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This paper addresses the demands for change in the teaching and learning of
mathematics in the schools of America. Many of the demands stem from the way
rapid changes in information technology have altered our economic and social
culture. In particuiar, these technological changes have changed both mathematics
and its applications.

Given these circumstances, this report outlines the National Council of
Teachers of Mathematics proposal, Curriculum and Evaluation Standards (1987).
Also discussed are the implications for instruction of the adoption of a curriculum
based on these Standards. Next, the problem of developing appropriate indicators
to determine the efrectiveness of a school mathematics program based on these
curricular and instructional changes is presented, and a domain knowledge strategy
propotged. Finally, the problems of implementing these changes in the schools are
identified.

While not easy to accomplish, a professional development strategy is
described which, if followed, has promise in bringing about the reforms in the
teaching and learning of mathematics which are being proposed.
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I. INTRODUCTION

Today educational policymakers at all levels--school, district, state and
federal--are faced with a difficult dilemma with respect to school mathematics.
On one hand, they are being bombarded with reports and rhetoric about the
failings of current schoo) mathematics and the need for change. Add to that
clamor the responses of the mathematical sciences community to those demands
for change, and it is not surprising that those responsible for educational
planning and policy feel that they must make curricular and instructional changes.

On the other hand, taxpayers concerned about the growing costs of
education are wary of radical educational changes for they know that any change
is likely to increase costs. In addition, they are demanding more accountability.
In particular, when changes are made, administrators are asked to demonstrate the
effects of particular improvements. Unfortunately, the dilemma they face is that
the indicators that have typically been used to estimate effects of change are
unlikely to be sensitive to the changes now being proposed. Therefore, educators
are being expected to change current practice in school mathematics and to
document the effects of those changes with inadequate, invalid indicators.

This paper addresses four aspects of the changes in school mathematics.
First, the demands for change are clarified. Second, the nature of the proposed
changes in both the curriculum and instruction methods for school mathematics is
described. Third, ways of developing new, and more powerful indicators for
quality mathematics education are discussed in light of the other suggested
changes. Finally, the problem of implementing the changes that have been
described is addressed.
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II. DEMANDS FOR CHANGE

Since the turn of the century, critics have called for change in the school
mathematics curriculum (Stanic, 1984). The primary targets for these calls for
change have been at two levels. The first is the boring, menial common
arithmetic curriculum of the elementary schools, and the second, the
appropriateness of the secondary mathematics curriculum for further work in the
discipline at a university. Thus there wre concerns with both parts of the dual
educational system that evolved in the U.S. in the 19th century.

DUAL EDUCATIONAL SYSTEM

In the industrial society of the past century, people were educated to
maintain their places in the structure of the economy. A small highly educated
group established policy, led the government, managed industry and advanced the
scientific and technological base. The remainder of the population provided the
physical labor for production and services and was educated to the level required
for reliable performance. The result was a dual school system of "high-literacy"
and "low-literacy" schools (Resnick & Resnick, 1977). The high-literacy schools
were, and siill are, for the elite. Only a small percentage of young people apply,
or are admitted, to such schools. The curriculum in such schools is strictly
academic, aiming toward students’ admission to the "best" universities in the
country.

Schools for the masses arose from different roots and were aimed at
producing minimal levels of competence in the general population. Early in the
1800s, village schools were established reflecting Jeffersonian notions about a
literate citizenship appropriate to the new nation. The educational system that
evolved during the 19th century focused largely on the common elementary school.
This produced a sharp distinction between elementary and secondary education
that still persists. Almost everyone went to school for up to eight years, but few
went on to high school. The low-literacy curriculum focused on the basic skills
of reading, writing, and computation. In fact, the backbone of the mathemaiics
curriculum was “"shopkeeper" arithmetic. Teachers in elementary schools were
expected to teach all students ail the curriculum, while secondary teachers were
subject-matter specialists. The political conditions under which mass education
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developed emvouraged the routinization of basic skills and the standardization of
teaching. Standardization was a means of insuring that at least minimal
curriculum standards would be met, that teachers would be hired on the basis of
competency for the job rather than political or familial affiliation, and that those
responsible for the expenditure of public funds could exercise orderly oversight
over the process of education. This standardization was also a consequence of
the notions about the efficiency and effectiveness of routinization which grew out
of the industrial revolution of the 19th century {(Bobbitt, 1924; Charters, 1923;
Rice, 1913)>

At the other extreme, the elite have had a tradition of scholarly, cultural,
and scientific high litcracy; they have been prepared for academe and
policymaking. Although not all were educated to the level of advanced academic
study, all were rigorously educated, to allow for that option. The concerns about
the elite mathematics curriculum dealt with whether the content of the secondary
curriculum was up-to-date and appropriate.l

This dual educational system undoubtedly served the Indu::rial Age of the
19th early 20th centuries reasonably well, but it is no longer adequate.
Unfortunately, the traditions embedded in this dual educational system have been
hard to change. They include age-graded classrooms, differential schools, tracking
at an early age, licensure of general teachers, competence at paper-and-pencil
arithmetic, general mathematics as the terminal course for noncollege bound
students, precalculus mathematics for coliege intending students. It is these
traditions that are now under attack.

EVIDENCE FOR NEEDED CHANGE

The evidence cited by those now demanding change concerns the effect of
the current mathematics content and how it is being taught. The following points
are made:

1 The "modern math" curriculum changes of the 1960s were aimed at this
concern.
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1. Employers have claimed that recent graduates have insufficient knowledge
for employment. Henry Pollak (1987), a noted industrial mathematician, recently
summarized what industry expects of its new employees, including:

- the ability to set up problems with the appropriate operations;

knowledge of a variety of techniques to approach and work on problems;

understanding the underlying mathematical features of a problem;

the ability to work with others on problems;

the ability to see the applicability of mathematical ideas to common and
complex problems;

preparation for open problem situations, since most real problems are
not well formulated; and

- belief in the utility and value of mathematics.

Notice how different this description is from that of a student working alone
on sets of well-formulated exercises. While mathematics is not taught in schools
solely so students can get jobs, their experiences should ot be that dissimilar
from the expectations of employers.

2. College and university officials have documented that 1S percent of the
current enrollment in mathematics courses at public four-year colleges is for
remedial courses, and another 37 percent is for precalculus courses (Albers,
Anderson, & Loftsgaarden, 1987). There are two probable reasons for this
situation. First, a mismatch exists between what is studied in school mathematics
and what is needed in some college majors. Second, there has been a change in
college expectations; that is, more majors now require mathematics. Many high
school counselors and curriculum directors have failed to recognize this fact.

3. The bleak national performance data cannot be ignored. For example,
results from the National Assessment of Educational Progress (NAEP) in
mathematics (Carpenter et al, 1987) clearly show that although most students are
reasonably proficient in computational skills the majority do not understand many
basic concepts and are unable to apply the skills they have learned in even simple
problem-solving situations.

4. When compared with students in other industrialized nations, particularly
those in the Orient, our students do not fare well (McKnight et al,, 1987). We
exf)ect less of our students; they spend less time studying mathematics; and fewer
are enrolled in advanced mathematics than are students in other countries.




Furthermore, such comparisons reveal other diffcrences. Teachers abroad are
full-time employees; they are paid salaries equivalent to those for engineers; they
are expected to teach fewer classes; they have more help, more time to reflect
and interact with others, and time to update and refresh their knowledge.
Parents are also expected to help their students. And, if students have difficulty,
lack of effort or help is assumed to be the cause; in this country poor student
performance is usually attributed to lack of aptitude.

