DOCUMENT RESUME

ED 299 704 EA 020 445

AUTHOR

Gerald, Debra E.; And Others

TITLE

Projections of Education Statistics to 1997-98.

INSTITUTION

National Center for Education Statistics (ED),

Washington, DC.

REPORT NO

CS-88-607

PUB DATE

88

NOTE

155p.; This report supersedes ED 262 472.

AVAILABLE FROM Superintendent of Documents, U.S. Government Printing

Office, Washington, DC 20402 (Stock No.

065-000-00356-2": \$8.50).

PUB TYPE

Statistical Data (110) -- Reports -

Research/Technical (143)

EDRS PRICE

MF01/PC07 Plus Postage.

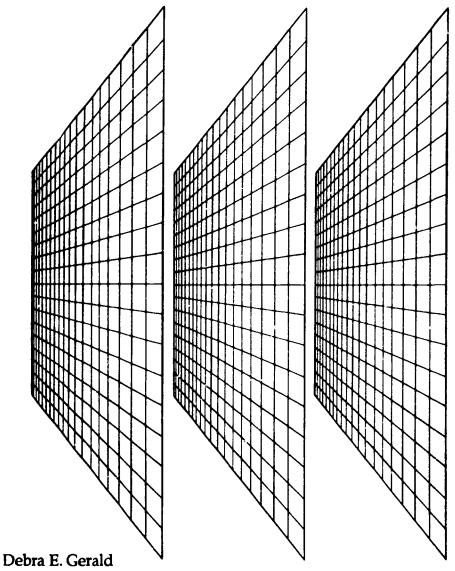
DESCRIPTORS

Degrees (Academic); *Educational Finance;

*Educational Trends; Elementary Secondary Education; *Enrollment Trends; Expenditure per Student; Futures (of Society); Government Publications; Graduates; Higher Education; Long Range Planning; Wational Surveys; *Prediction; *Public Schools; *School Statistics; School Surveys; Statistical Analysis; Statistical Surveys; Tables (Data); Teacher Salaries;

Teacher Supply and Demand; Trend Analysis

ABSTRACT


This report, the 18th in a series begun in 1964, provides a set of projections for most key education statistics. The report includes tables, charts, and narratives about data on enrollment, teachers, graduates, and expenditures for the past 15 years and projections for the next 10 years. The report is divided into three parts: (1) Projections and Analyses; (2) Projection Methodology; and (3) Technical Appendixes, which include: (1) supplementary tables; (2) tables of statistical confidence limits for selected projections; (3) a discussion of data sources; and (4) a glossary. (SI)

Reproductions supplied by EDRS are the best that can be made

from the original document.

PROJECTIONS OF EDUCATION STATISTICS TO 1997–98

Paul J. Horn
William J. Hussar
National Center for Education Statistics

Foreword

This 1988 edition of *Projections of Education Statistics* is the 18th report in a series begun in 1964. This report provides projections of statistics about elementary and secondary schools and institutions of higher education. Included are data on enrollments, graduates, instructional staff, and expenditures for the 10-year period to 1997-98. The projections in this edition supersede to see in *Projections of Education Statistics to 1992-93: Methodological Report with Detailed Projection Tables*, published in 1985.

The report also contains a methodology section describing models and assumptions used to develop these projections. The projections are revisions based on an agespecific enrollment model, time series models, and econ-

ometric models. The enrollment model uses population estimates and projections from the Bureau of the Census. The time series models are based on the mathematical projection of past patterns in the data into the future. The econometric models use forecasts of exogenous variables from Data Resources, Inc.'s Macroeconomic Model of the U.S. Economy.

Most of the projections are based on three alternative sets of assumptions. Although the middle projections are the "preferred" set of projections, the other alternatives provide a range of outcomes.

A summary of these projections is available in a pocketsized folder, Pocket Projections: 1977-78 to 1997-98.

Paul R. Hall, Director Crosscutting Education Statistics and Analysis Division September 1988

Acknowledgments

Projections of Education Statistics to 1997-98 was prepared by the National Center for Education Statistics in the Crosscutting Education Statistics and Analysis Division under the supervision of Paul R. Hall, Director.

This report was prepared under the direction of Leo J. Eiden. Debra E. Gerald developed the chapters on enrollments, earned degrees conferred, and instructional faculty, besides being responsible for the overall development of the report. Paul J. Horn prepared the chapters on public high school graduates and public classroom teachers. William J. Hussar prepared the chapter on expenditures in public elementary and secondary schools.

Valuable assistance was provided by the following reviewers: Daniel Hecker, Bureau of Labor Statistics; Felix Lindsay, National Science Foundation; and Vance Grant in Information Services, Mary Batcher, Robert Burton, Dennis Carroll, Charles Cowan, Martin Frankel, William Fowler, Mary Papageorgiou, and John Sietsema, National Center for Education Statistics, U.S. Department of Education.

Patricia Brown helped develop the tables. Celeste Loar produced charts. Carmelita Stevenson and Brenda Wade typed the manuscript. Mary Margaret Hall was the editor and Philip Carr designed the cover.

Highlights

Public Elementary and Secondary Education

- Enrollment in grades K-8 will increase for the rest of the 1980s and into the 1990s, while enrollment in grades 9-12 will decline until 1990, reverse its course, and increase until 1997.
- The number of classroom teachers is projected to increase from 2.3 million in 1987 to 2.6 million in 1997.
- Current expenditures, in constant 1987 dollars, are expected to increase from \$146.1 billion in 1986-87 to \$201.5 billion in 1997-98, an increase of 38 percent.

Higher Education

- Enrollment in institutions of higher education is projected to increase from 12.5 million in 1987 to 12.6 million by 1990, then decline to 12.2 million by 1997.
- Between 1987 and 1997, enrollment of students under 25 years of age is projected to fall by nearly 600,000, while the enrollment of older students is expected to rise by 217,000.
- The number of associate and bachelor's degrees is expected to decline over the projection period, while master's, doctor's, and first-professional degrees are projected to rise slightly or remain stable.
- By 1997-98, women are expected to be awarded the majority of associate, bachelor's, and master's degrees and more than two-fifths of the doctor's and first-professional degrees.
- The number of instructional faculty is projected to decline from 722,000 in 1987 to 700,000 in 1997.

 \mathcal{G}

Contents

		Pa	ge
Forewor	d		iii
Acknowl	edgı	ments	iv
Highligh	ts	••••••	v
Introduc	tion		1
Part 1	: P	Projections and Analyses	
Chapter	1.	Overview, by Debra E. Gerald	5
Chapter	2.	Enrollment, by Debra E. Gerald	11
Chapter	3.	Public High School Graduates, by Paul J. Horn	47
Chapter	4.	Earned Degrees Conferred, by Debra E. Gerald	51
Chapter	5.	Public Classroom Teachers, by Paul J. Horn	67
Chapter	6.	Instructional Faculty, by Debra E. Gerald	73
Chapter	7.	Expenditures of Public Elementary and Secondary Schools, by William J. Hussar	77
Part 2	: P	Projection Methodology	
Chapter	8	General Projectn Methodology, by Debra E. Gerald	85
Chapter	9.	Er.: ollment—Methodology, by Debra E. Gerald	87
Chapter	10.	Public High School Graduates-Methodology, by Paul J. Horn	99
Chapter	11.	Earned Degrees Conferred—Methodology, by Debra E. Gerald	101
Chapter	12.	Public Classroom Teachers—Methodology, by Paul J. Horn	105
Chapter	13.	Instructional Faculty—Methodology, by Debra E. Gerald	109
Chapter	14.	Expenditures of Public Elementary and Secondary Schools-Methodology, by	
		William J. Hussar	111

Part 3: Technical Appendixes

Α.	Supplementary Tables	117
В.	Tables of Statistical Confidence Limits for Selected Projections	125
C.	Data Sources	137
D.	Glossary	
	Data Terms	143
	Statistical Terms	147
Fi	gures	
1.	Selected elementary and necondary education statistics	6
2.	Selected higher education statistics	7
3.	Public high school graduates and earned degrees by level	8
4.	Number of annual births, with projections: 1942 to 1997	12
5.	Preprimary population, with projections: 1972 to 1997	12
6.	School-age populations, with projections: 1972 to 1997	13
7.	College-age populations, with projections: 1972 to 1997	13
8.	Enrollment in grades K-12 of public schools, with projections: Fall 1972 to 1997	14
9.	Public school enrollment, by grade level compared with school-age populations: 1972 to 1997	14
10.	Enrollment in institutions of higher education, with alternative projections: Fall 1972 to 1997	15
11.	Enrollment in institutions of higher education, by age: 1977, 1987, and 1997	16
12.	Enrollment of men in institutions of higher education, by age: 1977, 1987, and 1997	17
13.	Enrollment of women in institutions of higher education, by age: 1977, 1987, and 1997	17
14.	Enrollment in institutions of higher education, by attendance status, with middle alternative projections: Fall 1972 to 1997	18
15.	Enrollment in institutions of higher education, by sex, with middle alternative projections: Fall 1972 to 1997	19
16.	Enrollment in institutions of higher education, by type of institution, with middle alternative projections: Fall 1972 to 1997	19
17.	Enrollment in institutions of higher education, by control of institution, with middle alternative projections: Fall 1972 to 1997	20
18.	Full-time-equivalent enrollment in institutions of higher education, with alternative projections: Fall 1972 to 1997	21
19.	Enrollment in institutions of higher education, by level enrolled, with middle alternative projections: Fall 1972 to 1997	21
20.	Public high school graduates, with projections: 1972-73 to 1997-98	48
21.	Public high school graduates as a percent of the mean number of 17- and 18-year-olds, with projections: 1972-73 to 1997-98	48
22.	Associate degrees, with projections: 1972-73 to 1997-98.	52

23.	Associate degrees awarded to men, with projections: 1972-73 to 1997-98	53
24.	Associate degrees awarded to women, with projections: 1972 73 to 1997-98	53
25.	Bachelor's degrees, with projections: 1972-73 to 1997-98	54
26.	Bachelor's degrees awarded to men, with projections: 1972-73 to 1997-98	55
27.	Bachelor's degrees awarded to women, with projections 1972-73 to 1997-98	55
28.	Master's degrees, with projections: 1972-73 to 1997-98	56
29 .	Master's degrees awarded to men, with projections: 1972-73 to 1997-98	57
30 .	Master's degrees awarded to women, with projections: 1972-73 to 1997-98	57
31.	Doctor's degrees, with projections: 1972-73 to 1997-98	58
32 .	Doctor's degrees awarded to men, with projections: 1972-73 to 1997-98	59
33 .	Doctor's degrees awa to women, with projections: 1972-73 to 1997-98	59
34 .	First-professional degrees, with projections: 1972-73 to 1997-98	60
35 .	First-professional degrees awarded to men, with projections: 1972-73 to 1997-98	61
36 .	First-professional degrees awarded to women, with projections: 1972-73 to 1997-98	61
37.	Public classroom teachers, with alternative projections: Fall 1972 to 1997	6 8
3 8.	Public elementary and secondary teachers, with middle alternative projections: Fall 1972 to 1997	6 8
39 .	Public elementary and secondary teachers per 1,000 pupils, with alternative projections: Fall 1972 to 1997	69
40 .	Instructional faculty in institutions of higher education, with alternative projections: Fall 1972 to 1997	74
41.	Current expenditures (constant 1987 dollars) in public schools, with alternative projections: 1972-73 to 1997-98	78
42.	Current expenditures per pupil in average daily attendance (constant 1987 dollars) in public schools, with alternative projections: 1972-73 to 1997-98	78
43 .	Current expenditures per pupil in average daily attendance (constant 1987 dollars) in public schools, with middle alternative projections: 1972-73 to 1997-98	79
44.	Average annual salaries of teachers (constant 1987 dollars) in public schools, with alternative projections: 1972-73 to 1997-98	80
45	Average annual salaries of teachers (constant 1987 dollars) in public schools, with middle alternative projections: 1972-73 to 1997-98	80
46 .	General structure and methodology of the Interactive Forecasting Model (IFMOD)	88
Ta	ables	
	Part 1: Projections and Analyses	
	Enrollment	
Pul	blic Elementary and Secondary Schools	
	1. Enrollment in grades K-8 and 9-12 of public elementary and secondary schools, with projections: 50 States and D.C., fall 1972 to fall 1997	22
2	2. Enrollment in public elementary and secondary schools, by organizational level, with projections: 50 States and D.C., fall 1972 to fall 1997	23

Institutions of Higher Education

3.	Total enrollment in all institutions of higher education, by sex and attendance status of student and control of institution, with alternative projections. 50 States and D.C., fall 1972 to fall 1997	24
4.	Total enrollment in 4-year institutions of higher education, by sex and attendance status of student and control of institution, with alternative project s: 50 States and D.C., fall 1972 to fall 1997	25
5.	Total enrollment in 2-year institutions of higher education, by sex and attendance status of student and control of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	
6.	Enrollment in all institutions of higher education, by age, sex, and attendance status, with middle alternation projections: 50 States and D.C., fall 1977, 1982, 1987, 1992, and 1997	27
7.	Enrollment in all institutions of higher education, by age, sex, and attendance status, with low alternative projections: 50 States and D.C., fall 1977, 1982, 1987, 1992, and 1997	28
8.	Enrollment in all institutions of higher education, by age, sex, and attendance status, with high alternative projections: 50 States and D.C., fall 1977, 1982, 1987, 1992, and 1997	29
9.	Total enrollment in all institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	30
10.	Total enrollment in public 4-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	31
11.	Total enrollment in public 2-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C, fall 1972 to fall 1997	32
12.	Total enrollment in private 4-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	33
13.	Total enrollment in private 2-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	34
14.	Undergraduate enrollment in all institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	35
15.	Undergraduate enrollment in public institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997.	36
16.	Undergraduate enrollment in private institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	37
17.	Graduate enrollment in all institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	38
18.	Graduate enrollment in public institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	39
19.	Graduate enrollment in private institutions, by sex and attendance status, with alternative prejections: 50 States and D.C., fall 1972 to fall 1997	40
20.	First-professional enrollment in all institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	41
21.	First-professional enrollment in public institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	
22.	First-professional enrollment in private institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	43
23.	Full-time-equivalent enrollment in all institutions of higher education, by level of student and type of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	

24.	Full-time-equivalent enrollment in public institutions of higher education, by level of student and type of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	45
25.	Full-time-equivalent enrollment in private institutions of higher education, by level of student and type of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997	46
High	School Graduates	
26.	Public high school graduates, 18-year-old population, and births 18 years earlier, with forecasts: 50 States and D.C., 1972-73 to 1997-98	49
Earn	ed Degrees Conferred	
27.	Associate degrees, by sex of recipient, with projections: 50 States and D.C., 1972-73 to 1997-98	62
28.	Bachelor's degrees, by sex of recipient, with projections: 50 States and D.C., 1972-73 to 1997-98	63
29 .	Master's degrees, by sex of recipient, with projections: 50 States and D.C., 1972-73 to 1997-98	64
30.	Doctor's degrees, by sex of recipient, with projections: 50 States and D.C., 1972-73 to 1997-98	65
31.	First-professional degrees, by sex of recipient, with projections: 50 States and D.C., 1972-73 to 1997-98	66
	Instructional Staff	
Publi	ic Elementary and Secondary Schools	
32.	Classroom teachers and teachers per 1,000 pupils in public elementary and secondary schools, by level of institution, with alternative forecasts: 50 States and D.C., fall 1972 to fall 1997	71
33.	Projected demand for new-hiring of classroom teachers in public elementary and secondary schools: 50 States and D.C., fall 1988 to fall 1997	72
I nstit	tutions of Higher Education	
34.	Full-time and part-time instructional faculty in institutions of higher education, by employment status, control, and type of institution, with alternative projections: 50 States and D.C., fall 1975 to fall 1997.	75
	Expenditures	
Publi	ic Elementary and Secondary Schools	
35.	Current expenditures and current expenditures per pupil in average daily attendance in public elementary and secondary schools, with alternative projections: 50 States and D.C.,	01
•	1972-73 to 1997-98	81
<i>3</i> 0.	Average annual salaries of classroom teachers in public elementary and secondary schools, with alternative projections: 50 States and D.C., 1972-73 to 1997-98	82
	Part 2: Projection Methodology	
Enro	ollment	
37.	Elementary enrollment rates, by age and sex	91
38.	Secondary enrollment rates, by age and sex	91
39 .	College enrollment rates, by age, sex, and attendance status, with alternative projections	92
40.	Enrollment rates in public schools	93
41.	Public grade retention rates	93

42.	Full-time enrollment, by level enrolled and type of institution, as a percent of total enrollment, for each age and sex classification
43.	Part-time enrollment, by level enrolled and type of institution, as a percent of total enrollment, for each age and sex classification
44.	Public enrollment as a percent of total enrollment, by attendance status, sex, and level enrolled and by type of institution
45 .	Graduate enrollment as a percent of total postbaccalaureate enrollment, by sex and attendance status, and by type and control of institution
46.	Full-time-equivalent of part-time enrollment as a percent of part-time enrollment, by level enrolled and by type and control of institution
47.	Equations for selected college enrollment rates of men, by age and attendance status
48 .	Equations for selected college enrollment rates of women, by age and attendance status
49 .	Enrollment (assumptions)
5 0.	Enrollment (estimation methods)
Earn	ed Degrees Conferred
5 1.	Equations for associate degrees
52 .	Equations for bachelor's degrees
53.	Equations for master's degrees
54.	Equations for doctor's degrees
55 .	Equations for first-professional degrees
56.	Earned degrees conferred (assumptions)
	Instructional Staff
Publi	c Classroom Teachers
57.	Public elementary classroom teacher model: key statistics
58.	Public secondary classroom teacher model: key statistics
Instri	actional Faculty
5 9.	Faculty-student ratios used to project full-time and part-time faculty
60 .	Instructional faculty (assumptions)
61.	Instructional faculty (estimation methods)
	Farmon ditarens
DL1:	Expenditures c elementary and secondary schools
02.	Equations for current expenditures per pupil in average daily attendance and average annual salaries of teachers in public elementary and secondary schools
	Part 3: Technical Appendixes
	Appendix A
	Supplementary Tables
A 1.	Annual number of births (U.S. Census Projections, Middle Series): 50 States and D.C., 1942 to 1997

A2.	Preprimary school-age populations (U.S. Census Projections, Middle Series): 50 States and D.C., 1972 to 1997
A3.	School-age populations (U.S. Census Projections, Middle Series): 50 States and D.C., 1972 to 1997
A4.	College-age populations (U.S. Census Projections, Middle Series): 50 States and D.C., 1972 to 1997
A5.	Average daily attendance in public elementary and secondary schools, the change in average daily attendance, population, and average daily attendance of the population: 50 States and D.C., 1972-73 to 1997-98
A6.	Revenue receipts from State sources per capita (constant 1987 dollars), with alternative projections: 50 States and D.C., 1972-73 to 1997-98
A 7.	Disposable income per capita (constant 1987 dollars), the all urban consumer price index (base year 1987), and the price deflator for personal consumption expenditures (base year 1987): 50 States and D.C., 1972-73 to 1997-98
	Appendix B
	Tables of Statistical Confidence Limits for Selected Projections
B 1.	Public high school graduates as a percent of the 18-year-old population, with forecasts and confidence limits. 50 States and D.C., 1972-73 to 1997-98
B2.	Associate degrees awarded to men, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B 3.	Associate degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B4 .	Bachelor's degrees awarded to men, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B 5.	Bachelor's degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B6 .	Master's degrees awarded to men, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B 7.	Master's degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B8.	Doctor's degrees awarded to men, with projections and confidence Emits: 50 States and D.C., 1972-73 to 1997-98
B9.	Doctor's degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B 10.	Classroom teachers i ublic elementary and secondary schools, with alternative forecasts and confidence limits: 50 States and D.C., fall 1972 to fall 1997
B11.	Current expenditures per pupil in average daily attendance (constant 1987 dollars) in public elementary and secondary schools, with alternative projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98
B12.	Average annual salaries of classroom teachers (constant 1987 dollars) in public elementary and secondary schools, with alternative projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Introduction

This 18th edition of *Projections* provides a consistent set of projections for most key education statistics. This edition includes public elementary and secondary expenditures which haven't been published since 1982. There are tables, charts, and narratives about data on enrollment, teachers, graduates, and expenditures for the past 15 years and projections for the next 10 years. *Projections* is in three parts: Part 1—Projections and Analyses; Part 2—Projection Methodology; and Part 3—Technical Appendixes.

Limitations of Projections

Projections of time series usually differ from the reported data due to errors from many sources. This is because of the inherent nature of the statistical universe from which the basic data are obtained and the properties of projection methodologies, which depend on the validity of many assumptions. Therefore, alternative projections are shown for most statistical series to denote the uncertainty involved in making projections. These alternatives are not statistical confidence limits, but instead represent judgments made by the authors as to reasonable upper and lower bounds. To measure projection reliability, upper and lower statistical confidence limits are presented for alternative projections of public classroom teachers, public high school graduates, earned degrees conferred, and public expenditures in elementary and secondary schools. Statistical confidence limits are not provided for projections of enrollments and instructional faculty. Because of the complex methodologies used, procedures will need to be developed to calculate statistical confidence limits.

Future Improvements

This edition does not include projections for (1) private school statistics; (2) teacher supply; and (3) the areas of capital outlay and interest expenditures in elementary

and secondary schools and higher education expenditures. Private school statistics and teacher supply need more data and model development. The lack of consistent time series data on private school statistics prevents an adequate analysis. The areas of elementary and secondary expenditures for capital outlays and interest and higher education expenditures need further model development. The National Center for Education Statistics (NCES) is exploring options to address these concerns.

Private School Statistics

Information on projections of private school statistics is a major concern to education policymakers. No consistent, reliable time series data exist for projecting enrollment, high school graduates, or classroom teachers in private elementary and secondary schools. Also, no regular survey exists for the collection of data on private elementary and secondary expenditures. Although projections of private school statistics are not in this edition, recent data on these schools are available in several NCES bulletins from the 1985 "Private School Survey." NCES is conducting a survey of private schools that will yield the data needed to develop projections of private school statistics.

Teacher Supply

Teacher supply and demand are important to educational planners and policymakers. Changing populations and enrollment trends, reports of an aging teaching force, and declining numbers of teacher graduates have fueled speculation about an impending national teacher shortage. NCES and the National Science Foundation commissioned the National Research Council to convene a panel to evaluate data and models on teacher supply and demand. The panel released a report in February 1987 entitled Toward Understanding Teacher Supply and Demand: Priorities for Research and Development. The report assesses cur-

rent data and models on teacher supply and demand, suggests improvements in models and data, and indicates research activities needed to enhance the model structures and supporting data. The report states that NCES models are adequate on the demand side, but supply models and data are inadequate. To remedy this, NCES is conducting a series of schools and staffing surveys to collect statistics on both demand and supply. Until sufficient data are available, projections cannot be made of teacher supply. In the area of demand projections, NCES conducted research to develop a model to project the number of teachers. The teacher demand projections in chapter 5 use such a model.

Expenditures

Projections of expenditures in educational institutions have not been published by NCES since 1982. The absence of national expenditure projections created a void in education statistics. This report includes projections of current expenditures and average annual teacher salaries in public elementary and secondary schools. However, capital outlays and interest in public elementary and secondary schools and expenditures of institutions of higher education are not presented. These areas require further model development and will be in future editions.

Part 1: Projections and Analyses

Chapter 1

Overview

During the past four decades, demographic changes profoundly affected American education. At the elementary and secondary level, the baby-boom caused enrollments to increase in the 1950s and 1960s, followed by a decline in the 1970s as birth rates fell. Declines continued into the early 1980s, followed by steady increases from the mid-1980s to the late 1980s. At the higher education level, the baby-boom generation produced a rapid expansion in college enrollment from the mid-1960s through most of the 1970s. Enrollment peaked in the mid-1980s, remained stable for a few years and is increasing again in the late 1980s. During the 1990s, demographic changes will continue to affect American education.

Public Elementary and Secondary Education

Enrollment

Enrollment changes in public elementary and secondary schools reflect changes in the school-age population. Public elementary and secondary enrollment increased rapidly in the 1960s and then decreased in the 1970s and early 1980s. It rose again in the mid- to late-1980s in response to changing birth rates. In the 1990s, enrollment is expected to continue rising (figure 1).

Enrollment projections for the 1990s indicate enrollment will increase into the late 1990s. Enrollment in grades K-8 will continue to increase for the rest of the 1980s and into the 1990s. However, enrollment in grades 9-12 will continue to decline until 1990, then reverse course and increase until 1997. So, school officials will be faced with higher enrollments in the next decade. Projections indicate that enrollments are expected to approach, but not reach, the peak attained in 1971.

Classroom Teachers

In the 1970s and early 1980s, decreases in enrollment were accompanied by increases in the number of classroom teachers in public elementary and secondary schools. The number of teachers continued rising into the late 1970s due, in part, to the increased staffing needs of special and bilingual education programs. The number of teachers then declined until 1983. After 1983, the number of classroom teachers increased to an all-time high of 2.3 million in 1987. The number is expected to continue rising to the late 1980s and into the 1990s, reaching 2.6 million by 1997.

High School Graduates

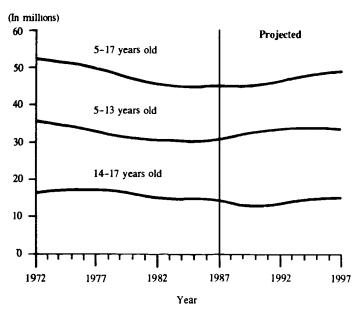
The number of public high school graduates peaked in 1976-77 at 2.84 million (figure 3). Then, the number of graduates fell to 2.38 million in 1985-86, followed by a slight rise to 2.43 million in 1986-87. An increase to 2.54 million is expected by 1988-89. After 1988-89, the number of public high school graduates is expected to decrease to 2.24 million by 1991-92 and then increase to 2.55 million by 1997-98.

Current Expenditures and Teacher Salaries

Current expenditures (in constant 1987 dollars) rose steadily over the past 15 years, rising from \$118.1 billion in 1972-73 to \$146.1 billion in 1986-87, an increase of 24 percent. The level of current expenditures is expected to rise to \$201.5 billion by 1997-98. In contrast, teacher salaries declined from \$26,051 in 1972-73 to \$22,049 in 1979-80 in constant 1987 dollars, a decrease of 15 percent. Since then, teacher salaries have increased steadily, reaching \$26,704 in 1986-87. By 1997-98, the average teacher salary is forecast to be \$31,856, an increase of 19.3 percent from 1986-87.

Higher Education

College-Age Population and Enrollment


Unlike enrollment changes in elementary and secondary schools, changes in enrollment in institutions of higher education (4-year and 2-year colleges and universities) are

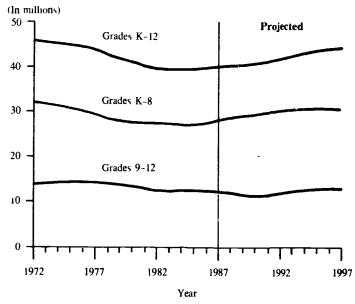


Figure 1.—Selected elementary and secondary education statistics

School-age populations begin to increase again

causing public elementary and secondary enrollments to rise.

The demand for classroom teachers increases

Current expenditures (in constant 1987 dollars) continue to rise

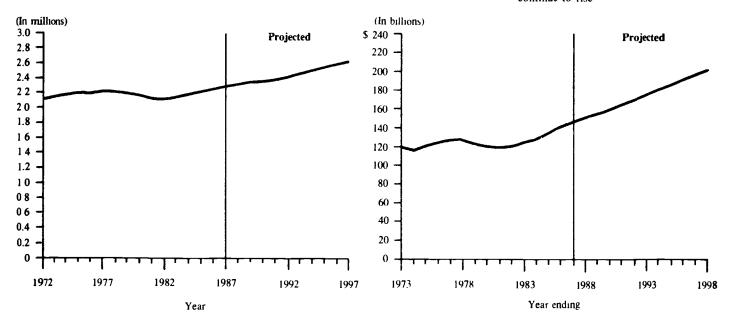
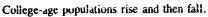
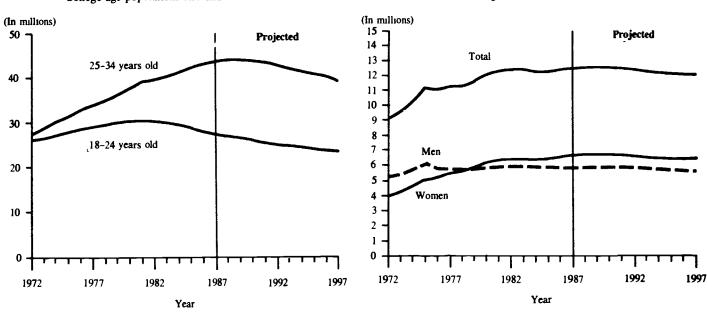
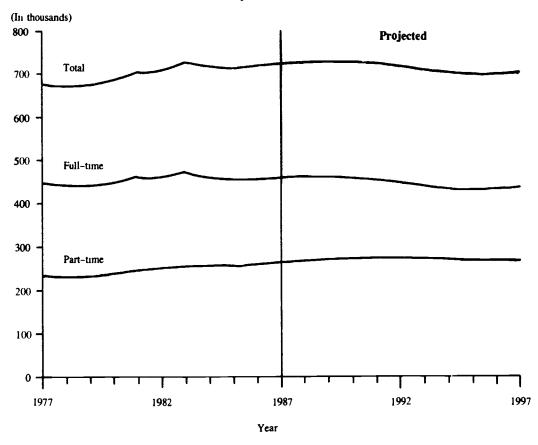
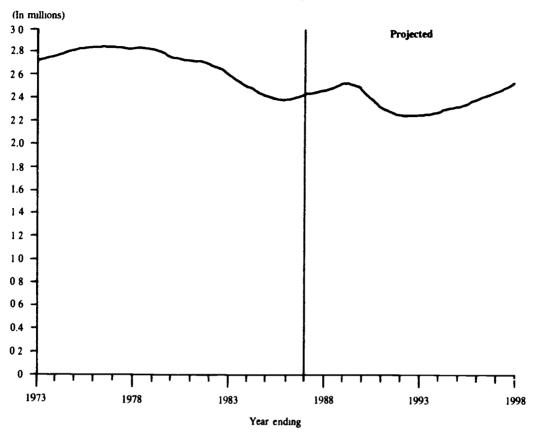
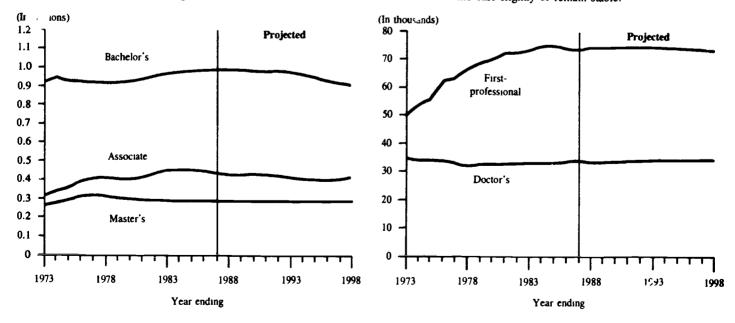




Figure 2.—Selected higher education statistics

College enrollment fluctuates.

Instructional faculty stabilizes and then declines.


Figure 3.—Public high school graduates and earned degrees by level

The number of public high school graduates fluctuates

Associate and bachelor's degrees decline, while master's degrees remain stable.

Doctor's and first-professional degrees increase slightly or remain stable.

not affected by population shifts alone. Higher education enrollments are affected by economic conditions, political and administrative decisions, the perceived value of a degree, the intrinsic value of higher education, and college costs. Some of these are impossible to quantify. Although in the past higher education has drawn its participants primarily from the pool of 18- to 24-year-olds, higher education no longer comprises only the younger population. Between 1972 and 1981, the number of 18to 24-year-olds rose from 26.1 million to 30.4 million, increasing 17 percent (figure 2). The number then decreased to 27.4 million in 1987. By 1997, the population is projected to decline to 24 million, a decline of 12 percent from 1987. This decline in the traditional collegeage population is expected to have an effect on enrollment levels in higher education.

Similarly, decreases in the populations of certain older age groups are expected over the projection period. Between 1972 and 1987, the number of 25- to 25-year-olds increased by 45 percent. This age group is projected to decline in number to 18.8 million by 1997, decreasing 15 percent from 1987. The 30- to 34-year-old population, which increased 73 percent between 1972 and 1987, is projected to decrease a moderate 3 percent from 1987 to 1997. In contrast, the 35- to 44-year-old population is projected to increase 27 percent between 1987 and 1997, a result of the baby-boom generation having moved into this age group.

Although the traditional and older college-age populations are projected to decline, enrollment will increase gradually until 1990. The rise will come from increasing enrollment rates of students under 25 years old, women, part-time students, and older students. After 1990, college enrollment is projected to decline when the increasing number of older students no longer offsets the declines in the enrollment of younger students.

Earned Degrees Conferred

The growth in earned degrees overall is due to the substantial rise in the number of degrees awarded to women. In 1986-87, women were awarded the majority of associate, bachelor's. and master's degrees and one-third of the doctor's and first-professional degrees. By 1997-98, women are expected to receive 50 percent or more of the associate, bachelor's, and master's degrees. The proportion of doctor's degrees awarded to women is expected to approach 50 percent and more than 40 percent of all first-professional degrees will be awarded to women.

