DOCUMENT RESUME

ED 301 166 IR 013 506
AUTHOR Slawson, Dean A.; And Others
TITLE A Qualitative Approach to the Evaluation of Exnert

Systems Shells.
SPONS AGENCY Advanced Research Projects Agency (DOD), Washington,

D.C.
PUB DATE Apr 88
CONTRACT ONR-N00014-86-K=-0395
NOTE 15p.; Paper presented at the Annual Meeting of the

American Educational Research Association (New
Orleans, LA, April 5-9, 1988).

PUB TYPE Reports - Research/Technical (143) --
Speeches/Conference Papers (150)

EDRS PRICE MFO1/PCOl P.us Postage.

DESCRIPTORS *Case Studies; Computer Software; xData Analysis;
*Data Collection; Evaluation Methods; »Expert
Systems; Qualitative Research; »*Research Design

IDENTIFIERS *EXpert System Shells; *Prototypes

ABSTRACT

This study eXplores an approvach to the evaluation of
expert system =hcils using case studies. The methodology and some of
the results o. .n evaluation of the prototype development of an
expert system using the shell "M1" are detailed, including a
description of the participants and the project, the data collection
process and materials, and data interpretation. A list of application
characteristics by which a user of a case study library might search
for relevant cases is presented. The benefits of the case study
method are then discussed, including the positive effect of the
presence of an outside observer on the process of developing the
exXpert sys.em, and a detailed description is provided of the problem
setting, the shell, and the process of using it on a real expert
system development problem. The pitfalls of the case study method are
also noted, including the failure to generate useful quantitative
metrics or to clearly identify any one shell attribute as the cause
of the outcomes observed. A discussion of directions for future work
concludes the report. (10 references) (EW)

AARR KRR AR R AR R AR R AR AR AR RN AR R AR RRRRRRARRRRRRARRRRRRRRRRRRRRRRR P ARRRRRRRRRRN

* Reproductions supplied by EDRS are the best that can b. rade *

* from the original document. *
AERKR KRR AR KRR RRRR AR KRR R R R R AR KRR R AR AR KRR AR AR RRRRRRRRRARRRRRRRRRARRRRRRY &

ED301166 *

A\
5
\8
Q
N4

U S DEPARTMENT OF EDUCATION
Otice of Edy Rasearch and |

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

KT"I! document has been reproduced as

received from the person or orgamzation
onginating it

T Minor changes have been ma ~ 1o Improve
reproduction quality

¢ Points of view or 0PINIONS stated in this docu
ment do not necessarnly represent othcial
OERI pos:tion ar policy

A Qualitative Approach to the Evaluation of

Expert System Shells*

Dean A. Slawson and John Novak
UCLA Center for Technclogy Assessment

Ronald K. Hambleten

University of Mass. at Amherst

April 9, 1988

“"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Dean Slawson

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC) "

>aper presented at the annual meeting of the American Educational Research
Association, New Orleans, LA. April 5-9.

The rescarch desciuoed in this report was sponsored by Defense Advanced Rescarch Projects Agency, Contract No.
ONR N00014-86-K-0395. Views cxpressed herein do not necessarily reflect the opinions or policics of the

spHnsor.

This study explores an approach to the evaluation of expert system shells--
software tools that support the development of expert sy-tems. Expert system shells
are used to develop and run "intelligent" software for solving problems in
education, medicine, business, and other domains. Evaluation of such software
tools has proven difficult in the past. Early approaches to the problem may be
classified as descriptive or functional (Novak & Slawson, 1987). An example of the
descriptive approach is the use of catalogs of shells and their features (e.g.
Liebhaber, 1987). This approach is unlikely te be of much utility for many
potential tool users since in many cases the potential user is unaware of what
features to look for in a tool or how those features will interact with the
development problem at hand. The functional approach, on the other hand, is less
well-deveioped (Novak & Slawson, 1987). Typically this consists of using small
benchmarks or direct comparisons of shells to solve some well-specified "toy"
problem (Beach, 1987; Richer, 1986; Waterman & Hayes-Roth, 1982). An
alternative is the case study method, which is purported to provide insight into what
performance may be expected when the tool is put to use on real problems.

In recent workshops for both tool developers and tool users at the RAND
Corporation (Rothenberg, et al., 1987b) the case study method was espoused by tool
developers as an attractive methodology for evaluation of shells. The enthusiasm
for case studies was not shared by the tool users, however, who tended to take a
more practical view. For the users, issues such as the cost involved in conducting
case studies, difficulties in studying secret or proprietary projects, and the
problems of obtaining and analyzing data were of paramount importance. Their
objections were not founded upon any inherent weaknesses in the case study

method, but rather on their perceptions of the difficulty of conducting usable case
studies in a relatively unobtrusive manner.

