
DOCUMENT RESUME

ED 299 964 IR 013 479

AUTHOR Wilkins, D. C.; And Others
TITLE Knowledge Base Refinement by Monitoring Abstract

Control Knowledge.
INSTITUTION Stanford Univ., Calif. Dept. of Computer Science.
SPONS AGENCY Office of Naval Research, Arlington, Va. Personnel

and Training Research Programs Office.
REPORT NO STAN-CS-87-1182
PUB DATE Aug 87
NOTE 24p.; For related reports, see IR 013 477-481.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MFO1 /PCO1 Plus Postage.
DESCRIPTORS Apprenticeships; *Classification; Computer Assisted

Instruction; *Computer System Design; *Expert
Systems; *Heuristics; Learning Strategies; *Problem
Solving; Programing; Training Methods

IDENTIFIERS *Knowledge Bases; *Rules Based Theory

ABSTRACT

Arguing that an explicit representation of the
problem-solving method of an expert system shell as abstract control
knowledge provides a powerful foundation for learning, this paper
describes the abstract control knowledge of the Heracles expert
system shell for heuristic classification problems, and describes how
the Odysseus apprenticeship learning program uses this representation
to automate "end-game" knowledge acquisition. Particular emphasis is
given to showing how abstract control knowledge facilitates the use
of underlying domain theories by a learning program. Three figures
and one table are provided. (16 references) (Author/EW)

* Reproductions supplied by EDRS are the best that can be made
* from the original document.

August 1987 Report No. STAN-CS-37-1182
ALso timbered KS1,-87-01

U S DEPARTMENT OF EDUCATION
Once of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

0, This document has been reproduced as
recetved from the person or organization
originating it
Mtn°, changes have been made to improve
reproduction quality

Points of view or opmtons stated tn thtsdocu
ment do not necessarily represent offtctei
OERI position or policy

Knowledge Base Refinement by Moilioring
Abstract Control Knowledge

by

D. C. IN ilk ins, W. J. Clancey, and B. G. Buchanan

Department of Computer Science

Stanford University
Stanford, CA 94305

II

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE,
DISTRIBUTION UNLIMITED

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

ONR TECHNICAL REPORT #

6a NAME OF PERFORMING ORGANIZATION

STANFORD KNOWLEDGE SYSTEMS
LABORATORY

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION

PERSONNEL AND TRAINING RESEARCH PROGRAMS

6c. ADDRESS (City, State, and ZIP Code)
COMPUTER SCIENCE DEPARTMENT
701 WELCH ROAD, BUILDING C
PALO ALTO, CA 94304

7b ADDRESS (City, State, and ZIP Code)
OFFICE OF NAVAL RESEARCH (CODE 1142PT)
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5000

8a. NAME OF FUNDING /S?ONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-85K-0305
8c. ADDRESS (City, State, and ZIP Lnde) 10 SOURCE OF FUNDING NUMBER"

PROGRAM
ELEMENT NO

61153N

PROJECT
NO.

RR04206

TASK
NO

OC

WORK UNIT
ACCESSION NO

NR702-003
11 TITLE (Include Security Classification)

Knowledge Base Refinement by Monitoring Abstract Control Knowledge

12 PERSONAL AUTHOR(S)

David C. Wilkins, William J. Clancey, and Bruce G. Buchanan
13a TYPE OF REPORT

TECHNICAL
I13b. TIME COVERED 114

FROM TO
DATE OF REPORT (Year, Month, Day)
August 1987

1S. PAGE COUNT
20

16 SUPPLEMENTARY NOTATION

Also, Knowledge Systems Lab Report KSL-87-01

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP
05 09

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

An explicit representation of the problem solving method of an expert system shell as
abstract control knowledge provides a powerful foundation for learning. This paper
describes the abstract control knowledge of the Heracles expert system shell for
heuristic classification problems, and describes how the Odysseus apprenticeship
learning program uses this representation to automate "end-game" knowledge acquisition.
Particular emphasis is given to showing how abstract control knowledge facilitates the
use of underlying domain theories by a learning program.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT
ffl UNCLASSIFIED/UNLIMITED a SAME AS RPT DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL

DR. SUSAN CHIPMAN
22b TELEPHONE (Include Area Code)

(202) 696-4318
22c OFFICE Syr?.

ONR 114

DD FORM 1473, ea MAR 83 APR edition may be used until exhausted
All other editions are obsolete.

