in state S2 as the result of the execution of operator 0. If the
relevance pattern Cr does not match Si, but does match S2, then the effect of executing operator 0 must
have been to create expressions that enabled Cr to match. But since, ex hypothesi, the constraint C is
violated in S2, 0 did not create the expressions needed to complete the match for the satisfaction pattern
Cs. This situation warrants two different revisions of the rule P that fired 0. First, the condition of P
should be revised so that the revised rule--call it P'only fires in situations in which 0 will not complete
the relevance pattern for C. Second, the condition of P should be revised so that the revised rule--call It
P"--only fires In those situations in which both the relevance and the satisfaction patterns of C will
become completed. The details of the two rule revisions are as follows:

Revision 1. Ensuring that the constraint is not relevant. The purpose of the first revision Is to

avoid constraint violation by preventing constraint C from becoming relevant when operator
0 Is executed. 0 will complete Cr when the parts of Cr that are not added by 0 are already
present In S1. Those parts are given by (Cr - 0a), where the symbol "-" signifies set
dIfferenco. To limit the execution of 0 to situations in which it will not complete Cr, we
augment the condition of P with the negated expression

not (Cr - 0a)

In summary, if the expression (Cr - 0a) matches the current state, then executing 0 will make

C relevant, so we execute 0 only In situations in which that conjunction does not match.13
The new rule created is:

P': R & noi(Cr - 0a) --> 0

Revision 2. Ensuring that the constraint Is satisfied. The purpose of the second rule revision

Is to avoid constraint violation by forcing constraint C to become both relevant and satisfied

13The notation we use to describe the revision algorithm mixes sot-theoretic notions like set difference with logical notions like
negation. This should not cause any difficulties, because there Is an obvious one-one mapping between sets of expressions and
conjunctions of expressions: the set of expressions (E1, E2.... En} correspond to the conjunction (Et & E2 & & En).

August KUL-88-03

27
1988

°hiss On & Rees 23 Rational Learning

when 0 is executed. To guarantee that Cr will become complete, we augment the condition
with the conjunction

(Cr- Oa)

To guarantee that Cs will also become complete we augment the condition of P with a
conjunction that contains the parts of Cs that are not added by 0. They are given by

(Cs - Oa).

Hence, the desired effect is achieved by appending the expression

(Cr - Oa) u (Cs - Oa)

to the condition of P, where the symbol "u" signifies set union. If this expression is present in
the condition of a rule evoking 0, then 0 Is guaranteed to make the constraint C both
relevant and satisfied. The new rule created is:

P": R u (Cr - Oa) u (Cs - 0a) --> 0

Summary of revision algorithm for Type A violations. if rule P with ccndltion R evokes operator 0 in
some state Si in welch constraint C is irrelevant, thereby creating a new state S2 In whichconstraint C Is
relevant but not satisfied, then we replace rule

P: R --> 0

with the two rules

P': R & not(Cr - Oa) --> 0

and

P": R u (Cr - Oa) u (Cs - Oa) --> 0,

where "&" signifies conjunction, '`-" signifies set difference and "u" signifies set union. The first ruie limits
the application of 0 to situations where C will not become relevant. The second rule evokes 0 in
situations where C will become both relevant and satisfied. The section on computational results
(Computational Results, p. 28) contains several detailed examples of how this learning algorithm
functions In the context of !earning arithmetic procedures.

The above description of the HS revision algorithm is simplified in the following respects: (a) We have
not described the revisions needed to handle Type B violations, I. e., violations In which C is both relevant

and satisfied in Si, and becomes relevant but not satisfied in S2 as the result of operation 0. (b) In order
to add parts of a constraint to a rule condition, correspondances must be established between the
variables in the constraint and the variables in the rule. HS computes those correspondences by
comparing the current instantiation of the rule to the current instantiation of the constraint.14 (c) We have

"The way In which HS handles Type B violations and how it solves the problem of variable names are described in Ohisson &
Rees (1987).

Aligust KUL-88.03

20
1988

Ohisson & Rees 24 Rational Learning

not described the case in which the operator 0 deletes expressions. (d) Negated conditions can occur
both in production rules and constraints. A negated condition can cease to match as the result of the
addition of expressions to a search state, and the analysis has to be revised accordingly. (e) There are
cases in which either of the two revisions results in the empty list of new conditions. In those cases only
one new rule is created.

The definition of the learning algorithm is heavily influenced by the particular knowledge
representation that we have chosen for the HS model. The key feature of the knowledge representation
is the split between the relevance pattern and the satisfaction pattern. This feature Implies the existence
of two different revisions of the faulty rule, one that ensures that the constraint does not become relevant
Inappropriately, and one that ensures that the constraint is satisfied whenever it is relevant. If we had
chosen a different representation for principled knowledge, we would have defined a different learning
algorithm.

Discussion
HS share certain structural features with other production system architectures used to simulate

cognitive processes.15 Each system consists of an interpreter that matches a set of condition-action rules
against a working memory, and selects one or more of the satisfied rules for execution. However,
production systems differ with respect to the syntax of rute3, the details of the matching process, the
number of working memories, the method of conflict resolution, the teaming mechanisms, etc. Four
central features distinguish HS from other architectures: the simple mapping between architectural
concepts and problem solving concepts, the separate representation for principled knowledge, the trade-
off between generative and evaluative selectivity, and the rational teaming mechanism. Each feature will
be discussed in turn.

The first central feature of the HS system is that the architecture has been designed in accordance
with the performance theory we are using. Constructs such as operating cycle, production rule, working
memory, and conflict resolution belong to the theory of information processing systems (Newell & Simon,
1972, Chap. 2). A specification in terms of these constructs defines a particular, general-purpose
information processing system. Although production system architectures are typically used to model
human cognitive processes, they could, in principle, be used as general purpose programming
languages. Constructs such as search, heuristic, problem space, operator, search state, and evaluation
function, on the other hand, belong to the theory of problem solving (Newell & Simon, 1972, Chap. 2 and
3). A heuristic search system could, in principle, be implemented in any general purpose programming
language such as Fortran or Usp. There is no intrinsic connection between the concept of a production
system and the concept of heuristic search.

"Production system architectures of the type to which HS belongs are sometimes called neo- classical In order to distinguish
them from so-called baroque production systems used in expert systems research (Davis and King, 1976). The main difference
between the two types of architectures is that in neo-classical systems the production rule is a procedural construct, while in
baroque systems the production rule is a dataunit that is interpreted by unrestricted Lisp procedures. Neo-classical production
systems languages are descer.Sants from the PSG system developed by Newell (1972, 1973). They have recently been reviewed
by Neches, Langley, & Klahr (1987). See also Langley (1983a) for an analysis of the space of production system architectures.

August KUL -88.03 29 1988

Ohisson & Rees 25 Rational Learning

However, Newell (1980) has proposed the hypothesis that problem solv;rg Is a fundamental category
of human cognition, I. e., that all central cognitive processes take the form of problem solving processes.
Problem solving is the activity of the human cognitive architecture. This hypothesis implies that there
should be a close relation between architectural constructs and problem soMng constructs in models of
human cognition. The mapping between architectural constructs and problem soMng constructs is
particularly straightforward in the HS system:

Production rules correspond to search heuristics. The action of a production rule is
constrained to be a single problem solving operator. Production rules cannot arbitrarily
revise the contents of working memory. It is impossible to fire a production rule without
taking a step through the problem space.

The working memory is the current search state. The system has no working memory that is
independent of the search process.

Conflict resolution is done by state evaluation. All production rules that match the current
state are evoked in parallell, thereby generating all possible descendants of the currant state.
A state is selected for expar don on the basis of its value on an evaluation function. here is
no architectural process of conflict resolution that is independent of the problem solving
process.

An operation cycle consists of selecting a search state, matching the rules against that state,
evoking all satisfied rules, and computing the evaluation function for each new state
generated. In each operating cycle the system takes one step through the problem space.
The system does not perform any other kind of computation.

In short, HS is an information processing architecture that has been designed in accordance with a
particular theory of problem solving. The mapping between architectural constructs and problem solving
constructs is similar In intent, but not identical in its details to the corresponding mapping in the Soar
system (Laird, Rosenbloom, & Newell, 1986). The differences derive in part from our decision to
represent principled knowledge as distinct from procedural knowledge.

The second central feature of the HS system is that principled knowledge is represented in the form of
state constraints. A state constraint is a two-part pattern that a search state has to satisfy in order to be
valid. The first part of the pattern is used to decide whether the constraint is relevant in a particular state
or not; if so, then the second part of the pattern is used to decide whether the constraint is satisfied or not.
State constraints have superficial similarities to several other computational constructs, but they function
differently. A state constraint is not a production rule. It does not evoke motor actions, nor does it revise
the content of working memory. A state constraint is not an inference rule; in particular, it is not a Horn
clause.16 The satisfaction pattern is not inferred or created when the relevance pattern matches. A state
constraint does not guarantee that its right hand side is true when its left-hand side is true; it claims that

16A Horn clause is a restricted implicationsl formula in first-order predicate logic. The Horn clause is the representational format
used in logic programming (Clark & Themlund, 1982).

August KUL-88-03 1988

30

Ohisson & Rees 26 Rational Learning

the right hand side ought to be true. State constraints have three different functions in the HS system:
they constrain search during performance, they control when learning is to occur, and they serve as a
source of information about how the current procedure should be revised. The notion of a state constraint
is, as far as we know, unique to the work reported here. Other mechanisms for interfacing declarative
and procedural knowledge have been proposed in the context of other simulation models. They will be
discussed in later section (Relations to Previous Research, p. 60).

The third central feature of the HS system is that performance is guided by both generative and
evaluative selectivity. Generative selectivity operates through strategic rules that propose good moves.
Strategic rules improve the efficiency of search by focusing attention on the most promising actions in
each state. Evaluative selectivity operates through evaluation functions that measure the promise of a
state. Evaluation functions improve the efficiency of search by focusing attention on the most promising
states. Confusingly, both strategic rules and evaluation functions are called heuristics in the search
literature (Groner, Groner, & Bischof, 1983; Pearl, 1984). A. I. systems typically employ one or the other
type of selectivity, but not both. The HS system operates with both generative and evaluative selectivity.
Generative selectivity resides in the procedural knowledge (the production rules), while evaluative
selectivity resides in the principled knowledge (the state constraints). The production rules generate
actions, and the state constraints evaluate the states produced by those actions. The performance of the
system is a function of both, and one type of selectivity can be traded off for the other. If either the
procedure or the principled knowledge is correct and complete, correct performance will result. If both are
deficient, performance may or may not be correct; the outcome depends on particular interactions
between them.

The fourth central feature of the HS system is the rational learning mechanism. HS does not learn by
being told the procedure it is trying to learn, nor by inducing it from a set of solved examples, nor by
generalizing over a set of successful steps found by trial and error. The HS system constructs a
procedure by constraining it to be consistent with the relevant principles. The state constraints control
when learning is to occur: HS learns when a production rule generates a search state that violates some

state constraint. By monitoring its performance with the state constraints, HS can know that a particular
rule is faulty without being told by an outside source, and before it has completed even a single solution
path. The revision of the faulty rule is guided by the particular way in which the relevant state violates the
constraint. The required revision of the rule is derived from the constraint violation through the HS
revision algorithm (see page 21). Principled knowledge enables HS to deduce the proper revision of the
rule. This type of learning mechanism bears a family resemblance to other types of knowledge-based
mechanisms, particularly to A. I. mechanisms for explanation-based ieaming (De Jong & Mooney, 1986;
Mitchell, Keller, & Kedar-Cabelli, 1986) but it contrasts with the experience-oriented character of most
mechanisms proposed in psychological theories of procedure acquisition.

The HS architecture is a model of the theory presented in the previous section in the sense that each
hypothesis stated there is true of HS. Howevor, HS is not the only possible model of that theory. in order
to bridge the gap between the abstract hypotheses of the theory and the concrete details of the model,

August KUL -88.03 1988

Ohlsson & Rees 27 Rational Learning

auxiliary assumptions had to be introduced as implementation proceeded. The most global auxiliary
assumption is that tho human cognitive architecture is a production system. Although the production
system format has extensive support from other modelling efforts, a model of our theory could have been
implemented within some other type of information processing architecture. Even given the production
system forMat, many details of the model could have been implemented differently. For Instance, we
choose to represent state constraints as binary patterns, and to relate them to search states through
pattern matching. Clearly, there are other implementations of the idea that principles enable error
detection. There are no hard and fast rules for how to construct the model for a particular theory.17 The
particular implementation reported here was choosen on a variety of criteria such as interest and
simplicity. The justification for the implementation does not reside in the basis for the design decisions,
but in the behavior of the resulting model.

A large number of hypotheses are required to specify an information processing architecture. It is
almost impossible to derive predictions about the behavior of such a system by hand. The main purpose
of fleshing out the hypotheses of the theory with the auxiliary assumptions required for implementation is
precisely to use the implemented model to derive the behavioral predictions by running the model. The
next section describes a sample of behaviors of the HS system in the context of the acquisition of
arithmetic procedures.

"The difficulties associated with this aspect of computer simulation models have been discussed by Neches (1982), by Ohlsson(1988a), by VanLehn, Brown, & Greeno (1982), as well as by others.

August KUL-88.03 32 1988

Ohlsson & Rees 28 Rational Learning

Computational Results

The purpose of this section is to report three applications of the HS model that are relevant to the
Conceptual Understanding Hypothesis. The first two applications demonstrate that HS can replicate the
basic phenomena of children's learning in the domain of counting. First, we demonstrate that HS can
construct a general counting procedure on the basis of the principles of counting, without receiving
instruction in the procedure and without being given any solved examples. Second, we demonstrate that
once HS has acquired a procedure for counting, the system can adapt that procedure to changes in the
definition of the counting task. The third application demonstrates that the same mechanism that learns
successfully in the domain of counting also learns successfully in the domain of symbolic algorithms: We
verify that HS can cure itself from errors in its procedure for multi-column subtraction, if it is supplied with
a state constraint representation of the conceptual basis for that procedure.

Constructing a procedure for an unfamiliar task
The basic daim of the Conceptual Understanding Hypothesis is that if a learner has principled

knowledge about the environment in which a particular task appears, then he/she can discover a correct
and general procedure for that task. The strongest evidence for this daim comes from the domain of
counting. Our first application of HS shows that HS can construct a procedure for counting on the basis
of a computational interpretation of the principles of counting. We describe the initial procedural
knowledge of HS in this application, the principled knowledge, the learning process, and the outcome of
the learning process.

Initial procedural knowledge for standard counting

To count a set of unordered objects is to repeatedly select an object from that set, increment the
current number, and associate the new number with the selected object. When all objects in the set have
been associated with numbers, the last number to be associated with an object is asserted to be the
answer to the counting probism. Riley, Greeno, and Gelman (1984) call this task standard counting.
Figure 1 shows a representational language for standard counting. The representation includes symbols
for objects, sets, and numbers, and for a handful of properties and relations that are relevant for the
counting task. Figure 2 shows a problem space for standard counting that builds on that representation.
The problem space indudes six operators, corresponding to the capabilities to select an arbitrary object
from a set, to move attention from one object to another, to initialize counting at some number, to move
attention from one number to another, to associate a number with an object, and to assert that a
particular number is the answer to the current task. This set of capabilities is minimal in the sense that
there is no smaller set that enables the learner to count; if one of these capabilities is missing, the learner
is not ready to learn how to count. The initial state is encoded in the language defined in Figure 1. It
contains a segment of the number line and some objects, some of which are members of the set of
objects to be counted. The goal state is reached when some number as been Identified as the answer to
the counting problem.

Figure 3 shows an initial HS rule set for standard counting, as well as natural language paraphrases

August KUL-88.03 1988

Ohisson & Rees 29 Rational Learning

Types of entities:
The representational language used in the counting application of HS assumes three types of entities:

objects xl, x2, ...

numbers n1, n2, ...

sets

The HS model for standard counting considers a single set, namely the set of to-be-counted objects,
called ToCountSet.

Propertiel:
There are four properties that apply to these entities:

First

Current

Answer -

Origin

Both objects and numbers can have the properties of being the first object or number, and of being the
current object or number (in a sequence of events). A sequence of events can only have one entity that
has the property of being the first entity considered, and only one entity can be the current entity at any
one point in time. Only a number can have the property of being an answer. The property of being the
origin belongs to the smallest whole number the person knows. We assume in this application that it
belongs to unity.

Relations:
There are four binary relations that hold between these entities:

Next

Associate

Member

After

Numbers are linked through the next relation. The expression (Next n1 n2) means that n2 is the
successor of n1 in the number line. A number and an object can be associated with each other. An
object can be a member of a set. In this application we only consider members of the set of to-be-
counted objects. One entity can be considered after another entity (in a temporal sequence of events).

Figure 1: A representational language for standard counting.

of the rules. The initial rules impose minimal guidance on the application of the operators. Their main

effect is to retrieve bindings for the operator arguments from working memory. Since the HS architecture

is a search system, the collection of rules in Figure 3, although seriously incomplete, nevertheless

constitutes an executable procedure. Execution of this procedure will generate ineffective but task

relevant behavior. For instance, counting will be initialized at an arbitrarily chosen point in the number line

(rule 3), and the number line will be traversed in random order (rule 4). Figures 2 and 3 together

August
3 ,1

KUL-88-03 1988

Ohisson & Rees 30 Rational Learning

The initial knowledge state:

The Initial knowledge state for standard counting contains the number sequence (the numbers 1 through
n, where 1 is marked as the origin and each number is linked to its successor with the next relation), the
set ToCountSet of objects to be counted, and some additional objects that are not members of the
ToCountSet. There is neither a current object nor a current number in the initial state.

Operators:

PlckFIrst(X) Declares object x as the first object; it thereby also becomes the current object.
The addition list Oa Is ((First X)(Current X)).
The deletion list Od is empty.

PlckNext(X1, X2) Moves the property of being the current object from x1 to x2 Also records the
information that x2 was attended to afterxr.
The addition list Oa is ((Current X2)(After X2 X1)}.
The deletion list Od is ((Current X1)}.

InItlallze(N) Declares the number n the first number; it thereby also becomes the current number.
The addition list Oa is ((First N)(Current N)}.
The deletion list Cod is empty.

Increment(N1, N2) Moves the property of being the current number from n1 to n2 It also records the fact
that N2 was considered after NI.
The addition list Oa is ((Current N2)(After N2 N1)1.
The deletion list Cod is ((Current N1)).

Associate(X, N) Associates the number n with the object x.
The addition list Oa is ((Associate X N)}.
The deletion list Od is empty.

Assert(N) Asserts that the number n is the answer.
The addition list Oa is ((Answer N)).
The deletion list Od is empty.

Goal state:

The goal is to reach a state in which some number has the property of being the answer.

Figure 2: A problem space for standard counting.

constitute the initial procedural knowledge of HS In this application.

Principled knowledge for standard vaunting

Principled knowledge is encoded in HS in the form of state constraints, each constraint consisting of a
relevance pattern and a satisfaction pattern. The state constraints for standard counting are shown in
Figure 4 (Part 1 and Part 2). For each constraint the relevance pattern Cr is show to the left and the
satisfaction pattern Cs to the right, separated by the arbitrarily chosen symbol **. For simplicity, type
designations like (Object X) and (Number N) have been lett out of the statement of constraints. The

August KUL-88-03 3 5 1988

Ohlsson & Rees 31 Rational Learning

1. If x is any object, then select x as the first object.

(Object X) ===> PlckFIrst(X)

2. If x1 is the current object, and x2 is any other object, then make x2 the current object.

(Object X1)(Current X1)(Object X2) PlckNext(Xi, X2)

3. If n is any number, then initialize counting at n.

(Number N) ===> InItlallze(N)

4. If n1 is the current number, and n2 is any other number, then switch to n2 as the current
number.

(Number N))(Current N1)(Number N2) ===> Increment(Ny N2)

5. If n is the current number, and x is the current object, then associate n with x.

(Number N)(Current N)(Object X)(Current X) ===> Assoclate(X, N)

6. If n is the current number, then assert that n is the answer.

(Number N)(Current N) ===> Assert(N)

Figure 3: Initial rules for standard counting.

constraints are intended to capture the same ideas as the counting principles proposed by Gelman and
Gallistel (1978), but our analysis differ from theirs in its details. We have broken down the counting
principles into their component ideas and we have added some ideas that are not discussed by Gelman
and Gallistel (1978).

The One-One Mapping Principle states that counting consists of establishing a one-to-one mapping
between numbers and objects. As Part 1 of Figure 4 shows, we break this principle down into four
component ideas: that an object Is associated with at least one number, that an object is associated with
at most one number, that a number is associated with at most one object, and that a number is
associated with with at least one object. The Cardinal Principle states that the answer to a counting
problem Is the last number to be associated with an object. We break this principle down into three
component Ideas: that the size of a set cannot be known until all objects in the set have been associated
with numbers, that the answer is a number associated with some object, and that the answer is the last
number considered (see Part 1 of Figure 4). Our conception of the one-one mapping and cardinal
principles is essentially the same as that of Gelman and Gallistel (1978). The difference Is mainly that we
are using a more fine-grained analysis of the ideas involved.

The Stable Order Principle, on the other hand, does not appear in our analysis. This principle says
that the numbers used in counting must have a stable, repeatable order. We want to suggest that this

August KUC88.03 1988

Ohlsson & Roes 32 Rational Learning

principle contains four distinct ideas. The first idea is that the numbers form a linear ordering. This idea
is represented in the HS model (as ire axiomatic theories of the number system) bY the fact that the
symbols for the numbers are linked together with the successor relation (called Next). This
representation amounts to an assumption that children have a cognitive representation of the number
line, an assumption that is supported by the available evidence (Resnick, 1983). Because the Next
relations are stored in the model's memory, no state constraints are needed to encode this idea.