5. The performance and enrollment picture is even more bleak for women
and most minorities. For example, on the average, black students complete
approximately one year less of high school mathematics than their white
classmates (Anick, Carpenter, & Smith, 198]). Women and most minorities are
seriously underrepresented in scientific and technological careers. Only 13 percent
of the nation’s scientists snd engineers are women and only 2 percent are black
(National Science Foundation, 1982). If our inequitable schooling practices are
allowed to continue, this condition will get worse. Affiuent suburban school
districts already provide their students more opportunities and resources for the
study of mathematics, and they are likely to be the first to react to the current
crisis and recommendations. They are already speuding more money than urban
districts on computers and teacher inservice, thus widening further thc
opportunity gap between affluent suburban students and their poor, urban
counterparts.

6. Another aspect of this concern is the mistaken belief that the mastery of
paper-and-pencil procedural skills is necessary before one can investigate
problems. In particular, a common unwarranted assumption is that proficiency in
arithmetic computations is necessary before one can study algebra or geometry or
investigate applied problems. Too many students are refused an opportunity to
learn the mathematics that would make it possible for them to be productive
members of society because they are not proficient at skills which are now done
Gest on & calculator or computer.

7. Mathematics is a dynamic, growing, and changing discipline. Davis and
Hersh (1981) argue that "there are two inexhaustible sources of new mathematical
questions. One source is the developmen: of science and technology, which make
ever new demands on mathematics for assistance. The other source is
mathexuatics itself . . . . each new, completed result becomes the potential

grting point for several ne'y investigations" (p. 25). They claim that we are
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now in a Golden Age of mathematical production, with over hzif of all
mathematics invented since World War II.  Given this explosion of knowledge, it
is impossible for any one person to know all there is to know. For school

programs we must select carefully and emphasize fundamental knowledge needed
for contemporary mathematics. In fact, rather than attempting tc cover a large
number of topics somewhat superficially, it would be preferable to examine fewer
topics each in more depth.

In suminary, change is necessary for several reasons but primarily because
many important mathematics ideas are not reflected in current programs.

RESPONSE TO DEMANDS FOR CHANGE

The clamor for change in school mathematics was brought to a head with
the publication of A Nation at Risk (National Commission on Excellence in
Education, 1983, and Educating Americans for the 21st Century (National Science
Board Commission on Precollege Education in Mathematics, Science, and
Technology, 1983). The public’s attention was forcibly drawn to the urgency of
the need for change by these reports. The mathematical sciences community then
responded with three publications: What is Fundamental and What is Not
(Conference Board of the Mathematical Sciences, 1983a); New Goals for
Mathematical Sciences Education (Conference Board of the Mathematical Sciences,
1983b); and School Mathematics: Options for the 1990s (Romberg, 1984). These
-documents, produced from deliberations at conferences, have started in motion the
current recommendations for change.

As implied earlier, the real cause underlying the need for change is the shift
from an industrial to an information society. Several authors (Naisbitt, 1982;
Shane & Tabler, 1981; Toffler, 1985; Yevennes, 1985) have described some of the
attributes of the new age. It is based on a new technology that replaces the
human and mechanical means of communication--the printed page, letters--with
electronic means by which information can be shared almost instantly with
persons anywhere. Information is the new capital and the new raw material.
Communication is the new means of production. One should recognize that the
impact of technology is an econcmic reality, not merely an inteliectual
abstraction. As a result, the pace of change will te accelerated by continued
innovation in communications and computer technology. Also, the new
technologies were applied to old industrial tasks first, but now are generating new

7
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processes and products. And, finally, basic communication skills are more
important than ever before, necessitating a literacy-intensive society. This shift
has some immediate consequences for schooling and, in particular, the teaching
and learning of mathematics.

The content and structure of the curriculum should not indoctrinate
students with past values, but should be derived from visions of the future (Shane
& Tabler, 1981). Students in schools today must prepare to be productive citizens
in the twenty-first century. The culture in that era will of necessity be different
from that of today. We must attempt to visualize some of the important features
of that society if we are to adequately prepare today’s children for that world.

All students should be taught to reason, to design models, to create, and to
solve problems. The most important attribute of the information economy is that
it represents a switch from physical energy to brain power as the driving force,
and from concrete products to abstractions as the primary outcomes. Instead of
training all but a few children to function smoothly in the mechanical systems of
factories, all children must be taught critical thinking skills. While creative
intelligence is the driving force, innovation depends on communal intellectual
effort rather than resting solely on the activity of a small cadre of elite thinkers.
This is quite different from the concept of an intellectual elite having the
responsibility for innovation while workers take care of production.

With rapid economic change, people must anticipate multicareer lives in
which they may experience structural unemployment, requiring re-education.
People will need a combination of education and training, education for
adaptability and continued learning and on-the-job training for specific tasks.

The plethora of reports on illiteracy, dropout rates, falling test scores, and
economic declines have cast a spotlight on schools and, in particular, on the
failings of school mathematics. The shift from the Industrial Age to the
Information Age implies a needed shift in metaphors from an industrial metaphor
vnderlying the traditional school to an information/communication metaphor.

The industrial metaphor viewed schooling as an assembly line; students were
the raw material input to the system; teachers were workers passing on a fixed
body of mathematical knowledge by telling students what they must remember and
do (mostly be proficient at carrying out algorithms); and the output of the system

was judged by scores from tests. This metap..or was based on the need to
efficiently prepare the majority of students to fit smoothly into a mass-production
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economy. To meet this need, knowledge was seen as objective, teaching as
transmission and control, and learning as absorption.

Each of these assumptions has changed. Today our society needs individuals
who can continue to learn and adapt to changing circumstances and
produce new knowledge. Knowledge is seen as constructive, teaching as guiding,
and learning as occurring through active participation.
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III. NATURE OF PROPOSED CHANGES

The response to the demands for reform has occured in two identifiable
stages. These stages consisted of the initial response of policymakers to call for
quick changes and the slower and more deliberate response from the mathematics
education community as consensus on change was achieved.

In the first stage, inany policymakers and educators eager to reforrn school
inathematics made nonreflective responses to the demands for reform. For
example, the majority of state legislatures mandated that mathematics
requirements for high school graduation be increased and that competency tests
be used for student promotion. Similarly, new syllabi have been or are being
developed by school districts and state departments of education. Publishers are
producing kits of manipulatives and software and are including more challenging
problems in their tuxts. In addition, a number of experimental development
projects and several research studies have been funded by the federal government
and private foundations.

Unfortunately, these initial responses focused on making instruction on
current content more efficient. For example, many administrators are pressing for
improved performance of students on standard measures of mathematical
achievement. Calls for state competency exams, teacher tests on content
knowledge, a new NAEP, and national indicators all are being considered.
However, most have failed to consider anything except expectations about student
outcomes consistent with the industrial age, not tiie information age. This
response has focused on strengthening current practices using standardized tests
to meet accountability demands. Such practices are likely to perpetuate an
outdated mathematics curriculum in a manner such as that described in the classic
satire The Saber-Tooth Curriculum (Pediwell, 1939). If changes are not made, we
will still be training shopkeepers who can only perform some procedural tasks
that are now done by calculators and computers everywhere in 'society except in
schools. And we justify such training on the belief that knowledge of such skills
is a necessary prerequisite to the study and use of mathematics, a belief that is
not supported by research (Resnick, 1987).