3

SECURITY CLASSIFICATION OF THIS PAGE

Knowledge Systems Laboratory January 1987
KSL Report No. KSL-87-01 Rev. 1: August 1987

Knowledge Base Refinement by Monitoring
Abstract Control Knowledge

David C. Wilkins, William J. Clancey and Bruce G. Buchanan

Department of Computer Science
Stanford University
Stanford, CA 94305

To appear in:

Knowledge Acquisition for Knowledge Based Systems, J. Boose
and B. Gaines, editors, Academic Press, 1987

and

International Journal of Man-Machine Studies, 1987

4

Knowledge Base Refinement by
Monitoring Abstract Control Knowledge

David C. Wilkins, William J. Clancey, and Bruce G. Buchanan

Knowledge Systems Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract

An explicit representation of the problem solving method of an expert system shell
as abstract control knowledge provides a powerful foundation for learning. This
paper describes the abstract control knowledge of the HERACLES expert system
shell for heuristic classification problems, and describes how the ODYSSEUS appren-
ticeship learning program uses this representation to semi-automate "end-game"
knowledge acquisition. The problem solving method of HERACLES is represented
explicitly as domain-independent tasks and metarules. Metarules locate and apply
domain knowledge to achieve problem solving subgoals, such as testing, refining, or
differentiating between hypothesis; and asking general or clarifying questions.

We show how monitoring abstract control knowledge for metarule premise
failures provides a means of detecting gaps in the knowledge base. A knowledge
base gap will almost always cause a metarule premise failure. We also show how
abstract control knowledge plays a crucial role in using underlying domain theories
for learning, especially weak domain theories. The construction of abstract control
knowledge requires that the different types of knowledge that enter into problem
solving be represented in different knowledge relations. This provides a foundation
for the integration of underlying domain theories into a learning system, because
justification of different types of new knowledge usually requires different ways of
using an underlying domain theory. We advocate the construction of a definitional
constraint for each knowledge relation that specifies how the relation is defined and
justified in terms of underlying domain theories.

1

5

1 Introduction

An apprenticeship period is the most effective means that human problem solvers
use to refine domain-specific problem solving knowledge in expert domains. This

provides motivation to give apprenticeship learning abilities to knowledge-based
expert systems, since they derive their power from the quality and quantity of their
domain-specific knowledge. By definition, apprentice learning programs improve an
expert system in the course of normal problem solving and derive their power from
the use of underlying domain theories (Mitchell et al., 1985).

There are two principal apprenticeship learning scenarios used by human prob-
lem solvers in knowledge-intensive domains such as medicine and engineering. In
the first scenario, an apprentice problem solver learns in the course of observing the
problem solving behavior of another problem solver. A learning opportunity occurs
when the apprentice fails to explain an observed problem solving action. At this
point, the apprentice can often use the problem solving context and underlying do-
main theories to identify missing or wrong problem solving knowledge, or at worse
be able to ask t:, pointed question that will isolate the knowledge discrepancy. Our

past research focused on this type of scenario: the ODYSSEUS learning program im-
proves a HERACLES-based expert system in the course of watching a human expert
solve problems (Wilkins et al., 1986; Clancey, 1986a).

In the second apprenticeship learning scenario, an apprentice problem solver
learns in the course of solving problems and monitoring his or her own problem solv-
ing failures. This paper describes how the ODYSSEUS learning apprentice can per-
form this type of learning; the ODYSSEUS learning apprentice improves a HERACLES-

based apprentice expert system by having ODYSSEUS monitor the expert system's
normal problem solving.

This paper is organized as follows. Section 2 briefly describes the problem
solving architecture of the HERACLES expert system shell. The key aspects of HER-

ACLES that are crucial for learning are a separation of the domain knowledge from

control knowledge and an explicit representation of the control knowledge using
tasks and metarules. Section 3 describes the learning method used by ODYSSEUS,

2

6

provides two learning examples, and discusses the generality and limitations of the
learning approach. Section 4 covers related research, and Section 5 summarizes the
contributions of this paper.

2 Heracles' Problem Solving Architecture

HERACLES is an expert system shell for solving problems using the heuristic classi-
fication method; it provides the user with a vocabulary of knowledge relations for
encoding domain knowledge, and a domain-independent body of control knowledge
that solves problems using this domain knowledge. In HERACLES, control knowl-
edge is represented as task procedures and metarules, which are invoked by a task
interpreter (Clancey, 1986b).

A task is a procedure for accomplishing some well-defined problem-solving
s-ibgoal. Examples of tasks are to test a hypothesis, group and differentiate hy-
potheses, refine a hypothesis, forward reason, ask general questions, and process
hard data. Each action within a task procedure for achieving the task procedure
subgoal is called a metarule. Metarules, which might more precisely be called "in-
ference procedure rules", do not contain domain knowledge; they index the domain
knowledge using a relational language.