The second idea hiding in the Stable Order Principle is that the number line is traversed in a particular
way during counting. For correct counting the numbers must be generated in numerical order. Once the
number line has been stored in memory, it can be traversed in many different ways. For Instance, it can
be traversed by skipping every other number, by generating numbers in descending order, etc.. Also,
traversal of the number line can, in prirdple, begin at any point along the line (although human beings
may find some potential starting points easier to access than others). But the only way of traversing the
number line that gives correct results in counting is to begin at unity and then follow the successor
relations. We call this the Regular Traversal Principle. The state constraint representation breaks this
idea down into four component ideas: Counting begins with the origin of the number line, each number
considered is the successor of the previous number, the numbers are considered one at a time, and each
number is associated with some object. The four state constraints corresponding to these ideas are
shown in Part 2 of Figure 4.

The third idea hiding in the Stable Order PrinciplO is that counting imposes a linear ordering on the
objects counted. By assigning numbers, which have an intrinsic linear ordering, to objects, which do not,
we are imposing a linear ordering on those objects. We call this idea the Order Imposition Principle. It is
broken down into six component ideas: Only one object is designated as the first object in the ordering,
objects are considered one at a time, no object is considered twice, an object Is not considered after itself,
the first object is never considered again,18 and, finally, no object that is not a member of the to-be-
counted set is considered. The six state constraints that encode these ideas are shown in Part 2 of
Figure 4.

Finally, the actions of traversing the number line in the right way and imposing an order on the objects
are not sufficient to produce correct counting. In addition, the two processes must be connected with
each other in the right way. The fourth idea hiding in the Stable Order Principle is that objects and
numbers are associated with each other In the order in which they are attended to. We call this the
Coordination Principle. The state constraint representation for this idea is shown in Part 2 of Figure 4.

The state constraints in Figure 4 (Part 1 and Part 2) represent the principled knowledge of the HS
system in this application. The set of constraints is not unique. Alternative formulations of the constraints
are possible. Also, the set is not minimal. The constraints overlap in meaning. For Instance, constraints

lane two constraints that an object is not to be considered after itself, and that the firnt object should never be considered a
second time are, of course, special cases of the general constraint that no objects should be considered a second time.

August KUL88-03 1988

Ohisson & Rees 33 Rational Learning

A. The One-One Mapping Principle

1. An object should be associated with at most one number.

(Associate X1 Ni)(Associate X1 N2) " (Equal N1 N2)

2. Every object considered during counting should be associated with some number.
(Current X1)(After X1 X2) " (Associate X2 N)

3. A number should be associated with at most one object.

(Associate X1 N1)(Assoclate X2 N2) ** (Equal X1 X2)

4. For every number retrieved during counting there should be some object with which It canbe associated.

(Current N)(Not (Associate X1 N)) ** (Current X2)

B. The Cardinal Principle

1. A number is the answer to a counting problem only if there are no objects which are
members of the to-be-counted set but which has not been associated with some number.
(Answer N) ** (Not (Member X ToCountSet)(Not (Associate X N)))

2. The answer to a counting problem is one of the numbers associated with some object.
(Answer N) ** (Associate X N)

3. The answer to the counting problem is the last number to be considered in the countingprocess.

(Answer N) ** (Current N)

Figure 4: State constraints for standard counting, Part 1.

B1 (see Figure 4, Part 1) and C4 (see Figure 4, Part 2) express the idea that all objects should be
counted in two different ways. Also, constraints D4 and D5 are special cases of D3. Overlap in the
meaning of state constraints implies that learning from one constraint may make learning from another
constraint unnecessary. /is a result, all constraints are not Involved in every learning run. The set of
state constraints in Figure 4 is complete. it is sufficient to determine correct counting.

The foaming process

HS takes ditaent paths through the procedure space on different learning runs, for two reasons.
First, if HS generates more than one state that violates some constraint on a particular cycle, it selects
one at random to learn from. Second, since the domain theory is not minimal, learning from one
constraint may preempt learning from another constraint. Hence, the order In which constraint violations
are noted by the system Influences the path through the procedure space. The final procedures learned
in different teaming runs are, of course, very similar, but not identical.

August KUL-88-03 /4 8 1988

Ohisson & Rees 34 Rational Learning

C. The Regular Traversal Principle

1. Initialize counting at the first number in the number line.

(First N) ** (Origin N)

2. Consider one number at a time.

(Current N1)(Current N2) ** (Equal N1 N2)

3. The numbers should be considered in the order defined by the next relations.

(Current N1)(After N1 N2)(Not (Equal Ni N2)) ** (Next N2 N1)

4. For each number considered, the preceeding number should be associated with some
object (I. e., use all numbers).

(Current N1)(Next N2 N1) " (Associate X N2)

D. The Order Imposition Principle

1. Initialize counting with a single object.

(First X1)(FIrst X2) ** (X1 X2)

2. Do not consider an object that is already associated with a number.

(Current X)(Not (Current N)) ** (Not (Associate X N))

3. Do not cycle back to the first object.

(First X1) ** (Not (After X1 X2))

4. Do not consider an object after itself.

(After X1 X2) ** (Not (Equal X1 X2))}

5. Consider only one object at a time.

(Current X1 X2)) ** (Equal X1 X2)

6. Do not consider objects that are not In the set of to-be-counted objects.

(Current X) ** (Member X ToCountSet)

E. The Coordination Principle

1. Numbers and objects are associated with each other in the order in which they are
considered.

(Current X)(Current N1)(Associate X N2) ** (Equal N1 N2)

krgust

Figure 4: State constraints for standard counting, Part 2.

KUL-88-03 1988

Ohisson & Rees 35 Rational Learning

We will analyze a particular learning experiment in which HS was started with the initial rule set for
counting shown In Figure 3 and the slate constraints shown In Figure 4 and was given practice on
counting a set with three objects. During learning the model commits the types of counting errors
observed in childrens' performance, such as counting an object more than once, skipping numbers, and
choosing the wrong number as the answer. It successively corrects these errors by noticing violations of
the state constraints, and revising the initial rules accordingly.

As an example of the construction of a rule, considGr rule 6 (see Figure 3): If n is the current number,
then assert that n is the answer. This rule will prematurely assert that the current number is the answer
when there are still objects lett to be counted. HS learns the correct rule by transforming rule 6 In two
steps. Figure 5 shows a graph representation of the path through the rule space for this partkular rule.
Learning proceeds from top to bottom. At the top of the figure is the formal version of the initial rule as
stated In Figure 3. The vertical arrows represent learning steps. At the head of the arrow Is the condition

or conditions that were added to the rule In that step. Each learning step Is triggered by the violation of a
state constraint. The constraint is shown to the right of the vertical arrows. The labels on the constraints
refer to Figure 4. The final rule is shown at the bottom of the graph. The reader who intends to follow tha
description how of the correct rule Is learned In detail may want to review the HS learning alg4itthm (p.
21) at this point.

The first learning step is triggered when the initial rule violates constraint B2: The answer to a
counting problem is one of the numbers associated with some object. The formal version of this
constraint is shown to the right In Figure 5. Suppose that, say, 2 Is the current number. The condition
side R of rule 6 then becomes instantiated to:

R s ((Number 2)(Current 2))

The addition list Oa of operator Assert (see Figure 2, p. 30) Is then equal to

Oa .1((Answer 2))

while the deletion list 0. is empty. The constraint is irrelevant before the Assert operator Is fired, so we
have a Type A constrain. violation, In which the execution of the an operator makes the constraint
relevant but not satisfied. Two revisions of the faulty rule are attempted.

Revision 1. Ensuring that the constraint is not relevant. The HS learning algorithm first tries to
construct the expression

not(Cr - Oa).

However, in this case Cr is equal to

Cr ((Answer 2))

so the relevance pattern and the addition list are identical. Hence, the expression

not(Cr - 0a) ((Answer 2)) - ((Answer 2))

which Is equal to the empty set, so no new rule can be created In this revision.

Revision 2. Ensuring that the constraint is satisfied. Next, the learning mechanism tries to construct
the expression

August KUL-88.03 0 1988

Ohisson & Rees 36 Rational Learning

INITIAL RULE:

((Number Ni)
(Current NI)) = = = > Assert(N1)

1

B2:
(Answer NI)**
(Associate XI N1)

(Associate X1 N1)

2

81:
(Answer NI)**
(Not (Member X2 ToCountSet)

(Not (Associate X2 N2)))

(Not (Member X2 ToCountSet)
(Not (Associate X2 N2)))

FINAL RULE FOR STANDARD COUNTING:

((Number N1)
(Current Ni)
(Associate X1 Ni)
(Not (Member X2 ToCountSet)

(Not (Associate X2 N2)))) = = si > Assert(N 1)

Figure 5: A learning path for rule 6 (see Figure 3).

August KUL-88.03 41 1988

Ohisson & Rees 37 Rational Learning

(Cr - Oa) u (Cs - Oa).

The left-hand term is, as we just showed, empty, so this expression reduces to

(Cs - Oa).

The satisfaction pattern Cs is in this case equal to

Cs = ((Associate X1 2))

where X is some object. This expression will not change by the subtraction of Oa = ((Answer 2)), so we
have

(Cs - Oa) = ((Associate X1 2)}

Proper substitution of variables for constants leads to the expression (Associate X1 N1), which is added to
the rule.19 In other words, the learning mechanism adds the condition that the number designated as the
answer has to be assigned to some object to the rule. The formal version of this condition is shown on
the path in Figure 5, at the head of the vertical arrow.. Having revised the rule HS backs up to the initial
state, and tries to do the counting task again, using the new rule instead of the original rule.

In the second learning step, the revised rule violates constraint B1 (see Figure 4): A number is the
answer to a counting problem only if there are no objects which are members of the to-be-counted set but
which has not been associated with some number. The rule is now constrained to select only numbers
that have been assigned to objects, but it does not yet know that it has to wait until all objects have been
counted. It prematurely asserts that the current number is the answer, as soon as that number has been
assigned to an object. This is a Type A violation, because the constraint is not relevant until the operator
Assert has been fired. As in the previous learning step, the expression

not(Cr - Oa)

is empty so Revision 1 does not lead to the creation of a new rule. In Revision 2 HS constrxts the
expression

which is equal to

Since

and

(Cr - Oa) u (Cs - Oa)

(Cs - Oa).

Cs = ((Not (Member X ToCountSet)(Not (Associate X N1

Oa = ((Answer N)}

the subtraction of the addition list from the satisfaction pattern simply gives the satisfaction pattern
unchanged. Therefore, the expression added to the rule in Revision 2 is equal to Cs. In short, the
learning mechanism adds the condition element the set of to-be-counted objects is empty, or, formally, it
should not be the case that there exists an object which is a member of the to-be-counted set and which
has not been assigned a number. The condition of the rule then becomes as shown in the bottom of

1°In order for the new expression to interface correctly with the previous expressions in the rule, HS has to coordinate the variable
names. The computations involved in the coordination of variable names are not described in this report, but see Ohlsson & Rees
(1987). In this report we will simply assume that the variables are given the correct names.

August
42

KUL88-03 1988

Ohisson & Rees 38 Rational Learning

August

INITIAL RULE:

((Object X1)
(Current X1)
(Object X2)) = = > PickNext(X1, X2)

A2:
(Current X2)
(After X2 X1)**
(Associate X1 Ni)

V
(Associate X1 N1)

2

V
(Not (Equal X2 X1))

3

D4:
(After X2 X1)**
(Not (Equal X2 X1))

D6:
(Current X2) **
(Member X2 ToCountSet)

(Member X2 ToCountSet)

(Not (Current N3)
(Associate X2 N2))

4

V
(Not (First X2))

D3:
(First X2) **
(Not (After X2 XI))

E(I:(Current Ni)

5
(Current X2)
(Associate X2 N2) **
(Equal Ni N2)

FINAL RULE FOR STANDARD COUNTING:

(Current N3)
(Associate X2 N2)
(Equal N3 N2)

((Object XI)
(Current XI)
(Object X2)
(Associate X1 Ni
(Not (Equal X2 XI))
(Member X2 ToCountSet)
(Not (First X2))
(Not (Current N3)

(Associate X2 N2))) = = > PickNext(X1, X2)

Figure 6: A learning path for rule 2 (see Figure 3).

4
KUL-88-03

Ohisson & Rees 39 Rational Learning

Figure 5. The result of this second learning step is a correct rule.2°

The learning of the correct rule for asserting the answer is a particularly simple example of a rule
transformation. The initial rule only has to be extended with two additional conditions, and only one new
rule is created in each learning step. The rule for selecting the next object, rule 2 In Figure 3, presents a
more complex case. Figure 6 shows the construction of the correct version of this rule. As in Figure 5,
the initial rule is shown at the top of the figure, the constraints that are violated are shown to the right of
the path, and the conditions added to the rule are shown along the path. The final, correct, rule Is shown
at the bottom of the figure. Five learning steps are required to construct the correct rule in this particular
simulation run.

In the first learning step rule 2 violates the constraint that each object has to be associated with at
least one number (see Part 1 of Figure 4, constraint A2). This happens because the system moves
attention from one object to the next without counting it. This constraint violation follows the same pattern
as the ones analyzed previously. It is a Type A violation, where the first revision does not yield a new rule,
and the second revision consists of adding the satisfaction pattern of the constraint to the rule. Since Cs
in this case is

Cs = ((Associate X N)}

the learning mechanism adds the constraint that the current object has to be counted before a new
current object can be selected. The next two violations follow the same pattern. The revised rule violates
the constraint that objects should not be counted repeatedly, and so the learning mechanism adds the
condition that counted objects should not be selected for counting again:

Cs = ((Not (Equal X2 X1))}

The rule next selects some object that is not in the set of objects to be counted, and so is constrained to
deal only with those objects:

Cs = ((Member X ToCt.untSet)}

In the fourth !earning step the revised rule violates the constraint that it should not return to the first
object (see constraint D3 in Part 2 of Figure 4). This is yet another Type A violation, but in this case
Revision 1 yields a new rule but Revision 2 does not. Since in this case

Cr = ((First X1)}

and

the expression

is instantiated to

Oa .2 ((After X1 X2)(Current X1)}

(Cr - 0a)

((First X1)} - ((After X1 X2)(Current Xi))

2eThe third constraint that expresses the Cardinality Principle (constraint B3 In Part 1 of Figure 4) was not violated in this laaming
run. This iflustrates the earlier comment that the overlap in meaning between state constraints implies that learning from one
constraint may preempt learning from anotiier.

August KUL-88.03 1988

OhIsson & Rees 40 Rational Learning

so we have

not(Cr - 0a) = (Not (First X1))

which is added to the rule. This condition prevents the rule from firing when the object it considers making
the current object was, in fact, the first object counted. Revision 2 illustrates the complexities introduced
by negation. The satisfaction pattern of the relevant constraint is a negated pattern, and it happens to be
the case that the operator Plck Next adds the positive part of that pattern to the state. Hence, Revision 2
cannot succeed. There is no way of revising the rule so that both the relevance pattern and the
satisfaction patterns are guaranteed to be true. In fact, whenever the Assert operator fires, the
satisfaction pattern is guaranteed to be false. The learning mechanism recognizes that the operator adds
the negation of the satisfaction pattern, and does not create a second rule for this violation.

Finally, in the fifth learning step, the rule gets out of step, as it were, and violates constraint El (see
Part 2 in Figure 4) which says that numbers and objects are associated with each other cider in which
they are generated. This is, once again, a Type A violation, but in this case both revisions generate
non-empty extensions of the rule, so two new rules are created.

Revision 1. Ensuring that the constraint is not relevant. We have

Cr = ((Current N1)(Current Xi)(Assodated X1 N2))

and

Hence, the expression

is in this case equal to

which reduces to

Oa = ((After X1 X2)(Current X1)}

not(Cr - Oa)

notR(Current N1)(Current X1)(Associated X1 N2))
- ((After X1 X2)(Current Xi)))

not((Current N,)(Associated X1 N2)).

This expression is a-'led to the ruin. The final result is a rule that says "If the current object has been
associated with a number, and there is a second object that is a member of the set of objects to be
counted, but that is not the first object, and that has not been associated with a number, then move
attention to that second object', which is the correct rule, shown at the bottom of Figure 6.

Revision 2. Ensuring that the constraint is satisfied. Next,we have the expression

(Cr - Oa) u (Cs - Oa)

which does no(reduce to the empty list in this case. The part (Cr - Oa) is, as we have seen above, equal
to

((Current N1)(Associated X1 N2)).

The expression (Cs - Oa) becomes

((Equal N1 N2)) - ((After X1 X2)(Current X1)}

which reduces to

August KUL-88-03 a v 1988

Ohisson & Rees 41 Rational Learning

((Equal N1 N2)).

Hence, the set union of the two expressions is equal to

((Current N1)(Associated X1 N2)(Equal N1 N2))

which is then added to to create a second new rule.

The rule created in Revision 2 of the fifth and last learning step is not a correct rte, but a so-called
monster rule. It is a syntactically correct and executable rule which is simply not part of correct counting.
The rule says that if the current object x1 has been assigned to the current number n, and some other
object x2 has previously been assigned to n, then select x2 as the next object, which is a manifestedly
incorrect counting rule. The rule is harmless, i. e., it will never fire, if all the other rules are correct,
because two objects will never be assigned to the same number. However, if other rules are also
Incorrect, then this rule might fire. It will generate the error of going back and counting a previously
counted object as second time.

Although we have analyzed the construction of rules 6 and 2, respectively, as sequences of leaming
steps, those steps did not occur on successive trials during the leaming run. HS does not first go through
all required revisions of one rule, and then turn to another rule, etc. The learning steps required to
construct the correct versions of rules 2 and 6 occurred interspersed among the leaming steps required to
construct the other rules. The order of learning steps is determined by the order in which HS encounters
violations of constraints. In order to make the learning process easier to follow, Figures 5 and 6 abstract
out the revisions of rules 6 and 2, respectively, from the trace of the simulation run, and presents them in
sequence. This is an exposition technique, it is not how HS leams.

An overview of the entire learning process is given in Table 1. The particular leaming run analyzed
here required twenty-two trials. HS practiced on a set of three objects. Each trial consists of a problem
solving attempt in which HS executes its procedure until a constraint violation is discovered, revises the
faulty rule, and starts over. The twenty-two learning trials were accomplished in 97 production system
cycle. Each line in Table 1 corresponds to one trial. The first column st JWS the trial number. The
second column shows the number of cycles before a constraint violation was detected for each trial. As
the table shows, the number of cycles increases over trials. HS gradually performs larger and larger
portion of the task correctly. The third column shows the constraint that was violated in that trial. The
violated constraint is the constraint that HS leamed from in that trial. Finally, the last column represents
the six rules with the digits 1 through 6; the rule that was revised on that trial corresponds to the
bracketed number. In the twenty-third trial (not shown in the table), HS counted correctly the set of three
objects. The correct solution to the problem of counting three objects required eleven production system
cycles.

As the table shows, the two learning steps that transformed rule 6 into the correct rule occurred on
trials 8 and 12, respectively, while the five learning steps required to leam the correct form of rule 2 are
spread out over the entire learning process, beginning with trial 5 and ending with trial 22. The table also
shows that a constraint can be violated by several different rules. For instance, constraint El is violated

August KUL-88-03 1988

Ohisson & Rees 42 Rational Learning

Table 1: Overview of the learning process for standard counting.

Trial No. of t,ycles before Constraint Rules 1 -6;
no. constraint violation violated revised [x]

1 1 A4 12[3] 456

2 1 D6 [1]23456
3 2 D1 [1123456
4 2 C4 12[3)456
5 2 A2 1[2] 3456

6 3 C4 123[4]56
7 3 D4 123[4]56
8 3 B2 12345 [6]
9 4 D4 1[2)3456
10 4 D6 1[2]3456
11 4 El 12[3]456
12 4 B1 12345 [6]
13 4 El 123[4]56
14 5 Di 12[3)456
15 5 D1 12[3)456
16 5 A3 1234(5)6
17 6 D4 123[4]56
18 6 D3 123[4)56
19 7 D3 1[2]3456
20 7 D3 12[3]456
21 9 C3 123[4]56
22 10 El 1 [2] 3 4 5 6

August KUL-88-03 47 1988

Ohlsson & Rees 43 Rational Learning

by rules 2 (trial 22), 3 (trial 11), and 4 (trial 13). The table also shows that not all constraints are involved
in the learning run. For instance, constraint D2 was not violated in this particular run. The particular
learning process HS goes through on the way to mastery of standard counting is a function of the
representation, the initial rules, the state constraints, and the order in which violations are discovered.
Different simulation runs will yields slightly different learning processes.

The learning outcome

The final outcome of learning is a procedure for standard counting that counts correctly. It consists of
six rules, corresponding to the six rules in the initial procedural knowledge (see Figure 3), but with the
conditions revised in such a way as to produce correct performance. The final rules are shown in Figure 7
(Part 1 and Part 2). The level of generality of the learned counting procedure is the same as the level of
generality of the constraints. The learned procedure transfers to arbitrarily large sets, I. e., to sets it has
not practiced on.

The outcome of the above learning simulation is in accord with the empirical data from the counting
domain, as well as with the Conceptual Understanding Hypothesis: HS is able to discover the correct
procedure for standard counting without being given a description of the procedure, without seeing any
solved examples, and without being given an en lanation of the procedure. The procedure is constructed
incrementally in an effort to avoid violating the counting principles. The Conceptual Understanding
Hypothesis also claims that procedures constructed in this way are flexible when confronted with a
variation of the relevant task. The next applicationdeals with this phenomenon.