Instructional Faculty

From 1975 to 1987, public and private instructional faculty increased faster than enrollment, 15 percent versus 12 percent. Instructional faculty is projected to increase slightly from 722,000 in 1987 to 726,000 in 1992, before decreasing to 700,000 by 1997.

Chapter 2

Enrollment

For the rest of the 1980s and into the 1990s, enrollment will increase in public elementary and secondary schools. The primary reason is the rising number of annual births since 1977—referred to as the baby-boom echo (figure 4). This surge of births will cause increases in the preprimary and 5- to 17-year-old populations over the next 10 years (figures 5 and 6). These population increases, which began in 1985, are expected to continue the growth in elementary enrollment in the late 1980s and spur growth in secondary schools in the 1990s. The resulting enrollment boom will approach, but not reach, the peak attained in 1971. School systems will face new demands as public schools that contended with declining enrollments in the 1970s must now prepare again for increasing numbers of elementary and secondary students.

Enrollment in institutions of higher education is expected to increase moderately through 1990 and then gradually decline until 1996. It will increase again in 1997. The gradual decline reflects the decrease in the traditional college-age population (18- to 24-year-olds), the 25- to 29-year-old population, and the 30- to 34-year-old population over the next 10 years (figure 7). But enrollment is expected to increase slightly until 1990 because of rising enrollment rates of 18- to 21-year-olds and increasing enrollment of older and part-time students.

Public Elementary and Secondary Schools

Enrollment in public elementary and secondary schools grew rapidly during the 1950s and 1960s and peaked in 1971 (table 1 and figure 8). From 1971 to 1983, enrollment decreased steadily, reflecting the decline in the school-age population. After reaching a low of 39.3 million in 1984, enrollment reversed its downward trend and increased to 40.2 million in 1987. By 1997, enrollment is projected to continue to increase and reach 44 million, an increase of 3.8 million over 10 years.

Grade Group¹

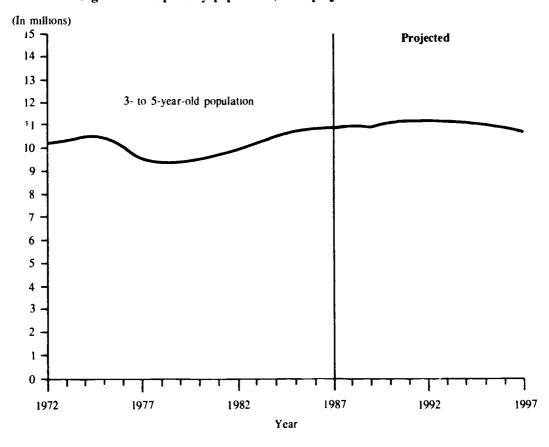
Enrollment trends in elementary and secondary schools are expected to differ through 1990 as enrollment continues to increase in grades K-8 and decline in grades 9-12. Enrollment in grades K-8 decreased to 26.9 million in 1984. As the offspring of the baby-boom generation began school, K-8 enrollment rose to 28 million in 1987 and is projected to rise to 30.8 million by 1997, an increase of 10 percent from 1987. Since enrollment rates for most of the school-age population are all close to 100 percent, enrollment in grades K-8 reflects changes in the size of the 5- to 13-year-old population (figure 9).

Enrollment in grades 9-12 shows a different pattern. After peaking in the late 1970s, grades 9-12 enrollment began to decline. Between 1980 and 1987, enrollment in grades 9-12 decreased 8 percent and is expected to decrease another 7 percent between 1987 and 1990. After reaching a low of 11.4 million in 1990, grades 9-12 enrollment is expected to rise to 13.2 million by 1997, an 8 percent increase from 1987 and 16 percent increase from 1990. This pattern tends to reflect changes in the 14- to 17-year-old population (figure 9).

Organizational Level²

Enrollment in elementary schools decreased in the late 1960s and throughout the 1970s to 23.8 million in 1981 (table 2). This number increased to 25.1 million by 1987. The increase is expected to continue through 1996, when enrollment will reach 27.4 million and then decline to 27.3 million in 1997. The reported enrollment in elementary schools is smaller than enrollment in kindergarten through grade 8 because it excludes enrollment in grades 7 and 8 in junior high schools.

Enrollment in secondary schools increased from the late 1960s to 19.2 million in 1975 dary enrollment then declined to 15.1 million in 1987. This number is expected


Includes enrollment in grades K-8 and 9-12

²Includes enrollment in schools organized as elementary and secondary

(In millions) Projected Baby boom Baby boom echo 4 3 2 i 1952 1957 1967 1942 1947 1962 1972 1977 1982 1987 1992 Year

Figure 4.—Number of annual births, with projections: 1942 to 1997

Figure 5.—Preprimary population, with projections: 1972 to 1997

(In millions)
50
Projected

5- to 13-year-old population

20 - 14- to 17-year-old population

Figure 6.—School-age populations, with projections: 1972 to 1997

Figure 7.—College-age populations, with projections: 1972 to 1997

Year

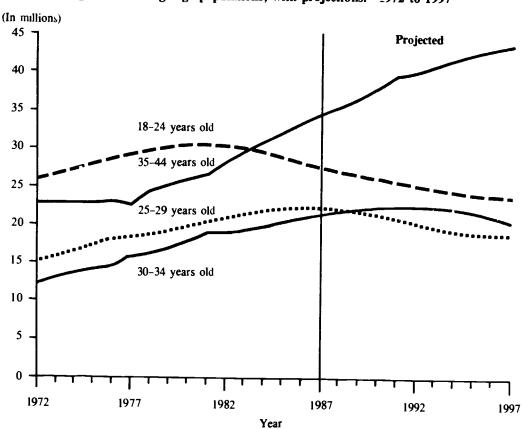


Figure 8.—Enrollment in grades K-12 of public schools, with projections: Fall 1972 to 1997

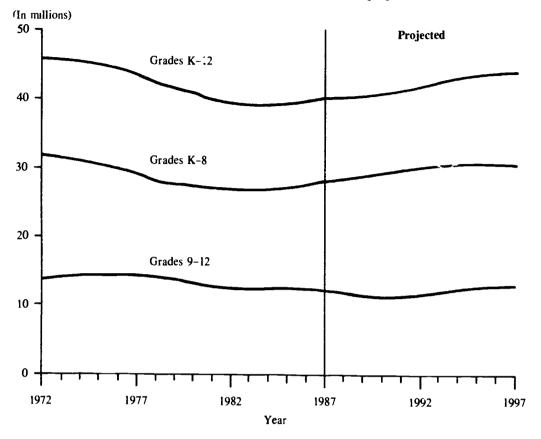
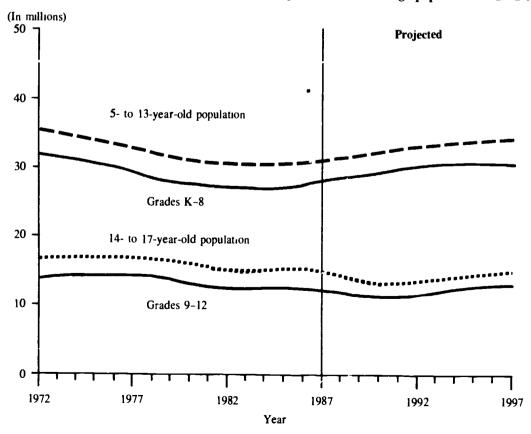



Figure 9.—Public school enrollment, by grade level compared with school-age populations: 1.72 to 1997

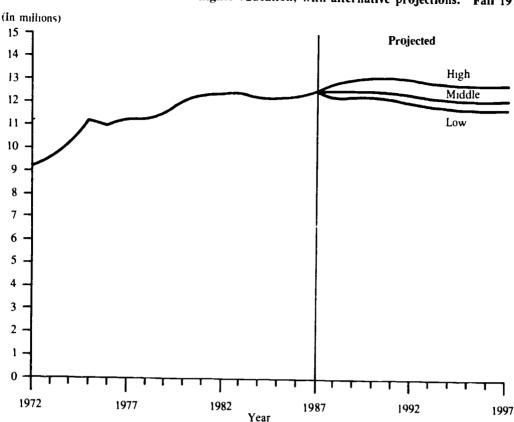


Figure 10.-Enrollment in institutions of higher education, with alternative projections: Fall 1972 to 1997

to continue decreasing to 14.5 million in 1990, before climbing to 16.6 million in 1997, a 10 percent increase over 1987 and 15 percent increase from 1990. The enrollment in secondary schools is larger than that in grades 9-12 because it includes all the enrollment in grades 9-12 and the enrollment in grades 7 and 8 in junior high schools

As with past national enrollment patterns, the Nation will not have uniform growth in all regions, States, and communities. Growth rates will vary from State to State. One-year forecasts of enrollment at the regional and State levels have been developed by NCES. They indicate the West will have the greatest growth, with Arizona, Nevada, and California having the largest growth rates. The South will follow with a moderate increase. Mississippi, Florida, and Texas will show the largest growth rates among the Southern States. The Midwest will have no significant change overall. However, Michigan and Iowa are expected to show decreases, while Kansas and South Dakota will have small increases in enrollment. The Northeast is expected to lose enrollment. Enrollment declines are expected in New Jersey, Pennsylvania, and New York.

Higher Education Enrollment

The past 15 years was a period of considerable change in higher education. Enrollment rose from 8.5 million in

1970 to 11.2 million in 1975, an increase of 30 percent. In the late 1970s and early 1980s, older students, primarily women and part-time students, began to enroll in greater numbers. As a result, college enrollment increased to 12.5 million in 1983 (table 3 and figure 10). In 1984 and 1985, enrollment declined to 12.2 million. By 1987, it returned to 12.5 million, exceeding its previous level attained in 1983. College enrollment is projected to rise to 12.6 million in 1990 and then fall to 12.1 million in 1996, before rising slowly to 12.2 million in 1997, a decrease of 3 percent from 1987. The middle alternative assumes that age-specific enrollment rates of the younger age groups will increase over the projection period. Enrollment rates of other age groups are expected to remain constant.

The college enrollment decline of 3 percent between 1987 and 1997 will be less than the 12 percent expected reduction in the 18- to 24-year-old population. The rising enrollment rates of the younger age groups and the continued increases in older student enrollment are expected to compensate for the expected fewer numbers of younger students. Contrary to expectations, the participation rates of the younger age groups have been rising since the early 1980s Between 1988 and 1990, there also may be small increases in enrollment, as the growth in the number of older students offsets fewer students under 25 years of age. Also, the expected increase in part-time students will offset to some extent the decrease in full-time enrollment.

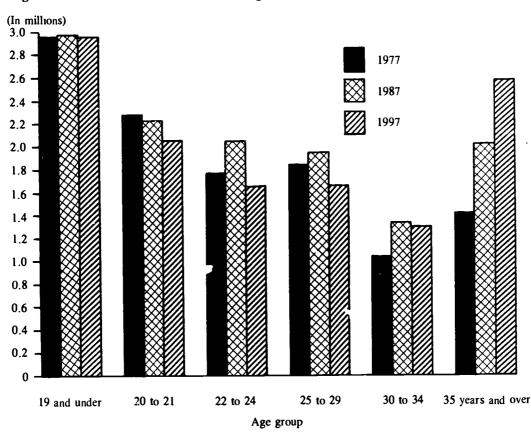


Figure 11.- Enrollment in institutions of higher education, by age: 1977, 1987, and 1997

Under the low alternative, college enrollment is projected to decrease from 12.5 million in 1987 to 11.8 million in 1997. This alternative assumes that age-specific enrollment rates will remain at the 1986 levels. In contrast, college enrollment is expected to reach 13.1 million in 1991 and remain fairly stable at 12.9 million under the high alternative. This alternative assumes that age-specific enrollment rates for younger and older age groups will increase over the projection period. These high levels are expected to be maintained during the 1990s if the enrollment rates of the younger age groups remain above their 1986 levels and increased enrollment of older students offsets the enrollment declines of younger students.

Enrollment by Age

Enrollment in institutions of higher education is expected to rise moderately to 12.6 million in 1990 and decline to 12.2 million in 1997, although the traditional college-age population (18- to 24-year-olds) is projected to decrease 12 percent over the next decade.

As a result, the college enrollment of students under 25 is expected to decrease by nearly 600,000 between 1987 and 1997. But the increased enrollment of older

students is expected to offset declines in the enrollment of younger students, resulting in slight growth in the late 1980s and moderate decline in the 1990s (figures 11, 12, and 13). By 1997, older students are expected to account for 45 percent of the 12.2 million students enrolled, compared with 42 percent in 1987 and 38 percent in 1977.

The alternative projections of college enrollments by age, sex, and attendance status are in table 6 (middle alternative projections), table 7 (low alternative projections), and table 8 (high alternative projections). Under the middle assumption, the period from 1977 to 1997 will be one of unprecedented changes in the characteristics of college students. This middle alternative shows that between 1977 and 1997, the number of students under 25 years old will decrease from 62 percent to 55 percent. Men composed 51 percent of the students in 1977 and their numbers are expected to remain stable at 47 percent in 1997. Full-time enrollment, which was 60 percent in 1977, is expected to decrease to 55 percent in 1997. These projections are based on the assumption that a higher number of older students will be attending college and that these students will be primarily enrolled part-time.

Since older students are more likely to enroll part-time than younger students, increases in part-time enrollment have paralleled increases in older students through 1987

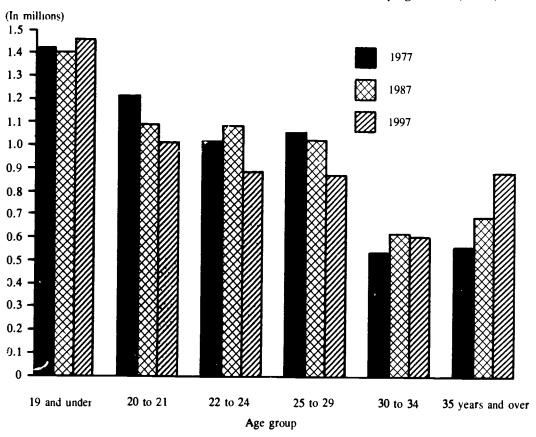
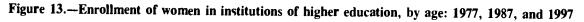
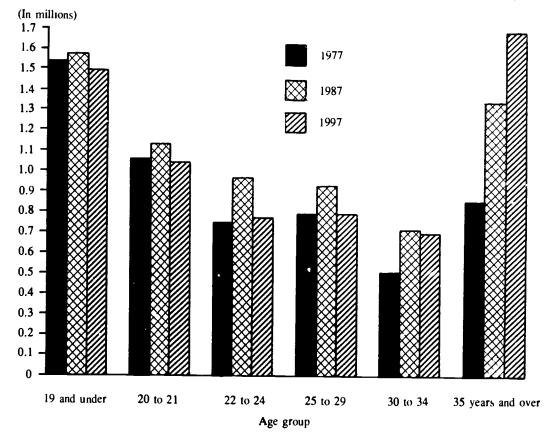




Figure 12.—Enrollment of men in institutions of higher education, by age: 1977, 1987, and 1997

2ଚ

and are expected to continue in the 1990s. Part-time enrollment accounted for 40 percent of all college enrollment in 1977, 42 percent in 1987, and is expected to reach 45 percent in 1997 (figure 14).

Besides older and part-time students, women played a major role in the 1.3 million enrollment increase between 1977 and 1987. Of that number, 93 percent was the increased enrollment of women. As a result, women were 53 percent of all college enrollment in 1987 compared with only 49 percent in 1977. Women are expected to maintain their majority at 53 percent in 1997 (figure 15).

The high and low alternative projections are also shown, along with the middle alternative, to indicate the uncertain trends in enrollment rates of men and women. The low alternative shows a decrease from 12.5 million in 1987 to 11.8 million in 1997. Men and full-time students are expected to account for most of this decrease. Under this alternative, the enrollment of men is expected to fall from 5.9 million in 1987 to 5.5 million in 1997, and full-time enrollment is expected to fall from 7.2 million to 6.4 million.

Under the high alternative, college enrollment is expected to rise from 12.5 million in 1987 to 13.1 million in 1991 and then fall to 12.9 million in 1997. Full-time enrollment will decrease slightly from 7.2 million to 7

million and part-time enrollment will increase from 5.3 million to 5.8 million.

Enrollment by Type of Institution

The projections of enrollment in 4-year and 2-year colleges and universities are based on the assumption that the number of older students will increase, partially offsetting the expected decline in traditional college-age students, and that increasing proportions of these older students will be part-time.

As table 4 shows, enrollment in 4-year institutions increased from 6.5 million in 1972 to 7.8 million in 1987 (figure 16). The number is expected to remain stable at 7.9 million through 1990 before declining to 7.6 million in 1997. Table 5 shows that enrollment in 2-year institutions rose from 2.8 million in 1972 to 4.7 million in 1987 and then is expected to decrease to 4.5 million in 1997. Part-time enrollment in 2-year institutions increased from 1.42 million in 1972 to 3 million in 1987 and will decline to 2.9 million in 1997. Full-time enrollment in 2-year institutions rose from 1.34 million in 1972 to 1.76 million in 1987. By 1997, this number is expected to fall to 1.68 million.

(In millions) **Projected** 14 13 12 11 10 9 8 Full-time 7 Part-time 6 5 4 3 2 1 0 1982 1987 1992 1997 1977 1972

Figure 14.—Enrollment in institutions of higher education, by attendance status, with middle alternative projections: Fall 1972 to 1997

Year

Figure 15.—Enrollment in institutions of higher education, by sex, with middle alternative projections: Fall 1972 to 1997

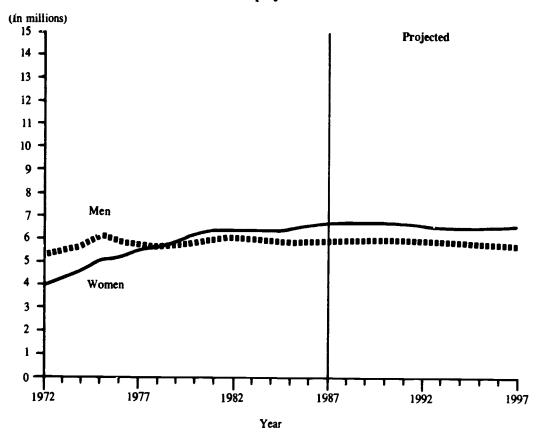
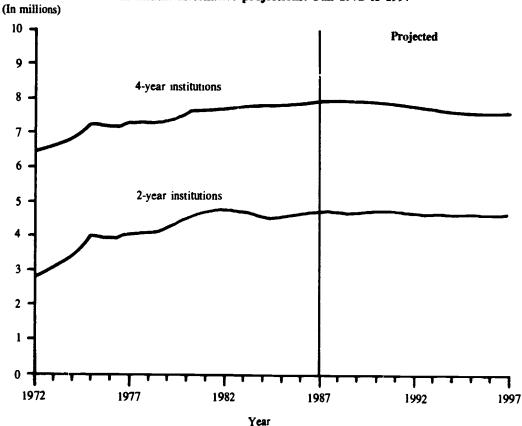



Figure 16.—Enrollment in institutions of higher education, by type of institution, with middle alternative projections: Fall 1972 to 1997

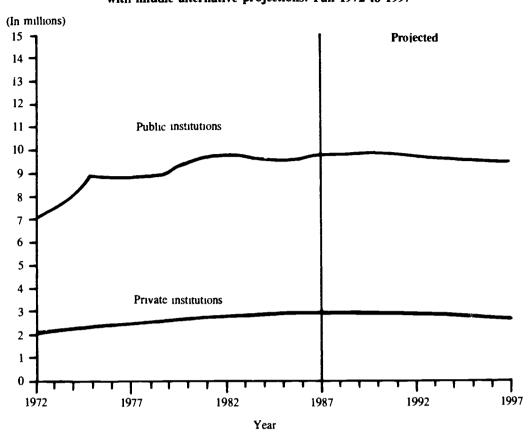


Figure 17.—Enrollment in institutions of higher education, by control of institution, with middle alternative projections: Fall 1972 to 1997

Enrollment by Control of Institution

Enrollment in public institutions grew from 7.1 million in 1972 to 9.7 million in 1987, an increase of 37 percent (table 3 and figure 17). By 1997, it is expected to decrease to 9.5 million. The increase primarily reflects the rapid rise of enrollment in public 2-year institutions. Private enrollment increased by 32 percent between 1972 and 1987. Enrollment in private institutions is expected to decrease from 2.8 million in 1987 to 2.7 million in 1997.

Enrollment in public 4-year institutions is expected to fall from 5.3 million in 1987 to 5.1 million in 1997, while enrollment in public 2-year institutions is expected to decrease slightly from 4.4 million in 1987 to 4.3 million in 1997. Enrollment in private 4-year institutions is expected to decrease from 2.5 million in 1987 to 2.4 million in 1997, while enrollment in private 2-year institutions is expected to fall in 10 years from 289,000 to 261,000.

Full-Time-Equivalent Enrollment

Full-time-equivalent enrollment increased from 7.3 million in 1972 to 9 million in 1987 and is expected to decrease to 8.7 million in 1997 (table 23 and figure 18). In the 1990s, the expected enrollment declines in the traditional college-age population are foreseen to be offset by

increases in the number of older students. But these students will be primarily enrolled part-time. However, when part-time enrollments are converted to full-time equivalents, they will not be large enough to compensate completely for the declines in full-time enrollment.

Enrollment is expected to fall 3 percent from 1987 to 1997 (table 3). At the same time, full-time-equivalent enrollment is expected to fall 3 percent (table 23). Table 23 shows a decrease in full-time-equivalent of undergraduate enrollment in 4-year institutions, from 5.2 million in 1987 to 5 million in 1997. The full-time-equivalent of undergraduate enrollment in 2-year institutions is expected to decrease from 2.8 million to 2.7 million over the projection period. Also, the full-time-equivalent of postbaccalaureate enrollment in 4-year institutions is expected to decrease slightly.

Postbaccalaureate Enrollment

Graduate and first-professional enrollments are expected to decrease during the latter part of the projection period. Graduate enrollment rose from 1.07 million in 1972 to 1.38 million in 1987. This number is expected to fall to 1.34 million in 1997 (table 17 and figure 19). First-professional enrollment rose from 207,000 in 1972 to 273,000 in 1987 and is expected to fall to 260,000 in 1997 (table 20 and figure 19).

Figure 18.—Full-time-equivalent enrollment in institutions of higher education, with alternative projections: Fall 1972 to 1997

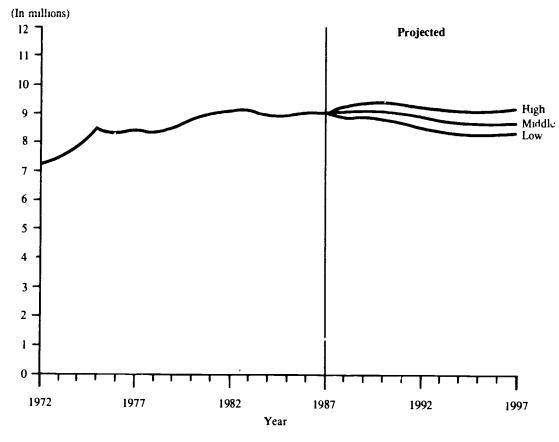


Figure 19.—Enrollment in institutions of higher education, by level enrolled, with middle alternative projections: Fall 1972 to 1997

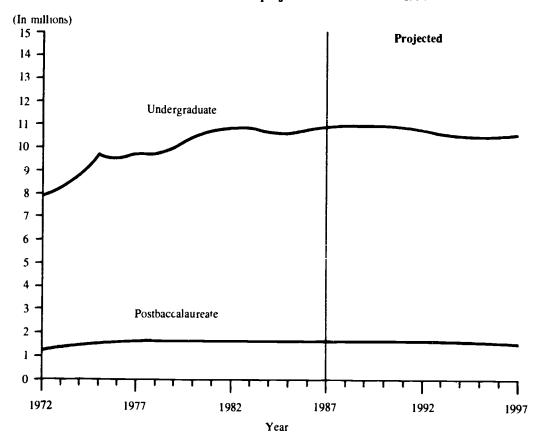


Table 1.—Enrollment in grades K-8¹ and 9-12 of public elementary and secondary schools, with projections: 50 States and D.C., fall 1972 to fall 1997

Year	K-121	K-81	9-12
972	45,744	31,831	13,913
973	45,429	31,353	14,077
974	45,053	30,921	14.132
975	44,791	30,487	14,304
776	44,317	30,006	14.311
	43,577	29,336	14,240
778	42,550	28,328	14,223
779	41,645	27,931	13,714
980	40,987	27,674	13,313
81	40,099	27,245	12,855
982	39,652	27,156	12,496
83	39,352	26,997	12,355
84	39 295	26,918	12,377
85	39,509	27,049	12,460
86	39,837	27,404	12,434
872	40,200	27,983	12,217
		Projected	
988	40,280	28,439	11,841
089	40,337	° 28,807	11,530
90	40,752	29,366	11,386
91	41,306	29,794	11,512
92	41,879	30,178	11,701
93	42,444	30,460	11,984
94	43,014	30,624	12,390
95	43,442	30,738	12,704
996	43,775	30,772	13,003
97	43,960	30.754	13,206

¹Includes most kindergarten and some nursery school enrollment.
²Estimate.

NOTE: Projections are based on data through 1986. Because of rounding, details may not add to totals.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Statistics of Public Elementary and Secondary Schools; Center for Education Statistics, Common Core of Data survey; and Early Estimate System survey, 1987. (This table was prepared October 1987.)

Table 2.—Enrollment in public elementary and secondary schools, by organizational level, with projections: 50 States and D.C., fall 1972 to fall 1997

Year	K-121	Elementary ¹	Secondary
	45,744	27,323	18,421
973	45,429	26,435	18,995
974 .	45,053	26,382	18,671
975	44,791	25,640	19,151
976	44,317	25,430	18,887
977	43,577	24,954	18,623
978 .	42,550	25,017	17,534
979	41,645	24,543	17,102
9 80 .	40,987	24,156	16,831
981 .	40,099	23,819	16,280
982 .	39,652	23,875	15, 77 7
983 .	39,352	24,010	15,342
984 .	39,295	24,14 7	15,148
985	39,509	24,290	15,219
986 .	39,837	24,201	15,636
9872 .	40 200	25,053	15,147
		Projected	
988	40,280	25,510	14,770
989	40,337	25,822	14,515
990	40,752	26,295	14,457
991	41,306	26,643	14,663
992 .	41,879	26,906	14,973
993	42,444	27,106	15,338
994 .	43,014	27,231	15,783
995	43,442	27,316	16,126
996	43,775	27,373	16,402
997	43,960	27,323	16,637

¹Includes most kindergarten and some nursery school enrollment.
²Estimate

NOTE: Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE. U.S. Department of Education, National Center for Education Statistics, Statistics of Public Elementary and Secondary Schools; Center for Education Statistics, Common Core of Data survey; and Early Estimate System, 1987. (This table was prepared October 1987.)

	_	S	Sex	Attendar	ice status	Control	
Year	Total	Men	Women	Full-time	Part-time	Public	Private
972	9,215	5,239	3,976	6,072	3,142	7,071	2,144
973 .	9,602	5,371	4,231	6,189	3,413	7,420	2,183
974	10,224	5,622	4,601	6,370	3,853	7,989	2,235
975 .	11,185	6,149	5,036	6,841	4,344	8,835	2,350
976	11,012	5,811	5,201	6,717	4,295	8,653	2,359
977 .	11,286	5,789	5,497	6,793	4,493	8,847	2,439
978 .	11,260	5,641	5,619	6,668	4,592	8,786	2,474
979	11,570	5,683	5,887	6,794	4,776	9,037	2,533
980	12,097	5,874	6,223	7,097	4,999	9,457	2,640
981	12,372	5,975	6,397	7,181	5,190	9,647	2,725
982	12,426	6,031	6,394	7,221	5,205	9,696	2,730
983	12,465	6,024	6,441	7,261	5,204	9,683	2,782
984	12,242	5,864	6,378	7,098	5,144	9,477	2,765
985	12,247	5,818	6,429	7,075	5,172	9,479	2,768
986*	12,398	5,840	6,557	7,148	5,249	9,600	2,750
987*	12,544	5,881	6,663	7,219	5,325	9,706	2,838
			Middle	alternative pro		·	·
988	12,560	5,880	6,680	7,157	5,403	9,760	2,800
9 89	12,570	5,890	6,680	7,116	5,454	9,764	2,806
990	12,585	5,905	6.680	7,095	5,490	9,777	2,808
991	12,529	5,884	6,645	7,013	5,516	9,735	2,794
992 .	12,408	5,845	6,563	6,916	5,492	9,639	2,769
993 .	12,300	5.798	6,502	6,819	5,481	9,558	2,742
994	12,201	5,744	6,457	6,743	5,458	9,486	2,715
995	12,151	5.705	6,446	6,708	5.443	9,449	2,702
996	12,142	5,688	6,454	6,711	5,431	9,446	2,696
997	12,173	5,688	6,485	6,750	5,423	9,469	2,704
			Low	alternative proje	ections		
988 .	12,273	5,779	6,494	6 933	5,340	9,530	2,743
989	12,325	5,793	6,532	6,939	5,386	9,574	2,751
990	12,284	5,762	6,522	6,863	5,421	9,545	2,739
991 .	12,186	5,703	6,483	6,734	5,452	9,471	2,715
992	12,017	5,617	6,400	6,589	5,428	9,342	2,675
993	11,897	5 551	6.346	6,481	5,416	9,251	2,646
994 .	11,790	5 489	6.301	6,398	5,392	9,171	2,619
995	11,756	5,463	6,293	6,378	5,378	9,147	2,609
996	11,754	5,454	6,300	6,391	5,363	9,148	2,606
99 <i>i</i>	11,799	5,471	6,328	6,443	5,356	9,182	2,617
			High	alternative proj	ections		
988	12,894	6,090	6.804	7,244	5,650	10.012	2,882
989	13.038	6,123	6,915	7,297	5,741	10,130	2,908
990	13,120	6,164	6,956	7,304	5,816	10,196	2,924
991 .	13,121	6,181	6,940	7.237	5,884	10,197	2,924
992	13,037	6,162	6,875	7,146	5,891	10,135	2,902
993	12,950	6,132	6,818	7,061	5,889	10,066	2,884
994	12,869	6,093	6,776	7,002	5.867	10,004	2,865
995	12,822	6,061	6,761	6,973	5,849	9,971	2.851
996	12,829	6.056	6,773	6.993	5,836	9,978	2.851
99 7	12,874	6.067	6,807	7,044	5,830	10,010	2,864

*Estimate

NOTE Projections are based on data through 1986 Because of rounding. details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 4.—Total enrollment in 4-year institutions of higher education, by sex and attendance status of student and control of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Year		Sex		Attendance status		Control	
	Total	Men	Women	Full-time	Part-time	Public	Private
1972	6,459	3,695	2,763	4,731	1,727	4,430	2,029
1973	6,592	3,718	2,873	4,758	1,833	4,530	2,062
1974	6,820	3,791	3,028	4,861	1,958	4,703	2,117
1975	7,215	3,986	3,230	5,079	2,137	4,998	2,217
1976	7,129	3,831	3,298	5,053	2,076	4,902	2,227
1977	7,243	3,823	3,419	5,138	2,104	4,945	2,298
1978	7,232	3,755	3,476	5,109	2,122	4 912	2,320
1979	7,353	3,762	3,591	5,202	2,151	4,980	2,373
1980	7,571	3,827	3,743	5,344	2,226	5,129	2,442
1981	7,655	3,852	3,805	5,387	2,270	5,166	2,489
1982	7,654	3,862	3,793	5,381	2,274	5,176	2,469
1983	7,741	3,892	3,848	5,434	2,306	5,223	2,478
1984	7,711	3,845	3,863	5,394	2,300	•	•
1985	7,711	3,843 3,814	3,898	•	•	5,198	2,513
1986*	7,716 7,7 54	3,814 3,805	3,898 3,949	5,384	2,328	5,210	2,506
1980*	7,734 7,816	•	•	5,419 5,461	2,335	5,254	2,499
170/*	7,810	3,802	4,013	5,461	2,355	5,268	2,548
1988	7 001	2.0/0		alternative pro	-		
	7,881	3,869	4,012	5,425	2,456	5,349	2,532
	7,857	3,867	3,990	5,377	2,480	5,320	2,537
1990	7,862	3,876	3,986	5,360	2,502	5,323	2,539
1991	7,831	3,871	3,960	5,307	2,524	5,303	2,528
992	7,756	3,850	3,906	5,235	2,521	5,250	2,506
993	7,679	3,817	3,862	5,157	2,522	5,197	2,482
994	7,605	3,776	3,829	5,089	2,516	5,148	2,457
1995	7,563	3,745	3,818	5,055	2,508	5,120	2,443
1996	7,550	3,729	3,821	5,049	2,501	5,113	2,437
	7,570	3,728	3.842	5,075	2,495	5,127	2,443
			Low	alternative proje	ections		
988	7,679	3,805	3,874	5,241	2,438	5,198	2,481
989	7, 699	3,807	3,892	5,238	2,461	5,212	2,487
990	7,669	3,790	3,879	5,186	2,483	5,191	2,478
	7,609	3,759	3,850	5,104	2,505	5,151	2,458
1 992	7,499	3,704	3,795	4,997	2,502	5,075	2,424
993	7,411	3,656	3,755	4,908	2,503	5,014	2,397
1 994	7,333	3,611	3,722	4,837	2,496	4,961	2,372
1995	7,306	3,591	3,715	4,815	2,491	4,943	2,363
996	7 2 96	3,579	3,717	4,814	2,482	4,938	2,358
997	7,326	3,590	3,736	4,850	2,476	4,959	2,367
			High :	alternative proje	ections		
988	8,064	3 989	4,075	5,484	2,580	5,457	2,607
989	8,139	4,005	4,134	5,517	2,622	5,509	2,630
990	8,183	4,035	4,148	5,522	2,661	5,538	2,645
991	8,188	4,057	4,131	5,484	2,704	5,540	2,648
1992	8,131	4,049	4,082	5,417	2,714	5,502	2,629
993	8,072	4,030	4,042	5,349	2,723	5,459	2,613
994	8,012	4,002	4,010	5,294	2,718	5,418	2,594
1995	7,976	3,979	3,997	5.266	2,710	5,394	2,582
	7,975	3.974	4,001	5,273	2,702	5,394	2,581
1 99 7	8,006	3,983	4,023	5,310	2,696	5,415	2,591

*Estimate.