The domain knowledge in HERACLES consists of MYCIN-like rules and facts
and is encoded using the MRS relational language (Russell, 1985). This knowl-
edge is accessed when metarules premises are unified with domain knowledge rela-
tions. There are approximately 120 knowledge relations, such as subsumes ($parml ,

$parm2)1, trigger($rule), and evidence.for($parm, $hypothesis, $rule,
$cf)2. Tasks and metarules can be viewed as orchestrating the domain knowl-
edge: they piece the domain knowledge together in order to achieve a problem
solving goal. Examples of metarules are shown in Section 3. Currently HERACLES

'Throughout this paper, all variables start with a 1".
2This last relation means that $paris contributes evidence for $hypothesis in $rule and the

certainty factor or strength of this rule is $ci. If a rule has several parameters in the premise, an
evidence .for tuple is constructed for each of them.

3

7

contains approximately thirty task procedures and eighty metarules.

Task
Interpreter J

Meta level Control Knowledge
(Tasks and Metarules)

Object- Level
Domain Rules

Factual Database
of Ground Literals

Figure 1: Heracles Problem Solving Architecture. The meta-level
(middle layer) is declaratively specified and encodes knowledge
of the problem solving method. The object-level (bottom layer)
is also declaratively specified and encodes domain-specific knowl-
edge.

The three main levels of organization in HERACLES are shown in Fig,_ 31. The
bottom level of organization includes all domain-specific knowledge of the expert

domain, such as medical or engineering knowledge. The middle layer contains meta-
level control knowledge, which encodes a problem-solving method such as heuristic
classification or constraint propagation. Earlier shells such as EMYCIN did not have

the middle layer of abstract control knowledge; rather, this knowledge was imbedded
in the interpreter and the domain rules.

In the examples in this paper, the domain knowledge base to be refined is the
NEOMYCIN knowledge base for diagnosing meningitis and neurological problems
(Clancey, 1984). The NEOMYCIN knowledge base is a reorganization and extension
of the MYCIN knowledge base, in which distinctions are made between different types

4
8

of problem solving knowledge, and the control knowledge is more completely sepa-
rated from the domain knowledge. The described HERACLES system was actually
created by removing the domain knowledge from NEOMYCIN. Patient cases created
for the NEOMYCIN domain are used as input (Clancev, 1984). The ODYSSEUS induc-
tion theory uses the MYCIN library of solved patient cases (Buchanan and Shortliffe,
1984).

HERACLES metarulzs have the responsibility for locating and applying all do-
main knowledge. The form of the metarule provides a way to determine whether
the premise of the rule is true by accessing dynamic state information and refer-
encing (and retrieving information from) the domain knowledge base. ODYSSEUS
monitors HERACLES metarule premises for failures. If the cause of the failure is
missing domain knowledge, ODYSSEUS attempts to create this knowledge using un-
derlying theories of the domain. If ODYSSEUS succeeds in finding the desired domain
knowledge, the domain knowledge base in the expert system shell is automatically
refined. The metarule for achieving a problem solving subgoal can now be success-
fully applied.

3 Odysseus' Learning Method

An overview of the learning method to be described is shown in Figure 2. The first
major task facing the learning system is global credit assignment, which is the de-
termination of whether there is a potential gap in the knowledge base. The gap can
be either a lack of factual or rule knowledge. The use of a relational language for all
knowledge, including rules, provides a uniform approach to discovering both types
of deficiencies. A gap in the knowledge base is suspected whenever the premise of a
metarule fails. Given a failed metarule premise, the learning program checks to see
which conjuncts of the premise failed. If the failed conjunct indexes dynamic state
information or is used to control the meta-level reasoning, then there is no learning
opportunity, as there is no corresponding underlying domain theory. However, if
the failed conjunct is the type that accesses the domain knowledge base, then this
could be a learning opportunity.

5

Modify
Object -Level KN I

Global
Credit

Assignment

Monitor Meta-Level
Control Knowledge

No

Yes

Local
Credit

Assignment

Conjecture KN
That Completes

Met arule Premise

(Confirmation
Theory

I

)

Underlying
Domain Theories

Figure 2: Overview of Odysseus' learning methodology when ob-
serving problem solving behavior of an expert system

After detecting the existence of a gap in the knowledge base, the next task is
to pinpoint the gap; this is the local credit assignment problem. In our approach,
there are two major parts to local credit assignment: generation of potential repairs
and the testing of these repairs for validity.