Adapting a procedure to a change in a familiar task
Life rarely presents us with totally new tasks. There are always some similarities between a new task

and some previously mastered task. The Conceptual Understanding Hypothesis claims that if a
procedure has been construed on the basis of principled knowledge of the task environment, then the
learner should be able to adapt that procedure to a conceptually equivalent but procedurally different
task. Hence, in our second application we verify that the counting principles enables HS to adapt its
procedure for standard counting to two changes in the task. First, we modify the standard counting task
by requiring that the objects be counted in a predeVsd order (ordered counting). Second, we modify the
standard counting task by requiring that the objects are counted in such a way that a particular object is
a:signed a particular number (constrained counting). Empirical research has shown that children can
readily adapt to these two non-standard counting tasks (Gelman & Gallistel, 1978; Gslman & Meck, 1983,
1986; Gelman, Meck, & Merkln, 1986). In both simulations, we first have HS discover the procedure for
standard counting in the way analyzed in the previous subsection. Then we change the task, and observe
how HS transfers the old procedure to the new task.

Transferring from standard to ordered counting

In ordered counting, objects are counted in accordance with some predefined ordering. Ordered
counting differs from standard counting with respect to the selection of objects. Rather than selecting any

August KUL-88-03

48
1988

Ohlsson & Rees 44 Rational Learning

1. If x1 is any object, x1 is a member of the ToCountSet, and no object has yet been selected
as the first object, then select x1 as the first object.

(Object X1)(Member X1 ToCountSet)(Not (Object X2)(FIrst X2))
===,. PlckFIrst(X1)

2. If x1 is the current object, x1 has been associated with some number nt, x2 is any other
object, x2 is a member of the ToCountSet, x2 is not the first object, and it is neither true that
there Is a current number n2 nor that x2 has been associated with some number n3, then
switch to A*2 as the current object.

(Object X))(Current X1)(Associate X1 N)(Object X2)(Member X2 ToCountSet)
(Not (First X2)) (Not (Current N2)(Associate X2 N3)) ===, PickNext(X1, X2)

3. If n1 is any number, there is no object x1 such that n1 been associated with x1, some object
x2 has been selected as the curent object, and there is n' number n2 such that n1 is the
successor to n2, then begin counting with n1.

(Number N1)(Not (Object X1)(Associate X1 Ni))(Object X))(Current X2)
(Not (Number N2)(Next N2 Ni)) ===> InItiallze(Ni)

4. If r71 is the current number, n2 is any other number, n1 is the predecessor of n2, n3 Is
associated with some object x, x Is not the current object, and n3 is the predecessor of n2,
then switch to n2 as the current number.21

(Number N))(Current N1)(Number N2)(Next N3 N2)(Associate X N2)(Not (Current X))
(Not (Equal N2 N1))(Next N1 N2) ===, Increment(Nv N2)

5. If n is the current number, and x1 is the current object, and n has not been associated with
any other object x2, then Associate n with

(Number N)(Current N)(Object X))(Current X1)(Not (Associate X2 N))
=== Assoclate(X1, N)

6. If n1 is the current number, and n1 has been associated w;;"1 some object x1, and there is no
object x2 in the ToCountSet that has not been associated with some number n2, then assert
that n1 is the answer.

(Number N))(Current Ni)(Object Xi)(Associate Ni Xi)
(Not (Object X2)(Member X2 ToCountSet)(Not (Number N1)(Associate X2 N2)))
===> Assert(N1)

Figure 7: Final rules d!scovered by HS for standard counting.

21The formulation of this rule is opaque, because it Introduces two symbols, nt and n3, for the same number. The two conditions
that claim that nt and n3 are predecessors to n2 constitute an Implicit equality-test that binds together the expressions in the He
condition. If the program knew the meaning or tie predecessor relation, it could, in principle, transform the rule into a less opaque
form. However, the rule as stated here Is the fc,ma that was actually learned In theparticular learning ,experiment we are reporting.

August KUL-88-03 1988

Ohisson & Rees 45 Rational Learning

F. Ordering Constraints

1. Objects are considered from left to right.

(Current X1)(After X1 X2)(Adjacent X1 X3)(LeftOf X3 X1) ae (Equal X1 X3)

2. Objects are associated with numbers in order from left to right.

(Current X1)(Object X1)(Object X2(Adjacent X2 X1)(LeftOf X2 X1)* (Associate X2 N)

Figure 8: Constraints that define ordered counting.

object, the system now has to select one according to certain criteria. The ordered counting task was
defined for HS by extending the inputs to the program in two ways. Fiist, we extended the initial
knowledge state by adding left of and adjacent relations between the objects, thereby imposing an order
on the set of objects to be counted. Second, we extended the principled knowledge of the model. In
unordered counting, the act of counting imposes a linear ordering ee a set of objects that does not have
'n intrinsic order. In ordered counting, however, the set of to-be-counted objects has an ordering given to
i. by the eetting, and the task is to traverse that order. In this application HS was required to count
objects in order from left to right. Two new constraints express this idea. The first order constraint says
that if the current object Is considered afteranother object, then it should be immediately to the left of that
object, I. e., objects should be considered in order from right to lett. The second order constraint says that
°keels shevId 0 assigne-' numbers according to the given order, which In this case means from left to
right. The state constraint representation of these two ideas is shown in Figure 8.

In thin, simulailen experiment HS first roamed the procedure for standard counting In the way
described in the previous subsecton. We then posed the a:Lek of counting the objects In order from left to
nigh. and run the system again on "4^ new task. Some of the rules HS learned for standard counting task
are correct for ordered counting x..1 The rules for iniliaiizing counting at unity, for incrementing the
coun".ing number, for associating a number with an object, .rd for asserting a nurse as the answer are
all ccesect for the ordered counting task. But the two rums for selecting a first object and for selecting a
next object produce constraint violations, and are revised to fit the new task

For instance, rule 2, the rule the* selects the next object, has no conditions that constrain it to select
objects in order from left to right. Figure 9 shows the search through the rule space for rule 2 in this
application. The top part of the figure, before the box labelled "Adaptation to ordered counting", shows
the initial construction of nee 2 and is identical with Figure 6. The leaming step Inside the box is caused
by the rule violating ordering constraint Fl (see Figure 8).

Two new rules are created in this learning step. The rule created by Revision 2, shown at the bottom
and to the right in Figure 9, is the correct rule for selecting the next object in the ordered counting task.

August KUL-88.03 1988

Ohisson & Rees

INITIAL RULE:

((Object X1)
(Current XI)
(Obj X2)) a to a > PickNext(Xl, X2)

I

A2:
(Current X2)
(After X2 XI)"
(Associate XI NI)

(Assoc'ate XI N1)

2
D4:
(After X2 XI)"
(Not (Equal X2 XI))

(Not (Equal X2 X1))

3
D6:
(Current X2) "
(Member X2 ToCountSet)

(MemberX2ToCountSet)

4 I D3:
(First X2) "
(Not (After X2 X1))

(Not (first X2))

E1:
(Current NI)
(Current X2)
(Associate X2 N2) "
(Equal NI N2)

(Not (Current `N)
(Associate X2 N2))

(Current X2)
(After X2 XI)
(Not (Equal X2 XI))
(Adjacent X2 X3)
(LeftOf X3 X2) "
(Equal X2 X3))

(Current N3)
(Associate X2 N2)
(Equal N3 N2)

Rational Learning

Adapting to Ordered
Counting

(Adjacent X2
(Not (Adjacent X2 X3) (LeftOf X3 X2)

X3)

(LeftOf X3 X2)) (Equal X1 X3)))

FINAL RULE FOR STANDARD COUNTING:

((Object XI)
(Current XI)
(Object X2)
(Associate XI NI)
(Not (Equal X2 XI))
(M1mber X2 ToCountSet)
(Not (First X2))
(Not (Current N3)

(Associate X2 N2))
(Not (Adjacent X2 X3)

(LeftOt X3 X2))) a to a > PickNext(X I, X2)

FINAL RULE FOR ORDERED COUNTING:

((Object XI)
(Current XI)
(Object X2)
(Associate XI NI)
(Not (Equal X2 X1))
(Member X2 ToCountSet)
(Not (First X2))
(Not (Current N3)

(Associate X2 N2))
(Adjacent X2 X3)
(LeftOf X3 X2)
(Equal XI X3)) it it it > PickNext(Xl. X2)

Figure 9: Revisions of rule 2 (see Figure 7) in adaption to ordered counting.

51August KUL-88.03 1988

Ohisson & Rees 47 Rational Learning

The rule created In Revision 1, shown at the bottom and to the left In Figure 9, Is a modification of the rule
for standard counting. The performance of this rule will depend on the perceptual encoding of the
problem situation. if the initial knowledge state encodes the objects to be counted as unordered, this rule
will function correctly. Hence, the outcome of this teaming step is a procedure that can solve both task
correctly. However, if the initial state contains information about the ordering relations of the objects to be
counted, then this rule will refuse to fire. This amounts to a prediction that having adapted to ordered
counting, the learner cannot perform unordered counting if he/she pays attention to the ordering relations
between the objects. After this adaptation the system will always count according to the ordering
relations between the objects, if those are encoded in the initial state.

Without principled knowledge about the task-- without a representation of the task that Is more abstract
than the rules themselvesthere is no way of knowing which rules are still relevant and which are not
when the task is changed. Therefore, an empirical learning system would have to construct a new
procedure from scratch for the new variant of the task. HS, on the other hand, knows that a rule needs to
be revised only if it produces constraint violations, but not otherwise. Hence, it can back up the minimal
distance in the procedure space that Is needed to transfer its current procedure to the new task. The
construction of the procedure for standard counting required twenty-two learning steps, but the adaptation
to the ordered counting task only requires two learning steps. HS shows considerable transfer from one
task to the other.

The ability of HS to adapt to a change in the task does not depend on the particular characteristics of
the switch from unordered to ordered counting. For Instance, it does not depend on the fact that this
switch involves the addition of constraints. In a different learning experiment HS learned to adapt in the
opposite direction. in this experiment HS began by constructing the procedure for ordered counting. We
then switched the task to standard counting. Figure 10 shows the path through the rule space for rule 2
In this learning experiment. The Initial construction of the correct rule for ordered counting is shown along
the right branch of the figure. It consists of three learning steps, caused by the violation of constraints D3,
Fl, and A2, in that sequence. The final, correct, rule for ordered counting is shown to the right In the
figure.

As the figure shows, learning step 2 produces a pair of rules, only one of which is the correct rule for
ordered counting. When HS is confronted with the standard counting task, the system backs up in the
rule space to this point, and fires the other rule produced in teaming step 2. This rule, a supposedly
"incorrect" rule generated during the learning of ordered counting, is developed Into the correct rule for
unordered counting in three further learning steps, shown inside the box labelled "Adaptation to
unordered counting" in Figure 10. 1-1thice, the final result is again a procedure that can do both standard
counting and ordered counting CO:MtV.

The third learning step Inside the box (labelled step 61' the figure) produces two rules, one of which Is
the final rule for standard counting. The other rule Is yet another example of a rule created during
learning that Is not part of the correct procedure. It does not fire in either standard or ordered counting,

August KUL-88.03 1988

Oillsson & Rees 48 Rational Learning

INITIAL RULE:

((Object X1)
(CurrentObject X1)
(Object X2)) > PickNext(X1 X2)

1

(Nit (first X2))

2

D3:
(First X2)
(Not (After X2 X1))

Fl:
(Current X2)
(After X2 X1)
(Not (Equal X2 X1))
(Adjacent X2 X3)
(LeftOf X3 X2) "
(Equal X1 X3)

(Not (Not (Equa X2 X1))
(Adjacent X2 X3)
(Le ftOf)(3 X2))

to
Unordered
Counting 4

V
(Associa e X1 N1)

A2:
(Current X2)
(After X2 XI) "
(Associate X1 N1)1

06:
(CurrentObject X2) **

5 (Member X2 ToCountSet)

(Member X2 ToCountSet)

(Current N 2)
(Not (Current N2) (Associate X2 N3)

(Equal N2 N3))

FINAL RULE FOR STANDARD COUNTING:

El:
(Current N2)
(Current X2)
(Associate X2 NB', '*
(Equal N2 N3)

(Assoclatee X2 N3)))

((Object X1)
(CurrentObject X1)
(Object X2)
(Not (First X2))
(Not (Not (Equal X2 X1))

(Adjacent X2 X3)
(LeftOf X3 X2))

(Associate X1 N1)
(Member X2 ToCountSet)
(Not (CurrentTag N2)

(Associate X2 N3))) = > PickNext(X 1. X2)

(Not Equal X2 X1))
(Adjacent X2 X3)
(LeftOf X3 X2)
(EqualX1 X3))

A2:
(Current X2)

3 (After X2 X1)**
(Associate X1 NI)

(Assoc ate X1 N1)

FINAL RULE FOR ORDERED COUNTING:

((Object X1)
(CurrentObject X1)
(Object X2)
(Not (First X2))
(Not (Equal X2 X1))
(Adjacent X2 X3)
(LeftOf X3 X2)
(Equal X1 X3))
(Associate X1 N1) > PickNext(Xl. X2)

Figure 10: Revisions of rule 2 (see Figure 7) in adaption to unordered counting.

tj
August KUL88.03 1988

Ohisson & Rees 49

but could conceivably fire in some other, yet-to-be-invented task.

Rational Learning

The amount of learning required to adapt from ordered to standard counting is not the same as the
amount of learning required to adapt in the other direction. The switch from standard to ordered counting
only required two learning steps, one step for each of rum 1 and rule 2, while the switch in the opposite
direction requires a total of five learning steps, three for rule 2 (shown in Figure 10) and two for rule 1 (not
shown). HS predicts that transfer of training between pairs of tasks is asymmetric.

Transferring from standard to constrained counting

in the task of constrained counting the learner counts an unordered set, but is required to choose
objects in such a way that a designated object becomes associated with a designated number. For
Instance, the learner might be instructed to count in such a way that, say, third object from the left
becomes associated with, say, the number five. We present this task to HS LI, adding the constraints
shown in Figure 11. The first constraint represents the general Idea that the designated object is
associated with the designated number. The two 'allowing constraints express the special case of this
idea for the initial object and the first number.

F. Designation Constraints

1. Associate the designated object with the designated number.

(Current Xi)(DesIghated X/)(Designated N1)(Atter X1 X2)(Assoclate X2 N2) * (Next N1
N2)

2. Choose the designated object as the first object only if the designated number is the first
number In the number line.

(Current X)(Deslgnated X)(First X)(Designated N) " (Origin N)

3. When the designated number is the first number in the number line, and the current object
is the first object counted, then It should be the designated object.

(Current Xi)(First X1)(Designated X2)(Designated N1)(Origin N1) " (Equal X1 X2)

Figure 11: Constra'nts that define constrained counting.

As in the previous simulation experiment I-I::: first learned the procedure for standard counting. We
then changed the task to constrained counting, and run the system again. Figure 12 shows the effect on

we see the rule violated the first construint In Figure 11, which leads to the
In this case, both of the new CUleS are relevant for the task of constrained

the rule for selecting the next object. At the top of the figure is the final rule for unordered counting. As

construction of two new rules.

counting. There is considerable

KUL-88-03 1988
5.:

August

Ohisson & Rees 50 Rational Learning

transfor from one task to the other in this case also, because HS knows, as it were, which rules to revise.
As Figure 12 shows, It only requires one learning step to adapt rule 2 to the constrained counting task. It
required a total of three learning steps to adapt to constrained counting.

The two demonstrations in this section show that HS can do what Gelman and cc workers have
shown that children can do: Adapt a counting procedure to a change in the task demands, rather than
having to construct a new procedure from scratch. The pedagogical hope expressed in the Conceptual
Understanding Hypothesis is that since children can learn to count with understanding, they might also be
able to learn to carry out the symbolic algorithms for arithmetic with understanding. The next question is
therefore whether the HS learning mechanism can produce intelligent learning in the domain of symbolic
algorithms. This is the topic of the next application.

Correcting errors in a symbolic algorithm
The Conceptual Understanding Hypothesis claims that a leamer who constructs a procedure on the

basis of principled knowledge is able to spontaneously correct nonsensical errors, without being told what
the correct rule is by an outside source, and without having access to a correctly solved example. If the
teaming of symbolic algorithms such as the subtraction algorithm can proceed in an insightful fashion, the
leamer should be able to recover from the standard subtraction bugs observed in children's performance.
In our third application we show that the HS system can correct errors in a procedure for multi-column
subtraction, on the basis of knowledge of the principles of subtraction.

In this application HS operates in the standard problem space for subtraction (Ohlsson & Langley,
1985, 1988).22 A subtraction ,jroblem is described in terms of the values (vi, ...) of the digits in the
problem, columns (d1,), and rows (r1, ...). The columns are numbered from right to left. The initial
state contains a description of the spatial layout of the rows and columns, the particular digits of the
current problem, a portion of the number line, and the relevant number facts.

There are eleven operators in this problem space: Select a column, move to the next column,
decrement a digit, increment a digit, recall the difference between two single digit numbers, recall that the
difference between two equal numbers is zero, mark a column as the column to increment, mark a
column as the column to decrement, move attention to the left, move attention to tne right, and write a
digit. The operators for the standard subtraction space is shown in Figure 13 (Part 1 and Part 2). The
correct procedure for subtraction with regrouping consists of eleven rules that fire those operations. The
state constraints for subtraction that we have developed are ;aspired by Resnick (1984) and by Resnick
and Omanson (1987). We will state each rule and constraint as we analyze each example of how HS
teams in this domain. A more detailed description of the subtraction model has been given in a previous
report (Ohlsson & Rees, 1987).

Learning experiments in the subtraction domain are not carried out by having HS learn subtraction

22We are currently implementing two other representations for subtraction in HS. They will be reported elsewhere.

August KUL-88.03 1988

Ohisson & Rees 51 Rational Learning

FINAL RULE FOR STANDARD COUNTING:

((Object X1)
(Current X1)
(Object X2)
(Associate X1 Ni)
(Not (Equal X2 X1))
(Member X2 ToCountSet)
(Not (First X2))
(Not (Current N3)

(Associate X2 N2))) = = > PickNext(X1, X2)

1

61:
(Designated X2)
(Designated N4)
(Current X2)
After X2 X1)
(Associate X1 N1) **
(Next Ni N4)

(Not (Designated X2)
(Designated N4))

FINAL RULE FOR CONSTRAINED COUNTING:
(Case 1 Designated Number Occurs Next)

(Object X1)
(Current X1)
(Object X2)
(Associate XI N1)
(Not (Equal X2 X1))
(Member X2 ToCountSet)
(Not (First X2)
(Not (Current N3)

(Associate X2 N2))
(Not (Designated X2)

(Designated N4)) = > PickNext(Xl, X2)

(Designated X2)
(Designated N4)
(Next N1 N3)

FINAL RULE FOR CONSTRAINED COUNTING:
(Case 2: Designated Number Does Not Occur Next)

(Object X1)
(Current X1)
(Object X2)
(Associate X1 N1)
(Not (Equal X2 X1))
(Member X2 ToCountSet)
(Not (First X2))
(Not (Current N3)

(Associate X2 N2))
(Designated X2)
(Designated N4)
(Next N1 N4) = > PickNext(X1, X2)

Figure 12: Revisions of rule 2 (see Figure 4) in adaptation to constrained counting.

August KUL-C8.03 1988

Ohisson & Rees 52 Rational Learning

FlrstColumn(C) Takes a column as input and declares that column as the first column.
The addition list is ((Processing C) }.
The deletion list is empty.

NextColumn(C1, 02)
Takes two columns as inputs, and moves attention from one to the other.
The addition list is ((Processing C2)}.
The deletion list is ((Processing C1)).

Decrement(R, C1, C2, V)

Takes as_input the position that is being decremented during a regrouping operation,
the position that is being incremented, writes the new value for the decremented digit,
and records that the decrement has occured.
The addition list is ((Borrowed From C1 for C2)(CrossedOut R C1)(11 C1 Value V) }.
The deletion list is ((Borrowing From C1 For C2)).

Increment(R, C, V) Takes as input the position that is being incremented during a regrouping operation,
writes the new value for the incremented digit, nd records that the increment has
occured.
The addition list is ((Regrouped C)(CrossedOut R C)(R C Value V))1.
The deletion list is ((Regrouping C)}.

RecaliDiff(Vi, V2, C)
Takes two numbers and a column as inputs, recalls the difference between the
values, and writes the result in the answer-row of the column.
The addition list is {(AnsRow C Value V3)}, where V3 ig V1 - V2.
The deletion list is empty.

Figure 13: Operators for subtraction, Part 1.

from scratch. Instead, we take the correct subtraction procedure and inflict errors of various kinds on it,
run HS with the erroneous procedure, and observe whether HS can correct the error or not. We have
verified that HS can correct the most frequent errors that have been identified empirically in children's
performance. We will illustrate this capability with (a) the SMALLERFROMLARGSR bug, because it is the
,,lost frequent of all bugs, (b) a borrowing bug, because borrowing bugs are the conceptually most difficult
bugs, and (c) an ordering bug, because it provides a contrast to the other bugs. More extended examples
of learning in the subtraction domain can be found in Ohlsson and Rees (1987).

Recovering from the SMALLER-FROMLARGER bug

Consider the following faulty rule for subtraction:

If cx is the current column, v1 is in column cx, v1 is in row rx, v2 is in

column cx, v2 is in row ry, and v2 is smaller than v1, then

RECALLDIFF(Vi, V2, Cx).

The operator RECALLOIFF creates an expression that encodes the retrieved difference, call it v3, as the

August KUL-88-03 1988

Ohlsscn & Rees 53 Rational Learning

SameDiff(C) Takes a column as input and writes zero in the answer-row for that column.
The addition list is {(AnswRow C Value 0)}.
The deletion list is empty.

MarkColumn(C) Takes a column as input, marks it as the column needing to be regrouped.
the addition list is ((Regrouping C)}.
The deletion list is empty.