In reality, the traditions and assumptions that underlie the current picture of
mathematics instruction are the target of the current calls for reform. Too cften
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in mathematics classrooms there is no sense of exploration, curiosity, or

. excitement. Students see mathematics as a vast collection of vaguely related
concepts and skills which are to be mastered in a strict order, and their only
objective is to become competent at carrying out some algorithmic procedure in
order to get correct answers on sets of stereotyped exercises. Furthermore, only
the product of their work is evaluated, not how they thought about the tasks or
how they proceeded. This fragmentation, emphasis on paper-and-pencil procedural
skills, and form of evaluation has effectively separated students from mathematical
reality, inquiry, and intellectual growth. In fact, when knowledge is fragmented,

it is difficult to remember and is difficult to regenerate if forgotten.

At the second stage of reaction to the pressures for reform mathematics
educators have proposed a more considered response, which I have labeled
"mathematical literacy," that challenges the traditions of current mathematics
instruction.

MATHEMATICAL LITERACY

The term mathematical literacy has been chosen deliberately to characterize
the shift in metaphors. Kirsch and Jungeblut (1986), in their report of the NAEP
study of literacy, defined literacy as using “information to function in society"
(p. 3). This definition implies an ability to do something, as opposed to a
knowledge of something. As Venezky, Kaestle, and Sum.(1987) have stated,
“Literacy . . . is a functional skill in that it requires the application of various
skills in common, everyday situations" (p. 5). They pointed out that "literacy is
also a continuum of skills, not an all-or-none ability" (p. 5). Thus, the
development of literacy involves learning how to communicate by learning the
terms, signs, symbols, and rules for use of a language and simultaneously learning
to read and write messages in that language to commaunicate with others.
Furthermore, the origins and development of literacy are situation dependent.
Translating this notion of literacy to mathematics can be done by considering four

perspectives.

Perspective I: Empirical Concepts and Procedures

Mathematical knowledge arises from rudimentary ideas acquired through
perception of situations in the complex world around us. Several millennia ago,
our ancestors planted the seed for the enterprise by observing some quantitative
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and spatial regularities. From these humblie beginnings, mathematics has flowered |
into the impressive body of knowledge that we have been fortunate enough to ‘
inherit. \Thus, from its origins, mathematics was an empirical science. Its
- fundamental terms, signs, symbols, and rules are merely abstractions and
inventions created to represent properties observed in the environment. Numbers
were created to represent the numerousity of sets of familiar objects; signs such
as "+" were invented to represent the quantity four: by the joining of sets; and
terms such as parallel and perpendicular were introduced to name spatial
properties. The purpose of creating a language is to communicate with others.
The terms of the language only become useful when there are shared meanings for
them. Thus, mathematics is both a language that man has created and a set of '
rules for the use of that language. Its origins are to be found in the regularities
of the world in which we live. Like any ianguage, mathematics grows and
changes as a result of empirical investigations. To be literate, all students need
to confront a rich array of the common problem situations from which they can
gradually build the empirical language of mathematics, its notation, and its rules
so that they share a common meaning for its terms.

Perspective 2: Abstract Concepts and Procedures
A good deal of mathematical knowledge has been created by making the
empirically based language and set of rules the objects of man’s investigation.
Again, by observing properties of numbers, operatiors, and spatial figures, for
example, humans, by abstraction and invention, have created another set of terms,
signs, symbols, and rules. Some are generalizations of empirical procedures. For
example, the creation of computational algorithms for empirical processes has
made mathematics applicable to many seemingly unrelated problem situations. In
addition, being no longer bound by perceptual reality, man has extended
mathematics by asking "What if . . . ?" questions. For example, while the
creation of an equation for the shortest distance between two points on a plane
surface has empirical origins, the generalization of this formula to two points in
n-dimensions does not. And, while multiplication of whole numbers has its roots
in the grouping of objects empirically, more abstract multiplication algorithms do
. not. They grew out of observations about properties of exponents such as aX. aY
= gXFY and the fact that any decimal number can be expressed as an exponent
through use of powers of ten. Thus, mathematics involves the study of abstract

13
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systems that grow as a result of investigating different problem situations.

Hence, to be mathematically literate, all students need the opportunity to explore
the properties of the empirically derived mathematics and to come to see for
themselves the relationships, rules of transformations, extensions, and structures
derived from these investigations.

The descriptions of the "content to be learned" for both the empirical and
the abstract languages of mathematics should be conceived as semantic networks
or domains. Each domain consists of a set of signs, symbols, rules, and problem
situations that are closely related. The problem situations are those that
historically have given meaning to signs and symbols being learned--empirical
situations for some and abstract for the others. Because these domains have a
common interrelated set of ideas, we have often given the domains labels, such as
whole numbers and coordinate geometry. Thus, the content of school mathematics
should be identified by use of these common labels; however, in each case, the
referent is the domain or network of ideas that is being identified. For example,
the related mathematical concepts of addition and subtraction of whole numbers
comprise one such content network. The features of this domain include:

1. The symbolic statements (e.g, a + b = ¢ and a - b = ¢; where a, b, and

¢ are natural numbers) that characterize the domain are identified.

2. The implied task (or tasks) to be carried out is specified. For addition
and subtraction, this involves describing the situations where two of the
three numbers a, b, and ¢ in the statements above are known and the
other is unknown.

3. The rules (invariants) that can be followed to represent, transform, and
carry out procedures to complete the task (e.g., find the unknown
number using one or more procedure such as counting strategies, basic
facts, symbolic transformations such as 2 + [] = ¢ <==>[] = ¢ - g,
computational algorithms for larger numbers) 2ll enumerated.

4. A set of situations that have been used to make the concepts, the
relationships between concepts, and the rules meaningful (e.g., join-
separate, part-part-whole, compare, cqualize, fair trading) i1s described.

The resuit of following the above steps yields a map (a tightly connected
network) of the domain.

Some rules (or algorithms) for transforming symbols to other symbols are so
useful that knowing them has been considered essential. In fact, mastery of many
computational algorithms is considered by many to constitute mathematical
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knowledge. Knowledge of computational algorithms is important even at a time
wnen calculators and computers perform most computations for us, but such
knowledge should grow out of the problem situations that have given rise to the
need for such algorithms. Furthermore, when one needs to calculate to find an
answer to a problem one should be aware of the choices of methods that are
appropriate (see Figure 1). Often an approximate answer is adequate, so one
should ¢stimate. If a precise answer is needed, then the choice is among
several procedures. Many answers skould be found by mental calculation
(multiplying i)y 10, taking half). Some calculations, if not too complex, should be
done by following paper-and-pencil routines. For more complex calculations the
calculator should be used (column addition, long division). And finally, if many
iterative calculations are required, a computer program should be written or used
to find answers. Nete, contrary to the fears of many, the availability of
calculators and computers has expanded a student’s capability of performing
calculations.

