
DOCUMENT RESUME

ED 301 439 SE 050 158

AUTHOR Hogben, Leslie
TITLE Student Produced Advanced Mathematical Software.
INSTITUTION Iowa State Univ. of Science and Technology, Ames.
SPONS AGENCY Fund for the Improvement of Postsecondary Education

(ED), Washington, DC.
PUB DATE 88
GRANT 0008440404
NOTE 42p.

PUB TYPE Reports - Descriptive (141)

EDRS PRICE MF01/PCO2 Plus Postage.
DESCRIPTORS *College Mathematics; *Computer Graphics; Course

Descriptions; *Courseware; *Curriculum Development;
Higher Education; Mathematics Curriculum;
*Mathematics Instruction

IDENTIFIERS *Differential Equations

ABSTRACT
The intent of this project was to develop a course

for mathematics graduate students at Iowa State University. They
would design and write computer programs for use by undergraduate
mathematics students, and then offer the course and actually produce
the software. Phase plane graphics for ordinary differential
equations was selected as the tepi,:. Prior to the course, the faculty
coordinators designed the modular structure of the program and wrote
some input/output routines. The course was held, but was plagued by a
shortage of students. This caused delays, as the program was not
completed during the course. The software was finally completed
through a variety of methods, including adapting existing numerical
programs, using graduate students to write parts of the program as
master's degree projects, and hiring graduate students to write parts
of the program. The computer program, Phase Plane Graphics for
Ordinary Differential Equations, is listed in an appendix; it will be
commerically distributed. (Author/MNS)

* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *

STUDENT PRODUCED ADVANCED MATHEMATICAL SOFTWARE

Leslie Hogben, Project Director

Department of Mathematics
Iowa State University

Ames, IA 50011

May 31, 1987

U II DEPARTMENT OF EDUCATION
Office of Educational Research and Improvement

EDUCATIONA . RESOURCES INFORMATION
CENTER (ERIC)

This documert has been reproduced as
received from the person or organization
originating it
Minor changes have been made to improve
reproduction quality

Points of view or opinioivs staled in)his docu-
ment do not necessarily represent official
OE RI posit.on or policy

2 BEST COPY AVAILABLE

[
Grant Organization:

Grant No

Iowa State University
Ames, IA 50011

G008440404

Project Dates.

Starting Date August 1, 1984
Ending Date May 31, 1987 (originally July 31, 1986)
Number of months. 34 (originally 24)

Project Director:

Leslie Hogben
Department of Mathematics
Carver Hall
Iowa State University
Ames, Ia 50011

Fund Program Officer.

Jay Donahue (originally Susan Forman)

Grant Award.

Year 1. $19,570
Year 2: $12,509---
Total $32,079

3

(carried over to 3rd year)

Student Produced Advanced Mathematical Software

Summary

The intent of this project was to develop a course for

mathematics graduate students to design and write computer

programs for use of undergraduate mathematics students, and to

offer the course and actually pt-oduce software The particular

software project selected was a graphics program for LISP in an

undergraduate differential equations co7se. The course was

held, but suffered from a shortage of students. Students

were recruited later to complete the software, Phase Plane

Graphics for Ordinary Differential Equations, which will be

commercially distributed.

Project Director: Leslie Hogben, Department of Mathematics,

Iowa State University, Ames, Ia 50011

Tel 515-294-8168 or 515-294-1752

The following materials developed by thin project may be obtained

by calling or writing the address above Telephone requests are

recommended for computer diskettes.

PHASE PLANE GRAPHICE. FOR ORDINARY DIFFERENTIAL EQUATIONS

Input/Output and Graphics Subprograms

Materials Developed for a Graduate Course In Mathematics

Software Development

Project Title Student Produced Advanced Mathematical Software
Grantee Organization: Iowa State University, Ames, Ia 50011
Project Director- Leslie Hogben, Department of Mathematics,

Iowa State University, Ames, Ia 50011
Tel. 515-294-8168 or 515-294-1752

Executive Summary

Project Overview
The intent of this project was to develop a course for

mathematics graduate students to design and write computer
programs for use of undergraduate mathematics students, and to
offer the course and actually produce software. The particular
software project selected was phase plane graphics for ordinary
differential equations, suitable for use in an undo graduate
differential equations course. Prior to the course, the faculty
coordinators, Leslie Hogben, Richard Tondra, and Roger Alexander,
designed the modular structure of the program and wrote some
input/output routines. The course was held, but was plagued by a
shortage of students. This caused delays in the project, as the
program was not completed during the course. The software was
finally completed through a variety of methods, including
adapting existing numerical programs, using graduate students to
write parts of the program as Master's degree projects, and
hiring graduate students to write parts of the program The
computer program, Phase Plane Graphics for Ordinary Differential
Equations, will 1,41 commercially distributed

P.Jrpose
There is a serious lack of mathematical software at the

advanced undergraduate (postcalculus) level, despite the many
useful applications of computers to mathematics. There is also a
lack of integra,ion of computer use into graduate mathematics
courses.

This project attempted to solve both these problems by
developing a graduate course in which the students would write
software for use in advanced undergraduate mathematics courses

Background and Origins
Iowa State University is a large (25,000 students) public

university offering both undergraduate and graduate degrees The
Department of Mathematics has more than b0 permanent faculty
members and approximately 90 graduate students Bachelor of
Science, Master of S ience, and Doctor of Philosophy degrees are
offered by the department The Iowa State Computation Center
operates mainframe, minicomputer, and microcomputers, and
provides consulting services to the university.

Project Description
The fall semester of 1984 was spent designing the graduate

course, Math 517x, and making preparations for the software. We
researched software design and review techniques and decided on a
format for the :ou^se. We developed standard input/output
subprograms for use in the software. We selected phase plane
graphics for ordinary differential equations as the program we

5

would develcp in Spring 1995, ana devised a plan of modular units
for the program.

Given a differential equation of the form
dx/dt = F(x,y) dy/dt = G(x,y)

and an initial point, the solution is a path in the x,y-plane
There are many applications of such differential equations.
Because of their importance, equations of this type are
frequently studied qualitatively in undergraduate differential
equations courses, although quantitative solution of such
equations is beyond the scope of an undergraduate course.