FindColumn(C1 C2)
Takes the column to be regrouped and a second column as inputs, and marks the
first as the column to be regrouped.
The addition list is ((Borrowing From C1 For C2)}.
The deletion list is empty.

ShittLeft(Ci C2 C3)Takes three columns as inputs, and designates C1 and C2 as the column: to he
decremented and incremented, respectively.
The addition list is ((Regrouping C1)(BorrowingFrom C3 For C1)).
The deletion list is ((Regrouping C2)(BorrowingFrom C1 For C2)}.

ShittRight(Ci C2) Takes two columns as inputs, and designates the second one as the one to be
incremented.
The addition list ((Regrouping C2)}.
The deletion list is {(BorrowingFrom C1 For C2)}.

WrIteValue(C, R, V)
Takes a position, given by a column C and a row R, and a value V as inputs, and
writes N in the given position.
The addition list is {(R C Value V)}.
The deletion list is empty.

Figure 13: Operators for subtraction, Part 2.

result for column;, e., Oa contains the single expression v3 is the result in column cx. RECALLDIFF does

not delete any expressions, i. e., Od is empty. This rule ignores the distinction between thu minuend and

the subtrahend, thus causing the so-called SMALLER/FROWLARGER bug (Brown & Burton, 1978).

The principle that is violated by the above rule consists of two ideas. First, the purpose of subtraction

is to take the subtrahend from the minuend. Second, in the arithmetic of whole numbers, subtraction is

undefined when then the minuend is smaller than the subtrahend. The constraint given to HS is:

If row rsub is the subtrahend row, row rmin is above rsub, Vmin is in

cx, Vmin is In row rmin, Vsub is in cx, Vsub is in row rsb, Vmfn is smaller

than vsub then not(the result in column cx is v).

If the minuend in a particular column is smaller than the subtrahend, then there should be no result in that

column. It should be noted that the satisfaction pattern is enclosed in a "not" meaning that the constraint

is satisfied when the pattern does not match. Also, once the column has been regrouped, the new

minuend will not be smaller and th;s constraint will cease to be relevant.

August KUL-88-03 1988

Ohlsson & Rees 54 Rational Learning

When applied to the right-most column In, for example, the problem 505 - 19 = ?, the rule condition R
becomes Instantiated to

c1 Is the current column, 9 is in column cl, 9 is in row rsub, 5 is in

column cl, 5 is in row rmin, and 5 is smaller than 9,

and the addition list Oa becomes (4 is the result in column c1). The relevance pattern Cr of the constraint
becomes instantiated to

row rsub is the subtrahend row, row rink, is above rsub, 5 is in cl, 5

is in row rfuhr 9 is in cl, 9 is in row rsub, 5 is less than 9,

and the satisfaction pattern Cs becomes

41s the result in column cr.

Since having any result in this column violates the constratt, HS tries to learn from the violation.
Obviously, this rule should never fire when the subtrahend is greater then the minuend. To put it another
way: if this rule fires when the constraint is relevant, the constraint is guaranteed to be violated. Thus,
the rule should fire only when the constraint is not relevant. The learning mechanism does attempt to
create two revisions to the rule, but It is successful in only one case.

Revision 1. Ensuring that the constraint Is not relevant. First, HS computes (Cr - Oa), using the
instantiations of these parems. However, RECALLDIFF adds only the single expression that matches ne
satisfaction pattern, so the result is Cr. Next HS removes any parts that are already part of the rule
pattern. The result is a single expression which is part of Cr, but not part of either Oa or R: r1 is above r2
HS replaces the constants r1 and r2 with the appropriate variables, and creates a new rule by adding the
negation of this expression to the condition of the faulty rula:

not (ry is above rx).

This correction cures HS from the SMALLER/FROM/LARGER bug.

Revision 2. Ensuring that the constraint is satisfied. HS computes (Cs - Oa). However the result is
empty; RECALLDIFF adds the single expression that matches the satisfaction pattern. The learning
mechanism stops at this point and does not attempt to create a second rule.

Recovering from a borrowing oug

The following incorrect subtraction rule finds a column to borrow from when regrouping is needed:

If cx is the column to be regrouped, cy is a column, v1 is in column

cy, v1 is in row rmin, row rsub Is the subtrahend row, and row rmin Is

above row rsub then FINDCOLUMMCy C).

The rule says that if a particular column needs to be regrouped and there is a second column that

August KUL-88-03 1988
59

Ohisson & Rees 55 Rational Learning

contains a minuend value, then mark the second column to be borrowed from in order to regroup the first
column. FiNvcoLUNIN adds a single expression representing the fact that cy is to be borrowed from to
regroup cx. It does not make any deletions. This rule will choose any column to borrow from. If, for
instance, a particular problem contains three columns, this rule will match three times, once for each
column (including the column that is supposed to be regrouped). This rule produces several paths which
result in different subtraction bugs. For instance, if the column to the left of the column to be regrouped
contains a zero in the minuend, one of the paths will produce the well known BORROW-ACROSS-ZERO bug

(Brown & Burton, 1978). This error is produced because this rule attempts to initiate borrowing from all
columns. It does not detect the zero and deliberately skip it. Other paths produced by this faulty rule
generates other, not necessarily observed, subtraction bugs.

It is possible to apply principled knowledge to this rule to produce a correct rule. The relevant
principle states that the column that is borrowed from during regrouping should be Just to the left of the
column that is being regrouped.23 This principle is expressed in the following state constraint:

If cx is the column to be regrouped and cy is the column to borrow

from then c is to the left of c,x

There are two differences that should be noted between this constraint and the previous one. First,
the satisfaction pattern is not enclosed inside a "not" Thus, the constraint is satisfied when the
satisfaction pattern matches rather than when it does not match. Second, because the rule will fire only
when there is a column to regroup and because the operator always adds a column to borrow from, this
rule Is guaranteed to make the constraint relevant. Thus, the task of learning is to ensure that it will fire
only when it will also make the constraint satisfied.

Revision 1. Attempt to ensure that the constraint is not relevant. The difference between the
operator's addition and the relevance pattern (Cr - Oa) is: Cx is the column to be regrouped. This clause is
already part of the rule pattern, however, and adding the negation of it to the rule would produce a new
rule that cannot possibly match. Thus, this branch of learning ceases without producing a new rule.

Revision 2. Ensure that the constraint is satisfied. Because the satisfaction pattern and the
operator's addition do not overlap, (Cs - 0s) is just C5. The attempt to compute Revision 1 showed that
there Is nothing from the relevance pattern to add because (Cr - 0a) is already present in the rule pattern.
The revision is to add cy is to V19 loft ofcx to the rule, which produces a correct rule.

*

23ThIs particular HS model of subtraction explicitly increments and decrements columns that have zeroes in the top row. In the
algorithm taught in schools this process Is sometimes abbreviated to cross out the zero and write a nine, then decrement the next
column to fhe left.

August KUL-88.03

60
1988

Ohlsson & Rees 56 Rational Learning

Recovering from an ordering bug

New rule upon learning, new rules often appear in pairs. One rule of the pair will fire when the
particular constraint will not become relevant and the other rule will fire when the constraint will become
relevant and satisfied. In the previous two examples, only one of the two revisions succeeded, so only
one new rule was created in each learning step. In this final exampleof error correction in subtraction two
new rules are produced.

The relevant rule decides which column to start with in a subtraction problem. It will choose any
column, not just the rightmost, I. e., units, column:

If there Is no current column and cx is a column then

FIRSTCOLUMN(C)

FIRSTCOLUMN adds (cc is the current column) to working memory and does not delete anything. Like the
faulty borrowing rule discussed above, this rule produces branching in the search space. Various odd
results are possible along the various branches. For instance, if the rule for choosing the next column to
work on correctly chooses the next column to the left, then it might happen that one or mere columns to
the right are never processed. If the rule for selecting the next column is faulty as well, then columns may
be processed in any arbitrary order.

The principle that is violated is that columns should be processed in right to left order. Th&
corresponding state constraint says that if a column is being processed and it is to the left of another
column, there should be an answer in that column:

If cx is the current column and c is to the left of c then v is the

result in c

This constraint is sufficient to catch both errors in choosing the first column and errors in choosing the
next column.

Revision 1. Ensyring that the constraint is not relevant. FIRSTCOLUMN adds the current column so (Cr -
Oa) is the second clause in Cr, Cx is to the left of cy Adding the negation of this expression to the rule
produces the obvious requirement that the first column can not be to the left of any other column. This is,
of course, the correct rule.

Revision 2. Ensuring that the constraint is satisfied. The satisfaction pattern and the addition do not
overlap so (as - Oa) is Just Cs: vr is the test& in cy Adding the expression computed for Revision 1 and
this expression produces the following rule:

If there is no current column, cx is a column, cx is to the left of cy,

and vr IS the result In cy then FiRsrcaumN(c)

In the particular representation of subtraction we have chosen for this application, once processing has

August KUL -88.03 1988

Ohlsson & Rees 57 Rational Learning

started there is always a current column. Thus, it is not possible for there to be no current column and a
column with an answer in It at the same time, which means that this rule will never match. Because
reasoning about the representation is required to discover that this rule will not match, this conclusion is
beyond the power of the learning mechanism, so this rule is added to the rule set. This addition is
useless but harmless.

The above examples are simplified in several respects. (a) We usually give HS several deficient initial
rules, and we inflect more severe deficiencies on them, so the system starts o :f with a mixture of different
bugs, rather than with a single bug. (b) A severely deficient rule usually violates several constraints, and
so has to be revised repeatedly. (c) In order to make the computation of the patterns to be added to
faulty rules easier to follow, we have not shown any operators that perform deletions from working
memory. (d) For the same reason, we have not shown any constraints that include negated subpattems.
The subtraction model that these examples of error corrections are taken from has been discussed in
more detail in Ohlsson & Rees (1987).

Discussion
The behavior of the HS system has several interesting features. First, HS necessarily learns while

doing. Only by executing its procedure can the system discover that it generates invalid search states.
The principled and the procedural knowledge only communicate through the representation to. a
particular problem situation. Unless the procedure Is applied to some problem, there is no way that HS
can discover inconsistencies between its procedural and its declarative knowledge. The design of the
system is such that HS, like humans, must act in order to learn.

Second, HS is not dependent upon external feedback. It uses its principled knowledge to monitor its
own performance, and to discover errors along the path to an answer. It catches itself in mid-air, as it
were, learns, and starts over on the current task before it reaches an answer. This type of behavior is
frequently observed in human learners, but difficult to explain with experience-based learning
mechanisms.

Third, HS learns gradually. Rules have to be revised repeatedly. The tact that a rule has been cured
from violating one constraint does not guarantee that it will not violate some other constraint. Successive
transformations are needed to construct a correct rule even for such a simple task as counting, as the
examples above show. Since the learning mechanism works by revising existing rules, the output from
one learning step is the Input to the next learning step. For HS as for humans, the construction of a new
procedure is necessarily a gradual process.

Fourth, the learning mechanism of HS revises a rule by splitting it into two different rules, each version
constrained in a different way with respect to the original rule. In most situations only one of those
versions is correct from the point of view of the target procedure, and the other other version is a so-
called monster rule, i. e., a syntactically correct and executable rule that is not part of the procedure to be
learned. In some cases the monster rule can be weeded out on the basis of syntactic criteria, but In many
cases it is impossible to decide whether a rule Is fruitful or not by inspecting tha rule. In those cases both

Atigust KUL-G8-03

2
1988

Ohisson & Rees 58 Ration! Learning

versions of the rule are executed in future trials, and HS gets rid of the monster rule by further learning.
The monster rules are executed and constrained repeatedly, until they are so constrained that they
cannot match any search state. They are then harmless and have, functionally speaking, been deleted.24
if we think of HS* lea.rning as a search through the procedure space, we can describe this phenomenon
by saying that HS does not have a criterion for when it has reached the goal state, i. e., a correct
procedure. Therefore, it has to continue searching in order to verify that there are nc further
improvements to make.

The fact that HS weeds out monster rules by further learning constitutes a prediction that human
ieamers will continue to make mistakes even after they have acquired the correct rules for a procedure.
The reason is that they have not yet learned to ignore the alternative, incorrect rules that were
constructed in the same learning step as the correct rule. Further practice is necessary in order to get rid
of those rules. Hence, HS predicts that practice will be beneficial for some period of time over and above
what is needed in order to reach correct performance. This point illustrates well the complex interactions
between knowledge and practice. it also illustrates the necessity of implementing and running information
processing models. The result that further practice is necessary even after the correct rule has been
constructed is a rather complicated, and unanticipated, prediction from our theory that we almost certainly
would not have discovered without computer implementation of t;ze theory.

Fifth, HS can transfer a procedure from one task to another. The flexibility of HS' procedure for
counting does not reside in the final procedure that HS learns. The set of final productioll rules learned by
HS is, taken by itself, as brittle a procedure as any other. It is only when those rules are execute.4 in the
context of the state constraints that flexibility is achieved. The flexibility of HS does not reside in the type
of procedure it learns, or in the problem solving method embodied in that procedure, but in the fact that
the procedure is executed within a cognitive context that includes principled knowledge of the task
environment.

Sixth, HS finds it easier to transfer between tasks in one direction than in the other. For instance, the
learning process that transforms a procedure for unordered counting into a procedure for ordered
counting is not the same as the process that transforms a procedure for ordered counting into a
procedure for unordered counting. Depending upon which constraints are violated, the number of
teaming steps involved in adapting from one task to another may be different from the number of learning
steps required to adapt in the opposite direction. This :institutes a prediction that transfer of training
between pairs of tasks is asymretric.

Seventh, learning in HS consists of a transition from a knowledge-based to a procedure-based
performance. In the initial phase of learning, the system makes much use of its principled knowledge,
because the grossly Incomplete procedure makes errors at every step. As the procedure is gradually

24We could model actual deletion of such rules by assigning weights to rules, and postulating (a) that the weight decays over time
unless the rule is fired, and (b) that rules with a weight below some threshold value it purged from the system. We have not
implemented such a mechanism in the current version of the HS model.

August KU.-88.03 1988
63

Ohisson & Rees 59 Rational Learning

completed, fewer and fewer of the steps are incorrect, and the state constraints kick into action less and
less. At the end of learning, the state constraints have dropped out of sight completely, because the
production rules now generate only correct solutions. if we assume that the state constraints have levels
of activation and that the activation level is a function of how often the constraint is violated, then HS
models the transition from mindful action, in which all steps are thought about in relation to the system's
principled knowledge, to routine action, in which an already mastered procedure is simply run off, as it
were, without much thought. The principled knowiedr of HS only plays a role in its performance when
something goes wrong, I. e., some inconsistency between the current state of the world and its knowledge
is detected. In short, HS only thinks, as it were, about the current problem when it is forced to do so by
some difficulty.

Eight, adaptation to a new task involves revision of those rules that are not appropriate for the new
Task. Rules that are inappropriate will be revised, because they will violate some constraint for the new
task. Rules that are appropriate for the new ',ask will not be revised, since they do not cause any
constraint violations. Hence, by construction, HS knows which parts of a procedure to retain and which to
revise when faced with a change in the task demands. Like humans, HS can build on what it has
previously learned when ieaming a new procedure.

August KUL-88.03 1988

Ohlsson & Rees 60 Rational Learning

Relations to Previous Research

The purpose of this section Is to outline the major conceptual differences between the HS model and
other computational models of the acquisition of arithmetic procedures. To the best of our knowledge,
there a: .; only two previous analyses of the problem a' deriving arithmetic procedures from principled
knowledge, both of which make use of so-called planning nets, but neither of which resulted In an
implemented simulation model (VelnLehn & Brown, 1980; Greeno, Riley, & Gelman, 1984; Smith, Greeno,
& Vitolo, in press). We also know of two efforts to simulate human procedure acquisition In arithmetic
which employ experience-based, rather than knowledge- based, learning methods (VanLehn, 1983a,
19831), 1985a, 1985b, 1986; Neches, 1981, 1982, 1987; Neches & Hayes, 1978).

Planning ne: analyscis of arithmetic procedures
VanLehn and Brown (1980) have pol.;ted out that a program for a procedure does not reveal the

purpose of that procedure. Programs an low diagrams specify the steps of a procedure and the
conditions under which those steps are to be carried out, but they do not describe the reason why a
particular step Is included in the procedure, or why it is executed under those conditions. For instance,
the procedure for carrying in multi-column addition can be described as follows: when the sum of column
n is larger than nine, then detach the units part of the sum, record that part as the result for column n, and
add the remaining part to the column to the left. But this description does not reveal that the purpose of
the carrying operation is to make sure that each exponent of ten is represented by a single-digit
coefficient in the answer. VanLehn and Brown (1980) introduce the term "telelogical semantics" to refer
to a description of the purpose of the steps in a procedure.

Drawing upon A. I. analyses of planning, VanLehn and Brown (1980) proposed a methodology for
generating a procedure from a goal in such a way that the trace of the generation constitutes a
teleological semantics for the procedure. Their methodology assumes that planning begins with a goal, a
set of operations, a set of planning heuristics, and a characterization of a problem situation. Planning
begins by posing the goal, and proceeds by expanding it, I. e., replacing it with a structure consisting of
subgoals and/or executable operations. Each step in the process is guided by a planning heuristic. The
process continues until all goals have been expanded into executable operations, and the execution of
the procedure does not contradict any features of the problem situation. The trace of a planning process
consists of a graph in which the nodes are (partial) procedures, i. e. procedures that contain yet-to-be-
expanded subgoals. The links between the nodes are labelled with the planning heuristic that led from
one procedure to the next. VanLehn and Brown (1980) call such a trace a planning net.

VanLehn mid Brown (1980) invented planning nets in order to comparo procedures with respect to
closeness or similarity. They found that program-level representations of procedures do not yield
reasonable similarity metrics: A minor conceptual change in a procedure can give raise to huge
differences in the program for that procedure, They propose a closeness metric based on the planning
net representation that does reproduce intuitive judgments about similarity between procedures. They
use the metric to discuss the pedagogical merit of concrete models for arithmetic such as Dienes blocks,

August KUL-88.03 Fi 1988

Ohisson & Rees 61 Rational Learning

and to design a sequence of concrete models for instruction in subtraction (VanLehn & Brown, 1980, pp.
132-136). The planning mechanism is not implemented as a computer program. They do not claim that
the process of deriving a planning net for an arithmetic procedure correspond to the mental process of
someone who Is trying to learn that procedure.

The Idea of deriving a procedure by successively expanding goals into operations within the
constraints imposed by a particular problem situation was taken up by Greeno and co-workers in their
theory of counting competence (Greeno, Riley, and Gelman, 1984; Riley & Greeno, 1980; Smith &
Greeno, 1983; Smith, Greeno, & Vito lo, in press). The basic assumption of their theory is that knowledge
of principles Is encoded in action schemata. A schema is an action described at a high level of
abstraction. The description includes both inputs (prerequisites), success criteria (postrequisites), outputs
(consequences and effects), and conditions that have to remain true during the execution of the action
(corequlsites). For instance, the following schema describes the action of picking up an object:

PICK-UP(a)
Prerequisites: movable(a);

empty(Hand).
Consequences: in(a, Hand).

Tice PICK-UP schema says that the prerequisites for picking up an object a are that a is movable ana that
one's hand is empty. The consequence of picking up an object is that the object is in the hand (Greeno,
Riley, & Gelman, 1984, p. 105). The PICK-UP schema is an example of a schema that can be executed
without expansion Into other schemata. Executable schemata correspond to what Is called operators in
most computational models of problem solving.

Knowledge of the counting principles is encoded in a total of twelve different action schemata, most of
them considerably more complicated than the PICK-UP schema. A central schema is the description of
the action of mapping a set onto a subset of another set:

MATCH(X, Y)

Prerequisites: empty(A);
ernPlY(B).

Corequlsities: subset(A, X), where A = pc tagged(x)};
subset(B, Y), where B = (r. used(y));25
equal(A, B).

Postrequlsitles: For all x, member(x, X) --> member(x, A).
Consequence: equal(X, 8).

The MATCH schema says that in order to match a set X to a set Y, we must first have an empty subset of
each set. We then act on those subsets (in some manner that is not specified In the schema itself) until
the subset A of X becomes equal to X itself. We cause A to grow, as it were, until it Includes all of
X. While doing this, we make sure (in some yet-to-be-specified way) that it alway3 remairs the case that

25nio two properties
tagged and used serve bookkeeping purposes in the Greenoet. at (1984) analysis of counting.

August KM-88-03
66 1988

OhIsson & Rees 62 Rational Learning

the subset B of Y has the same number of members as A, i. e, we cause B to grow at the same rate as
A. The result of acting in this way is that when A includes all of X, X is guaranteed to have the same
number of elements as ,B. Since B is a subset of Y, X has thereby been mapped onto Y. The MATCH
schema is part of the encoding of the one-to-one mapping principle (Greeno, Riley, ix Gelman, 1984, p.
113). It is ar; example of a non-executable schema; it cannot be executed as it stands, but has to 136
expanded into executable schemata.

The computational mechanism postulated in the action schema theory is a planning mechanism that
bears a family resemblance to the type of mechanism sketched by VanLehn and Brown (1980). It takes
as inputs the goal of deciding the cardinality of a set, the collection of twelve action schemata, and a
setting. The setting describes the problem and the physical situation in which the problem is to be solved.
The !Arming mechanism consists of two components. The first component is a mechar,ism for backward
chaining that matches the goal against the consequences of the action schemata.26 Schemata that can
satisfy that goal are posed as potential actions in the plan. The prerequisites of those schemata are then
posed as subgoals. This process continues until all goals are satisfied either by the setting or by the
consequences of executable schemata that are included in the plan. The second component 'of the
planning mechanism is a theorem prover that decides whether a particular pre-, co-, or postrequisite is
satisfied in a particular setting by trying to prove that requisite as a theorem.