Perspective 3: Reasoning

A critical part of mathematics is that there are a set of intellectual methods
that mathematicians use when developing conjectures, reasoning about phencrnena,
building abstractions, validating assertions, and solving problems. These thinking
skills, or mathematical methods, are an important part of mathematics. However,
in contrast to the previous two perspectives on mathematical literacy, these
intellectual skills cut across all of the content networks. For example, no
proposition in mathematics is considered a mathematical product until it has been
validated. Initially, justifications may necessarily be built on empirical evidence,
since they were based only on our perceptions. Fowever, proof of an assertion
through a rigorous, logical argument has become the hallmark of abstract
mathematics. For example, no geometer who had measured the base angles of an
isosceles triangle would conclude that they were congruent, no matter how
accurate the measurements. Although such measurements may have formed the
basis of a conjecture about congruence, mathematicians demand that the result be
deduced from the fundamental concepts of geometry. Thus, mathematics involves
ways of viewing and thinking about the world. The discipline grows by applying
mathematical methods to a wide variety of problem situations. In this regard, to
be mathematically literate, students need to make conjectures, abstract properties
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from problem situations, explain their reasoning, follow arguments, validate
assertions, and communicate results in a meaningful form.

Perspective 4: Applications of Mathematics

The powsr of mathematical knowledge is that it is useful in many problem
situations quite removed from those which originally gave rise to the mathematics.
In fact, mathematics has becoime the foundation discipline for science and is now
increasingly so for the social sciences as well. For example, logarithms, as
described earlier, which were originally developed to make complex computations
involving multiplication : ad division easier, have recently assumed. new 2nd more
powerful applications. Even though calculations with logarithms are no longer
useful because computers perform such calculations faster and more accurately,
they are now a conceptual tool for evaluating algorithms in computer science,
biological statistics, and a wide range of other fields. Also, while paper-and-pencii
computational algorithms for such tasks as addition and subtraction are no longer
the central focus of applied mathematics, the decision sequence involved in
algorithins is an important conceptual tool that helps address structural properties
of operations; this application has led to the study of operator algebras. In turn,
the study of such operatioxis has madc it possible to simulate computationally a
vast array of complex problems such s flow of blocd through an artificial heart
valve, the trajectory of a hurricane as it approaches a coastline, and tomographic
images of the mantie of the earth. In fact, the building of mathematical models
and the computational simulation of complex situations are now commonplace. As
the sciences move increasingly toward computational methods, so too must the
mathematics curriculum. Thus, mathematics is a foundation discipline for other
disciplines and grows as a result of its utility. Hence, to be mathematically
literate, students should be confronted with a variety of problems from other
disciplines and have an opportunity to build mathematical models, structures, and
simulations.

This picture of mathematical knowledge from the combination of the four
perspectives on mathematical literacy is quite different from that experienced by
students in typical classrooms where they most often work on sets of
mathematical exercises to get correct answers. The important features of this
new metaphor involve specifying domains of mathematical knowledge as
interconnected networks of procedures, concepts, and methods of proof that grow
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as a result of confronting a variety of problem situations (empirical, abstract, and
applied).

THE NCTM CURRICULUM STANDARDS

The best detailed description of the proposed curricular changes is currently
being prepared by the National Council of Teachers of Mathematics. The draft
document Curriculum and Evaluation Standards for School Mathematics (NCTM,
1987) is now in circulation for review. A final document will be available in
early 1989. Three of the features of this document--goals, mathematical content,
and methods of instruction--are summarized here.

Goals and Assumptions

The document begins with five general goals that should be reflected in
mathematics curriculum standards across grades K-12. These are labeled (1)
becoming a mathematical problem solver, (2) learning to communicate
mathematically, (3) learning to reason mathematically, (4) valung mathematics, and
(5) becoming confident in one’s ability to do mathematics. These goals imply that
students should have numerous and various interrelated experiences that allow
them to solve complex problems; to read, write, and discuss mathematics; to
conjecture, test, and build arguments about a conjecture’s validity; to value
mathematical enterprise, mathematical habits of mind, and the role of mathematics
in human affairs; and to be encouraged to explore, guess, and even make errors
so that they gain confidence in their acticns.

Mathematical Content

The goals in the draft document are followed by 50 standards--37 on the
mathematical content of the curriculum and I3 on evaluation. The curriculum
standards are further subdivided into thirds representing major stages in a
student’s mathematical development. These stages roughly parallel the activities
of the lower [K-4], middle [5-8], and high [9-12] school curricula. The desired
outcomes for each of these levels of mathematics education represent changes
from the current patterns.

At the K-4 level the recommended standards assume that the primary fccus
of the curriculum should be on the development of mathematical understandings
and relationships. Children acquire concepts with clarity and stability by
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constructing meanings in the context of physical situations, and abstractions
emerge from empirical experience. Instruction must emphasize models and
language to express mathematical ideas. Also, the curriculum content and
instructional approaches should be consistent with the young child’s level of
cognitive and mathematical development, The curriculum should be aligned with
children’s capabilities in order for them to learn well. A developmenially
appropriate curriculum incorporates real world contexts and children’s experiences,
uses children’s language and viewpoints in developing content, provides sufficient
time for children to construct meanings, and makes use of research evidence
about children’s mathematical thinking and learning,

At this level, the curriculum must take seriously the goal of developiag
students who possess confidence in their ability to think mathematically and solve
problems; to demonstrate flexibility in working with mathematical ideas and
problems; make appropriate decisions in sclecting strategies and techniques;
recognize familiar mathematical structures i unfamiliar settings; detect patterns;
and to analyze data. Young chiidren are active individuals who construct and
mcdify ideas and integrate existing knowledge through interacting with the
physical world, materials, and other children.

To be mathematically literate, students in K-4 need to possess knowledge of
the domains in such important branches of mathematics as measurement, algebra,
geometry, statistics, and probability. Mathematical ideas grow and expand as
children work with them throughout the curriculum. The informal approach at
this level establishes the foundation for further study and permits children to
acquire the additional knowledge they need. Children need to understand how
mathematical ideas are interrelated. Number concepts can be discussed in the
context of measurement. Geometric models can be used to clarify number ideas.
Patterns can be explored through work with numbers and operations. Graphs can
be part of work with measurement or number concepts, and problems can be
selected that involve several mathematical ideas.

At the 5-8 level it is assumed that computation is but one of many basic
skills and is a mathematical process that can best be accomplished through the
use of technology. In fact, the calculator renders obsolete much of the
computational proficiency emphasized in traditional courses. Other mathematics
such as estimation, geometry, probability, and statistics are increasingly more

important and, with the help of technology, more accessible.
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Middle school children can rightly be called "children in transition." Vast
changes occur in their intellectual, psychological, social, and physical developmeant.
They abound with restless energy, respond to peer influence, and are curious
about themselves. Self-consciousness is the hallmark of middle school children.
Teachers need to provide a caring environment in which students can feel free to
explore mathematical ideas, to ask questions, to discuss their ideas, and to make
mistakes. Listening to students’ ideas and encouraging students to listen to one
another establishes an atmcsphere of mutual respect.

Also, during grades 5-8, students begin to develop their abllmes to think
and reason more abstractly. Concrete experiences continue to provide ihe means
by which they construct knowledge. From these experiences they abstract more
complex meanings and ideas. Opportunities for students to discuss and write
about their ideas should accompany these experiences. Discussions can help
students clarify their thinking as well as formulate and verify mathematical
conjectures.

Grades 5-8 are crucial in the transition to adulthood. This is a time when
lifelong values are being formed. Students make decisions about what they will
study and their approach to learning, decisions that can dramaticziiy affect their
future. Failure to study mathematics can close the door to many college majors
and careers, and the lack of mathematics has especially affected young women and
minority students. It is during the middle grades that the attitudes are formed
that affect these decisions. Students solidify their notions about what they like
and do not like. It is crucial that conscious efforts be made to encourage all
students. To this end the curriculum must be of interest to students and must
emphasize the usefulness of mathemantics.