NOTE. Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Farly National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 5.—Total enrollment in 2-year institutions of higher education, by sex and attendance status of student and control of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

			Sex	Attendance status		Control	
Year	Total	Men	Women	Full-time	Part-time	Public	Private
972	2,756	1,543	1 212	1,340	1,415	2,641	114
973	3,010	1,653	1,360	1,433	1,580	2,890	124
074	3,404	1,831	1,573	1,509	1,895	3,285	119
975 .	3,970	2,166	1,805	1,762	2,209	3,836	134
976	3,883	1,980	1,904	1,665	2,219	3,752	132
977	4,043	1,965	2,077	1,654	2,388	3,902	140
778	4,028	1,885	2,143	1,558	2,470	3,874	155
979	4,217	1,924	2,294	1,591	2,627	4,057	160
980	4,526	2,047	2,479	1,754	2,772	4,329	197
981	4,716	2.124	2,591	1,796	2,919	4,481	235
982	4,772	2,170	2,602	1,839	2,933	4,520	252
983	4,723	2,132	2,592	1,827	2,897	4,459	265
984	4,531	2,018	2,514	1,703	2,829	4,279	252
985	4,531	2,005	2,530	1,691	2,844	4,270	261
986*	4,644	2,035	2,609	1,730	2,914	4,346	298
987*	4,728	2,078	2,650	1,759	2,970	4,439	289
			Middle	alternative pro	jections		
988	4,679	2,011	2,668	1,732	2,947	4,411	268
989	4,713	2,023	2,690	1,739	2,974	4,444	269
990	4,723	2,029	2,694	1,735	2,988	4,454	269
91	4,698	2,013	2,685	1,706	2,992	4,432	266
992	4,652	1,995	2,657	1,681	2,971	4,389	263
993	4,621	1,981	2,640	1,662	2,959	4,361	260
994	4,596	1,968	2,628	1,654	2,942	4,338	258
995	4,588	1,960	2,628	1,653	2,935	4,329	259
996	4,592	1,959	2,633	i 662	2,930	4,333	259
997	4,603	1,960	2,643	1,675	2,928	4,342	261
			Low	alternative proje	ections		
988	4,594	1,974	2,620	1,692	2,902	4,332	262
	4,626	1,986	2,640	1,701	2,925	4,362	264
	4,615	1,972	2,643	1,677	2,938	4,354	261
91	4,577	1,944	2,633	1,630	2,947	4,320	257
992	4,518	1,913	2,605	1,592	2,926	4,267	251
993	4,486	1,895	2,591	1,573	2,913	4,237	249
994	4,457	1,878	2,579	1,561	2,896	4,210	247
995	4,450	1,872	2,578	1,563	2,887	4,204	246
996	4,458	1,875	2,583	1,577	2,881	4,210	248
997	4,473	1,881	2,592	1,593	2,880	4,223	250
			High	alternative proje	ections		
988	4,830	2,101	2,729	1,760	3,070	△,555	275
089	4,879	2,118	2,781	1.780	3,119	4,621	278
190	1,937	2,129	2,808	1,782	3,155	4,658	279
91 .	4,933	2,124	2,809	1,753	3,180	4,657	276
	4.906	2,113	2,793	1,729	3,177	4.633	273
993	4,878	2,102	2,776	1.712	3,166	4,607	271
994	4,857	2,091	2,766	1,708	3,149	4,586	271
.	4,846	2,082	2,764	1,707	3,139	4,577	269
9 6 .	4.354	2,082	2,772	1,720	3,134	4,584	270
997 .	4,868	2,084	2,784	1.734	3,134	4,595	273

*Estima ...

NOTE: Projections are based on data through 1986. Because of rounding, details may not add to totals.

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987.)

Table 6.—Enrollment in all institutions of higher education, by age, sex, and attendance status, with middle alternative projections: 50 States and D.C., fall 1977, 1982, 1987, 1992, and 1997

Age	Total	1	777 nated)	Total		982 nated)	Totai	1	987 nated)	Total	1	92 ected)	Total	1	997 jected)
		Full-time	Part-time	10121	Full-time	Part-time		Full-time	Part-time	TOTAL	Full-time	Part-time	I OLAI	Full-time	Part-time
Total	11,286	6,793	4,493	12,426	7,221	5,205	12,544	7,219	5,325	12,408	6,916	5,492	12,173	6,750	5,423
14 to 17 years .	254	221	33	234	210	24	210	188	22	185	165	20	205	183	22
18 to 19 years .	2,703	2,386	317	2,725	2,382	343	2,764	2,450	314	2,608	2,309	299	2,746	2,425	321
20 to 21 years	2,271	1,930	341	2,539	2,084	455	2,224	1,847	377	2,224	1,847	377	2,051	1,705	346
22 to 24 years	1,764	1,057	707	2,081	1,228	853	2,048	1,308	740	1,841	1,168	673	1,652	1,049	603
25 to 29 years	1,844	711	1,133	1,995	768	1,227	1,947	724	1,223	1,789	658	1,132	1,660	610	1,050
30 to 34 years .	1,039	254	784	1,263	300	963	1,329	344	985	1,408	360	1,048	1,292	330	962
35 years and over	1,411	234	1,177	1,589	248	1,341	2,023	359	1,664	2,354	410	1,944	2,564	447	2,117
Men	5,789	3,650	2,138	6,031	3,753	2,279	5,881	3,611	2,270	5,845	3,532	2,313	5,688	3,423	2,265
14 to 17 years	106	90	17	108	91	17	9i	82	9	81	73	8	90	81	9
18 to 19 years	1,313	1,176	138	1,294	1,160	134	1,309	1,174	135	1,309	1,177	132	1,367	1,223	144
20 to 21 years	1,211	1,037	174	1,286	080, (206	1.089	927	162	1,088	927	161	1,008	860	148
22 to 24 years	1,015	661	354	1,137	7!6	422	1,080	728	352	977	657	320	878	591	287
25 to 29 years	1,052	456	596	1,055	446	609	1,016	417	599	935	383	552	867	355	512
30 to 34 years	535	146	389	559	174	385	613	169	444	653	180	473	599	165	434
35 years and over	557	84	473	591	85	506	684	115	569	801	135	667	878	148	730
Women .	5,497	3,142	2,354	6,394	3,407	2,928	6,663	3,608	3,055	6,563	3,384	3,179	6,485	3,327	3,158
14 to 17 years .	148	131	16	126	119	7	119	106	13	104	92	11	115	103	13
18 to 19 years	1,389	1,210	179	1,431	1,222	209	1,455	1,276	179	1,299	1,132	167	1,379	1,202	177
20 to 21 years	1,060	893	167	1,253	1,004	248	1,135	920	215	1,136	920	216	1,043	845	198
22 to 24 years	749	395	354	943	512	431	968	580	388	864	511	353	774	458	316
25 to 29 years	792	255	537	940	322	618	931	307	624	854	275	580	793	255	538
30 to 34 years	504	108	396	704	125	578	716	175	541	755	180	575	693	165	528
35 years and over	855	150	704	998	164	835	1,339	244	1,095	1,553	275	1,278	1,686	299	1,387

NOTE Because of rounding, details may not add to totals

SOURCE: U S Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS),

Sample Survey of Early National Estimates, 1987 and U S Department of Commerce, Bureau of the Census, Current Population Reports. Series P-25, No 985 and unpublished tabulations (This table was prepared November 1987)

Table 7.—Enrollment in all institutions of higher education, by age, sex, and attendance status, with low alternative projections: 50 States and D.C., fall 1977, 1982, 1987, 1992, and 1997

Age	Total	19 (Estin	77 nated)	Tota!		982 nated)	Total		987 nated)	Total	1	92 ected)	Total		97 ected)
Age	Total	Full-time	Part-time	10ta	Full-time	Part-time	TOTAL	Full-time	Part-time	IOLAI	Full-time	Part time	10141	Full-time	Part-time
Total	11,286	6,793	4,493	12,426	7,221	5,205	12,544	7,219	5,325	12,017	6,589	5,428	11,799	6,443	5,356
14 to 17 years	254	221	33	234	210	24	210	188	22	185	165	20	205	183	22
18 to 19 years	2,703	2,386	317	2.725	2,38?	343	2,764	2.450	314	2,396	2,128	268	2,548	2,263	285
20 to 21 years	2,271	1,930	341	2,539	2,084	455	2,224	1,847	377	2,102	1,738	364	1,930	1,595	335
22 to 24 years	1,764	1,057	707	2,081	1,228	853	2,048	1,308	740	1,784	1,131	653	1,602	1.016	586
25 to 29 years	1,844	711	1,133	1.995	768	1,227	1,947	724	1,223	1.789	657	1,132	1,660	610	1,050
30 to 34 years	1,039	254	784	1.263	300	963	1,329	344	985	1,407	360	1,048	1,292	339	962
35 years and over	1,411	234	1,177	1,589	248	1,341	2,023	359	1,664	2,354	410	1,944	2,564	447	2,117
Men	5,789	3,650	2,138	6 031	3,753	2,279	5.881	3,611	2.270	5,617	3,334	2,283	5,471	3,240	2,231
14 to 17 years	106	90	17	108	91	17	91	82	9	81	73	8	90	81	9
18 to 19 years	1,313	1,176	138	1,294	1,160	134	1,309	1,174	135	1,148	1,032	116	1,220	1,097	123
20 to 21 years	1,211	1,037	174	1,286	1,080	206	1,089	927	162	1,055	894	161	969	821	148
22 to 24 years	1,015	661	354	1,137	716	422	1,080	728	352	945	639	305	849	575	274
25 to 29 years	1,052	456	596	1,055	446	609	1,016	417	599	934	383	552	867	355	512
30 to 34 years	535	146	389	559	174	385	613	169	444	652	180	473	599	165	434
35 years and over	557	84	473	591	85	506	684	115	569	801	135	667	878	148	730
Women	5,497	3,142	2,354	6,394	3,467	2,928	6,663	3,008	3,055	6,400	3.255	3,145	6,328	3,263	3,125
14 to 17 years	148	131	16	126	119	7	119	106	13	104	92	11	115	103	13
18 to 19 years	1,389	1,210	179	1,431	1,222	209	1,455	1,275	179	1,249	1,097	152	1,328	1.166	161
20 to 21 years	1,060	893	167	1,253	1,004	248	1,135	920	215	1,047	844	203	961	774	18.
22 to 24 years	749	395	354	943	512	431	968	580	388	839	492	347	753	441	311
25 to 29 years	792	255	537	940	322	618	931	307	624	854	275	580	793	255	538
30 to 34 years	504	108	396	704	125	578	716	175	541	755	180	575	694	165	528
35 years and over	855	150	704	998	164	835	1,339	244	1.095	1,553	275	1.278	1.686	299	1,387

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS)

Sample Survey of Early National Estimates. 1987 and U.S. Department of Commerce, Bureau of the Census. Current Population Reports. Series P-25, No. 985 and unpublished tabulations. (This table was prepared November 1987.)

Table 8.—Enroliment in all institutions of higher education, by age, sex, and attendance status, with high alternative projections: 50 States and D.C., fall 1977, 1982, 1987, 1992, and 1997

Ago	Total	I	77 nated)	Total	1	82 nated)	Total		87 nated)	Total	1	92 ected)	Total		97 ected)
Age	10121	Full-time	Part-time	iotai	Full-time	Part-time	10121	Full-time	Part-time	Iviai	Full-time	Part-time	I VIAI	Full-time	Part-time
Total	11,286	6,793	4,493	12,426	7,221	5,205	12,544	7,219	5,325	13,037	7,146	5,891	12,874	7,044	5,830
14 to 17 years	254	221	33	234	210	24	210	188	22	186	165	21	207	183	23
18 to 19 years	2,703	2,386	317	2,725	2,382	343	2,764	2.450	314	2,722	2,397	325	2.865	2.520	345
20 to 21 years	2,271	1,930	341	2,539	2,084	455	2.224	1,847	377	2,246	1,847	399	2.073	1,705	368
22 to 24 years	1,764	1,057	707	2,081	1,228	853	2,048	1.308	740	1,935	1.237	698	1,738	1.110	627
25 to 29 years	1,844	711	1,133	1,995	768	1,227	1,947	724	1,223	1,819	657	1,162	1.673	610	1,063
30 to 34 years	1,039	254	784	1,263	300	963	1,329	344	985	1,459	362	1,098	1,346	333	1.013
35 years and over	1,411	234	1,177	1,589	248	1.341	2,023	359	1,664	2,671	482	2.190	2,973	584	2.390
Men	5,789	3,650	2,138	6,031	3,753	2,279	5.881	3.611	2,270	6.162	3.625	2,537	6.067	3,580	2.487
14 to 17 years	106	90	17	108	91	17	91	82	9	82	73	9	91	81	11
18 to 19 years	1,313	1,176	138	1,294	1,160	134	1,309	1,174	135	1,317	1,177	140	1,371	1,223	148
20 to 21 years	1,211	1,037	174	1,286	1,080	206	1,089	927	162	1.094	927	167	1.015	860	155
22 to 24 years	1,015	661	354	1,137	716	422	1,080	728	352	1,008	681	327	905	612	293
25 to 29 years	1,052	456	596	1,055	446	609	1,016	417	599	965	383	582	880	355	525
30 to 34 years	535	146	389	559	174	385	613	169	444	702	180	523	650	165	485
35 years and over	557	84	473	591	85	506	684	115	569	996	206	790	1.154	285	870
Women	5,497	3,142	2,354	6,394	3,467	2.928	6,663	3,608	3,055	6.875	3,521	3,354	6,807	3.464	3,343
14 to 17 years	148	131	16	126	119	7	119	106	13	104	92	11	115	103	13
18 to 19 years	1.389	1,210	179	1,431	1,222	209	1.455	1,276	179	1,406	1,220	185	1.493	1,297	197
20 to 21 years	1,060	893	167	1,253	1,904	248	1,135	920	215	1,152	920	232	1.058	845	213
22 to 24 years	749	395	354	943	512	431	968	580	388	928	556	372	832	498	334
25 to 29 years	792	255	537	940	322	618	931	307	624	854	275	580	793	255	538
30 to 34 years	504	108	396	704	125	578	716	175	541	757	182	575	697	169	528
35 years and over	855	150	704	998	164	835	1,339	244	1,095	1,675	275	1,400	1,819	299	1,520

NOTE Because of rounding, details may not add to totals

42

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates. 1987 and U S Department of Commerce, Bureau of the Census. Current Population Reports. Series P-25. No 985 and unpublished tabulations (This table was prepared November 1987)

Table 9.—Total enrollment in all institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Vann	Total	M	len	Wo	men
Year	Total	Full-time	Part-time	Full-time	Part-time
19 72	9,215	3,557	1,681	2,514	1,461
1973	9,602	3,579	1,792	2,612	1,621
974	10,224	3,646	1,976	2,724	1,877
975	11,185	3,926	2,226	2,915	2,120
1976	11,012	3,704	2,107	3,014	2,188
1977	11,286	3,650	2,138	3,142	2,354
1978	11,260	3,527	2,113	3,140	2,479
1979	11,570	3,544	2,142	3,249	2,636
980	12,097	3,689	2,185	3,409	2,813
981	12,372	3,714	2,262	3,469	2,927
982	12,426	3,753	2,279		
983	12,465	3,760	•	3,467	2,928
004	12,463	•	2,264	3,501	2,939
007	12,247	3,647	2,216	3,450	2,927
007.	•	3,608	2,211	3,468	2,961
	12,398	3,619	2,220	3,537	3,021
987•	12,544	3,611	2,270	3,608	3,055
			lle alternative projec		
988	12,560	3,586	2,294	3,571	3,109
989	12,570	3,576	2,314	3,540	3,140
990	12,585	3,581	2,324	3,514	3,166
991	12,529	3,559	2,325	3,454	3,191
992	12,408	3,532	2,313	3,384	3,179
993	12,300	3,492	2,306	3,327	3,175
994	12,201	3,454	2,290	3,289	3,168
995	12,151	3,425	2,280	3,283	3,163
996	12,142	3,417	2,271	3,294	3,160
997	12,173	3,423	2,265	3,327	3,158
		Lov	v alternative projecti	ions	
988	12,273	3,514	2,265	3,419	3,075
989	12,325	3,513	2,280	3,426	3,106
990	12,284	3,472	2,290	3,391	3,131
991	12,186	3,407	2,296	3,327	3,156
992	12,017	3,334	2,283	3,255	3,145
993	11,897	3,278	2,273	3,203	3,143
994	11,790	3.231	2,258	3,167	3,134
995	11,756	3,216	2,247	3,162	3,131
996	11,754	3,217	2,237	3,174	3,126
997	11,799	3,240	2,231	3,203	3,125
		Higl	h alternative project	ions	
988	12,894	3,615	2,475	3,629	3,175
989	13,038	3,620	2,503	3,677	3,238
990 .	13,120	3,644	2,520	3,660	3,296
991	13,121	3,643	2,538	3,594	3,346
992	13,037	3,625	2,537	3,521	3,354
993	12,950	3,598	2,534	3,463	3,355
994	12,869	3,575	2,518	3,427	3,349
995	12,822	3,555	2,506	3,418	3,343
996	12,829	3,561	2,495	3,432	3,343
997	12,874	3,580	2,493 2,487	3,464	3,341

*Estimate

NOTE: Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE. U S Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 10.—Total enrollment in public 4-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

.,	m	M	len	Wo	men
Year	Total	Full-time	Part-time	Full-time	Part-time
1972	4,430	1,860	626	1,358	586
973	4,530	1,851	658	1,394	627
974	4,703	1,870	694	1,448	691
975	4,998	1,947	764	1,522	767
97 6	4,902	1,879	709	1,554	759
97 7	4,945	1,873	696	1,606	770
978	4,912	1,822	687	1,613	789
979	4,980	1,833	676	1,661	810
980	5,129	1,873	685	1,719	851
981	5,166	1,877	692	1,741	858
982	5,176	1,890	698	1,734	855
983	5,223	1,910	698	1,755	860
984	5,198	1,880	694	1,749	874
	5,198 5,210	1,864	693		874 892
	5,210 5,254			1,759	892 897
0054	5,254 5,268	1,87 0 1,847	698 699	1,789 1,825	897 8 97
987*	3,208			ŕ	89/
Ope	5 246		l'e alternative proje		025
988	5,346	1,852	753 760	1,819	925
989	5,320	1,844	760	1,781	935
990	5,323	1,845	765	1,769	944
991	5,303	1,837	770	1.741	955
992	5,250	1,823	769	1,705	953
993	5,197	1,800	769	1,674	954
994	5,148	1,777	765	1,652	954
995	5,120	1,760	761	1,647	952
996 .,	5,113	1,753	758	1,651	951
997	5,127	1,756	755	1,667	949
			walternative project		
988	5,198	1,814	747	1,718	919
989	5,212	1,811	752	1,720	929
990	5,191	1,793	758	1,702	938
991	5,151	1,766	764	1,673	948
992	5,075	1,730	762	1,636	94 7
993	5,014	1,697	761	1,607	949
994	4,961	1,670	758	1,586	94 7
995	4,943	1,660	755	1,582	946
996	4,938	1,657	751	1,586	944
997	4,959	1,668	748	1,600	943
		Hig	h alternative project	tions	
988	5,457	1,866	818	1,829	944
989	5,509	1,867	828	1,851	963
990	5,538	1,878	836	1,843	981
99 1	5,540	1,881	847	1,813	999
992	5,502	1,873	850	1,775	1,004
993	5,459	1,856	852	1,744	1,007
994	5,418	1,840	849	1,722	1,007
995	5,394	1,828	845	1,716	1,005
996.	5,394	1,828	841	1,721	1,004
997	5,415	1,837	838	1,737	1,003

*Estimate.

NOTE: Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 11.—Total enrollment in public 2-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

V	Tr. 4-1	M	len	Wo	mer.
Year	Total	Full-time	Part-time	Full-time	Part-time
972	2,641	750	737	500	654
73	. 2,890	793	800	545	751
	3,285	833	941	586	925
775	3,836	989	1,108	674	1,066
976	3,752	858	1,061	704	1,129
777	3,902	805	1,099	739	1,259
178 .	3,874	738	1,084	700	1,351
179	4,057	739	1,123	728	1,468
080	4,329	812	1 152	784	1,581
81	4,481	827	1,192	803	1,658
82	4,520	850	1,195	810	1,665
83	4,459	827	1,175	807	1,650
84	4,279	762	1,138	756	1,623
85	4,270	743	1,138	754	1,636
86*	. 4.346	737	1,152	763	1,694
87* .	4,439	737	1,132	801	1,715
		Midd	ile alternative proje	ctions	
88	. 4,411	747	1,142	788	1,734
89	. 4,444	749	1.152	793	1,750
90	4,454	752	1,154	786	1,762
91 .	4,432	743	1,148	769	1,772
92	4,389	737	1,137	753	1,762
93	4,361	731	1,130	743	1,757
94	4,338	728	1,121	739	1,750
95	4,329	725	1,116	740	1,748
96	4,333	728	1,112	746	1,747
97	4.342	731	1,110	754	1,747
		Lov	w alternative project	tions	
88	4,332	732	1,123	768	1,709
89	. 4,362	736	1,129	772	1,725
90.	4,354	723	1,130	764	1,737
91	4,320	699	1,128	746	1,747
92	4,267	681	1,118	730	1,738
93	4,237	673	1,109	721	1,734
94	4,210	667	1,099	717	1,727
95 .	4,204	668	1,093	718	1,725
996	4,210	674	1,089	724	1,723
97	4.223	681	1,087	731	1,724
		Hig	h alternative projec		
88	4,555	751	1.224	809	1,771
	4,621	755	1,237	823	1,806
90	4,658	761	1,241	818	1,838
91	4,657	755	1,243	799	1,860
992	4,633	750	1,238	783	1,862
93	4,607	746	1,231	772	1,858
994	4,586	746	1,220	768	1,852
95.	4,577	744	1,214	769	1,850
996	4,584	749	1,209	776	1,850
997	4,595	753	1,206	784	1,852

*Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates. 1986 and 1987 (This table was prepared November 1987.)

Table 12.—Total enrollment in private 4-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Year	Total	ŀ	1	1	
772		Full-time	Part-time	Full-time	Part-time
	2,029	904	305	609	210
973	2,062	890	319	623	229
974	2,117	902	325	641	248
975.	2,217	943	332	667	274
976	2,227	921	322	699	286
977	2,298	925	329	734	309
978	2,320	919	327	755	319
979	2,373	924	329	784	336
980	2,442	936	333	816	357
981	2,489	939	344	830	376
982	2,478	933	341	824	380
983	2,518	935	349	834	399
984	2,513	926	345	839	401
985	2,506	917	340	844	403
986*	2,499	905	332	857	405
987*	2,548	915	342	875	417
	2,540		ile alternative proje		41.
988	2,532	904	360	850	418
989	2,537	900	363	85 2	422
990	2,539	900	366	84 6	427
91	2,528	896	368	833	431
92	2,506	890	368	817	431
993	2,482	880	368	803	431
94 .	2,457	868	366	792	4.1
995	2,443	859	365	789	430
996.	2,437	855	363	790	429
997	2,443	855	362	797	429
		Lo	w alternative project	ions	
988	2,481	887	357	822	415
989	2,487	884	360	823	420
990 .	2,478	876	363	815	424
91	2,458	864	365	801	428
992.	2,424	847	365	784	428
993	2,397	833	365	771	428
994 .	2,372	820	363	761	428
995	2,363	814	362	759	428
996	2,358	811	360	760	427
99 7 .	2,367	815	359	767	426
		•	h alternative project		
988	2,607	914	391	875	427
989	2,630	914	396	885	435
990	2,645	920	401	881	443
991 .	2,648	923	406	867	452
992.	2,629	919	407	850	453
993	2,613	913	409	836	455
994	2,594	906	407	826	455
995	2,582	900	406	822	454
996 997 .	2,581 2,591	901 906	404 402	823 830	453 453

*Estimate.

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates. 1986 and 1987 (This table was prepared November 1987.)

Table 13.—Total enrollment in private 2-year institutions of higher education, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Year	Track	M	en	Wo	men
	Total	Full-time	Part-time	Full-time	Part-time
972	115	43	13	47	11
	120	45	15	50	14
74	119	41	16	49	13
75	124	47	22	52	13
	132	46	15	57	14
77	141	47	14	63	16
78	. 154	48	15	72	20
79	160	48	14	76	22
80	198	68	15	90	24
81	236	71	34	95	35
82	252	80	45	99	28
83	264	88	42	105	30
84	252	79	37	106	29
85 <i>.</i> .	261	84	40	110	30
86*	298	106	39	127	25
87*	289	116	40	108	26
		Midd	lle alternative projec	ctions	
88	268	83	39	114	32
89	269	83	39	114	33
90	269	84	39	113	33
91	. 266	83	39	111	33
92	263	82	39	109	33
93	260	81	39	107	33
94 .	258	81	38	106	33
95 .	259	81	38	107	33
96 .	259	81	38	107	33
97	261	8 i	38	109	33
		Lov	alternative project	ions	
88	262	81	38	111	32
89 .	264	82	39	111	32
90	261	80	39	110	32
91	257	78	39	107	33
92 .	251	76	38	105	32
93.	249	75	38	104	32
94	247	74	38	103	32
95 .	246	74	37	103	32
96 .	248	75	37	104	32
9 7	250	76	37	105	32
		Higl	h alternative project	ions	
88 .	275	84	42	116	33
89 .	278	84	42	118	34
90	279	85	42	118	34
91	276	84	42	115	35
92	273	83	42	113	35
93	271	83	42	111	35
94	271	83	42	111	35
95	269	83	41	111	34
96	270	83	41	112	34
97	273	84	41	113	35

*Estimate

NOTE. Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education. Center for Education Statistics. Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987. (This table was prepared November 1987.)

Table 14.—Undergraduate enrollment in all institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

*/	T-4-1	M	len	₩o	men
Year	Total	Full-time	Part-time	Full-time	Part-time
1972.	7.941	3,121	1,308	2,367	1,145
1973	8,261	3,135	1,403	2,445	1,278
974 .	8,798	3,191	1,574	2,535	1,498
975 .	9.679	3,459	1,798	2,710	1,712
976	9,429	3,242	1,660	2,788	1,739
977 .	9,714	3,188	1,708	2,905	1,913
978	9,691	3,072	1,694	2.895	2,030
979	9,998	3,087	1,734	2,993	2,185
980	10,475	3,227	1,773	3,135	2,340
981	10,755	3,261	1,848	3,188	2,458
982	10,825	3,299	1,871	3,184	2,470
983	10,846	3,304	1,854	3,210	2,478
984	10,618	3,195	1,812	3,153	2,459
985	10,597	3,156	1,806	3,163	2,471
86*	10,724	3,166	1,820	3,217	2,522
987*	10,895	3,170	1,874	3,296	2,554
		Mido	lle alternative proje	ctions	
988	10,919	3,128	1,878	3,264	2,649
989	10,926	3,121	1,893	3,236	2,676
90	10,937	3,129	1,899	3,212	2,697
91	10,875	3 109	1,897	3,152	2,717
92	10,757	3.084	1,885	3,082	2,706
93	10,647	3.044	1,878	3,023	2,702
94	10,561	3,013	1,864	2,989	2,695
95	10,526	2,991	1,855	2,988	2,692
9 96 .	10,530	2,990	1,847	3,004	2,689
97 .	10.570	3.000	1,843	3,039	2,688
		Lov	alternative project	ions	
988	10,645	3,060	1,851	3,117	2,617
989	10,693	3,062	1,862	3.126	2,643
990	10,649	3,024	1,867	3,094	2,664
91	10,545	2.961	1,870	3,029	2,685
92	10.380	2,890	1,858	2,957	2,675
993	10,258	2,835	1,848	2,903	2,672
994	10,162	2,794	1,834	2,870	2,664
95 .	10,141	2.786	1,824	2,870	2,661
996	10,154	2 794	1,816	2,887	2,657
197 .	10.209	2,821	1,811	2,919	2,658
		Hig	h alternative project	tions	
288 .	11,181	3.143	2,020	3,312	2,706
989	11,309	3,145	2,041	3,362	2,761
90 .	11,375	3,165	2,052	3,348	2,810
91	11,353	3,157	2,064	3,281	2,851
92	11,263	3.136	2.061	3,208	2,858
93 .	11,164	3.103	2,056	3,148	2,857
94	11,087	3,079	2,042	3,115	2,851
95	11,050	3,061	2,031	3,111	2,847
996	11,065	3,066	2 022	3,132	2,845
97	11,112	3,082	2.016	3,166	2,848

^{*}Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 15.—Undergraduate enrollment in public institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

		M	len	Wo	 men
Year	Total	Full-time	T		
		r un-time	Part-time	Full-time	Fart-time
1972	6,223	2,352	1,115	1,761	995
1973	6,522	2,380	1,199	1,829	1,114
974	7,031	2,433	1,366	1,909	1,323
975 .	7,826	2,662	1,583	2,063	1,518
976	7,617	2,471	1,478	2,115	1,553
977 .	7,842	2,413	1,524	2,197	1,708
978 .	7,786	2,302	1,510	2,161	1,813
979	8,046	2,316	1,551	2,229	1,952
980	8,441	2,4 26	1,588	2,334	2,093
981	8,648	2,452	1,639	2,373	2,185
982	8,713	2,487	1,653	2,373	2,201
983	8,697	2,482	1,635	2,385	2,195
984 .	8,494	2,390	i,600	2,325	2,179
985	8,478	2,357	1,596	2,323	2,173
9 86* .	8,577	2,358	1,611	2,366	2,193
987* .	8,706	2,336	1,655	2,445	2,269
	3,750				2,209
		M;dd	lle alternative projec	ctions	
988 .	8,761	2,342	1,652	2,421	2,346
089	. 8,763	2,338	1,666	2,390	2,369
990 .	8,774	2,344	1.671	2,372	2,387
91	8,727	2,328	1,668	2,327	2,404
992 .	8,633	2,309	1,656	2,275	2,393
993	8,551	2,280	1,649	2,233	2,389
94	8,486	2,258	1,637	2,209	2,382
95	8,458	2,242	1,629	2,208	2,379
996	8,462	2,242	1,622	2,221	2,377
97	8,491	2,250	1,619	2,246	2,376
		Low	alternative projecti	ons	
988	8,539	2.292	1,628	2,303	2,316
989	8,580	2,294	1,637	2,310	2,310
90	8,549	2,265	1,641		
91	8,470	2.215	1,643	2,286	2,357
92	8,344	2,162		2,238	2,374
93 .	8,252	2,122	1,632	2,185	2,365
994	8,178	2,092	1,622	2,146	2,362
95	8,162	2,092	1,609	2,123	2,354
9 6	8,172	2,087 2.094	1,601	2,123	2,351
97	8,212	2,114	1,594 1,590	2,136 2,159	2,348
	0,212			·	2,349
200			alternative projecti	ons	
88 89	8,971	2,353	1,776	2,446	2,396
90	9,078	2,356	1,795	2,483	2,444
	9,135	2 371	1,864	2,472	2,488
91	9,121	2,364	1,813	2,422	2,522
92	9,055	2,349	1,810	2,368	2,528
93	8,980	2,325	1,804	2,325	2,526
94	8,920	2,308	1,791	2,301	2,520
95	8,893	2,295	1,782	2,299	2,517
96 07	8,905	2,300	1,774	2,315	2,516
97	8,938	2,311	1,769	2,340	2,513

*Estimate

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 16.—Undergraduate enrollment in private institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Year	Total	M	en	Wo	men
	Total	Full-time	Part-time	Full-time	Part-time
972	1,718	769	193	606	150
73	1,739	755	204	616	164
74	1,767	758	208	626	175
75	1,853	797	215	647	194
76 .	1,812	771	182	673	186
77 .	1,872	775	184	708	205
78	1,905	770	184	734	217
79	1.951	772	184	762	233
80 .	2.033	800	185	801	246
81 .	2.106	809	209	816	272
82	2,112	812	219	811	270
83	2.149	823	219	824	283
84	2,124	805	212	827	280
85 .	2,120	ეიე	210	832	278
86*	2.147	808	209	851	279
87*	2.190	834	219	851	285
		Midd	lle alternative projec	tions	
88	2,158	786	226	843	303
89	2,163	783	227	846	307
90	2.163	785	228	840	310
91	2,148	781	229	825	313
92	2.124	775	229	807	313
93	2,096	764	229	790	313
94 .	2.075	755	227	780	313
9 5 .	2.068	749	226	780	313
96 .	2.068	748	225	783	312
9 7	2.079	750	224	793	312
		Lov	v alternative projecti	ions	
88	2.106	768	223	814	301
89	2,113	768	225	816	304
90 .	2,100	759	226	808	307
91	2.075	746	227	791	311
92	2.036	728	226	772	310
93	2.006	713	226	757	310
94 .	1.984	702	225	747	310
95	1.979	699	223	747	310
96	1.982	700	222	751	309
9 7	1,997	707	221	760	309
		Higl	h alternative project	ions	
88	2,210	790	244	866	, .,
89	2.231	789	246	879	11,
90	2,240	794	248	876	322
91	2.232	793	251	859	229
92	2.208	787	251	840	130
93	2,184	778	252	823	331
94	2,167	771	251	814	331
95	2,157	766	249	812	330
96	2,160	766	248	817	329
9 7	2.174	771	247	826	330

*Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates, 1986 and 1987. (This table was prepared November 1987.)