The trace of the planning m(Aanism is a graph that Greeno et. al (1984) call a planning net, with
reference to the work by VanLehn and Brown (1980). However, there is little formal resemblance
between the two types of graphs. The planning nets of VanLehn and Brown (1980) have partial
procedures as nodes. Links arc labelled with planning heuristics. The label H on the link from node N to
node M means that applying planning heuristic H to procedure N yields procedure M (see Figure 18.2,
VanLehn and Brown, 1980, p. 115). In contrast, the planning nets in Greeno et. al (1984) have action
schemata, tests, and goals as nodes, and the links are labelled as pre-, post, or co-requisities. The
meaning of, say, the prei4quiste link R from, say, action schema node A to, say, goal node G is that
obtainment of goal G satisfies prerequisite R for action A (see Figure 4, Greeno et. al, 1984, p. 119). The
two types cf graphs, although formally different, share the purpose of explaining a procedure by relating
steps to goals.

The main phenomenon investigated by Greeo et. al (1984) is the flexibility27 of childrens' counting
performances, in particular, the 'act that children can adapt their counting procedures to a variety of
settings. Flexibility of performance is explained in the action schema theory by the fact the planning
mechanism can derive different procedures for different settings from one and the same set of action

26 reeno, Riley, & Gelman (1984. p. 116.117) Incorrectly describe their mechanism as a form of means-ends analysis. However.
means-ends analysis consists of computing a difference betweena goal and a situation, and retrieving an operator that can reduce
that difference from a differenceoperator table (Ernst & Newell. 1969). The mechanism described In Greeno et. at (1984) does not
compute differences, and does not make use of a difference-operator table.

27Greeno et. at (1984, p. 122) make a distinction between f/exbility and robustness. This distinction Is not necessary for the
discussion here, so we use the term "flexibility" to cover both concepts.

August KUL-88-03 7 1988

Ohisson & Rees 63 Rational Learning

schemata. The planning mechanism does not appear to have any resources for making use of the
procedure for one setting in the derivation of a procedure for another setting; each procedure Is derived
de novo.

Since both the state constraint theory proposed here and the action schema theory by Greeno and
co-workers address the same psychological phenomenon, it ought to be possible to make a detailed
comparison between them with respect ability to account for data, clarity, simplicity, generality, etc.
However, such a comparison Is complicated by the fact that the action schema theory is not proposed as
a process theory, but as a competence theory. Greeno et. al explicitly reject any claims about the
psychological reality of the planning mechanism that they describe:

We note that we do not necessarily identify the process of derivation of planning nets as a plausible
psychological hypothesis. As with other hypotheses about competence, we restrict our claim to
psychological reality to the content of the knowledge that Is attributed to individuals and to the structures
that de implied by that knowledge. In our analysis, the relation between competence and performance
structures has the form of derivationr in which the performance structures are consequences of
competence structures, derived by a plc ,ning system. However, we ,save not tried to determine the form of
the dependence between competence and performance structures in human cognition.

((.eree:iu, Riley, & Gelman, 1984, p. 104)

We consider the content of the competence In our analysis a plausible set of hypotheses about children's
tacit knowledge, but Cie way in which the three components of competence are used in deriving planning
nets should be interpreted as a formal relation, not necessarily corresponding to cognitive mechanism:).

(Greeno, Riley, & Gelman, 1984, p. 138)

in short, the action schema theory spells out the rational connections between the counting principles,
encoded as action schemata, and the procedures that generate counting behavior, but the planning
process that generates those connections does not (necessarily) correspond to any mental process.

If the computational machinery of the actiubt schema theory Is not to be interpreted as a psychological
hypothesis, what are the empirical claims of the theory? In what respects can the theory I xa compared to
a process model such as the HS system? In the two excerpts quoted aboa Greeno et. a", claim that
children know the content of the action schemata. But the action schemata are supposed to encode the
counting prindples, so this cia!r,1 appears, at first glance, as a mere restatement of the concluslun by
Gelman and Galliatel (197t.' *-41ren know those principles.

However, inspection of the :rhamata does not support the idea that they are nothing but an
encoding of the counting principle :A F or Instance, the MATCH schema (see above) can be pa.e.phrased
as saying that If an Initially empty subset A ofa set X Is changed so as to Include more and more of X,
and If an lnfially empty subset B of an other set Y Is changed so as to always have tho same size as A,
then, when A has bevome Identical to A, B will have the same silo as X. This is a rather complicated

Augur; KUL-88-03 1988
3

Ohison & Rees 64 Rational Learning

set-theoretic theorem that cannot reasonably be said to be included among the counting principles. The
claim that children have the knowledge encoded in the action schemata is therefore a claim that they
know the counting principles plus the other principles embedded in those schemata. But the authors do
not speci:y those other principles.

Identification of which principles are encoded in the action schemata is further complicated by the fact
that principles are spread out among the schemata, and that children are not hypothesized to either know
or not know the principles:

We did not formulate a schema for understanding of order, another schema for one-to-one
correspondence, and so on. Instead, it seemed more reasonable to hypothesize schemata that represent
different aspects 01 the various principles, and often include aspects of different principles. If our analysis is
accepted, then competence for each of the principles is distributed among several schemata, rather than
being located in any single structure. This emphasizes that a child should not be considered as either
having or not having competence regarding any of the principles

(Greeno, Riley, & Gelman, 1984, p. 137)

Even if we had a list of the principles encoded in the action schemata, the evaluation of the claim that
children know those principles would still be problematic. The action schemata are hypothesized to be
known implicitly (Greeno, Riley, & Gelman, 1984, pp. 106 and 137). Hence, the claim cannot be tested by
interviewing children directly about the content of the schemata. Knowledge of the schemata must be
Inferred from observations of performance. But we do not know what to look for in children's performance,
since the action schema theory does not ,fair *, psychological reality for its process mechanisms.

However, the actin schema theory can be interpreted as making a different kind of empirical claim,
although it is not stated explicily by Green(' et. al (1984). The authors draw an analogy b,,tween their
work and the chomskyan methodology for competence theories in the study of syntax Strict
interoretation of this analogy implies that we can assign a psychological interpretation to the set ' all
counting procedures that can be generated from the action schemata with the described planning
mechanism. The theory can be interpreted as claiming that the action schemata and the planning
mechanism generate all counting procedures that competent number users would judge as correct,28 a
claim that is, in principle, empirically testable, and which can he used to compare the action schema
theory to other theories. For example, it would be interesting to compare the set of counting procedures
that can be generated by action schema theory with the set of counting procedures that can be learned
by the HS system. Greene et. al (1984, pp. 137-138) mention the possibility of deriving such a prediction
from their theory, but they do not develop it, with the motivation that there is no characterization of the set
of all possible procedures, analogous to the characterization of the set of all possible strings of symbols in
a language.

28An alternative interpretation is that they genera:a all counting procedures that humans can team.

August KUL-88-03 i-J 1988

Ohisson & Rees 65 Rational Learning

A mator difficulty in the evaluation of the implicit claim that the set of procedures that can be
generated from action schema theory coincides with the set of correct counting procedures is that the
planning mechanism postulated in that theory is not fully specified.2s The backward chaining mechanism
Is given an informal specification that appears precise enough to support implementation (Greeno et. al,
1984, p. 116-117). However, it is radically incomplete: Greeno et. al does not deal with the issue of how
to order sibling subgoals, one of the central problems for planning mechanisms. Ordering subgoals is
crucial for the derivation of even the simplest procedure. The authors themselves express doubts as to
the sufficiency of the computational mechanism they describe (see Greeno et. al, 1984, p. 116, footnote
7, and p. 122). Furthermore, the theorem prover that decides whether requisites are satisfied is not
described, even in outline. it is supposed to have access to inference rules and general propositions. An
example of a general proposition is the; objects in a straight line can be ordered, starting at one end and
proceeding fo the other (Greeno et. al, 1984, p. 118). The relation between general propositions and
action schemata is not clarified. Without a fully specified computational mechanism, the set of
procedures that can be derived from the action schemata is not well defined.

In summary, the planning net analyses of arithmetic procedures by VanLehn and Brown (1980) and
by Greeno et. al (1984) are based on the notion of constructing a procedure by successively expanding a
goal into a plan for how to achieve that goal. However, the analysis by VanLehn and Brown (1980) is not
intended as a psychological theory, but is aimed at the definition of a similarity metric for procedures. The
action schemata theory of Greeno et. at (1984) is a competence theory, and the empirical claims of the
theory are unclear. Neither analysis has been embodied in an implemented system that can generate
runnable procedures.

Simulatic.n models of empirical learning in arithmetic
Neches (1981, 1982, 1987) has described the Heuristic Procedure Modification system (HPM), a

production system architecture of learning based on the idea that significant improvements in a procedure

can be computed by noticing patterns in the (Menial trace of the procedure, patterns that indicate some
labour-saving transformation of the procedure is possible. The HPM system is based on a typology of
strategy transformations that eliminates redundancies, produces shortcuts, replaces one method with a
computationally more efficient method, etc. (Neches & Hayes, 1978). For instance, if a procedure uses a
partial result at two different points in a computation, that procedure can be improved by storing that result
when it is first computed, and retrieving it, rather than recomputing it, when it is needed the T.econd time.
In 1rder to support the detection of the triggering patterns for these strategy transformations, the HPM
architecture stores a very detailed trace of the execution of a procedure. For every expression that is
written into working memory, information is stored about the production rule that was responsible for the

The implementation status of the action schema theory of counting competence is someahflt complicated. The first published
account of the thcory (Greeno, Riley, & Gelman, 1984) mentions an implemented performance model for counting, described in
detail in Riley and Greeno (1980). This performance model, called "SC" for "Standard Counting", consists of 54 ACTP production
stiles that count correctly in four different settings. However, the computational mechanism that is supposed to derive those rules
from action schemata was vt, according to the authors. implemel^ed (footnote 8, Greeno, Riley, & Gelman. 1984, p. 116). More
recent publications (Smith, Greeno, & Vitoio, in prass: Smith & Greeno. 1983) mention an implementaiivn of the planning
mechanism in the PRISM production system language. However, no technical det61,s are given in these publications.

August KUL-88-03

70
1988

Ohisson t Rees 66 Rational Learning

creation of that expression, the conditions that led to the firing of that rule, the goal that was active when
the rule was fimd, etc. Each strategy transformation mechanism inspects this trace for the occurrence of
the type of redundancy that it is designed to deal with, and transforms the procedure accordingly.

The malor phenomenon explained by the HPM system is the discovery of the so-called MIN-strategy
for simple addition. There is evidence that children who are taught to solve simple addition problems by
combining the sets corresponding to the two addends and then counting the combined set quickly realize
that they can proceed more efficiently by initializing their counting with the larger addend, and then
counting only the elements In the smaller set (Groen & Resnick, 1977). The HPM application to this
phenomenon shows how the relevant strategy transformation can be achieved through the elimination of
redundancy (Resnick & Neches, 1984). For iestance, HPM notices that in counting the combined set, the
number corresponding to the larger addend is generated en route to the answer. Since that number can
always be retrieved from the problem statement, it is redundant to re-c-ompute it. Hence, the counting can
begin with the larger addend. The HPM system explains procedure acquisition through the application of
content-independent mechanisms to a trace of a procedure. It does not explain the role and function of
ganeral knowledge in procedure acquisition.

VanLehn (1983a, 1985a, 1985b) has described Sierra, a procedure induction system that can
generate a subtraction procedure from a set of solved examples. The main phenomenon explained by
Sierra is the multitude of bugs in children's performance on mufti- column subtraction problems. The
Sierra system outputs a set of procedures in response to a sequence of solved examples. One
explanatory principle of VanLehn's theory is that procedure induction is an intrinsically hard problem;
indeed, son* induction problems are known to be unsolvable. As a result, a procedure induced from
solved examples can be expected to be incomplete. Incomplete procedures may lead to fmpasses,
situations in which the procedure either cannot determine the next step, or finds that the preconditions for
the next step are not satisfied. A second explanatory principle of VanLehn's theory is that the learner yi!'
deal with impasses by making local changes to his/her procedure (Brown & VanLehn, 1980, 1982). He
has identified a small set of general transformations, called repairs, that a learner can apply to a
procedure in order to break out of an impasse. For instance, an impasse can be repaired by skipping the

step that cannot be carried out, or by repining it by another step. If the repairs are applied to the
procedures generated by Sierra the result is a set of buggy algorithms, i. e algorithms that solve
subtraction problems, but solve them incorrectly. The Sierra model plus the theory of repairs explain a
significant proportion of the subtraction bugs that have been observed in the performance of school
children. Neither the procedure induction mechanism nor the repair mechanism make use of arithmetic
principles.

The theory of Kurt VanLehn and co-workers is the dual of the theory produced here. They assume
that school children do not, In fact, consult principled knowledge of arithmetic in the construction of
arithmetic procedures, but learn tam by rote. The goal of their theory is to provide a computational
model of rote learning, and thereby explain the actual behavior of school children. Mathematics
educators, on the other hand, assume that school children could, in principle, team arithmetic procedures

August KUL-88.03 1988

Oh sson & Rees 67 Rational Learning

in a meaningful way. The goal of the state constraint theory is to provide a computational model of
meaningful learning, and thereby illustrate the desired behavior of school children. Obviously, these two
research efforts, although based on opposite hypotheses about learning, are complementary rather than
contradictory.

Discussion
The computer simulation technique is applied to educationally rvlevant task domains with increasing

frequency (Ohlsson, 1988a). However, in spite of this fact, and in spite of the large amount of research
devoted to the psychology and pedagogy of elementary arithmetic, only three computational models of
the acquisition of arithmetic procedures have been proposed prior to the work reported here. The two
process models--the strategy transformation model by Robert Neches and the procedure induction/repair
model by Kurt VanLohn - -both use experience-based learning techniques, and hence do not address the
question of the role ano ;unction of principled knowledge in procedural learning. The action schema
theory of counting competence does address the problem of principled knowledge, but it has not been
embodied in a runnable system that can generate behavioral predictions.

The learning of arithmetic procedures is a complex process that is unlikely to have a simple
explanation. Each of the theories reviewed address a different aspect of arithmetic teaming. A complete
model of arithmetic learning would presumably be able to plan, to detect and correct mistakes, to detect
and eliminate redundancies, to induce procedures from examples, as well as to repair a procedure in
order to break out of an impasse. The action schema theory, state constraint theory, strategy
transformation theory, and the procedure induction theory, and the repair theory are complementary
research efforts.

Other research efforts have addressed the issue of the role and function of principled knowledge in
procedure acquisition. Anderson (1982, 1983R, 1983b, 1986) have proposed the mechanism of
proceduralization, in which a declarative principle, e. g., a geometric theorem, is s4apwise contextualized
and converted into procedural form. Ohlsson (1987b) has proposed a related model that specifies tn,:.
conditions under which is meaningful to apply proceduralization. Both of these theories assume that
declarative principles occur as data-elements in working memory. The psychological interpretation of this
is that principles are known explicitly rather than implicitly. This assumption is plausible with respect to
domains like high school geometry and Lisp programming, but not with respect to the domain of counting.
Hagert (1986) has proposed a methodology for deriving procedures from abstract specifications which
bears a family resemblance to the planning net analyses, but which uses the methodology of logic
programming. Procedures are deriver' from abstract specifications through a deductive argument.
Principles of the domain appear as premises in the derivation. The notion of deriving a principle from an
abstract specification has also been investigated in software engineering (see, e. g., Balzer, 1985).
Finally, Artificial Intelligence research has invented the technique of explanation-based learning, in which
principled knowledge is used to construct an explanation why an example is an instance of a particular
concept. By collapsing the explanation into a single rule, a general recognition rule for that concept is
created without any need to consult further examples (De Jong & Mooney, 1986; Mitchell, Keller, & Kedar-

August KUL-88.03 1988

Ohisson & Rees 68

Cabelli, 1986). These learning techniques have not been applied to arithmetic.

August KUL-88-03

Rational Learning

1988

Ohisson & Rees 69 Rational Learning

General Discussion

The first subsection below summarizes the argument we have been making. In the following
subsection we state the strengths of the state constraint theory and of the HS model. Finally, we go on to
describe the major weaknesses of our theory, and the problems they pose for future work.

Summary
The research problem addressed in this report is the problem of the function of conceptual

understanding in performance and learning, with special emphasis on arithmetic learning. Mathematics
educators have proposed the Conceptual Understanding Hypothesis, which claims that if children knew
the concepts and principles of arithmetic, acquisition of computational algorithms would proceed
smoothly. If children understood what they are doing, this hypothesis claims, they could discover
procedures on their own, learned procedures would be flexible, nonsensical errors would be corrected
spontaneously, and learned procedures would easily combine to form higher-orde procedures. The
major example of knowledge-based procedure aquisition in arithmetic is the domain of counting 3°
Empirical studies have shown that children know the principles of this domain, that they can construct
correct and general procedures for counting without formal instruction, and that the learned procedures
are flexible. The per' logical hope expressed in Conceputal Understanding Hypothesis is that if we teach
children the conceptual basis of the arithmetic procedures, then the acquisition of those procedures will
proceed in the same insightful fashion.

Evaluation of the Conceptual Understanding Hypothesis requires explicit hypotheses about (a) what is
meant by understanding, the content of understanding, and how that content is represented in human
memory, and about (b) the computational mechanisms by which understanding influences performance
and procedure acquisition. The theory proposed in this report is based on the idea that understanding
enables the learner to notice and correct his/her own mistakes. According to this theory understanding
consists of principles that constrain the possible problem states. Vhe principles can guide performance,
because the system tries to avoid solution paths that violate them. Furthermore, the principles can guide
procedure acquisition, because the particular way in which a procedure violates a principle contains
information about how that procedure should be revised.

We implemented the theory in a production system architecture called HS. The structure of HS
corresponds closely to the structure of heuristic search. Production rules correspond to search heuristics,
and working memory correspond to the current search state. HS takes one step through the problem
space during each cycle of operation. The major innovation of the model is the augmentation of these
mechanisms with the state constraint representation of principled knowledge. We represent principles as
ordered pairs of patterns, where the relevance pattern circumscribes the set of situations in which a
principle is relevant, and the satisfaction pattern is a criterion which a situation has to satisfy in order to be
consistent with the principtu. The two patterns are matched against search states with the same pattern

30As we noted on page 5, this '..toneusion is not shared by all recearchers in the field.

AU:4.1W KUL-88-03 1988
ix

Ohlsson & Rees 70 Rational Learning

matcher that matches the conditions of production rules against working memory. The state constraints
influence performance in that the number of constraint violations serves as a cost variable in the
evaluation function for search states. The state constraints influence teaming in that the HS leaminp
algorithm reacts to a constraIrt violation by replacing the faulty rule with two other rules, constrained so
as to avoid producing similar constraint violations in future applications.

We reported three applications of the HS system. The first two applications reproduce the major
phenomena with respe to children's counting: Children can construct a correct and general counting
procedure without formal instruction in counting, and they can adapt the procedure to changes in the task.
The third application investigated the behavior of HS in the domain of multi-column subtraction. If HS is
given a subtraction procedure that suffers from one or more subtractidn bugs, it .;an correct those bugs
without extemal feedback, given a state constrai.1 representation of the concepts and principles of
subtraction. These three applications constitutes a substantiation of the Conceptual Understanding
Hypothesis: a leaming system that can acquire a counting procedure in an insightful way has been
demonstrated to be capable of teaming in the domain of multi-column subtraction as well.

The HS learning algorithm is a rational learning technique, because it derives a procedure from
knowledge rather than from experience. RatiJnal teaming processes have not been widely studied in
cognitive psychology, and there are few theoretical efforts to clarify them. The analyses most relevant to
-Jur work are the plannP net analyses by Van !Jahn and Brown 1980) and by Greeno, Riley, and Gelman
(1984). However, neither of these analyses attempted to provide a process model of procedure
acquisition, and neither resulted in an implemented system. There have been other attempts to formulate
learning mechanisms that make use of a declarative representation of domain knowlege, but they have
not been applied to arithmetic. The process models of procedure acquisition in arithmetic that have been
proposed are models of experience-based, rather than knowledge-based, teaming. The HS system goes
beyond previous theoretical efforts in that it presents an implemented process model of knowledge-based
procedure acquisition in arithmetic.

Strengths of the state constraint theory
The state constraint theory provides interesting and novel answers to several difficult questions with

respect to the relation between understanding and performance. It also generates qualitative predictions
which are, in principle, empirically testable. Finally, the state constraint theory fares well on other
evaluation criteria such as generality and parsimony.

interpretation Of meaningful learning

What is the difference between solving a problem correctly but blindly, and solving that same problem
correctly and with understanding? According to the state constraint theory, there is no difference in the
procedure being executed in the two situations. A procedure is just a set of dispositions to act in certain

ways under certain circumstances; it cannot be either blind or intelligent, only more or less efficient. The
theory says that understanding is present when the procedure is executed in the context of the learner's
world knowledge. Thoughtful execution consists of matching the outcomes of the procedural steps

August KUL-88-03 1988

PY 077
4

Ohisson & Rees 71 Rational Learning

against the concepts and principles of the relevant domain. Thoughtless execution, on the other hand,
consists of doing the steps without reflection on their outcomes. Hence, the exhortation "think about what
you are doing!" is slightly off-target; according to the state constraint theory, the better advice is "think
about the results of what you are doing!".

What is the nature of knowledge? Discussions about this question usualiy assume that principles are
either descriptive (e. g., "All swans are white") or predictive (e. g., "The sun will rise tomorrow"). The state
constraint theory claims that neither of these two models of principled knowledge is essential for
procedure acquisition. Instead, principled knowledge consists of constraints on the possible states o,
affairs (e. g., "You cannot withdraw more money than you have in your account bank"). Conservation
laws in physics, e. g., the principle that energy cannot be destroyed or created, are examples of
constraints, as are arithmetic principles, e. g., the laws of commutativity and associativity.

