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PREFACE

The 1988 PCTM Yearbook MATHEMATICS FOR THE CLASS Gi:
2000 is the fourth yearbook to be developed and distributed to the
membership of the Pennsylvania Council of Teachers of Mathematics.
The theme was chosen to be congruent with that chosen for the 37th
annual meeting of the organization.

The articles in MATHEMATICS FOR THE CLASS OF 2000 focus on
critical issues regarding goals for school mathematics and related issues,
perspectives, ideas and strategies that should be of interest to elementary
teachers, secondary and college mathematics teachers, teacher edu-
cators, mathematics supervisors, and curriculum coordinators as they
strive to review and improve existing mathematics programs. The articles
were written by teachers and researchers from basic and higher education
who responded to a call for manuscripts which was sent to all PCTM
members in Spring, 1987.

Considerable thanks go to a number of people for their important
contributions to the 1988 Yearbook. The ten manuscript reviewers (listed
on page iv) shared their insights about the manuscripts that were sub-
mitted for consideration and offered many suggestions which were used
in the editing process. Glen Blume and Kathleen Heid made significant
contributions to the editorial process as we worked to produce a high-
quality yearbook. Suzanne Harpster at Penn State also provided valuable
editorial assistance. The authors of the manuscripts deserveconsiderable
credit for taking the initiati -, and the time to place their ideas in front of
their peers. The commerciut and institutional advertisers also deserve
thanks for their willingness to invest theirmoney by buying space in the
yearbook. Last but not least, the PCTM Executive Board deserves credit
for its continuing support of the efforts of the Publications Committee.

The co-editors and associate editors were glad to have had the oppor-
tunity to work on the 1988 PCTM Yearbook. We hope that the readers will
carefully read the articles and implement the ideas that are relevant for
them. We invite response from the readers, authors, and advertisers.

Robert F. Nicely, Jr.
The Pennsylvania State University
1988 Yearbook Co-Editor
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SOME CONCERNS ABOUT THE AMERICAN
FUTURE

Charles L. Hos ler
The Pennsylvania State University

Americans like to win!
If any one worn characterizes the American it might be corn-

pztitiveness. It permeates almost every facet of our national lives and is
often the bane of our international friends and foes alike. The competitive
spirit has been largely responsible for the great strength and achievement
of this countrY.

Our political structure was designed to foster competition. The struggle
between parties, judicial, legislative, and executive bra ches, states,
individuals, and ideas has not abated in over two hundred years. Our
legal system is adversarial; our commerce is market based; our schoolsare
competitive; in sports we divide ourselves by every geographic and
institutional delineation conceivable and struggle as if our very lives
depended upon it It, therefore, seems to be a great contradiction to infer
that in some areas of our economy we are no longer competiti ire.

Considerable time could be spent listing and debating the areas in
which we can and cannot currently compete. The list of reasons or
excuses would include tax policies, the value of the dollar, the regulatory
environment, encourage.nent of capital formation, natural resources,
cost of labor, management skills, leadership, and the like. Although one
could argue about the relative importance of these and other factors
inherent to our economy, there seems to be no disagreement about one
related group of elements that play a strong role in economic com-
petitiveness. Education, research, and the rapidity of conversion of
research to products and processes are not only important now, but
promise to become increasingly important in the future. This is true not
only in the United States but in the entire world.

We, in the U.S., represent only about five percent of the population of
the world, but we are a distillation from all of the world's people who
wanted an outlet for their energy, drive and ambition and overcame
various barriers to get here. Our people represent a rich resource because
of their diversity in cultural background. We also have the most diverse
set of educational insututions in the world, and these institutions are
relatively accessible and available, across the spectrum of our population.
For a century the relatively easy access to our educational establishment
has transformed the sons and daughters of downtrodden peasants into
leaders of industry and government and members of university faculties
and national academies.

Our population, our educational institutions, and the intellectual



2 Concerns About the Future

property they generate are basic resources. If we do nothing else to assure
that we are competitive in a global economy, we must invest heavily to
ensure the quality and accessinility of our educational establishment and
the continuous generation of new knowledge. Our concern must he at
every level of education.

Although we have developeda large portion of the intellectual poten-
tial of our nation, we will have to do better Our competitors are about to
surpass us at what we have, up until now, done best. Adaptation to
change and innovation in the work place will proceed in proportion to th,
level of education of every worker and supervisor involved. One has only
to look at, or try to work in, some of the lesser developed countries to
realize that Ph.D.'s and sophisticated equipment gets one nowhere if the
entire work force is not sophisticated enough to be receptive to new ideas,
to maintain and repair the equipment or even to read the instruction
manuals. Even in the U S. the ignorance of both the public and pol-
icymakers stands in the way of improvements in the quality of life. Some
of the most promising areas of science, such as biotechnology, may find
their utility in improving the human condition greatly hampered by
general scientific illiteracy.

The popular press has been filled with alarms about the quality of our
entire educational system. Equally alarming are some projections into the
future if one feels that high-quality scientists and engineers are an
essential ingredient in remaining competitive, or if one is concerned that
only an informed public can make good policy decisions. There are some
demographic facts and some cultural characteristics extant in America
which raise questions about our future technological potential. Despite
our focus on scientists and engineers, one must realize that politics,
finance, management, arts and humanities all contribute to political
stability, competitiveness, and the quality of life. However, at this mo-
ment, science and engineering appear to represent future problems
which require immediate attention.

The first essential bit of information is that, as a result of low birth rates
in the U.S. population in general, the number of 22-year-old Americans
pe aked in 1983 and will fall rather steadily between now and the year
2000. This will decrease the crime rate, but it also will reduce by one
million per year the pool from which college students are drawn and from
which young scientists and engineers are recruited. In addition to con-
cern over the drop in total numbers is the fact that of the pool that will be
available, a larger proportion will be in racial and ethnic groups whose
participation rate has been historically low. By the year 2020, 30 percent of
the young population will be black or hispanic. The black and hispanic
rate of participation in obtaining B.S. degrees in science and engineering
is 14 per thousand as oppised to 56 per thousand for whites and Asians.
The fastest growing pool of youths has the lowest participation rate in

10



Charles L. Hos ler 3

college and the highest dropout rate from high school, and of those who
finish high school, this same group is least likely to study mathematics
and science. The latter two facts mean that the pool of young people that
represents a g._ wing proportion of the shrinking total pool of 22-year-
olds is rendering itself ineligible to provide its share of the science and
engineering students in college This ineligibility stems largely from lack
of mathematics. These same individuals will be hampered from playing a
constructive role in decision making in a technologically oriented world.

One could assume that the market will clear and that, as shortages
occur, attractive salaries will cause more people to choose science and
engineering careers and to study mathematics in high school to prepare
themselves for those careers. To some extent this may occur, but changes
it the rates of choosing science and engineering historically have shown
fluctuations only on the order of 10 percent, whereas to simply supply
engineers and scientists at the 1984 rate would .require a 40 percent
increase in the rate of entry in view of the decline in the number of
22-year-olds. Since a growing proportion of the population will be tra-
ditional nonparticipants, the probability th It any historical increase can
be quadrupled is highly unlikely. To stay t., en at the 1984 production rate
of scientists and engineers will require that wP quadruple the rate of
participation of blacks and hispanics from 14 to 56 per thousand or double
the rate of female participation from 28 to 56 per thousand. If participation
rates remain as they are today the demographic de "ne will result in a
cumulative shortfall of approximately 600,000 scientists and engineers by
the year 200u. It is hard to conceive of a scenario which will require
600,000 fewer scientists and engineers in the year 2000.

In addition to the anticipated decline in the number of B.S. engineers
and scientists, we face a projected demand for doubling of the number of
Ph.D. researchers and faculty by the nd of the century. Since 1972 the
number of American Ph.D.'s in science and engineering has been de-
clining in absolute numbers and in percent of degrees awarded. The
percent of science and engineering baccalaureates receiving Ph.D.'s
seven years later has declined from 11.5 percent in 1972 to 6 percent in
1984. Declines are evident in bosh the sciences and in engineering, with
engineering showing the greatest decline. Fifty-five percent of all engi-
neering doctorates and from 20 to 60 percent of doctorates in other areas
of science and mathematics are awarded to foreign students. Fortunately,
more than half of these remain in the U.S., contributing strc ngly to our
research and educational programs. In any event, there will be a severe
shortage of Ph.D.'s by 1995, not only in science and engineering but in all
fields.

We must promote quality education at all levels of the educational
enterprise. We mast enforce sufficient discipline on the system to ensure
that mathematics, physics, chemistry and biology are taught to every

11



4 Concerns About the Future

high school student capable of benefiting from them. An educational
system in which 14- and 15-year-olds are given options to find an easy
way through high school, or worse yet, drop out of school, will not enable
the U.S. to maintain its status in the world and could lead to Third World
status in a generation. By giving options early in secondary education, we
have removed options atter high school and rendered most of our popu-
lation ineligible and unprepared for the careers that will enable them to
earn a living and the Nation to survive. It is not just a matter of creating
more scien.ists and engineers, but of creating a citizenry capable of
playing an informed and constructive role in a democratic nation that
employs science and technology. It matters not whether that role is
creative, legislative or administrative, or as a spectator and voter, tech-
nological literacy is a sine qua non.

Even :f we assure that all citizens have the opportunity to achieve their
highest intellectual potential, the enterprises will fall short of survival
unless we accelerate our rate of support for research, and see to it that
new knowledge is brought to bear in the marketplace.

Industry today employs 600,000 research scientists and engineer;. The
education and research of these 600,000 valued employees was made
possible largely through industy- and government-sponsored research
grants and contracts to Ame.:ca's universities.

The rigor of our precollege educational system and the quality and
accessibility of American universities are fundamental ingredients in the
health of American business and industry and in maintaining the spiri
tual, material, and political well-being of our citizenry. The quality of
science and engineering, in particular, portends to be fundamental to our
well-being ch mestically and our competitiveness internationally. How-
ever, there !lust be some very rapid changes in patterns of basic edu-
cation of young people in America, if science and engineeringare to be
options when university study is contemplated, and if general tech-
nological literacy is to be improved. This translates into increased par -
ticipaticn of all students in training in mathematics. Without substantial
shifts of talent into science and engineering today, and this requires high
quality and early training in mathematics, the next generation could well
find itself in a less developed country.

Given a superior and diverse educational system with high accessibility
and a high rate of investment in research, together with strong university-
ir.dustry-government collaboration, we will be able to innovate, invent,
and convert our new knowledge to products and processes at rates that
keep our nation secure in its economic strength, and we can assure the
security, political freedom and quality of life of our citizens for gener-
at'ons to come. We must all labor together knowing that enlightenment
through education and research is the surest path to peace and prosperity
for all people.

12
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CHANGE FOR ELEMENTARY SCHOOL
MATHEMATICS

David R. Marchand
Clarion University of Pennsylvania Venango Campus

While society has changed significantly in the past several years, there
has been very little change in the elementary school mathematics cur-
riculum since the turn of the century. A declining interest in mathematics,
particularly at the elementary school level, has no doubt been caused by
what we teach and how we teach it. The constant paper-and-pencil,
drill-and-practice approach to teaching mathematics has not been effec-
tive in gaining and maintaining student interest as once it might have
been. Students need not look far in their own environment to see that
skill at pencil-and-paper arithmetic is no longer a valuable skill. At all
levels what is important in mathematics has changed. However, the m. s'
significant changes have occurred in arithmetic. These changes include
the use of technology and the resulting importance of estimation and
mental arithmetic.

We must take advantage of the computational tools provided by cur-
rent calculator-computer technology. Since no evidence exists that ap-
propriate knowledge of arithmetic can be developed better by paper-and-
pencil than by use of modem computational devices, calculator-computer
technology can be used to make the learning of arithmetic less tedious
and more interesting. In the past, those students who could not master
computational skills were severely limited when developing problem-
solving skills, and had virtually no chance for future success in math-
ematics. For those who were able to develop computational skills, using
arithmetic eventually became a boring and menial task. It is true that
possession of computational skills does not guarantee the acquisition of
problem-solving skills, but no student should be excluded from studying
some areas of the curriculum due to difficulty with other. (It should be
noted that calculators and computers will not replace conceptual knowl-
edge or mathematical insight. They only replace rote algorithmic
calculations.)

Student use of hand-held calculators removes the computation obstacle
from problem solving and allows students to focus on a variety of
thinking skills. This enables students to "do mathematics." Students can
begin to think of problem solving as a process in which solutions often
result from exploring situations, guessing-and-checking, stating and
restating questions, and developing and applying strategies over a period
of time.

Curriculum revision should be an ongoing process that reflects both
present and future needs of society. The fact that pencil-and-paper

15



8 Change for Elementary Mathematics

computation traditionally has been part A :he mathematics curriculum is
not a sufficient reason to keep it there. Although single-digit number facts
are still important, as are number facts involving powers of ten, part of the
time previously spent on complicated pencil-and-paper computations
should be focused on mental arithmetic, rounding, estimation and ap-
proximation. Students should be taught to distinguish aituations in
which calculators are appropriate aids to computation from those in
which mental arithmetic, estimation, or pencil-and-paper computations
are more appropriate.

Use of the calculator should be integrated throughout the mathematics
curriculum beginning at the kindergarten level. However, the calculator
should not be used merely to check answers. The calculator can be used as
a device to help students explore and learn mathematics. Models for a
calculator-integrated mathematics curriculum are being developed at
both the skate and national levels. The Pennsylvania Department of
Education, with the assistance of PCTM, is working on d model for such a
curriculum. The questions regarding how and when to use calculators are
being answered. lso, publications that provide calculator activities to
help students learn mathematics are becor ling available. How to Teach
Mathematics Using A Calculator (Coburn, 1987), is one such publication
available from the National Council of Teachers of Mathematics.

A portion of the time previously spent on the development of paper-
and-pencil skills should be devoted to interpretation and representation
of data and the statistics which accompany data. The constant bom-
bardment in the press and on TV by graphs, charts, tables and the
references to data analysis and statistics makes these topics important to
current and future citizens. Informal geometry also can be a more sig-
nificant part of the elementary school mathematics curriculum if less time
is spent on paper-and-pencil computation.

No curricular change can be successful without congruence among the
written, taught and tested curricula. A written curriculum based on
textbooks that emphasize the use of technology, estimation and mental
computation can be successful only if the taught and tested curricula
reflect similar emphases. As long as standardized tests forbid the use of
calculators, teachers are likely to retain the traditional paper-and-pencil
arithmetic curriculum. Finally, any significant curricular change must
gain the support of teachers, administrators and the citizens of the
community which is served. If such support is available, the elementary
mathematics curriculum can be changed to emphasize mathematics that
is important for the Class of 2000.

REFERENCES
"Calculators." Arithmetic Teacher (Focus Issue) 34(February 1987)
Coburn, Terrance. How To Teach Mathematics Using A Calcula,or, National Council of

Teachers of Mathematics, Reston, VA: 1987.
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tember 1986). 22-23.