Table 17.—Graduate enrollment in all institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Van		M	en	Wo	men
Year	Total	Full-time	Part-time	Full-time	Part-time
972	1,066	268	358	126	313
973	1,123	273	375	137	340
974	1,190	276	387	151	375
975	3 م∡,∡	290	410	163	400
976	1,333	287	427	176	443
977	1,318	289	411	183	434
978	1,312	280	402	188	442
979	1,309	280	389	196	444
980	1,343	281	394	204	466
981	1,343	277	397	207	462
782	1,322	280	390	205	447
983	1,340	286	391	211	452
984	1,345	286	386	215	459
985	1,376	289	388	220	479
986*	1,392	291	381	231	488
987*	1,377	283	379	225	490
		Midd	lle alternative projec	ctions	
968	1,363	293	397	222	451
989	1,368	292	402	220	454
990	1,372	289	406	218	459
991	1,378	287	409	218	464
92	1,377	287	409	218	463
993	1,379	287	409	220	463
994	1,369	282	407	217	463
995	1,358	278	406	213	461
996	1,349	273	405	210	461
997	1,343	271	403	209	460
		Low	alternative project	ions	
988	1,353	291	395	218	449
989	1.357	288	399	217	453
990	1,363	287	404	215	457
91	1,369	285	407	216	461
992	1,366	284	406	216	460
993	1,368	284	406	217	461
994	1,359	279	405	215	460
995	1,351	276	404	211	460
996	1,340	271	402	208	459
997	1,331	268	401	205	457
		Higi	n alternative project	ions	
988	1,424	302	434	229	459
889	1,438	304	441	227	466
30	1,454	306	447	226	475
91	1,474	311	452	227	484
92	1,479	313	454	227	485
993	1,487	317	456	227	487
994	1,484	317	454	226	487
35	1.477	317	453	222	485
%	-,17(317	453 451	217	485 485
×97	1,408	319	449	216	484

[·] Er ima'e

NOTE: Projections are based on data through 1986. Because of rounding, details may not add to totals.

SOURCE U.S. Department of Education, Center for Education Statistics. Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 18.—Graduate enrollment in public institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

V		M	len	Women	
Year	Total	Full-time	Part-time	Full-time	Part-time
1972	757	182	245	87	243
973	000	185	257	95	263
974	852	189	265	106	292
075	. 906	198	283	114	311
976	931	190	287	120	334
977 .	. 900	190	267	124	319
0.20	. 894	183	258	127	326
979	. 884	182	246	133	325
000	900	180	245	137	337
001	007	177	242	138	329
000	970	180	237	136	317
001	. 870 . 872	184	235	140	317
984	. 872 . 870	182	233	140	313
985	. 870 891	181	232		333
986*	. 905			144	
987*		185	231	153	336
90/T.	890	178	228	146	338
Ogg	993		Me alternative proje		211
988	. 883	186	240	146	311
989		185	243	145	314
990		183	245	144	317
991	894	182	247	144	321
992	893	182	247	144	320
993.	894	182	247	145	320
994	888	179	246	143	320
995	881	176	245	141	319
996	876	173	245	139	319
997	871	172	243	138	318
		Lo	v alternative project	ions	
988	877	184	239	144	310
989	880	183	241	143	313
990	884	182	244	142	316
991	889	181	246	143	319
992	886	180	245	143	318
993 .	887	180	245	143	319
994	882	177	245	142	318
995	876	175	244	139	318
996	869	172	243	137	317
997 .	. 863	170	242	135	316
		Hig	h alternative project	tions	
988	922	191	263	151	317
989	. 932	193	267	150	322
990	941	194	270	149	328
991 .	954	197	273	150	334
992 .	957	198	274	150	335
993	962	201	275	150	336
994	960	201	274	149	336
995 .	955	201	273	146	335
996 .	951	201	272	143	335
997	950	202	271	143	334

*Estimate

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987.)

Van	T	M	len	Wo	men
Year	Total	Full-time	Part-time	Full-time	Part-time
972	308	86	113	39	70
973	325	88	118	42	77
974	337	87	122	45	83
975	357	92	127	49	89
976 .	402	97	140	56	109
977	416	98	144	59	115
978	418	97	144	61	116
979	424	98	144	63	119
980	442	100	147	67	128
981	456	100	155	69	132
982	453	100	153	69	131
983 .	468	103	156	71	138
984	. 476	104	156	75	142
985 .	486	108	156	76	147
986*	486	106	150	78	152
987*	487	105	151	79	152
			lle alternative projec		152
988 .	480	107	157	76	140
989	481	107	159	75	140
990	483	106	161	74 74	142
91	484	105	162	74	143
992	484	105	162	74	143
993	485	105	162	75	143
994	481	103	161	74 74	143
995	477	102	161	72	143
996	473	100	160	71	142
97	472	99	160 160	71	142
		Low	v alternative project	ions	
988	476	107	156	74	139
	477	105	158	74	140
90	479	105	160	73	141
91	480	104	161	73	142
992	480	104	161	73	142
93	481	104	161	74	142
994	477	102	160	73	142
995	475	101	160	72	142
996	471	99	159	71	142
997	468	98	159	70	141
		High	h alternative project	ions	
988	502	111	171	78	142
989	506	111	174	77	144
90	513	112	177	77	147
91	520	114	179	77	150
992	522	115	180	77	150
993	525	116	181	77	151
994	524	116	180	77	151
95	522	116	180	76	150
	519	116	179	74	150
997.	518	117	178	73	150

^{*}Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Coneges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 20.—First-professional enrollment in all institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

	-	M	len	Wσ	1
Year	Total	Full-time	Part-time	Full-time	Part-time
972	207	168	15	21	3
973	218	171	14	30	3
	236	179	15	38	4
75	242	177	15	43	7
076	244	172	18	48	6
77	251	173	18	53	7
78 <i></i>	257	175	17	58	7
79	263	176	17	63	7
80	278	181	18	70	9
81	275	175	18	73	9
82	278	174	17	78	9
83	279	169	19	81	10
184	279	166	19	83	10
85	274	162	17	84	10
86*	282	162	19	89	11
87*	273	158	17	87	11
		Midd	ile alternative proje	ctions	
88	278	165	19	85	9
89	276	163	19	84	10
90	276	163	19	84	10
91	276	163	19	84	10
92	274	161	19	84	10
93	274	161	19	84	10
94	271	159	19	83	10
95	267	156	19	82	10
96	263	154	19	80	10
97	260	152	19	79	10
		Lov	 alternative project 	ions	
988	275	163	19	84	9
89	275	163	19	83	10
90	272	161	19	82	10
91	272	161	19	82	10
92	271	160	19	82	10
93	271	1 5 9	19	83	10
94	269	158	19	82	10
95	264	154	19	81	10
96	260	152	19	79	10
97	259	151	19	79	10
		Hig	h alternative project	tions	
	289	170	21	88	10
89	291	171	21	88	11
90	291	173	21	86	11
91	294	175	22	86	11
92	295	176	22	86	11
93	299	178	22	88	11
194	298	179	22	86	11
95	295	177	22	85	11
996	294	178	22	83	11
997	294	179	22	82	11

*Estimate.

NOTE. Projections are based on data through 1986. Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 21.—First-professional enrollment in public institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

		N		Wo	men
Year	Total	Full-time	Part-time	Full-time	Part-time
972	91	76	3	10	
973	97	7¢	2	15	1
974	105	\$1	4	19	i
975 .	103	76	6	19	4
976	101	76	5	23	1
977	103	75	4	24	2
978	105	75	3	25	1
979	106	73 74	2	23 27	1
200	114	74 79	4	32	2
201					
982 .	112	75 72	3	33	2
	113	73	3	35	2
983 .	113	71	3	37	2
 	114	70	3	38	2
985	111	69	3	38	2
986*.	118	70	3	42	3
987*	. 113	68	3	39	3
		Mide	dle alternative proje	ctions	
988	116	71	3	40	2
989 .	114	7 0	3	39	2
990	114	70	3	39	2
991	114	70	3	39	2
199 2	113	69	3	39	2
993	113	69	3	39	2
994	112	68	3	39	2
	110	67	3		2
				38	
996 . 207	108	66	3	37	2
.	107	65	3	37	2
			w alternative project		
988	114	70	3	39	2
9 8 9 .	114	70	3	39	2
990	112	69	3	38	2
991 .	112	69	3	38	2
99 2	112	69	3	38	2
993 .	112	68	3	39	2
994	111	68	3	38	2
995	109	66	3	38	2
996	107	65	3	37	2
99 7	107	65	3	37	2
		Hig	h alternative projec	tions	
988	119	73	3	41	2
989	120	73	3	41	3
990 .	120	74	3	40	3
991	122	75	4	40	3
992	123	76	4	40	3
93	124	76	4	41	3
994.	124	77	4	40	3
995	123	76	4	40	3
993 996		76 76	4 .	40 39	3
	122				
99 7	122	77	4	38	3

*Estimate

NOTE: Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared Nov. micr. 1987.)

Table 22.—First-professional enrollment in private institutions, by sex and attendance status, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

Voor	T	Men		Women	
Year	Total	Full-time	Part-time	Full-time	Part-time
1972	116	92	12	11	1
973	121	92	12	15	2
974	131	98	11	19	3
975	i40	101	12	23	4
976	143	99	15	27	5
977	148	99	15	30	5
978	152	100	14	32	6
979	157	102	15	35	6
980	163	104	16	38	7
981	162	101	14	40	7
982	165	101	14	43	7
983 .	165	97	16	44	8
984	164	96	16	43	8
985	162	93	14	46	8
986* .	163	93	16	47	8
087*.	160	90	14	48	8
		Midd	lle alternative projec		
	162	94	16	45	7
989	162	93	16	45	8
	162	93	16	45	8
991.	162	93	16	45	8
992	161	92	16	45	8
93	161	92	16	45	8
194	159	91	16	44	8
995	157	89	16	44	8
996	155	88	16		
997	153	87	16	43 42	8 8
			alternative projecti		Ů
988	161	93	16	45	7
989	161	93	16	44	8
990 .	160	92	16	44	8
91 .	160	92	16	44	8
92	159	91	16	44	8
93 .	159	91	16	44	8
994	138	90	16	44	8
95 .	155	88	16	43	8
996	153	87	16	43 42	8
)97	152	86	16	42	8
		High	alternative projecti		
988	170	97	18	47	8
089 .	171	98	18	47	8
90	171	99	18	46	8,
91	172	100	18	46	5
92	172	100	18	46 46	8
93	175	102	18	46 47	8
94	173	102	18		8
95	174			46 45	
196	172	101	18	45	8
90 97	172	102 102	18 18	44	8

*Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE. U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Table 23.—Full-time-equivalent enrollment in all institutions of higher education, by level of student and type of institution, with alternative projection. 50 States and D.C., fall 1972 to fall 1997

Year	Total	Undergraduate		Graduate	First- professiona
		4-year	2-year	4-year	4-year
972	7.254	4,589	1.845	622	198
973	7,453	4,575	2,003	670	210
974	7.805	4,686	2,185	709	226
975	8,480	4,914	2,579	758	229
976	8,313	4,838	2,461	781	236
77	8,415	4,919	2.479	776	240
78	8,348	4.918	2,406	779	248
79	8,487	4.989	2,469	778	249
80	8,819	5,109	2,657	790	263
0:	9,015	5,188	2,765	801	262
82	9,092	5.194	2,841	790	266
83	9,166	5,254	2.841	805	266
84 .	8.952	5,215	2,661	814	263
85	8 943	5,204	2,649		
86*	9,039	5,221	2,710	829 842	261
87*	8.984				266
07	6.9 04	5,161	2,752	792	279
00	0.040		lle alternative proje		
88	9,068	5,248	2,728	827	265
89	9,608	5,255	2.744	827	262
90 .	9,080	5,248	2,744	826	262
91	9,008	5,203	2,717	826	262
92	8.903	5,132	2.685	826	260
93	8,803	5.053	2.662	828	260
94	8,718	4.994	2,648	819	257
95	8,678	4,970	2,645	810	253
96	8,677	4,974	2,652	802	249
97	8,713	5,004	2.664	798	246
		Lov	alternative project	tions	
88	8.865	5,111	2,672	820	262
89 .	8.887	5,118	2,689	819	261
90	8,824	5.077	2,670	819	258
91	8.707	5.002	2.626	821	258
92	8,553	4.897	2,580	819	257
93	8.441	4,807	2.557	820	257
94 .	8.350	4.743	2.539	813	255
95	8.324	4.731	2.538	805	250
96	8,332	4,740	2,550	796	246
97	8,382	4.782	2 566	789	245
		High	alternative projec	tions	
88	9.288	5.357	2,797	860	274
89	9.374	5.399	2,834	865	276
90	9,409	5,413	2.848	872	276
91	9.366	5,378	2,827	883	278
92	9,278	5,311	2,802	886	279
93	9,193	5.237	2.782	891	283
94	9,127	5.183	2.772	890	282
95	9.090	5,160	2.767	884	279
96	9 106	5,170	2.779	879	278
97	9,155	5.205	2.793	6/7	270

*Estimate

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics. Fall Enrollment in Colleges and Universities surveys and Integrated Pos secondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1986 and 1987. (This table was prepared November 1987.)

Table 24.—Full-time-equivalent enrollment in public institutions of higher education, by level of student and type of institution, with alternative projections: 50 States and D.C., fall 1972 to fall 1997

(In thousands)

Year	Total	Underg	raduate	Graduate	First- professional
		4-year	2-уеаг	4-уеаг	4-уеаг
1972	5,453	3,187	1.745	432	89
973	5,630	3,171	1.896	468	96
974	5,945	3,259	2,083	501	102
975	6.522	3.428	2,465	532	98
976	6,350	3.369	2,348	535	101
977 .	6,396	3,416	2.356	523	101
978	6.279	3. 3 87	2.272	519	101
979	6,393	3,438	2,332	519	103
980 .	6.642	3.524	2.484	522	113
981	6.781	3.576	2.573	524	110
982 .	6.851	3.597	2.629	514	110
983	6,881	3,635	2,616	520	111
984 .	6,685	3,610	2.442	522	111
985 .	6,668	3.601	2.428	529	110
986*	6,742	3.621	2,463	543	115
987*	6.701	3,555	2.514	514	118
		Midd	lle alternative proje	ctions	
	6.785	3.637	2.503	531	114
189	6,805	3,643	2.519	531	112
90	6.800	3,638	2.520	530	112
91	6.745	3,607	2.495	531	112
92 .	6.665	3,557	2.466	531	111
93	6.592	3.503	2.446	532	111
94 .	6.534	3.463	2.434	527	110
95	6.504	3.446	2.429	521	108
96	6.507	3.448	2.437	516	106
97	6.535	3.470	2.447	513	105
		Lov	alternative project	ions	
88	6.635	3.543	2.454	526	112
89	6.655	3.548	2.469	526	112
90	6.608	3.520	2.452	526	110
91	6.519	3.468	2.413	528	110
92	6,405	3,396	2.373	526	110
93	6.322	3.334	2.351	527	110
94	6.256	3.289	2.336	522	109
95	6.240	3,281	2.335	517	107
96	6.248	3,287	2 345	511	105
97	6.286	3.316	2.358	507	105
		High	alternative project	ions	
88	6,950	3.713	2.568	552	117
89	7.019	3.743	2.603	556	117
90	7.045	3.753	2,616	559	117
91	7.012	3.728	2.599	566	119
92	6.948	3.683	2 577	568	120
93	6.883	3.632	2,558	572	121
94	6,833	3.594	2.548	570	121
95	6.811	3.579	2,545	567	120
96	6.823	3.586	2.555	563	119
97	6.859	3,609	2.567	564	119

*Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates, 1986 and 1987 (This table was prepared November 1987)

Year	Total	Undergraduate		Graduate	First- professiona
		4-year	2-year	4-year	4-year
972	1,801	1,402	100	190	109
773	1,824	1,404	107	202	114
74	1,861	1,427	102	208	124
75	1,957	1,486	114	226	131
76	1.963	1,469	113	246	135
77	2,019	1,503	123	253	139
78	2.069	1.531	134	259	146
79	2,095	1,551	137	259	146
80	2,177	1,585	173	268	150
81	2,233	1,612	192	277	152
82	2,241	1,597	212	276	156
83	2.285	1,619	225	285	
84	2,267	1,604			155
85			219	292	152
86*	2.276	1,603	221	300	151
	2,297	1,600	247	299	151
87*	2.287	1,606	238	278	160
		Midd	lle alternative proje	ections	
88 .	2.282	1.011	224	296	151
89	2.284	1.013	225	296	150
90	2,280	1.610	225	295	150
91	2,263	1,596	222	295	150
92	2,238	1,575	219	295	149
93	2,211	1,550	216	296	149
94	2,185	1,531	214	293	147
95	2,173				
96 .		1,524	215	289	145
97	2,169 2,178	1,525 1,535	215 217	286	143 141
,	2,176			285	141
88	2 220		alternative projec		150
	2.230	1,568	219	293	150
89	2,232	1,570	220	293	!49
90	2.216	1.558	217	293	148
91	2,187	1.534	213	292	148
92	2,148	1.501	208	292	147
93	2,119	1,473	206	293	147
94	2,094	1.454	204	290	146
95	2.084	1,450	203	288	143
96	2.084	1 453	205	285	141
97	2,095	1,466	207	282	140
		Hig	h alternative projec	tions	
88	2,337	1,643	229	308	157
39	2.354	1.656	231	309	158
90	2.362	1,660	232	312	158
91	2,354	1.650	229	316	159
92	2,331	1.628	226	318	159
93	2,310	1,605	224	319	162
94	2,293	1,589	224	319	161
95	2.281	1.581	223	318	159
96	2.282	1.584	224	315	159
97	2,296	1,596	226	315	159

^{*}Estimate

NOTE Projections are based on data through 1986 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education. Center for Education Statistics, Fall Enrollment in Colleges and Universities surveys and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates. 1986 and 1987 (This table was prepared November 1987)

Chapter 3

Public High School Graduates

The number of children born 18 years earlier is an excellent indicator of the number of public high school graduates (figure 20), althougn other factors may influence the number of graduates (for example, education reforms). For the period 1972-73 to 1986-87, estimating public high school graduates as 65 percent of births 18 years earlier would have been within 3 percent of the actual number each year. This is true despite all the changes that have taken place in public schools during this decade. Although many factors influence graduation rates, the net cumulative effect has been remarkably stable over the past 15 years (figure 21).

When the number of public high school graduates as a percent of the 18-year-old population is compared with graduates as a percent of births 18 years earlier (table 26), some interesting things emerge. First, as expected, there is a similarity between the two. Both decrease until the middle of the period, and then both increase until the end. Second, from 1972-73 to 1978-79, public high school graduates as a percent of births was less than public high school graduates as a percent of the 18-year-old population. However, by 1979-80 the situation had reversed. The 18-year-old population became greater than the number of births 18 years earlier. Immigration is apparently the reason.

The number of public high school graduates rose from 2.730 million in 1972-73 to an all-time high of 2.840 million in 1976-77 (table 26). The number then fell for

the next 9 years, just as the number of births had 18 years before (from 1959 to 1967). Following an increase in 1986-87, the National Center for Education Statistics (NCES) forecasts increases in 1987-88 and 1988-89. The number of public high school graduates will then decrease to 2.243 million in 1991-92, its lowest point since 1965. Then just as the number of births increased from 1974 to 1979, the number of graduates will increase to 2.547 million in 1997-98.

Public high school graduates as a percent of the 18-year-old population decreased from 68.1 percent in 1972-73 to 64.0 percent in 1979-80 (table 26). It increased to 64.9 percent in 1981-82, dropped to 64.1 the following year, then it rose to 67.1 in 1986-87. NCES forecasts that public high school graduates as a percent of the 18-year-old population will increase steadily from 66.8 percent in 1987-88 to 70.4 percent in 1997-98 (figure 21).

The reader is cautioned against concluding that only 66 percent of American children complete high school. Although insufficient data exist for NCES to calculate forecasts of private high school graduates it is estimated that the number of private high school graduates is about 11 percent of public high school graduates. When these estimates of private high school graduates are added to the public high school graduates, total high school graduates as a percent of the 18-year-old population is about 74 percent for 1986-87

6.

47

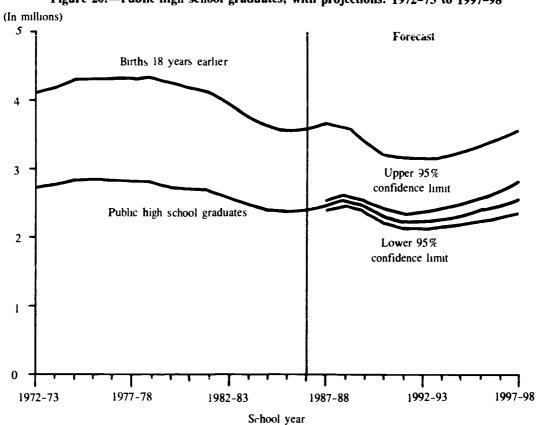
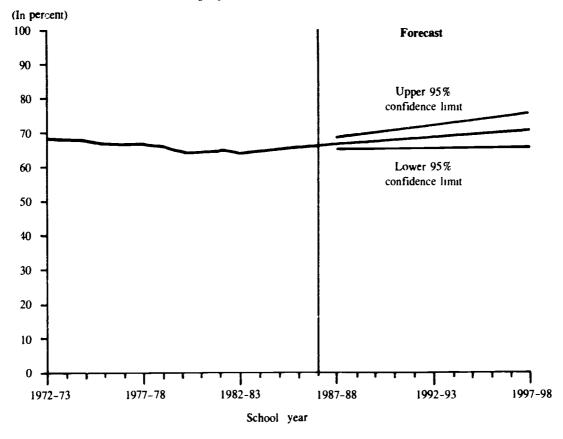



Figure 20.—Public high school graduates, with projections: 1972-73 to 1997-98

Figure 21.—Public high school graduates as a percent of the mean number of 17- and 18-year-olds, with _cojections: 1972-73 to 1997-98

Year	High school graduates	18-year-cld population	Births lagged	High school as a per	
	N	Numbers, in thousands			Births lagged 18 years
1972-73	2.730	4.007	4.115	68 1	66 3
1973-74	2,763	4.074	4.186	67.8	66 0
974-75	2.823	4,179	4.288	67.6	65 8
975 -76	2.837	4.265	4.306	66 5	65 9
976–77	2,840	4.271	4.296	66 5	66 1
977-78	2,825	4.263	4.310	66 3	65 5
978-79	2.817	4.296	4.312	65 6	55 3
979-80	2.748	4,296	4.265	64 0	64 4
980-81	2.725	4.234	4.178	64.4	65 2
981-82	2.705	4.170	4 106	64 9	65 9
982-83	2.598	4.055	3.936	64 1	66 0
983-84	2.495	3.862	3.722	64 6	67 0
984-85	2.414	3.706	3.599	65 1	67 1
985-86	2.382	3.619	3.545	65 8	67 2
986-87	³ 2.428	3.618	3,581	67 1	67 8
			Forecast		
987-88	2.468	3.696	3.683	66 8	67 0
988-89	2.536	3.777	3.648	67 1	69 5
989-90	2.472	3.662	3.407	67.5	72 5
990-91	2,520	3.418	3.198	67 9	72 5
991-92	2.243	3.287	3.149	68 2	71.2
992-93	2.254	3.287	3.152	68 6	71.5
993-94	2,274	3.298	3.156	69 0	71 3
994 -95	2.321	3.348	3.248	69 3	71.5
995-96	2.393	3.434	3.330	69 7	71 9
996 -97	2.452	3.501	3.414	70 0	71 9
99 7-98	2.547	3.618	3.553	70 4	71.7

¹The number of 18-year-olds at their nearest birthday was computed as the average of the 17- and 18-year-old population

3Estimate

SOURCES U.S. Department of Education, Center for Education Statistics, Common Core of Data survey. U.S. Department of Commerce, Bureau of the Census, Current Population Reports. Series P-25. (This table was prepared. December, 1987.)

²The number of births 18 years earlier was calculated as the average of the number of births 17 and 18 years earlier

Chapter 4

Earned Degrees Conferred

Over the past 15 years, the number of degrees awarded increased at all levels. Most notable is the rise in number of degrees awarded to women. For each degree level, the number of degrees awarded to men declined. In contrast, the number of degrees awarded to women increased greatly during the 1970s and 1980s. In 1986-87, women earned the majority of associate, bachelor's, and master's degrees and one-third of doctor's and first-professional degrees.

and figure 28). This number then fell to 284,000 in 1983-84 before rising to 291,000 in 1986-87. From 1986-87 to 1997-98, this number is expected to remain stable at around 290,000. Again, women represented an increasing share of master's degrees awarded, rising from 41 percent in 1972-73 to 51 percent in 1986-87. This proportion is expected to reach 52 percent by 1997-98 (figures 29 ar 30).

Associate Degrees

Between 1972-73 and 1986-87, the number of associate degrees rose more than 35 percent, from 316,000 to 427,000 (table 27 and figure 22). The number is expected to decrease to 408,000 by 1997-98. While the number of associate degrees awarded to men is projected to fall 6 percent by 1997-98, those awarded to women by 1989-90 will increase before decreasing to 232,000 by 1997-98, a 3 percent decline from 1986-87 (figures 23 and 24).

Bachelor's Degrees

The number of bachelor's degrees rose from 922,000 in 1972-73 to 987,000 in 1986-87, an increase of 7 percent (table 28 and figure 25). This number is expected to fall 7 percent to 916,000 by 1997-98. While the number of bachelor's degrees awarded to men feil between 1972-73 and 1986-87, the number awarded to women rose 27 percent (figures 26 and 27). The proportion awarded to women rose from 44 percent in 1972-73 to more than 50 percent in 1986-87. For the rest of the 1990s, more than half of the bachelor's degrees are projected to be awarded to women.

Master's Degrees

The number of master's degrees awarded increased in the mid-1970s, peaking at 317,000 in 1976-77 (table 29

Doctor's Degrees

The number of doctor's degrees decreased slightly from 34,800 in 1972-73 to 34,200 in 1986-87 (table 30 and figure 31). Over the projection period, this number is expected to increase from 34,209 in 1986-87 to 34,700 in 1997-98. Most notable are the contrasting trends between men and women. While the number of degrees awarded to men fell from 28,600 in 1972-73 to 22,100 in 1986-87, the number of degrees awarded to women rose 95 percent, from 6,200 to 12,100 for the same period (figures 32 and 33). In the 1990s, this pattern is expected to continue. The share of doctor's degrees awarded to women, which was 18 percent in 1972-73 and 35 percent in 1986-87, is projected to climb to 46 percent by 1997-98.

First-Professional Degrees

The number of first-professional degrees awarded rose from 50,000 in 1972-73 to 73,700 in 1986-87, an increase of 47 percent (table 31 and figure 34). While the number of degrees awarded to men declined, the women's proportion rose from 7 percent in 1972-73 to 35 percent in 1986-87 (figures 35 and 36) By 1997-98, this proportion is expected to be 43 percent

(In thousands)

Projected

Projected

200
100
1973 1978 1983 1988 1993 1998

Year ending

Figure 22.—Associate degrees, with projections: 1972-73 to 1997-98

Figure 23.—Associate degrees awarded to men, with projections: 1972-73 to 1997-98

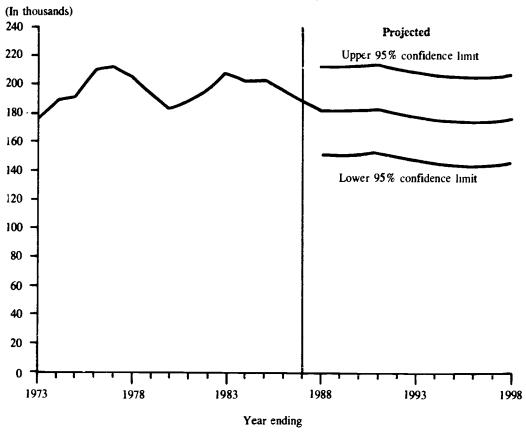
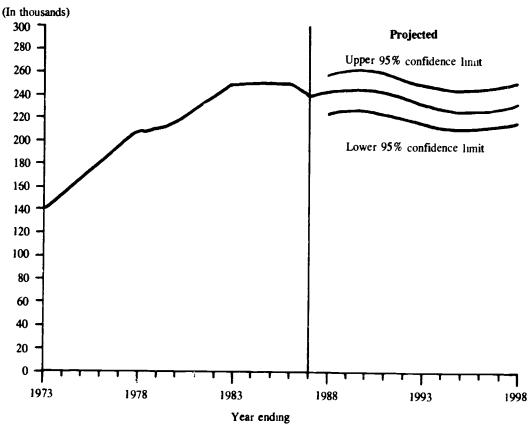



Figure 24.—Associate degrees awarded to women, with projections: 1972-73 to 1997-98

(In millions) 1.2 Projected 1.1 1.0 0.9 0.8 0.7 მ.6 0.5 0.4 0.3 0.2 0.1 0 1993 1998 1978 1983 1988 1973 Year ending

Figure 25.—Bachelor's degrees, with projections: 1972-73 to 1997-98

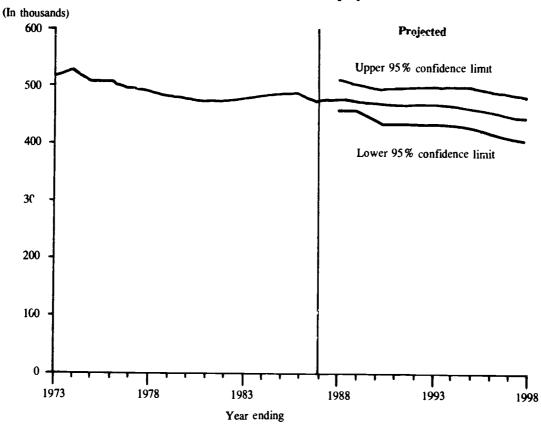
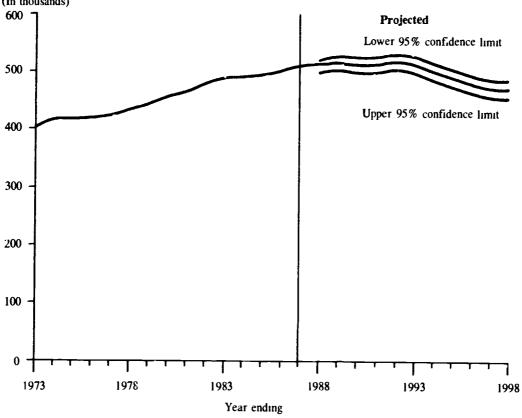



Figure 27.—Bachelor's degrees awarded to women, with projections: 1972-73 to 1997-98 (In thousands)

(In thousands) 400 7 Projected 0 Year ending

Figure 28.—Master's degrees, with projections: 1972-73 to 1997-98

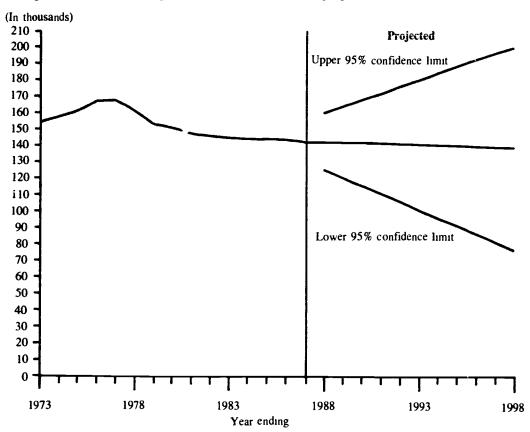
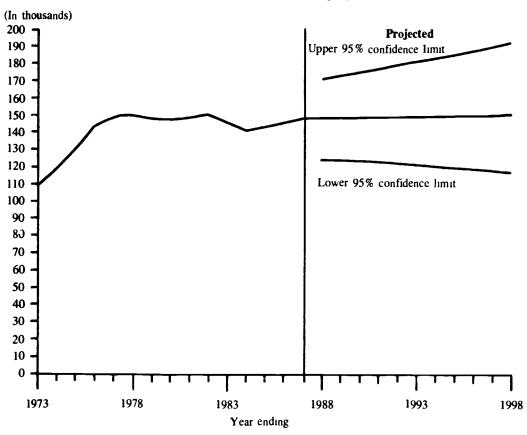