At the 9-I12 level it is assumed that arithmetic computation should not be a
direct object of study. Conceptual and procedural understandings of number,
numeration, and operations and the ability to make estimations and approximations
and to judge the reasonableness of results will be strengthened. Students will
work in the context of applications and problem solving, including those situations
dealing with issues of scientific computation.

In summary, as the curriculum standards were being written, the
mathematical content that students should have an opportunity to learn was the

initial consideration.
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Methods of Instruction

The second part of each standard produced by NCTM lists important actions
expected of students. These actions are expected to result from engagement in
specific instructional activities. Two zeneral principles guide the development of
activities: first, instructional activitics grow out of pioblem situations; and
second, learning occurs by construction, not absorption.

Traditional teaching emphases on practice in notational transformations and
solution aigorithms as necessary precursors to coping with a problem ignore the
fact that knowledge emerges from the problems. This fact suggests that, instead
of the expectation that skill in computation should precede word problems,
experience with problems helps develop the ability to compute. Thur present
strategies for teaching mathematics by first teaching skills and then exposing
students to stylized application problems need to be reversed; knowledge should
emerge from experience with probi2ms.

A genuine problem is a situation in which, for the individual or groumn
concerned, one or more appropriaiely analogous strategies have yet to be
developed. The situation should be complex enough to offer challenge but not so i
complex as to be cooperatively insoluble by the group of students. In fact,
problem situations should parziici the kind of phenomena for which mathematical
structures have been typically created (Freudenthal, 1983). Thus; pupils need to
experience the phenomena for which such concepts, structures, and ideas were
created. In order to teach the mathematizing of situations, teachers need to
create suitable contexts; the most abstract mathematics needs the most concrete
contexts.

In most classrooms, the conception of learning is that students are passive
absorbers of information, storing it in easily retrievable fragments as a result of
repeated practice and reinforcement. Research findings from psychology indicate
that learning does not occur by passive absorption (Resnick, 1987). Instead,
individuals approach each new task with prior knowledge, assimilate new
information, and construct their own meanings. For example, before young
children, are taught addition and subtraction, they can already solve most addition
and sudtractivn problems using such routines as "counting on" and “"counting back"
(Romberg & Carpenter, 1986). As instruction proceeds, children often continue to
use these routines to sclve problems, in spite of being. taught mors formal
procedures. They will cnly accept new ideas when their old ideas do not work or
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are inefficient. Furthermore, ideas are not isolated in memory but are organized
and associated with the natural language that one uses and the situations one has
encountsred in the past. This constructive, as opposed to passive, view of the
learning process ...ust be reflected in the way mathematics is taught. Instruction -
based on this conception of learning is different irom that in the typical
_mathematics classroom where the teacher is transmitting lessons through -
exposition to a captive audience. Instruction from this perspective should include
project work rather than exercises; group assignments as well as independant
worX, discussions about the origin of and relationships among concepts, aud
intrinsic motivation through curiousity.
These igeas about problem situations and learning are reflected in the verbs
used-to describe student actions (e.g., to investigate, to iormulate, to find, to
verify). These verbs describe student work on different types of problems.
Although each problem situation is in some sense unique, we have considered them
under seven general headings. While each category of actions is different in an
important way from the others, all are closely related.
Examine. Many of the activities, particularly those used in introducing new
content, involve examining or exploring some situation. The purpose of such
activities is to_abstract or to_invent. To abstract means to identify the intrinsic

form or essence, shape or structure of a given situation. To invent means to
produce for the first time through the use of one’s imagination, ingenious
thinking, or experimentation. Pattern recognition is at the heart of mathematical
thinking, and invention is so intimately linked with abstraction as to be
inseparable. Labels (terms, signs, or symbols) are invented to represent most
abstractions. An essential part of these activities is negotiation with students
about the choice and purpose of such labels.

Represent. In activities of this type, students form or produce an image,
picture, word, sentence, chart, or table using appropriate symbols for the
referents in a problem situation. Making representations is part of the process of
learning to construct mathematical models of problem situations.

Transfo.n. A transformation involves ciiznging one expression into another
following one or more rules. Much textbook mathematics involves learning how to
perform transformations. Examples include computational algorithms, division of .
polynomials, and transforming from one representation to another, such as from
an algebraic description of a function to a'geometric representation as a graph.
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Students need to understand why such transformations are desirable and how to
perform the changes, even though rapid proficiency may ..> longer be essential.

Prove. When students have made conjectures about a situation, they need to
establish evidence that compels acceptance of their propositions. The kind of
evidence and form of argument may vary, as mentioned earlier, but the intent
remains constant. Students should be able to construct cogent arguments in
support of their claims. Depending on the problem situation, their arguments may
be based on empirical evidence, inductive queries, and deductive chains of
reasoning.

Apply. To apply is to use known concepts and procedures in new situations.
In applying, one might invent; in the process of inventing, one might apply; and,
as a precursor to inventing, one might abstract.

Solve problems. This category refers to true prdblem-solving situations.
Complex situations are presented to students who have acquired the necessary
concepts and procedures to find a solution but need to use some strategies
(heuristics) to make the connections between the given information and a method
of solution.

Communicate. This category of activities involves exchange of information
between individuals by use of a common symbol system. Thus, students should be
given numerous opportunities to express mathematical ideas verbally and in writing
and to comprehend and interpret ideas expressed by others.

As students’ mathematical power grows and changes, the problem situations
must vary with the maturity--both mathematical and cultural--and experience of
the students. For example, the primary grades should emphasize the empirical
language of the mathematics of whole numbers, common fractions, and descriptive
geometry. In the middle grades, the empirical mathematics should be extended to
other numbers, and the emphasis should shift to building the abstract language of
mathematics needed for algebra and other aspects of mathematics. High school
mathematics should emphasize functions, their representations and uses, modeling,
deductive proofs, and applications.

In summary, the NCTM standards specify that instruction should be based on
problem situations. As long as the situations are familiar, conceptions are created
from oujects, events, and relationships in which operations and strategies are well
understood. In th® way, students develop a framework of support that can be
drawn upon in the future, when rules may well have been forgotten but the
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structure of the situation remains embedded in memory, a foundation for
reconstruction. Situations should be sufficiently simple to be manageable, but
sufficiently complex to provide for diversity in approach. They should be
amenable to individual, small-group, or large-group instruction, involve a variety
of conceptual domains, and be open as to the methods to be used.



IV. APPROPRIATE INDICATORS

The question being posed in this section is, "How valid is the information
about mathematics knowledge gathered via current procedures?" The ease of
development, the. convenience, and low cost of standardized tests and profile
achievement tests has made the scores derived from them the common indicators
used in American schools. The validity of such scores, however, is now being
questioned.

STANDARDIZED TESTS

Norm-referenced standardized tests, including the well-known ACT and SAT
used in college admission decisions, have become part of the yearly ritual in most
schools. The purpose of such tests is to rank order respondenis with respect to
a particular type of mental ability or achievement, thus indicating a respondent’s
position in a population. Scores derived from these tests are used to make
selection and placement decisions. Each test is comprised of a set of independent
multiple choice questions. The items have necessarily been subjected to a
preliminary tryout with a representative pupil group so that they could be
arranged in the desired manner with respect to difficulty and the degree to which
they discriminate among students. Also, the test is accompanied by the
appropriate table for transforming counts of items correct into meaningful
characterizations of pupil mental ability or achievement such as grade-equivalent
scores, percentiles, or stanines. .