The program was to contain the following modules: main
program (MAIN); to control the region of the x,y-plane that is
graphed (GRAPH), to enter differential equations (PARSE); to
graph a single trajectory, i. e solution, (TRAJECTORY); to graph
a series of trajectories, i. e. phase plane (PHASE), to graph a
direction field of vectors (ARROWS); to graph null clines
(NULLCLN), to find and classify critical points (CRITPT). There
was also a module to handle menu input/output (MENUS), and for
technical reasons two small machine-specific modules pertaining
to graphics and menus

During the spring semester of 1985, Hogben and Tondra taught
Math 517x, a graduate course covering numerical methods for
studying phase planes and developing phase plane software.
Serious difficulties were encountered with both the quantity and
quality of students. Only four students registered for the
course and two subsequently dropped it During Math .517x, two
nodules were completed, MAIN by James Coyle, who subsequently
drooped the course, and PARSE by Hogben. One student was
assigned to adapt public domain code in Shampine and Gordan,
Computer Solution of Ordinary Differential Equations, but did an
inadequate job. Another was assigned the CRITPT module but did
not do it

During the summer of 1985, we hired Coyle to design and
write the ARROWS module, which he did skillfully and efficiently.
At the end of Fall semester 1985, Linda Ten Hoeve was given the
CRITPT module as a creative project required for her Master's
degree. She completed this project successfully in the summer of
1986, but did not interface it to the main program. During the
spring of 1987, Hogben adapted the Ten Hoeve code and Alexander
adapted the Shampine/Gordan code. Practical considerations
involving the use of the program ied to the elimination of the
PHASE module Thus the program Phase Plane Graphics for Ordinary
Differential 'Equations was completed in May 1987 (Z-100 version)

Because of the difficulties encountered during Math517x, the
students did not write the user manual as they went along, as
originally intended Alexander is currently writing a detailed
user manual for the program When this is completed, we intend
to test the software in an undergraduate differential equations
course In the meantime, brief instructions on how to use the
program are available

In order to facilitate dissemination of the software, we
intend to produce versions for other MS-DOS machines, in
particular the IBM-PC. Technical difficulties have caused
delays, but the IBM-PC version should be completed during 1987

6

Project Results
The principal product of this project is the computer

program, PHASE PLANE GRAPHICS FOR ORDINARY DIFFERENTIAL EQUATIONS.
This program is currently available for the Zenit% Z-100 and is
being adapted for the IBMPC and similar MSDOS machines In
order to obtain widespread distribution, we are planning to
distribute it commercially. It has been submitted to CONDUIT
This program is included in Appendix B

In the process of developing this program, we developed
menu format input/output and graphics control procedures callable
from MSDOS Pascal or FORTRAN. These procedures may be useful to
other software developers They are included, along with a small
demonstration program, in Appendix B

In the process of planning the course, a variety of materials
were developed These include program design notes, class plan,
and a brief software development bibliograpt-y These materials
are included in Appendix C.

Copies of the above materials may be obtained from
Leslie Hogben, Department of Mathematics
Iowa State University, Ames, IA 50011
Tel 515-294-9169 or 515-294-1752
Because information about equipment is necessary to provide
computer diskettes, such requests are more easily handled by
telephone.

Summary and Conclusions
This project successfully completed the development of

planned software, Phase Plane Graphics for Ordinary Differential
Equations. However, the intended method of development by a
class of graduate students was not completely successful. In
overcoming the student shortage difficulty, two promising methods
for developing software were utilized- Modifying currently
available research programs, and hiring graduate students.

We:1 designed and thouroughly tested programs utilizing
sophisticated numerical methods are widely available and are
froquently in the public domain. Although such programs
frequently employ a high level of numerical sophistication, they
range from difficult to impossible for an inexperienced person to
use. However, if combined with a userfriendly program to handle
input/output and a well written manual, existing numerical
programs can provide the basis for valuable software.

The other strategy employed to successfully complete the
software involved using graduate students to design and write
parts of the program, but not as part of the class. One student
wa; hired to write a module and another wrote a module as a
creative degree project Both these approaches provide software
development experience, albeit without the team approach and
design review experience originally planned

The results of this project suggest possible methods of
developing undergraduate software by incorporating existing
research subroutines and using graduate students, either by
hiring them or by awarding academic credit for individual
projects This project also developed a sophisticated and easy
to use program for use in an undergraduate differential equations
course, Phase PLane Graphics for Ordinary Differential Equations.

ta
7

Student Produced Advanced Mathematical Software

Final Report

Project Overview

The intent of this project was to develop a course for

mathematics graduate students to design and write computer

programs for use of undergraduate mathematics students, and to

offer the course and actually produce software The particular

software project selected was phase plane graphics for ordinary

differential equations, suitable for use in an undergraduate

differential equations course. Prior to the start of the course,

the faculty coordinators, Leslie Hogben, Richard Tondra, and

Roger Alexander, designed the modular structure of the program

and wrote input/output routines The course was held, but

was plagued by a shortage of students This caused delays in the

project, as the program was not completed during the course The

software was finally completed through a variety of methods,

including adapting existing numerical programs, using graduate

students to write parts of the program as Master's degree

projects, and hiring graduate students to write parts of the

program. The computer program, Phase Plane Graphics for Ordinary

Differential Equation,,, will be commercially distributed

Purpose

There is a serious lack of mathematical software at the

advanced undergraduate (poctcalculus) level, despite the many

useful applications of _omputers to mathematics There is also a

lack of integration of computer use into graduate mathematics

courses.

A substantial body of software exists for elementary

mathematics courses (calculus and precalculus) TheTe are also

a large number of sophisticated research level programs

available, but they are unsuited for use in undergraduate

courses Very little software relevant to advanced undergraduate

(postcalculus) courses is currently available This is primarily

a consequence of market conditions, rather than of the

appropriateness of software to advanced courses While there is

perhaps a greater range of interesting applications in advanced

mathematics, major textbook publishers currently do not believe

the development of advanced software is economically viable.

Once the software is developed, there are means available to

distribute it.

The use of programs written by others can make many aspects

of advanced mathematics more concrete by allowing the user to see

a variety of of examples, much as spreadsheet software can enable

a businessman to obtain a better understanding of the effects of

different decisions However, to thoroughly understand the

mathematics one needs to understand the underlying computational

procedures (numerical algorithms). This is learned by doing the

programming oneself, but is beyond the scope of most

undergraduate mathematics courses It is entirely appropriate at

the graduate level.

There is a need to incorporate computer programming of

numerical algorithms into graduate mathematics courses Few

graduate mathematics courses use computers, despite the fact that

many graduate students will need to use computers in future

employment.

9

This project attempted to solve both these problems by

developing a graduate course in which the students weuld write

software for use in advanced undergraduate mathematics course,,

Background and Origins

Iowa State University is a large (25,000 students) public

university offering both undergraduate and graduate degrees The

Department of Mathematics has more than 60 permanent faculty

members and approximately 90 graduate students Bachelor of

Science, Master of Science, and Doctor of Philosophy degrees are

offered by the department The Iowa State Computation Center

provides academic and research computer services to the

university. It offers mainframe, minicomputers and

microcumputers, and provides consulting services.

The Computation Center was helpful and cooperative

throughout the project They provided consulting services on

machine specifics and provided us with some public :iomain

tjraphics software they had written. We had no problems getting

v:fess to the university's Zenith Z-100 micro computers

Project Description

This project was carried out by three faculty members in the

Department of Mathematics at Iowa State University, Leslie

Hogben, Roger Alexander, and Richard Tondra, with the assistance

of several graduate students in the Mathematics Department

The fall semester of 1984 was spent designing the graduate

course, Math 517x, and making preparations for the software We

,eaearched software design and review techniques and decided on a

format for the course. We developed standard input/output

snbprograms for use in the software We selected phase plane

graphics for ordinary differential equations as the prugam we

4;,2J1d uevelop in Spring 1985, and devised a plan of modular un'ts

for the program

It was decided that the course would begin with lectures on

t'le underlying mathematics that the programmers (graduate

,Judents) would need for the project. then each student would be

assigned a piece of the program to design The whole class would

,i-J1-,alyse the work in design reviews. A design is written in a

mixture of English and blockstructu,ed programming language

(such as Pascal) Ideally, a design should be readily

Intelligible to a nonprogrammer who is familiar with the

mathematics, and yet should be mechanically translatable into

programmed code In practice, a design usually starts in

English and and progresses closer to programming language as the

iev&ew process proceeds The author of the design distributes it

to the review group (class) and the review group meets at a later

time to discuss the design The reviewers ask questions to

clarify the design, catch arrors, ask how steps will be

translated into programming language, etc Materials prepared

i:Or classroom use in Math 517x, including a sample design, are

include in Appendix C.