Figure 29.-Master's degrees awarded to men, with projections: 1972-73 to 1997-98

70

(In thousands)
50
40
40
20
10
1973
1978
1983
1988
1993
1998
Year ending

Figure 31.—Doctor's degrees, with projections: 1972-73 to 1997-98

Figure 32.—Doctor's degrees awarded to men, with projections: 1972-73 to 1997-98

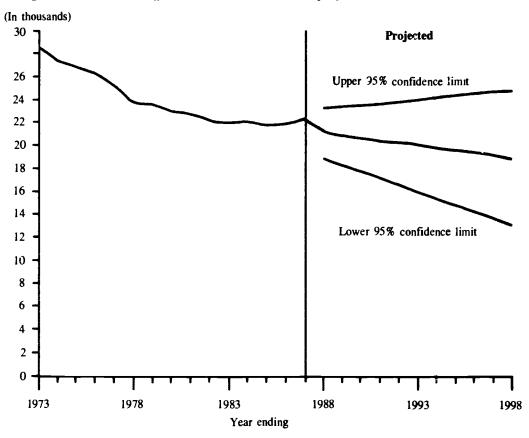
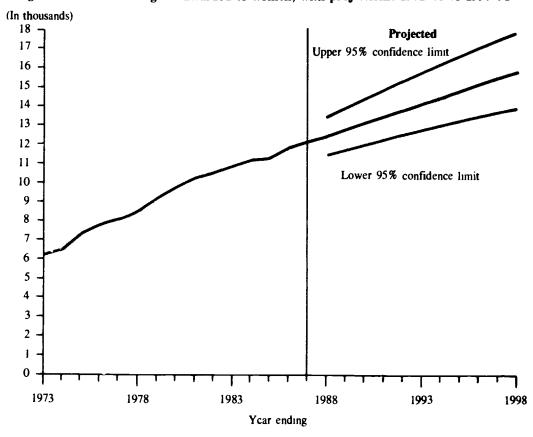



Figure 33.-Doctor's degrees awarded to women, with projections: 1972-73 to 1997-98

(In thousands) Projected

Year ending

Figure 34.—First-professional degrees, with projections: 1972-73 to 1997-98

Figure 35.—First-professional degrees awarded to men, with projections: 1972-73 to 1997-98

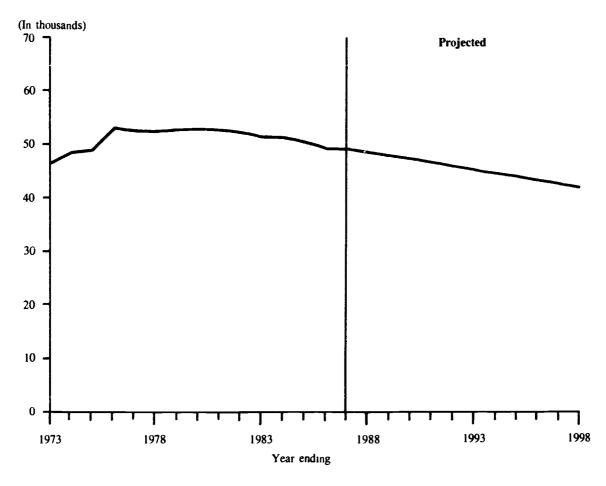


Figure 36.—First-professional degrees awarded to women, with projections: 1972-73 to 1997-98

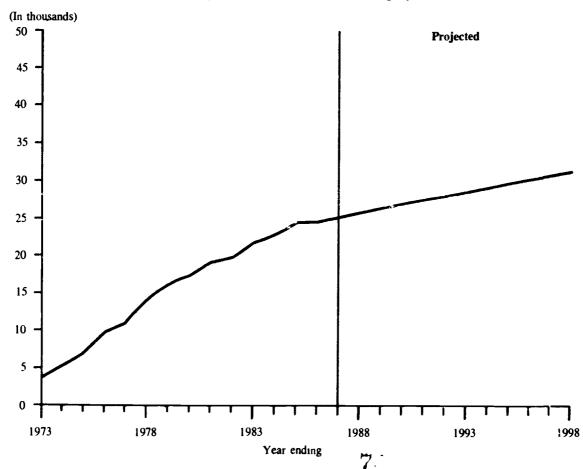


Table 27.—Associate degrees, by sex of recipient, with projections: 50 States and D.C., 1972-77 to 1997-98

Year	Total	Men	Women
972-73	316,174	175,413	140,761
973-74	343,924	188,591	155,333
974-75	360,171	191,017	169,154
975-76	391,454	209,996	181,458
976-77	406,377	210,842	195,535
977-78	412,246	204,718	207,528
978-79	402,702	192,091	210,611
979-80	400,910	182,737	217,173
980-81	416,377	188,638	227,739
981-82	434,515	196,939	237,576
982-83	456,441	207,141	249,300
983-84	452,416	202,762	249,654
984-85	454,712	202,932	251,780
985-86	446,047	196,166	249,881
986-87*	. 427,000	188,000	240,000
		Projected	
987-88	424,000	182,000	242,000
988-89	425,000	181,000	244,000
989-90	427,000	182,000	245,000
990-91	426.000	183,000	243,000
991-92	417,000	180,000	237,000
992-93	410,000	178,000	232,000
9 93-94	404,000	176,000	228,000
994-95	402,000	175,000	227,000
995-96	401,000	174,000	227,000
996-97	404,000	175 ,∂ 00	229,000
997-98	408,000	176,000	232,000

*Estimate

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Year	Total	Men	Women
1972-73	922,362	518.191	404,171
973-74	945,776	527,313	418,463
974-75 .	922,933	504.841	418,092
975 -76	925,746	504,925	420,821
9 76-77	919,549	495,545	424,004
9 77-78	921,204	487.347	433,857
978-79 .	921.390	477,344	444.046
979-80 .	929,417	473,611	455,806
980-81 .	935,140	469,883	465,257
981-82	952,998	473,364	479,634
982-83	969,510	479.140	490,370
983-84	974,309	482,319	491,990
984-85	979,477	482,528	496,949
985-86	987,823	485,923	501,900
986-87*	987,000	475,000	512,000
		Projected	
987-88 .	. 989,000	474,000	515,000
988-89	989.000	472,000	517,000
9 89 -90	984,000	471,000	513,000
990-91	981,000	467,000	514,000
991-92	984,000	466,000	518,000
992-93	981,000	467,000	514,000
993-94	969,000	465,000	504,000
994-95	954,000	462,000	492,000
995-96	937.000	456.000	481 000
996-97	923,000	450,000	473,000
997-98	916.000	445,000	471,000

*Estimate

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987.)

Table 29.—Master's degrees, by sex of recipient, with projections: 50 States and D.C., 1972-73 to 1997-98

Year	Total	Men	Women
1972-73	263,371	154.468	108,903
1973-74	277.033	157 842	119,191
1974- ⁷ 5	292.450	161,570	130,880
1975-76	311,771	167,248	144,523
1976-77	317,164	167.783	149 381
1977-78	311.620	161,212	150,408
978-79	301.079	153,370	147,709
979-80	298,081	150.749	147,332
1980-81	295.739	147,043	148,696
	295,546	145.532	150,014
1982-83	289,921	144.697	145,224
983-84	284,263	143.595	140.668
984-85	286,251	143,390	142.861
985-86	288.567	143 508	145,059
986-87*	291,000	142,000	148.000
		Projected	
987-88	290,000	142,000	148,000
988-89	290,000	142,000	148,000
1989-90	290,000	142,000	148,000
1 990 -91	289,000	141 000	148,000
1 99 1-92	290,000	141,000	149,000
1 99 2-93	289,000	140.000	149,000
1993-94	289.000	140.000	149,000
1 994 -95	290,006	140.000	150.000
1995-96	289.000	139,000	150,000
1 996 -97	289,000	139,000	150,000
1 99 7-98	290.000	139.000	151,000

^{*}Estimate

NOTE: Projections are based on data through 1985-86. Because of rounding, details may not add to totals

SOURCE U S Department of Education. Center for Education Statistics. Degrees and Other Formal Awards survey and Integrated Postsecondary Education Data System (IPEDS). Sample Survey of Early National Estimates. 1987 (This table was prepared November 1987)

Year	Total	Men	Women
1972-73	34,777	28.571	6,206
1 973 -7 4	33,816	27,365	6,451
974-75 .	. 34,083	26,817	7,266
975-76	34,064	26,267	7,797
976-77	33,232	25,142	8,090
977-78	32,131	23,658	8.473
978-79 .	32,730	23,541	9,189
979-80	32,615	22,943	9,672
980-81	32,958	22,711	10,247
981-82	32.707	22.224	10,483
982-83	32,775	21,902	10,873
983-84	33,209	22,064	11,145
984-85	32,943	21,700	11,243
985-86	33,653	21,819	11,834
986-87* .	34,200	22,100	12,100
		Projected	
987-88	33,500	21,100	12,400
988-89	. 33,600	20.800	12,800
989-90 .	33,700	20.600	13,100
990-91 .	33,900	20.400	13.500
991-92	34,000	20,200	13,800
992-93	34,200	20,000	14.200
993-94 .	34,200	19,700	14,500
994-95	34,400	19.500	14,900
995-96 .	34,500	19.300	15,200
996-97 .	34,700	19,100	15,600
997-98	34,700	18,800	15.900

*Estimate

NOTE Projections are based on data through 1985-86 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Table 31.—First-professional degrees, by sex of recipient, with projections: 50 States and D.C., 19?2-73 to 1997-98

Year	Total	Men	Women
1972-73	50,018	46,489	3,529
1973–74	53,816	48,530	5,286
974–75	55,916	48.956	6,960
975-76	62,649	52,892	9,757
976–77	63,3 5 9	52,374	10.985
977-78	66,581	52,270	14,311
978–79	58,848	52,652	16,196
979-80	70,131	52,716	17,415
980-81	71.956	52,792	19,164
981-82	72,032	52,223	19,809
982–83	73,136	51,310	21.826
983-84	74,407	51,334	23.073
984-85	75,063	50,455	24,608
985–86	73,91 0	49,261	24,649
986–87*	73.700	48,100	25,700
		Projected	
987-88	74,400	48,600	25,800
988-89	74,300	47,900	26,400
989-90	74,300	47,300	27,000
990-91	74,200	46,700	27,500
991-92	74,100	46,000	28,100
992–93	74,100	45,400	28,700
993-94	73,900	44,700	29,200
994–95	73,900	44,100	29,800
995-96	73,900	43,500	30,400
996–97	73,700	42,800	30,900
997-98	73,700	42 ,200	31,500

*Estimate.

NOTE: Projections are based on data through 1985-86 Because of rounding, details may not add to totals

SOURCE U S Department of Education, Center for Education Statistics, Degrees and Other Formal Awards survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Public Classroom Teachers

Three alternative forecasts of public classroom teachers were calculated for this publication: high, middle, and low. These alternatives were based on different assumptions about the growth in revenue receipts from State sources. The slowest growth (from 1.3 to 1.9 percent) was assumed for the low alternative. A growth rate of 2.9 was used for the middle alternative. The high alternative contained the most optimistic assumption for the growth rate (4.8 percent) in revenue receipts from State sources. The same assumptions were used to generate the alternative forecasts for elementary and secondary school expenditures and average teacher salaries.

Elementary and Secondary School Teachers

The relationship between the number of teachers and the number of pupils in public schools is not as direct as might be imagined. While it is generally true that as enrollment increases so does the number of teachers, it is not true as a rule that as enrollment decreases so does the number of teachers. The reasons for this are varied but include factors such as class size policies and special education.

The number of classroom teachers increased from 2.103 million in 1972 to 2.209 million in 1977 (table 32), despite an enrollment decline of 2.167 million students over the same period. From 1977 to 1982 the number of teachers decreased to 2.110 million. Following this came successive increases to 2.243 million in 1986. Enrollments, however, were still falling, but bottomed out in 1984 and then began rising again. The National Center for Education Statistics (NCES) forecasts that the number of teachers, like enrollments, will continue to increase from 1987 to 1997 (figure 37).

Elementary School Teachers

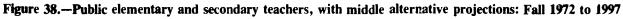
The number of classroom teachers in public Liementary schools rose from 1.140 million in 1972 to 1.190

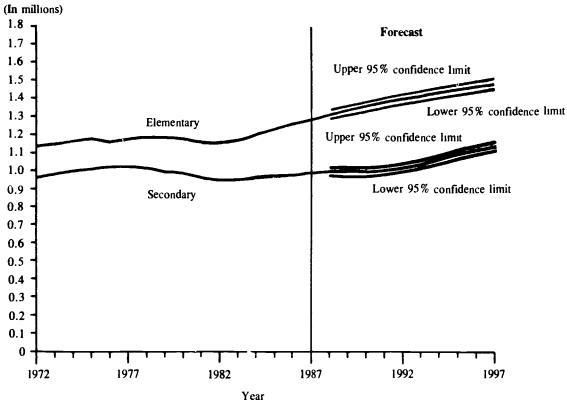
million in 1978 and 1979 (table 32). It fell to 1.155 million in 1981 but then rose again to 1.267 million in 1986. However, enrollment decreased during the period 1972 to 1982, and then began increasing again.

NCES forecasts a continued climb in the number of elementary teachers just as enrollment will increase. However, under both the middle and the low alternatives, the teacher-pupil ratios will decline at the beginning of the forecast period, before increasing again towards the mid-1990s (figure 39). All three alternatives project the number of elementary teachers reaching all-time highs in 1997 (figure 37), ranging from 1.433 million under the low alternative, to 1.587 million under the high alternative.

Secondary School Teachers

As secondary enrollments increased from 18.421 million in 1972 to 19.151 million in 1975, the number of secondary teachers increased from 963,000 to 1.016 million (table 32). However, when secondary enrollments started decreasing in 1976, the number of teachers continued to increase, reaching a peak of 1.024 million 2 years later. From 1978 to 1982, both enrollments and the number of teachers decreased in secondary schools, but the teacher-pupil ratios continued to rise (figure 39). In 1983 and 1984 the number of teachers rose by 13,000 while enrollments declined by 631,000. Two years of increases followed in 1985 and 1986 for both enrollments and teachers.


Enrollments are expected to fall from 15.078 million in 1987 to 14.457 in 1990 at which point they are expected to rise again, reaching 16.637 million in 1997. All three alternatives project similar patterns for the number of teachers (figure 37). Under the middle alternative, the number of teachers is expected to increase from 992,000 in 1987 to 994,000 in 1989, followed by successive increases to 1.134 million in 1997 (figure 38). The low alternative forecasts decreases from 992,000 in 1987 to 981,000 in 1990. Under the high alternative, from 1987 to 1988 the number of teachers decreases slightly and then increases to 1.200 million in 1997.


67

(In millions) 3.0 Forecast High 2.8 Middle 2.6 Low 2.4 Total 2.2 2.0 1.8 High 1.6 Middle 1.4 Low Elementary High 1.2 Middle Low 1.0 0.8 Secondary 0.6 0.4 0.2 0 1972 1977 1982 1987 1992 1997

Figure 37.—Public classroom teachers, with alternative projections: Fall 1972 to 1997

Year

81



Figure 39.—Public elementary and secondary teachers per 1,000 pupils, with alternative projections:

Demand For New-Hiring of Teachers

Interest in the supply and demand for public elementary and secondary teachers increased in the past several years. NCES does not have sufficient data for a detailed teacher supply and demand analysis. A discussion of problems involved in accomplishing this analysis is in *Toward Understanding Teacher Supply and Demand, Priorities for Research and Development, Interim Report*, National Academy Press. According to this report, the number of teachers employed is nearly equal to total teacher demand. Given this assumption and an assumption about future teacher turnover, it is possible to calculate the demand for new-hiring of teachers. This is the number of teachers, not already in the classroom, that schools will need to hire, if these forecasts are correct.

The reader is cautioned in using this data to determine future teacher shortages or surpluses. According to the National Academy of Sciences report, newly hired teachers come from many sources: "experienced teachers on leave last year or recalled from layoffs; experienced teachers out of teaching for longer periods; substitute teachers; in-migrants . . .; new g aduates of teacher training programs; other new graduates who obtain certification; and persons hired on emergency certificates." Any attempt to use just one of these components of supply, such as new teacher graduates, will greatly underestimate supply and consequently overestimate a shortage.

For this study the demand for new-hiring of teachers is partitioned into three parts. The first part is the demand due to turnover, such as retirement or job changes. According to unpublished tables from the Bureau of Labor Statistics, the turnover rate for teachers has been decreasing since 1977-78. For elementary teachers, it fell from 7.6 percent to 4.9 percent in 1983-84. Secondary teacher turnover fell from 7.7 percent to 5.6 percent. For the purposes of calculating the demand for new-hiring of teachers, these most recent rates were used.

The second part is the demand for new-hiring due to enrollment changes, assuming that teacher-pupil ratios remain constant. The third part is the demand for new-hiring due to other factors. In previous editions of *Projections* this third part was called the demand for additional teachers for teacher-pupil ratio changes. However, teacher-pupil ratio changes do not happen independently; they in turn are caused by other factors, such as changing class size policies, changes in approaches to special education, and budget considerations. Since these and possibly other factors are the rea' cause of these changes in demand, this component has seen renamed.

The demand for new-hiring of public elementary and secondary teachers is projected to fall from 155,000 in 1988 to 140,000 in 1989 (table 33). It will rise steadily from 143,000 in 1990 to 174,000 in 1995. No change is predicted from 1995 to 1996, but the demand for new-hiring of teachers is projected to decrease slightly in 1997

to 171,000. The increase in total demand for new-hiring of teachers in the latter part of the forecast period is due mainly to the increases projected for the secondary teachers, since demand for elementary teachers is projected to be relatively stable.

Although the total demand for new-hiring of elemenary teachers is not expected to change much, the situation for the three components is different. New-hiring due to elementary turnover rises from 63,000 in 1988 to 72,000 in 1997, an increase of about 14 percent. The amount due to enrollment changes is forecast to fall from a high of 25,000 in 1990 to a negative 3,000 in 1997. Note that the projected enrollment is increasing throughout this period (except for 1997). However, the amount by which the enrollment increases is decreasing (except for 1990). The demand for new-hiring of elementary teachers due to other factors is small for the period 1988 to 1993, no more than 10 percent. The later

years show rises from 14 percent in 1994 to 21 percent in 1997.

The demand for new-hiring of secondary teachers is projected to decrease from 60,000 in 1988 to 53,000 in 1989. It will then increase until 1995, reaching a projected high of 86,000, and then decrease slightly in 1996 and 1997. New-hiring due to teacher turnover is projected to be stable at about 56,000 from 1988 to 1992. Then it is projected to rise steadily, reaching 62,000 in 1997. The demand for new-hiring of secondary teachers due to enrollment changes starts at negative 25,000 in 1988, increases to 30,000 in 1994, and then decreases to 16,000 in 1997. The third component, that due to other factors, is relatively small for most of the forecast period. It is 29,000 in 1988 or 49 percent of the total. In 1989 it is 27 percent of the total, but then for the remaining 8 years it is less than 10 percent of the total demand for new-hiring of secondary teachers.

Table 32.—Classroom teachers and teachers per 1,000 pupils in public elementary and secondary schools, with alternative forecasts: 50 States and D.C., fall 1972 to fall 1997

	10	etal	Eleme	entary	Secondary		
Year	Number in thousands	Teachers per 1,000 pupils	Number in thousands	Teachers per 1,000 pupils	Number 11 thousands	Teachers per 1,000 pupils	
1972	2,103	46 0	1,140	41 7	963	52 3	
1973	2,133	47 0	1.149	43 5	984	51.8	
1974	2 165	48 1	1.167	44 2	9 98	53 5	
1975	2,196	49 0	1,180	46 0	1 016	53 1	
1976	2.186	49 3	1,166	45 9	1 020	54 0	
1977	2,209	50 7	1 185	47 5	1 + 24	55 0	
1978	2.206	518	1,190	47 6	1.016	57 9	
1979	2 183	52 4	1,190	48 5	993	58 1	
1980	2,162	52 7	1,177	48 7	985	58 5	
1981	2,117	52 8	1,155	48 5	962	59.1	
1982	2,110	53.2	1,165	48 8	945	59 9	
1983	2,126	54 0	1,178	49 1	948	61 8	
1984	2,168	55 2	1,205	<u>70</u> 9	963	63 6	
1985 .	2,207	55 9	1,237	50.9	970	63 7	
19 86 .	2 243	56 3	1,267	52 3	970 977	62 4	
1987*	2.276	56 6	1.284	51 3	992	65 5	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,270	30 0			992	03 3	
			Middle altern				
1988	2,313	57 4	1,316	51 6	997	67 5	
1989	2.333	57 8	1,339	51 8	994	68 5	
1990	2.355	57 8	1,360	51 7	995	68 8	
1991	2.381	57 7	1,378	51 7	1.003	68 4	
1 99 2	2.419	57 8	i,398	52 0	1.020	68 2	
1993 .	2.459	57 9	1.418	52 3	1,041	67 9	
1994	2.500	58 1	1,436	52 7	1.064	67 4	
1995	2 544	58 6	1 453	53 2	1.091	67 6	
1996	2.585	59 1	1,472	53 8	1,114	67 9	
1 99 7	2.622	59 6	1.488	54 5	1,134	68 2	
			Low alternat	ive forecasts			
1988	2.294	57 0	1,305	51 2	989	67 U	
1989	2.307	57 2	1,323	51 2	983	67 7	
1990	2.321	56 9	1.339	50 9	981	67 9	
1991 .	2.340	56 7	1,354	50 8	986	67.3	
1992	2.370	56 6	1,369	50 9	1.001	66 8	
1993	2,403	56 6	1,384	51 1	1.019	66 4	
1994	2,435	56 6	1,397	51 3	1.038	65 8	
1995	2,471	56 9	1,410	51 6	1 061	65 8	
1996 .	2,504	57 2	1,423	52 0	1,081	65 9	
1997	2,531	57 6	1,433	52 5	1.097	65 9	
			High alternat				
1088	2 226	50.0	~		1.004	40 1	
1988 1989	2,336	58 0 58 7	1,330	52 1 52 7	1.006	68 1	
	2.368	58 7	1.360	52 7 53 8	1 008	69 4	
1990	2.403	59 0	1.389	52 8	1.014	70 2	
1991	2,444	59 2	1,416	53 1	1,028	70 1	
1992	2.495	59 6	1,444	53 7	1.051	70 2	
1993	2.552	60 1	1.473	54 3	1,079	70 3	
994	2,609	60 7	1,501	55 1	1,108	70 2	
995	2.670	61 5	1,529	56 0	1,141	70 8	
1996	2.730	62 4	1.558	56 9	1,172	71 4	
1997	2.787	63 4	1.587	58 1	1,200	72 1	

^{*}Estimate

GOURCES U.S. Department of Education, National Center for Education Statistics, Statistics of Public Elementary and Secondary Schools U.S. Department of Education, Center for Education Statistics, Common Core of Data survey National Education Association, Estimates of School Statistics (This table was prepared December 1987)

Table 33.—Projected demand for new-hiring of classroom teachers in public elementary and secondary schools, 50 States and D.C., fall 1988 to fall 1997

(Middle alternative forecasts in thousands)

				Teacher	Demand for new-hire teachers				
Year	Enrollment	Teachers	Enrollment			Due to			
			changes	changes	Total	Turnover	Enrollment changes	Other factors	
			Pul	olic elementar	y and secon	dary			
1988	40,280	2,313	80	37	155	118	(1)	38	
1989	40,337	2.333	57	20	140	120	(1)	21	
1990	40 752	2,355	415	22	143	121	21	2	
991	41,306	2.381	554	27	149	122	32	(5)	
992	41.879	2.419	573	<i>ა</i> 7	161	124	35	2	
993	42,444	2.459	565	41	166	126	35	5	
994	43.614	2.500	570	41	169	128	37	4	
995	43,442	2.544	428	44	174	130	28	16	
996	43.775	2,585	333	41	174	132	22	20	
997	43.960	2.622	185	37	171	134	13	24	
				Public ele	ementary				
988	25,510	1.316	457	32	95	63	23	9	
989	25.822	1 339	312	23	87	64	16	7	
990	26 295	1.360	473	21	87	66	25	(4)	
991	26.643	1,378	348	19	85	67	18	1	
992	26.906	1.398	263	20	87	68	14	6	
993	27,106	1.418	200	20	88	69	10	9	
994	27.231	1.436	125	18	88	69	7	12	
995	27 31o	1.453	85	18	88	70	4	13	
996	27,373	1.472	57	18	89	71	3	15	
99 7	27.323	1.488	(50)	16	89	72	(3)	19	
				Public se	condary				
988	14 770	99 7	(377)	4	60	56	(25)	29	
989	14.515	994	(255)	(3)	53	56	(17)	14	
990	14,457	995	(58)	1	57	56	(4)	5	
991	14.663	1.003	206	8	64	56	14	(6)	
992	14.973	1,020	310	18	/4	56	21	(4)	
993	15 338	1.041	365	2!	78	57	25	(4)	
994	15,783	1.064	445	23	81	58	30	(7)	
995	16 126	1 091	343	26	86	60	23	3	
996	16.402	1 114	276	23	84	61	19	4	
997	16,637	1,134	235	20	83	62	16	4	

NOTE Negative numbers in parentheses

SOURCES U.S. Department of Education. National Center for Education S atistics, Statistics of Public School "vistems" U.S. Department of Education, Center for Education Statistics. Common Core of Data survey National Education Association, Estimates of School Statistics (This table was prepared December 1987.)

Instructional Faculty

From 1975 to 1987, the number of instructional faculty (excluding graduate assistants) increased faster than total college enrollment. The number of instructional faculty rose 15 percent, from 628,000 to 722,000 (table 34 and figure 40). Over the same period, total college enrollment rose 12 percent. The increase in faculty was due to an increase in the proportion of part-time instructors employed in institutions of higher education. This proportion rose from 30 percent in 1975 to 36 percent in 1987.

Instructional faculty is projected to increase slightly to 726,000 in 1989 and 1990 before declining to 700,000 in 1997, a decrease of 3 percent from 1987. This also compares with a 3 percent decline in enrollment from 1987 to 1997. These projections assume that faculty-student ratios will remain constant at 1983 levels throughout the projection period. However, if this proportion increases, instructional faculty will tend to exceed the number shown for the middle alternative in table 34.

Much of the faculty growth since 1975 was in 2-year institutions, an increase of 33 percent between 1975 and 1987. The decline projected through 1997 is expected in

both public and private institutions. The number is expected to decrease 4 percent in 4-year institutions and less than 1 percent in 2-year institutions. The number of full-time faculty is projected to decrease 5 percent from 459,000 in 1987 to 434,000 in 1997. Part-time faculty is expected to rise from 263,000 in 1987 to 271,000 in 1991 and then fall gradually to 266,000 by 1997, a 1 percer increase over the 1987 level.

Alternative Instructional Faculty Projections

The alternative projections of instructional faculty are based on the low and high alternative projections of enrollment in institutions of higher education in tables 10 through 13. Under the low alternative, instructional faculty will decrease 6 percent from 722,000 to 677,000. Under the high alternative, it will increase to 756,000 in 1990 before declining to 739,000 in 1997, an increase of 2 percent from 1987.

Figure 40.—Instructional faculty in institutions of higher education, with alternative projections: Fall 1972 to 1997

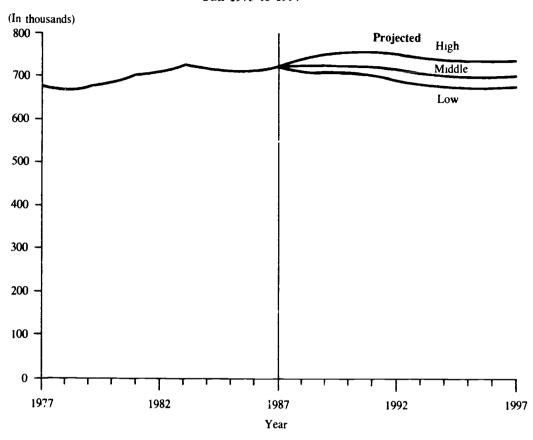


Table 34.—Full-time and part-time instructional faculty! in institutions of higher education, by employment status, control, and type of institution, with alternative projections: 50 States and D.C., 1975 to 1997

(In thousands)

Year	Total	Employm	ent status	Control		Туре	
	1 Otal	Full-time	Part-time	Public	Private	4-year	2-уеаг
975²	628	440	188	443	185	467	161
976	633	434	199	450	183	467	166
977	678	448	230	492	186	485	193
978²	668	439	229	482	186	485	183
9792	675	445	230	488	187	494	182
980²	686	450	236	495	191	494	192
981	705	461	244	509	196	493	212
9822	710	462	248	506	204	493	217
983	724	471	254	512	212	504	220
984 ²	717	462	255	505	212	504	213
9853	710	456	254	499			
986³	717	460	256		211	500	210
987³				507	210	502	215
987	722	459	263	508	214	509	214
			Middle :	alternative pro	jections		
988	723	458	265	509	2:4	508	215
989	726	458	268	511	215	509	217
990	726	457	269	511	215	509	217
991	723	452	271	509	214	506	216
992	715	445	270	503	212	501	214
993	708	439	269	498	210	496	212
994	702	434	268	494	208	491	211
995	698	431	2ϵ	492	207	488	211
996	699	432	267	492	206	487	211
997	700	434	266	493	207	489	212
	, 55			ternative proje		107	212
988	708	446	262	499	210	497	211
989	710	446	264	500	210	498	213
990 .	708	442	266	498	210	496	212
991	702	434	268	494			210
992	692	425	267		208	491	
993	684			486	205	484	208
994		418	266	481	203	478	206
995	677	412	265	476	201	472	205
	674 675	410	264	475	200	470	205
996 997	675	411	264	475	200	470	205
1991	67 7	414	263	477	209	472	206
000			-	ternative proj			
988	743	466	277	523	220	522	222
989	752	470	282	529	223	526	225
990	756	47 0	286	532	224	529	227
991	755	466	289	531	224	528	227
992	749	460	289	527	223	524	225
993	744	455	289	523	221	520	224
994	739	451	288	520	219	516	223
995	737	449	288	518	219	513	223
996	737	450	287	518	218	514	223
997	739	453	286	520	219	516	223

'Includes faculty members with the title of professor, associate professor, assistant professor, instructor, lecturer, assisting professor, adjunct professor, or interim professor (or its equivalent). Excluded are graduate students with titles such as graduate or teaching fellow who assist senior staff

²Estimated on the basis of enrollment

3Projected

NOTE Because of rounding, details may not add to totals. Some data have been revised from previously published figures

SOURCE U.S Department of Education, Center for Education Statistics, Employees in Institutions of Higher Education, various years, and U S Equal Employment Opportunity Commission, Higher Education Staff Information Report File, 1977, 1981, and 1983

Expenditures of Public Elementary and Secondary Schools

Current expenditures and average annual teacher salaries in public elementary and secondary schools are forecasted to increase annually from school year 1987-88 until school year 1997-98. The forecasts are based on the key assumptions of continued economic growth and increased assistance by State governments to local governments.

Current Expenditures

Past Trends

Current expenditures increased steadily over the past 15 years. They equaled \$146.1 billion in school year 1986-87, a 217 percent increase in current dollars over 1972-73 levels (table 35). Most of this increase was due to inflation. Current expenditures in constant dollars increased about 24 percent from 1972-73 to 1986-87 (table 35 and figure 41). At the same time, current expenditures per pupil in average daily attendance (ADA) in constant 1987 dollars rose from \$2,799 to \$3,966 (table 35 and figure 42). This increase was about 42 percent.

From 1972-73 to 1986-87, disposable income per capita increased substantially and more money was spent on education. There was also a rapid rise in State aid to local governments. As revenue receipts from State sources increased, local governments increased spending on education. A third factor in higher current expenditures per pupil was the decrease in the ratio of the number of pupils to the population: the fewer number of pupils per person, the greater amount of money spent per pupil.

	Constant	Constant 1987 dollars				
School year	Disposable	Revenue receipts from State sources per capita	Ratio of average daily attendance to the population			
19 72 -73 1986-87	\$10,743 12,991	\$252 320	0 20 0 15			

The only time in the past 15 years in which current expenditures fell was from 1978-79 to 1980-81. Two events may have affected current expenditures. First, disposable income per capita and revenue receipts per capita were in periods of either slow growth or decline. Second, this was the period of the "tax revolt" when many voters expressed displeasure at the spending habits of either State or local government by voting for measures that would limit either taxes or spending.

Forecast

In the middle alternative forecast, current expenditures will rise to \$201.5 billion in 1997-98, an increase of about 38 percent. Current expenditures per pupil in ADA will increase about 24 percent to \$4,934 (table 35 and figure 43). There are two assumptions behind this forecast. First, it is assumed over the next 10 years there will be steady economic growth with disposable income increasing each year. Second, revenue receipts from State sources will increase at the same annual rate as from 1985-86 to 1986-87, approximately 2.9 percent.

Two alternative forecasts are also considered. Each forecast is based on an alternative growth path for revenue receipts from State sources. In the low alternative forecast, revenue receipts increase each year, but at rates lower than in the middle alternative forecast. In the high alternative forecast, revenue receipts increase more rapidly than in the middle alternative forecast. For further details see chapter 14.

In the low alternative forecast, current expenditures will increase about 26 percent to \$183.9 billion in 1997-98. Current expenditures per pupil in ADA will increase about 14 percent to \$4,505.

In the high alternative forecast, current expenditures will increase approximately 58 percent to \$232 billion in 1997-98. Current expenditures per pupil in ADA will increase about 43 percent to \$5,671.