Pagnoni, Mario Computers and Sinai! Fries, Wayne, New Jersey Avery Publishing Group
Inc., 1987

Reys, Barbara. "Estimation and Mental Computation: It's 'About' Time." Arithmetic
Teacher 34(September 1986). 22-23.

Ryoti, Don. "Using the Computer to Explore Division Results " Arithmetic Teacher 34(Oc-
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THE CURRENT STATUS OF
CALCULUS COURSES IN

PENNSYLVANIA HIGH SCHOOLS

Paul Wilson
Central Bucks High School East

Imagine an educational system that identifies its brightest math stu-
dents before they enter high school, plans a mathematics program so that
these students will take calculus in their final year of high school, and
then encourages students to begin their study of mathematics at the
college level with a repeat of calculus. The problem with such a system
seems obvious; why would math educators want a system where the best
and brightest math students take the same course twice? As undesirable
as this may seem it appears to be the system that we have in the state of
Pennsylvania.

Background
A single-variable calculuscourse is now well-established in the twelfth

grade at many secondary schools throughout the country and in the state
of Pennsylvania. The number of students taking the AP calculus exam-
ination nationwide (a small portion of those taking high school calculus)
grew by almost 150 percent between 1978 and 1984 (CEEB, 1974; CEEB,
1984). In Pennsylvania 380 of 501 school districts offered a calculus course
to 12,997 students in 1984 (Pennsylvania Departmentof Education, 1986).
While this number is small relative to all high school seniors, it represents
many of the mathematically talented students.

The Mathematical Association of America (MAA) and the National
Council of Teachers of Mathematics (NCTM) have identified three types
of high school calculuscourses, two which seem to have an "undesirable"
impact on students who later take calculus in college.

The first type is a one semester or partial year course that presents the
highlights of calculus, including an intuitive look at the main concepts
and a few applications and makes no attempt to be a complete course in
the subject.

The second type of course is a year-long course that does not deal in
depth with the concepts, covers no proofs or rigorous derivations, and
emphasizes mechanics over understanding.

The third type is a college-level calculus course, with the expectation
that a substantial majority of the students taking the course will master
the material and will not then repeat thesubject in college. The Advanced
Placement program offers a nationally accepted syllabus and a nation-
wide mechanism for obtaining advanced placement. The MAA and

19



12 Status of Calculus Courses

NCTM strongly recommend that high schools adopt this curriculum for
their calculus courses (MAA 1986).

The problems associated with these t;'pes of calculus courses have been
documented in studies by O'Dell (1983), McKillip (1965), and Neatrour
and Mullenex (1973).

O'Dell (1983) compared college achievement in Calculus I of students
with no high school calculus to the achievement of those who have
studied calculus at the high school level. The study found no significant
difference between those who studied calculus for two semesters in high
school and those who had no high school calculus. Students with no high
school calculus out-performed those students who had taken a semester
calculus course in high school. McKillip (1965) found students having one
semester of calculus in high school did not earn better grades in the first
semester of college calculus than students who had no high school
calculus. Neatrour and Mullenex (1973) found that in the state of Virginia
56 percent of the high school calculus students took the course over in
college, despite the fact that from the student's point of view the high
school course compared favorably with the college course. These studies
found no significant difference in achievement between students who
had studied calculus at the high school level and students who had no
high school calculus experience with respect to their performance in the
Calculus I course taken at the college level.

The drawbacks to the first two types of calculus courses would include:
lack of adequate preparation for the rigors of college mathematics, inad-
equate preparation to pass the Advanced Placement examination or a
college administered proficiency exam (MAA, 1986), and encouragement
of inappropriate attitudes and inadequate motivation in high school
students. Students learn to view their twelfth-grade calculus course as an
introduction to calculus with the expectation of repeating the material in
college.

Recent Research
During the fall of 1986, a survey was constructed to determine how and

toward what purpose calculus was being taught to the high school
students in the state of Pennsylvania. A pilot study was designed and
survey forms were mailed to the calculus teachers in a large suburban
county-wide school system in Maryland. Subsequently, the survey was
revised based on the recommendations of the 18 (of 31) calculus teachers
who returned the survey. The revised survey was mailed to all public
school districts in Pennsylvania that reported that they taught calculus
during the 1984-85 school year. Of the 380 surveys that were distributed,
121 (32 percent) were returned.

The survey categories and purpose of each category were as follows:
1. To look for differences in the topics which are taught in high school
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calculus courses The course outline section of the survey contained
a list of 86 subtopics that were grouped under nine topic headings;
properties of functions, circular functions, limits, exponential and
logarithmic functions, matrices, derivatives, integration, sequences
and series, and elementary differential equations. Teacher responses
consisted of information about the amount of time devoted to each
topic, opportunity to learn particular subtopics, and the sources for
presentations, ideas and problems.

2. To look for differences in the conditionsunder which calculus is taught
This includes data on classroom conditions and the intent of

students to seek advanced placement.
3. To look for differences in teaching materials used in high school

calculus Questions were directed at finding out primary and sec-
ondary resources used by teachers to teach the topics and subtopics
which comprise the calculus curriculum.

4. To look for differences in backgrounds of calculus teachers Ques-
tions were asked about teachers' educational background, years of
experience, years of calculus teaching experience and membership in
professional organizations.

5. To look for differences and similarities in the advanced placement
syllabus and the high school calculus courses taught in Pennsylvania

Does there seem to be a difference between the content of the high
school calculus course and the college calculus course?

The examination of the data generated by this survey has revealed the
following picture. The Pennsylvania high school calculus courses that
were reviewed are taught by experienced teachers who have been teach-
ing for an average of 20 years and have taught calculus for 11 of those
years. Students in the Pennsylvania high school calculus classes that were
surveyed do not spend as much time in calculus class as do their United
States counterparts. The Pennsylvania high school classes surveyed
reported spending 135 hours (180 days x 45 min. per class, on the
average); the United States calculus classes surveyed in the SIMS stu-
dents spend on the average 150 hours (Crosswhite, et al , 1986, p. 175).

Pennsylvania high school calculus teachers perceive the textbook as the
primary source for determining the calculus curriculum. Within the
parameters established by the textbook, teachers exercise considerable
judgment regarding the subtopics that are covered within a particular
topic and the time spent cn those subtopics. This judgment, exercised by
teachers, creates many different calculuscurricula and courses among the
respondents to the survey.

Many of the subtopics which are a part of the calculus syllabus, teachers
report, are taught in courses prerequisite to calculus. This is especially
true in the topics of properties of functions and circular functions. To a
lesser extent this is also true in the topics of limits and exponential and
logarithmic functions.
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14 Status of Calculus Courses

Whether a particular topic is being taught for the first time in calculus or
is being retaught in calculus does not have an effect on the number of class
periods devoted to teaching that topic. Teachers are spending the same
number of periods reteaching these topics in calculus as the teachers who
are teaching these topics in calculus for the first time. Teachers report
spending 20 percent of the calculus class periods reteaching material
taught in a course prerequisite to calculus.

Eighty-four percent of the teachers indicated that they believed that
their students were taking calculus in high school so that they would be
better prepared to take it in college. This teacher perception is not
supported by student perceptions that are reported in other studies
(O'Dell, 1983; McKillip, 1965; Neatrour & Mullenex, 1973).

A difference was found between_ courses offered to classes where
teachers believed the primary reason their students were taking calculus
was to seek advanced placement in college and classes where students
were planning on retaking calculus in college. Calculus courses where
students were seeking advanced placement credit taught students a
greater number of calculus subtopics, especially in the areas of circular
functions, derivatives and integration.

The implication seems to be that Pennsylvania high school calculus
students and teachers feel the purpose of high school calculus is to
prepare for "college" calculus. The result in many cases is a course which
leaves out many subtopics that would be a part of a college calculus
syllabus and spends a significant amount of time reteaching material that
is taught in a course prerequisite to calculus. The data from the survey
also indicate that iany teachers are spending more periods teaching the
algorithmic subto2ics in calculus and smaller numbers of teachers are
teaching the subtopics that deal with concepts, derivations and proof.
Moreover, those teachers are not spending as many periods teaching
those conceptual subtopics.

This would seem to be in conflict with the 1987 MAA and NCTM
assertions that high schools are doing their students a disservice by
offering them a year-long course that does not deal in depth with con-
cepts, covers no proofs or rigorous derivations, and emphasizes mechan-
ics over understanding.

Implications
It seems then that many Pennsylvania high schools are offering stu-

dents a calculus course that does not measure up to the standards of a
college-level calculus course and are subsequently not preparing their
students to seek advanced placement at the college level. Thus, a situ-
ation is created where academically capable students must repeat a year
of mathematics because their high school courses have not provided them
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with the necessary background to continue to the next level of
mathematics.

Pennsylvania high schools need to examine the goals of the calculus
courses they are offering to their mathematically able students. If ad-
vanced placement is the goal, then the course content and coverage
should be broad enough and in enough depth to prepare students to
achieve this goal. If advanced placement is not ti:P goal, then schools
would be wise to establish a meaningful course for these mathematically
able students that will not have to be repeated.
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Technology A Force for Change

Terry W. Baylor
Milton Hershey School

The changes in computing technology that take place between now and
the year 2000 will dramatically affect many facets of mathematics. The
trends of computer miniaturization and per-calculation cost reduction
will continue to provide more computing power to more people. As a
result of this increased computing power, the smaller and less expensive
computers will be programmed with software that is Inure flexible and
easier to use. Sophisticated computer networks will allow a variety of
users to access vast amounts of information on other powerful com-
puters. The rate of change in computer technology is not going to slow
down. (See the October 1987 issue of Scientific American.)

The effects of these changes continue to command our attention in
mathematics education, and educators must be prepared to assume
leadership roles in addresing a number of important questions. How do
we help our students deal with the overwhelming amount of new infor-
mation and techniques? How can we do more problem solving with less
time spent calculating or manipulating equations? What can we do now to
help our students as well as ourselves to adapt to changes in the ways
mathematics is taught and learned?

In order to make progress in adapting to change, three facets of
mathematics education will need special attention: using computing
technology in the classroom, unifying concepts in mathematics, and
improving skills in problem solving. The first topic to be considered,
computing technology, is so widespread that its impact should reflect not
only on what is taught, but also on how it is taught. Until now, math-
ematics teaching has focused mostly on computational skills. However,
with classroom use of calculators and computers, calculi ting can just
become a smaller part of the overall mathematics progran Less time will
then be spent teaching pencil-and-paper calculation techniques, allowing
more time to teach problem solving.

The style of teaching and the methods of solving problems should take
full advantage of the computer's ability to process information. Since the
computer quickly and accurately shows numerical relationships, the
student can readily discover and easily examine relationships that would
otherwise be elusive. Higher-level concepts would be available to more
students because they would not be hampered by routine calculations.
For example, using the computer to graph equations would allow the
student to explore the concepts of graphing as well as the relationships
between graphs.
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18 Technology and Change

Figure 1
COMPUTER-GENERATED GRAPH

The computer-generated example (Figure 1) shows the relationship be-
tween the graphs of Y = X' 3X2 5X 20 and Y = 3X 20. (One tick
mark on the X axis is two units, one tick mark on the Y axis ::, 20 units.) The
time and effort saved by using the computer give the stdent and the
teacher more range and flexibility in managing the learning environment.

Unifying concepts is the second facet of mathematics education that
must be considered. A true focus on problem solving should rarely be an
exercise in using just one concept. By selecting activities that have a wide
scope, the teacher can cause the students to bring together concepts from
a variety of areas of mathematics. For example, the cost analysis of
purchasing and operating an automobile is a comprehensive problem
that involves concepts of defining a problem, gathering data, selecting
data analysis strategies, dcing arithmetic, using descriptive statistics,
verifying results, and reporting results. Using a computer for graphic
displays makes data easier to organize and interpret. Spreadsheet pro-
grams allow data to be aligned, interconnected and graphed. Here con-
cepts of statistics, algebra and geometry intermingle, adding to the
student's power to solve problems.
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A B
Initial Expenses for 1.' urchesInV a Car

2
3 New New Used Used
4 Car A Car 8 Car C Ccr D5
6

Rose Cost $16255 $5,999 $41.,00 $ I ,500
Accassor1es $1,747 $1,750

7 Dealer Prep $100 $100
8
9
10 Tax $1,080 )471 I $270 $90
11 Teas $24, $24 $24 $24
12 Insuranoe
13 1 Year $ 1,60C $1200 $900 $800-
14
15 Total I $20,812 $9,544 $5,694 $2,414

Figure 2
SPREADSHEET COMPARING INITIAL CAR COSTS

T., this example of a spreadsheet, values in rows 10 and 15 are calculated
using 'he numbers from the appropriate cells in other rows. The method
of calculation is determined by the formula created by the person filling in
the spreadsheet.

$25,000 -

$20,000

$15,000

$10,000

$5,000

$0
Car A Cu' B Car C Car D

Figure 3
GRAPH OF INITIAL CAR COSTS

Th . graph in Figure 3 was automatically created by the spreadsheet
program.

There are now more tools available to solve problems than ever before.
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20 Technology and Change

In order to use these tools effectively, students will need to learn to be
flexible in selecting mathematical strategies. Learning to be flexible also
requires more emphasis on the relationships between concepts.

Problem solving is the third facet of mathematics education that pro-
vides great opportunity for teaching skills that students will need for the
future. It should be taught in ways tkit take full advantage of computing
technology. Students should be free to experiment, test and refine vari-
ous computer-based problem-solving techniques such as successive ap-
proximation or using computer-generated graphs to find solutions. Since
the world is becoming more complex, skills in understanding complex
problems must be developed. To accomplish this, more comprehensive
problem solving should be used where the students are involved in all of
the steps from problem formulation to final evaluation of results. Prob-
lems rich in content and containing several levels of complexity can be
used to add sophistication to the process. Group problem solving can also
serve to prepare students to work with others. At least one way to
accomplish this goal would be to form teams of three or four students to
solve problems comprehensive enough to sustain a group effort. The
teams would be taught how to work together in using group planning
and dividing labor. One example of this kind of project would be to create
and conduct a student poll. The results of opinion polls or election polls
could be presented to the school. Another kind of project would be to
have t^ams of students take measurements and compute areas and
volun. s of objects in and around the school. For example, students could
find how many square yards of canvas it would take to cover the baseball
backstop. Indirect measurement can be used to find distances to remote
objects. Groups c,f students could use a transit and tape to triangulate the
distance to a distant tower. (See Figure 4.)

Tower

-igure 4
TRIANGUL, ITION PROBLEM
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Two or three group problem-solving projects per year would go a long
way in teaching the students how to solve problems as a group. To add
even more variety, the students of the group would use a mix of solution
formats such as graphic display of verbal presentation. Doing this would
allow members of the group to develop further presentation and com-
munication skills.