This paper examines the process of using case studies in the evaluation of
expert system shells. Potential applications are discussed first to provide a context.
The methodology used in an actual case study is then summarized and discussed.
Finally, some considerations for future use of this methodology are outlined. The
full report including results of the case study can be found in (Slawson, Novak, &

Hambleton, 1988). Additional detail on the evaluation method can be found in
Slawson (1987).

Applications of Case Stucies

Perhaps the most common purpose of an evaluation of expert system shells is
to assist in the selection of a shell or shells for a project, series of projects, or long-

term use by an organizational unit. Here it is necessary to match the capabilities of
the ski:ll to the requirements of one or more problem settings, with their associated
organizational and programmatic constraints. The nature of the problems and
constraints will vary depending on organizational focus and resources.
Expectations of shells to be used in research wiil likely differ from those of shells
intended to facilitate product development. Evaluation for long-term needs may
use different methods or obtain different conclusions than evaluations which
consider only short-term needs. A library of cases can be searched by such
problem setting characteristics to find similar situations and the shells that were
used to tackle them, along with process and outcome data. In this manner, a shell
well-matched to the problem characteristics may be selected.

In research environments some software product may have already been
selected; here the goal is to exercise the technology on a suitable task. Again,a
library of case studies may be applied to assist in finding a suitable task. In this
situation, cases using the same shell may be selected and examined to determine
which applications were best suited to that shell, and why.

When shells themselves are being created or improved, case studies serve as
a record of needed improvements and ideas for future development. Metrics based
on case histories involving existing shells may be used to assess the merit of various
capabilities, techniques, or practices which might be introduced or enhanced, while
performance standards evolved from previous studies may be applied to the
development of shell specifications. Finally, the case study can serve an important

role in evaluation intended to determine whether new products have met their
specifications.

Given the variety of situations and uses for a technology of shell evaluation,
there appears to be value to an approach that can deal with a broad spectrum of data
in appropriate ways. The case study is an especially promising way to meet such
requirements. A case study can begin with a top level view of a real project with
real problems, people and constraints. The rich source of data available from
direct observation, interviews, and other methods makes it possible to then "zoom"

in to areas of interest and to select from a variety of descriptive and quantitative
metrics, or create new ones to suit the task.

Evaluation of M1 as used to Prototype a Psychometric Consultant

This section describes the methodology and some highlights of the results
from an evaluation of a prototype development of an expert system using the shell
M1™on a personal computer. Data came from observations, interviews, self-
report and other sources. Particular attention was paid to the ways in which

qualities of the expert system shell cdetermined the process and outcome of
development. Concluding this section is a discussion of socme benefits and pitfalls
of the case study as a method of evaluating shells.

Participants and project. The participants included a domain (i.e. subject
matter) expert, a knowledge engineer-programmer, and an observer-evaluator.
The software being developed by the knowledge engineer in conjunction with the
Zomain expert was a prototype expert system to assist in the process of designing
criterion-referenced paper-and-pencil tests. The observer collected data for the
evaluation before, during, and after the development effort.

The domain expert, one of us, was a nationally recognized researcher and
consultant in the area of educational measurement. He was also an experienced
teacher, serving as a professor in a school of education. The development and
workings of expert systems were new to him, however. The knowledge engineer-
programmer was a graduate student in education who had taken only one course in
measurement and evaluation, thus his knowledge of the domain was limited. He
had some exposure to the shell being used in the study, extensive experience with a
related shell, and had developed several other expert systems in the field of
education. The observer, one of us, was very familiar with the domain of
educational measurement, but not highly experienced in the specific topic chosen

for this project (reliabilizy of criterion-referenced tests). He was also experienced
in the knowledge engineering process.

The shell M1™, ope:ating on an IBM-XT™ personal computer, was used in
this study. The project was to develop an expert system prototype for selecting
methods to determine the reliability of criterion-referenced tests. Expertise in this
area is well-systematized and valuable, but not readily available. This task was
selected for the test case for several reasons. For one, the prototype could be
finished within a reasonable amount of time. Whether or not the actual task selected
would be of use in other case studies, it is likely that case studies in other settings
will also be limited in size. Another consideration in selecting the test case is that it
was a consultation system and consultation is still the dominant style of interaction
used in expert systems today. Since this type of problem is typical it should be
easier to generalize what is leamed about the methodology to a variety of settings.
The moderately powerful, PC-based shell and the specific task were selected
because they met objectives of a real development project accessible to the
evaluators. Although evaluation requirements for other hardware and software
environments may vary considerably from those considered in this case, small
systems are very common and are likely candidates for an evaluation.