The input to the ODYSSEUS candidate repair generator is the metarule that
failed, the known bindings for variables in the clauses of the metarule premise that

have been determined outside of the scope of the metarule, and a knowledge of

6

10

the range of values that each variable in a metarule clause is allowed to assume.
For example, the value of the variable $f inding can be any finding in the domain
vocabulary. The candidate repair generator focuses on the knowledge relations in
the metarule and generates all allowable variable bindings for these relations. These
instantiated relations are then passed on to the ODYSSEUS candidate tester.

I

HERACLES ODYSSEUS

1 Task
1 Interpreter

Learning
Critic

4

i
Ride
FailsMeta-Level Control KN Confirmation(Tasks and Metarules) Theory

(

Modify
Domain 1 Factual KB Underlying
Rules Database Domain Theories

Figure 3: Odysseus monitors Heracles' metarule failures

The input to the ODYSSEUS candidate tester is a knowledge relation instance,
such as subsumes(visual-problems, double-vision). In order to test this can-
didate, two things are necessary. First, ODYSSEUS must have in hand a definition
of all the constraints (empirical or otherwise) that determine whether an arbitrary
instance of this knowledge relation is valid. Second, the learning program must
have underlying theories of the domain that are capable of determining whether
the constraints are satisfied, and hence whether the knowledge relation instance
is valid, ODYSSEUS tests contains two underlying domain theories for testing of
new knowledge: a strategy theory of heuristic classification problem solving and an
induction theory based on analysis of past cases.

7

11

In the remainder of this section, two learning.examples will be described in
detail to demonstrate the approach we are advocating. The first example, given in

Section 3.1, illustrates the learning of factual knowledge for the knowledge relation

clarifying.questions, using the ODYSSEUS strategy theory as the underlying
domain theory. The second example, given in Section 3.2, illustrates the learning
of rule knowledge for the knowledge relation evidence.f or, using an induction
theory based on analysis of past cases as the underlying domain theory. These
examples are based on the NEOMYCIN knowledge base, the MYCIN case library, and

an actual medical case. Both sections assume that a metarule failure has occurred
and that candidate repairs have been generated; they concentrate on the third stage
of learning, wherein candidate repairs are tested.

3.1 Learning Factual Knowledge

The focus of this example is the clarifying. questions knowledge relation in the
clarify. .questions metarule presented below. As an example of its use, suppose
the doctor discovers that the patient has a headache. The headache finding is asso-
ciated with many diagnostic hypotheses, so many that it is generally wise to narrow

down this set of hypotheses by determining the severity and duration of the headache

before pursuing a specific hypothesis. This is the process of clarifying the finding,
and the questions about various subtypes of this finding (e.g., headache-duration,
headache-severity) are called clarifying questions. In the HERACLES system, this

is implemented by invoking the clarify . finding task whenever a new finding is
derived by the system or provided by the user. In turn, the clarify .finding task
invokes the clarify .questions metarule.

Meta Rule 1: Clarify.questions

IF: goal(clarify.finding $findingl) A

clarifying.quostions($findingl $finding2) A

not(value-known $finding2)

8

12

THEN: goal(findout $finding2)

ENGLISH: If the current goal is to clarify findingl

and findingl can be clarified by finding2

and finding2 is currently unknown

then try to find out tha value of finding2.

Only one of the premise conjuncts of Rule 1 accesses domain knowledge,
namely clarifying. questions ($f indingl $finding2). The first conjunct is for
control purposes and the third conjunct checks the value of dynamic state knowl-
edge.

The sit nation when learning may occur is when Rile 1 is passed a value for the
variable $f indingl, say 'headache', but Rule l's premise fails because no bindings
can be found for $finding2. In this situation, $finding2 is a free variable at the
time of failure. ODYSSEUS begins the learning process by invoking the candidate
repair generator, which generates every possible candidate binding for g '; nding2.
Using information regarding the domain of $f inding2, the learning critic is able to
generate about 300 candidate relations.

In order to be able to validate candidate new domain knowledge for a particu-
lar knowledge relation, two steps must be taken beforehand. First, a justification for
the knowledge relation must be constructed that specifies all the constraints that an
instance of the knowledge relation must satisfy in order to be valid. In our example,
this requires constructing a precise definition that captures the constraints on an in-
stance of the clarifying . questions relation. Second, a way must be found to test
these constraints using underlying theories of the domain. This two-step method
contrasts with the current manual method of refining the NEOMYCIN knowledge
base, which consists of asking physicians what clarifying questions to use.

Let us begin by giving an informal justification of clarifying quest ions .