Phase plane graphics for ordinary differential equations

was chosen as the software development project Given a

differential equation of the form

dx/dt = F(x,y) dy/dt = G(x,y)

and an initial point, the solution is a path in the x,yplane.

There are many applications of such differential equations. Such

11

equations are studied in various ways A trajectory (solution

path) might be needed Critical points (both derivatives zero,1

ara studied and classified Because of their importance,

equations of this type are frequently studied qualitatively in

undergraduate differential equations courses, although

quantitative solution of such equations is beyond the scope of an

undergraduate course

The availability of high speed computers has made numerical

methods (carried out by computer) the best choice for dealing

with such equations. These methods are well developed and

accessible to graduate students Recent developments in

microcomputers have provided the necessary speed and memory

capabilities. User convenience combined with superior graphics

made microcomputers the machines of choice. We had access to the

University's Z-100 microcomputers.

During the fall of 1984, the modular structure of the phase

plane graphics program was designed, and modules to handle the

input/output via menus and the graphics window were written

These modules may be useful to others who wish to design graphics

(;oftware and are included in Appendix

The primary considerations in designing the program were

ease of use, flexibility, and accuracy Accuracy was a major

oncern in the implementation of the numerical methods In order

to provide flexibility, the user should be able to enter any data

used by the program For example, for graphing a trajectory, the

initial point, time interval, and error tolerances car the

numerical routines may be supplied by the user In addition to

controlling the data for the various graphing actions, the user

12

should be able to change the region of the x, y- -plane that is

graphed and the differential equations

Ease of use was a major consideration in the design cf the

program as a whale, and the design of input/output. Because

menus provide t easiest form of user control, it was decided

that the program should roe menu driven. That is, a list of

possible choices appears ol the screen The user selects an

action from the menu of choices by moving the cursor to the

desired choice and pressing the RETURN key In the phase plane

program, the graphi:s display occupies most of the screen and the

menu occupies the lower quarter of the screen. To avoid having a

confusing menu with too many items, there are a number of submenus

which are reached from the main menu Each subsidiary menu

contains all the options and input data necessary for a single

action, such as drawing a trajectory.

Various other features were incorporated into the design to

facilitate ease of use. Defaults were to be supplied for all

data, so that a novice user could have the program graph things

without having to enter data Online helpfiles were to be

provided. The program was to be crashproof

The modular structure of the program was designed to

parallel the menu structure. The program was to contain the

following modules: main program (MAIN), control of the region of

the x,yplane that is graphed (GRAPH), entery of differential

equations (PARSE); gridpoing a single trajectory, i e., solution,

(TRAJECTORY), graphing a series of trajectories, i.e. phase plane

(PHASE); graphing a direction field of vectors (ARROWS); graphing

null clines (NULLCLN), finding and classifying critical points

(CRITPT). There was also a module to handle menu input/output

(MENUS), and for technical reasons two amall machinespecific

modules pertaining to graphics and menus.

One other design consideration was machine portability. The

machines we had available were Zenith Z-100 microcomputers.

Although loosely described as IBMcompatible, the graphics and

screen control on the Z-100 are totally different from the IBMPC.

In order to make the program available on the IBMPC and similar

machines as well as the Z-100, we decided to isolate the machine

specific part of the program in small modules (separate from the

major graphics and menus modules). Since the program was to be

written in MS Pascal and FORTRAN, it could then be run on any

IBMclass machine running the MSDOS operating system, provided

appropriate machinespecific graphic pixil and screen control

modules were written. The success (and lack thereof)

of this strategy is discussed below.

During the fall of 1984, a Z-100 specific graphic pixel

control routine was obtained from the Iowa State University

Computation Center. Using this, Hogben wrote the module GRAPH,

which sets up the graphics display and has procedures to graph

points, lines, etc. Hogben wrote the module MENUS to display

menus and interact with the user, and with advice from the

Computation Center, wrote a brief Z-100 screen 7.ontrol module

As an illustration of designing a module and translating the

module to programming language, Alexander wrote the module

NULLCLN. In the testing of these modules, we discovered an error

in the way double precision arithmetic was carried out in Pascal

and Fortran in the version of MSDOS we were using (MS--DOS v 1.25,

14

Pascal and FORTRAN77 v.3.10). As there is no way to correct this

error, and double precision is essential for the numerical

methods, it was necessary to obtain updated versions (MSDOS

v.2. 13, Pascal and FORTRAN v.3.20).

During the spring semester of 1985, Hogben and Tondra taught

Math 517x, a graduate course covering numerical methods for

studying phase planes and developing phase plane software.

Serious difficulties were encountered with both the quantity and

quality of students. Only four students registered for the

course (under a variety of credit arrangements) and two

subsequently droppe-, it. This created a serious shortage of

manpower for writiig the modules, and impaired the design reviews

(too few reviewers).

Although th. ablest student, James Coyle, dropped the class

due to pressures of other commitments, he completed the main

program before leaving, and participated in some of the later

design reviews. There were difficulties with both the students

who remained in the class.

One of the students who remained in the class was receiving

credit for a creative project required for his Master's degree,

rather than course credit Although this arrangement worked well

with a different student later, it led to delays in the project.

When the student didn't complete his project (CRITPT) by the end

of the course, he asked for more time (repeatedly). Although the

underlying problem was that he lacked the ability to do the work,

it wasn't until six months after the end of the course that he

was finally relieved of his module and it was given to another

student (Linda Ten Hoeve) as a creative Master's project.

The other student who remained in the course lacked

essential programming skills. He was given the job of adapting

existing (public domain) numerical code for finding trajectories

(Shampine s.:d Gordan, Computer Solution of Ordinary Differential

Equations) for use in our software. Although he completed his

work, it was so Cawed that it had to be essentially redone by

Alexander later.

Beacuse of the shortage of students, Hogben wrote the module

for entering differential equations, PARSE.

At the conclusion to Math 517x in May 1985 the following

modules had teen completed: MAIN, PARSE, GRAPH, MENUS. CRITPT

was still assigned to the student who failed to complete it.

During the summer of 1985, we hired Coyle to design and write the

ARROWS module, which he did skillfully and efficiently.

At the end of Fall semester 1985, the student assigned to

CRITPT was removed from the project. Ten Hoeve was given the

CRITPT module as a creative project required for her Master's

degree. She completed this project successfully in the summer of

1986. However, because of difficulties in working with the

program in its entirity, she did not incorporate her procedures

into the phase plane program, but wrote a small driver program.

By the end of the summer of 1986, the program was complete

except for the module PHASE and interfacing the Shampine/Gordan

and Ten Hoeve subprograms into the main program. During the

spring of 1987, Hogben adapted the Ten Hoeve code and Alexander

adapted the Shampine/Gordan code.