These ideas are not only for the future, but can help to promote positive
change today. The first thing that can be done is to prepare students and
teachers for dealing with change. Because adjustment to change requires
flexibility, a more flexible approach to teaching mathematics is in order.
Small adjustments that move in the appropriate direction would demon-
strate to everyone change is on the way. Some immediate changes would
be: (1) allowing students to do more word processing, graphics and
spreadsheet work on computers, (2) spending more instructional time on
concept development rather than on symbol manipulation, or (3) adapt-
ing to ever-changing computer software and hardware. An additional
way to prepare students for change would be to place more instructional
emphasis on understanding, generalizing, and adapting to change. De-
limy is inseparable from content so teachers must model the kind of
learning it takes to adapt to change.

Lessons from changes in the past should temper what is to be done
about the future, and it follows that:

Teachers need . . . opportunities to develop their understanding and
their ability to apply their knowledge to new situations as students do
and such development does not occur in a one-shot, two-hour work-
shop on a single topic. Rather, well-planned, extended programs are
needed in which teachers have the opportunity to see new techniques
demonstrated in classrooms, to try out new methods with their own
students, and to reflect upon the changes in the curriculum. (CSPDI,
1985)

Implementation of well-tested unconventional p, -grams faces the diffi-
culty of breaking into the "grid-lo:k" relationship of curriculum, texts,
and tests. Teacher training for innovative programs must provide more
mathematics and greater variety of teaching techniques. Adequate time
for the transition of programs is necessary so effectiveness is not lost due
to lack of time to implement a program.

Although the welfare of the student is the central concern of what is
done to prepare for the future, the focus of change is on the teacher
because nothing much is going to happen without the full involvement of
the classroom teacher. Professional incentives and rewards, as well as
more teacher-directed program control, would rejuvenate teacher inter-
est and participation in programs for change. Career ladders that require
much professional involvement focusing on change are needed to foster
the development of master teachers who are leaders. However, teachers
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cannot design and implement all of the changes alone. Administrators,
school board members, students, parents, and community members will
have to work together to provide the best possible resources.

Technology is just one factor that drives the force of change. Math-
ematics teachers must dramatically alter the content and process of
teaching in order to prepare students for the year 2000. In the information
age, the change is from merely acquiring information to managing infor-
mation effectively in order to solve problems.
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MATHEMATICS IN THE YEAR 2000:
ARTIFICIAL INTELLIGENCE AND EXPERT

SYSTEMS

Karen Doyle Walton
Allentown College of St. Francis de Sales

Introductio;i
In searching for an answer to the question "What mathematics edu-

cation will be appropriate in the year 2000?", one must first consider what
will follow the computer age of the 1980's, which has focused on numeri-
cal calculations. Business Week has credited artificial intelligence (AI) with
creating not only a new computer revolution, but the important one.
Edward Feigenbaum describes artificial intelligence as "the part of com-
puter science concerned with designing intelligent computer systems"
which is "emerging from the laboratory and is beginning to take its place
in human affairs." He asserts that "knowledge is power" and that
"knowledge iself is about to become the new wealth of nations" (Mish-
koff, 1985).

In international competitiveness, the stakes are high. Japan's an-
nounced Fifth Generation Project is designed to overtake America in the
"knowledge industry." Feigenbaum states that "knowledge will be a
salable commodi' y like food and oil" and that America's response to
Japan's ambi'ious goals in the way of knowledge research and develop-
ment will determine "our role in the post-industrial world" (Mishkoff,
1985).

What is Artificial Intelligence?
Artificial intelligence has been defined in many ways ranging from

Elaine Rich's "Artificial intelligence is the study of how to make com-
puters do things at which, at this moment, people are better" to Barr and
Feigenbaum's "Artificial intelligence is the part of computer science
concerned with designing intelligent computer systems, that is systems
that exhibit the characteristics we associate with intelligence in human
behavior." Regardles6 of the definition, the question "What is intelli-
gence?" must be addressed (Mishkoff, 1985). Douglas Hofstadter (1980)
in Godel, Escher, Bach: An Eternal Golden Braid lists the following "essential
abilities for intelligence":

To respond to situations very flexibly
To make sense out of ambiguous or contradictory messages
To recognize the relative importance of different elements of a
situation
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24 Artificial Intelligence and Expert Systems

To find similarities between situations despite differences which
may separate them
To draw distinction beti ieen situations despite similarities which
may link them.

Bruce Buchanan's definition in the Encyclopedia Britannica (1985) iden-
tifies "heuristics" as a key element of artificial intelligence:

Artificial intelligence is the branch of comj,uter science that deals with
ways of representing knowledge using symbols rather than numbers
and with rules-of-thumb, or heuristic, methods for processing
information.

Various other definitions of artificial intelligence focus on other aspects
such as intelligent behavior, symbolic (as opposed to numerical) pro-
cessing, heuristics, pattern matching, and nonalgorithmic procedures.

Artificial Intelligence Research
The Artificial Intelligence Revolution was launched at Dartmouth Col-

lege in 1956 by a diverse group of scientists from such disciplines as
mathematics, neurology, psychology, and electrical engineering, who
were joined by the common thread of using the computer to conduct their
research. Funded by a $7500 grant from the Rockefeller Foundation, the
Dartmouth Conference explored the conjec..ure "that every aspect of
learning or any other feature of intelligence can, in principle, be so
precisely described that a machine can be made to simulate it."

Areas of artificial intelligence research to date include:
Natural language processing enabling people and computers to

communicate in a "natural" (human) language
Speech recognition allowing computers to understand human

speech
Computer vision enabling the computer to receive, interpret, and

understand visual images
Robotics programming electro-mechanical devices to perform man-

ual tasks
Intelligent computer-assisted instruction (ICAI) computerized "tu-

tors" that adapt teaching techniques to fit the individual student's
learning patterns

Automatic programming programming a computer system that can
develop programs by itself which meet the specifications of the user

Planning and decision support computer construction of formal and
detailed plans for realizing a complex goal

Expert systems designing a computer program to act as an expert in a
particular area of expertise (Mishkoff, 1985).

What is an Expert System?
Robert Lewand defines an expert system to be "a computer tool whose

purpose is to simulate a human expert in a specific field or domain."
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Because human experts are frequently in great demand and short supply,
expert systems are developed to assist human experts or provide infor-
mation if a human expert is not accessible. Although expert systems vary
greatly, most share the following principal components:

Knowledge base consisting of both declarative knowledge (facts
about objects, events, and situations) and procedural knowledge
(e.g., "if-then" production rules)

Inference engine which determines which rules to apply to the
problem at hand, executes the rules, and determines whether an
acceptable solution has been found

User interface the component of the expert system which com-
municates bidirectionally with the user (Mishkoff, 1985).

Expert systems have been applied successfully in many areas, among
them being agriculture, chemistry, computer systems, education, elec-
tronics, engineering, geology, information management, law, manu-
facturing, mathematics, medicine, meteorology, n ilitary science, phys-
ics, and space technology.

Thinking Tools for Education
The most common application of expert systems to education has been

tutoring systems using artificial intelligence principles to guide CAI.
However, new artificial intelligence products now available are aimed at
broader uses of expert systems in education. Scholastic, Inc., has de-
veloped a program for students entitled Artificial Intelligence. A game-
playing machine allows the student to invent two-player board games on
the computer by choosing rules. The student tells the program only when
someone has won the game, but does not divulge the rules of the game.
As consecutive games are played, the computer program "learns" the
rules and eventually beats the student at his or her own game. The
Intelligent Catalog published by The Library Corporation helps students
who are unfamiliar with research techniques by asking questions such as
"What do you want to find?". University of Utah researchers have
developed CLASS LD which diagnoses learning disabilities in ways
similar to medical diagnosis systems (McGinty, 1987).

Expert Systems for Mathematics
Mathematicians, scientists, and engineers use a symbol manipillation

program, MACSYMA, in solving complex mathematical problems in
differential and integral calculus and for simplifying symbolic expres-
sions. This large, interactive computer system designed originally in 1968
at MIT has undergone continual development and is used throughout the
United States by researchers in government laboratories, universities,
and private corporations. Although MACSYMA consists of more than
300,000 lines of code in the language Lisp and runs on a Digital Equip-
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ment KL-10 computer at MIT, which is accessed through a nationwide
timesharing network, TK! Solver, a small system with some analogous
capabilities, is now available for personal computers (Harmon, 1984). A
follow-up to the 1984 introduction of TK! Solver, "the first equation
solver," is TK Solver Plus, which is more friendly and powerful than its
predecessor. TK Solver Plus, written in the language C, solves individual
equations and systems of equations and has built-in functions ranging
from the mathematical constants 7r and e to trigonometric, logarithmic,
hyperbolic, Boolean, and complex functions. It also deals with complex
numbers and draws graphs, including lines, curves, and surfaces
(Galbaldon, 1987).

MathCAD, described as "an engineer's scratch pad," is an excellent
tool for engineers, architects, students, and scientists who manipulate
formulas. Written for the IBM PC, PC-XT, PC-AT and compatibles,
MathCAD handles differential and integral calculus and repetitive solu-
tions. It does not replace an understanding of mathematics or develop
formulas to solve problems. Instead it performs number-crunching with
grace and speed after a formula has been stated (Green, 1987).

Implications ft,r Mathematics Teachers in the Year 2000
Just as mathematics teachers have been enlisted to teach computer

science, it is probable that their focus on problem solving will make them
the appropriate instructors for expert systems. Those like MACSYMA
and TK Solver Plus are tools available "off the shelf" to do mathematics.
Expert-system building tools will enable mathematics teachers, as well as
teachers from other disciplines, to develop computer applications which
enhance students' problem-solving abilities (see Siegel, 1987 and Lew-
and, 1987). But healthy skepticism is appropriate. Adams and hamm
(1987) report that:

The best artificial intelligence expert systems give only a mechanistic
rule-governed simulation of what people have at the lowest stage of
skill development. Anything approaching higher levels of human
thought is still not on the technological horizon.

Conclusion
The year 2000 is over a decade away. Just one short dc..ade ago, the

personal computer was a rarity rather than a present-day requisite in the
mathematics departments of our schools. Any attempt to predict how or
what mathematics will be taught in the year 2000 will undoubtedly fall
short of the mark. However, one constant remains the teaching of
mathematics is both an art and a science. Although technology will
contribute greatly to the latter aspect of mathematics teaching, it is the
former, more difficult aspect at which human teachers will continue to
excel.
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National Council of Teachers of Mathematics klIP

proclamation

Whereas, mathematical literacy is essential for citizens to fur,:hon effec-
tively in society, and,

Whereas, mathematics is used every dayboth in the home and in the
workplace; and,

Whereas, the language and processes of mathematics are basic to all other
disciplines, and,

Whereas, our expanding technologically based society demands increased
awareness and competence in mathematics, and,

Whereas, school cumcula in mathematics provide the foundation for
meeting the above needs,

Now, therefore, I, John A Dossey, President of the National Council of
Teachers of Mathematics, do hereby proclaim the month of
April 1988 as

Mathematics Education Month
To be observed in schools and communities ir, recognizing the increased
importance of mathematics in our lives.

IN witness thereof, I have hereunto set my hand and caused the corporate
seal of the National Council of Teach:-s of Mathematics to be
affixed on this 1st day of February 1988
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PREPARING STUDENTS FOR NEW CURRICULA
IN SECONDARY MATHEMATICS

Glendon W. Blume
The Pennsylvania State University

Will emphases in the discipline of mathematics be different in the year
2000 from what they are today? Will students learn different mathematics
in secondary schools? Will mathematics be taught in different ways?
These and other questions arise when one attempts to predict how
teachers should prepare students to learn and use mathematics in the
future. This article will examine some of these questions and suggest
ways in which teachers can at present address some aspects of the
mathematics curriculum of the future.

Does the secondary mathematics curriculum need to change?
Based on changes such as the development of fractal geometry and the

emphasis on algorithmic processes in mathematics that have taken place
in recent years (Steen, 1986), it is nearly certain that, by the year 2000, new
areas in the discipline of mathematics will emerge and emphases in some
areas of mathematics will have changed substantially from what they are
in 1988. Also, the increasing role that quantification and empirical ap-
proaches play in subjects other than mathematics (e.g., the study of
demographics and the use of data bases in the social sciences, computer-
aided design in industrial arts, and statistical analyses in the physical
sciences) suggests that current applications of mathematics will continue
to expand and new applications will emerge. Students will need new
curricula to be prepared to use mathematics in fundamentally different
ways from those of the past, working with today's applications as well as
the yet unspecified applications of the future.

Recent national attention to educational reform has generated efforts to
redefine and redirect the school mathematics curriculum. Both the Math-
ematical Sciences Education Board and the National Council of Teachers
of Mathematics Commission on Standards (Commission on Standards for
School Mathematics, 1987) have drafted new standards for the school
mathematics curriculum. These stanc' irds specify the nature of math-
ematical content in various grade levels and provide guidelines for the
development of new materials, teaching approaches, and evaluation
methods.

What changes are being suggested for the secondary mathematics curriculum?
Major changes in emphases in the revised mathematics curricula center

around an emphasis on concept ial knowledge rather than computational
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30 New Curricula in Secondary Mathematics

proficiency. Mathematics no longer can be viewed as a collection of
procedures and techniques, what Steen (1987) refers to as "mimicry
mathematics," but as a body of information, information to be com-
municated to others, reasoned about, and applied to other subject areas.
Conceptual knowledge in mathematics must be constructed by students.
This suggests that students engage in inquiry; appropriate student ac-
tivities for a given topic should lead students to examine, conjecture,
prove, and analyze or extend the knu ,Aedge acquired through this
process.

Calls for revision of the mathematics curriculum often have been based
on perceived shortcomings in students' capabilities. In contrast, a prime
force behind current curricular revisions is the availability of tools that can
facilitate students' construction of mathematical ideas and thereby funda-
mentally change the way students learn and do mathematics. In the past,
curriculun developers and teachers have not had access to tools flat
facilitated such change. However, technology now can continue to pro -
vid° such tools, both numerical/arithmetic ones such as standard hand
calcuiotors, and symbolic/algebraic ones such as symbol-piocessing cal-
culators and computer software such as muMath (Heid, 1983). The
hardware and software tools that can most facilitate inquiry and students'
construction of mathematical ideas are those that provide an environ-
ment which allows students to make decisions and select the means by
which exploration, representation, and data gathering takes place.

What can teachers do now to prepare students for the changes that are being
suggested?

If curricula are revised to reflect current recommendations, students
will need increased experience with problem solving, reasoning, and
communicating mathematics (describing, representing and symbolizing
ideas an' relationships), and a balance between conceptual knowledge
and knowledge of the procedures and techniques that currently dominate
the curriculum. Students also will need to select and use a variety of
existing tools and be able to adapt to new tools as they become available.
Teachers can encourage this by engaging students in the use of existing
tools that promote inquiry, exploration of ideas, and the development of
conjectures and proofs.

The tools available to students who are learning mathematics will
change. just as many of us could not have anticipated in 1976 the
widespread availability of microcomputers and inexpensive calculators in
1988, we cannot now anticipate all of the technological changes that will
provide new tools to students by the year 2000. It i:: possible that advances
in the field of artificial intelligence will lead to the development of
powerful new tools such as a "word problem solver," a universal "re-
lationship analyzer" that would, for example, generate for students the
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relationships among various specified algebraic quantities or geometric
figures, a geometric "visualizer," and t'.e like. Even though we may not
envision the exact nature of these tools, we can prepare students to be
capable of using them by providing access to currently available tools
such as calculators, function graphing programs, the Geometric Sup-
posers (Yerushalmy & Houde, 1986), spreadsheets, 5nd programming
languages such as Logo.