77

Figure 41.—Current expenditures (constant 1987 dollars) in public schools, with alternative projections: 1972-73 to 1997-98

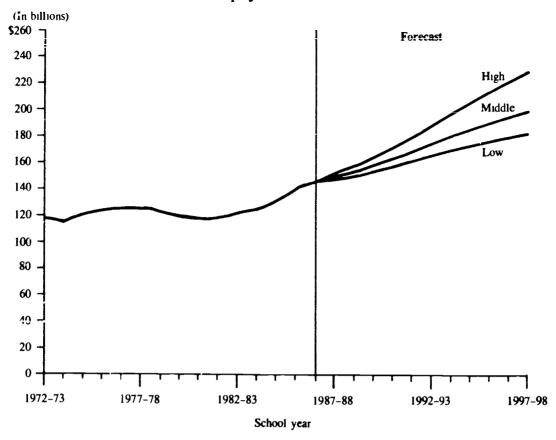


Figure 42.—Current expenditures per pupil in average daily attendance (constant 1987 dollars) in public schools, with alternative projections: 1972-73 to 1997-98

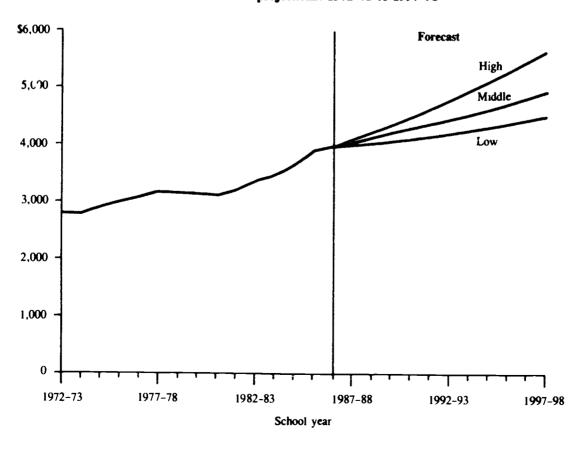
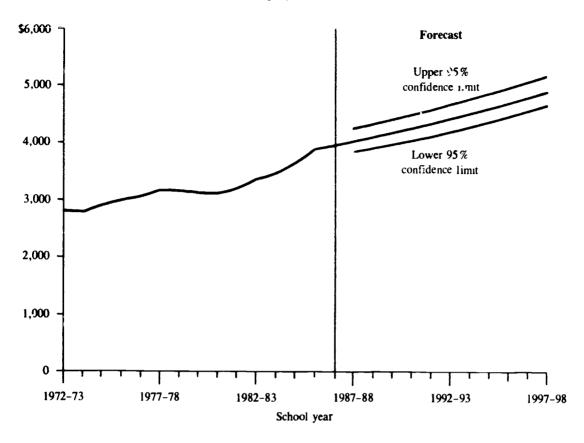



Figure 43.—Current expenditures per pupil in average daily attendance (constant 1987 dollars) in public schools. with middle alternative projections: 1972-73 to 1997-98

Salaries

Recent History

In current dollars, the recent history of average teacher salaries is not very interesting: teacher salaries rose every year since 1972-73, reaching \$26,704 in 1986-87 (table 36). This rise looks quite different, however, when teacher salaries are in constant dollars (table 36, figure 44). From 1972-73 to 1979-80, teacher salaries declined in real terms about 15.4 percent, from \$26,051 to \$22,049 in constant 1987 dollars. Then teacher salaries began steadily increasing. In 1985-86, the average salary surpassed its 1972-73 level.

In the 1970s, the number of people preparing to become teachers was much greater than the number of openings for newly qualified teachers. The fall in teacher salaries during this time was due, in part, to excess supply.

Then the number of people preparing to become teachers fell. Eventually, the decline in teacher salaries stopped.

Forecast

In the middle alternative forecast, the average teacher salary will rise about 19.3 percent to \$31,856 in 1997-98 (table 36, figure 45). Two assumptions underlie this forecast. First, it is assumed the number of pupils, as measured by ADA, will continue to increase for most of the next decade. Second, it is assumed revenue receipts from State sources will continue to increase at the same rate as they did from 1985-86 to 1986-87. This is the same assumption made for the current expenditures middle alternative forecast.

In the low alternative forecast, teacher salaries will rise steadily, though at a lesser rate than in the middle alternative forecast. The average salary will reach \$29,798 in 1997-98, an increase of about 11.6 percent.

In the high alternative forecast, teacher salaries will reach \$35,387, an increase of about 32.5 percent.

91

Figure 44.—Average annual salaries of teachers (constant 1987 dollars) in public schools, with alternative projections: 1972-73 to 1997-98

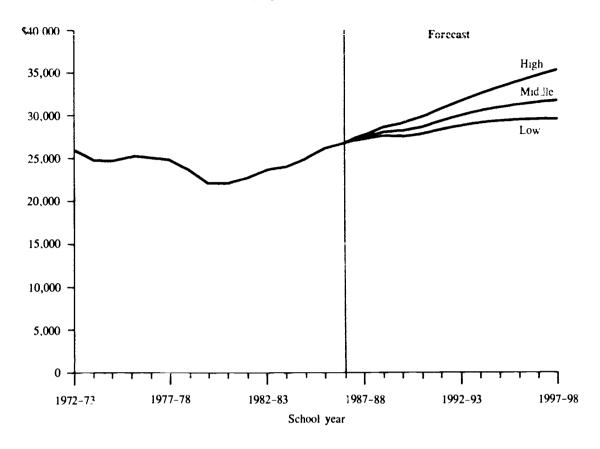
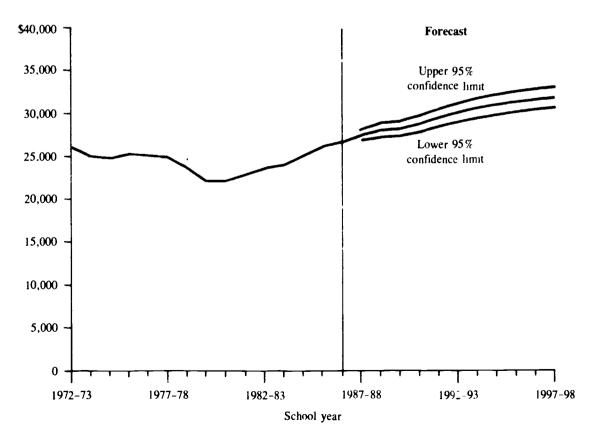



Figure 45.—Average annual salaries of teachers (constant 1987 dollars) in public schools, with middle alternative projections: 1972-73 to 1997-98

	Average	Curren	t dollars	Constant 1	987 dollars ¹
Year	daily attendance (in thousands)	Total (in billions)	Per pupil in average daily attendance	Total (in billions)	Per pupil in average daily attendance
1972–73	42,179	\$ 46 1	\$1,093	\$118.	\$2,799
1973–74	41,438	50 0	1,207	1154	2,785
1974-75	41,524	57 3	1,381	121 1	2,916
1975-76	41,270	62 1	1,504	124 0	3,005
976-77	40,832	66 9	1,638	125 5	3,073
977-78	40,080	73 1	1,823	127 4	3,179
978-79	39,076	79.0	2,020	123 7	3,165
979-80	38,289	87 0	2,272	120 1	3.136
980-81	37,704	94.3	2,502	118 0	3,129
981-82	37,095	101 1	2,726	119 1	3,212
982-83 .	36,636	108.3	2.955	123 6	3,374
983-84	36,363	115.4	3,173	126 4	3,475
984-85	36,499	125 9	3,449	133 1	3,647
985-86	36,514	137.0	3,752	142 1	
986-87 ² .	36,838	146.1	3,966	146 1	3,893 3,966
			Middle alternat	ive projections	
987-88	37,297	_	_	151 3	4,056
988-89	37,443	_	_	154 4	4,125
989-90	. 37,829	_	_	159 2	4,209
990-91	38,343	_	_	164 6	4,292
991-92	. 38,875	_	_	170 0	4,374
992-93 .	39,399	_	_	175 5	4,455
993-94	39,928	_		181 2	4,539
994-95	40,326	_	_	186 6	4,627
995-96	40,635	_	_	191 9	4,723
996-97	40,807	_		196 8	4,822
997-98	40,828	_	_	201 5	4,934
			Low alternativ	e projections	
987-88	37,297	_	_	149 6	4,011
988-89 .	37,443	_	_	151 2	4,038
989-90	37,829	_	_	154 6	4,087
990-91	38,343	_	_	158 5	4,132
991-92	38,875	_	_	162 5	4,180
992-93	39,399		_	166 5	4,227
993-94	39,928	_	_	170 6	4,274
994-95	40,326	_	_	174 4	4,324
995-96	40,635	_	_	178 1	4,382
996-97	40,807	_	_	181 1	4,439
997-98	40,828		_	183 9	4,505
			High alternativ	e projections	
987-88	37,297		_	153 2	4,108
988-89	37,443	_		158 4	4,230
98 9- 90	37,829	_	_	165 4	4,371
990-91	38,343		-	173 1	4,514
991-92	38,875	_	_	181 1	4,659
992-93	39,399	_	_	189 4	4,807
993-94	39,928	_	_	198 0	4,959
94-95	40,326	_	_	206 5	5,120
95-96 .	40,635	_	_	215 1	5,293
96-97	40,807	_	_	223 3	5,472
997-98	40,828		_	231 5	5,671

Based on the all urban consumer price index of the Bureau of Labor Statistics, U.S. Department of Labor Each value is adjusted by the CPI for the year in which the school year ended ²Estimate

SOURCE U.S. Department of Education, National Center for Education

Statistics, Statistics of State School Systems, and Revenues and Expenditures for Public Elementary and Secondary Education Center for Education Statistics, Common Core of Data survey and unpublished data. and National Education Association, annual Estimates of State School Statistics. (Latest edition 1986-87. Copyright 1987 by the National Education Association All rights reserved.) (This table was prepared December 1987.)

Table 36.—Average annual salaries of classroom teachers in public elementary and secondary schools, with alternative projections: 50 States and D.C., 1972-73 to 1997-98

Year	Current dollars	Constant 1987 dollars*
972-73	\$10,176	\$26,051
973-74	10.778	24,864
974-75	11.690	24.695
975-76	12,600	25.181
976-77	13,354	25.056
977-78	14.198	24,758
978-79	15,032	23,549
979-79 979-80		
979-80 980-81	15,970	22.049
	17,644	22,070
981-82	19,274	22,713
982-83	20,693	23,628
983-84	21,917	24.001
984-85	23,595	24,951
985-86	25,206	26,154
986-87	26,704	26.704
	Middle altern	ative projections
987-88	_	27.428
988-89	_	28.015
989- 9 0	_	28.183
990-91	_	28,727
91-92	_	29,485
92-93	_	30.056
193-94	_	
194-95 .		30,544
	-	31,009
95-96	-	31.343
996-97 997-98	<u>-</u>	31,605 31,856
	Low alterna	tive projections
987-88	-	27,209
988-89	_	27,598
89- 9 0	_	27,601
990-91	_	27,964
91-92		
	_	28,558
92-93	_	28.960
93-94		
		29.274
94-95	-	29.557
194-95 195-96		29.557 29.708
94-95 95- 9 6 96-97		29.557
994-95 195-96 196-97	- - - -	29.557 29.708 29.771 29.798
994-95 995-96 996-97 997-98	- - - -	29.557 29.708 29,771 29.798 tive projections
994-95 995-96 996-97 997-98	 High alterna	29.557 29.708 29,771 29.798 tive projections
194-95 195-96 196-97 197-98 188-89	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521
994-95 195-96 196-97 197-98 188-89 189-90	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963
994-95 195-96 196-97 197-98 187-88 188-89 189-90	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794
994-95 995-96 996-97 997-98 987-88 988-89 989-90 990-91	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794 30.854
994-95 995-96 996-97 997-98 987-88 988-89 989-90 990-91 991-92	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794 30.854 31,740
994-95 995-96 996-97 997-98 987-88 988-89 989-90 990-91 991-92	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794 30.854
94-95 95-96 96-97 97-98 887-88 888-89 89-90 90-91 91-92 92-93 93-94	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794 30.854 31,740 32 558
994-95 995-96 996-97 997-98 987-88 988-89 989-90 990-91 991-92 992-93	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794 30.854 31,740 32 558 33.370
994-95 995-96 996-97 997-98 987-88 988-89 989-90 990-91 991-92 992-93 993-94 994-95 995-96	 High alterna	29.557 29.708 29,771 29.798 tive projections 27 676 28.521 28.963 29,794 30.854 31,740 32 558

*Based on the all urban consumer price index of the Bureau of Labor Statistics. U.S. Department of Labor. Each value is adjusted by the CPI for the year in which the school year ended

SOURCE National Education Association, annual Estimates of School Statistics (Latest edition 1986-87 Copyright 1987 by the National Education Association All rights reserved.) (This table was prepared December 1987.)

Part 2: Projection Methodology

General Projection Methodology

The general procedure for *Projections* was to express the variable to be projected as a percent of a "base" variable. These percents were then projected and applied to projections of the "base" variable. For example, the number of !8-year-old college students was expressed as a percent of the 18-year-old population for 1967 through 1986. These percents were then projected through 1997 and applied to projections from the Bureau of the Census of the 18-year-old population.

Enrollment projections are based primarily on population projections. Projections of instructional staff, high school graduates, earned degrees conferred, and expenditures are based primarily on enrollment projections.

Exponential smoothing and multiple linear regression are the two major projection techniques used in this publication. Exponential smoothing places more weight on recent observations than on earlier ones. The weights for observations decrease exponentially as one moves further into the past. As a result, the o'der the data, the less their influence on projections. The rate at which the weights of older observations decrease is determined by the smoothing constant selected.

$$P = aX_t + a(1-a)X_{t-1} + a(1-a)^2X_{t-2} + a(1-a)^3X_{t-3} +$$

Where:

P = projected constant

a = smoothing constant (0 < a < 1)

 X_t = observation for time t

This equation illustrates that the projection is a weighted average based on exponentially decreasing weights. For a high smoothing constant, weights for earlier observations decrease rapidly. For a low smoothing constant, decreases are more moderate

In general, the projections in this publication are based on fairly high smoothing constants. The further apart the observations are spaced in time, the more likely are changes in the underlying social, political, and economic structure. Since the observations are on an annual basis, major shifts in the underlying process are more likely in

the time span of just a few observations than if the observations were available on a monthly or weekly basis. As a result, the underlying process tends to be unstable from one observation to the next. Another reason for using high smoothing constants is that most of the observations are fairly accurate, since most observations are population values rather than sample estimates. Therefore, large shifts tend to indicate changes in the process rather than noise in the data. For those cases in which the observations were considered to be less accurate, lower smoothing constants were used.

Multiple linear regression was also used in making projections, primarily in the areas of teachers, earned degrees, and expenditures. This technique was used when it was believed that a strong causal relationship existed between the variable being projected (dependent variables) and independent causal variables. However, this technique was used only when accurate data and reliable projections of the independent variables were available.

The functional form primarily used was the multip acative model. When used with two independent variables, this model takes the form:

$$Y = aX_1^{b_1}X_1^{b_2}$$

This equation can easily be transformed into the linear form by taking the natural log(ln) of both sides of the equation:

$$lnY = ln(a) + b_1 lnX_1 + b_2 lnX_2$$

The multiplicative model has a number of advantages, it is a reasonable way to represent human behavior. Constant elasticities are assumed; this says that a 1 percent change in ln X will lead to a given percent change in ln Y. This percent change is equal to b₁. And it lends itself easily to "a priori" analysis because the researcher does not have to worry about units of measurement when specifying relationships. In fact, the multiplicative model is considered the standard in economic problems.

Caveats

Projections are subject to errors from many sources Alternative projections are shown for most statistical series. These alternatives are not statistical confidence intervals, but instead represent judgements made by the authors as to reasonable upper and lower levels for each projected series To measure projection reliability, upper and lower statistical confidence limits are presented for alternative projections of public classroom teachers, public high school graduates, earned degrees conferred, and expenditures in public elementary and secondary schools.

Assumptions

All projections are based on underlying assumptions, and these assumptions determine projection results to a large extent. It is important that users of projections understand the assumptions to determine the acceptability of projected time series for their purposes. The tables of assumptions in each chapter describe the primary assumptions upon which the projections of time series are based For each time series, the respective tables and the assumptions used for each alternative projection are shown.

For most projections, low, middle, and high alternatives are shown. These alternatives reveal the level of uncertainty involved in making projections, and they also point out the sensitivity of projections to the assumptions on which they are based.

Many of the projections in the publication are demographically based Bureau of Census middle series projections of the various age populations were used. The future fertility rate assumption, which determines projections of the number of births as the key assumption in making population projections. The middle series population projections assume an ultimate complete cohort fertility rate of 1 8 births per woman by year 2050. This assumption plays a major role in determining population projections for the age groups enrolled in nursery school and kindergarten and elementary grades. The effects of the fertility rate assumption are more pronounced toward the end of the projection period.

For enrollments in secondary grades and college, the fertility assumption is of no consequence, since all students enrolled at these levels were already born when the population projections were made. For projections of enrollments in elementary schools, only middle series population projections were considered. The fertility assumption used in this series tracked closely to the most recent birth data.

Projections of high school graduates are based on projections of the average of the 17- and 18-year-old population. Projections of associate and bachelor's degrees are based on projections of enrollments in institutions of higher education Projections of instructional faculty are based on projections of faculty-student ratios. Many of the projections of classroom teachers and expenditures in public elementary and secondary schools are based on projections of disposable income per capita. Disposable income per capita projections were from Data Resources, Inc.'s Macroeconomic Model of the U.S economy. Therefore, the many assumptions made in projecting disposable income per capita also apply to those projections based on projections of disposable income per capita.

Enrollment—Methodology

Enrollment projections were based on projected enrollment rates, by age and sex, which were applied to population projections by age and sex developed by the Bureau of the Census. These enrollment rates were projected by taking into account the most recent trends as well as the effects of economic conditions and demographic changes on a person's decision to enter college. The eurollment rates were then used in an interactive forecasting model (IFMOD) which consists of age-specific rates by sex and by enrollment levels (nursery school through college). The model has 5 stages (figure 46).

The first stage of IFMOD is an age-specific enrollment model in which enrollment rates are projected and applied to age-specific population projections. This stage, which is used separately for each sex, includes the following categories: (1) nursery and kindergarten, (2) elementary grades 1-8, (3) secondary grades 9-12, (4) full-time college enrollment, and (5) part-time college enrollment. For each of these enrollment categories, enrollment rates were projected by individual ages 3 through 24 and for the age groups 25 to 29, 30 to 34, and 35 years and over.

Enrollments by age and age groups from the Bureau of the Census² were adjusted to NCES totals to compute enrollment rates for 1967 through 1986. Different assumptions were made to produce low, middle, and high alternative projections of the past enrollment rates through 1997.

Elementary Grades 1-8

Projections of elementary enrollment rates were considered for ages 5 through 21. Elementary enrollments are negligible for the remaining ages. Since most elementary enrollment rates have been fluctuating at levels close to 100 percent from 1967 to 1986, alternative enrollment rate projections were not computed. The only set of enrollment rate projections computed was based on the assump-

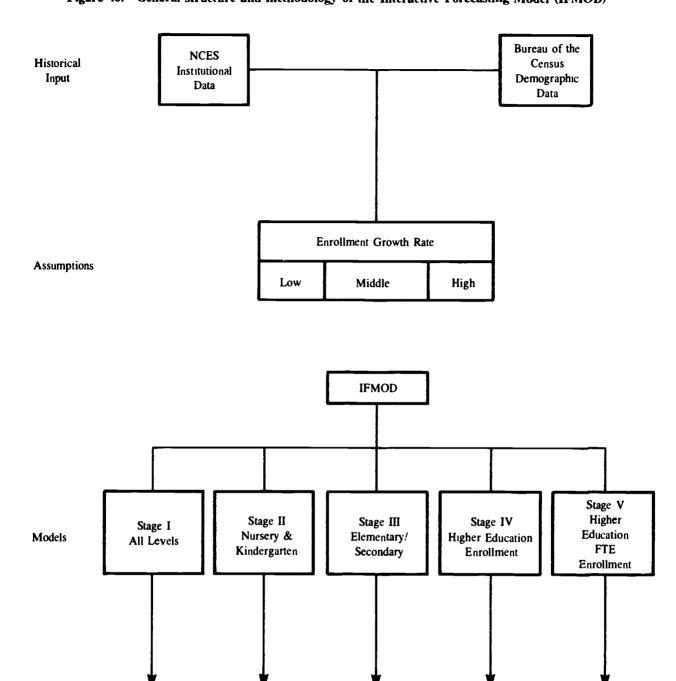
¹U S. Department of Commerce, Bureau of the Census, unpublished projections

²U.S. Department of Commerce, Bureau of the Census, unpublished tabulations

tion that rates will remain constant through 1997 (table 37). Several of the rates in table 37 exceed 100 percent. This is due to several factors. The enrollment data by age were prorated to agree with NCES totals. The Bureau of the Census does not revise enrollment estimates by age, but population estimates are revised regularly.

Secondary Grades 9-12

Projections of secondary enrollment rates were considered for ages 12 through 34. Secondary enrollments are negligible for the remaining ages. Secondary enrollment rates have fluctuated around constant levels through the 1967 to 1986 period. Therefore, alternative enrollment rate projections were not calculated. The only set of projections computed was based on constant enrollment rates (table 38).


For projections of enrollment in grades K-12, the mean absolute percentage errors (MAPE) for lead times of 1, 2, and 5 years have been less than 1 percent—0.2, 0.4, and 0.8 percent, respectively. For projections of enrollment in grades K-8, the MAPEs for lead times of 1, 2, and 5 years were 0.3, 0.6, and 0.9 percent, respectively, while those for projections of enrollment in grades 9-12 were 0.6, 0.8, and 2.0 percent for the same lead times. For lead times of 6 to 10 years, the MAPEs increased moderately for projections of enrollment in grades K-12, K-8, and 9-12, from 1.1 percent to 7.2 percent for grades K-12, 1.2 percent to 8.8 percent for grades K-8, and 2.5 percent to 5.3 percent for grades 9-12.

College Full-Time and Part-Time Enrollment

Projections of full-time and part-time college enrollments were considered only for ages 16 and over. (College enrollment is negligible for earlier ages.) Three alternative projections were made using various assumptions. Table 39 shows enrollments rate for 1986 and low, middle, and high alternative projected enrollment rates for 1992 and 1997.

Figure 46.—General structure and methodology of the Interactive Forecasting Model (IFMOD)

ERIC

Projections

Elementary/

Secondary

Enrollment

Projections

Nursery &

Kındergarten

Enrollment

Projections

Age-Specific

Enrollment

Projections

Higher

Education

FTE

Enrollment

Projections

Higher

Education

Enrollment

Projections

Enrollment in Public Elementary and Secondary Schools, by Grade Group and Organizational Level

The third stage of IFMOD projects public enrollment in elementary and secondary schools by grade group and by organizational level. Public enrollments by age were based on enrollment rate projections for nursery and kindergarten, grade 1, elementary ungraded and special, secondary ungraded and special, and post-graduate enrollment. Grade retention rate projections were used for grades 2 through 12. Table 40 shows the public enrollment rates and table 41 shows the public grade-retention rates for 1986 and projections for 1992 and 1997. The projected rates in tables 40 and 41 were used to compute the projections of enrollments in elementary and secondary schools by grade, shown in table 1.

College Enrollment, by Sex, Attendance Status, and Level Enrolled, and by Type and **Control of Institution**

The fourth stage of IFMOD projects enrollments in institutions of higher education, by sex, attendance status, and level enrolled by student, and by type and control of institution. For each age group, the percent that enrollment by age, attendance status, level enrolled, and type of institution was of total enrollment was projected. These projections are in tables 42 and 43, along with actual values for 1986. For all projections, it was assumed that there was no enrollment in 2-year institutions at the post-baccalaureate level (graduate and first-professional).

The projected rates in tables 42 and 43 were then adjusted to agree with the projected age-specific enrollment rates in the first stage of IFMOD. The adjusted rates were then applied to the projected enrollments by age group, sex, and attendance status from the first stage of IFMOD to obtain projections by age group, sex, attendance status, level enrolled, and type of institution.

For each enrollment category—sex, attendance status, level enrolled, and type of institution—the percent that public enrollment was of total enrollment was projected. These projections are in table 44 along with actual percents for 1980 and 1986. The projected rates shown were then applied to the projected enrollments in each enrollment category to obtain projections by control of institution.

For each enrollment category by sex and enrollment level and by type and control of institution, the percent that graduate enrollment was of post-baccalaureate enroilment was projected. Actual rates for 1986 and projections for 1992 and 1997 are in table 45. The projected rates in table 45 were then applied to projections of post-baccalaureate enrollment to obtain graduate and firstprofessional enrollment projections by sex and attendance status and by type and control of institution.

Full-Time-Equivalent Enrollment, by Type and Control of Institution and by Level Enrolled

The fifth stage of IFMOD projects full-time-equivalent enrollment by type and control of institution and by level enrolled. For each enrollment category by level enrolled and by type and control of institution, the percent that the full-time-equivalent of part-time enrollment was of parttime enrollment was projected. Actual percents for 1986 and projections for 1992 and 1997 are in table 46.

These projected percents were applied to projections of enrollments by level enrolled and by type and control of institution from the fourth stage. The projections of the full-time-equivalent of part-time enrollment were added to projections of full-time enrollment (from the previous stage) to obtain projections of full-time-equivalent enrollment.

For projections of enrollment in higher education, the MAPEs for lead times of 1, 2, and 4 years were 0.4, 2.3, and 5.0 percent, respectively. Projections of full-timeequivalent enrollment had MAPEs of 0.7, 1.9, and 4.3 percent for the same lead years.

Basic Methodology

The notation and equations that follow describe the basic models used to project public elementary and secondary enrollment.

Let:

= Enrollment at the nursery and kindergarten ievel

 G_{1t} = Enrollment in grade j

 $\mathbf{E}_{\mathbf{t}}$ = Enrollment in elementary special and ungraded programs

= Enrollment in secondary special and ungraded S, programs

= Enrollment in post-graduate programs PG,

= Population age i

= Enrollment rate for nursery and kindergarten

 $RGI_t = Enrollment rate for grade 1$

RE; = Enrollment rate for elementary special and ungraded programs

RS_t = Enrollment rate for secondary special and ungraded programs

RPG_t = Enrollment rate for post-graduate programs

EG_t = Total enrollment in elementary grades (K-8)

 SG_t = Total enrollment in secondary grades (9-12)

R_{jt} = Retention rate for grade j: the proportion that enrollment in grade j in year t is of enrollment in grade j - 1 in year t-1.

Then:

$$\mathbf{EG}_{t} = \mathbf{K}_{t} + \mathbf{E}_{t} + \sum_{j=1}^{8} \mathbf{G}_{jt}$$

$$SG_t = S_t + PG_t + \sum_{i=9}^{12} G_{jt}$$

Where:

$$K_t = RK_t(P_5)$$

$$G_{jt} = R_{jt}(G_{j-1, t-1})$$

$$E_{t} = RE_{t}(\sum_{i=5}^{13} P_{i})$$

$$G_1t = RG_{1t}(P_6)$$

$$S_{t} = RS_{t}^{17}(\Sigma P_{i})$$

$$i = 14$$

$$PG_t = RPG_t(P_{18})$$

For institutions of higher education, projections were computed separately by sex and attendance status of student. The notation and equations are:

Let:

i = Subscript denoting age except:

1 = 25: ages 25-29

1 = 26: ages 30-34

i = 27: ages 35 and over for enrollment (35-44 for population)

t = Subscript denoting year

E_{it} = Enrollment of students age 1

P_{1t} = Population age i

R_{it} = Enrollment rate for students age i

Tit = Total enrollment for particular subset of students: full-time men, full-time women, part-time men, part-time women

Then:

$$T_{it} = \sum_{i=16}^{27} E_{it}$$

Where:

$$E_{it} = R_{it}(P_{it})$$

Methodological Tables

The tables in this section give the rates used to calculate projections of enrollments, equations used to calculate projections (tables 47 and 48), basic assumptions underlying enrollment projections (table 49), and methods used to estimate values for which data are not available (table 50).

Table 37.—Elementary enrollment rates, by age and sex

A = .	F	loys	Girls		
Age	1986	1987-1997	1986	1987-1997	
5	5 5	6.7	4.5	6.7	
6	85 0	91 3	92.1	91.3	
7	102 2	101 2	102.6	101 2	
8 .	102 0	102 9	103.3	102.9	
9	103 2	100 9	102.4	100.9	
0	101 0	101 8	105.2	101.8	
	104.5	98.8	95.6	98.8	
2	101.0	102 4	103.2	102.4	
	94.3	90 6	92.0	90.6	
4	32 7	20 9	22 0	20.9	
5	6 7	3 7	3 7	3.7	
6	0 8	0.5	0.7	0.5	
7	0.2	0 1	0	0	
8	0 1	0	0	0	

Table 38.—Secondary enrollment rates, by age and sex

		Boys	Girls		
Age	1986	1987-1997	1906	1967-199	
12	0 3	0.2	0.1	0.2	
13	5.4	8 8	9.3	8.8	
14	63 7	77.2	74.9	77.2	
15	88 1	90.4	89.2	90.4	
16	97 .8	94 3	95.4	94.3	
17	7 9 0	79 2	81.5	79.2	
18	26.2	15.3	16.9	15.3	
	5.9	2.5	2.2	2.5	
20	1.5	1.5	1.6	1.5	
21	0.4	0 7	1.0	0.7	
22	0 4	0 5	0.2	0.5	
23	0.1	0 3	0.2	0.3	
24	0.4	0 5	0.5	0.5	
25-29	0 2	0 3	0.4	0.3	
30–34	0 2	0 3	0.3	0.3	

Table 39.—College enrollment rates, by age, sex, and attendance status, with alternative projections

		Low alt	ernative	Middle a	lternative	High alternative	
Age	1986	1992	1997	1992	1997	1992	1997
Men						<u> </u>	<u> </u>
full-time							
16	0 3	94	0.4	0 4	0 4	0 4	0.4
17	3 7	3 8	3 8	3.8	3 8	3 8	3.8
18	31 7	30 6	30 6	34 5	32 4	34 5	32 4
19	31 8	30 1	30.1	34 7	35 2	34 7	35 2
20	25 6	25 2	25.2	27.0	27 4	27 0	27 4
21	20 9	22 0	22 C	22 0	22 0	22 0	22 0
22	15 7	15 0	15 0	16.0	16 0		
23	10 3	10 7	10.7			17 3	17 3
24	8.0	8 5	8.5	10 7	10 7	10 7	10 7
25-29	3.7			8.5	8 5	8.5	8 5
30-34		3.8	3 8	3 8	3 8	3 8	3.8
35-44	16	16	1.6	16	1.6	16	16
	0 7	0 7	0 7	0.7	0 7	10	1 3
Part-time							
16	_	_	_	_	~-	_	
17	0 3	0 5	ι5	0.5	0 5	0.5	0 5
18	3 4	3 4	3 4	4.2	4 2	4 2	4 2
19	3 4	3 4	3.4	3 6	3 8	4 0	4.0
20	4 5	4 5	4.5	4.5	4 5	49	4.9
21	3 7	4 0	4.0	4 0	4.0	4 0	4 0
22	77	7 5	7.5	8.0	8 0	80	80
23	5 1	5.1	5.1	5.1	5 1	5 5	5 5
24	4.0	3.8	3.8	4.0	4 0	40	40
25-29	5 4	5.4	5.4	5.4	5 4	5.7	
30-34	4 1	4.2	4.2	4.2			5 6
15-44	3.3	3 4	3.4	3.4	4 2	46	4.7
Women	3.3	3 4	3 4	3.4	3 4	4 0	4 0
Full-time							
16	0.2	0 4	0 4	0 4	0 4	0 4	0 4
17	5 3	5 3	5 3	5.3	5 3		
18	33.5	33 8	33 8	33.8		5 3	5 3
19	34.8	33 0			33 8	34.0	34 2
20			33.0	35 O	35 O	40 0	40 J
21 · · · · · · · ·	24.7	24 7	24.7	27.0	27.0	27 0	27.0
22	21 2	21 1	21.1	23.0	23.0	23 0	23 0
	12 8	12.1	12.1	12.1	12 1	13 5	13 5
	93	8.3	8.3	9 3	9.3	9 7	9 7
24	6 8	6 4	6.4	6.4	6 4	7 0	7.0
25-29	2 6	2 7	2 7	2.7	2 7	2 7	2 7
10-34 . 15-44	1.6 1.4	16	16	16	16	16	16
Part-time	1 4	1 4	1.4	1.4	1 4	1 4	1 4
7811-UIDC							
7	07	0.7		_	_		_
8		07	0.7	0.7	0 7	0 7	07
9	4 8	47	47	5 2	5 2	5 2	5 2
9 10	5 0	4.6	4.6	5.0	5 0	6 1	6 1
	6.1	60	6.0	6.1	6 1	7 0	7 0
1	5.2	5 1	5 1	5 6	5 6	5 6	5 6
2	8 5	8 5	8 5	8 5	8 5	8 9	90
3	6 1	5 8	5 8	6 1	6 1	6 8	68
4	4 5	4 5	4 5	4.5	4 5	4 5	4 5
	5 6	5 7	5 7	5 7	5 1	5 7	5 7
0–34	5 0	5 1	5 1	5 1	5 1	5 1	5.1
5-44 .	6 5	6 4	6 4	6 4	6 4	7 0	70