What function does knowledge have in performance? What good does it do to think about the results
of what you are doing, and how are constraint principles helpful? For every procedure there will exist
situations in which that procedure is applicable, but in which it will not produce desirable results.
Intelligent behavior therefore depends on the ability to imagine the outcomes of actions, and to weed out
the mistaken actic s before they are carried out. The function r" ,)rincipled knowlige is to enable a
person to catch and correct the mistakes that his/her procedure--any procedure- -will unavoidably make
when confronted with unfamiliar situations.

This interpretation of the function of knowledge solves two technical problems that other accounts of
the function of knowledge have been unable to deal with. The first problem concerns the effect of adding
more knowledge to the system. Humans perform and learn better and faster the more they know. But all
computational mechanisms for using knowledge proposed to date suffer from combinatorial explosions:
The more knowledge the mechanism is provided with, the slowor it will work and the less likely it is to
behave intelligently. For instance, the more action schemata the planning mechanism of Greeno, Riley,
and Gelman (1984) is supplied with, the harder the planning problem, because the more alternatives have
to be considered at each point in the planning process. In general, mechanisms that combine knowledge
unit:, into larger structures cannot explain why people function better, the larger their knowledge base.
However, according to our theory, state constraints are not combined with each other. Each state
consiraint is matched against the current search state independently of the other constraints. Hence,
there is no combinatorial explosion as the number of knowledge items grows.31

The second problem that state constraint theory deals successfully with concerns the effect of partial
knowledge. Human beings operate very well with partial knowledge; in fact, they hardly ever operate in
any other way. But most computational mechanisms for using principled knowledge cannot function if
their knowledge base is incomplete. This is a serious problem with, for instance, explanation-based

31The amount of computation required to match constraints against states grows with the number of knowledge items, but the
growth need not be exponential, or even linear (Forgy, 1982).

august KUL-88-03 1988-
71

Ohisson & Rees 72 Rational Learning

learning (De Jong & Mooney, 1986; Mitchell, Keller, & Kedar-Cabelli, 1986). In general, techniques that
build larger knowledge structures out of smaller units--an explanation, a plan, a proof, etc.--cannot
proceed if one of the units is missing. But the state constraints in our theory are not combined into
higher-order structures. If one of the constraints is missing, the system becomes less constrained, and it
will therefore have to search more. But the power of the other constraints to guide performance and
learning is not affected. We have verified that HS can use a partial set of state constraints to guide its
performance on subtraction problems.

What is the nature of the change that occurs during meaningful procedure acquisition? The state
constraint theory claims that the essence of learning with understanding is that structure is transferred
from declarative to procedural knowledge.32 When a person first confronts an unfamiliar problem
situation he/she needs to think reiard about it, because almost every action generates constraint violations.
As the procedure is gradually corrected, the state constraints need to kick into action less and less often;
execution of the procedure can he removed from reflection and becomes more mechanical. Finally, when
the procedure is correct, there is no need to consuli the state constraints in order to execute it. Hence,
the acquisition of a procedure is a process of moving from acting under the influence of knowledge to
"just doing it", as common sense would have it.

In summary, the state constraint theory locates understanding in the cognitive context within which a
procedure is executed, it az,sumes mat knowledge constrains the possible states of affairs, and it claims
that the function of understanding is to enable the learner to catch and correct his/her mistakes. The
thec ;y explains why the cognitive machinery does not suffer from combinatorial expicOon as the number
of knowledge 'terns grows, but on the contrary becomes more efficient. It also explains why humans can
operate well with partial knowledge. These two phenomena pose major difficulties for other
computational models of understanding. Finally, the theory explains the passage from reflection to action
during meaningful learning, because it claims that the learner only consults his/her knowledge, as it were,
when something goes wrong.

Oualltative predictions about behavioral phenomena

The state constraint thee makes four qualitative predictions about human behavior. First, the theory
predicts that additional teaming is required after the correct rules for a particular task have been
discovered. The reason is that the learning mechanism creates rules in pairs, each member of the pair
constraining the parent rule in a different way. When tie correct rule is created, another, probably
Incorrect, companion rule is therefore created also. At the time of creation, it is impossible to know which

of the two rules is the correct rule. HS can only identify the correct rule by evoking the rules and observe

their effects. HS gets rid of the incorrect rule by constrP!niny it until it is over-constrained, and cannot fire.
Her.cs, addition al teaming trials are necessary after tne correct rule has been created in order to get rid of
the superfluous companion rule. Those learning trials will generate errors. Hence, the theory predicts that

321n computer science terms, structure is transferred from the test (the knowledge) to the generator (the prmadure).

August KUL-88.03
77

1988

Ohlsson & Rees 73 Rational Learning

errors will necessarily occur after the correct rule has been discovered.

The Lecond prediction of the HS system concerns the interaction between knowledge and
performance. Since state constraints guide performance by assigning a cost to a search state that
violates a principle, it is possible for HS to produce incorrect solutions in the presence of a complete set of
constraints. It turns out that incorrect solution paths in the subtraction domain rse shorter than correct
paths. Hence, if the cost of a constraint violation is less than the cost of taking an extra step, HS prefers
the shorter path, even though it violates one or more constraints. We have verified that if HS is given an
incomplete subtraction procedure but a complete set of principles, it produces incorrect answers on some
subtraction problems for some settings of the cost parameters.

The third prediction derived from the state constraint theory concerns the level of difficulty of learning
a particular procedure. The theory predicts that a procedure will be easy to learn to the extent that each
step in the procedure has results that can be judged for correctness on the basis of the principles of the
domain. Counting is easy to learn according to this theory, because every step in counting either inlows
or violates the one-one mapping pi.nciple. Mistakes are therefore immediately detectable by sot. ,ne
who knows the one-one mapping principle. A procedure is hard to learn to the extent that it contains a
iarge number of steps that are not on the correct solution oath, but which nevertheless are consistent with
all the principles of that domain that the ieamer knows. In short, state constraint theory makes the
counterintuitive prediction that the largerthe number of constraints that have to be satisfied by a particular
procedure, tt 'asier that procedure is to acquire.

The fourth prediction that we discovered in the simulation runs is that the amount of cognitive effort
required to switch from task A to task B is not the same as the cognitive effort required to switch from task
B to task A. If HS learns to count objects in arbitrary order, it cen learn to take a pre-defined order into
account in a single leaming step. However, if it initially learns to count objects in a particular order,
learning to count objects when that order is not present requires several learning steps. This amounts to
a prediction that transfer between tasks will be greater in one direction than in the other. Such asymmetry
in transfer between related tasks is intuitively plausible.

Other evaluation criteria

The state constraint theory is well integrated into current cognitive theory. The theory is an extension
of the major hypothesis about problem solving to emerge in the past decades, namely that problem
solving consists of heuristic search, carried out by a ?reduction system architecture. The HS model is
build out of off-the-shelf computational mechanisms that have already been proven fruitful in explaining a
wide range of cognitive phenomena. Although the simulation runs analyzed in this report are from the
domain of arithmetic, the state constraint theory is nevertheless a general theory. The computational
mechanisms of heuristic search and of production system architectures are formulated in domain-
independent terms. They are not limited to arithmetic but can, in principle, be applied to any task domain.
The mechanism of matching state constraints against search states and counting the number of
constraint violations is a general mechanism, not limited to arithmetic. The mechanism for revising rules

August KUL-88-03 1988

Ohlsson & Rees 74 Rational Learning

in response to constraint violations is also formulated in domain-independent terms. The state constraint
theory postulates a simple computational mechanism. The constraints are compared to search states
with the same pattern matcher that compares production rules to search states. Hence, no new major
computational mechanisms had to be invented in order to augment the standard theory of problem
solving wiih the state constraint representation.

Weaknesses and future directions
The state constraint theory errs by being incomplete. There are several aspects of procedure

acquisition that it does not deal with, among them the role of experience, procedural errors, remote errors,
undetected errors, and the hierarchical organization of cognitive skills.

The state constraint theory as embodied in the HS simulation model does not explain the function of
experience in the learning of procedures. While the experience-based learning models for arithmetic
proposed by Neches (1981, 1982, 1987) and by VanLehn (1983a, 1983b, 1985a, 1985b, 1986) contain
no mechanisms by which principled knowledge can influence procedure acquisition, the HS model errs in
the opposite direction. It contains no mechanism by which procedures can be created by storing and
generalizing steps that experience has shown give the right results. HS only learns by deriving
procedures from its knowledge. But human beings obviously learn both by applying their knowledge and
by generalizing from experiences. The state constraint theory is therefore radically incomplete. It does

not describe how experience-based learning happens, nor hoW empirical and rational learning
mechanisms collaborate in the creation of procedures.

The lack of experience-based learning mechanisms prevents HS from handling purely procedural
errors, i. e., errors that cannot be described as violations of the principles of the relevt.nt domain. Such

errors will occcur under two circumstances. First, in the case of incomplete principled knowledge, there
might be errors that can, in principle, be described as principle violations, but which the system cannot, in
fact, so describe, because it does not know the relevant principle. Second, in some domains there might
be steps which are not on the correct solution path, but which are not incorrect in the sense of violating
any domain principle. For instance, in mathematical proof tets there are a large number of proof paths

which are valid, but which do not lead to the target theorem. The learning mechanism that we have
implemented for the HS model cannot correct such errors.

The state constraint theory is also unable to deal with remote errors. The assumption that all errors
violate prindpies of the domain implies a simple solution to the assignment of blame problem. If all errors

violate constraints, then it is always the last rule to fire before an error is detected that needs to be
revised. If, however, there are errors that do not violate constraints, then those errors will not be detected
at the time they are made. But they could cause constraint violations several steps later. In that case the
faulty rule fired several steps before the step in which the error was detected, and identifying the rule that

is responsible for the error is a difficult problem.

The HS model is an idealization i the sense that it does not suffer from undetected errors; it is
guaranteed to discover every violation of its constraints. Clearly, people often fail to detect the errors they

August 'CUL-88-03 1988

Ohlsson & Rees 75 Rational Learning

make. This phenomenon can be modeled in HS by assigning a probability to the pattern matching
process that compares search states with constraints. The system would then make errors that it could,
in principle, detect, but which would, in fact, go undetected on some proportion of the trials in which they
occur. There are two reasons why we have not implemented such a mechanism in the current version of
HS. The first reason is that the structure of the HS architecture implies that if the detection of constraint
violations is probabilistic, so is the matching of production rules: both processes are carried out by the
same pattern matching mechanism. Production systems with probabilistic rule matching have not been
explored, and nothing is known about how to program them.33 Hence, such a step is major: theoretical

move which is not immediately related to our main objective of understanding the role and function of
principled knowledge in procedure acquisition. The second reason is that little is gained by introducing
quantitative parameters without independent empirical grounding at this stage in the development of the
model.

The state constraint theory is also incomplete in that it does not deal with the hierarchical organization
of procedural skills. The HS learning algorithm does not create hierarchically organized procedures. As a
consequence the state constraint theory cannot explain why understanding facilitates the combination of
already learned procedures into higher-order procedures, which is one of the effects hypothesized by
adherents of the Conceptual Understanding Hypothesis. In contrast,both the planning mechanism
proposed by Greeno and co-workers (Greeno, Riley, and Gelman, 1984; Smith, Greeno, & Vitolo, in
press) deals readily with the hierarchical organization of cognitive skills, as does the model of procedure
induction proposed by VanLehn (1983a).

The weaknesses of the state constraint theory stem from its exclusive fe/Jus on errors that violate
principles of the domain. Future work will extend the knowledge-based learning mechanism described in
this report with one or more experience-based learning mechanisms. There are many ways to combine
experience-based and knowledge-based learning. For example, one possibility is to combine a planning

mechanism like the one proposed by Greeio et. al (1984) with the state constraint mechanism. Such a
system would learn by constructing an initial procedure through planning, and then revise it in the course
of execution if it turn.: out to violate principles of the domain. Many other hypotheses are possible. We do
not yet have any conclusions as to which type of combination of experience-based and learning-based
learning mechanisms is most likely to predict the details of human behavior.

Future work will move from a concern with explaining qualitative features of human behavior, such as
the ability to adapt a procedure to changes in the relevant task, to a concern with quantitative predictions.

We can, in prindpie, derive quantitative predictions from the current version of the HS model. For
instance, by running HS repeatedly on the task of learning to count, we can generate predictions about

Probabilistic matching is related to, but not Identical with, partial matching (Langley, 1983a, p. 291). In partial matching only a
part of a rule pattern has to match in order for a rule to fire. In probabilistic matching a rule will only fire on some proportion of the
cycles In which its rule pattern did match completely.

August KUL-88-03 1988

Ohlsson & Rees 76 Rational Learning

the frequency distribution of error types34 at different levels of learning. Deriving such predictions would
be premature at the present stage of development of the mode'

One might object to the work reported here that the most radical weakness in the state constraint
theory is that it does not explain where principled knowledge comes from in the first place. However, thin
objection represents a misunderstanding of the problem we set out to solve. We have tried to formulate a
theory of how knowledge of principles, once acquired, can be used in the learning of procedures; we have
not tried to explain the acquisition of principles. This way of proceeding seemingly presupposes that the
principles of a particular task domain can be known before one knows how to act in that domain, an
Intuitively implausible idea.35 However, the state constraint theory does not require that all principles are
known before procedural learning starts. This is an ideal case only. In a real learning situation we would
expect the learning of principles and the ieaming of procedures to be interleaved.

The idealization that all principles are acquired before procedural ieaming starts is appropriate for the
work reported here, because our goal was to clarify the nature of the link between understanding and
procedure acquisition hypothesized in the Conceptual Understanding Hypothesis. The pedagogical hope
expressed In that hypothesis is precisely that conceptual understanding can be the basis for procedure
acquisition. The state constraint theory is one explanation of how access to conceptual understanding
can enable a learner to discover arithmetic procedures, adapt procedures to changes in the task
environment, and self-correct nonsensical errors. Future work will address the question of how principles
are acquired.

What are the instructional implications of ti..> state constraint theory? Suppose, for the sake of the
discussion, that we decide to adopt the theory in its current form, without augmentation with additional
learning mechanisms. The theory then implies that a procedure cannot be taught by describing the steps
In the procedure to the learner. There are no mechanisms in HS that can make use of an instruction like
"first you do X, then you Y". In particular, the state constraint theory implies that it is not useful to tell a
learner who Just committed a mistake what the correct action would have been. The theory implies that
instruction should focus on the state of the problem, not on the learner's actions. In correcting an error
the instructor should help the learner to focus on the problem, and to see what is wrong with its current
state, reminding him/her of the principles of the domain, if necessary. The instructor should not tell the
learner what he/she should have done to avoid the error, but describe which state the problem ought to
be in, and leave H to the learner to figure out what action or actions would achieve that state. We are not
proposing that mathematics teachers revise their instruction in according with these implications. We are
not ready to 'derive specific recommendations for teaching from our theory until the theory has been
subject to stringent empirical tests. These admittedly speculative comments are ment to illustrate that

34There are four types of errors in counting: skipping an object. counting an object repeatedly. ,kipping a number, using a number
repeatedly, answering without having counted all objects, and continuing to generate numbers after all objects have been countrx+
thus answering with too high a number.

35Notice tha' Gelman and Mock (1983) have argued on the basis of extensive empirical shdies that this is, in fact, the case in thedomain of counting.

August KUL-88.03

81_

1988

Ohisson & Rees 77 Rational Learning

Idealized computational theories of the function of Igiderstanding in the learning of arithmetic
procedures can generate rather specific implicatic

August KUL-88.63

R.

Ohlsson & Rees 78 Rational Learning

References

Adelson, B., Burstein, M., Gentner, D., Hammond, K., Holyoak, K., Thagard, P. (1988). The role of
analogy in a theory of problem-solving. The Tenth Annual Conference of the Cognitive Science
Society (pp. 298-304). Montreal, Quebec, Canada: Eribaum.

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Eribaum.

Anderson, J. R. (1981). Cognitive skills and their acquisition. Hillsdale, NJ: Eribaum.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89, 369-406.

Anderson, J. R. (1983a). Acquisition of proof skills in geometry. in R. S. Michalski, J. G. Carbonell, &
T. M. Mitchell ,(Eds.), Machine laming: An artificial intelligence approach. Palo Alto, CA: Tioga
Publishing Co.

Anderson, J. R. (1983b). The architectu'e of cognition. Cambridge, MA: Harva:t University Press.

Anderson, J. R. (1986). Knowledge compilation: The general learning mechanism. In R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine teaming: An artificial intelligence approach (Vol. II,
pp. 289-310). Li 3 Altos, CA: Morgan Kaufmann Pub., Inc.

Anderson, J. R., Green°, J. G., Kline, P. J., & Neves, D. M. (1981). Acquisition of problem-solving skill. In
J. R. Anderson (Ed.), Cognitive skills and their acquisition. (pp. 191-230). Hillsdale, NJ: Eribaum.

t
Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, 86, 124-140.

Ashcraft, M. H. (1983). Simulating network retrieval of arithmetic facts (Tech. Report No. 1983/10).
p;t1,-?,,,,gh, PA: 1 inivercity of Pittsburgh, Learning Research and De,felopment Center.

Balzer, R. (1985). A 15 year perspective on ezPamaticv programming. IEEE Transactions on software
engineenng, SE-11(11), 1257-1268.

Baroody, A. J., & Ginsburg, H. P. (1986). The relationship between initial meaning and mechanical
knowledge of anthmetic. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of
mathematics. (pp. 75-112). Hillsdale, NJ: Erlbaum.

Bell, A. W Costello, J., & Kuchemann, D. E. (1983). A review of research in mathematical education.
Part A. Research on learning and teaching. Berks, U.K.: NFEP.-Nelson.

Bolc, L. (Ed.). (1987). Computational models of leamirtg. Berlin, Federal Republic of Germany: Springer-
Verlag.

Brainerd, C. J. (1979). The origins of the number concept. New York, NY: Praeger.

Briars, D., & Slegter, R. (1984). A `,natural analysis of preschoolers' counting knowledge. Developmental
Psychology, 20, 607-618.

Brooks, L. W., & Dansereau, D. F. (1987). Transfer of information: An instructional perspective. In
S. M. Cormier, & J. D. Hagman (Eds.), Transfer of learning: Contemporary research and
applications. New York: Academic Press.

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills.
Cognitive Science, 2, 155-192.

Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills.

August KUL-88-03 R3 1988

Ohisson & Rees 79 Rational Learning

Cognitive Science, 4, 379-426.

Brown, J. S., & VanLehn, K. (1982). Towards a generative theory of "bugs". In T. P. Carpenter, J.M.
Moser, & T. A. Romberg (Eds.), Addition and subtraction: A cognitive perspective (pp. 117-135).
Hillsdale, NJ: Eribaum.

Burton, R. (1982). Diagnosing bugs in a simple procedural skill. In D. bleeman & J S. Brown (Eds.),
Intelligent tutoring systems (pp. 157-183). Lo.,don: Academic Press.

Carbonell, J. G. (1982). Learning by analogy: Formulating and generalizing plans from past experience. In
R: S. Michalski, J. G. Carbonell & T. M. Mitchell (Eds.), Machine learning: An artificial intelligence
approach (pp. 85-111). Palo Alto, CA: Tioga Press.

Carbonell, J. G. (1983). Derivational analogy and its role in problem solving. Proceedings of the National
Conference on Artificial Intelligence (64-69). Washington, D. C.

Clark, K., & Taemlund: S. A. (Eds.). (1982). Logic programming. London: Academic Press.

Davis, R. B. (1984). Learning mathematics. The cognitive science approach to mathematics education.
Norwood, NJ: Ablex-.

Davis, R. B., & King, J. (1976). An overview of production systems. in E. W. Elcock & D. Mlchie (Eds.),
Machine intelligence (Vol. 8). New York: ,.ohn Wiley.

DeJong, G., & Mooney, R. (1986). Explanation -based learning: An alternative view. Machine Learning, z,
145-176.

Egan, D. E., & Greeno, J. G. (1973). Acquinn cognitive structure by discovery and rule learning.
Journal of Educational Psychology, 64, 85-97.

Ernst, G. W., & Newell, A. (1969). GPS: A case study in generality and problem solving. New York:
Academic Press.

Feynman, R. (1965). The character of physical law. Cambridge, MA: The M.S.T. Press.

Forgy, C. L. (1982). Rete: A fast algorithm for the many pattem/many object pattern match problem.
Artificial Intelligence, 19, 17-37.

Fuson, K. C., & Hall. J. W. (1983). The acquisition of il/ number word meanings: A conceptual analysis
and review. in H. P. Ginsburg (Ed.), The development of mathematical thinking (pp. 49-107).
London, UK: Academic Press.

Galambos, J. A., Abelson, R. P., & Rink, J. B. (Eds.). (1986). Knowledge structures. Hillsdale, NJ:
Eribaum.

Gelman, R., & Gailistel, C. R. (1978). The child's understanding of number. Cambriege, MA: Harvard
University Press.

Gelman, R., & Meck, E. (1983). Preschoolers' counting: Principle before skill. Cognition, 13, 343-359.

Gelman, R., & Meck, E. (1986). The notion of principle: The case of counting.
Conceptual ano procedural knowledge: The case of mathematics (pp.
Eribaum.

Gelman, R., Meck, E., & Merkin, s. (1986). Young children's numerical
Development, 1, 1-29.

August KUL.88-03

In J. H. Hiebert (Ed.),
29-37). Hillsdale, NJ:

competence. Cognitive

1988

Ohisson & Rees 80 Rational Learning

Gantner, (1987). Analogical inference and analogical access (Report No. UIUCDCS-R-87-1365).
Urbana: University of Illinois at Urbana-C iampaign, Dept. of Computer Science.