There are four features of such tests that need to be commented upon.

" First, although each test is designed to order individuals on a single
(unidimensional) trait, such as quantitative aptitude, the derived score is not a
direct measure of that trait. It is like reporting a measure of San Francisco’s
basketball star Ralph Sampson’s height not as 7’ 4", but as at the 99th percentile
for American men.

Second, because individual scores are compared with those of a norm
population, there will always be some high and some low scores. This is true
even if the range of scores is small. Thus, high and low scores cannot be judged
as "good" or "bad" with respect to the underlying trait.

Third; the items on the test are assumed to be equivalent to each other.
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They are selected on the basis of general level of difficulty and some. index of
discrimination. However, there is no claim that the items are representative of
any well-defined domain. For example, in many subtraction computation
standardized tests, several items such as that shown in Figure 2 are common.
Because of a zero in the minuend place, such an item requires successive
regroupings and discriminates between good and average subtractors. However, if
one were to randomly generate three-digit subtraction problems, those with zeros

in the minuend would appear infrequently.

304 A) 712
176 B) 138
C) 238
D) 128
E) 232

Figure 2. A typical three-digit subtraction test item.

Finally, the validity of such tests is predictive validity. Scores on the
Scholastic Aptitude Tests (SATs) are useful because they are reasonable predictors
of how well students will do at college.

The strength of standardized tests is that they do what they were designed
to do reasonably well. They are relatively easy to develop and are inexpensive
and convenient to administer. Furthermore, the results are comprehendible since
standard procedures are followed.

Their primary weakness is that they are often used for decisions they were
not designed to address. For example, aggregating standardized scores for
students in a class (school, district, or other uni) to get a class profile of
achievement or mean is a very inefficient method of profiling. Standardized test
scores provide too little information for the cost involved. Similarly, their use is
of little value for judgements about curricular change, since the items are not
selected to be representative of the mathematical domains in the curriculum.
Unfortunately, their use appears to be more strongly related to political rather
than educational uses. For example, it is claimed that elected officials and

- educational administrators increasingly use the scores from such tests in
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comparative ways--to indicate which schools, school districts, and even individual

teachers give the appearance of achieving better results (National Coalition of
Advocates for Students, 1985). Such comparisons are misleading. One can only
conclude that standardized tests are unwisely overused.

Finally, no claim for validity with respect to mathematical literacy can be
made. Items in standardized tests are assumed io reflect equivalent but
independent concepts and procedures rather than the structured, interdependent
ideas of mathematics.

PROFILE ACHIEVEMENT TESTS

Profile tests have become very popular alternatives to standardized tests.
They have been developed for several major studies of mathematical performance
such as the National Longitudinal Study of Mathematica! Abilities (NLSMA),
National Assessment of Educational Progress (NAEP), First International
Mathematics Study (FIMS), Second International Mathematics Study (SIMS), and
several state assessments. ' _

In contrast to standardized tests, profile achievement tests are designed to
yield a variety of scores for groups of students. As early as 1931, Ralph Tyler
outlined a procedure for test construction and validation that clearly pointed out
the essential dependence of a program of achievement testing on the objectives of
instruction; he also recognized a variety of forms of pupil behavior indicating
attainment of the desired instructional outcomes. Perhaps he more than any other
single test specialist was responsible for the extension of achievement testing to
the outcomes of instruction. His contributions over fifty years ago doubtless did
much to introduce the broad modern conception of evaluation to replace the
narrower concept of standardized testing. Profile tests are intended to provide
information on a variety of topics so that educators and policymakers can
compare individuals or groups in those topics.

The typical approach to profile testing is to specify a content by behavior
‘matrix. Within this matrix, matrix sampling is followed for the actual test
administration; that is, in each cell of the matrix, items are sampled so that each
student tested takes only a portion of the total items. For example, for the
Second International Mathematics Study (SIMS; Weinzweig & Wilson, 1977) a
context x behavic. grid was developed for the grade 8 and grade 12 target
populations. The content dimensions were intended to cover all of the topics
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likely to be taught in any country. For grade 8, the content outline contained
133 categories under five broad classifications: arithmetic, algebra, geometry,
statistics, and measurement. For grade 12, the content description was broader.

It contained 150 categories under seven headings: sets and relations, number
systems, algebra, geometry, elementary fractions and calculus, probability and
statistics, and finite math.

For each population in the SIMS study, the behavior dimension referred to
four levels of cognitive complexity expected of students--computation,
comprehension, application, and analysis. This classification was adapted from
Bloom’s Taxonomy of educational objectives (1956). The adaptation involved
replacing knowledge in Bloom’s Taxonomy with computation and not using the
higher levels of synthesis and evaluation. Both adaptations cause problems.

First, computation means knowledge of and ability to carry out a routine
algorithm or procedure; however, knowledge of basic concepts does not fit well as

either computation or comprehension. Second, eliminating the two higher levels
of Bloom’s taxonomy constitutes an admission that important aspects of problem
solving and developing a logical argument about a conjecture cannot be assessed.

Items similar to those in -standardized tests were prepared for each cell of
the matrix. Data then were reported in several ways. First, they were reported
in terms of items or cell means. Second, item scores were aggregated by columns
to yield cognitive level scores or by rows to yield topic scores.

Four features of profile assessments make them quite different from
standardized tests. First, there is no assumption of an underlying single trait.
The tests are designed to reflect the multidimensional nature of mathematical
content. There is often a temptation to aggregate across topics to get a single
total score; such a score would be very misleading. Second, the unit of
investigation is a group, not an individual; matrix sampling allows a wide variety
of items to be given in relatively little time for each person. Third, comparisons
between groups are done graphically on actual scores. No transformations are
needed. Finally, validity is determined in terms of conten! and/or curricula
validity. Mathematicians and teachers are asked to judge whether individual items
reflect a content behavior cell in the matrix and sometimes to judge whether or
not the item represents something that was actually taught.

The strength of profile achievement tests is that they can provide useful
information about groups. They could be useful for general evaluations of
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changed educational policy that directly affects classroom instruction, if they
were repeatedly administered so that change could be estimated.

There are five weaknesses of these tests. First, because they are designed
to reflect group performance, they are not useful for individual ranking or
diagnosis; with matrix sampling an individual student takes only a sample of items.
Second, they are somewhat more costly to develop than standardized tests and
harder to administer and score. Third, because they yield a p}oﬁle of scores, |
they are hard to interpret. Fourth, in the past they usually have not been ‘
administered often enough to produce scores that could be compared to indicate ‘
change over time. The most serious weakness these tests is in the outdated |
assumptions underlying both dimensions of content by behavior matrices. The
content dimension involves a classification of mathematical topics into
"informational" categories. As Romberg (1983) has argued:

"Informational knowledge" is material that can be fallen back upon as
given, settled, established, assured in a doubtful situation. Clearly, the
concepts and processes from some branches of mathematics should be
known by all students. The emphasis of instruction, however, should be
“"knowing how" rather than "knowing what."