One reasonable justification for asking clarifying questions is cognitive economy
with respect to efficient diagnosis. Much of diagnosis involves the testing of spe-
cific hypotheses; however, sometimes a new piece of information is discovered that

9

13

suggests a very large number of hypotheses. To reduce the number of relevant hy-
potheses, it is helpful to ask several clarifying questions that will add confirming
or disconfirming evidence to many of the hypotheses associated with the new piece
of information. After asking these questions, only a few of the numerous potential
hypotheses will now be c-msistent with what is knc wn.

We can now give a precise description of the constraints operating on clar-
if ying . quest ions. This first-principles interpretation of st clarifying question is as

follows: if a question is associated with many hypotheses, say more than six, and
there ..xists a question that provides positive or negative evidence to many of these
hypotheses, say between one-third and two-thirds, then always ask this question as

a clarifying question. This can be formalized as follows.

Definition 1.

For any finding f, let H1 be the set of all hypotheses h such that relatesTo(f,
h) is true. Let fl and f2 be distinct findings, such that subsumes(fi , f2) is in
the knowledge base. Let n be an empirically determined threshold indicating the
minimum number of hypothese3 that a finding must relate to in order to require
the use of clarifying questions. Then

clarif ying.quest ions (fi , f2) 4--- R 114 0 ?. n) A (5n < 111111 n Hhii 5- 312)].

0

The relates' ') relation is not part of the domain knowledge base; it is com-
puted on the fiy -.-..;.,..a a new piece of knowledge is validated, using a method which

we will now describe. ODYSSEUS has two underlying domain theories that together

can be used to check whether a new piece of knowledge satisfies all aspects of Def-
inition 1. One underlying theory is a strategy theory for heuristic classification
problem solving. A component of this theory is a line of reasoning explanation
generator. Given a finding, all paths from that finding to reasonable possible di-
agnostic hypotheses via metarule applications can be determined. The generator
can enumerate all the reasons that a question could possibly be asked, given the
strategy and domain knowledge in HERACLES. The line of reasoning generator al-

10

14

lows determination of all the hypotheses that are associated with any one question
either directly or indirectly; it is used to compute relatesTo(f, h).

We now describe the results of encoding Definition 1 and implementing our
approach for the NEOMYCIN knowledge base. Currently, there are two clarifying
questions for headache in the NEOMYCIN knowledge base: headache duration and
headache severity. Our implemented metarule critic for the clarify .questions

metarule considered the effect of all headache-related questions on the set of hy-
potheses associated with headache, and determined that one more clarifying ques-
tion met the above described constraints: headache progression (i.e., is the headache
getting better or worse). ODYSSEUS automatically modified a slot value under
headache in the knowledge base to include this clarifying question; in the future,
this question will always be asked when the patient complains of a headache.

3.2 Learning Rule Knowledge

All rule knowledge is represented within HERACLES using knowledge relations. This
means that rules can be learned much as factual knowledge is learned. The example
in this section involves learning an instance of the evidence . for relation in the
Split .Active .Hypotheses metarule. This rule is one of three invoked by the task
Group .And .Diff erentiate. Hypotheses. This metarule is useful during diagnosis
when there are currently a large number of strong diagnostic hypotheses. The
Split .Active.Hypotheses metarule searches for a finding to ask about that will
simultaneously provide strong positive evidence for some active hypotheses and
strong negative evidence against other active hypotheses.

Meta Rule 2: Split.Active.Hypotheses

IF: goal(group.and.differentiate.hyps $active.hypotheses) A

member($hypothesisl $active.hypotheses) A

member($hypothesis2 $active.hypotheses) A

not(equal($hypothesisi $hypothesis2)) A

11

15

evidence.for($finding $hypothesisi $rulei $cf1) A

cvidence.for(Wn...ing $hypothesis2 $rule2 $cf2) A

greater($cti .2) A

iess($cf2 -.2)

THEN: goal(findout $finding)

ENGLISH: If the current goal is to group and differentiate a

list of active hypotheses and a single finding provides

positive evidence for one of the hypotheses and

negative evidence for another of the hypotheses

then try to find out the value of this finding.

The metarule is passed a value for the variable $act ive . hypotheses. The
interpreter attempts to find a unifier for all the clauses such that $hypothesisi is
bound to one member in $active.hypotheses, $hypothesis2 is bound to a dif-
ferent member of $active . hypotheses, and there is a single finding in the premise
of a metarule that concludes that $hypothesisi is probably present and is also in
the premise of a rule that concludes that $hypothesis2 is probably absent. That
is, a finding is asked that simultaneously provides evidence against some of the hy-
potheses and evidence for other hypotheses. Even though the NEOMYCIN knowledge
base has been under development for several years, the Split .Hypothesis .List
metarule is rarely invoked on any of the patient cases in the NEOMYCIN case library.