Greeno, J. G. (1978). Understanding and procedural knowledge ir, mathematics instruction. Educational
Psychologist, 12, 262-283.

Greens, J. G. (1983). Forms of understanding in mathematical problem solving. In S. Paris,
G. M. Olson & H. W. Stevenson (Eds.), 1.carring and motivation in the classroom (pp. 83-111).
Hillsdale, NJ: Eribaum.

Greeno, J. G., Riley, M. S., & Gelman, R. (1984). conceptual competence and children's counting.
Cognitive Psychology, 16, 94-143.

Groen, G., & Resnick, L. (1977). Can preschool children invent addition algorithms? Journal of
Educational Psychology, 69(6), 645-652.

Groner, R., Groner, M., & Bischof, W. F. (Eds.). (1983). Methods of heuristics. Hillsdale, Erlbaum.

Hagert, G. (1986). Logic modeling of conceptual structures: Steps towards a computational theory of
reasoning (Doctoral dissertation, Uppsala University, 1986). Uppsala Thesis in Computing Science,
3/86.

Hayes-Roth, F., Klahr, P., & Mostow, D. J. (1941). Advice taking and knowledge refinement: An iterative
view of skill acquisition. In J. 1. Anderson (Ed.), Cognitive skills and their acquisition (pp. 231 -253).
Hillsdale, NJ: Erlbaum.

Hiebert, J. (Ed.). (1986). Conceptua! and procedural knowledge: The%-..se of mathematics. Hillsdale, NJ:
Eribaum.

Hebert, J., & Weame, D. (1986). Pm :edures over concepts: The acquisition of dedmr! number
knc'iledge. In J. Hiebert (Ed.), uvdceptual and procedural knowledge: The case of mathematics
(pp. 199-223). Hillsdale, NJ: Eribaum.

Kiion, G. E. (1987). Connectionist teaming procedures (Tech. Report No. CMU-CS-87- :15). Pittsburgh,
PA: Carnegie-Mellon University, Pep,. of Computer Science.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference,
learning, Id discovery. Cambridge, MA: The MIT Press.

Holyoak, K. J. (1984). Analogical thinking and human intelligence. In R. J. Sternberg (Ed.), Advances in
the psychology of human intelligence (Vol. 2). Hillsdale, NJ: Eribaum.

Jones, R., & Langley, P. (1988). A theory of scientific problem solving. The Tenth Annual Cooferent;e of
the Cognitive Science Society (op. 244-250). Montreal, Quebec, Canada: Eribaum.

Katona, G. (1967). Organizing and mo.aorizing: Studies ;n the psychology of learning and teaching. New
York: Hafner Pub. Co.

Klahr, D., Langley, P., & Neches, R. (Eds.). (1987). Pmdiction system models of learning and
dmalopment. Cambridge, MA: The MIT Press.

Kotovsky, K., Hayes, J. R., & Simon, H. A. (1985). Why are some problems hard? Evidence from tower of
Hanoi. Cognitive Science, 17, 248-294.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Universal subgoaling and chunking: The automat, .

generation and learning of goal hierarchies. Boston, MA: Kluwer.

August KUL-88-03 1988

Ohlsson & Rees 81 Rational Learning

Langley, P. (1983a). Exploring the space of cognitive architectures.
Instrumentation, 15(2), 289-299.

Langley, P. (1983b). Learning search strategies through discrimination
Machine Studies, 18, 513-541.

Langley, P. (1985). Learning to search: From weak methods to domain-specific heuristics. CognitiveScience, 9, 217-260.

Behavior Research Methods &

. International Journal of Man-

Langley, P. (1987). A general theory of discrimination learning. In D. Klahr, P. Langley, & R. Neches
(Eds.), Production system models c` learning and development (pp. 99-161). Cambridge, M6t: TheMIT Press.

Langley, P., Wogulis, J., & Ohlsson, S. (in press). Rules and principles in cognitive diagnosis. InN. Frederiksen (Ed.), Diagnostic monitorinr skill and knowiedge acquisitio,.. Hillsdale, NJ:Eribaum.

Mayer, R. E., Stiehl, C. C., & Greeno, J. G. (1975). Acquisition of understanding and skill in relation tosubjects' preparation and meaningfulness of instruction. Journal of Educational Psychology, 67,331-350.

Michener, E. R. (1978). Understanding understanding mathematics. Cognitive Science, 2, 361-383.

Mitchell, 1'. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization: A unifying
view. Machine Learning, 1, 47-80.

Moore, J. & Newell, A. (1974). How can Merlin unders;.and? In L. W. Gregg (Ed.), Knowledge andcognition. Potomac, MD: Earibaum.

Neches, R. T. (1981). A computational formalism for heuristic procedure modification. Proceedings of the
Seventh International Joint Co;grerence on Artificial Intelligence (pp. 283-288). Vancouver, BritishColumbia, Canada.

Neches, R. (1982). Simulation systems for cognitive psychology. Behavior Research Methods &
Instrumentatior, 14(2), 77-91.

Neches, R. (1987). Learning through incremental refinement of procedures. In D. Klahr, P. Langley, &R. Neches (Eds.), Production system models of learning and development. Cambridge, MA: TheMIT Press.

Neches, R., & Hayes, J. R. (1978). Progress towards taxonomy of strategy transformations. In
A. M. Lesgold, J. W. Pellegrino, S. Fokkema & R. Glaser (Eds.), Cognitive psychology and
instruction. New York: Plenum Books,

Nect as, R., Langley, P., & Kiehl', D. (1987). Learning, development, and production systems. In D. Klahr,P. Langley, & R. Neches (Eds.), Production system models of learning at^d development (pp. 1-53).
Cambridge, MR: The MIT Press.

N9imark, E. R., & Estes, W. K. (Eds.). (1967). Stimulus sampling theory. San Francisco, CA: Holf!en-Dag.

Neves, D. M., & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the automatization of
cognitive skills. in J. R. Anderson (C. I.), Cognitive skills and their acquisition (pp. 57-84). Hillsdale,NJ: Eribaum.

Newell, A. (1966). On the analyfs of human aobiem solving protocols (Research Grant No.MH-07 22-22). Pittsburgh, PA: Camegie-Mellon University, Dept. of Computer Science.

August KUL813-03 F(0 1nR8

Ohlsson & Rees 82 Rational Learning

Newell, A. (1972). A theoretical exploration of mechanisms for coding the stimulus. In A. W. Melton &
E. Martin (Eds.), Coding processes in human memory. Washington, D. C.: Winston.

Newell, A. (1973). Production systems: Models of control structures. In W. G. Chase (Ed.), Visual
information processing (pp.463-526). New \ :Ik: Academic Press.

Newell, A. (1980). Reasoning, problem solving and decision processes: The problem space as a
fundamental category. In R. Nickerson (Ed.), Attention and performance VIII. Hillsdale, NJ:
abaum.

Newell, A., & Simon, H. A. (1959). The simulation of human thought (Report No. P-1734). Santa Monica,
CA: The Rand Corporation, Mathematics Division.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall, Inc.

Nilsson, N. J. (1971). Problem-solving methods in artificial intelligence. New York: McGraw-Hill.

ONsson, S. (1983). A constrained mechanism for procedural learning. Proceedings of the Eighth
ntematinnal Joint Conference on Artificial Intelligence (pp. 42; Kadsruhe, Federal Republic

of Germany.

Ohlsson, S. (1986). Rational vs. empirical learning. In H. J. Kugler (Ed.), Information Processing (p. 841).
North, Holland: Elsevier Science Publishers.

Ohisson, S. (1987a). Transfer of training in procedural learning: A matter of conjectures and refutations'
In L. Bolo (Ed.), Computational models of learning (pp. 55-88). Berlin, Federal Republic cif
Germany: Springer-Verlag.

Ohlsson. S. (1987b). Truth versus appropriatanaqq Re:!afing declarative p--"ol nwied i1/4ge. n
D. Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development
(pp. 287-327). Cambridge, MA: The MIT Press.

Ohisson, S. (1988). Computer simulation and its impact on educational research and practice.
International Journal of Educational Research, 12, 6-12. Oxford: Pergamon Press.

Ohlsson, S., & Langley, P. (1985). Identifying solution paths in cognitive diagnosis (Tech. Report CMU-RI-
TR-85-2). Pittsburgh, PA: Carnegie-Mellon University, The Robotics Institute.

Ohlsson, S., & Langley, P. (1988). Psychological evaluation of path hypotheses in cognitive diagnosis. In
H. Mandl, & A. Lesgold (Eds.), Learning issues for intelligent tutoring systems. New York: Springer-
Verlag.

Ohis5on, S., & Rees, E. (1987). Rational learning: Deriving arithmetic procedures from state constraints
(Tech. Repoit No. KUL-87-04). Pittsburgh, PA: University of Pittsburgh, Learning Reseamh and
Development Center.

Patel, V. L., & Groen, G. J. (1986). Knowledge based solution strategies in medial reasoning. Cognitive
Sdence, 1(41) 91-116

Pearl, J. (1984). Heuristics: Intelligent search strategies for computer problem solving. Reading, MA:
Addison-Wesley Pub. Co.

Piaget, J.11959). The child's conception of number. London, UK: Routiedge & Kegan Paul.

Resnick, L. B. (1983). A developmental theory of number understanding. In H.P. Ginsburg (Ed.), The
development of mathematical thinking (pp.109-151). New York: Academic Press.

August KUL -88 -J3 R? 1988

Ohisson & Rees 83 Rational Learning

Resnick, L. B. (1984). Beyond error analysis: The role of understanding in elementary school arithmetic.
In H. N. Cheek (Ed.), Diagnostic and prescriptive mathematics: Issues, ideas, and insights (pp.
2-14). Kent, OH: Research Council for Diagnostic and Prescriptive Mathematics.

Resnick, L. B.. & Ford, W. W. (1981). The psychology of mathematics for instruction, Hillsdale, NJ:
Erlbaurr

Resnick, L. B., & lieches, R. (1981). Factors affecting individual differences in learning ability. In
R. J. Stemberg (Ed.), Advances in the psychology of human intelligence (Vol. 2, pp. 275-323).
Hillsdale, NJ: Eribaum.

Resnick, L. B., & Omanson, G. F. (1987). Learning to understand arithmetic. In R. Glaser (Ed.),
Advances in instructional psychology (Vol. 3, pp. 41-95). Hillsdale, NJ: Eribaum.

Riley, M. S., & Greeno, J. G. (1980). Details of programming a model of children's counting in ACTP
(Tech. Report No. 6). Pittsburgh: University of Pittsburgh, Learning Research and Development
Center.

Romberg, T. A. & Carpenter, T. P. (1986). Research on teaching and learning mathematics: Two
disciplines of scientific inquiry. in M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed.,
pp. 850-873). New York: MacMillan.

Rumelhart, 0. E., & Norman, D. A. (1981). Analog! - :al processes in learning. In J. R. Anderson (Ed.),
Cognitive skills and their acquisition (pp. 335-369). Hillsdale, NJ: Eribaum.

Schank, R. C. (1986). Explanation patterns. Understanding mechanically and creatively. Hillsdale, Id
Etibaum.

Rnhilarlfafri A H (108s). MAlhAmAtMA! nr .ism crWing. ririonfin, Fi A.f.arh,rnic Press.

Silver, E. A. (Ed.). (1985). Teaching and learning mathematical problem solving: Multiple research
perspectives. Hillsdale, NJ: Eribaum.

Silver, E. (19'36). Using conceptual -end procedural knowledge: A focus on relationships. In J. Hiebert
(Ed.), Conceptual and procedural knowledge: The case of mathe-aatics (pp. 181-198). Hillsdale,
NJ: Eribaum.

Smith, D. A., & Greeno, J. G. (1983). Implicit understanding and competence: A theoretical analysis of
procedural and utilizationai competence, Paper presented at the meeting of the Cognitive Science
Society, Rochester, NY.

Smith, D. A., Greeno, J. G., & Vitolo, T. M., (in press). A model of competence for counting. Cognitive
Science.

VanLehn, K. (1983a). Felicity conditions ior human skill acquisition: Validating an Aiuased theory (Tech.
Report No. CIS-21). Palo Alto, CA: Xerox PARC.

VanLehn, K. (1983b). On the representation of procedures in repair theory. in H. P. Ginsburg (Ed.), The
development of mathematical thinking (pp. 201-252). New York: AcademicPress.

VanLehn, K. (1985a). Acquiring procedural mills from lesson sequences (Tech. Report No. ISL-9). Palo
Alto, CA: Xerox PARC.

VanLehn, K. (1985b). Learning one subprocedure per lesson (Tech. Report No. ISL-10). Palo Alto, CA:
Xerox PARC.

VariLehn, K. (1985c). Theory reform caused by an argumentation tool (Tech. Report No. !SL -19). Palo

At:gust KUL-88.03 1988

Ohlsson & Rees 84 Rational Learning

Alto, CA: Xerox PARC.

VanLehn, K. (1986). Arithmetic procedures are induced from examples. In J. H. Hebert (Ed.),
Conceptual and procedural knowledge: The case of rlathernatics (pp. 133-179). Hillsdale, NJ:
Erlbaum.

VanLehn, K., & Brown, J. S. (1980). Planning nets: A representation for formalizing analcgies and
semantic models of procedural skills. In R. E. Snow, P. A. Federico, & W. E. Montague (Eds.),
Aptitude, learning, and instruction: Vol. 2. Cognitive process analyses and problem solving (pp.
95-137). Hillsdale, NJ: Erlbaum.

VanLehn, K., Brown, J. S., & Greeno, . (1982). Competitive argumentation in computational iheories of
cognition (Report No. CIS-14). Palo Alto, CA: Xerox PARC.

Winograd, T. (1975). Frame representations and the declarative /procedural controversy. In D. G. Bobrow
& A. Collins (Ede', Representation and understanding. Studies in i :ognitive science (pp. 185-210).
New York: Academic Press.

Young, R. M., & O'Shea, T. (1981). Errors in children's subtraction. Cognitive Science, 5, 153-177.

August KUL.88-03

t
z.

1988

Ohlsson & Rees 85 Rational Learning

KUL Reports

1985

Ohlsson, S., & Langley, P. (April, 1985). Psycho lc, ical evaluation of path hypotheses in cognitive
diagnosis (Technical Report No. 1985,2). Pittsburgh: Learning Research and Development Center,
University of Pittsburgh.

1986

Ohlsson, S. (January, 1986). Some principles of intelligent tutoring (Technical Report No. 1986/2).
Pittsburgh: Learning Research and Development Center. University of Pittsburgh.

Ohlsson, S. (June, 1986). Computer simulation and its impact on educational research and practice
(Technical Report No. 1986/14). Pittsburgh: Learning Research and Development Center,
University of Pittsburgh.

Ohlsson, S. (October, 1986). Sense and reference in the design of interactive illustrations for rational
numbers (Technical Report No. 1986/18). Pittsburgh: Learning Research and Development
Center, University of Pittsburgh.

1987

Ohlsson, S. (ApnI, 1987). A semantics for fraction concepts (Technical Report No. KUL-87-01).
Pittsburgh: Learning Research and Development Center, University of Pittsburgh.

Ohlsson, S. (September, 1937). Trace analysis and spatial reasoning: An example of intensive cognitive
diagnosis and its implications for testing (Technical Report No. KUL-87-02). Pittsburgh: Learning
Research and Dee:opment Centor, University of Pittsburgh.

Ohlsson, S., Nicholas, S., & Bee, N. (December, 1987). Interactive illustrations for fractions: A progress
mart (Technical Report No. KUL-87-03). Pittsburgh: Leaming Research and Development
Center, University of Pittsburgh.

Ohlsson, S., & Rees, E. (December, 1987). Rational learning: Deriving arithmetic procedures from state
constraints (Tecnnical Report No. KUL-87-04). Pittsburgh: Learning Research and Development
Center, University of Pittsburgh.

1988

Ohlsson, S. (February, 1988). Mathematical meaning and applicatiunal meaning in the semantics for
fractions and related concepts (Technical Repur No. KUL-88-01). Pittsburgh: Learning Research
and Development Center, University of Pittsburgh.

Ohlsson, S. (March, 1988). Principled understanding of addition ana subtraction (Technical Report No.
KUL-88-02). Pittsburgh: Learning Research and Development Center, University of Pittsburgh.

August KUL-88-03 1988

Ohlsson & Rees 86 Rational Learning

Ohlsson, S., & Rees, E. (August, 1988). An information processing analysis of the function of conceptual
undarstanding in the learning of arithmetic procedures (Technical Report No. KUL-88-03).
Pittsburgh: Learning Research and Development Center, University of Pittsburgh.

August KUL-88-03 1988

ONR Distribution List

ACKERMAN PHILLIP !..
Dr. Phillip L. Ackerman
University of Minnesota
Department of Psychology
75 East River Road
N218 Elliott Mall
Minneapolis, MN 55455

AFHRL/MPD
Air Force Human
Resources Lab

AFHRL/MPD
Brooks, AFB, TX 78235

AFOSR LIFE SCIENCES
AFOSR,

Life Sciences Directorate
Bolling Air Force Base
Washington, DC 20332

AHLERS ROBERT
Dr. Robert Ahlers
Code N711
Human Factors Laboratory
Naval Training Systems Center
Orlando, FL 32813

ANI,ZESON JORU R
Dr. John R. Anderson
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

ARI TECHNICAL DIRECTOR
Technical Director, ARI
5001 Eisenhower Avenue
Alexandria, VA 22333

BAGGETT PATRICIA
Dr. Patricia Haggett
School of Education
610 E. University, Rm 1302D
University of nichigan
Ann Arbor, MI 48109-1259

BAKER FVA L
Dr. Eva L. Baker
UCLA Center for the Study

of Evaluation
145 Moore Hall
University of Califor.lim
Los Angeles, CA 90024

BAKER MERYL
Or. Meryl S. Baker
Navy Personnel R&D Center
San Diego, CA 92152-6800

BAMBER DONALD E
Dr. Donald E. Bamber
Code 41
Ilavy Personnel R 6 D Center
San Diego, CA 92152-6800

BART WILLIAM M
.Dr. William M. Bart
University of Minnesota'
Dept. of Educ. Psychology
330 Burton Hall
.178 Pillsbury Dr., S.E.
Minneapolis, MN 55455

BEjAR ISAAC
Dr. Isaac Bejar
Mail Stop: 10-R
Educational Testing Service
Rosedale Road
Princeton, NJ 08341

92

BLACK JOHN
Dr. John Black
Teachers College, Box 8
Columbia University
525 West 120th Street
New York, NY 10027

BOCK R DARRKLL
Dr. R. Darrell Bock
University of Chicago
NORC
6030 South Ellis
chicago, IL 60637

BONAR JEFF
Dr. Jeff Boner
Learning RAD Center
University of Pittsburgh
Pittsburgh, PA t5260

BREAUX ROBERT
Dr. Robert Breaux
Code 7B
Naval Training Systems Center
Orlando, FL 32813-7100

BROWN ANU
Dr. Ann Brown
Center for the Study of Reading
University of Illinois
51 Gcrty Drive
Champaign, IL 61280

BROWN JOHN S
Dr. John S. Brown
XEROX Palo Alto Research

Center
3333 Coyote Road
Palo Alto, CA 94304

BRUER JOHN T
Dr. John T. Bruer
James S. McDonnell Foundation
Suite 10.0
1034 South Brentwood Blvd.
St. Louis, MO C3117

BUCHANAN BRUCE
Dr. Bruce Buchanan
Computer Science Department

Stanford University

St.inford, CA 94305

BURNS HUGH
LT COL Hugh Burns
AFHRL/IDI
Brooks AFB, TX 78235

CAREY SUSAN
Dr. Susan Carey
Department of Cognitive
and Neural Science

MIT
Cambridge, MA. 02139

CARPENTER PAT
Dr. Pat Carpenter
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

CHARNEY DAVIDA
Dr. Davida Charney
English Department
Penn State University
University Park, PA 16802

CHI MICHELENE
Dr. Michelene Chi
Learning R fi D Center
University of Pittsburgh
3939 O'Hara Street
044.4.eas21,..gh ph 1c9gn

CLANCEY WILLIAM
Dr. William Clancey
Intitute for Research
on Learning

3333 Coyote Hill Road
?alo Alto, CA 94304

CNET N-5
Assistant Chief of Staff

for Research, Development,
Test, and Evaluation

Naval Education and
Training Command (N-5)

NAS Pensacola, FL 32508

COLLINS ALLAN M
Dr. Allan M. Collins
Bolt Beranek 4 Newman, Inc.
10 Moulton street
Cambridge, HA 02238

COLLYER STANLEY
Dr. Stanley Collyer
Office of Naval Technology
Code 222
800 N. Quincy Street
Arlington, VA 22217-5000

CORBETT ALBERT T
Dr. Albert T. Corbett
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

CI 2

2

. CTB/MCGRAW-HILL LIBRARY
CTB/McGraw-Hill Library
2500 Garden Road
Monterey, CA 93940

CZICHON CARY
Dr. Cary Czichon
Intelligent Instructional Systems
Texas Instruments AI Lab
P.O. Box 660246
'Dallas, TX 75266

DALLMAN BRIAN
Brian Dallman
Training Technology Branch
3400 TCHTW/TTGXC
Lowry AFB, CO 80230-5000

LERRY SHARON
Dr. Sharon Derry
Florida State University
Department of Psychology
Tallahassee, FL 32306

DTIC
Defense Technical

Information Center
Cameron Station, Bldg 5
Alexandria, VA 22314
Attn: TC
(12 Copier)

DURAN RICHARD
Dr. Richard Duran
Graduate School of Education
University of California
Santa Barbara, CA 93106

ELLIS JOHN
Dr. John Ellis
Navy Personnel R&D Center
Code 51
San Diego, CA 92252

EMBRETSON SUSAN
Dr. Susan Embretson
University of Xan:%..i
Psychology Department
426 Fraser
Lawrence, KS 66045

ERIC
ERIC Facility-Acquisitions
4350 East-West Hwy., Suite 1100
Bethesda, MD 20814-4475

FARR MARSHALL J
Dr. Marshall J, Farr, Consultant
Cognitive 6 Instructional Sciences
2520 North Vernon Street
Arlington, VA 22207

FEDER/CO PAT-ANTHONY
Dr. P-A. Federico
Code 51

NPRDC
.San Ditto, CA 92152-6800

FELTOV7CH PAUL
Dr. Paul Feltovich
Southern Illinois University
School of Medicine
Medical Education Department
TI.O. Box 3926
Springfield, wIL 62708

FEURZEIG WALLACE
Mr. Wallace Feurzeig
Educational Technology
Bolt Beranek & Newman
10 Moulton St.
Cambridge, MA 02238

FLOWER LINDA -

Dr. Linda Flower
Carnegie - Mellon University
Department of English
Pittsburgh, PA 15213

FORBUS KENNETH
Dr. Kenneth D Forbus
University of Illinois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

FOX BARBARA A
Dr. Barbara A. Fox
University of Colorado
Department of Linguistics
Boulder, CO 80309

FREDERIKSEN CARL
Dr. Carl H. Frederiksen
Dept. of Educational Psychology
McGill University
3700 McTavish Street
Montreal, Quebec
CANADA H3A 1Y2

FREDERTnSEN JOHN R
Dr. John R. Frederiksen
BBN Laboratories
10 Moulton Street
Cambridge, MA 02238

FREDERIKSEN NORMAN
Dr. Norman Frederiks*n
Educational Testing Service
(05-R)
Princeton, NJ 08541

GENTNER DEDRE
Dr. Dedre Gentner
University of Illinois
Department of Psychology
503 E. Daniel St.
Champaign, IL 61820

GIBBONS ROBERT 0
Dr. Robert D. Gittons
Illinois State Psychiatric Inst.