(p. 122)

Furthermore, the items in any content category are tested as if they were
independent of each other. This ignores the interconnections between ideas
within a domain. Schoenfeld and Herrmann (1982) cautioned about testing
students on isolated tasks.

If they succeed on those problems, we and they congratulate each other
on the fact that they have learned some powerful mathematical
techniques. In fact, they may be able to use such techniques
mechanically while lacking some rudimentary thinking skills. To allow
them, and ourselves, to believe that they understand the mathematics
is deceptive and fraudulent. (p. 29)

Thus, the items should reflect the actual interdependence (rather than
independence) of ideas in a content domain.

The behavior dimension of matrices has always posed problems. Bloom’s
Taxonomy (1956) has proven to be useful for low level behaviors (knowledge,
comprehension, and application) but difficult for the higher levels (analysis,
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synthesis, and evaluation). Single-answer multiple-choice items are not reasonable
for those levels. In addition, the Taxonomy suggests, contrary to current
psychological thinking, that the “"lower" skills should be taught before the "higher"
skills. It is based on "the naive psychological principle that individual simple .
behaviors become integrated tc form a more complex
behavior" (Collis, 1987, p. 3). In the past 30 years, our knowledge about learning -
and how information is processed has changed and expanded.
In summary, profiling has advantages, but current profile tests fail to reflect
the way mathematical knowledge is structured or how information is processed
within those mathematical domains.
The main point to be made is that, while these two testing procedures are
useful for some purposes and undoubtedly will continue to be used, they are
products of an earlier era in educational thought. Like the Model T Ford
assembly line, objective tests were considered an application of modern scientific
techniques in the 1920s. Today we ought to be able to do something better.

A NEW APPROACH TO INDICATORS

A new set of assessment strategies needs to be developed so that valid
information is available for decision making. One promising approach is to follow
a "domain knowledge" strategy. For a particular mathematical domain, as
described on pages 14 and 15, a valid index needs to be developed. Thus, one
would expect to:

1. identify a small number of important conceptual domains in mathematics
and identify a map of each domain;

2. develop a set of tasks that are related to the key features in each
domain;

3. administer the tasks to groups of students;

4. from the responses to the tasks, logically combine information to
yield a score that should reflect a student’s maturity with that
domain;

5. for each individual or group, construct a score vector over all of the
domains (e.g., John [X1, X2, .., Xp] where X; = score for a domain).

The domain of multiplication is used here to illustrate how to construct such
an index. Multiplication involves a set of problem situations in which the implied :
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relationships between the magnitudes expressed in each situation can be
represented by a multiplicative expression a x b = ¢, where a, b, and ¢ are
numbers and X is an operation on numbers with certain properties. Thus, the
most important feature of the domain is the connection between the problem
situation and its multiplicative representation. It is important for students to
comprehend the differences between these situations and those which are
represented with additive expressions (a + b = ¢). Four common situations are
represented by multiplication:

- Grouping (and partitioning): 4 dozen eggs is 4 x 12 = e.

- Area (or array): The area of a rectangle whose width is 7 ft. and
length is 5 ft.is A = 7 x 5.

- Simple linear functions (ratios): If one usually mixes 3 cans of
orange juice with a gallon of water the number of cans of orange juice
needed with 5 gallons of water is 3/1 = ¢/s.

Combinatorics: The number of different double dip cones that can be
made from five flavors-of ice cream is N = 2 x 5.

The computational task in all situations is to find the value of a, b, or ¢ if
two magnitudes are given (e.g., find distance, d, if d = r x t and rate, r, and
time, t, are known).

Two features make developing an index complex: First, in most problem
situations it is impossible to separate the operations of multiplication and division,
and, in fact, one wants students to see the integral rclationships beiween the
operations. For example, if d and r were known in the functional situation
above, the task would be to find t. This can be done by knowing what number
one must multiply £ by to get d; however, it is best done by division. (Note the
similarity to the relationship between addition and subtraction.)

Second, students should demonstrate mastery of the properties of this
operation--memorization of basic facts; understanding that a x 1 = 3,ax 0 =0, a
xb=Dbxaax((+c)=axb + ax c; showing graphically that, if r is
constant, d = r x t is a linear relationship; describing the steps in carrying out
(or programming) a multiplication algorithm.

Given this description of the domain, assessment questions would need to be
constructed for the following key student outcomes: '
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1. Represent problem situations with multiplicative sentences;
2. 'Write a correct representation for such situations;

3. Decide whether an exact or approximate answer is needed and
(a) estimate if an approximate answer is needed, or (b) decide which
procedure (mental, paper-and-pencil, calculator, or computer) is
sppropriate if an exact answer is needed;

4. Carry ouat the appropriate procedure;
5. Judge the reasonableness of results of the procedure;

6. Argue the validity of an answer in terms of the context of the given
’ problem situation; and

7. Discuss the properties of multiplication in contrast to other
operations on numbers.

Tasks for assessment purposes then would be of two types: Some would be
wholely in the formal mathematical system to ascertain whether students know the
symbols, relationships, and rules; others would be given as problem situations that
reflect the hypothe .ized progression described above.

Since all actual calculaticn involves only basic facts and concepts about
place value, unit fractions, direction, and so on, assessment should start with
small whole numbers and include whole numbers, fractions, decimals, and integers.

) Tasks would be administered in a combination of ways. Not only would
standard group testing be used, but individually administered performance tests
and even small group cooperative tests should be possible. What is important is
that the administration procedure be appropriate for the type of problem
situation.
The form of the responses, thus, must also vary. In particular, since one is
often interested in the strategy a student has used to work a problem, an open
ended response form to tasks would often be appropriate. Also, the rules one
uses to judge responses will be complex; they must include both the correctness
of a response and the appropriateness of the strategy used for the particular
problem situation. The aggregation of responses would be designed to estimate
the progress of an individual or a group in the domain; the aggregation will not :
be a simple sum, but a logical combination of information.

Although it may take years before current testing procedures are replaced in *
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schools, we should be looking at plausible alternatives. Our task is not to write
cleverer test items of the same type (independent, single answer, multiple choice)
but to write other kinds of questions based on this new conception of domain
knowledge. We need questions that give students an opportunity to think like a
mathematician--reflect, organize, model, represent, argue. In addition, these
questions should be structured so that students’ knowledge of the
interrelationships between ideas within specific mathematical domains can be
determined. Constructing, scoring, scaling, and interpreting responses to such
items will not be easy, but in the long run they will be worth the effort.
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V. IMPLEMENTATION OF CHANGES

The changes in curricula, instructional techniques, and indicators that are
being proposed by the mathematical sciences education community will not be easy
to implement. There are muny reasons for the probable difficulties; too many to
discuss in detail in this paper. However, three need to be mentioned: the
coherence of the current educational system, the "zero-sum" assumed consequences
of any change, and the legacy of the "modern-math" experience.

COHERENCE OF THE EDUCATIONAL SYSTEM

The current system of schooling is a coherent syst:m. It may be out-of-
date and inappropriate, but all participaats (students, teachers, administrators, and
parents) understand their roles and responsibilities; procedures have been
developed over a long period of time; rules and regulations have been worked out.
The changes being proposed challenge traditional practices and beliefs about
schooling and school matk~ -"ws. The most important barriers to reform are the
beliefs, expectations, and zw.  «s strongly held by all persons involved in
education in relation to specific aspects of the retorm. For example, a teacher
who believes that speed in paper-and-pencil calculation is important is going to
be reluctant to let children use calculators. The administrator who has charted
group scores on a standardized test for years is going to be reluctant to replace
it. The college admissions official who expects transcripts with the course titles
Algebra and Geometry will be disturbed. Parents who expect mathematics
homework to be done at a desk on paper, rather than by gathering real data for
some problem, will be surprised. The proposed changes are a direct challenge to
perceptions held by many persons about the content of mathematics, about what is
important for students to learn, about the job of teaching, about what constitutes
the work of students, and about the professional roles and responsibilities of
teachers and administrators.