Therefore implementing a learning critic for this metarule is useful.

In
the example in which our learning critic was called into play, $act ive.hypotheses
consisted of seven hypotheses: AV malformation, mycobacterium TB meningitis,
viral meningitis, acute bacterial meningitis, brain aneurysm, partially
treated bacterial meningitis and fungal meningitis. The metarule fails
because a bindirig for $finding cannot be found in the two relations
positive . evidence . for and negative . evidence . for. Other clauses establish
bindings for $hypothesisi and $hypothesis2. Using information regarding the
domain of Hiniing, the learning critic conjectures many potential missing rules.

12

16

The number of conjectures can be quite large. For 300 findings and seven active
hypotheses, this number is 7 x 6 x 300.

Given these conjectures, a confirmation theory determines whether any of
them is true. This requires the use of a formal definition for each relation. In this
case we need a formal definition of $evidence . for.

Definition 2.

Let r be a justifiable domain rule. Let f be a finding that appears in the
premise of r, and let h be a hypothesis that appears in the conclusion of r. Let s
be the certainty factor strength of r, normalized to lie between ±1. Then

evidence.for(f, h, r, s).

0

To actually determine whether a domain rule is justifiable requires the use
of an underlying domain theory. ODYSSEUS uses induction over a case library to
determine whether the conjectured rule is valid. That is, ODYSSEUS does a statistical
analysis of the cases and determines whether the rule has good generality, specificity,
and economy, and satisfies other measures of rule fitness'.

The confirmation theory using the ODYSSEUS induction system found five rules
that divide the list of active hypotheses, including:

Object-Level Rule 1.

IF: duration.of.symptoms < 1 day A

evidence.for(meningitis) > .6

3The library of test cases that we used to generate rules is the my= case library (Buchanan and
Shortliffe, 1984). Because diseases are defined in the Neomycin knowledge base that are not defined
in the Mycin system (in this case, ay malformation, partially treated bacterial meningitis, and brain
aneurysm), the values of the certainty factors cps) for some rules will be slightly inaccurate.

13
17

THEN: suggests fungal.meningitis (cf = -.8) A

suggests mycobacterium.tb.meningitis (cf = -.8) A

suggests acute.bacterial.meningitis (cf = .7)

Upon being accepted, this rule is added to the object-level rule set; it is also
re-represented as knowledge relations and these are added to the factual database

3.3 Comparing Apprentice Scenarios

Table 1 contrasts the two different ODYSSEUS apprenticeship learning scenarios of
watching another problem solver and watching one's own problem solving. Table 1

compares the way the two scenarios accomplish the three major learning tasks faced
by an apprenticeship learning system: the realization that knowledge is missing, the
generation of candidate repairs, and the testing of those repairs. Note that the latter
two tasks, i.e., the local credit assignment process that involves the use of underlying

domain theories and the construction of definitional constraints, are identical in the
two scenarios. On the other hand, the global credit assignment process is easier
when watching oneself, because there is none of the uncertainty connected with
inferring another agent's line of reasoning. Generating repairs is also easier when
watching oneself, as there is no uncertainty as to exactly which metarule and hence
which knowledge relation is responsible for the failure.

Compared to watching another problem solver, one can learn from watching

one's own problem solving earlier in the knowledge acquisition "end-game". When

watching another problem solver, a relatively large knowledge base is required;
otherwise it is impossible to follow the line of reasoning of an expert most of the
time, which is a requirement of this scenario.

A disadvantage of watching oneself is a large number of false alarms.
Metarules fail most of the time, and it is not clear what the failure rate would
be for a really good knowledge base. Perhaps it would only be a hex lower than
with a fairly incomplete knowledge base. More experimentation is required to an-

swer these questions.

14

1s

Scenario 1: Watching
Other Problem Solving

Scenario 2: Watching
Own Problem Solving

Global Credit Assign- Attempt to construct an Meta-level control rule
ment explanation of observed

action fails
fails

Local Credit Assign- Generate domain KN el- Generate domain KN el-
ment: Generate Repairs ement that completes an ement that allows rule

explanation to succeed

Local Credit Assign- Check constraints on KN Check constraints on KN
ment: Test Repairs relation using underly- relation using underly-

ing domain theories ing domain theories

Table 1: Comparing Apprenticeship Scenarios

4 Discussion

Monitoring abstract control knowledge appears to be a very promising lever for
aiding apprenticeship learning. In showing two examples of the leverage obtained
by this approach, we have only scratched the surface of the topic. This section
discusses some of the remaining open issues.