Data collection process and materials. Data were collected on all phases of
the development process, in the form of interview notes, written observation

records, videotapes, and participant journals. The sources of data are described
below:

1. A pre-elicitation interview between the knowledge engineer, the observer,
and the project director was conducted. This interview served as an occasion to
collect background information as well as a time to generate expectations for the
project. The background data included an inventory of the knowledge engineer's
skills and experience with the domain, the shell, knowledge programming, and
related domains. Expectations for the shell (Table 1) and the knowledge
engineering process (Table 2) were used by the observer as a point of departure
during later observations and interviews. The expectations served as a base-line to
assist in noting deviations from expected progress, .hus calling attention to possible
interactions of shell capabilities and characteristics of the problem setting.

Table 1
Expectations for the Sheli M1

Some Expected Strengths or Capabilities

Pattern matching capability

Structured selection easy to implement

Easy enumeration of legal values in menus

Presumpticn tunctions (like metarules)

Some Expected Limitations of M1

Restricted to monotonic reasoning

Lack of procedural language

Centainty factors increase complexity of program

Difficulty in dealing with data intensive tasks

Table 2

Expected Steps of Expert Svstem
Prototype Development

STEP 1. Knowledge engineer revicws the background text and cases for
understanding.

STEP 2. Overview. Get expert's terminology for any categories or

taxonomies he uses, generally identify the kinds of input and output for the
consultation process.

STEP 3. Have expert explain the cases so knowledge engineer can understand
the inference and consulting process that goes on during a typical
consultation. This is at the level of identifying possible stages in consultation,
overall sequence of question types, etc.

[STEP 4. Continue to develop "strawman design." Determine basic functions

for the application, knowledge and data sources, etc. Create a block diagram
of consultation process.

STEP 5. Map cases onto block diagram. Do as many cases as time permits.

Begin to elaborate and refine the rough model to deal with specific, sometimes
special, cases.

STEP 6. Revise block design based on Step 5. Collect control rules. Finalize
scope of the task.

STEP 7. Domain knowledge acquisition. Collect decision rules for
knowledge base.

STEP 8. Begin coding initial version of prototype.

STEP 9. Continue knowledge acquisition, coding, testing until prototype is
ready for further evaluation.

2. During the initial phases of knowledge engineering, the domain expert and
knowledge engineer were observed as they interacted to do preliminary analysis
and design for the test case. Later, the knowledge engineer was observed working
with the shell and with the expert to build, test, and refine the system. T% 2 sessions

were videotaped, and notes were taken to record observations and provide an index
for the tapes.

3. Other data sources included written reports by the participants, the
software itself, and post-interviews of participants. The knowledge engineer kept a

dated journal in which he recorded his impressions of the process of using the shell
to build the system. All domain expert and knowledge engineer notes, drawings, or
other paperwork were labeled, dated, and retained. The domain expert kept notes
during the interviews on what he learned or things he wanted to consider further.

Any work files or significant intermediate (e.g. “"trashed") versions of software
were also kept.

Between major steps of the software development process and at the end of
knowledge engineering sessions, interviews were conducted to correlate the various
observations, ask probing questions, and record experiences of the participants.
The interview was also an occasion to suggest and discuss prototypical metrics and
standards for the variables identified as being significant for the test case. The data

collection followed a two-step observation-interview protocol called stimulated
recall, described below.

To do a stimulated recall, the observer made notes during the videotaped
sessions. The notes were intended to record comments, questions, and
observations, as well as to serve as an index for the videotape of the process, made
simultaneously. The videotape ircluded a continuous date and time stamp and each
observation in the notebook was also accompanied by a note of when the event
occurred. Videotapes and notes were then used at the end of each day to guide
stimulated recall and analysis of the observed events. After allowing the knowledge
engineer or dornain expert to discuss the project in an open-ended interview
format, ths observer would replay selected portions of the tape . The observer then
asked questions about what was being observed on the tape. Thus the observer had a

chance to verify and clarify his understanding of what was observed earlier in the
day.