Figure 1 presents a spreadsheet template that could be used to intro-
duce junior high students to the concept of percent. If such a tool were
1 .ade available to students, they could begin by examining the output
from several examples chosen by the teacher. They could then enter their
own values of N and generate conjectures about the relationships in the
data. Some of these might be ones such as "50% of N will be one-half of
N," "200% of N is twice N," "70% of N is 7 times as large as 10% of N,"
"95% of N is slightly less than N," and the like. Students also could use
this spreadsheet template as a tool to explore solutions to questions such
as "70% of what number is 91?" Such generation of data and conjectures
could also occur with spreadsheet templates for topics such as sequences
and series or exponential functions and logarithms in advanced ilgebra
classes.

N PERCENT OF N
10 50 70 95 100 150 200

60
5

ADDITIONAL
STUDENT
ENTRIES

6 30 42 57 60
.5 2.5 3.5 4.75 5

(DATA FROM STUDENT ENTRIES)

90
7.5

120
10

Figure 1.
SPREADSHEET TEMPLATE FOR PERCENT

Uses of tools in other fields can provide mathematics teachers with
insight into appropriate uses of tools in the learning of mathematics. A
business educator's goal may be to prepare students for future use of a
variety of word processors by emphasizing fundamental capabilities of
word processors rather than the details of a particular word processor
used in the school. Analogously, mathematics teachers can emphasize
the ways in which mathematical tools can provide help in investigating
mathematical concepts and relationships. Mathematics teaching will
need to focus less on the development of particular competencies (such as
solving equations of a particular type) and more on the capabilities of
tools (that assist one when solving such equations) and the development
of students' adaptability to new tools as they become available.
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Since inquiry and reasoning activities involve higher-level thinking arid
require time otherwise allocated '-o ether topics, teachers will need to
decide which topics in the current curriculum merit reduced attention
(NCTM, 1987). The Commission on Standards (1987) provides a sug-
gested list of such topics. Steen (1987) argues that it also will be necessary
to have mathematics assessment tests that measure only higher-order
thinking skills Teachers can prepare students for this by including in
teacher-made tests more questions that require inquiry, data gathering
and the generation and proof of conjectures. When being tested, students
should have available and be required to use the same tools that are
available to them each day in the classroom.

The curricular changes suggested in current efforts to revise the math-
ematics curriculum do not imply the present curriculum contains little of
value. However, teachers who are doing a commendable job teaching the
current mathematics curriculum need zo question whether they are
adequately preparing their students for the future. When teachers begin
now to move toward implementing a new curriculum for the future, they
must ask, "Will what we are doing now be appropriate for students who
will use mathematics in the year 2000?" The answer lies in teachers' ability
to begin now to prepare students for the ways that mathematics will be
learned and used in the next century.
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THE REFORMULATION OF SCHOOL
MATHEMATICS AND ITS IMPLICATIONS FOR

THE EDUCATION OF MATHEMATICS
TEACHERS

M. Kathleen Heid
The Pennsylvania State University

Fundamental change in the school mathematics curriculum is on the
horizon. iZeports appearing in the past few years have recommended
-A dical changes not only in the content of school mathematics but also in
the ways mathematics is taught. If these reports are to have any effect on
the current school mathematics curriculum, teachers will need to be
actively committed to their implementation. This article will explore some
of the major changes being discussed and suggest implications for the
education of teachers of mathematics present and fut ire.

Precursor Reports

As early as 1982, national reports suggest.:d the necessity of major
revisions in the school mathematics curriculum as well as in the training
of teachers of mathematics. The authors of a report to the National
Science Commission on Precollege Education in Mathematics, Science,
and 7..chnolosy entitled "The Mathematical Sciences Curriculum K-12:
What is still fundamental and what is not" (NSB, 1982) made the fol-
lowing ecommendations for elementary and middle school
mathematics:

Calculators and computers: "We recommend that calculators and
computers be introduced into the mathenatics classroom at the
earliest grade practicable. Calculators and computers should be
utilized to enhance the understanding of arithmetic and Dmetry as
well as the learning of problem-solving."
Acquisition of skills: "We recommend that substantially more em-
phasis be placed on the development of skills in mental arithmetic,
estimation, and approximation and that substantially less be placed
on paper and pencil execution of the arithmci.ic operations."
Mathematical modelling: "We recommend that direct experience
with the collection and analysis of data be provided for AA the
curriculum to insure that every student becomes familiar with these
important processes.''

Their recommendatioi. nor the secondary school curriculum included:
Streamlining th? curriculum so that top, of new fundamental
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importance (including discrete mathematics, statistics, and prob-
ability) could receive adequate emphasis.
Reformulating "the content, emphases, and approaches of courses
in algebra, geometry, precalculus, and trigonometry" to reflect
newly available computing technology.

In Computing and Mathematics (1984) Fey, et al, focused specific attention
on the impact of computing technology on the school mathematics
curriculum. They pointed out a variety of new directions for algebra,
geometry, and calculus, more appropriate for computer-rich math-
ematics classrooms. Among the potential changes suggested for algebra
were: a diminished role for manipulative skills; an inversion of the algebra
curriculum (with the processes of formulating and interpreting quan-
titative expressions receiving the ini'ial attention usually reserved for
refinement of manipulative skills); and new attention to proportional
reasoning, approximate computation, algorithm analysis, matrices, finite
methods, and functions. The authors further contended that, with avail-
able computing technology, geometry classrooms might become fertile
ground for student exploration, generation, and proof of mathematical
theorems (instead of the present focus on apply ir g stated theorems to
carefully selected exercises).

Current Recommendations

During the past two years, three of the most influential mathematics
education orpoizations (The National Council of Teachers of Math-
ematics, The .vlathematical Sciences Education Board, and the Math-
ematical Association of America) have established special committees
and charged them with creating plans, guidelines and frameworks for the
school mathematics curriculum. Reports from two of those committees
(NCTM's Commission on Standards for School Mathematics and MSEB's
Curriculum hamework Task Force) are now in working draft form, and
the third (NCTM/MAA Joint Task Force on Curriculum: Grades 11 13) has
just issued its final report. What is most striking about these reports is
their singular recognition of the need for fundamental change in the
school mathematics curriculum.

Echoing a previous NCTM rer )rt (NCTM, 1984), the working draft of
NCTM's Curriculum and Evaluation Standards for School Mathematics
advocates that calculators be available to all students at all times, that a
computer be available in every classroom for instructicaal purposes, and
that computers be available tc every student for indiviuual and group
work (NCTM, 1987, pp. 4-5).

The technology itself, however, is not enough to ensure the needed
reform. Major attention needs to be paid to the new roles demanded of
teachers and students alike in the mathematics classrooms of the future.
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An important new perspective offered in the Standards draft focuses
attention on the desired actions by students and, consequently, on the
methods of instruction which would foster these actions. Classavons
envisioned in the Standards document would be "places where interest-
ing problems are explored using important mathematical ideas. . . . in
various classrooms one could expect to see students recording measure-
ments of real objects, collecting information and describing their proper-
ties using statistics, and exploring the properties of a function by exam-
ining its graph." (p. 1) The actions to be expected of students are well-
described by the Standards draft's choice of verbs: examine, explore,
represent, transform, prove, apply, solve problems, communicate, for-
mulate, conjecture, verify, construct, appreciate, model real-world
phenomena, interpret, investigate, translate, analyze, and soon. Notably
minimized in the suggestions of the Standards committee is today's
rivetted classroom focus on computational skills.

Th. Standards draft points out a need to re-examine not only the
content of school mathematics but also its methods of instruction:

To provide all students an opportunity to learn the mathematics they
will need, the emphases and topics of the present curriculum should be
altered. More importantly, methods of instruction need to emphasize
exploring, investigating, reasoning, and communicating on the part of
all students. Ir. particular, teachers should view their role as guiding
and helping students to develor their mathematical knowledge and
power. (p. 1)

These new teacher and student roles are largely unexplored in today's
classrooms.

New Teacher and Student Roles in Algebra: An Example

Among the clearest impetuses for change is the rather universal call to
reformulate the school mathematics curriculum in light of the power and
availability of computing devices. The implementation of this recom-
mendation alone has major implications for teacher and student roles in
the mathematics classroom. The present Algebra I and Algebra II cur-
ricula, for example, center on the acquisition of by-hand facility with the
transformations of algebraic expressions. At present there are both com-
puter programs (like Microsoft's muMath and microcomputer versions of
Maple) and calculators (like Hewlett Packard's HI' 28C) which perform
many of these symbolic manipulations.

With a command as simple as "SOLVE(324 X2 705 X 700 = = 0,
X)," muMath will swiftly respond with (35/12 and 20/27), the truth
values to the equation,

324x2 705x 700 = 0
MuMath not only solves linear, quadratic, cubic, and quartic equations
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but also solves systems of linear equations, simplifies algebraic and
trigonometric expressions, performs matrix operations, produces exact
symbolic derivatives and integrals, and performs infinite precision arith-
metic in any of thirty-six bases.

Among the many capabilities of the HP 28C is a facility in performing
step-by-step algebraic transformations in accordance with well-known
field properties.

A "commutative" key (< >) performs the following
transformations:

Before After
(A + B) (B + A)
(A * B) (B * A)
(A B) ( (B) A)
(A / B) (INV(B) * A)

A "distribute" key (D >) performs reasonable transformations on
multiplication, exponentiation, logarithms and antilogarithms:

Before After
(A * (B + C)) ((A * B) + (A * C))
(A (B + C)) ((A B) * (A C))
LOG (A / B) LOG (A) LOG (B)
ALOG (A + B) (ALOG (A) * ALOG (B))

In addition to its algebraic transformation capabilities, the HP 28C:
calculates derivatives, indefinite integrals, and definite integrals; works
with real numbers, complex numbers, vectors, and matrices; plots ex-
pressions and statistical data; and calculates statistics and probabilities.

An impressive array of other computing tools rut .1 the reach of every
secondary mathematics student the facility for automated production of
graphs and function tables as well as immediate numerical res for just
about every reasonable procedure.

Given schoolroom access to such computing techno,6v, igebra
teachers of the future will need to find ways to e-- :,ante studet
standing of symbolic form without engaging them in e;dended forays
with by-hand transformations of those forms. hi such classrojms, teach-
ers as well as students will need to become comfortable with mathematics
courses whose raison d'etre is not refinement of manual symbol manipu-
lation skills.

Implications for the Education of Teachers of Mathematic s Present and
Future

Several important themes emerge from both the NCTM Standards draft
and the work of MSEB's curriculum frameworks taskforLe. Among the
more important themes are ones of: problem solving and mathematics
modelling, communication, reasoning, new approaches to existing con-
tent, and new content areas. The discussion which follows describes the
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thrust of each of these areas (as put forth in tl.:! documents of both
committees), concomitant changes in mathematics teaching, and needed
related changes in the preparation of school mathematics teachers.

Problem solving and mathematical modelling
Students need to learn to use problem solving tecnniques, to formulate

real-world problems, to verify and interpret results in new problem
settings, to create and use mathematical models of the real worli, and to
become comfortable in using mathematics meaningfully.

The mode of operation in the mathematics classroom of the future
needs to be the exploration of mathematical ideas. Instead of units and
lessons revolving around tne refinement of a well-defined list of manual
skills (with casual and after-the-fact attention to applications), they might
center on problem situations for which neither the solution process nor
the related skills have yet been taught. Teachers and students could
spend time analyzing the problem, planning solutions, and interpreting
results. Computing tools could be used to execute the routine
procedures.

It will no longer suffice for teacher education candidates to march
through a compulsory list of upper division mathematics courses without
ever creating and solving an original problem. Teachers of mathematics
must themselves become problem solvers and problem creators. In aa-
dition, they must be reflective problem solvers as aware of the process
as of the solution. (Being a good problem solver is a necessary but not
sufficient condition for teaching others to become good problem solvers.)
They must learn to teach all their students (not just the brightest) to
become insightful problem solvers. College mathematics courses must
emphasize problem solving, even at the expense of coverage of a larger
array of topics. College mathematics teachers and mathematics educators
must learn to teach problem solving rather than merely to present prob-
lem solutions and theorems in finished form. Teacher preparation pro-
grams must focus on problem solving and might include courses in
mathematical modelling and the teaching P.nd learning of problem
solving.

Communication
Students must learn not only how to perform mathematical procedures

but also how to communicate mathematical ideas through a variety of
representations. They should became adept at working within and be-
tween graphical, verbal, concrete, and symbolic representations. They
should not be satisfied, for example, with being able to solve systems of
equations through mastering a particular algorithm if they cannot rep-
resent that solution process graphically or concretely or create an ade-
quate verbal representation for the system and its solution.
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More generally, students must learn to read, write and talk about
mathematics. Mathematics classrooms should provide students a forum
for communicating mathematical ideas and arguments through writing
as well as through talking. Students at all levels should learn to read about
mathematics and to question and app! j what they have read.

Today's mathematics classes pay little attention to developing student
facility in working between and among representations the far more
popular stance is to work on mastery of skills within a single represen-
tation. Students get little experience in talking about, writing about, or
reading about mathematics. In many mathematics classrooms, for exam-
ple, class "discussions" consist of teacher-guided demonstrations with
student input confined to the provision of "fill-in" answers to a carefully
chusen set of knowledge-level or comprehension-level questions. In a
large number of mathematics classrooms, students are not required to
present their written work in complete sentences or to justify their
reasoning in well - constructed paragraphs. Far too frequently, the implicit
rule in mathematics classrooms is that reading assignments are not meant
to be understood. Teachers abide by this rule by presenting the content of
the reading assignmen, the next day in class. Students express their
knowledge of the rule by not doing Cie reading.

Mathematics teachers can no longer shy ay.ay from conducting class-
room discussions in which original student input plays an essential role,
from requiring that student.; communicate about mathematics in writing,
and from expecting that students read about matnema tics and under-
stand what they are reading. Teachers must learn to encourage students
to initiate talk about mathematics, to write and read about mathematics.
They must learn to create appropriate forums for students to share
mathematical ideas, discoveries, and arguments.

If teachers are to encourage communication, teacher preparation pro-
grams muse provide them with the appropriate tools and models. College
mathematics classrcrzis must become places where student input (oral
and written) is not only encouraged and expected but also refined.
Mathematics education classes must teach prospective teachers to hone
their own communication skills and to encourage open communication
about mathematics in their own classrooms. Teachers should emerge
from their preparation programs fully confident of their ability to use a
variety of instructional settings to promote communication about math-
ematics. Appropriate use of large-group discussions, small-group ex-
plorations, and paired learning should all be part of a mathematics
teacher's repertoire.