The only remaining part of the original design left undone

was the PHASE module, to draw several trajectories. Since each

16

trajectory takes up to several minutes to draw, since the user

can produce a phase plane of trajectories by repeating the

trajectory command several times, and because the location of the

trajectories desired depends on the differential equation, it was

decided to omit this feature. Thus the program itself was

complete (Z-100 version).

With the exception of the PHASE module, the final program

follows the design developed during the fall of 1984. For

technical reasons some modules are split between disk files and

some disk files contain more than one module.

Because of the difficulties encountered during Math517x, the

students did not write the user manual as they went along, as

originally intended. Alexander is currently writing a detailed

user manual for the program. When this is completed, we intend

to test the software in an undergraduate differential equations

course. In the meantime, brief instructions on how to use the

program are available.

In order to facilitate dissemination of the software, we

intend to produce versions for other MSDOS machines, in

particular the IBMPC. The program design isolated machine

specific features in two small modules, graphic pixel control and

screen position control. During the summer of 1987, Hogben began

work on the IBMPC version of these modules. This was designed

to be a minor job, but technical difficulties were encountered.

The screen control module controls the position of the

cursor on the screen, normal or reverse video, beeps, etc. All

these features are simple to do on the Z-100. If the

implementation of the IBMPC had been similarly straightforward,

17

the IBM-PC version would have been quickly completed. However,

we discovered that screen control on the IBM-PC is not

automatically available. Although it can be arranged, it does

not work as well as the Z-100, and some features, e. g. , reverse

video, are not available on the graphics screen. We had been

using reverse video to highlight the cursor position and error

messages. The cursor position can be boxed with graphics and the

error messages can appear normally, but separating out these two

cases is requiring changes in other parts of the program. The

IBM-PC version of the software should be completed this fall.

The graphic pixel module for the Z-100 was obtained from the

Iowa State University Computation Center. Fortunately, they also

had available an IBM-PC version. This was assembled, tested, and

is working well.

Project Results

The print:; al product of this project is the computer

program, PHASE PLANE GRAPHICS FOR ORDINARY DIFFERENTIAL EQUATIONS.

This program is currently available for the Zenith Z-100 and is

being adapted for the IBM-PC and similar MS-DOS machines In

order to obtain widespread distribution, we are planning to

distribute it commercially. It has been submitted to CONDUIT.

This program is included in Appendi B

In the process of developing this program, we developed

Ilenu format input/output and graphics control procedures callable

from MS-DOS Pascal or FORTRAN These procedures may be useful to

other software developers. They are included, along with a small

demonstrati..i program, in Appendix B

18

In the process of planning the course, a variety of materials

were developed. These include program design notes, class plan,

and a brief software development bibliography. These materials

are included in Appendix C.

Copies of the above materials may be obtained from

Leslie Hogben
Department of Mathematics
Iowa State University
Ames, IA 50011
Tel. 515-294-8168 or 515-294-1752

Because information about equipment is necessary to provide

computer diskettes, such requests are more easily handled by

telephon-.

Summary and Conclusions

This project successfully completed the development of

planned software, Phase Plane Graphics for Ordinary Differential

Equations. However, the intended method of development by a

class of graduate students was not completely successful. The

class did not have enough students to write the program or

provide effective design reviews. There were also technical

difficulties encountered, with computer arithmetic and machine

specificity. These difficulties were less serious.

There a number of possible ways the student shortage could

be overcome. Although information about the course was

distributed to both the mathematics department and other

departments, more personal recruiting through faculty advisors

could have been done. Our best source of academic credit/unpaid

student help was students who obtained credit for a Master's

degree creative project, rather than actual course credit

10

There should have been more lead time before the course, to

allow it to be listed in the schedule of classes, and allow

students more time to plan to include it in their schedules.

It is possible that with changes such as these that more

students could have been obtained. However, we curiously

underestimated the rigidity of the graduate student program.

Many students told us that they would like very much to take the

course, but they ha, so many required courses that they couldn't

fit it into their programs.

In overcominj the student shortage difficulty, several

promising methods for developing software were utilized:

Modifying currently available research programs, having graduate

students develop software as a creative project associated with a

Master's degree, and hiring graduate students.

Well designed and thouroughly tested programs utilizing

sophisticated numerical methods are widely available on mainframe

computers, and are frequently in the public domain.

Microcomputers have now become so powerful that many of these

programs are accessible to them Although such programs

frequently employ a high level of numerical sophistication, they

range from difficult to impossible for an inexperienced person to

use. Such programs are often in the form of subroutines that

must be called from another program, thus rendering them

inaccessible to the nonprogrammer. However, if combined with a

user-friendly program to handle input/output and a well written

manual, existing numerical programs can provide the basis for

valuable software. We successfully used the Shampine-Gordan code

for the finding of trajectories in Phase Plane Graphics for

20

Ordinary Differntial Equations. Another example of a research

level numerical analysis program combined with a userfriendly

input/output program is the MATLAB program for matrix operations

using LINPACK, developed by Eugene Johnson and others at the

University of Iowa.

The ocher strategy employed to successfully complete the

software involved using graduate students to design and write

parts of the program, but not as part of the class. One student,

Linda Ten Hoeve, wrote the module for finding and classifying

critical points as the creative project for her Master's degree.

Another student, James Coyle, who had written the main program in

the class, was hired to write the ARROW module. Both these parts

were done well and on time, because the students had the

necessary ability, programming skill, and sense of

responsibility. Both these approaches provide good software

development experience, albeit without the team approach and

design review experience originally planned. Given the rigidity

of graduate student schedules, it is unlikely that enough

students could be recuited to work on Master's projects

simultaneously to provide an effective group experience. It is

possible that a group of students could be hired during the

summer, although it is not clear that enough high caliber

students with the requisite skills are available. This approach

has been used by David Sharn and Colin Prowse, Southern Illinois

University, in a FIPSE project involving computer environmental

simulation.

The results of this project suggest possible methods of

developing undergraduate software by incorporating existing

research subroutines and using graduate students, either by

hiring them or by awarding academic credit for individual

projects. This project also developed a sophisticated and easy

to use program for use in an undergraduate differential equations

course, Phase PLane Graphics for Ordinary Differential Equations

Student Produced Advanced Mathematical Software

Appendix A Insights for FIPSE

Although there was substantial contact during the first year

with FIPSE staff concerning FIPSE matters and the Technology

Study Group, there was little contact concerning our specific

project. There was also a lack of continuity of Program

Officers. After Susan Forman left, we had contact with a variety

of Program Officers.

I'm not sure more contact about the project would have been

particularly useful, however. I do have a little concern that

serious participation in the Technology Study Group could divert

time and energy from projects. Although it is developing

interesting ideas, our participation in FTSG was limited by lack

of time available.