A second barrier to change is the common attitude of organizations toward
change--namely, resistance. Changing schooling practices has proven to be
difficult during the past quarter century (Dalin, 1978). It is easy to be inactive
by waiting: for the storm to pass, or to make nominal change by changing labels
rather than changing practices, as many did with "modern math" (Romberg &
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Price, 1983). It is all too easy to agree with the rhetoric of reform but maintain
at the same time long-held beliefs or practices in the face of questions about
those beliefs and practices. ,

A third barrier to change is the failure of many to see that the reform
being proposed means building a new system, not just altering a few parts.
Expecting students to work arithmetic problems with calculators changes tests as
well as daily lessons. Including a unit on exploratory data analysis in a junior
high program acquires that appropriate materials are available.

The fourth barrier involves the political framework within which schcols
operate. Policy decisions about schooling are made by elected representatives at
the federal, state, and local leveis and are operationalized in administrative
directives. Many of the needed changes r.an only be fully implemented by
changing many directives about selection of texts, statewide testing, and so forth.
Policymakers must change the rules.

Still another barrier to reform is cost. Excellence costs money. Most
schools, like the communities they serve, are surviving but not thriving. Any
reform requires considerable time, commitment, and resources to be successfal.
Resources are scarce; yet they must be found and used judiciously. Schcol boards
and administrators must be prepared to support the technology of school
mathematics in the same way they now support the teaching of science, physical
education, or industrial arts.

In summary, lasting change will only occur if another coherent system is
created, a system appropriate for an information society, as an alternative to the
current industrially based system.

THE "ZERO-SUM" CONSEQUENCE OF CHANGE

In & system such as an auto assembly line, if something is "added" to the
line (e.g., a new accessory), then either the system expands or something is
"subtracted." If an aspect of the system is set, like the time for mathematics in
schools, some would argue that if .omething is added something else must be
dropped to yield a "zero-sum." While many interested in school mathematics may
agree that statistics or discrete math should be included in the curriculum, they
want to know what will be dropped. In fact, mary are concerned that their

. "favorite" math topic will be one of those to be deleted.

At face value this argument seems logical. However, let us examine two
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consequences of this position. First, choice of what should be taught depends on
what one values. Many parents are disappointed if students do not have the
kinds of schooling experiences they fondly recall. Unfortunately, such experiences
are not necessarily good guides for determining what today’s students should be
taught. It is critical to decide on what is to be taught based on what is of
fundamental value for students so they may live in the different, information
world of the 21st century.

Second, the "zero-sum" argument is only totally valid if one is only changing
parts of the system. It does not hold if one is restructuring the system. The
changes discussed in the preceding sections call for a radical restructuring of the
mathematics curriculum. Given current research on learning it may even be
possible that, "by emphasizing problem solving without abandoning computation, we
can improve both skills, in effect making the curriculum a ’positive-sum game™
(Kirsner, 1988).

THE "MODERN MATH" LEGACY

It is only natural that calls from the mathematics community for curricular
reform bring to the minds of many educators and the public the "modern math"
movement that began over 30 y-ars ago. That movement was based in part on
the notion that by learning the underlying structures of mathematics students
would gain an understanding of mathematical techniques. Thut movement is
remembered as a disaster by the public. Althcugh this perception is not entirely
accurate, the impact of "modern math" on school mathematics must be judged as
a failure. However, we ought to be clear both about why "modern math" failed
and how the current "math literacy" movement is different.

According to Howe (1987) "modern math" failed for the following reasons.
First, in many countries the reform was led by academic mathematicians, with
little participation by practicing teachers. Second, the content of the new
mathematics curriculum was too different from the mathematics that teachers and
parents were used to. It didn’t relate to what they knew about; instead, it
introduced abstract ideas, concepts, and methods that appeared quite alien. Third,
the new mathematics made too heavy demands on classroom teachers, requiring
them to learn new content and uew methods and to develop new kinds of
assessment techniques. Fourth, it ran afoul of growing political conservatism in
the late seventies and early eighties that advocated a "back to basics" approach in

37




mathematics education. Fifth, it did not stay in step with the changes in society
over the period; in particular it did not take account of the significant new
techniques that computers were bringing to applied mathematics (p. 218).

The changes in school mathematics being argued for in this paper have their
origins in the economic needs of society. Thus, the calls for reform originated in
the business community and not from pure mathematicians. The audience for the
changes today is all students, not just those who might aspire to becomie
mathematicians. Furthermore, the changes are aimed at making mathematics more
understandable and useful not more abstract. In addition, the proposed changes
are rooted in the technological changes which are currently changing our society.
While the demands on teachers are considerable, the change strategy that is being
followed involves professional development rather than administrative directives.

It is this last point that gives greatest hope that reform in the mathematics
curriculum will receive widespread acceptance. Professional development implies
the direct involvement of the professicnal crganizations in setting goals and
describing a vision of the mathematics curriculum and instruction without being
prescriptive about how to achieve that vision. In this spirit the NCTM
Curriculum and Evaluation Standards (1987) were prepared. This document lists
what should be valued and calls on all to help. In this sense the approach is to
help teachers and other educators, via their professional organizations, become
empowered to make changes.

The barriers to change could be seen as insurmountable, or they could be

seen as challenges to be met and overcome. A new school mathematics program
needs to be developed and implemented. The content that should be included in a
school mathematics program has been specified. Materials such as texts,
courseware, and tests can be produced so that constructive learning will take

place in classrooms. However, let it be understood that no illusions of immediate
reform are held; it will only be accomplished by hard work. The hope and
expectation is that there are a sufficient number of persons willing to work so

that the reform is accomplished.
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VI. CONCLUSION

The quality of instruction in the classrooms of this nation has always been a
reflection of society at large. Improvement wili result only from 2 different
perception of mathematics, of appropriate student activities, and of teacher roles
and from different expectations by the many segments of society. Hence,
improving school mathematics is dependent on changing understandings on the
part of all of society.

In this paper the case for radical reform in school mathematics has been
p}esented. Although the curriculum should include more and somewhat different
mathematics for all students, the real change in content should involve a shift in
emphasis from procedural skills to conceptual understanding. Instruction should
focus on problem situations in which students have an opportunity to explore,
make conjectures, communicate their ideas, and provide reasons. Teachers should
be supportive guides as students examine problems. They should be able to
provide students with a wide range of activities and be able to judge their growth
in mathematical thought such as use of strategies and kind of reasoning.
Furthermore, for accountability purposes procedures must be developed which
reflect the maturity of student thinking in specific mathematical domains.

Finally, while there are many barriers to reform, the professional develbpment
strategy being followed makes it the responsibility of all involved and interested
in &« ol mathematics to become proactively involved in making reform happen.

Collectively we have a rare opportunity to make real, substantive changes in
school mathematics so that all students possess both a suitable and a sufficient
mathematical background to be productive citizens in the next century.
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