Following each step of development and each elicitation visit, interviews
were conducted to help formulate new questicns, evaluate hypotheses and pian
subsequent data collection. The overall process is summarized in Table 3 below:

Table 3

Data Collection Process

Before knowledge engineering Legins:

* Pre-interview to develop expectations for development process

For each day of knowledge engineering:

* Observations and videotapes

* Notes and questions on differences between observed and expected
behaviors

* Open-ended interview

* Stimulated recall (using riotes and video playback)

Between each development step or knowledge elicitation
visit:

* Post-interview/analysis

* Formulate new expectations, hypotheses, questions

During observations, the observer was specifically looking for evidence of:
1) errors, difficulties, delays, problems, etc. which might be caused by weaknesses
of the shell or by a mismatch of shell capabilities to the problem setting, and 2)
knowledge engineering productivity boosts, positive participant attitudes, effective

shortcuts, or improvemenis in quality which might be attributable to shell
capabilities or features.

Approach to data interpretation. The notes and tapes were reviewed and
observations catalogued. Categories for observations were developed and then
were sorted so that relevant observations for specific questions were grouped
together. The knowledge engineer's journal and the other reports were also
carefully studied in light of the objectives of the study. The coding of observations
in the original notes was reexamined after reading all the notes and forming new

interpretations. Data were searched for both confirmatory and disconfirmatory
evidence of intermediate interpretations.

Discussion and Interpretation

A description of the application characteristics is presented in Table 4. This
is typical of the kind of information by which a user of a case study library might
search for relevant cases. Examination of what helped and hindered the project, as
well as interviews with participants resulted in identification of several shell
capabilities that might have facilitated the process of system development in this
case. These are featu.es not present in M1 that would be desirable for a similar
project. Some highlights are presented in Table 5. Following this, some benefits

and pitfalls of using the case study method to evaluate an expert system shell are
discussed.

Table 4

Application Characteristics

TASK OR PROBLEM TYPE: Selection

INTERACTION/INTERFACE STYLE: Dialogue consultation via
menu selection

KNOWLEDGE REPRESENTATION: Rule-based with

uncertainty
SIZE OF PROBLEM: Small (for prototype)
INFERENCE AND CONTROL.: Forward chaining,
essentially monotonic

reasoning

Table 5
Some Desirable Shell Capabilities Not Found in M1

Editor features Syntax directed editor

Macro facility for variable names

Run-time text modification to allow expert
to modify text only

Knowledge-base interface Multiple "views" of knowlecse

Selectable kinds of deburg/trace outputs

Selectable us=r dialogue options

Knowledge processing Procedural language

Consistency checking

enefits and Pitfalls of Case Study Method.

A number of benefits of doing the case study became apparent during the
process. Perhaps the most valuable was the additional evaluation and leaming that
took place with the presence of an outside observer providing feedback and asking
questions. The knowledg engineer reported that he learned of new questions to
consider when selecting a shell in the course of the study. He also reported that
some of the observer's comments between knowledge engineering sessions brought
conceptual issues to his attention sooner than they might otherwise have been, thus
facilitating the process. Insight into the knowledge engineering process was gained.
And ideas for improved shell design were generated. Rather than proving to be
intrusive, the presence of an observer seemed to be positively motivating to the
other participants (witness the more rapid coding attributed to the presence of an
observer). It should be noted, however, that the observer was already well
acquainted with the other participants and with their abilities and responsibilities

10

11

pertaining to the project. Under less ideal conditions, an outsider might have been
more of a hindrance.

Another positive outcome of the study was the detailed description of the
problem setting, the shell, and the process of using it on a real expert system
development problem. Only a portion of the data are presented here, however, and
the selections may not anticipate the questions of future evaluators. It may be that

secondary users of a case study will need direct access to the source data in order to
find the information that is of most interest to them.

The evaluation cost about half again as many person-hours as the initial
software prototype, so it was relatively expensive. The cost was higher than it
would normally be due to the need in this project for travel to the expert's site.
Under more typical conditions, the domain expert, knowledge engineer, and
observer would be within close proximity over a more extended period of time.
Although the additional costs of an observer and the data interpretation tasks were
relatively high, the total cost for the data obtained was not unreasonable since the
prototype was developed in less than six months. Ir this case, the study was limited
to the initial prototyping stages of development, and in other cases it is also likely
that evaluators will want to focus on some stage of the development lifecycle that is
of particular interest. The intended uses of a shell will dictate which phases of the
development cycle give rise to the most uncertainty and hence the greatest need for
detailed evaluation. In the prototyping context, knowledge engineering and initial
coding were salient. In a system that will require long term maintenance and
updating, such factors as truth maintenance and extensibility become the foci of

attention, hence data collection could emphasize later phases of the development
effort.