Reasoning
If the students of tomorrow's classrooms are to become able problem

solvers, capable not only of producing solutions but also of com-
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municating about those solutions effectively, they must develop refined
inductive and deductive reasoning skills. Students must learn to use
inductive reasoning to formulate mathematical conjectures, and de-
ductive reasoning to test those conjectures. They must learn to assess the
validity of mathematics arguments they encounter in their reading and in
their discussions with classmates and teachers. They must be able to
monitor their own deductions with classmates and teachers. They must
be able to monitor their own deductions through analysis of the logic as
well as through search for appropriate count ifexamples.

Since reasoning abiuty develops in qualitatively different stages, the
development of that ability in students requires teachers with extensive
understanding about the growth of reasoning in adolescents.
Tomorrow's strongest mathematics teachers will have considerable ex-
pertise in developmental and cognitive learning theory. They will be
familiar with neo-Piagetian theories such as Collis' Structure of Learned
Outcomes so that they can recognize qualitative differences in students'
responses (Is a student capable of making generalizations from concrete
instances? Does a student ignore relevant features of concrete examples?
Is a student unable to reason from abstract examples?) They will know
van Hie le's levels of learning geometry and be able to apply van Hie le's
phases of instruction for advancing students along those levels. They will
be familiar with current general cognitive theories on memory and on
meaningful learning as well as mathematics-specific theory on the learn-
ing of mathematical representations and on differences in the acquisition
of conceptual and procedural knowledge. They will know what has been
learned about students' misconceptions about mathematics, and be able
to apply diagnostic and prescriptive techniques for correcting those
misconceptions. Teacher preparation programs must provide extensive
work in each of these areas. Active classroom teachers must up rte their
knowledge of the theories of learning mathematics.

New emphases and new content
In the mathematics classrooms of the future, familiar topic areas will

undergo radical transformations and new topic areas will replace many of
the traditional ones.

Transformations of traditional curricula. In algebra, traditional symool
manipulation skills will be deemphasized. Algebraic work will con-
centrate on formulating and interpreting symbolic, numerical, and
graphical representations for problem situations. Functions (from a con-
ceptual and informal point of view) will assume a more prominent role
throughout secondary mathematics. Computers and calculators will be
used to generate am', manipulate symbolic expressions, table of function
values, and function graphs. Greater emphasis will be placed on the
relationships of functions to real-world situations, the embodiment of
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functions in tables and graphs, and the graphical and numerical relation-
ships among similar function rules.

Geometry will be integrated throughout all grade levels. Special atten-
tion will be paid to computer-based explorations of two-dimensional and
three-dimensional figures and to the creation and use of geometric
models for problem situations. Some of the traditional emphasis on
geometry as an axiomatic system will be replaced with more informal and
applied reasoning about the properties of spatial figures. Coordinate and
transformational geometry will play a central and integrated role in the
study of geometry.

As with algebra and geometry, trigonometry will focus on the analysis
of periodic real-world applications. Capacities of computers and scientific
calculators for graphing and function evaluation will reduce (or eliminate)
the importance of by-hand solution of trigonometric equations and in-
equalities and of table-reading skills. A decreased emphasis on verifying
trigonometric identities will allow time for studying the relationships
between different representations of trigonometric phenomena: circular
functions, polar coordinate representations, and series representations.

New curriula. Among the new topic areas for the secondary math-
ematics curriculum of the future are statistics, probability, and discrete
mathematics.

The study of statistics and probability should be based on real data,
Mid. informal and integrated throughout the K-12 curriculum. Elemen-
tary school students can acquire initial statistical experiences by collecting
and organizing data and can be introduced to probability with activities
involx ing flipping coins, spinning dials, and tossing dice. To extend their
experience with statistics, middle school students can construct tables,
charts, and graphs of data they have collected, and then draw inferences
based on their interpretation and analysis of the data. Their exposure to
probability can be enhanced through live or computer simulations of
complex situations. High school students can round out their statistical
experience by designing their own experiments using data analysis tools
such as curve-fitters, measures of central tendency and variability, and
correlation. Beginning with the middle school curriculum in probability
and statistics, students can learn the importance of appropriate sampling
techniques and the unique characters of statistical reasoning and pro-
babilistic reasoning.

Implications of new curricula for mathematics teaching. The implications of
these new approaches and new content for mathematics teaching are
myriad. First, teachers will need to acquaint (or reacquaint) themselves
with the new content. Teacher preparation programs must provide for
the appropriate mathematic- courses. School mathematics approaches to
probability, statistics, and discrete mathematics, however, need to be
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tailored to the clientele. Teachers and curriculum writers will need to
construct materials which actively engage Ftudents at appropriate cog-
nitive levels. Mzthematics teacher preparation programs should give
prospective tea, hers experience in the creation of such materials

Conclusion

From every corner of the mathematics education community there are
strident calls for a significant reformuiation of school mathematics. The
changes being suggested cannot be implemented merely with the issu-
ance of new textbooks. In some cases, teachers will need to learn new
content. But more significantly, they will need to reconceptualize their
own views of the proper content of school mathematics and to master a
new array of taaching roles and techniques. Now, more than ever,
mathematics teachers need to learn more not only about mathematics but
also about how mathematics is learned.
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JOHN SAXON'S
MATH SERIES

1. WILL DOUBLE YOUR FOURTH YEAR
MATHEMATICS ENROLLMENT,

2. WILL CAUSE CHEMISTRY ENROLLMENT TO
GO UP 20 TO 50 PERCENT.

3. WILL DOUBLE YOUR PHYSICS ENROLLMENT.
4. WILL CAUSE BIG GAINS IN SCORES ON

TESTS OF MINIMUM SKILLS.

5. WILL CAUSE A GAIN IN COLLEGE BOARD
SCORES OF FROM 20 TO 30 PERCENT.

These claims are based on the results of use in over 2,000 school systems in
all 5a states. These schools include metropolitan school systems such as the
public schools c f Dallas, Texas and Oklahoma City, Oklahoma. They
include suburban school systems such as Scottsdale, Glendale and Peoria,
Arizona and include many fine private schools. Over 120 Pennsylvania
school systems use one or more of the 3axcsil books. Among these are
Carmichaels Area High School, Bethlehem Catholic, and Palmerton Area
High School. If you write to me I will be happy to send you documentation
of my claims from 23 schools ;n 32 states. The ACT scores from bright
students average above 30 and the scores of the average student have an
average of about 25. These scores will be buttressed next year with the
scores of over 1,000 students from eight major school systems. If you
investigate me now and try my books next year, your school will be one of
the leaders in the turnaround in mathematics education.

PILOT OFFER
For first time users, I will give you 15 student editions of any or all of my
books if you purchase the teacher's edition and at least 15 more student
editions. The three book high school series is in print and the titles are
Algebra I, Algt bra H, and GeometryTrigonometryAlgebra HI. The three
books below Algebra I are also in print and are called Algebra I/2, Math 76
and Math 65. Write for a current catalogue.

John Saxon, Saxon Publishers, Inc.
1002 Lincoln Green, Norman, OK 73C72

Order samples from:
Thompson's Book Depository

P.O. Box 53158, Oklahoma City, OK 73152
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THINKING IN MATHEMATICS:
WHAT MAKES IT DIFFERENT?

Marlin E. Hartman
Indiana University of Pennsylvania

Does mathematics require a different kind of thinking than other
disciplines? If the answer is "no," then individuals should be able to
reason as well in mathematics as they do in other disciplines. And hence,
a student who does well in one discipline should do equally well in
mathematics. If the answer is "yes," then individuals who do well in
another discipline would not be expected to do equally well in math-
ematics. If the argument was that simple, we could stop at this point.

For years, we have used as one of the arguments for teaching mathe-
matics that it teaches individuals to think. In the mathematics commu-
nity, we speak of mathematics as a way of thinking and doing. Mathemat-
ical work consists largely of ob,ervation, guessing at what might be true,
developing a feeling of what ought to be true, formulating and testing
hypotheses, seeking analogies, forming mental pictures, and trying out
ideas, often without any certainty ofsuccess. Unfortunately, the process
by which secondary school students often learn mathematics offers little
opportunity for them to participate in the aforementioned activities and
the thought processes idvolved.

When learning mathematics, if students miss one concept, it is likely to
cause them considerable difficulty in understanding the next. For this
reason, mathematics "learning" often rapidly degenerates into the rote
learning of responses that are required and approved by the teacher. The
student is given the impression that practice, simply doing lots of ex-
ercises, is the key to success. And in doing the practice exercises, little
attention is given to the development of and practice in a variety of
problem solving approaches. Students need to experience exercises that
will lead them to the realization that what was gained in solving a certain
class of problems can be applied to a much broader class of problems. If
they are unable tc make this transfer, ih-y will often attack the new
problem in a purely random fashion if they attack it at all.

The teacher's task is to provide sufficient effective experierces so that
the students can learn the principles upon which a large number of
algorithmic forms are based. The teacher must offer students the tools for
thinking their way out of difficulty. These tools consist of asking oneself
the questions the teacher would normally ask, constructing schemata to
assist in organizing data, and eliminating irrelevant information. This is a
monumental task one that requires years of doing. Drill and repetition
have no place in this process. In fact, instead of drill and practice, the

51



44 Thinking in Mathematics

concept of experience should be advanced because students are not going
to master all mathematics concepts on the first encounter. Students must
be trained to meet the unexpected.

If we accept this premise, then we can get down to the business of
developing the kind of thinking that is essential for success in math-
ematics. If students are constantly searching for an example to follow or
spend a great deal of time trying to recall whether or not they have seen
avid worked a problem like this before, then they are functioning almost
exclusively with recall and recognition. They do this because they have
been taught that they need only rely on recall and recognition to suc-
cessfully complete assigned problems. We must, therefore, provide expe-
riences that permit students to develop an area of the affective domain
which is best called a "value complex."

In order to think "mathematically," one must accept the premise on
which mathematical systems are built. One must learn to revise opinions
when mathematical conjectures which have been demonstrated to be true
contradict the ideas held which were based on personal intuition. I am not
suggesting that the two domains mentioned function totally independent
of each other. In fact, in high school geometry and in all mathematics
courses beginning with the upper-level undergraduate courses, the con-
cept of proof requires students to use both the cognitive and the affective
domains.

Think about the format of plane geometry proofs. On the left side of the
schemata are the statements and on the right side are the reasons or
justifications. On the left siae, the student is asked to make decisions
about what is given, what could come next, what should come next, what
mu: come next, what has been accomplished, and what else must be
accomplished. Unlike algebraic manipulation, the step just completed
does not necessarily give a clue as to what comes next. Added to this
burden is the fact that now each statement must be justified. The student
must now jump to his/her file of learned facts; definitions, theorems,
corollaries and axioms, and "previously proved" thekcms, and recall
which justifies the statement he/she just made. Hence, the tree as-
sociation of ideas is interrupted for the purpose of recalling a fact. For
example:

GIVEN: WM 2--- WP ;LM L P
PROVE: MR PR
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PROOF: Statements Reasons

45

1. WM -"=" WP

2. MR =-"" PR

3. Let W and R determine WR
4. WR =-- WR

5. AWMR "=-- AWPR

6. LM 2---- LP

7. LM LP
8. MR PR

1. Given

2. Indirect Assumption
3. Postulate 1

4. Congruence of segments is reflexive
5. SSS (Steps 1, 2, 4)

6. Corres. parts of ."-;'--- A s are "="

7. Given

8. Step 6 contradicts Step 7

(This proof appears in the 1987 edition of Geometry. The authors are
Travers, Dalton and Layton, and the publisher is Laidlaw Brothers.)

I suggtst that the process just described is what leads many students to
believe that they can't do proofs and hence can't think mathematically. I
suggest that if students did the statement side completely doing all the
thinking and free association of ideas before seeking justification for the
statements made they would experience greater success and would
have a far better grasp of the thinking process in mathematics.

To si:pport this point, let us examine the background skills that stu-
dents typically bring to a geometry course. Students usually spend the
previous year doing algebra, and algebra does not require justification to
any great extent. Perhaps they are asked to justify steps in the algebraic
solution of a problem as part of the class discussion but rarely, if ever, on a
written examination. The following problem illustrates this point:

2 _ 4x , 3
x ;- 1 (x + 1)(x 1) x 1

2(x 1) 4x = 3(x + 1)
2x 2 4x = 3x + 3
2x 4x 3x = 3 + 2

(2 4 3)x = 5
5x = 5

x = 1

The problem as presented to the students consists of the first eqt.ation.
There are a very limited number of options available to the students, but
most textbooks and most teachers make a cardinal rule to "clear the
fractions." From that point on, what the students must do is dictated to a
great extent by what happened in the previous step. This is not the case in
geometry! Quite often the steps of a geometric proof can be interchanged
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and in the longer, more involved proofs, whole subsets of steps can be
interchanged.

Let us get back to the algebra problem. How would algebra grades be
effected if the students were required to supply reasons for each step in
the prol.-'.!m? More important than the grade, how would the progression
through algebra and the attendant development of algebraic skills be
affected? I'm certain that we would encounte. the same difficulties that
we now encounter in a geometry course.

One final comment on the algebra example. You have no doubt ob-
served that the "solution" x = 1 does not check in the first equation.
Thus, the students have experienced un extraneous root without a radical
in the equation, see the need to check the solution other than when the
result is obvious, and encounter a null equation (which rarely happens for
secondary mathematics students until they take trigonometry).

There appear to be two major inhibitors to success in doing math-
ematics, and both are voiced by the frustrated student in mathematics
class. The first is the inability tc gee meaning" in mathematical state-
ments. The second is the tendency to "lose the thread" in a mathematical
solution or argument.

In the first case, some students feel no association with the math-
ematical statement because they feel no association with the symbols
being used. This happens because the students either cannot or will not
"put themselves" into the p ..,Dlem. In short, the students do not visual-
ize doing what is called for in the problem. Related also to the first case is
the way we see and categorize things in everyday life. Given an orange, a
standard basketball, and an optic-orange golf ball, one person might
categorize the objects by their color, while another would categorize them
by their shape! In the real world, either categorization would be accept-
able; whereas, in mathematics, one could lead to success while the other
could lead to frustration. The following problem illustrates the situation
in mathematics:

A train, an hour after starting, has an accident which detains it a
half-hour, after which it proceeds at 3/4 of its former rate and arrives
31/2 hours late. Had the accident happened 90 miles further along
the ling, it would have arrived only 3 hours late. What was the
length cf the trip in miles?

I have presented this problem to pre-service and in-service teachers and
those who experience difficulty all take the same approach. Since the
problem asks for the length of the trip in miles, they attempt to establish
equations in terms of distance; , whereas, those who are successful realize
that the equations must be established in terms of time.