.Rm 529W
1601 W. Taylor Street
Chicago, IL 60612

3

GINSBURG HERBERT
Dr. Herbert Ginsburg
Box 184
Teachers College
Columbia University
525 West 121st Street
New York, NY 10027

GLASER ROBERT
Dr. Robert Glaser
Learning Research

Development Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

GLENBERG ARTHUR M
Dr. Arthur M. Glenberg
University of Wisconsin
N. J. Brogdn ?sychology Bldg.
1202 W. Johr:doz Street
Madison, WI 53716

GOLDMAN SUSAN
Dr. Susan R. Goldman
Dept. of Education
University of California
Santa Barbara, CA 93106

GOTT SHERRIE
Dr. Sherrie Gott
AFHRL/MOMJ
Brooks AFB, TX 78235-5601

GOVINDARAJ T
Dr. T. Govindaraj
Georgia. Institute of

Technology
School of Industrial
and Systems Engineering

Atlanta, GA 30332-0205

GRAY WAYNE
Dr. Wayne Gray
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

GREEN BERT
Dr. Bert Green
Johns Hopkins University
Department of Psychology
Charles & 34th Street
Baltimore, MD 21218

GREENO JAMES G
Dr. James G. Greeno
School oi.Education
Stanford University
Room 311
Stanford, CA 94305

94

HAERTEL EDWARD
Prof. Edward Haertel
School of Education
Stanford University
Stanford, CA 94305

HAMBLETON RONALD K
Dr. Ronald K. Hambleton
University of Massachusetts
Laboratory of Psychometric
and Evaluative Research

Hills South, Room 152
Amherst, MA 01003

HANNAPEL RAY
Dr. Ray Hannapel
Scientific and Engineering

Personnel anc: Education
National Science Foundation
Washington, DC 20550

HARVEY WAYNE
Dr. Wayne Harvey
Center for Learning Technology
Education Development Center
55 Chapel Street
Newton, MA 02160

HAYES JOHN R
Dr. John R. Hayes
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

HOLLAND MELISSA
Dr. Melissa Holland
Army Research Institute for the

Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

HOLYOAK NEITH
Dr. Keith Holyoak
Department of Psychology
University of California
Los Angeles, CA 90024

HUTCHINS F)
Dr. E' 4utchins
Intelligent Systems Group
Institute for

Cognitive Science (C-"15)
UCSD
La-::olle. CA in093

JACKSON JANET
Dr. Janet Jackson
Rijksuniversiteit Groningen
Biologisch Centrum, Vleugel D
Kerklaan 30, 9751 NN Haren
The NETHERLANDS

JANNARONE ROBERT
Dr. Robert Jannarone
Elec. and Computer Eng. Dept.
University of South Carolina
Columbia, SC 29208

JANVIER CLAUDE
Dr. Claude Janvier
Universite' du Quebec a Montreal
P.O. Box 8888, succ: A"
Montreal, Quebec H3C 3P8
CANADA

JEFFRIES ROBIN
Dr. Robin Jeffries
Hewlett-Packard Laboratories, 3L
P.O. Box 10490
Palo Alto, CA 94303-0971

JONES DOUGLAS H
Dr. Douglas H. Jones
Thatcher Jones Associates
P.O. Box 6640
0 Trafalgar Court

Lawrenceville, NJ 08648

JUST MARCEL
Dr. Marcel Just
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

KATZ MILTON S
Dr. Milton S. Katz
European Science Coordination
Office

U.S. Army Research Institute
Box 65
FPO New York 09510-1500

KELLOGG WENDY
Dr. Wendy Kellogg
IBM T. J. Watson Research Ctr.
P.O. Box 704
Yorktown Heights, NY 10590

KIBLER DENNIS
Dr. Dennis Kibler
University of California
Department of Information

and Computer Science
Irvine, CA 92717

KIERAS DAVID
Dr. David Kieras
Technical Communication Program
TIDAL Bldg., 2360 Bonisteel Blvd.
University of Michigan
Ann Artar, MI 48109-2108

KINCAID J PETER
Dr. J. Peter Kincaid
Army Research Tnstitute
Orlando Field Unit
c/o PM TRADE-E
Orlando, FL 32813

KINTSCH WALTER
,Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80309-0345

KLAHR DAVID
Dr. David Klahr
Carnegie-Mellon Univer3ity
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

KOTOVSKY KENNETH
Dr. Kenneth Kotovsky
Community College of

Allegheny County
808 Ridge Avenue
Pittsburgh, PA 15212

KRANTZ DAVID H
Dr. David H. Krantz
Department of Psychology
Columbia University
:406 Schermerhorn Hall
New York, NY. 10027

KYLLONEN PATRICK
Dr. Patrick Kyllonen
Institute for Behavioral
Research

Graduate Studies Bldg.
University of Georgia
Athens, GA 30602

LANGLEY PAT
Dr. Pat Langley
University of California
Department of InTormation

&nd Computer Science
I:rvine, CA 92717

LARKIN JILL
Dr. Jill Larkin
Carnegie-Mellon University
Department of Psychology
Pittsburgh, PA 15213

LAVE JEAN
Dr. Jean Lave
Institute for Research
on Learning

3333 Coyote Hill Road
Palo Alto, CA 92304

LAWLER ROBERT
Dr. Robert W. Lawler
Matthews 118
Purdue University
West Lafayette, IN 47907

LESGOLD ALAN
Dr. Alan M. Lesgold
Learning R&D Center
University of Pittsburgh
PIttsburgn, PA 15260

9 ,3

5

LEV/N JAMES
Dr. Jim Levin
Department of

Educational Psychology
210 Education Building
1310 South Sixth Street
Champaign, IL 61820-6990

LEVINE JOHN
Dr. John Levine,
Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

4..EVINE MICHAEL
Dr. Michael Levine
Educational Psychology
210 Education Eldg.
University of Illinois
Champaign, IL 61801

LEWIS CLAYTON
Dr. Clayton Lewis
University of Colorado
Department of 7omputer Science
Campus Bolt 130
Boulder, CU X0309

LEWIS MATT
Matt Lewis
Department of .Y4ychology
Carnegie-Mellon Universivy
Pittsburgh, PA 15213

NTSC
Library
Naval Training Systems r:enter
Orlando, FL 32813

LIBRARY NW;
Library
Naval War College
Newport, RI 02940

LIBRARY OF CONGRESS
Science and Technology Division
Library of Congress
Washington, DC 20540

LINN MARCIA C
Dr. Marcia C. Lin,.
Graduate School

of Education, EMST
Tolman Hall
University of California
Berkeley, CA 94720

LINN ROBERT L
Dr. Robert L. Linn
Campus Box 249
University of Colorado
Boulder, CO 80309-0249

MALOY WILLIAM. L
-r. William L. Malov
Naval Education and Training
,Program Support Activity
Code 047
Building 2435
Pensacola, FL 32509-5000

MARSHALL UNDRA P
Dr. Sandra P. Marshall
Dept. of Psychology
San Diego State University
San Diego, CA 92182

MAYER RICHARD
Dr. Richard E. Mayer
Department of Psychology
University of California
Santa Barbara, CA 93106

MCBRIDE JAMES R
Dr. James R. McBride
The Psychological Corporation
1250 Sixth Avenue
San Diego: CA 92101

MCDONALD BARBARA
Dr. Barbara McDonald
Navy Personnel R&D Center
San Diego, CA 92152-6800

MCLACHLAN JOSEPH C
Dr. Joseph C. McLachlan
Code 52
Navy Personnel R&D Center
San Diego, CA 92152-6800

MCMICHAEL JAMES
Dr. James McMichael
Technical Directs
Navy Personnel R&D Center
San Diego, CA 92152-6800

MEANS BARBARA
Dr. Barbara Means
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

MESTRE JOSE
Dr. Jose Mestre
Department of Physics
Hasbrouck Laboratory
University of Massachusetts
Amherst, MA 01003

MILLER GEORGE A
Dr. George A. Miller
Dept. of Psychology
Green Hall
Princeton University
Princeton, NJ 08540

MISLEVY ROBERT
Dr. Robert Mislevy
Educational Testing Service
Princeton, 'NJ 08541

MOLNAR ANDREW R
.Dr. Andrew R. Molnar
Applic. of Advanced Technology
Science and Engr Education
National Science Foundation
Washington, DC 20550

n .44

6

MONTAGUE WILLIAM
Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

MUNRO ALLEN
Dr. Allen Munro
Zehavioral Technology

Laboratories - USC
1845 S. Elena Ave., 4th Floor
Redondo Beach, CA 90277

NISBETT RICHARD E
Dr. Richard E. Nisbett
University of Michigan
Institute for Social Research
Room 5261
Ann Arbor, MI 48109

NORMAN DONALD A
Dr. Donald A. Norman
C-015
Institute for Cognitive Science
University of California
La Jolla, CA 92093

NPRDC 01A
Deputy Technical Director
NPRDC Code 01A.
San Diego, CA 92152-6800

NPRDC 05
Director, Training Laboratory,

NPRDC (Code 05)
San Diego, CA 92152-5800

NPRDC 06
Director, Manpower and Personnel

Laboratory,
NPRDC (Code 06)

San Diego, CA 92152-6800

NPRDC 07
Director, Human Factors

& Organizational Systems Lab,
NPRDC (Code 07)

San Diego, CA 92152-6800

NPRDC LIBRARY
Library, NPRDC
Code P201L
San Diego, CA 92152-6800

NPRDC TECHNICAL DIRECTOR
Technical Director
Navy Personnel R&D Center
San Diego, CA 92152-6800

NRL CCDE 2627
Commanding Officer,

. Naval Research Laboratory
Code 2627
Washington, DC 20390

O'NEIL HARRY F
Dr. Harold F. O'Neil, Jr.
School of Education - WPH 801
Department of Educational

Psychology & Technology
University of Southern California
Los Angeles, CA 90089-0031

ORLSSON'STELLAN
Dr. Stellan Ohlsson
Learning R & D Center
University of Pittsburgh
Pittsburgh, PA 15260

ONR CODE 1142
Office of Naval Research,

Code 1142
800 N. Quincy St.
Arlington, VA 22217-5000

ONR CODE 1142BI
Office of Naval Research,
Code 1142BI

:800 N. Quincy Street
Arlington, VA. 22217-5000

ONR CODE 1142CS
Office of Naval Research,

Code 1142CS
800 N. Quincy Street
Arlington, VA 22217-5000
(6 Copies)

ONR CODE 1142PS
Office of Naval Research,

Code 1142PS
800 N. Quincy Street
Arlington, VA 22217-5000

ONR LONDON
psychologist
Office of Naval Research

Branch Office, London
Box 39
FPO New York, NY 09510

ONR MARINE CORPS
Special Assistant for Marine

Corps Matters,
ONR Code 00MC

800 N. Quincy St.
Arlington, VA 22217-5000

ORASANU JUDITH
Dr. Judith Orasanu
Basic Research Office
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

PAULSON jAME3

Dr. James Paulson
Department of Psychology
Portland State University
P.O. Box 751
Portland, OR 97207

PEARCE DOUGLAS
Dr. Douglas Pearce
1133 Sheppard W
Box 2000
Downsview, Oatario
CANADA M3H 3B9

PENTAGON TRAINING & PERSONNEL TECHNOLOGY
Military Assistant for Training and

Personnel Technology,
OUSD OR & E)

Room 3D129, The Pentagon
Washington, DC 20301-3080

PEREZ RAY S
Dr. Ray S. Perez
ARI (PERI-II)
5001 Eisenhower Avenue
Alexandria, VA 22333

PERKINS DAVID N
Dr. David N. Perkins
Project Zero
Harvard Graduate School
of Education

7 Appian Way
Cambridge, MA 02138

PERRY NANCY N
Dr. Nancy N. Perry
Naval Education and Training
Program Support Activity
Code-047
Building 2435
Pensacola, FL 32509-5000

PIROLLI PETER
Dr. Peter Pirolli
School of Education
University of California
Berkeley, CA 94720

PLOMP TJEERD
Dr. Tjeerd Plomp
Twente University of Technology
Department of Education
P.O. Box 217
7500 AE ENSCHEDE
THE NETHERLANDS

POLSON MARTHA
Dr. Martha Polson
Department of Psychology
University of Colorado
Boulder, CO 80309-0345

PSOTKA JOSEPH
Dr. Joseph Psotka
ATTN: PER/-IC
Army Research Institute
5001 Eisenhower Ave.
.Alexandria, VA 22333-5600

RECKASE MARK D
Dr. Mark D. Reckase
ACT
P. O. Box 168
Iowa City, IA 52243

REDER STEVE
Dr. Steve Reder
Northwest negional

Educational Laboratory
400 Lindsay Bldg.
710 S.W. Second Ave.
Portland, OR 97204

REIF FRED
Dr. Fred Reif
Physics Department
University of California
Berkeley, CA 94720

RESNICK LAUREN
Dr. Lauren Resnick
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh PA 15213

RICHARDSCJ J JEFFREY
Dr. J. Jeffrey Richardson
Center for Applied AI
College of Business
University of Colorado
Boulder, CO 80309-0419

RISSLAND EDWINA L
Dr. Edwina L. Rissland
Dept. of Computer and

Information Science
University of Massachusetts
Amherst, MA 01003

ROBERTS LINDA G
Dr. Linda G. Roberts
Science, Education, and

Transportation Program
Office of Technology Assessment
Congress of the United States
Washington, DC 20510

RUBIN DONALD
Dr. Donald Rubin
Statistics Department
Science Center, Room 608
1 Oxford Street
Harvard University
Calfbridge, MA 02136

SAMEJIMA FUMIXO
Dr. -umiko Same)ima
Department of Psychology
University of Tennessee
3108 Austin Keay Bldg
Knoxville, Ti 3791E .100

D

8

SCHANK ROGER
Dr. Roger Schank
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

SCHOENFELD ALAN H
Dr. Alan H. Schoenfeld
University of California
Department of Education
Berkeley, CA 94720

SCHOFIELD JANET W
Dr. Janet W. Schofield
816 LRDC Building
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

SEGAL JUDITH W
Dr. Judith W. Segal
OERI
555 New Jersey Ave., NW
Washington, DC 20208

SEIFERT COLLEEN M
Dr. Colleen M. Seifert
Institute for Cognitive Science
Mail Cods C-015
University of California, San Diego
La Jolla, CA 92093

SHULMAN LEE S
Dr. Lee S. Shulman
School of Education
507 Ceras
Stanford University
Stanford, CA 94305-3084

SIEGLER ROBERT S
Dr. Robert S. Siegler
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

SILVER EDWARD
Dr. Edward Silver
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

SIMON HERBERT A
Dr. Herbert A. Simon
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

SLEEMAN DEREK
Dr. Derek Sleeman
Computing Science Department
King's College
Old Aberdeen AB9 2UB
.Scotland
UNITED KINGDOM

SNOW RICHARD
Dr. Richard E. Snow
School of Education
Stanford University
Stanford, CA 94305

SOLOWAY ELLIOT
Dr. Elliot Soloway
Yale University
Computer Science Department
P.O. Box 2158
New Haven, CT 06520

SORENSEN RICHARD C
Cr. Richard C. Sorensen
Navy Personnel R&D Center
San Diego, CA 92152-6800

SPECKMAN PAUL
Dr. Paul Speckman
University of Missouri
Department of Statistics
Columbia, MO 65201

STEARNS MARIAN
Dr. Marian Stearns
SRI International
333 Ravenswood Ave.
Room B-5124
Menlo Park, CA 94025

STERNBERG ROBERT J
Dr. Robert J. Sternberg
Department of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

STEVENS ALBERT
Dr. Albert Stevens
Bolt Beranek & Newman, Inc.
10 Moulton St.
Cambridge, MA 02238

STICHT THOMAS
Dr. Thomas Sticht
Applied Behavioral and
Cognitive Sciences, Inc.

P.O. Box G640
San Diego, CA 92106

'SUPPES PATRICK
Dr. Patrick Suppes
Stanford University
Institute for MatLematical

Studies in the Social Sciences
Stanford, CA 94305-4115

SWAMTNATHAH HARIHARAN
U. Haiiharan Swaminathan
Laboratory of Psychometric and

Evaluation Research
School of Education
.University of Massachusetts
Amherst, MA 01003

100

SYMPSON BRAD
Mr. Brad Sympson
Navy Personnel R&D Center
Code-62
San Diego, CA 92152-6800

TANGNEY JOHN
Dr. John Tangney
AFOSR/NL, Bldg. 410
Bolling AFB, DC 20332-6448

TATSUOKA =KUM'
Dr. Kikumi Tatsuoka
CERL
252 Engineering Research

Laboratory
103 S.,Mathews Avenue
Urbana, IL 61801

TAYLOR M MARTIN
Dr. M. Martin Taylor
DCIEM
Box 20006
Downsview, Ontario
CANADA M321 3B9

THORNDYKE PERRY W
Dr. Perry W. Thorndyke
FMC Corporation
Central Engineering Labs
1205 Coleman Avenue, Box 580
Santa Clara, CA 95052

TOWNE DOUGLAS
Dr. Douglas Towne
Behavioral Technology Labs
University of Southern California
1845 S. Elena Ave.
Redondo Beach, CA 90277

TSUTAKAWA ROBERT
Dr. Robert Tsutakawa
University of Missouri
Department of Statistics
222 Math. Sciences Bldg.
Columbia, MO 65211

TWOHIG PAUL T
Dr. Paul T. Twohig
Army Research Institute
5001 Eisenhower Avenue
ATTN: PERI-RL
Alexandria, VA 22333-560Q

TYER ZITA E
Dr. Zita E. Tyer
Department of Psychology
George Mason University
4400 University Drive
Fairfax, VA 22030

USMC HQ
Headquarters, U. S. Marine Corps
-Cone MPI-20
Washington, DC 20380

9

VALE DAVID
Dr. David Vale
Assessment Systems Corp.
2233 University Avenue
Suite 440
St. Paul, MN 55114

VAN LEHN KURT
Dr. Kurt Van Leh:
Department of Psychology
Carnegie-Mellon University
Schenley Park
Pittsburgh, PA 15213

WANG MING-MEI
Dz. Ming-Mei Wang
Lindquist Center

for Measurement
University of Iowa
Iowa City, IA 52242

WARREN BETH
Dr. Beth Warren
BBN Laboratories, Inc.
10 Moulton Street
Cambridge, MA 02238

WHITE BARBARA
Dr. Barbara White
BBN Laboratories
10 Moulton Street
Cambridge, MA 02238

WING HILDA
Dr. Hilda Wing
NRC MH-176
2101 Constitution Ave.
Washington, DC 20418

WISHER ROBERT A
Dr. Robert A. Wisher
U.S. Army Institute for the

Behavioral and Sccial Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333-5600

WISKOFF MARTIN F
Dr. Martin F. Wiskoff
Defense Manpower Data Center
550 Camino El Estero

Suite 200
Monterey, CA 93943-3231

WITTROCK MERLIN C
Dr., Merlin C. Wittrock
Graduate School of Education
UCLA
Los Angeles, CA 90024

WOLFE JOHN H
:Ir. John H. Wolfe
Navy Personnel R&D Center

San Diego, CA 92152-6P00

WONG GEORGE,
Dr. George Wong
Biostatistics Laboratory
Memorial Sloan-Kettering

Cancer Center
1275 York Avenue
New York, NY 10021

WULFECK WALLACE
Dr. Wallace Wulfeck, III
Navy Personnel R&D Center
Code 51
San Diego, CA 92152-6800

YAZDANI MASOUD
Dr. Masoud Yazdani
Dept. of Computer Science
University of Exeter
Prince of Wales Road
Exeter EX44PT
ENGLAND

YOUNG DR JOSEPH L
Dr. Joseph L. Young
National Science Foundation
Room 320
1800 G Street, N.W.
Washington, DC 20550

101

10