-Less than 0.1 percent

103

Table 40.—Enrollment rates in public schools

Grade level	Population	1007	Projected	
	base age	1986	1992	1997
Kindergarten	5	92 0	89 7	89 7
Grade 1	6	94 6	94 2	94 2
Elementary ungraded and special	5-13	1 7	1 8	18
Secondary ungraded and special	14-17	2 7	2 6	2 6
Postgraduate	18	0 3	0 3	0 3

Table 41.—Public grade retention rates

	****	Projected		
Grade	1986	1992	1997	
2	94 4	94 5	94 5	
J	99 9	99 7	99 7	
,	100.1	100 1	100 1	
5	100 3	100 2	100 2	
5	101 2	101 0	1 0 1 0	
<i>!</i> .	104 1	103 9	103 9	
	97 8	98 0	98 0	
	109 3	1 0 7 9	107.9	
	93 5	94 2	94 2	
l	91 3	91 1	91.1	
! .	90 6	90 8	90 8	

Table 42.—Full-time enrollment, by level enrolled and type of institution, as a percent of total enrollment, for each age and sex classification

Age		Men			Women	
	1986	1992	1997	1986	1992	1997
		ı	Indergraduate	Lyear institution	ıs	
16-17 years old	67 3	68 0	68 0	55 9	64.0	64 0
18-19 years old .	63 2	64 0	64.0	71 6	73 0	73 0
20–21 years old	83 1	85 0	85 0	82 3	83 0	83 0
22–24 years old	64 5	66 0	66 0	61.4	62 0	62 0
25-29 years old	43 4	45 0	45 0	42.4	44.3	44.3
30-34 years old	33.4	33 3	33.3	37 1	39 1	39 1
35 years and over	33 5	33 4	33 4	37.0	37.9	37 9
	Undergraduate, 2-year institutions					
16-17 years old	32 7	32 7	32 7	44 1	43 6	43 6
18-19 years old	36.8	36 7	36 7	28 4	30 0	30.0
20-21 years old .	. 16 9	16 9	16.9	17.7	18.0	18 0
22–24 years old	14 3	15 0	15 0	15 0	15.0	15 0
25-29 years old	16 1	170	17 0	32.8	33 7	33 7
30-34 years old .	12 7	170	17 0	36.7	36 7	36 7
35 years and over	. 12.6	17 0	17 0	36.5	36.5	36.5
		Po	stbaccalaureate,	4-year institution	ons	
16-17 years old .	_	_		_	_	_
18-19 years old	-			_	_	_
20-21 years old .	_		_	_		_
22-24 years old .	21 2	21 2	21 2	23.6	23 0	23 0
25-29 years old	40 6	40 6	40.6	24 9	25.0	25 0
30-34 years old	53.9	51 0	51 0	26 2	26.2	26 2
35 years and over	53 9	53 8	53.8	26.6	26 5	26 5

⁻Not applicable

NOTE. Projections shown for 1992 and 1997 were adjusted to add to 100 percent before computing projections shown in chapter 2

Table 43.—Part-time enrollment, by level enrolled and type of institution, as a percent of total enrollment for each age and sex classification

Age		Men			Women	
Age	1986	1992	1997	1986	1992	1997
		ι	Indergraduate, 4	Lyear institution	15	
16-17 years old	82 1	82 1	82 1	22 9	22 7	22 7
18-19 years old .	9 2	14 0	14 0	15 7	17 0	17 0
20-21 years old .	22 8	24 0	24 0	20 6	20 7	20 7
22-24 years old	35 6	37 0	37.0	28 9	28 9	28 9
25-29 years old	21 6	28 0	28 0	23 9	27 1	27 1
30-34 years old .	34 8	34.6	34 6	29 7	31 0	31 0
35 years and over .	34 8	36 0	36 0	29 7	31 0	31 0
		ι	ndergraduate, 2	-year institution	ıs	
16-17 years old	0 0	0 0	0 0	77 1	79 0	79 0
18-19 years old	86 1	85 9	85 9	78 6	80 0	80 0
20-21 years old	71 8	71 8	71 8	73 3	75 0	75 0
22-24 years old	52 0	53.0	53 0	55 8	57 7	57.7
25-29 years old	58 1	60 0	60 0	55 4	57.3	57.3
30-34 years old	40.6	44 0	44 0	51 6	51 6	51.6
35 years and over	40 4	44 0	44 0	51 6	51 6	51.6
		Po	stbaccalaureate,	4-year institution	ons	
16-17 years old	17.9	17 7	17 7	0 0	0 0	0 0
18-19 years old	4 7	4 0	4.0	5 7	5 0	5.0
20-21 years old	5.4	5.4	5 4	61	5.0	5.0
22-24 years old	12 4	12 5	12 5	15.4	14 0	14 0
25-29 years old	20 3	20.3	20 3	20.7	19.0	19.0
30-34 years old	24 7	24.7	24 7	18 7	16 0	16.0
35 years and over	24 7	24 7	24 7	18 7	15 8	15.8

NOTE: Projections shown for 1992 and 1997 were adjusted to add to 100 percent before computing projections shown in chapter 2

Enrollment category	Men			Women		
	1980	1986	1997	1980	1986	1997
Full-time, undergraduate, 4-year institutions	68 8	69.6	69 4	68 6	68 6	68 6
Part-time, undergraduate, 4-year institutions	72 0	73 7	73 2	69 8	69 4	69 3
Full-time, undergraduate, 2-year institutions	92 3	89 9	90 0	89 7	87 3	87 4
Part-time, undergraduate, 2-year institutions	98 7	96 7	96 7	98.5	98 2	98 2
Full-time, postbaccalaureate, 4-year institutions	55 9	56.3	56 0	61.7	60 9	60 6
Part-time, postbaccalaureate, 4-year institutions	60 4	58 5	58 4	71.5	67.9	68 1

Table 45.—Graduate enrollment as a percent of total postbaccalaureate enrollment, by sex and attendance status, and by type and control of institution

Enrollment category	Men			Women		
	1986	1992	1997	1986	1992	1997
Full-time, 4-year, public	72 6	72 4	72.4	78 5	78 7	78.7
Part-time, 4-year, public	98 7	98 7	98 7	99 1	99.2	99 2
Full-time, 4-year, private	53 5	53 3	53 3	62 4	62 5	62 5
Part-time, 4-year, private	90 4	90 7	90 7	95 0	94 9	94.9

Table 46.—Full-time-equivalent of part-time enrollment as a percent of part-time enrollment, by level enrolled, and by type and control of institution

Fnrollment category	1986	1992	1997
Public, 4-year, undergraduate	40 4	40 3	40.3
Public, 2-year, undergraduate .	33 7	33 7	33 7
Private, 4-year, undergraduate	39 3	39 1	39 1
Private, 2-year, undergraduate	37 1	38 4	38 4
Public, 4-year, graduate	36 2	36 1	36 1
Private, 4-year, graduate	38 1	38 1	38 1
Public, 4-year, first-professional	50 0	53 5	53 5
Private, 4-year, first-professional	50 0	51 9	51 9

;

Regression equation	$\mathbb{R}^{2^{1}}$	Durbin-Watson statistic ²	Regression technique
RTFT18M = 67 - 00015P18M - 0049UR1619 (-7 45) (-5 58)	85	2 2	Ordinary least squares
RTFT19M = $54 - 000 + P19M - 007UR1619$ (-4 05) (-3 75)	79	1 5	Ordinary least squares
+ 29YD82 (1 52)			
$RTFT20M = 42 - 00008P20M - 002UR2024$ $(-3 31) \qquad (-1 82)$	64	2 5	Ordinary least squares
RTPT18M = $-03 + 000011P18M + 00002YD82$ (2 08) (7 75)	81	2 4	Ordinary least squares
RTPT19M = $-04 + 00002P19M + .00001YD82$ (4 13) (5 70)	87	2 7	Ordinary least squares
¹ R ² = Coefficient of determination ² For an explanation of the Durbin-Watson Statistic, see J. Johnston, Econometric Methods, New York McGraw Hill, 1972, pages 251-252. ¹ JOTE. The numbers in parentheses refer to the value of the t-statistics. Where RTFT18M = Enrollment rate of 18-year-old males enrolled full-time RTFT19M = Enrollment rate of 19-year-old males enrolled full-time		part-time RTPT19M = Enrollment rate part-time P18M = 18-year-old mal P19M = 19-year-old mal P20M = 20-year-old mal UR16J9 = Unemployment 2 years	e population
RTFT20M = Enrollment rate of 20-year-old males enrolled full-time		3 years YD82 = Disposable inco	me in billions of 1982 dollars

Table 48.—Equations for selected college enrollment rates of women, by age and attendance status, (1967 to 1986)

Regression equation	R ²	Durbin-Watson statistic ²	Regression technique
RTFT20W = 13 + .00005YD82 (5 07)	59	2 1	Ordinary least squares
RTFT21W = 09 + 00005YD82 (6 67)	71	1 5	Ordinary least squares
RTPT18W = 002 - 00002YD82 (4.88)	57	1 9	Ordinary least squares
RTPT21W = -0007 + 00002YD82 (7.77)	77	1 9	Ordinary least squares

¹R² = Coefficient of determination

²For an explanation of the Durbin-Watson Statistic, see J. Johnston, *Econometric Methods*, New York: McGraw Hill, 1972, pages 251-252

NOTE: The numbers in parentheses refer to the value of the t-statistics

Where RTFT20W = Enrollment rate of 20-year-old females enrolled full-time

RTFT21W = Enrollment rate of 21-year-old females enrolled

RTPT18W = Enrollment rate of 18-year-old females errolled part-time

RTPT21W = Enrol!ment rate of 21-year-old females enrolled

YD82 = Disposable income in billions of 1982 dollars

Table 49.—Enrollment (assumptions)

Variables	Assumptions	Alternatives	Tables
Elementary and secondary enrollment	Age-specific enrollment rates will remain constant at levels consistent with the most recent rates.	middle (no alternatives)	1, 2
	Public enrollment rates and public grade retention rates will remain constant at levels consistent with the most recent rates	middle (no alternatives)	1, 2
	The percentage of 7th and 8th grade public students enrolled in school organized as secondary schools will remain constant at levels consistent with the most recent rates.	middle (no alternatives)	2
College full-time and part-time enrollment, by age and sex	Age-specific enrollment rates will remain constant at levels consistent with most recent rates.	low	3-5 9-16
	Age-specific enrollment rates for the younger age cohorts will increase over the projection period	mıddle	3-5 9-16
	Age-specific enrollment rates will either equal the middle alternative or increased, based on past trends.	high	3- 5 9-16
College enrollment, by sex, attendance status, and level enrolled by student, and by type of institution	For each group and for each attendance status separately, enrollment by sex and level enrolled by student, and by type of institution as a percent of total enrollment, will follow past trends through 1997 For each age group and attendance status category, the restriction that the sum of the percentages must equal 100 percent was applied.	high, middle, and low	3-5 9-16
College enrollment, by control of institution	For each enrollment category, by sex, attendance status, and level enrolled by student, and by type of institution, public enrollment as a percent of total enrollment will remain constant at levels consistent with most recent rates.	high, middle, and low	3-5 9-16
Graduate enrollment	For each enrollment category, by sex and attendance status of student, and by type and control of institution, graduate enrollment as a percent of post-baccalaureate enrollment will follow past trends through 1997	high, middle, and low	17
Full-time equivalent of part-time enrollment	For each enrollment category, by type and control of institution and level enrolled by student, the percent that full-time equivalent of part-time enrollment is of part-time enrollment will remain constant at levels consistent with the most recent rates.	high, middle, and low	23-25

Table 50.—Enrollment (estimation methods)

Variables	Years	Estimation method	Tables
Enrollment in institutions of higher	1977, 1982,	For each sex, enrollment data from the Bureau of Census by individual ages	6
education, by age and attendance	and 1987	and by attendance status for 2-year age groups were combined by assuming	7
status		that within the 2-year ege groups, age and attendance status were distributed independently. The resultant enrollment estimates by age and attendance status were then adjusted to NCES enrollment counts by attendance status.	8

Public High School Graduates— Methodology

The number of public high school graduates was forecast by using double exponential smoothing to project graduates as a percent of the average of the 17- and 18-year-old population. These forecasts were then multiplied by the average of projections of the 17- and 18-year-old population to produce the high school graduate forecast. This method assumes that past trends in factors affecting graduation will continue for the next 5 years. Some of the factors implicitly included in the model are immigration, ropouts, transfers to and from private schools, and deaths.

Public high school graduate forecasts were produced by first calculating the ratio of graduates to the mean of the 17- and 18-year-old population. This ratio was modeled using double exponential smoothing. Choosing alpha (.54) to minimize the mean square one step ahead forecast error produced the following forecast equation:

Ratio = 65.7 + .4t

where:

t is time and t = 0 is 1985-86.

This equation was used to forecast the ratio, and then the ratio was multiplied by the mean of 17- and 18year-old population projections to produce the number of public high school graduates.

The initial values of the smoothed series were calculated using the coefficients obtained by regressing the ratio on time.

The confidence limits were calculated using the procedure described in *Statistical Methods for Forecasting* by Abraham and Ledolter on pages 125-132.

Sources of Data

The number of high school graduates used in these forecasts was from the Common Core of Data (CCD) survey conducted by the National Center for Education Statistics. The 17- and 18-year-old population estimates and projections were from the U.S. Bureau of the Census, Current Population Reports, Series P-25. No comparable source of this data exists for private schools, thus forecasts of private high school graduates could not be calculated.

Earned Degrees Conferred— Methodology

Projections of associate and bachelor's degrees by sex were based on demographic models which relate degree awards to college enrollment by level enrolled and attendance status. Since this type of model produced inadequate results and unrealistic projections for master's, doctor's, and first-professional degrees, double exponential smoothing models were used to project these degrees.

Associate Degrees

Associate degree projections by sex were based on the 18- to 24-year-old population and undergraduate enrollment by attendance status in 2-year institutions. Results of the regression analysis used to project associate degrees by sex a:e in table 51. Tables of statistical confidence limits are in appendix B.

Bachelor's Degrees

Bachelor's degree projections by sex were based on the 18- to 24-year-old population and undergraduate enrollment by attendance status in 4-year institutions. Results of the regression analysis used to project bachelor's de-

grees by sex are in table 52. Tables of statistical confidence limits are in appendix B

Master's, Doctor's, and First-Professional Degrees

The projections of master's, doctor's, and first-professional degrees by sex were developed using double exponential smoothing. The results of the time series analysis are in table 53 for master's degrees, table 54 for doctor's degrees, and table 55 for first-professional degrees. At the national level, regression models using population and enrollment variables did not produce realistic results. Thus double exponential smoothing seemed a likely alternative since numbers of these degrees awarded to men have been falling and those for women have been rising in recent years. With the exception of first-professional degrees, tables of statistical confidence limits are in appendix B.

Methodological Tables

These tables describe equations used to calculate projections (tables 51 through 55), and basic assumptions underlying projections (table 56).

Table 51.—Equations for associate degrees, (1967-68 to 1986-87)

	Regression equation	R ²	Durbin-Watson statistic ²	Regression technique
Men	ASSOCM = $-56,580.4 + 287.3$ UGFTM2 (10.28)	85	11	Ordinary least squares
Women	ASSOCW = $-23.854\ 0 + 299\ 0$ UGFTW2 (34 39)	99	1 2	Ordinary least squares

¹R² = Coefficient of determination

²For an explanation of the Durbin-Watson Statistic, see J Johnston, Econometric Methods, New York McGraw Hill, 1972, pages 251-252

NOTE The numbers in parentheses refer to the value of the t-statistics

Where ASSOCM = Number of associate degrees awarded to men

ASSOCW = Number of associate degrees awarded to women

UGFTM2 = Full-time male undergraduate enrollment in 2-year institutions lagged one year

UGFTW2 = Full-time female undergraduate enrollment in 2-year institutions lagged one year

Table 52.-Equations for bachelor's degrees, (1969-70 to 1986-87)

	Regression equation	\mathbb{R}^{2^1}	Durbin-Watso statistic ²	n Regression technique	
Men	BACHM = 191,361.9 - 7.5P1824M (-1.96)	.73	09	Ordinary least squares	
	+246.3UGFT4M - 284.3UGPT4W (6.06) (-3 01)				
Women	BACHW = +119,750.7 -9 8P1824W (-4 58)	99	1 5	Ordinary least squares	
	+ 270.8UGFT4W (12 30)				
	- 127 6UGPT4W (-3.47)				
¹ R ² = Coefficient of determination ² For an explanation of the Durbin-Watson Statistic, see J Johnston, Econometric Methods, New York, McGraw Hill, 1972, pages 251-252			UGFT4M = Full-time	= Population of 18- to 24-year-old femal = Full-time undergraduate enrollment of m	

UGPT4W

Econometric Methods, New York. McGraw Hill, 1972, pages 251-252

NOTE: The numbers in parentheses refer to the value of the t-statistics

Where: BACHM = Number of bachelor's degrees awarded to men

BACHW = Number of bachelor's degrees awarded to women

P1824M = Population of 18- to 24-year-old males

4-year institutions lagged 3 years

UGPT4M = Part-time undergraduate enrollment of males in 4-year institutions lagged 3 years **UGFT4W**

Full-time undergraduate enrollment of females in 4-year institutions lagged 3 years

= Part-time undergraduate enrollment of females in 4-year institutions lagged 3 years

Table 53.—Equations for master's degrees, (1969-70 to 1986-87) Exponential smoothing equations

Equation (t = 0 in 1986-87)		tion (t = 0 in 1986-87) MAD* Smooth		
Men	MASTM = 143,503 + 32t	27,525	0 90	
Women	MASTW = 71,593 - 12,436t	20,5 94	0 30	

^{*}MAD = Mean absolute deviation.

Table 54.—Equations for doctor's degrees, (1969-70 to 1985-86)

Exponential smoothing equations

Equation (t = 0 in 1986-87)		t = 0 in 1986-87) MAD* Smo		
Men	DOCM = 21,767 - 103t	2,636	0 60	
Women	DOCW = 4,225 - 1,530t	1,931	0 40	

^{*}MAD = Mean absolute deviation.

Table 55.—Equations for first-professional degrees, (1969-70 to 1985-86)

Exponential smoothing equations

Equation (t = 0 in 1986-87)		MAD*	Smoothing constant	
Men	FPROM =	49,284 - 1,009t	9,990	0.80
Women	FPROW =	24,263 + 1,150t	3,103	0 15

^{*}MAD = Mean absolute deviation.

Table 56.—Earned degrees conferred (assumptions)

Variables	Assumptions	Alternatives	Tables
Associate degrees (men)	The number of associate degrees awarded to men is a linear function of full-time undergraduate enrollment inyear institutions	middle	27
Associate degrees (women)	The number of associate degrees awarded to women is a linear function of full-time undergraduate enrollment in 2-year institutions.	middle	27
Bachelor's degrees (men)	The number of bachelor's degrees awarded to men is a linear function of full-time and part-time undergraduate enrollment in 4-year institutions and the 18- to 24-year-old population.	middle	28
Bachelor's degrees (women)	The number of bachelor's degrees awarded to women is a linear function of full-time and part-time undergraduate enrollment in 4-year institutions and the 18- to 24-year-old population	mıddle	28
Master's degrees (men)	The number of master's degrees will decrease based on past trends.	middle	29
Master's degrees (women)	The number of master's degrees will increase based on past trends.	middle	29
Doctor's degrees (men)	The number of doctor's degrees will decrease based on past trends	middle	30
Doctor's degrees (women)	The number of doctor's degrees will increase based on past trends	middle	30
First-professional degrees (men)	The number of first-professional degrees will decrease based on past trends.	middle	31
First-professional degrees (women)	The number of first-professional degrees will increase based on past trends	middle	31

Chapter 12

Public Classroom Teachers— Methodology

In Targeted Forecast: Public Classroom Teachers. March 1988, the National Center for Education Statistics (NCES) for the first time used econometric models to forecast the number of public elementary and secondary classroom teachers. That model was also used to produce the forecasts for this publication. In that model the number of public school teachers was forecast separately for the elementary and secondary levels. The elementary teachers were modeled as a function of per capita income (lagged 2 years), revenue receipts from State sources per capita, and elementary enrollment. Secondary teachers were modeled as a function of per capita income (lagged 1 year), revenue receipts from State sources per capita, and secondary enrollment (iagged 1 year). Both per capita income and revenue receipts from State sources were in constant 1982 dollars.

This model is based on suggestions in the National Academy of Sciences report: Toward Understanding Teacher Supply and Demand, Priorities for Research and Development, Interim Report, National Academy Press. The equations in this section should be viewed as forecasting rather than structural equations as the limitations of time and available data precluded the building of a large-scale, structural teacher model. The particular equations shown were selected on the basis of their statistical properties, such as coefficients of determination (R2's), the t-statistics of the coefficients, the Durbin-Watson statistic, and residual plots.

The multiple regression technique used yields good results only if the relationships that existed among the variables in the past continue throughout the forecast period.

The elementary classroom teacher model is:

ELTCH = $b_0 + b_1$ PCI2 + b_2 SGRANT + b_3 ELENR

where:

ELTCH is the number of public elementary classroom teachers;

PCI2 is disposable income per capita in 1982 dollars, lagged 2 years;

SGRANT is revenue receipts from State governments per capita in 1982 dollars; and

ELENR is the number of students enrolled in public elementary schools.

Table 57 summarizes the results for the elementary public teacher model. Each variable affects the number of teachers in the expected way. As people receive more income, the State spends and a money on education, and as enrollment increases, the number of teachers hired increases.

The secondary classroom teacher model is:

 $SCTCH = b_0 + b_1 PCI1 + b_2 SGRANT1 + b_3 SCENR$

where:

SCTCH is the number of public secondary classroom teachers;

PCI1 is disposable income per capita in 1982 dollars, lagged 1 year;

SGRANT1 is revenue receipts from State governments per capita in 1982 dollars, lagged 1 year; and

SCENR is the number of students enrolled in public secondary schools.

Table 58 summarizes the results for the secondary public teacher model. Each variable affects the number of teachers in the expected way. As people receive more income, the State spends more money on education, and as enrollment increases, the number of teachers hired increases.

105

Enrollme: is by organizational level, not by grade level. Thus secondary enrollment is not equal to grades 9-12 enrollment. This is because some States count some grades 7 and 8 enrollment as secondary. The distribution of the number of teachers is by organizational level, not by grade span.

Percent changes were calculated using unrounded numbers.

Projections of the demand for new-hiring of classroom teachers were calculated separately for the elementary and secondary levels. These two were then added together to obtain the total demand for new-hiring of elementary and secondary public classroom teachers. For each level the demand for new-hiring of teachers is decomposed into three parts: that due to turnover; that due to enrollment changes; and that due to other factors. The following equations provide the details of the calculations:

$$NH_t = NT_t + NE_t + NO_t$$

$$NT_t = TC_{t-1} *TN$$

$$NE_{t} = (EN_{t} - EN_{t-1}) (TP_{t-1})/1,000$$

$$NO_t = (TC_t - TC_{t-1}) - NE_t$$

where:

t = Subscript denoting time

 $EN_t = Enrollment$

 TC_t = Number of classroom teachers

NH_t = Total demand for new-hiring of teachers

 NT_t = Number of new hires needed for turnover

ME_t = Number of new hires needed for enrollment changes

NO_t = Number of new hires needed for other reasons

TP_t = Number of teachers per 1,000 pupils

TN = Turnover rate

Turnover rates were obtained from unpublished tables of the Bureau of Labor Statistics. For the purposes of calculating the demand for additional teachers, the most recent rates, those for 1983-84, were assumed to hold for the forecast period. The turnover rate was 4.9 percent for public elementary teachers and 5.6 percent for public secondary teachers.

Sources of Data

The total number of public school teachers, enrollment by organizational level, and revenue receipts from State sources used in these forecasts were from the Common Core of Data (CCD) survey conducted by NCES. The proportion of teachers by organizational level was from the National Education Association and then applied to the total number of teachers from CCD to produce the number of teachers by organizational level. No comparable time series of this type exists for private schools, thus forecasts of private school teachers could not be calculated.

Disposable income and population were obtained from the Data Resources, Inc., report "Oftline U.S. Economic Service: Long-term Option."

Number of observations 31		R ² (adjusted)	De	Durbin-Watson statistic	
		.99528275	1.732238532		
	Independent variables	Coefficient	Standard error	T-statistic	
	Constant	-4.214440	79.62145	05293097	
	PCI2	0.04413545	0.008851454	4.986237	
	SGRANT	1.32214	0.2478523	5.334388	
	ELENR	0.01827863	0.00285684	7.997006	

Table 58.—Public secondary classroom teachers model, key statistics

Number of observations		R² (adjusted)	Durbin-Watson statistic	
		.99858247		
	Independent variables	Coefficient	Standard error	T-statistic
	Constant	-101.0222	24.28170	-4.160426
	PCII	0.031 72694	0.005515314	5.752516
	SGRANT	0.8866507	0.1923681	4.609136
	SCENR	0.03282424	0.00148377	28.58316

Chapter 13

Instructional Faculty—Methodology

Projections of full-time instructional faculty in institutions of higher education are based on alternative projections of full-time enrollment, by type and control of institution (tables 10-13) and constant projections of faculty-student ratios by type and control of institution.

Projections of part-time instructional faculty are based on alternative projections of part-time enrol¹ment, by type and control of institution (tables 10–13) and constant projections of faculty-student ratios.

Instructional Faculty

Let:

FE_t = Full-time enrollment in institutions of higher education

PE_t = Part-time enrollment in institutions of higher

FC, = Fuil-time instructional faculty

PC_t = Part-time instructional faculty

FEC_t = Ratio of full-time instructional faculty to fulltime enrollment (faculty-student ratio)

PEC_t = Ratio of part-time instructional faculty to parttime enrollment (faculty-student ratio)

Then:

 $FC_t = FE_t * FEC_t$

 $PC_t = PE_t * PEC_t$

Methodological Tables

These tables describe rates used to calculate projections (tables 59), basic assumptions underlying projections (table 60), and methods used to estimate values for which data are not available (table 61).

Table 59.--Faculty-student ratios* used to project full-time and part-time faculty

Type and control of institution	Full-time	Part-time
Public 4-year	65.0	42 0
Public 2-year	52 0	43 0
Private 4-year	710	83 0
Private 2-year	3 6 0	83 0

^{*} Faculty per 1,000 students

Table 60.—Instructional faculty (assumptions)

Variables	Assumptions	Alternatives	
Full-time instructional faculty	For each type and control institution, the percent that full- time instructional faculty is of full-time enrollment will remain constant at 1983 levels.	High, middle, and low	
Part-time irstructional faculty	For each type and control of institution, the percent that part-time instructional faculty is of part-time enrollment will remain constant at 1983 levels.	High, middle, and low	

Table 61.—Instructional faculty (estimation methods)

Variables Years Estimation meth		Estimation method	Tables	
Full-time instructional faculty	1985, 1978, 1979, 1980, 1982, and 1984	For each type and control of institution the percent that full-time instruc- tional faculty was of full-time enrollment was interpolated. This percent was applied to full-time enrollment for each year.	34	
Part-time instructional faculty	1985, 1978, 1979, 1980, 19 8 2, and 1984	For each type and control of institution, the percent that part-time instruc- tional faculty was of part-time enrollment was interpolated. This percent was applied to part-time enrollment for each year	34	

Chapter 14

Expenditures of Public Elementary and Secondary Schools—Methodology

Econometric techniques were used to produce the forecasts for current expenditures and average teacher salaries. The equations in this chapter should be viewed as forecasting, rather than structural, equations as the limitations of time and available data precluded the building of large-scale structural models. The particular equations shown were selected on the basis of their statistical properties, such as coefficients of determination (R²'s), the t-statistics of the variables, the Durbin-Watson statistic, and residual plots.

The multiple regression technique used yields good results only if the relationships that existed among the variables in the past continue throughout the forecast period.

The Elementary and Secondary School Current Expenditure Model

Economists and other researchers have progressed in developing a model of the demand for elementary and secondary school current expenditures. In most instances, researchers have used cross-sectional data. The Elementary and Secondary School Current Expenditure Model builds on the knowledge gained from these cross-sectional studies and adapts them for use in a time series study

The Elementary and Secondary School Current Expenditure Model 1s:

$$ln(CUREXP) = b_0 + b_1 ln(PCI) + b_2 ln(SGRANT) + b_3 ln(ADAPOP1)$$

where:

In indicates the natural log:

CUREXP equals current expenditures of public elementary and secondary schools per pupil in average daily attendance (ADA) in constant 1982 dollars,

PCI equals disposable income per capita in constant 1982 dollars:

SGRANT equals revenue receipts from State governments per capita in constant 1982 dollars; and

ADAPOP1 equals the ratio of average daily attendance to the population all lagged 1 period.

The model was estimated using the ordinary least squares option of the econometrics package RATS All variables were placed in log form as the test statistics were superior for that form and there is some evidence from the cross-sectional studies that the log form is superior. The forecasts for current expenditures per pupil were calculated in 1982 dollars. The all urban consumer price index was used to place these forecasts in 1987 dollars.

The results for the model are on table 62 Each variable affects current expenditures in the direction that would be expected. As people receive more income, either directly (PCI), or from the State government (SGRANT), the level of spending increases. As the number of pupils increases relative to the population (that is, as ADAPOP1 increases), the level of spending per pupil falls.

From the cross-sectional studies of the demand for education expenditures, we have a rough idea how sensitive current expenditures are to changes in PCI and ADAPOP1. We can compare the results from this model to those from the cross-sectional studies. For this model, an increase in disposable income per capita of 1 percent, with SGRANT and ADAPOP1 held constant, would result in an increase of current expenditures per pupil in ADA of approximately .47 percent. Folding PCI and SGRANT constant, an increase in the ratio of average daily attend-

11

¹For a review and discussion of this discussion of this literature, see Inman, R. P. (1979), "The fiscal performance of local governments an interpretive review," in *Current Issues in Urban Economics*, edited by P. Mieszkowski and M. Straszheim, John Hopkins Press, Baltimore, Maryland

ance to the population (lagged 1 year) of 1 percent would result in a decrease in current expenditures per pupil in ADA of approximately .43 percent. Both numbers are well within the range of what has been found in other studies.

The confidence intervals for current expenditures per pupil were produced using equation (4.48) of D. Montgomery, and Peck, Introduction to Linear Regression Analysis, New York: John Wiley and Sons, 1982, page 141. The 95 percent confidence interval can be viewed as showing for each year the interval in which it is 95 percent sure that current expenditures will fall within if the assumptions behind the forecast occur.

Forecasts for total current expenditures were made by multiplying the forecasts for current expenditures per pupil in ADA by forecasts for the ADA.

The Elementary and Secondary **Teacher Salary Model**

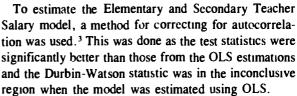
As with current expenditures, most studies conducted on teacher salaries have used cross-sectional data. Unlike current expenditures however, the models from these existing cross-sectional studies cannot be easily reformulated for use with time series data. One reason is that we have no data on the supply of teachers. Hence the elementary and secondary salary model contains terms which measure the demand for teachers in the economy.²

The Elementary and Secondary Teacher Salary Model

$$SALARY = b_0 + b_1CUREXP + b_2ADAPOP + b_3DIFADA1 + b_4DIFADA2$$

where:

SALARY equals the average annual salary of teachers in public elementary and secondary schools in constant 1982 dollars;


CUREXP equals current expenditures of public elementary and secondary schools per pupil in average daily atuendance in constant 1982 dollars:

ADAPOP equals the ratio of average daily attendance to the population;

DIFADAl equals the change in average daily attendance lagged 1 period; and

DIFADA2 equals the change in average daily attendance lagged 2 periods.

²Terms that may measure the supply of teachers, such as the adult unemployment rate, were tried but were not included in the final model

The results for this model are also on table 62.

There is no literature for comparing the sizes of the coefficients. However, the direction of the impact each variable has on salaries is as expected: as the desired level of spending per pupil increases (higher CUREXP), more teachers are required so demand for teachers increases and salaries increase; as the number of students increases (higher ADAPOP, DIFADA1 and DIFADA2), demand for teachers increases so salaries increase.

As this model was calculated using a different technique than the current expenditures model, a different method for calculating confidence intervals was required. In this case, the confidence limits were calculated using equation (8.3.14) of G. Judge, Griffiths, Hill, Lutkepohl, and Lee, The Theory and Practice of Econometrics, New York: John Wiley and Sons, 1985, page 318.

Current expenditures, average teacher salaries, and the number of teachers are interrelated. Hence, two exercises were conducted to see if the forecasts of these three time series are consistent.

First, for every school year from 1972-73 until 1997-98 (using the middle alternative forecast), the number of teachers was multiplied by the average salary. This was divided by current expenditures. The resulting ratio shows the portion of current expenditures that go towards teacher salaries. The values for the forecast period were all within the range of the values for the historical period.

Second, for each year in the forecast period, current expenditures were multiplied by the 1986-87 ratio of spending on salaries to all current expenditures. This series represents how much would be spent on teacher salaries if the relationship that existed in 1986-87 were still to hold. Each number in this series was divided by its counterpart in the teacher time series to find a time series for average teacher salaries. This imputed time series was compared to the forecast series for teacher salaries. For every year, this imputed series was well within the 95 percent confidence interval.