In the second case, the failure to use "parallel progression" can cause
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one to "lose the thread." For instance, the "adding" and "taking away"
processes can be demonstrated with a physical object. Fractionization can
also be demonstrated physically. However, when the symbolic language

abstract, there is little opporhity for "parallel progression."
To ansv,er the question that I posed initially, "Yes, mathematics do 2s

requi'e a spe ial kind of thinking; and indeed, it is a way of thinking and
doing." If mathematics is viewed as a set of rules to be memorized and a
few "tricks" which are applied at opportune times, then the probability is
high that an individual will join the large segment of society which
appears to be perfectly capable and competitive in other ways but who
Iadily concede that they are "no good at mathematics." Unfortunately,
this is a ready-made role that our society accepts.
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THE EFFECTIVE USE OF ELEMENTARY
MATHEMATICS TEXTBOOKS:

A CHALLENGE FOR TEACHERS

Colleen A. Conlon
Altoob..i Area School District

and
Robert F. Nicely, Jr.

The Pennsylvania State University

Most of the students who enter first grade in September, 1988 will be
men-ibers of the high school graduating class of 2300 A.D.! Now is the time
for mathematics educators to focus on the critical curricular and instruc-
tional elements of the mathematics program for these first "young
adults" of the next century,

The National Council of Teachers of Mathematics, in its 1980 Agenda for
Action recommended that "problem solving be the focus of school mathe-
matics in the 1980s." This concern has certainly not diminished, and has
become even more important for the future. The recent working draft of
the "Curriculum and Evaluation Standards for School Mathematics"
which was prepared by the Working Groups of the Commission on
Standards for School Mathematics of the National Council of Teachers of
Mathematics (1987), notes that "problem solving should be the central
focus of the mathematics curriculum." Standard One Mathematics as
Problem Solving stresses that problem-solving should "permerte the
mathematics curriculum so that students can use problem-so.: ing pro-
cesses in their learning of all mathematical content, use strategies in
soivinz a wide variety of problems for many contexts, discu,s alternate
solution strategies in relationships among problems, formulate prob-
lems, develop and apply a variety of strategies to solve one-step, multi-
step, and nonroutine problems, verify and interpret results with respect
to the original problem situation, and generalize solutions and strategies
to new problem situations."

In order to accomplish this ambitious goal, attention must be focused
on the mathematics curriculum and associated instructional materials
and activities to ensure that they deal effectively with problem solving
and other higher-order intellectual behaviors. The textbook continues to
play a major role in the mathematics curriculum. It is still the most
important factor 1 determining what mathematics is taught (Johnson /-
Rising, 1967; Brar It, 1978; Willoughby, 1984). Furthermore, the National
Advisory Committee on Mathematics Education (1975) asserted that (1)
students read very little of the textual material in their mathematics
textbooks and (2) mathematics textbooks are used primarily as a source of
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50 Use of Elementary Textbooks

problems. Therefore, it is important for teachers, supervisor- and other
decision-makers involved in the selection and use of textbooks to know
the intellectual levels of the problems in textbooks so that they can take
the necessary steps to ensure that students will be able tc work on
problems that are likely to help them become competent problem solvers.

Recent Research Results
During the ball of 1987, the authors conducted a study to determine

what thinking skills fifth grade students would be exposed to as they
solved selected problems in the current (1987 and 1988 copyright) text-
books published by five major commercial publishing companies. Using
an analytic tool which had been developed by one of the authors (Nicely,
1970), we analyzed all of the decimal problems involving multiplication
and division. Each problem was classified by cognitive level and stage of
mastery.

The cognitive level list consisted of twenty-seven primary verbs which
were identified to describe covert tasks. These verbs were grouped into
nine categories and arranged in an ordinal scale. Figure 1 lists the
cognitive verbs and their associated levels.

Levels Verbs
Level 0 No Task; OE aerve; Read
Level 1 Recall; Recognize; Repeat; Copy (Imitate, Reproduce)
Level 2 Iterate
Level 3 Compare; Substitute
Level 4 Categorize (Classify, Group); Illustrate (Exemplify)
Level 5 Apply; Reite; Convert (Translate); Symbolize; Summarize

(Abstract); Describe
Level 6 Justify (Support); Explain (Interpret); Analyze
Level 7 Hypothesize (Theorize); Synthesize (Organize, Structure);

Generalize (Induce); Deduce
Level 8 Prove; Solve; Test (Experiment); Design
Level 9 Evaluate

Figure 1
COGNITIVE VERBS AND LEVELS

Stages of mastery consisted of six des:riptors beginning with "readines,"
and proceeding through "development," "practice," "demonstrate,"
"overlearning," and conclud'ig with "enrichment." (See Nicely, 1970,
for complete definitions of these terms.)

When all of the problems had been analyzed, solved and classified,
totals and percentages were computed. Extra practice problems in the
back of each book were included in the study, as well as all of the
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problems that were included in reviews and tests. Problems in which
decimals were computed with percentage and/or fractions were not
included in this study. (For purposes of this research report, the booksare
identified only as A, B, C, D, and E.)

Book A had 675 decimal problems involving multiplication and division
of decimals. Book B had 402 such problems, Book C had 619, 13:ok D had
560, and Book E had 580. In every book, more !I-tan fifty percent of the
problems fell into the "practice/iterate" category. Book A had 59.7%of its
problems in this category. Book B had 55.9%, Book C had 65.3%, Book D
had 52.7%, and Bcok E had 52.4%. (In the "practice/iterate" category, the
student typically looks at a given problem and solves it Ly mechanically
repeating the process. An example of "practice/iterate" would be
39 6 x 2.3 = ) Such problems require a relatively low level of
cognitive involvement.

To simplify our reporting of the data, we totaled the number of prob-
lems that were classified as "justify," "hypothesize." "prove" and "eval-
uate" (the top four levels of the cognitive scale). We found that Book,A
had only 1 7c of its problems in these top four cognitive levels, Book B
had only 2%, Book C had only 1.8%, Book D had only 2.7%, and Book E
had only 5',,

These disappointing results are quite consistent with the results of
earlier studies. (See Nicely 1980-81; 1985a; 1985b; 1987; Nicely, Bobango
and Fiber, 1984; Nicely, Fiber and Bobango, 1986) If these newly copy-
righted textbooks are representative of all the textbooks on the market,
then students will likely spend a lot of time on rote-type problems and
will not have many opportunities to develop and practice higher levels of
cognitive thinking.

The Challenge
If we want students to learn how to operate at higher intellectual levels,

and if textbooks are the major source of the written curriculum, what can
teachers do to quickly, easily, and effectively upgrade the curriculum?
Charles and Lester (1982) provide one solution. They suggest that given
problem statements "can be modified in several ways to obtain new,
related problems. Variations in a basic problem can be formed easily by
following a set of five principles." They suggest that teachers can (1)
change the problem context/setting, (2) change the numbers, (3) change
the number of conditions, (4) reverse given and wanted information,
and/or (5) change some combination of context, number, conditions, and
given/wanted information. By starting with one basic (and often low-level
intellectual) problem, teachers can use these principles to make such
problems more intellectually challenging for their students. The fol-
lowing examples illustrate some of these principles. In each example, the
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initial problem was adapted from one of the problems in the textbooks
that we analyzed.

Example I is similar to a problem in Book A.
Chicken is 790 per pound. What is the cost of 2.6 pounds of chicken?

A teacher can easily change this basic problem i.-'o one in which the
students must justify their answer.

A recipe calls for 2.6 pounds of chicken. The corner convenience
store sells chicken for 79¢ per pound. The supermarket sells chicken
for 790 for the first pound and 750 for each additional pound. Where
will you get the better deal? Why?

A different rewording of the initial question has the students operate at
still another higher-order level.

The supermarket sells chicken for 790 for the first pound and 750 for
each additional pound. If you pay the clerk with $10.00 and receive
$3.21 in change, how many pounds of chicken did you buy?

This same problem could be modified even further.
List five different ways the clerk could give you $3.21 change without
using any dollar bills.

Example 2 is similar to a problem in Book C.
Diane will babysit 18 hours this weekend. She is paid $1.75 per hour.
How much money will Diane make this weekend?

This problem can easily be modified to become a more complex problem.
Diane will babvsit 18 hours this weekend. She is paid $1.75 per hour.
Diane wants to buy her sister two sweaters for Christmas. Each
sweater will cost $14.98. Will Diane be able to buy the sweaters?

Or the problem could be reworded in this way.
Diane wants to buy a $24.00 sweater for her sister for Christmas. She
has two weeks in which to earn the money. Diane babysits every
Fri&i: and Saturday evening from 9:00 p.m. until 1:00 a.m. She
makes $1.50 the first hour and $1.75 for every hour after that. Will
Diane be able to buy the sweater? WIrj?

The students could L , asked to solve the problem for Diane's rates.
After one year of babysitting evP y Friday and Saturday evening for
three hours each evening, Diane has earned $559.00. Diane is paid
more on Saturday evenings than on Friday evenings. Diane receives
a lower rate for the first hour. What could Diane's rates be?

Example 3 is similar to a lower-level problem in Book D.
A driver paid $1.15 per gallon for 13.5 gallons of fuel. What was the
total cost?

Since most Students have traveled in a car, this problem could be related
to experiences the students have had. It could be set up something like
this

A state is 304.5 miles wide at one point. The road crossing the state is
a toll highway. A driver averages 23 miles to a gallon and has a fill
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13.5 gallon tank. Knowing that gas is $1.15 per gallon and the toll is
$.06 per mile, the driver begins his trip across the entire state with
$50.00. How much money should he have when he arrives?

By including a second driver in another car, the teacher could createeven
more of challenge.

A state is 304.5 miles wide at one point. The highway crossing the
state has a toll -4 $.06 per mile. Driver A averages 20 miles to a gallon
and has a 14.5 gallon tank. Driver B averages 23 miles to the gallon
and has a 13.5 gallon tank. Gas i- '1.15 per gallon. Crossing the entire
state, each driver begins the trip with a full tank of gas and $50.00
Which driver should arrive with more money?

This same problem could be reworded to make it more in llectually
challenging.

A driver paid $1.15 per gallon for 13.5 gallons of gas, which filled his
tank to capacity. if he averages 23 miles to the gallon and travels 931.5
miles, how many stops must he make for gas -rid what will be the
total cost?

Students might need or want to draw pictures, work with partners or
even role-play these problem situations to arrive at solutions. Techniques
which will raise children's cognitive skills to the "justify," "i rove,"
"hypothesize," and "evaluate" levels will be well worth the effort.

Summary
Acknowledging that thinking skills tend to resist precise form- of

definitions, Resnick (1987) lists some key features of higher-order think-
ing. She contends that higher-order thinking (1) is nonalgorithmic, (2)
tends to be complex, (3) often yields multiple solutions, (4) involves
nuanced judgment and interpretations, (5) involves the application of
multiple criteria, (6) often involves uncertainty, (7) involves self-
regulation of the thinking process, (8) involves imposing meaning, and
(9) is effortful. As teachers strive to help their students develop and
practic2 higher-order thinking skills, they will need to develop expertise
in analyzing and classifying their present instructional resources so that
they can go beyond them to create meaningful learning environments for
their students. Resnick (1987) and Charles and Lester (1982) provide
useful frameworks for creating these new learning opportunities from the
low-level materials that are commercially available.
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COLLEGIAL (COOPERATIVE/TEAM) LEARNING
IN HIGH SCHOOL MATHEMATICS CLASSES

Carl A. Guerriero
Dickinson College

Three centuries ago, Comenius (Cole, 1950) suggested that large
classes be broken up into groups of ten or so pupils, each with a leader, to
take advantage of the increased pupil interaction possible in smaller
groups. The Be!! and Lancaster system during the 19th century used
bright students as apprentice teachers to instruct small groups of pupils
within the larger class (Cole, 1950). Early in the 20th century, researchers
began to systematically study grouping or teaming strategies. These
practices have evolved to become team learning, peer tutoring, cooper-
ative learning and collegial learning.

During the 1960's ..nd 1970's, educators examined learning styles and
their relationship to achievement in a team learning mode through
aptitude-treatment interaction studies (Guerriero, 1971; Chronbach and
Snow, 1967). The University of California at Berkeley established a Center
for Team Learning (Poirier, 1970), the University of Minnesota estab-
lished a Cooperative Learning Center (Johnson and Johnson, 1987), and
Johns Hopkins University supported an extensive cooperative learning
project (Slavin, 1987).

Still, with all of this activity, few teachers have heard of team/
cooperative/collegial learning. Many have, however, tried their owit
grouping methods. Why, then, is the strategy not more popular? Could it
be a lack of support? Do school administrators understand why the team
learning classroom often looks chaotic and is a bit noisy? Do they realne
achievement will probably be higher in a cooperative atmosphere? Do
they know that students' social skills and self esteem will be improved?

Research has provided tentative answers for the achievement, self
esteem, and social skills questions (Slavin, 1987). Students do achieve
academically at least as well as they would in conventional classrooms,
their self esteem is higher and they get along better withother students as
a result of cooperative learning. While much of the research has been
done at the elementary school level, there are secondary level and adult
(Johnson and Johnson, 1987) studies that support the cooperative learn-
ing strategy.

How can one instructional strategy do all of these things? First, as
Slaven (1987) notes, there is nowhere for a student to hide in a four- or
five-member team. They must participate! Frequently, many students,
whether because of a personality trait (Lawrence, 1979), a lack of ability or
a worry about one of the "teenager problems," are only passive observers
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in the classroom. (No doubt same are mentally a thousand miles away.
Others, even if attentive, can simultaneously be daydreaming.) Students
actively engaged in learning must concentrate on the task, but if they are
passive listeners, only a small portion of their mental capability is taxed.
(One can read 500-700 words per minute but one can speak at only about
125 words per minute. If the mint an absorb 500.700 words per minute,
then, while listening to a speak, r, less than twenty percent of that
capability is needed, leaving eighty percent for daydreaming.)

Second, students think like students and teachers think like teachers.
How many times has a teacher answered a student's ques.:on about
mathematics only to be greeted with a puzzled look. A different ex-
planation evokes a similar response. Ultimately another student will say
"What she means is . . ." and the puzzled look's replaced by an under-
standing smile. Teachers think like teachers and students think like
students.

A third characteristic of cocperative learning is that it provides oppor-
tunities for students to express opinions, make mistakes, and contribute
to solutions. The most important people in a teenager's life are peers. It is
necessary for students to be accepted as equals and not to be eml. arrassed
in front of their cohorts. Team learning provides a small, collegial group,
conducive for interactions and contributions without fear of making
mistake. A friendly environment is where even the smallest contribution
may be the key to solving a geometric proof, proving a trigonometric
identity, or designing a method to measure some inaccessible distance. In
team learning, the whole is greater than the sum of the parts where
individually four or five students could not solve the problem together
they can. Sadly, too little opportunity is provided students to recognize
this phenomenon.

Finally, a variety of rather well-established components of learning
theories can be incorporated into the small group strategy. One specific
format, described later in this paper, suggests beginning each day with an
advance organizer (Ausubel, 1960). This is not the typical "set'. which
either tells the class the objective for the day, reviews what was taught
yesterday, or notes an interesting relat. onship between the day's work
and the student's experience. Rather it is, as Ausubel describes, a high
level presentation which will later subsume (act as a "coat hanger" for)
the new material from the lesson making the learning "meaningful." This
organizer may be sufficient instruction for the high achievers. However,
for the majority of the class, this five or ten minute mini-lesson, will be
just enough to make the work for the day "meaningful."