The intrusion of other interests of the project coordinators

was somewhat of a problem in this project All of us have a

variety of interests and other projects, which sometimes

interfered with getting things done in timely fashion During

the duration of this project, one of us wrote a book, one was

assistant department chair, one was overloaded with graduate

students, and two had leaves of absence

One other remark about difficulties encountered. We found

"people problems" such as lack of students much harder to deal

with than technical problems. This may be due to partly to the

backgrounds of the coordinators, who have more technical

experience. al

Student Produced Advanced Mathematical Software

Appendix B

Phase Plane Graphics for Ordinary Differential Equations

Contents

Brief Instructions for Use

Disk 1

PHASEPLN EXE
MACHINE. DAT
HFL00000.TXT
HFL00001.TXT
HFL00002. TXT
HFL00021.TXT
HFL00003. TXT
HFL00031.TXT
HFL00032. TXT
HFL00033.TXT
HFL00034.TXT
DEMO. EXE

Disk 2
MAIN. PAS
PARSE. PAS
ODENUM. PAS
ODEFOR. FOR
GRAPH. PAS
MENUS. PAS
SINGLE. FOR
HSTART. FOR
D1MACH FOR
VNORM. FOR
INTRP. FOR
STEP2. FOR
ZSCR. PAS
ZGRAPH. ASM
DEMO. PAS
MENUS. DOC
GRAPH DOC

The source files (PAS,.FOR,.A5M) can be read on any IBMPC
compatible microcomputer running MSDOS The program itself can
be run on a Zenith Z-100 running MSDOS v 2 13 Place Disk 1 in
the default drive and give the command

PHASEPLN

PHASE PLANE GRAPHICS FOR ORDINARY DIFFERENTIAL EQUATIONS

L. Hogben, R Alexander, R Tondra, J Coyle, L. Ten Hoeve, and
Iowa State Computation Center.

This program was developed with support from the Fund for the
Improvement of Postsecondary Education, U S. Department of
Education, and the Iowa State University Sciences and Humanities
Research Institute All rights reserved, Iowa State University
Research Foundation.

SUMMARY OF INSTRUCTIONS FOR USE

This program graphically displays solutions to the system of
differential equations

x'(t) = F(x,y) y'(t) = G(x,y).

INITIAL RUN

If necessary, boot the system (MSDOS v.2 13). Insert the
PHASE PLANE disk 1 in the default drive. Type

PHASEPLN
A title screen will appear, with the instruction at the bottom)
to press RETURN. Do so, and the graphics screen and main menu
will appear. The top twothirds of the screen is a region of the
phase plane where things will be graphed The lower part of the
screen is a menu that allows you to carry out various actions
The last line supplies information, such as what you can do at
this point or error messages

You can move around the menu by using the arrow keys. To
select an option, press the ENTER (or RETURN) key when the cursor
is on the desired menu item (as indicated by the fact that the
this menu item appears in reverse video). You can obtain
information about what various menu options mean by pressing the
HELP key.

To get the feel ol= the program, you should begin by moving
the cursor to GRAPHICS MENU (press the down arrow key once), and
select this option (press ENTER). This menu provides you with 5
choices: ARROWS, SINGLE TRAJECTORY, NULL CLINES, CRITICAL POINT
and CLEAR GRAPHICS. Each of the first four provides another menu.
Select SINGLE TRAJECTORY (by pressing the right arrow key once
,lind then pressing ENTER) This menu allows you to enter the
starting point of the trajectory, X(0), Y(0), DRAW or ERASE the
trajectory, enter the error parameters for the numerical
routines, ABS ERROR, REL ERROR, or the duration of the
trajectory, TIME T.

Defaults are supplied for all 6ata The default
differential equation is

x'(t) = (xy+4)/2 y'(t) = (xy)/2
Begin by selecting the DRAW TRAJECTORY option and watch the

program draw the trajectory Note that while the program is
graphing, the line at the bottom of the screen has changed It
tells you it is graphing and allows you to stop the graphing by
pressing the ESC key, (in case it takes too long and you decide
you don't want to wait for it to finish).

Now draw another trajectory by changing the initial point
To do this, you will have to select menu item X(0), enter a new
value (type in the number, ending with RETURN; see DATA ENTRY
below for more information); selert Y(0), enter a new '..,Rlue and
select DRAW again. If you want. you ,nay also try to ERASE a
trajectory, or change its length by changing TIME T

Next, return to the graphics menu by pressing HOME This
key always returns you to the previous menu Then experiment
wil;h the other graphics options: ARROWS, which allows you to draw
the direction field of derivative vectors, NULL CLINES; which
allows you to craw the null clines (x' = 0 or y' = 0), CRITICAL
POINT, which allows you to find and classify a critical point
(x' .--.. 0 and y' = 0) and mark it on the screen

Next, clear the graphics screen, go back to the main menu,
select SET DIFFERENTIAL EQUATION, and enter your own equations,
by selecting X' = and typing in a new equation. (N.B
multiplication must be representA by *. See below for a
complete list). Do the same for Y'. Now go back and try the
various graphics options on your own equations.

Finally; return to the main menu and select SET WINDOW.
This provides a menu that allows you to modify the region of the
phase plane that is graphed (as well as alter other features,
such ;ris whether axes appear). Note that when you change the
minimum or maxixmum x or y values, the graphics screen does not
change automatically. Once you have entered your new bounds, you
must select REDRAW WINDOW to adjust the area graphed. This will
also clear the graphics screen.

When you have finished using the program, either turn off
the machine or return to the main program, select QUIT PROGRAM;
and respond Y for yes when prompted

Further information about the various menus is provided
below, as is detailed information on entering data.

DATA ENTRY

You enter a piece of information (integer, real number,
diffewrential equation) by selecting a menu option that calls for
the information and typing it in During data entry you cannot
move around the menu or select other options.

To enter a real number or integer, type in the number in the
usual form (not scientific n7,tation), ending with RETURN (or
EN1ER) If you make a mistake while typing (e g , a letter
-ather than a digit), the program will detect this and send you
an error message to remove the error by pressing BASCKSPACE. If
(before pressing RETURN) you decide that you do not want the new
entry, you can press ESC and the program will revert to the its
previous information (just prior to beginning entry).

While entering a differential equation, you can move around
in the equation by using the left or right arrows, delete the
character left of the cursor with BACKSPACE (or DELETE), delete
the whole equation with DEL LINE, and insert characters by
pressing the the appropriate keys. To end entry, press RETURN to
accept your new equation or ESC to revert to the previous one A
differential equation may include numbers (real or integer), the
variables x and y, operands +,,*,/,', functions, parentheses,

and the parameters P1,P2,P3,P4,P5,P6 The table below lists
symbols and their meanings The equation must also be in a form
that the program can understand. It will detect anything it
cannot understanc= as an error and supply an appropria *e message

Symbol Meaning
+ addition

subtraction or negation
* multiplication
/ division

exponentiation
EXP!) exponential function
LN() natural logarithm
!LW() base 10 logarithm
SIN() sine
COS() cosine
TAN() tangent
ATAN() arctangent
SORT() square root
ADS() absolute value

parentheses (must be matched)
digits for numbers

()

1 2 3 4 5

6 7 El 9 0

x, y

Pl1P21P3
P41P5,P6

LIST OF MENUS

decimal point
blank (ignored except within number)
variables
parameters (values assigned by selecting SET

PARAMETERS)

MAIN MENU
SET WINDOW. Menu for options controlling portion of phase

plane displayed
SET DIFFERENTIAL EQUATION' menu for entering differential

equation
GRAPHICS MENU. menu for graphics options
CLEAR GRAPHICS. clears graphics screen
QUIT PROGRAM quit program; requests confirmation Y (yes) or