As described in Sections 3.1 and 3.2, we have begun to implement constraint
definitions to link knowledge relations to underlying theories. A key question that
needs investigation is the reusability of these constraint definitions: are there sets
of knowledge relations that can use the same or similar constraint definitions? As
there are scores of different knowledge relations in the NEOMYCIN system, reuse of
definitions could significantly reduce the amount of effort needed to create metarule
critics for all metarules in the expert system shell. Further, it is not yet known
whether all types of knowledge relations will be amenable to formal constraint
definitions.

15

19

The best method of gauging the improvement produced by the addition of new

knowledge is another open question. The heuristic knowledge that the examples of
Section 3 added to the knowledge base is clearly helpful for the example cases,
because it allows several hypotheses to be confirmed or d;sconfirmed with a single
question. However, a complete validation should show improvement in performance

on a validation set of cases. The measure of performance should be diagnostic
accuracy and efficiency.

Another issue involves the control of the learning process. When should this
type of learning be invoked? Not every metarule failure signals missing knowledge;
how can learning opportunities be distinguished from routine failures?

Another open problem relates to the quantity of new knowledge introduced
into the system. For example, in Section 3.2 five new rules were found that would
divide the current hypothesis list. More generally, an open problem in the induction
of rule bases is how to adequately bias the selection of rules (Fu and Buchanan,
1985; Michalski et al., 1983). There may be very many good candidate rules, but
having too many rules is injurious to an expert systemefficiency is decreased,
debugging is complicated, and explanations of actions become harder to follow. Of

course, learning knowledge in the context of normal problem solving increases the
likelihood that the rules produced by the induction system are going to be useful
for problem solving. Only adding rules that are needed by the metarules of the
inference procedure is a good step towards introducing a sufficient bias on rule
selection.

5 Related Work

Two major apprenticeship learning systems are LEAP and DIPMETER ADVISOR
(Mitchell et al., 1985; Smith et al., 1985). In both of these systems there is a
single type of knowledge. In LEAP, all knowledge is implementation rules. In DIP-

METER ADVISOR all knowledge is heuristic rules. In contrast, there are dozens of
types of knowledge in HERACLESeach knowledge relation corresponds to a differ-

16

20

ent type of knowledge. The key to automatic learning seems to be the definition of
constraints to tie each knowledge relation individually to one or more underlying
domain theories.

There has been a great deal of research on failure driven learning that monitors
control and planning knowledge (Mitchell et al., 1983; Korf, 1985; Minton, 1985).
The goal of these research efforts is to create better control knowledge so as to speed
up problem solving, rather than to learn domain-specific factual knowledge. This
compliments our approach, as we do not address the learning of abstract control
knowledge for a problem-solving method; in other words, we do not learn tasks and
metarules.

ODYSSEUS has a separate definitional constraint for each knowledge relation.
This allows it to determine whether the candidate new knowledge relation instance
is valixl. This is reminiscent of the approach taken in AM (Lenat, 1976), where each
slot of a concept has a a set of associated heuristic rules that can be used to validate
the contents of the slot.

6 Summary

It is well known that expert systems derive much of their power from the quality
and quantity of their domain specific knowledge. The method described in this
paper provides a method of partially automating the acquisition of some of this
knowledge.

The construction of expert system shells for generic tasks has become a com-
mon practice. There is a growing awareness that the power of a knowledge acquisi-
tion system for an expert system shell is bounded by the complexity and explicitness
of the inference procedure (Eshelman and McDermott, 1986; Kahn et al., 1985).
There is also a growing awareness that automated knowledge acquisition must be
grounded in underlying domain theories (Mitchell et al., 1985; Smith et al., 1985).
Using the HERACLES expert system shell and the ODYSSEUS apprenticeship learn-
ing program, we have demonstrated how underlying theories of a problem solving

17

21

domain can be effectively used by a learning method centered around an explicit
representation (i.e., tasks and metarules) of the problem solving method.

The learning method described in this paper has three stages. The first stage
is global credit assignment, the process of determining that there is a gap in the
knowledge base. This is accomplished by monitoring metarule premise failures in
the expert system shell, since all knowledge base gaps cause these. The second
stage of learning is generating candidate repairs. Candidate repairs are generated
by locating the knowledge relation in the failed metarule premise, and generating all

values of the relation for the free variables in the relation. The last stage of learning
is evaluation of candidate repairs. The ODYSSEUS method involves constructing
a constraint definition for each different type of knowledge, to describe how an
underlying domain theory can be used to validate the repair. In the described
experiments, we used the NEOMYCIN knowledge base for the HERACLES expert

system shell. The underlying domain theories are a strategy theory and an induction

theory based on analysis of past cases.

k major open question is to determine how many of the knowledge relations
in the expert system shell can be grounded ;n underlying theories of the domain. In
particular, we are investigating the extent to which the different knowledge relations
can be grounded in the two underlying theories that are part of ODYSSEUS. However,

for certain types of domain knowledge used in the metarules, such as definitional
and causal knowledge, we currently have no underlying theory; construction of such

theories to allow automated knowledge acquisition will be difficult and perhaps
impossible.