Behavioral theories form the foundation for the contingencies neces-
sary to encourage students in the heterogeneous teams to help one
another and to desire to learn themselves. A one-question quiz at the
beginning of each class, on the previous day's objectives, is the key. Each
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student works independently on the quiz but a team score the sum of
the correct answers is recorded each day. If all five n embers answer
correctly, the score is 5 and the team receives an A. A score of 4 is a B and
so on. This information, a 1 or 0 for each individual and the composite
team grade, is recorded. This is not time consuming and it provides a
wealth of diagnostic information to help plan future lessons as well as to
individualize when the need arises.

There is more to this contingency. At the end of the unit of work,
typically several weeks, a "comprehensive" unit test is administered and
gra Jed. Again, each student works alone. If a student's grade on the unit
to st is greater than the mean team grade (the average of the daily quizzes
fo the team) then the student is awarded his or her unit test grade.
However, if the unit test grade is lower than the mean team grade, then
the individual's unit test and the mean team grade are averaged to
produce a higher grade. This sounds complicated, but it isn't. Students
quickly understand the process and realize that the team grade can only
improve their grade not reduce it. The system of contingencies provide
motivation for the better student to teach the less able, and motivation for
all students in the team to do well. It also replaces competition with
cooperation.

Advocates of Gestalt and humanistic theories of learning suggest that
the ultimate goal of education is to free the learner from the teacher to
have students learn how to learn (Bruner, 1962). Teem learning does just
that. In fact, teachers feel unneeded when teams are busily working on
the day's assignment. It is one thing to say we want to free the student
from the teacher, but yet another for the teacher to walk around the
classroom hoping a student will ask a question. There is a tremendaus
urge to sit down and help a team in apparent distress, but restraint is in
order. More often than not the team will solve its own problem.

Such instructional strategies require planning and organization. The
teacher becomes a coo-dinator and resource person, while students shift
from a competitive, individualistic mode to a cooperative and col-
laborative attitude. These new roles are not easily accommodated. Stu-
dents will resist the process. They often do not know how to work
cooperatively on a learning task. It will take time.

The following steps outline one model for team learning. If used, it
should be used completely. As both teacher and stLdents become com-
fortable, modifications can be made. Initially, however, the heterogene-
ous groups, the advance organizers, the daily one-question quiz, the unit
test and the grading process all the result of many years of classroom
use should be tried in their entirety.

Step 1. The teacher must identify and select team leaders. These
students should be chosen for their mathematics ability and
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their leadership capability. The number of leaders will depend
upon the size of the class, assuming five members per team.

Step 2. Each student in the class should list ten student., in prefer-
ential order, with whom they would like to work in a small
group situation. (Unknown to the students, only the lists of the
team leaders will be actually used.)

Step 3. The teacher will construct the teams using only the team
leaders' lists, assigning students to teams incyclic order one
from each team leader's preference list, until the five-member

ams are formed.
Step 4. Enter team rosters in the roll book.
Step 5. Each team should be assigned a location in the room.
Step 6. "Team learning" should be explained to the class, including

teacher activities, student activities, availability of materials
(other texts, answer books, etc.) and the grading system.

The following sections identify the critical teacl-er and student activities
and the grading system.

Teacher Activities
For each lesson in the unit, a brief but concise lecture should be

presented to the class prior to the team attacking that lesson. This
"mini-lecture" will not be sutficient for most of the students to reach
criterion. Further study, practice and discussion will be incorporated
within the team meeting.

The usual instructional pattern will be to present the mini-lecture at the
beginning of the period. The teams will use the remaining time to study
the lesson as a team and to prepare for a one-question quiz the following
day. The teacher will usuilly pick a problem from the exercises in the text
but on occasion may design a new problem for the quiz. Results are

_orded for each student (1 for correct, 0 for incorrect) and for the team.
Included in the mini-lecture will be information regarding reference

materials relevant to the lesson and available in the classroom. Answer
books to the text should circulate among the teams. The teacher will be in
the uncomfortable position of not being needed and should help only
whet asked.

Construct a unit test with items similar to those presented in the text for
each lesson.

Student Activities
The students will be expected to take notes as necessary from the

mini-lecture.
During the team-learning phase the team members may interact be-

twzen members, use reference materials in the classroom or request help
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from the teacher. Occasionally the team will further subdivide into teams
of two or three students.

Homework will be limited to the amount of study that the student
considers to be suffi -'ont preparation for the one-question quiz the next
day.

Each stu.ient will work alone on the one-question quiz. The nature of
the question will allow the teacher to decide upon what constitutes a
correct answer. In some cases it may be desirable to require the studentto
include the work as well as their answer. The student should have his/her
name and team number on the answer sheet to facilitate r :rding
procedures.

Each student will work alone on a unit test which is to be administered
at the completion of the unit. The test will be composed of questions
similar to the exercises presented in the textbook.

The Grading System
A team grade will be calculated for each day on the basis of the

one-question quiz. For a five member team, five correct answers, i.e.,
each member was present and had the correct answer, will represent a
grade of A. Four correct answers a B, threea C, two a D and one or fewer
correct an F. Since this is the daily quiz, no makeup quiz will be permitted
and the absentees will be accorded an incorrect answer. In cases of an
extended illness (more than several days), a revision of the grading scale
is suggested for that team, e.g., four correct represents an A, three correct
a B, etc.

At the end of the unit an average team grade will be computed by
simply averaging the daily team grades.

Each student will receive a grade for his/her individual performance on
the unit test. The student's o *reran grade for fr.- unit will be the higher of
(1) that student's grade on the unit test or (2) the average of that student's
grade on the unit test and the mean quiz grade of the team to which the
student was a member. Using this process, the team grade cannot
depress the individual student's grade obtained on the final test, only
improve it where the team grade was higher than thc, student's unit
grade. borderline grades may be resolved by observing the student's
performance on the daily quizzes.

Collegial (cooperative/team) learning will play an important role in the
curriculum of tne future. Teachers, however, must find it successful and
rewarding. Remember, "cooperation" will probably not come naturally,
because schools are traditionally designed for competition. It will take
time to implement this strategy, but the rewards will be worth the effort.
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INFINITIES: HOW CAN WE USE THEM IN THE
MATHEMATICS CURRICULUM?

John Selisky
Coudersport Area Junior- Senior High School

Georg Ferdinand Ludwig Phillip Cantor, the supremely gifted and
creative Russian-born mathematician, received his doctorate in math-
ematics from the University of Berlin at the age of 23 in 1868. Two years
later he began a teaching career at he University of Halle which lasted 30
years and launched his investigation and publication of the theory of
infinite sets aod transfinite numbers. This investigation so astonished
and disturbed the scientific establishment, that no less an authority than
the French mathem "clan Henri Poincare condemned it as a disease,
from which mathematics would ultimately be "cured."

Happily, Cantor's brilliant and original ideas prevailed, and cast a light
upon the mathematical landscape which led to a flowering of research
and invt stigation that conti-aues to this day. His tamous diagenll proof it.
tc 'ay a standard tool for the study of infinite sets. Its genius becomes
apparent when, upon its reading and application, one is captivated by its
clarity and selt-evidence.

Cantor's greatest achievement wa to illustrate, and rigorously pt.-we
that the concept of infinity is not undifferentiated. That is, not all infinite
sets are the same size. As a consequence, infinite setscan be compared to
one another. For example, the set of all points on a line and the set of all
rational numbers are both Infinite. Cantor proved that the first set is larger
than the second. This notion, even now, seems so paradoxical that
Poincare's distaste for it is almost understandable.

The failure of mathematicians to describe comprehensively the infinite
had plagued the science for centuries. In antiquity the famous paradox of
Zeno asserteu that motion is impossible because of the necessity for an
object to pass through an infinite nun Jer of points in a finite time. The
paradox is exemp;ified in a story about a race between Achilles and a
tortoise who had l cm given a slight neadstart. According to the paradox,
Achilles could never catch the tortoise, as the distance between them,
after the race was begun, could only be diminished by half, then one
fourth, one eighth, and so on ad infinitum. Intuitively. mathematicians
knew that Achilles would catch and overtake the tortoise. However they
were disturbed by the elegance and clarity of Zeno's argument. It w Is not
until Archimedes' work on infinite series (150 B.C.) that the pt.. )Iem
could be understood through mathematics, and not until the develop-
ment of calculus in the 17th century, that the problem of the relationship
between velocity and position was solved
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The infinite also had difficult theological connotations. Religious phil-
osophers were not a little dismayed by the possibility that, one day,
mortal man would have the capacity to comprehend the infinite. St.
Thomas Aquinas regarded the idea as a direct challenge to the unique and
absolute infinite nature of God.

The Arithmetic of Infinity
Cantor's voyage to and beyond the infinite began when he was work-

ing on a particularly difficult analysis of trigonometric senes. Like matt)/
of his contemporaries, he was searching for an arithmetic replacement for
Euclidean geometry.

Cantor began by defining a finite set as a "collection of separate and
definite objects of ou: ition or thought " As he was trying to define an
arithmetical foundation of mathematics, he intended sets to consist solely
of numbers, though the collection could contain other objects as well. He
asserted, logically, that on set is equivalent in size to another set if tho
elemeats of the first set could be marched. one for one, with the elements
of the second set. his definition does not require us to count, or even to
be ^ble to count tb- elements of either set in order to determine their
equivalence. For example, consider a container filled with white and
black marbles. The simplest way to determine if the whites are equivalent
to the blacks is to remove the marbles from the container in pairs. If every
marble can be paired with Ole of a different color, the blacks are equiv-
alent to the whites. If any marbles are left after the pairings are complete,
the color of those marbles represents the larger set.

No matter how large a finite set is, a still larger one can be constructed.
This larger set is called a power set and is comprised of all the subsets that
it is possible to derive from the set before it. Each subset will consist of
none, any, or all of the set's elements. The set with no elements is the null
set, and the set with all of a set's elements is an improper subset. For
exam-'e, a set of two elements c.4,B) is associated with a four-element
powe set, comprised of its four subsets: cA), (B), (A,B), and
the null set. A three element set (A,B,C) has eight subsets: (A),
(B), (C), (A,B), (A,C), (B,C), (A,B,C), and the null
set. It can be shown that the number of subsets derivable from a set of X
elements is 2'.

Now that Cantor had established a basis for the generation of finite
sets, he carried the argume t to infinite sets, using exactly the same logic.
That is, the existence of an infinite set implies the existence of another
larger set whose cardinality, or size, is represented by 2 raised to the
power of infinity.

To describe the number of elements in an infinite set Cantor selected
the symbol , 1(;, aleph sub null, the first letter of the Hebrew alphabet, and
the subscript zero. By the logic of finite sets, therefore, an . I(; set, such as
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the set of all integers, has exactly 2N0 subsets. Just as a three-element set
has 8 (2') subsets, so also a .,1(; eiement set has two raised to the ..,1e3
s.,bsets. The fact that 2'0 is not a countable number (the size of set which
can be put into a one-to-one correspondence with a set of positive
integers) does not diminish the power of the argument. Cantor further
described 2Nj as egf...11 o another class of infinity, the set ,1;, or aleph sub
one. .1' differs from ..ro similar to the way that 2', the cardinality of a
two-element set, differs from T, the cardinality of a three-element set. . 1;
is the first transfinite number, Cantor': first step beyond inanity.

As Cantor did more detailed work with transfinite numbers, he made
some totally unexpected discoveries, and proved them. The first surprise
was that the infinite set of all the fractions is equal in size to the infinite set
of all whole numbers. Though it seems as counterintuitive now as it must
have to 19th century mathematcians, Cantor proved that the one-to-one
correspondence necessary for the pairing of the elements of two sets
holds just as well for these two (fractions and whole numbers). Since
there are .1(3 whole numbers, Cantor's proof meant that there are to
fractions.

We can extend the logic of this argument to even more surprising
discoveries. For example, the number of prime numbers is an infinite set
with cardinality .1(3. It is known that there is no largest prime, that is, the
number of primes is infinite (Euclid's famous proof). Another oddity
about the list of primes is the absence of any noticeable pattern as one
ventures further into the realm of large numbers. For example there are
nine pnmes between 9,999,900 and 10,000,000. But among the next 100
integers (10,000,000 to 10,000,100), there are only two. A large tabulation
of primes reveals that they finally become less .nd less frequent as the
numbers counted increase. In fact the ratio of the number n divided by the
number of primes up to n (IT (n)) increases by approximately 2.3. This is
6.2 prime number theorem, discovered by Gauss around 1792 (at abe 15).

What is remarkable about the primes is that they can be paired one to
one with the integers. Both are ..10' sets. Again this seems terribly
counterintuitive. How can there be the same number of primes as num-
bers, when the primes diminish so quickly? By rigorous application of
Cantorian logic the problem is reduced to a triviality.

Perhaps Cantor's most important discovery was that the set of ir-
rational numbers is an infinite set larger than the infinite set of rational
numbers. Cantor also stated this assertion as the number of points on a
number line, or continuum, exceeds the number of whole numbers, or
repeating and terminating decimals (tractions). Here again, our conven-
tional perspective makes this appear not to be so. How can one squeeze
all those irrational points in between the points of rational numbers on a
number line which is already infinitely dense? Cantor's proof of this one
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is even today, a century later, considered one of the most brilliant of all
proofs. It is the famous diagonal proof.

Consider the interval between 0 and 1, consisting of real numbers. If
such a list could be completed, each positive integer X could then be
matched up with a real number r(x) between 0 and 1. Real numbers are
denoted by infinite decimals, so the table might contain a list, which
looks, in part, like this:

r(1): .1 4 1 5 9 2 6 5 3...
r(2): .3 3 3 3 3 3 3 3 3...
r(3): .7 1 8 2 8 1 8 2 8...
r(4): .4 1 4 2 1 3 5 6 2...
r(5): .5 0 0 0 0 0 0 0 0...

The digits that run down the diagonal are: 1,3,8,2,0. These digits will
now be used to create a new special real number, d, which is between 0
and 1, but which cannot be on the current list. To create au, d take the
diagonal digits in order, and change each one of them to some other digit.
Any change will do. Of course there are any number of ways to create d.
One could, for example, subtract one from each diagonal digit. In this
case our new d will be .02719... Because of the uniqueness of the con-
struction of d, d's first digit is not the same as the first digit of r1; d's
second digit is not the same as the second digit of r2; d's third digit is not
the same as the third digit of r3... etc. Therefore, d is different from r1,
from r2, r3, etc. In other words, d is not on the list. Cantor had, in this
manner, shown that the set of real numbers could not be put into a
one-to-one correspondence with the set of positive integers. He was also
able to show that the set of rational numbers could be put into a one-to-
one correspondence with the set of positive integers. The set of real
numbers was, unlike the set of rational numbers, not countably infinite.