N (no), default is no

SET WINDOW Menu for options controlling portion of phase
plane displayed

MIN X = minimum x value graphed (left edge)
MAX X =. maximum x value gi phed (right edge)
X GRID =. number of grid points in the x direction
MIN Y =,' minimum y value graphed (bottom edge)
MAX Y =: maximum y value graphed (top edge)
Y GRID = number of grid points in the y direction
DRAW/ERASE AXES. draw axes if absent, erase axes if present
REDRAW GRID: draw grid with X GRID and Y GRID points;

does not clear grahics screen
REDRAW WINDOW. draw window with indicated values,

clears graphics screen

v 7

SET DIFFERENTIAL EuUATION menu for entering differential
equation

SET PARAMETERS menu for enter parmateters for
differential equation

X' ,-: enter equation for the derivative of x with
respect to time

Y' =. enter equation for the derivative of y with
respect to time

SET PARAMETERS menu for entering parmateters for
differential equation

P1 =: enter parameter P1 (real number)
P2 =. enter parameter P2 (real number)
P3 =: enter parameter P3 (real number)
P4 = enter parameter P4 (real number)
P5 =: enter parameter P5 (real number)
P6 =: enter parameter P6 (real number)

GRAPHICS MENU. menu for graphics options
ARROWS: menu for drawing direction field of derivative vectors
SINGLE TRAJECTORY: menu for drawing single trajectory
NULL CLINES: menu for drawing null clines
CRITICAL POINT: menu for finding and drawing critical point
CLEAR GRAPHICS: clears graphics screen

ARROWS. menu for drawing direction field of derivative vectors
ARROW DENSITY =: enter integer to control arrow density;

larger means more smaller arrows
DRAW ARROWS: finds and draws direction field
ERASE ARROWS. finds and erases direction field

SINGLE TRAJECTORY: menu for drawing single trajectory
X(0) =: enter the xcoordinate of the initial point (real number)
Y(0) =. enter the ycoordinate of the initial point (real number)
DRAW TRAJECTORY find & draw path from t=0 to t=TIME.
ABS ERROR = error tolerance for trajectory finder (real

number; at least one error tolerance must be >0).
REL ERROR =: error tolerance for trajectory finder (real

number, at least one error tolerance must be >0).
ERASE TRAJECTORY. find & erase path from t=0 to t=TIME
TIME T =. end time for trajectory

NULL. CLINES: menu for drawing null clines
NUMERICAL SEARCH SPACING =. enter space between points tested for

sign change in the derivative (integer, larger = more
space between marks, fewer, less accurate marks)

DRAW NULL CLINES. finds and marks null clines.
ERASE NULL CLINES. finds and erases null clines.

CRITICAL POINT. menu for finding and drawing critical point
NEARBY X =. enter x value of point near critical point sought,

"NEARBY" changes to "FOUND" and value changes after
the critical point is found

NEARBY Y =: enter y value of point near critical point sought,
"NEARBY" changes to "FOUND" and value changes after
the critical point is found

DRAW CRITICAL PT: draw critical point (must be found first)
ERASE CRITICAL PT. erase critical point (must be found first)
FIND CRITICAL PT. find and classify critical point; changes

"NEARBY" to "FOUND".

Student Produced Advanced Mathematical Software

Appendix C

Materials Developed for Classroom Use

Contents

Software Design Notes

Software Review Checklist

Class Schedule

Software Design Bibliography

Design Notes for Module NULLCLN

30

General Requirements for Math 517X (FIPSE Project) Software

L. Hogben January 1985

This document was developed with support from the Fund for the
Improvement of Postsecondary Education, U. S. Department of
Education, and the Iowa State University Sciences and Humanities
Research Institute. All rights reserved, Iowa State University
Research Foundation.

Specifications
Specifications will be provided by the instructors,

detailing the modular structure of the project. For each module,
those procedures intended to be available to other modules or
programs will have purposes, declarations, calling syntax, and
parameters specified

Designs
Design will be done during the course. Designs will b

adequately documented, following the style of the procedure
NULCLN. Prior to coding the design, a design review will be
conducted by the class After the design is accepted it will be
coded.

Code
All code will be written in MSPASCAL or MSFORTRAN and will

be capable of being run successfully on any MSDOS machine with
192K or more memory. Should it be necessary to provide machine
specific information, this will be isolated in a datafile (e.g
machine constants) or a minimal machinespecific code module
(e.g. ZSCREEN), commonly called a device handler.

All code will conform to the layout and comment style
exhibited in modules MENUS and GRAPH. Specifically, most
comments will be one line explanations of a particular action
interspersed in the code, except that an initial explanation of
all global module variables will be given. Each level of
dependence will be indicated by indenting 2 spaces. For example,
under an IFTHEN statement, indent an additional 2 spaces.
Separate statemnts will be on separate lines.

After the code is written, grammar will be tested by
compiling it and any grammatical flaws will be corrected.
Compliable code will then be presented presented to the class for
a code review. During the code review, structural and functional
testing will be designed.

Testing
After the code is accepted it will be tested. Any errors

found during testing will be corrected and the module retested
On completion, the software will be tested as a whole.

User Interface
Material will be presented to the user by a series of menus.

Each menu will appear at the bottom of the screen with a command
line. The upper portion of the screen will be a graphics area.

The software must be crashproof. In case of error it should

31

provide helpful diagnostic messages Program accessible
helpfiles will be be part of the software package. Arr., action
the user takes should be reversible. An exception to this
requirement (e.g. terminating the program) should reuire user;
confirmation. All I/O must be done in such a manner as to
prevent screen scrolling.

A clear, wellwritten user manual will be written. It will
explain to the user the function of each menu and command,
illustrating these functions with examples.

Modular Structure
The main program will be responsible for initializing the

menus and machine constants. It will also be responsible for
controlling the transition between menus. The authors of the
main program will be responsible for providing an appropriate
helpfile for each menu. The main program must be written in
Pascal. It will have access to modules to carry out the
graphics, menu layout, and necessary mathematics.

Each module will be responsible for its own error handling
and diagnostic messages.

32

. REVIEW CHECKLIST

Note anything you do not understand.

Note anything that is not sufficiently well defined to enable you
to carry out the next stage or to check with 4-he previous stage

Does it conform to the general standards?

Does it conform to previous stages?

Are there any unstated assumptions or restrictions?

Is it well structured?

Is it testable?

Is it maintainable?

I/O:

Is it crash proof?
Are useful messages supplied to the user to assist in

recovery from errors?
Is it flexible?

Arithmetic Errors:
Is it crashproof?

11,merical Algorithms:
Is it crashproof (i.e guaranteed correct to within some

tolerance)?
Are useful messages supplied to the user to assist in

recovery from errors?

Is it hardware compatible?

Is it software compatible'?

33

Spring 1985 MATHEMATICS 517X

QA76.6
J66 Jones - Software development, a rigorous approach

QA297
M527
1984 Miller - The engineering of numerics: software

QA76.6
D845
1984 Dunn - Software defect removal

QA76.6
F86 Wulf - Fundamental structures of computer science

Hogbentrandia

QA372
S416 Shampine - Computer solution of ordinary differential equations

The initial value problem

Draft design for NULCLN procedure to plot nulldines Design Review Comments

R. K. Alexander January 1985 (Hogben)

This document was developed with support from the Fund for the on all
Improvement of Postsecondary Education, U. S. Department of real -> int cony
Education, and the Iowa State University Sciences and Humanities (including intimt) specify
Research Institute. All rights reserved, Iowa State University rounding
Research Foundation.