The type of learning demonstrated in this paper is more powerful than most
forms of failure-driven learning, because the definition of failure is weaker. Failure
to solve the overall problem is not necessary; rather, failure to satisfy a metarule
premise for achieving a problem solving subgoal is sufficient for learning to take
place.

18

22

7 Acknowledgments

We express our gratitude for helpful comments provided by Haym Hirsh and Mari-
anne Wins lett for several draft versions of this paper.

This work was supported in part by NSF grant MCS-83-12148, ONR/ARI
contract N00014-79C-0302, Advanced Research Projects Agency (Contract DARPA
N00039-83-C-0136), the National Institute of Health (Grant NIH RR-00785-11),
National Aeronautics and Space Administration (Grant NAG-5-261), and Boeing
(Grant W266875). We are grateful for the computer time provided by the Intelligent
Systems Lab of Xerox PARC and SUMEX-AIM.

8 References

Buchanan, B. G. and Shortliffe, E. H. (1984). Rule -Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project. Reading,
Mass.: Addison-Wesley.

Clancey, W. J. (1984). NEOMYCIN: reconfiguring a rule-based system with appli-
cation to teaching. In Clancey, W. J. and Shortliffe, E. H., editors, Readings
in Medical Artificial Intelligence, chapter 15, pages 361-381, Reading, Mass.:
Addison-Wesley.

Clancey, W. J. (1986a). From GUIDON to NEOMYCIN to HERACLES in twenty
short lessons. AI Magazine, 7:40-60.

Clancey, W. J. (1986b). Representing control knowledge as abstract tasks and
metarules. In Coombs, M. and Bolc, L., editors, Computer Expert Systems,
Springer Verlag. Also, Knowledge Systems Lab Report KSL-85-16, Stanford
University, April 1985.

Eshelman, L. and McDermott, J. (1986). MOLE: a knowledge acquisition tool that
uses its head. In Proceedings of the 1986 National Conference on Artificial
Intelligence.

Fu, L. and Buchanan, B. G. (1985). Inductive knowledge acquisition for rule based
expert systems. Technical Report KSL 85-42, Stanford University, Computer

19

23

Science Dept.

Kahn, G., Now lan, S., and McDermott, J. (1985). MORE: an intelligent knowledge
acquisition tool. In Proceedings of the 1985 IJCAI, pages 573-580.

Korf, R. (1985). Learning to solve problems by searching for macro-operators.
Marshfield, Mass: Pitman.

Lenat, D. B. (1976). AM: An artificial intelligence approach to discovery in math-
ematics as heuristic search. PhD thesis, Stanford University.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., editors (1983). Machine
Learning: An Artificial Intelligence Approach. Tioga Press.

Minton, S. (1985). Selectively generalizing plans for problem solving. In Proceedings
of the 1985 IJCAI, pages 596-599.

Mitchell, T., Utgoff, P. E., and Banerji, R. S. (1983). Learning by experimenta-
tion: acquiring and refining problem-solving heuristics. In Michalski, T. M.,
Carbonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Artificial
Intelligence Approach, pages 163-190, Palo Alto: Tioga Press.

Mitchell, T. M., Mahadevan, S., and Steinberg, L. I. (1985). LEAP: a learning
apprentice for VLSI design. In Proceedings of the 1985 IJCAI, pages 573-580.

Russell, S. (1985). The Compleat Guide to MRS. Technical Report KSL-85-108,
Stanford University.

Smith, R. G., Winston, H. A., Mitchell, T. M., and Buchanan, B. G. (1985). Rep-
resentation and use of explicit justifications for knowledge base refinement. In
Proceedings of the 1985 IJCAI, pages 673-680.

Wilkins, D. C., Clancey, W. J., and Buchanan, B. G. (1986). An overview of
the ODYSSEUS learning apprentice. In Mitchell, T. M., Michalski, R. S., and
Carbonell, J. G., editors, Machine Learning: A Guide to Current Research,
pages 332-340, New York: Kluwer Academic Press.

20

24