Comprehending The Incomprehensible
One of the most striking revelations of Cantor work was to show that

the set of all natural numbers can be paired one for one with the set of all
even numbers, the set of all fractions, the set of odd numbers, etc.
Strangely enough, an infinite set can be put into one-to-one correspon-
dence with (or "is equivalent to") one of its subsets. In fact, it is provable
that a set is infinite if, and only if, it is equivalent to one of its proper
subsets. This i-. analog, 'is to stating that the number of grains of sand at
the beach is infinite if, and only if, each grain can be paired with each
grain of sand in some smaller area on that beach.

This seeming paradox highlights the limitations of our senses in try'ng
to perceive the infinite in terms of our finite environment. What physical
objects within our universe are expressible in terms of infinity? Consider
the number of stars in the Milky Way, about 10 billion; the number of cells
in the body, about 60 trillion; the estimated number of protons in the
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universe, one followod by 79 zeros By any human standard of measure-
ment these are very large numbers. Yet, by the measure of transfinite
numbers, they are scarcely noticeable. If it were possible to write ./to" in
numerical form, it would consist of one, frAlowed by an infinity of zeros.

Cantor himself was startled by his nem discovery. He suggested the
problem that it might be possible to correspond a surface, such as a
square, with a straight line, so that c -.ch point on the surface could be
paired with a point on the line. Cantor was certain that it could not be
done. In 1877, after working on the problem for three years, he reported
that the pairing could be done. Additionally, he discovered that such a
pairing could be done between the points in a finite volume, such as a
sphere or cube, and the points on a line. Once again our visual senses fail
us in trying to gain an accurate perspective on these elusive sets of points.
Cantor's proof shows that the number of points in any finite dimensional
space is equivalent to the number of points on the line.

The question remains as to whether there are any infinite sets whose
cardinality is greater than ., to" and less than _Ai'. That the question
occurred to Cantor is an understatement. He agonized over it for more
than ten years. The conjecture came to be known as fle continuum
hypothesis, and it has never been proved. In 1938, Kurt GOdel proved
that the hypothesis could not be disproved. This was the best the math-
ematics community could do, until 1963, when Paul J. Cohen showed that
the continuum hypothesis could not bf. proved by the axioms of standard
set theory.

But what about representations of infinite sets whose cardinality is
beyond .,ti? Isaac Asimov suggests that, perhaps, this possible end-
lessness may be the number o: different possible c 'ryes that can be drawn
on a plane. Could this be iZr There is still no proof. As to the alephs
beyond no series has been found to correspond to it, nor are there
any ph) :cal models which suggest a derivation.

Other intriguing mysteries lurk inside the continuum. If the number
line is infinitely dense witn the rationals, and between each rational there
exists an infinity of a'gebraic irrationals (irrationals which are the roots of
algebraic equations), where is there room for the transcendental num-
bers? That transcendentals, those numbers which cannot be algebraic
roots such as IT anc. e, exist is a certainty. But where dl they live? Is there
another infinity which describes the set of transcendentalswhich exist in
some infinitely minute space between each algebraic irrational and
rational? Can one of the alephs, possibly .,1;, beascribed to the infinite set
of the transcendental:,? Perhaps these questions are more interesting than
the answers may turn out to be.

Infinity in the Mathematics Curriculum
Students typically begin to deal tiith formalized, numerical concepts of

the infinite when first learning the names of the large numbers beyond
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the hundred thousand place value. They usually have a fascination with
the names of the very large numbers, and many of the more motivated
students have already learned the names billion, trillion, and, perhaps
quadrillion before leaving elementary school. This suggests a reasonable
learning objective for elementary students: teaching the place value
names to the trillions place for all, and to, perhaps, the sextillions place for
some. This will have to be accompanied by ongoing discussion that, while
we can namel huge number of numbers, we run out of names long before
we get anywhere near an infinity of any order.

The following list gives names and exponential notation for some of the
large numbers:

102 hundred 1012 trillion 1024 septillion
103 thousand 1015 quadrillion 1027 octillion
106 million 10'8 quint-F:0n 10' nonillion
109 billion 102' sextillic,i 1033 decillion

As numbers grow to such sizes, they tend to become more and more
meaningless. For example, how large is one million? It's easy to write it,
but physically difficult to count it. In fact, it would take one approximately
12 days, counting nonstop, one number per second, to reach one million.
A million days is roughly about 2800 years, and a million inches is about
16 miles. One billion seconds is about 32 years, one billion days about
2,800,000 years, and one billion inches about 16,000 miles.

One of the largest named numbers, the gocgol, is 108", that is, -ne
followed by 100 zeros. When compared to a really large naturally occur-
ri:ig number, 10'°, the estimated numbe- of protons in the universe, it is
seen how little sense we can make out of such a number.

Another infinite set lesson is the familiar large container of marbles of
two colors. The students are asked to determine which color marble is
largest in number, without counting either color. The students quickly
get the idea of pairing the marbles, selecting one of each color. The
exercise will lead to interesting variations, such as placing the marbles in
two sepa:ate containers, and using three or more different colors. The
prin:iple of one-to-one correspondence is the same, whether selecting
two colors or n colors. The first color to be exhausted is smallest in
number, the last to be exhausted is largest.

Using different colored marbles is another way children can be intro-
duced to the idea of the generation of subsets from a given set. Begin with
the set of two marbles, a black and a white. Present the problem, how
many different sets can be created from only these two? Hay, dents
suggest subsets that may be acceptable. The students will likely .tame all
the subsets from two colors very quickly. Then proceed to the more
difficult problem of three colors, then perhaps four. The derivation of the
subsets proceeds as follows (in any order):
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ORIGINAL SET SUBSETS
black, white black

white
black, white
null

black, white, red black
white
red
black, white
black, red
white, red
black, white, red
null

black, white, red, blue black
white
red
blue
black, white
black, red
black, blue
white, red
white, blue
red, blue
black, white, red
black, white, blue
white, red, blue
red, blue, black
black, white, red, blue
null

NUMBER SUBSETS

4

8

16

L is nut realistic to expect elementary school children to discover the 2^
pattern of the derivation of subsets, mostly bc cause they lack the no-
tational skills to represent the idea. It is however, worthwhile for the
teacher to point to the pattern, and to emphasize that it follows for sets of
any size.

Geometry gives elementary students many opportunities to explore
Infinities. Two which have been used successf iy are described as
follows: Supply the students with compasses ana straightedges. Ask
them to construct a circle. Next as' them to pick any three points on the
circle, and label them points a,b, and c. Then have them cor - t a, b; and
c, forming a random triangle. Ask the students to compare . triangles
to see if any are exactly congruent. After the students have done the
exercise, ask them how many triangles it is possible to draw inscribed it.
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the circle. Then how many circles is it possible to draw? The lesson can be
varied b, having the students draw a diameter, and use only one of the
semicircles. This can also show them that there is another infinity of
triangles which can be inscribed in each semicircle, ana the whole circle.
Thus the concept of an infinite set having an infinite proper subset is
appropriately reinforced, using the most elementary of gLometric visual
processes.

Another even more simple construction uses the creation of two sup-
plementary angles by a random line drawn to any point q on a straight
line xy. As the students are directed to do this exercise, they are likely to
copy the teacher's example, even closely matching the angular measure
of the two supplementary angles. A suggestion is to have them pick any
point z above the line xy, then connect it to point q. The resulting two
supplementary angles can be compared in much the same manner as with
the inscribed triangles.

What are the physical computational limits of the infinite? In short, no
one knows. Recently the computer scientist, Yasumasa Kanada, of the
University of Tokyo calculated the value of 7r to more than 134 million
decimal places. The printout generated enough digits to paper a gym-
nasium. As 7r is an irrational number, and has no pattern of repeating or
terminating decimals, the process simply encrypts the digits, and there-
fore has little practical value, except as a curiosity. But isn't being a
curiosity enough? A mathematician who examined the results of this
effort, Dr. Peter Borwein, suggested that the search for more digits in 7r
will not stop. He further conjectured that no one will ever know the 10'"'
digit of 7r. Apparently the only way to know that digit would be to
calculate all the digits before it. Since the entire universe does not have
that many electrons, it does not appear physically possible. Or does it?
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THE RETURNING ADULTS -
THE COLLEGE STUDENTS IN THE YEAR 2000:

HOW CAN WE HELP THEM?

Dorothy S. Mullin
The Pennsylvania State University McKeesport Campus

Have you noticed a change lately in the age of the students in the
undergraduate classrooms? There's been a gradual ange from the so
called "traditional" student to the ac' 'It student. Just as society has been
observing the graying of America, we now have the graying of the
classroom.

The Office of Planning and Analysis at The Pennsylvania State Univer-
sity reported that one-fifth of the Fall 1985 undergraduate enrollment at
Penn State's seventeen Commonwealth Campuses was over twenty-five
years of age (Cutright, 1986). This phenomenon is occurring in colleges
and universities all over the country and has extended the trend that
began about 14 years ago. By 1992, students und' r 25 years old are
projected to comprise just 51 percent of the total enrollme its, down from
61 percent in 1982 (Shannon, 1986).

With this influx of new and returning adult students to the classroom,
what should colleges and universities be doing to meet their varied
needs? Faculty and administrators in institutions of higher education
need to address the following questions. What needs and experiences are
these adult students bringing to thec sroom? What do they expect from
the teacher? How does one teach tuese adults effectively? Specifically,
how does one teach mathematics to these adults?

Needs and Experiences Brought to the Classroom
Adults usually know what they want out of college. Yet, many times

they returr to a structured learning situation with painful memories of
earlier schooling. Such memories often trigger feelings of insecurity and
fears that they are not equipped to hr the learning tasks (Darkenwald
and Merriam, 1982).

Malcolm Knowles is credited with publicizing the term andragogy
which has been defined to mean "the art and science of helping adults
learn." Knowles (1984) has found through his anch-,gogical model that
adults bring to the classroom their experiences, a readiness to learn, a
need for relevancy and a need to be self-directing.

Adult Students' Expectations of Teachers
Teachers of adults shoul'l serve as "facilitato " rather than as "reposi-

tory of facts." Teachers who allow the adults a chance to help themselves
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and others will probably have more satisfaction and better results than
teachers who do not use this method (Godbey, 1978).

Adult students prefer instructors who 1) are student-oriented, 2) are
organized, but not overly structur?d, 3) have enthusiasm, 4) know their
subject matter, 5) are well-prepared, and 6) are able to stimulate interest
in the topic (Apps, 1981).

How Adults Learn
Even though the literature suggests that a collaborative learning envi-

ronment is the most effective, Conti (1985) found in a study that General
Educational Development (GED) students learned more in a teacher-
centered environment. (This may be because GED students tend to focus
on the immediate tasks involved with passing the GED examination.)

As many as 70 to 80 percent of adults say that they would prefer to learn
by some method other than classroom lectures; however, lectures usually
rank first or second in overall popularity out of the five to ten methods of
teaching that are generally presented in questionnaires (Cross, 1981).

Techniques to Help Adults Learn Mathematics
The literature shows that adults learn well with individualized learning

techniques, collaborative methods, and lectures. There should be a direct
relationship between the general methods of teaching adults to those
methods which can be used to help adults learn mathematics.

Studies done at the University of Georgia and the University of
Wisconsin-Green Bay have shown that adult students do not do as well
on the SAT mathematics tests and other standardized mathematics tests
as do younger students. Lack of practice and mathematics anxiety have
been forwarded as explanations of why this happens.

To help students overcome mathematics anxiety, some colleges offer
counseling with various psychological techniques, small-enrollment non-
credit courses to help students build confidence in their mathematics
ability and test/retest methods.

Chang (1985) studied the test/retest method in a college remedial
mathematics course at Augusta College, Georgia and concluded that
retesting provided students with a chance to re-learn the material and
also an opportunity to reduce their test anxiety. Some suggestions to
implement the test/retest method as an instructional technique include:

1) Do not overemphasize test grades. Students should be informed that
the objective of retesting is to identify their weaknesses and strengths
in the learning of mathematics.
2) Do not spend the entire period on new material. Students should be
motivated to find answers themselves rather than be shown an instruc-
tor's solution.
3) Do not cover the material too fast. More attention should be given to
each student's individual needs.
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Strategies that can help adults feel less anxious in an introductory
mathematics classroom are: a supportive classroom environment with an
encourag:ag teacher, extensive review in the beginning, techniques
designed to lower anxiety to a manageable level, using concrete manipu-
latives to help bridge the gap betweeo concrete operations and abstract
ideas, individual and group tutoring sessions, using a variety of teaching
techniques, providing frequent feedback and addressing students' atti-
tudes about mathematics (Taylor anr4 Brooks, 1986; MacDonald, 1978;
Brundage and MacKerachc...r, 1980). Many articles have been written
about the adult woman who is returning to college. Most of the authors
conclude that the aforen.entioned techniques, ,vhich will help women,
will also help the returning adult male student.

Faculty at the University of Missouri-Kansas City conducted an ex-
perimental study that compared an introductory mathematics class that
contained only women students with oth ..r classes that were co-
educational. The women in the experimental section were more suc-
cessful than the women in the other sections in several areas: grades
earned, higher rate of retention in mathematics, and changed attitudes
about mathematic; (MacDonald, 1978).

A pre-calculus course at Mills College, a liberal arts college for women
neat San Francisco, was designed to prepare students with weak math-
ematical backgrounds, not to fill in all the gaps in their educational
background. Blum and Givant 11980) describes the course as follows:

Our ccurse has two components. Component A deals with functions
and emphasizes concepts that will be encountered in calculus; com-
ponent B consists of basic algebraic material. Each component is taught
in a diff m.ent setting, component A in the regular class with a regular
instructor, component B in small workshops taught by other under-
graduates. (p. 787)

Enrollment ;1 pre-calculus has u-ipled and students enrolled in beginning
calculus have nearly doubled. Even though the emphasis has been on the
education of women, the program has 1elped increase mathematical
competence and confidence. The Plain features of the program are the
carefully designed curriculum, positive teaching and the supportive and
encouraging environment.

A stvdy was done at the University of Lowell comparing calculus
classes t aught in the conventional manner to calculus classes taught using
an individualized mode of instruction. These calculus classes were for
continuing education students who were "typical" adults with hetero-
geneous backgrounds. The individualized method was mastery-oriented
but teacher-paced rather than student-paced. The weekly three-hour
class was sub-divided into tame pans. The first hour consisted of a lecture
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on the topic of the week. The next two hours were used for individual and
group help. The quizzes were given with immediate feedback to the
students. The conclusion of the study was that the students who had
taken the classes taught by the individualized mode of instruction were
more successful than the students who had taken the conventional mode
of instruction. Taylor (1978) reported that "76 percent of the students who
took the individualized mode of instruction were ready to take the next
mathematics course; however, only 54 percent of the students who were
enrolled in the conventional mode of instruction were ready to take the
next mathematics course" (p. 12).

There are still many techniques that can be investigated as to the best
way to teach mathematics to adults. What methods would help mathe-
matics-anxious adults change their attitudes and also help them master
their understanding of mathematics? Teachers and administrators in
colleges and universities need to become familiar with the results of the
research that has already been conducted so that they can implement the
best procedures and programs available to help the growing numbers of
returning adult students succeed.
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