OVERALL STRATEGY

Search for sign changes between the points of a square grid placed on
the window. When a sign change is found in either derivative, localize it
further by a single secant step and mark it by three pixels in a vertical
column if dxfdt 0 or three pixels in a horizontal row if dy/dt O.

IMPORTS

what does secant
step mean
cf. seek z lin interp.

X0, YO, X1,Y1: REAL; (Coorinates of window [X0,X1] x [YO,Y1]) does not
SPACE: INTEGER; (Size in pixels of grid on which changes) conform to

(of sign are sought; user selects one of) main specs
(4,6,12,16,20 from menu.)

EXTERNAL and FUNCTIONAL REFERENCES:

DERIV (Subroutine to evaluate derivaives)
GRNON (Procedure to turn on individual pixels)
SGN (Spurn function)
MIN (INTEGER minimum of INTEGER arguments)

LOCAL IDENTIFIERS:

VECTOR means ARRAY[1..2) OF REAL8;
X VECTOR; (Position of current point in grid)
DX: VECTOR; (Vector of distances in the coordinate directions) Machine constants

() should be passed
(DX[1] . ((X1-X0)/640) SPACE) this should be in body
(DX[2] 21 ((Y1-Y0)/180) SPACE)

XDOT: VECTOR; (Derivatives evaluted at current point)
OLDRV: VECTOR (Derivatives evaluated at 'north' neighbor)

(of current point.)
SAVDRV: ARRAY[0..45] OF VECTOR (Derivatives at grid points in the)

(non column to the left. It is)
(assumed the he window will occupy at most pixels 0 to) Good note of restriction
(179 in the va &al direction so that all derivatives in a) other machines
(column of grid points with the densest spacing (4) can be)
(saved in this array.)

RTEDGE: INTEGER CONSTANT; (Rightmost pixel column .1. 639) Import this
BMEDGE: INTEGER CONSTANT; (Bottom pixel row 179)
IX,IY: INTEGER; (Counters for pixel position in x,y directions)
INDY: INTEGER; (The ordinal number of the current grid point in) Specify integer type

(its column, counting the top point as 0. Used)
(as an index into the array of saved derivatives)

'3

LOCAL PROS

SEEICZ(X,DX,IX,IY,DIR,XDOT,OLDRV);
(Checks each component of the derivative for a sign change in the
(direction DIR (-1 or 2). If one is found, localize it further by
{ a secant step, and turn on the appropriate pixels on the screen.
(Details for SEEKZ are given after design of NUCLN.

BEGIN (NULCLN)
(Initialize DX } cf previous page
(}

(Loop through the columns in the grid }
IX :- 0; X[1] :- X0; use separate lines
WHILE IX < RTEDGE DO (Loop through the grid points down this column } use For instead

IY :. 0; X[2] :. Y1; INDY :. 0;
WHILE IY < BMEDGE DO

DERIV(X,PAR,XDO1); (Evaluate derivatives at new grid point)
(}

IF IY > 0 THEN (There is a grid pt to the north; check }

SEEICZ(X,DX,DC,IY,2,XDOT, OLDRV); (for sign changes. }
{ }

(Check for sign changes to the left of the current point }

(}

IF IX > 0 THEN SEEICZ(C,DX,IX,IY,LXDOT, SAVDRV[INDY]);
{ }
(Save the derivatives from this point: }

OLDRV < XDOT;
SAVDRV[INDY] < XDOT;
(}

(On to the next point in the column }

IY ..g IY + SPACE;
INDY : .P INDY + 1;
X[2] :. X[2] - DX[2];
END WHILE (IY < BMEDGE }
(}

(On to the next column }

IX :as IX + SPACE;
X[1] :. X[1] + DX[1];

END WHILE (IX < RTEDGE }
END NULCLN

INTERNAL PROCEDURE SEEKZ

X,DX,XDOT,OLDRV,DC,IY as in NULCLN
DIR: INTEGER; (Index of coordinate search direction 1 or 2 }

LOCAL IDENTIFIERS:

IC: INTEGER; (Index on the components of the derivative }

PIXEL: ARRAY[1.2] OF INTEGER: (Coordinates of pixel to light on screen)

36

BEGIN (SEEKZ)
FOR K :- 1 TO 2 DO (Check each component)

IF SGN(XDOWCI) < > SON(OLDRVR) THEN (Sign change found }

PIXE14131111 :I. PDCEL[DIR] - (-10111-1) XDOTIKI S SPACE

1

}

XDOT[X] + OLDRV[K]

(The point of (-1) is because Y decreases as you go down the screen
(This formula amounts to a secant step

(The pixel in the other direction should be ne common IX or IY }

(index of the grid points being checks. }

{ . }

(If z 0, illumine 3 pia* in a vertical column centered here. }

(}

(If y 0, turn on 3 pixels in horizontal roam centered here. }

("Here" means at location (PDCEL111,PIXE1421) on the screen. }

(}

37

incorrect

unclear; linear interp
of inc of 0
TRUNC (+0.5)

Summary of changes to first draft design NULCLN plotter: (Alexander)

Imvorts: The pixel boundaries of the window have been added. I don't
assume any more that the window is [0,639] x 10,1791.

The draw/ease ling is added. The former design drew only.
The vector PAR of user-set parameters in the derivative functions

is needed, of course.

DX[1], DX[2] are now defined to be the spacing of single
along the coordinate axes.

SEEKZ pros Delete spectator parameters X, DX
Add grid spacing, pixel ills of window boundaries, draw/erase flag.

In addition to recognizing sign changes, the design now handles the
case of a derivative being zero at both grid points. The design
fa rather crude this rate case is tested first; and interior grid
points at which a derivative is exactly zero will be marked twice.

The formula for the secant step was incorrect; it is now coact.

MARK pros This new, lower-level routine has been added to actually perform
the draw/erase on the screen. It uses MIN & MAX to ensure that
GRNON & GRNOFF are only called with pixel addresses inside the
window. Details are given which did not appear in the first dra.i.

38

January 13, 1985 Design Review Comments

Memo: Mathematics 517X

From: Roger Alexander

Re: Revised Design of Nuncline Procedure

OVERALL DESCRIPTION: The user has selected a grid spacing of
4Al2,16 or 20 pixels from the menu. This routine searches
for sign changes in both derivatives between points of a grid
with the selected spacing. When a sign change is found, the
root is further localized by one secant step, and then marked by
three pixels in a vertical column if &Mt = 0, or three pixels
in horizontal row if dy/dt IR 0. The pixels are turned on if
the user has requested "DRAW", turned off if the user requested
"ERASE".

IMPORTS:
X0,X1,Y0,Y1: REAL; (Coordinates of window IXO,X11 x)

(1YO,Y11)
LFEDGE,RTEDGE,BMEDGE,TPEDGE: INTEGER:

(Pixel numbers corresponding to X0,X1
(and Y0,Y1 respectively.