One of the biggest disappointments with the study was the failure to generate
useful quantitative metrics. Although the focus was intended to be on qualitative
data, it was hoped that such indicators as "rate of progress” (in number of rules,
person-hours, or stages of development) would provide meaningful data on shell
performance (i.e. value of the shell as a knowledge acquisition aid).
Unfortunately, the rate of progress in this case was so much determined by
schedules and convenience that it was impossible to make any conclusions about the
progress or ease of shell use in terms of the overall effort or time expended. Even
if the time and effort could be controlled, it is apparent that the number of rules
required for a given level of system performance will vary depending on such
factors as programmer skill, as suggested earlier. It was hoped that knowing the
background of the participants would assist in interpreting factors affecting quality
and progress, but a way to be more precise about the “worth" of background skills
when factoring out such variables was unavailable.

In spite of, or perhaps because of, the amount of data available, it is difficult
to make a clear case for or against any shell aitribute as a cause of the outcomes
observed. It is also difficult to assign generalizable meaning to these ~.tcomes.
Nevertheless there were some important results. Significantly, the project
proceeded smoothly in spite of the lack of many desirable features in the shell. An
experienced knowledge engineer, especially one with strong programming skills,
can reduce the impact of shell capabilities on the total project, especially if the shell
allows flexibility in interfacing externals, imp'=menting control structures, and the
like. Overall, the progress of the prototype seemed to be more affected by qualities
of the problem setting other than the shell than by the shell itself. Wiih skilled
participants the presence of a participant observer and the collection of summary
data alone may offer most of the benefits of the case study without the need to
address the morc difficult aspects of interpretation and analysis.

Directions for Future Work

‘'The primary difficulties encountered neea not discourage potential user: of
the case study as a method of evaluating expert system shells. The more difficult
problems of establishing standardized and reliable performance metrics may or
may not be amenable to this approach. But the motivational benefits, project

feedback, learning and descriptive data may nevertheless make the approach worth
considering.

If it is possible to make more specific inferences about shell performance
from case study data, one approach might be to develop a more standardized
method of assessing characteristics of the project, part:cipants and application
domain. To make the effect of participant background variables easier to interpret,
one might desire to use formal tests of abilities and skills. A battery of tests on
knowledge engineering could be used to obtain a profile of the knowledge
engineering expertise of the development team. Such instruments might consist of a
criterion-referenced test measuring familiarity and proficiency with general
knowledge engineering techniques, and a questionnaire which inquires about
familiarity with the particular tool and formalisms being used. Differences
between scores on pre- and post-development administrations of the test would also
provide a metric of the educational value of the tool.

Large expert system development projects generally include several
knowledge engineers, so the participant observer role couid be filled without the
addition of personnel. It would, however, be valuable to provide sufficient
guidelines for the role of the observer so that this role becomes a skill accessible to
‘n-house personnel. Some of the duties of the observer would be to collect and
review transcripts of knowledge elicitation sessions, conduct pre-, mid-, and post-

12i 3

elicitation interviews of participants, and apply coding schemes to data collected in
the course of the study. Once appropriate methodology has been identified for the
collect’~:1 and analysis of data it is possible to design appropriate training. In
concl sion, muc.. can be gained from the qualitative case study approach to the

evaluation of expert system shells. More standardized approaches to the functional
evaluation of shells remain to be explored.

References

Contract No. MDA903-86-C-0210. Fort Leavenworth, KS: U.s. Arm);

manuscript).

Richer, M. (1986). An evaluation of expert system development tools, Expert
Systems, 3(3), 166-181.

Rothenberg, J., Paul, J., Kameny, 1., Kipps, J., and Swenson, M. (1987a).

Evaluating expert System tools: A framework and methodology. Contract No.
MDA903-85-C-0030, R-3542-DARPA, Santa Monica, CA: RAND.

Rothenberg, J., Paul, J., Kameny, I, Kipps, J., and Swenson, M. (1987a).
Evaluating expert System tools: A framework and methodology--Wo.'kshops.

Contract No. MDA903-85-C-0030, RAND Note N-2603-DARPA, Santa
Monica, CA: RAND.

Slawson, D, (1987). Methods and metrics for the evaluation of expert system

shells. Los Angeles: UCLA Center Jor the Study of Evaluation (unpublished
manuscript).

Siawson, D, Novak, J., & Hambleton, R. (1988). Case study evaluation of expert
system shells. Los Angeles: UCLA Center for the Study of Evaluation.

Waterman, D.A. & Hayes-Roth, F. (1982). An investigation of tools for building
expert systems. RAND Report R-2828-NSF . Santa Monica, CA: RAND.

14