SPACE: INTEGER (Grid spacing = 4,8,12,16 or 20.
DRAW: BOOLEAN (True > Draw; False > Erase.
PAR: VECTOR(6) of REAU3; {Parameters in derivatives.

(Hogue)

why only
4, 8, etc.

good

use 4 < SPACE < 20

EXTERNAL AND FUNCTION REFERENCES:
EVAL {Subroutine to evaluate derivaitives }

ORNON,ORNOFF (Procedures to turn off (reap. on} single pixels) turn on (rasp. off)
SGN (Signum function }

MIN (INTEGER minimum of INTEGER arguments)
DBLE { INTEGER or REAL to DOUBLE PRECISION comer ion }

LOCAL IDENTIFIERS:
VECTOR means ARRAY[1..2] of DOUBLE PRECISION
X: VECTOR; (Position of current grid point)
DX: VECTOR; (Vector of distances in the coordinate directions)

(represented by one pixel }

XDOT: VECTOR; (Derivatives evaluated at current point)
OLDRV: VECTOR; (Derivatives at 'north' neighbor of X }
SAVDRV: ARRAY[0..45] of VECTOR;

(Saved derivatives at grid points in the previous)
(column to the left. The size of this array is }

(based on the assumption that the window I
(occupies at most pixels 0 to 179 in the vertical }

(direction.)
IX,IY: INTEGER; (Pixel position in x,y directions.)
INDY: INTEGER; (The ordinal number in its column of the current)

(grid point, counting the top point as 0. }

(Used as an index into the array of saved }

(derivatives. }

MINPX, MAXPX. ARRAYI1..21 of INTEGER;
(Pixel boundaries of window)

39

begin (NULCLN }
(Compute x- and y- tracing of pith)
DX[i] :. (XI - XO) / (RTEDGE - LFEDGE);
DNA :. (Yl - YO) / (BMEDOE - TPEDGE);
MINPX[1] :. LFEDGE;
MINPX[2] :. TPEDGE;
MAXPX[1] :. RTEDGE;
MAXIN21 :. BMEDOE;
(Loop through columns of the grid 1

for IX :. LFEDGE to RTEDGE in steps of SPACE do
(Compute x-coordinate of grid points in this column)
X[i] :. XO + DX[i] (IX - LFEDGE) ;
(Loop through grid points in this column }

for IY :. TPEDGE to BMEDOE in steps of SPACE do
(Compute index and y-coordinate of this point)
INDY :. (IY - TPEDGE) / SPACE;
X121 :. Yl - DBLE(IY - TPEDGE) DX[2];
EVAL(X,PAR,XDOT); (Evaluate derivatives at this pt }

if IY > TPEDGE than (Clock for sip-changes to north)
SEEICZ(DC,IY,SPACE,MINPX,MAXPX,2,XDOT,OLDRV,DRAW);

fi;

if IX > LFEDGE then (Check for sign-changes to the left }

SEEKZ(DC,IY,SPACE,MINPX,MAXPX,I,XDOT,
SAVDRVIINDY),DRAW);

Ii;
(Save derivatives from this point)
OLDRV < XDOT; SAVDRV[INDY] <-- XDOT;

od; (TY }
od; (DC)

end; (NULCLN 1

proc SEEKZ (IX,IY: INTEGER; (Pixel coordinates of current pt)
SPACE INTEGER; (Grid spacing)
MINPX, MAXPX ARRAY[1.21 of INTEGER;

(Pixel boundaries of window)
DIR: INTEGER; (Coordinate direction in which)

(to search: 1 or 2)
XDOT,OLDRV: VECTOR (Derivatives at current grid

(point and previous point
DRAW: BOOLEAN); (Draw/erase request)

local identifiers:
K: INTEGER; (Index for components of derivative)
PIXEL: ARRAYI1..2] of INTEGER;

(Screen coordinates of zero of a derivative }

}

}

il=endif

begin (SEEKZ)
for K :=1 1 to 2 do (Check each component of derivative)

PIXEL(1J := DC; PDCEL,{2I :ix IY;
if XDOMICI=0 and OLDRVIKI=0 then (Two zeros)

MARIC(PIXEL,MINPX,MAXPX,K,DRAW);
PIXEL PIRI := PDCELIDIRI - SPACE;
(Back up PSACE pbcels in the DIR direction)
MARIC(PD(ELAINPX,MAXPX,IC,DRAW);

else
if SGNQCDOTTICI <> SGN(OLDRVIICI then

(Sign change found in this component. Back up)
(by a secant step parallel to the DIR axis.)
PIXELIDIRI :ix PIXELIDIRI - SPACE

XDOTIKI / (XDOTEKI - OLDRV(K1);
MARIC(PDCEL,MINPX,MAXPXIC,DRAW);

II; (Sign change)
li; (Two zeros)

od; (Check components)
end; (SEEICZ)

pros MARIC(PIXEL ARRAY[1..2I of INTEGER;
(Screen location of zero of derivative)

MINPX,MAXPX ARRAY[1..2I of INTEGER;
(Boundaries of window on screen)

K: INTEGER; ('oda of vanishing derivative component)
DRAW: BOOLEAN); (Draw/erase request)

local identifies:
PFDC: ARRAYD..2I of INTEGER; (Pixels to alter)
L: INTEGER; (Loop index to alter 3 pixels)
NOTIC: INTEGER; (The index (either 1 or 2) which is not K.

(If XDOTIKI is zero, the vectorfield
(is perpendicular to the K coordinate axis.

begin (MARK)
PFDC[K = PDCELKI;
NOTK := 3 - IC;
for L := -1 to 1 do (Fix 3 pbc, centered at the zero)

PFDC(NOTIC] = PDCEL[NO A] + L.;
(But don't get out of the window)
PFDC(NOTIC] := MIN(MAXPX[NOTKI,PFDC(NOTICI);
PFDCINOTK] := MAX(MINPXINOTKI,PFDCINOT1q);
if DRAW then GRNON(PFDC[11,PFDC(21);

else GRNOFF(PFDC[11,PFDC[21);
if; (DRAW)

od; (L)
end; (MARK)

4I

)
)
)

why do it twice?

Remarks on 13 JAN 85 draft design of nulldine plotter. (Alexander)

There is no checking of arguments. Possibilities include
a) create a type, SPACETYP with only values 4Al2,16, & 20.

Then the compiler can check SPACE.

b) type XPDCEL 10..6391; YPIXEL 10..2241;
have the routine actually check LFEDGE < RIEDGE,

TPEDGE > DMEDGE
XO < X1
YO < Y1

2. PASCAL-like declarations of external & function references have not
been given. It is likely that this is desirable for checking argument
types. Some possible problems with functioanlity, too:
a) SGN must implement the mathematical, 3-valued signum function.

Fortran's SIGN (which takes two arguments) may not do the trick.

b) The design is completely sloppy about REAL4/REALS and INTEGER2/INTEGER4.
What "INTEGER" means depends on the implementation language! the MACRO-
assembler code for GRNON gives the calling sequence as

FORTRAN: Call GRNON(IX,IY)
PASCAL: GRNON(X,Y: INTEGER4); This is wrong

I would be very surprised if both worked! Conclusion: we need a
language-independent way to specify argument types in "absolute" terms,
a..d we must pay careful attention to type conversion at the design
stage or the code stage will be a killer.

42