The results of these exercises indicate that the forecasts of these three time series are consistent.

Sources of Past and Forecast Data

Numbers from different sources were used to produce these forecasts. In some instances, the time series used was made by either combining numbers from various sources or manipulating the available numbers. The

³The maximum likelihood search procedure of the statistical package RATS was used

sources and the methods of manipulation are described

The time series used for current expenditures was compiled from several different sources. For the school years ending in even numbers from 1959-60 to 1975-76, the numbers for current expenditures were from various issues of the Statistics of State School Systems published by the National Center for Education Statistics (NCES). The numbers for the school years ending in odd numbers during the 1960s were from various issues of the National Education Association (NEA), Estimates of School Statistics. For the school years ending in odd numbers during the 1970s up to and including 1976-77, the numbers were from various issues of the Revenues and Expenditures for Public Elementary and Secondary Education published by NCES. From 1977-78 until 1985-86, the numbers were from the NCES Common Core of Data survey and unpublished data. For 1986-87, the number in table 35 is from the NCES early estimate system. As this number was not available, the number from NEA's Estimates of School Statistics was used in calculating the model. These two numbers are almost identical, with the NEA number for current expenditures being \$146.2 billion dollars.

For 1972-73, 1974-75, and 1976-77, expenditures for summer schools were subtracted from the published figure for current expenditures. For 1972-73, there were no published numbers for summer school expenditures so the average of the values for 1971 -72 and 1973-74 from the Statistics of State School Systems was used.

Note that while the data from the different sources are similar, they are not entirely consistent. Also, the NCES numbers beginning with 1980-81 are not entirely consistent with the earlier NCES numbers.

The forecast values for current expenditures used in producing the forecasts for teacher salaries were those produced by the current expenditures model. The values from each of the current expenditure forecasts were used in its teacher salary counterpart.

With two exceptions, the sources for the past values of average daily attendance (ADA) were identical to the sources for current expenditures. For 1978-79, the number was from the Revenues and Expenditures for Public Elementary and Secondary Education. For 1986-87, the same number that was in table 35 was used in the calculations. This number was from the NEA's Estimates of School Statistics.

Forecasts for ADA were made by multiplying the forecasts for enrollment in this book by the average value of the ratios of the ADA to the enrollment from 1979-80 to 1986-87, approximately .93.

For 1959-60 to 1984-85, the sources for revenue receipts from State sources were the two NCES publications, Statistics of State School Systems and Revenues and Expenditures for Public Elementary and Secondary Education, and the NCES Common Core of Data survey. The values for 1985-86 and 1986-87 were determined by taking the values for revenue receipts for 1984-85, 1985-86, and 1986-87 from the NEA Estimates of School Statistics, calculating the growth rates for total revenue receipts in constant 1982 dollars, and applying those growth rates on NCES's 1984-85 number.

or the middle alternative forecast, revenue receipts were found from assuming that in each year, revenue receipts in constant 1982 dollars grow at the same rate as from 1986-87, approximately 2.9 percent. The values for the low alternative forecast were determined by assuming that total revenue receipts in constant 1982 dollars grow at the same rate as do the economic forecasting firm Data Resources, Inc.'s forecasts for State and local government purchases of goods and services. The forecasts for State and local government purchases of goods and services were from Data Resources, Inc.'s trend scenario "Off-line U.S. Economic Service: Long-term Option." In the high alternative forecast, State grants (in constant dollars) were assumed to increase at a constant rate equal to the average of the rates of growth for the past 5 years, approximately 4.8 percent.

The numbers for average teacher salaries were from various issues of NEA's Estimates of School Statistics.

Both the past values and the forecast values for the population and disposable income per capita were from the trend scenario of Data Resources, Inc.'s "Off-line U.S. Economic Service: Long-term Option." The values for the all urban consumer price index, which was used for adjusting current expenditures, teacher salaries, and revenue receipts from State sources, and the implicit price deflator for personal consumption expenditures, which was sed for adjusting disposable income per capita, were also from Data Resources, Inc.

Table 62.—Equations for current expenditures per pupil in average daily attendance and average annual salaries of teachers in public elementary and secondary schools

Dependent variable	E	juntion!	Ŗ:²	Durbin-Watson statistic ³	Estimation technique	Řho
Current expend- itures per pupil	in(CUREXP) = -0.965 + 0.466in(PCI (- 76) (1.99)	+0.764ln(SGRANT)-0.425ln(ADAPOP1) (5.20) (-4.41)	0 995	1.232	OLS4	
Average annual salaries	SALARY = -5889 + 4.79CUREX (-4.10) (20.72)	P+81605ADAPOP+0.00692D;FADA1 (13.56) (6.62)	0 985	1.604	ARI ⁵	0 563 (2 86)
	+0.00051DIFADA2 (2.86)					

¹The sample size in each case is 28.

⁵AR1 is an estimation procedure for correcting the problem of first order autocorrelation. Specifically, the maximum likelihood procedure on the statistical program RATS was used to estimate rho. For a general discussion of the problem of autocorrelation, and the methods to correct it see Johnston (1972), Chapter 8 For a discussion of the method used to forecast in the presence of autocorrelation, see G Judge. Hill, Griffiths, Lutkepohl, and Lee, *The Theory and Practice of Econometrics*. New York John Wiley and Sons, 1985, pages 315-318.

NOTE: Numbers in parentheses are t-statistics. This table was prepared December 1987.

²R² equals the coefficient of determination corrected for degrees of freedom

³For an explanation of the Durbin-Watson statistic see J. Johnston. *Econometric Methods*. New York: McGraw Hill. 1972, pages 251-252

OLS equals Ordinary Least Squares

Part 3: Technical Appendixes

Appendix A

Supplementary Tables

Table A1.—Annual number of births (U.S. Census Projections, Middle Series): 50 States and D.C., 1942 to 1997 (In thousands)

Year (Calendar)	Births	Year (Calendar)	Births
1 94 2 .	3.002	1971	3.556
1943 .	3,118	1972	3.258
944	2.954	1973	3,137
945	2.873	1974	3,160
946	3,426	1975	3,144
947	3.834	1976	3,168
948	3.655	1977	3.327
949 .	3,667	1978	3.333
950	3,645	1979	3,494
951 .	3,845	1980	3.612
952	3,933	1981	3.629
953	3,989	1982	3,681
954	4,102	1983	3,639
955	4,128	1984	3.690
95 6	4.244	1985	3.750
957	4.332	1986	3,855
958	4.279	1987*	3 687
959	4.313	a	
960	4,307	Projec	tea
96 1 .	4,317	1988	3.758
96 2	4,213	1989	3.757
963	4,142	1990	3.731
964 .	4,070	1991	3.690
965	3.801	1992	3.645
966	3.642	1993	3.601
967	3,555	19 9 4	3.558
968	3,535	1995	3,517
969	3.626	1996	3.481
97 0	3,739	1997	3,449

^{*}Projected

SOURCE U.S. Department of Commerce. Bureau of the Census. Cirrent Population Reports, Estimates of the Population of the United States and Components of Change 1970 to 1986, Series P-25. No. 1006, May 1987 and unpublished projections

Table A2.—Preprimary school-age populations (U.S. Census Projections, Middle Series): 50 States and D.C., 1972 to 1997

<u> </u>	(Pear (July 1)	3 years old	4 years old	5 years old	3-5 years old
1972 .		3,392	3,397	3,469	10,258
1973		3,486	3,452	3,397	10,335
1974 .		3,571	3,546	3,450	10,567
1975 .		3,277	3,635	3,546	10,458
1976		3,101	3,336	3,634	10,071
1977		3,035	3,155	3,334	9,524
1978		3,117	3,091	3,156	9,364
1979 .		3,077	3,175	3,092	9,344
1980		3,240	3,129	3,181	9,550
1981 .		3,270	3,281	3,135	9,686
1982		3,378	3,311	3,285	9,974
1983		3,505	3,419	3,313	10,237
1984		3,558	3,546	3,421	10,525
1985 .		3,612	3,599	3,548	10,759
1986		3,625	3,654	3,601	10,880
1987*		3,561	3,668	3,650	10,879
			Proj	ected	
		3,693	3,603	3,668	10,964
1989		3,677	3,636	3,604	10,917
1990		3,682	3,719	3,735	11,136
1991		3,693	3,725	3,719	11,137
1992		3,705	3,736	3,725	11,166
1993	•	3,689	3,747	3,734	11,170
1994		3,654	3,731	3,745	11,130
1995 .		3,610	3,696	3,730	11,036
1 99 6 .		3,567	3,651	3,694	10,912
1 997 .		3,523	3,607	3,649	10,779

*Projected

SOURCE: U.S Department of Commerce, Bureau of the Census, Current Population Reports, Population Estimates and Projections, Series P-25 and unpublished projections

Table A3.—School-age populations (U.S. Census Projections, Middle Series), ages 5, 6, 5-13, and 14-17 years: 50 States and D.C., 1972 to 1997

Year (July 1)	5 years old	6 years old	5-13 years old	14-17 years old
1972	3,469	3,582	35,679	16,639
1973	3,397	3,491	35,046	16,867
1974	3,450	3,414	34,465	17,035
1975	3,546	3,468	33,919	17,128
976	3,634	3,560	33,516	17,119
1977	3,334	3,644	32,855	17,045
978	3,156	3,343	32,094	16,446
979	3,092	3,164	31,431	16,611
980	3,181	3,112	31,095	16,142
981	3,135	3,192	30,754	15,599
982	3,285	3,144	30,614	15,041
983	3,313	3,293	30,410	14,720
984	3,421	3,321	30,238	14,704
985	3,548	3,428	30,110	14,865
986	3,601	3,555	30,346	14,797
987*	3,650	3,612	30,813	14,465
		Pro	jected	
988	3,668	3,657	31,373	13,897
989	3,604	3,674	31,802	13,476
990	3,735	3,609	32,393	13,237
991	3,719	3,741	32,826	13,335
992	3,725	3,724	33,242	13,538
993	3,734	3,729	33,547	13,773
994	3,745	3,738	33,739	14,189
995	3,730	3,750	33,865	14,509
996	3,694	3,734	33,898	14,846
997	3,649	3,698	33,873	15,090

*Projected

SOURCE: U.S Department of Commerce, Bureau of the Census, *Current Population Reports*, *Population Estimates and Projections*, Series P-25 and unpublished projections.

Table A4.—College-age populations (U.S. Census Projections, Middle Series), ages 18, 18-24, 25-29, 30-34, and 35-44 years: 50 States and D.C., 1972 to 1997

Year (July 1)	18 years old	18-24 years old	25-29 years old	30-34 years old	35-44 years old
1972	3,976	26,076	15,240	12,383	22,859
1973	4,053	26,635	15,786	13,153	22,810
1974	4,103	27,233	16,521	13,704	22,826
1975 .	4,256	28,005	17,280	14,191	22,831
976	4,266	28,645	18,274	14,485	23,093
977	4,257	29,174	18,277	15,721	22,563
978	4,247	29,622	18,683	16,280	24,437
979	4,316	30,048	19,178	17,025	25,176
980 .	4,243	30,350	19,804	17,822	25,868
981	4,175	30,428	20,306	18,853	26,460
982	4,115	30,283	20,865	18,876	28,115
983 .	3,946	29,942	21,321	19,281	29,368
984	3,734	29,391	21,660	19,7 69	30,619
985 .	3,634	28,749	21,891	20,346	31,839
986	3,562	27,973	22,136	20,848	33,142
987*	3,632	27,353	22,109	21,404	34,371
			Projected		
988	3,717	26,907	22,000	21,860	35,32!
989 .	3,792	26,590	21,832	22,194	36,550
990	3,491	26,140	21,511	22,414	37,896
991	3,307	25,700	20,909	22,641	39,360
992	3,231	25,272	20,301	22,614	39,927
993	3,305	24,991	19,689	22,497	40,765
994	3,253	24,600	19,205	22,322	41,559
995	3,399	24,281	18,965	21,997	42,338
996	3,426	23,915	19,004	21,384	43,035
997	3,532	23,953	18,837	20,766	43,546

^{*}Projected

SOURCE U.S. Department of Commerce, Bureau of the Census, Current Population Reports, Population Estimates and Projections, Series P-25 and unpublished projections

Table A5.—Average daily attendance in public elementary and secondary schools, the change in average daily attendance to the population: 50 States and D.C., 1972-73 to 1997-98

Year	Average daily attendance ¹ (in thousands)	Change in average daily attendance	Population ² (in millions)	Ratio of average daily attendance to the population
1972-73	42,179	-75,272	212 0	0 199
1973–74	41,438	-740,946	214 0	0.194
1974–75	41,524	85,946	216 1	0 192
1975-76	41,270	-254,280	218 2	0 189
976–77	40,832	-437,720	220 4	0 185
977–78	40,08C	-752,410	222 7	0 180
978-79 .	39,076	-1,003,590	225 2	0 174
979-80	38,289	-787,089	227 9	0 168
980-81	37,704	-585,167	230 3	0 164
981-82 .	37,095	-609,092	232 6	0.159
982-83	36,636	-458,784	234 9	0.156
983- 84	36,363	-272,890	237 1	0 153
984-85 .	36,499	136,461	239 4	0 152
985-86 .	36,514	14,977	241 7	0.151
986-87	36,838	323,442	243 9	0.151
		Proj	ected	
987-88	37,297	458,952	246 1	0.152
988-89 .	37,443	146,666	248 3	0.151
989-90 .	37,829	385,230	250 5	0 151
990-91	38,343	514,260	252 6	0.152
991-92	38,875	531,897	254.6	0 153
992-93	39,399	524,470	256 6	0.154
993-94	39,928	529,112	258 5	0.154
994-95	40,326	397,298	260 4	0 155
995-96 .	40,635	309,113	262 2	0.155
996-97	40,807	171,729	263 9	0.155
997-98	40,828	21,350	265 6	0.154

¹Projections of average daily attendance were made by multiplying the forecasts for enrollment reported earlier in this publication by the average value of the ratio average daily attendance to enrollment from 1980 to 1987, approximately 93.

SOURCE · U. S. Department of Education, National Center for Education Statistics, Statistics of State School Systems, and Revenues and Expenditures for Public Elementary and Secondary Education Center for Education Statistics, Common Core of Data survey and unpublished data: Data Resources, Inc "Off-line U.S. Economic Service Long-term Option" and National Education Association, annual Estimates of School Statistics. (Latest edition 1986–87 Copyright by the National Education Association All rights reserved) (This table was prepared December 1987)

²The value is for the year in which the school year ended. Hence the value for school year 1972-73 is for calendar year 1973

³Average daily attendance is from the National Education Association Population is a projected value

Table A6.—Revenue receipts from State sources per capita (constant 1987 dollars¹), with alternative projections: 50 States and D.C., 1972-73 to 1997-98

Year		Revenue receipts per capita	
1972-73	\$25 2	_	
1973-74	260	_	_
1974– 7 5	266		_
1975-76	291	_	_
1976- 7 7	278	_	_
1977-78	274	_	_
1978 –79	279	_	_
1979–80	275	_	_
1980-81	273	_	_
1981-82	266	_	_
1982-83	274	_	_
1983-84	278	_	_
1984–85	296	_	_
1985-86 ²	313	_	_
1986-87²	320	-	_
	Middle	Low	High
	alternative	alternative	alternative
	projections	projections	projections
1987-88	\$326	\$3 21	\$3 32
1988-89	332	3 22	345
1989-90	339	325	358
1990-91	346	328	372
1 991 -92	353	331	386
1992-93	361	335	402
1993-94	368	338	418
1994-95	376	342	434
1995-96	385	346	45 2
1996-97	393	350	470
1997-98	402	353	490

¹Based on the all urban consumer price index of the Bureau of Labor Statistics, U.S. Department of Labor. Each value is adjusted by the CPI for the year in which the school year ended

²These values were determined by using the growth rates from the values reported by the National Education Association.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Statistics of State School Systems, and Revenues and Expenditures for Public Elementary and Secondary Education. Center for Education Statistics, Common Core of Data survey and unpublished data National Education Association, annual Estimates of State School Statistics (Latest edition 1986-87. Copyright 1987 by the National Education Association. All rights reserved.) (This table was prepared December 1987)

Table A7.—Disposable income per capita (constant 1987 dollars), the all urban consumer price index (base year 1987), and the price deflator for personal consumption expenditures (base year 1987):

50 States and D.C., 1972-73 to 1997-98

Year	Disposable income per capita in constant 1987 dollars ¹	Consumer price index¹ (base year 1987)	Price deflator for personal consumption expenditures ¹ (base year 1987)
972-73	\$10,743	0 391	0.417
973-74	10,535	0.433	0.461
974-75	10,626	0 473	0.497
975-76	10,901	0 500	0.527
976-77	11,145	0 533	0.561
977-78	11,566	0 573	0.602
978-79	11,677	0 638	0.658
979-80 .	11,5 5 0	0.724	0.729
980-81 .	11,606	0.799	0 7 96
981-82 .	11,554	0.849	0.841
982-83 .	11,798	0.876	0.876
983-84	12,378	0.913	0 909
984-85	12,621	0.946	0.940
985-86 .	13,007	0 964	0.961
986-87 ²	12,991	1 000	1.000
		Projected	
987-88	13,215	1 046	1 044
988-89	13,336	1 097	1.092
989-90	. 13,453	1 150	1 144
990-91	13,625	1 204	1 196
991-92	13,821	1.266	1.255
992-93	14,008	1 332	1.319
993-94	14,188	1 404	1 389
994-95	14,392	1 481	1.465
995-96	14,592	1 563	1.546
1 996 –97 .	14,764	1 653	1.633
1997-98	14,966	1 748	1 726

¹The value is for the year in which the school year ended. Hence the value for school year 1972-73 is for calendar year 1973.

²These are projected values

SOURCE Data Resources, Inc., "Off-line U.S. Economic Service Long-term Optio." (This table was prepared December 1987.)

Appendix B

Tables of Statistical Confidence Limits for Selected Projections

Table B1.—Public high school graduates as a percent of the 18-year-old population,* with forecasts and confidence limits: 1972-73 to 1997-98

Year	Ratio	Lower 95 percent confidence limit	Upper 95 percent confidence limit
972-73	58 1		
973-74	67.8	_	=
974–75	67 6	_	_
975-76	6ć 5	_	_
976-77	66.5	-	=
977-78	66 3	_	_
978-79	65 6		***
979-80	. 64 u	-	_
980-81	64 4	_	_
981-82	64 9	_	_
982-83 .	64 1	_	_
983-84 .	64 6		_
984-85	65 1	_	_
985-86	65 8		
986-87 .	66 4	_	-
		Forecasts	
987-88	66 8	65 0	68 5
988 -89	67 1	65 1	69 2
989-90 .	67 5	65 2	69 8
990-91	67 9	65 3	70 5
991-92	68 2	65 3	71 1
992-93	68 6	65 4	71 8
993-94	69 0	65 5	72 5
994-95	69 3	65 5	73 1
995-96	69 7	65 6	73 8
996 -97	70 0	65 6	74 5
997-98	70 4	65 7	75 2

^{*}The number of 18-year-olds at their nearest birthday was computed as the average of the 17- and 18-year-old population

SOURCES U.S. Department of Education. Common Core of Data survey, and U.S. Department of Commerce, Bureau of the Census, Current Population Reports (This table was prepared December 1987)

Table B2.—Associate degrees awarded to men, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit
1972-73	175,413		
1973-74	188,591	_	_
1974-75 .	191.017	_	_
975-76	209,996	_	_
976-77 .	210,842	_	
977-78	204,718	_	_
978-79	192,091	_	_
979-80	183,737	_	_
980-81 .	188,638	_	_
981-82	196,939	_	
982-83	207,141	_	_
983-84	202,762	_	_
984-85 .	202,932	_	_
985-86	196,166	_	
986-87* .	188,000	_	_
	Projected		
987-88	182,000	150,820	212,299
988-89	181,000	150,534	212,010
989-90	182,000	151,106	212,587
990-91	183,000	151,962	213,454
991-92	180,000	149,675	211,145
992-93	178,000	147,381	208,843
993-94 .	176,000	145,367	206,836
994–95	175,000	144,502	205,977
995-96	174,000	143,348	204,833
996 –97	175,000	144,214	205,691
99 7–98	176,000	145,079	206,549

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987.)

Table B3.—Associate degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit
1972-73	140,761	_	_
1973-74	155,333	_	_
1 97 4–75	169,154	_	_
975-76	181,458		_
976– 77	195,535		
977-78	207,528	_	_
978-79	210,611	_	
979-80	217,173		_
980-81	227,739		_
981-82	237,576	_	
982-83	249,300	_	
983-84	249,654	_	
984-85	251,780	_	_
98 5-8 6	249,881	_	
986-87*	240,000	-	
	Projected		
987-88	242,000	224,564	258,768
988-89	244,000	226,631	260,888
989-90	245,000	228,106	262,403
990 –91	243,000	225.745	259,979
991-92	237,000	220,134	254,228
992-93	232,000	214.812	248,785
993-94	223,000	211,261	245,160
994-95	227,000	210,076	243,953
995-96	227,000	210,373	244,255
996-97	229,000	212,445	246,368
997-98	232,000	214,812	248,785

NOTE: Because of rounding, details may not add to totals

SOURCE U S Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Table B4.—Bachelor's degrees awarded to men, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit
1972-73	518,191	_	_
1973-74 .	527,313	-	_
<u>1</u> 974-75	504,841	-	_
1975-76	504,925		_
976–77 .	495,545		_
977-78	487,347	-	_
978-79	477,344	-	_
979-80	473,611	_	_
980-81	469.883		_
1981-82	473,364	-	_
1982-83	479,140	_	
983-84	482,319	_	_
984-85	482,528		_
985-86	485,923	-	_
986-87*	475,000	_	_
	Projected		
987-88	474,000	458,382	510,394
988-89	472,000	451,960	505,388
989-90	471,000	435,464	497,700
1 990 -91	467,000	435,029	499,752
1991-92	466,000	431,649	499,582
1992-93	467,000	431.742	501.758
1993-94 .	465,000	428,349	501,438
994-95	462,000	424,070	499,307
995-96	456,000	416,398	494,628
1 996 –97	450.000	410,837	489,342
997-98 .	445,000	406,231	483,660

NOTE Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Table B5.—Bachelor's degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percen confidence limit
1972–73	404,171		
1973–74	418,463	***	_
1974-75	418,092		
1975-76 .	420,821	<u> </u>	
1976-77	424,004	<u> </u>	_
977~78	433,857	<u> </u>	
1978-79	444,046	_	_
979-80	455,806		
980-81	465,257		
981-82	479,634	 -	
982-83	490,370	_	
983-84	491,990		
984-85	496.949		
985-86	501,900		
986–87*	512,000		
	Projected		
987-88	515,000	497,833	520,123
988-89	517,000	505,628	529,242
989-90	513,000	500,717	524,665
990-91	514,000	501,865	526,804
991-92	518,000	504,953	521,091
992-93	514,000	500,889	527,488
993-94	504,000	490,831	518,224
994–95	492,000	477,700	506,045
995-96	481,000	466,036	495,°30
996–97	473,000	457,850	488,169
997-98	471,000	455,626	485,630

^{*}Estimate.

NOTE. Because of rounding, details may not add to totals

SOURCE: U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987. (This table was prepared November 1987.)

Table B6.—Master's degrees awarded to men, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit
1972-73	154,468	_	
1973-74	157,842	_	-
1974–75	161,570		_
1975-76	167,248	_	_
1976–77	167,783	_	_
	161,212	_	_
1978–79	153,370		_
1979-80	150,749	_	_
1980-81	147,043	_	_
1981-82	145,532	-	
198283	144,697		
1983–84	143,595	_	
1984–85	143,390	_	_
1985-86	143,508	_	
1986–87*	142,000	- -	~
	Projected		
987-88	142,000	124,778	159,756
1988-89	142,000	120,068	163,723
1989-90	142,000	115,305	167,743
l 990–9₁	141,000	110,512	171,7 9 3
1991-92	141,000	105,701	175,862
992-93	140,000	100,877	179,942
993-94	140,000	96,045	184,032
994–95	140,000	91,206	188,127
995-96	139,000	86,363	192,228
996–97	139,000	81,517	196,332
1997-98	139,000	76,667	200,438

NOTE. Projections are based on data through 1985-86 Because of rounding, details may not add to totals.

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987. (This table was prepared November 1987.)

Table R7.—Master's degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidenc mit
1972–73	108,903	_	
1973–74	119,191	_	_
1974-75	130,880	_	_
1975-76 .	144,523	_	_
1976–77	149,381		_
977-78	150,408		_
1978-79	147,709	_	_
1979-80 .	147,332		-
980-81	148,696	_	_
1981-82	150,014		
1982-83 .	145,224	_	_
983-84	140,668	_	_
984-85	142,861	_	_
1985-86	145,059		
986-87*	148,000	_	_
	Projected		
987-88	148,000	124, 194	170,873
988-89	148,000	123,717	172,777
989-90	148,000	123, 167	174,753
990-91	148,000	122,555	176,791
991-92	149,000	121,889	178,884
992-93	149,000	121,176	181,022
993-94	149,000	120,424	183,201
994-95	150,000	119,637	185,415
995-96	150,000	118,819	187,658
996-97	150,000	117,976	189,928
997-98	151,000	117,109	192,221

NOTE: Projections are based on data through 1985-86 Because of rounding, details may not add to totals

SOURCE: U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Table B8.—Doctor's degrees awarded to men, with projections and confidence limits: 50 States and P.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit	
1972-73	28,571			
1973-74	27,365		_	
1974-75	26,817	<u> </u>	_	
975-76	26,267		_	
976-77	25,142		_	
977–78	23,658	_	_	
978-79	23,541	_		
979-80	22,943	_	_	
980-81 .	22,711		_	
981-82	22,224	·	_	
982-83	21,902		_	
983-84	22,064			
984-85	21,700	_		
985-86	21,819	_	_	
986–87*	22,100	_	-	
	Projected			
987-88	21,100	18,857	23,245	
988-89	20,800	18,288	23.374	
989-90	20,600	17,708	23,514	
990-91	20,400	17,119	662رد2	
991-92	20,200	16,526	23,8,5	
992-93 .	20,000	15,928	23,971	
993-94	19,700	15,328	24,131	
994 -95 .	19,500	14,725	24,293	
995-96	19,300	14,121	24.457	
996-97	19,100	13,515	24,622	
997-98	18,800	12,909	24,788	

^{*}Estimate.

NOTE Projections are based on data through 1985-86 Because of rounding, details may not add to totals

SOURCE U.S. Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Table B9.—Doctor's degrees awarded to women, with projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

Year	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit	
1972-73	6,206			
1973-74	6,451	_	_	
1974-75	7,266	_	_	
1975-76 .	7,797	_	_	
1976–77 .	8,090	_	_	
977-78 .	8,473	_	_	
1978-79 .	9,189	_	_	
1979-80 .	9,672	_	_	
1980-81 .	10,247	_	_	
1981-82 .	10,483	_	_	
1982-83	10,873	_	_	
1983-84	11,145	_	_	
1984-85	11,243	_	_	
985-86	11,834	_	_	
1986–87*	12,100	_	_	
	Projected			
987-88	12,400	11,441	13,425	
988-89	12,800	11,704	13,858	
1989- 90 .	13,100	11,962	14.296	
1 990 –91	13,500	12,217	14,737	
1991-92	13,800	12,439	15,181	
1 992 -93	14,200	12,719	15,628	
993-94	14,500	12,967	16,076	
994-95	14,900	13,213	16,526	
995-96 .	15,200	13,458	16,978	
996 –97	15,600	13,702	17,430	
997-98	15,^00	13,945	17,883	

NOTE Projections are based on data through 1985-86. Because of rounding, details may not add to totals

SOURCE U.S Department of Education, Center for Education Statistics, Degrees and Other Formal Awards Conferred survey and Integrated Postsecondary Education Data System (IPEDS), Sample Survey of Early National Estimates, 1987 (This table was prepared November 1987)

Table B10.—Classroom teachers in public elementary and secondary schools, with alternative forecasts and confidence limits: 50 States and D.C., fall 1972 to fall 1997

Year	Elementary			Secondary		
	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit	Number	Lower 95 percent confidence limit	Upper 95 percent confidence limit
1972	1,140	_	_	963		_
1973	1,149	_	_	984		_
1974	1,167	_	_	998	_	_
1975	1,180	-	_	1,016		
1976	1,166		_	1,020	_	
1977	1,185	_		1,024	-	
1978	1,190	_	_	1,016	-	_
1979	1,190	_		993	_	_
1980	1,177	_	_	9 85	_	_
1981	I,155	_		962	_	_
1982	1,165	_		-	_	
1983	1,103	_	_	945	-	_
1984		_	_	948	_	_
1985	1,205	_	_	963	_	
	1,237	-	_	970	_	-
1986	1,267	_	_	977		_
987*	1,284	_		992	_	_
			Middle alterna	tive for eca sts		
1988	1,316	1,293	1,340	997	97 9	1,014
989	1,339	1,315	1,363	994	97 5	1,012
990	1,360	1,335	1,384	995	97 5 97 5	1,012
991	1,378	1,354	1,403	1,003	973 983	
992	1,398	1,373	1,423	1,020	1,000	1,023
993	1,418	1,392	1,443	1,020	·	1,041
994	1,436	1,410	•	•	1,021	1,062
995	1,453	1,428	1,461	1,064	1,044	1,085
996	1,433	·	1,479	1,091	1.070	1,111
007	1,472	1,446	1,497	1,114	1,093	1.135
yy /	1,400	1,462	i,514	1,134	1,112	1,155
			Low alternati	ve forecasts		
988	1,305	1,280	1,330	989	97 2	1,006
989	1,323	1.297	1,350	983	966	1,001
990	1,339	1,312	1,367	981	964	999
991	1,354	1,325	1,383	986	969	1.004
992	1,369	1,338	1,399	1,001	983	1,019
993	1,384	1,352	1,416	1,019	1.001	1,036
994	1,397	1,364	1,431	1,038	1,021	1,056
995	1,410	1,375	1,444	1,061	1,044	1.079
996	1,423	1,387	1,459	1,081	1,063	1.099
997	1,433	1,396	1,470	1,097	1.079	1,115
			High alternati	•		- , ~
988	1,330	1,307	1,353	1,006	986	1.025
989	1,360	1,337	1,383	1,008	986	1,030
990	1,389	1,365	1,412	1,014	989	1,039
991	1,416	1,391	1,440	1,028	1,000	1.055
992	1,444	1,418	1,470	1,028		
000	1,473	1,446		•	1.022	1.081
993	1,473		1,500	1,079	1,046	1,111
202		1,472	1,530	1,108	1,073	1,143
996 996	1,529	1,497	1,561	1,141	1.103	1,179
	1,558	1,523	1,594	1,172	1,131	1.213
997	1,587	1 ,54 7	1,627	1 200	1.155	1,245

*Estimate.

SOURCES: U.S. Department of Education, Common Core of Data sur-

vey; and National Education Association. Estimates of School Statistics (This table was prepared December 1987)

Table B11.—Current expenditures per pupil in average daily attendance (constant 1987 dollars) in public elementary and secondary schools, with alternative projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

	Constant 1987 dollars ¹			
Year	Per pupil in average daily attendance	Lower 95 percent confidence limit	Upper 95 percent confidence limit	
1972-73	\$2,799	_		
973-74	2,785	_		
. 4-	2,916		_	
975-76 .	3,005	_		
076–77	3,073	_	_	
77-78	3,179			
078-79	3,165	-		
79–80	3,136		-	
80-81	3,129	_		
81–82	3,212	-	-	
82-83	3,374	-	_	
83-84	3,475	-	-	
84–85	3,647	-		
85-86	3,893	_		
86–872	3,893 3,966	-	_	
	3,900	_	_	
		Middle alternative projections		
87-88	4,056	\$ 3,852	\$4 ,271	
88-89	4,125	3,917	4,343	
89-90	4,209	3,994	4,434	
90-91	4,292	4,073	4,521	
01-92	4,374	4,152	4,607	
72-93	4,455	4,231	4,692	
3-94	4,539	4,310	4,780	
94-95	4,627	4,394	4,873	
5-96	4,723	4,485	·	
06-97	4,822	4,577	4,975	
7-98	4,934	4,683	5,079 5,199	
	1,751	Low alternative projections	3,199	
27 00				
77–88	4,011	3,810	4,222	
38-89	4,038	3,835	4,250	
39-90	4,087	3,882	4,304	
0-91	4,132	3,923	4,353	
01 92	4,180	3,965	4,407	
2-93	4,227	4,004	4,462	
3-94	4,274	4,042	4,518	
94-95 · · · · · · ·	4,324	4,082	4,580	
95- 96	4,382	4,129	4,651	
)6-97	4,439	4,176	4,718	
7-98 .	4,505	4,230	4,797	
		High alternative projections	·	
37 88 .	4,108	3,898	4 220	
87	4,230	4,008	4,329	
9-9r	4,230		4,465	
0 1	4,514	4,130	4,627	
ı-92		4,257	4,787	
2-93	4,659	4,387	4,949	
2.04	4,807	4,517	5,115	
13-94 . 14-95	4,959	4,650	5,289	
· · ·	5,120	4,791	5,471	
5-96	5,293	4,940	5,672	
6-97	5,472	5,087	5,886	
17 -98	5,671	5,252	6,124	

'Based on the alf urban consumer price index of the Bureau of Labor Statistics, U.S. Department of Labor. Each value is adjusted by the CPI for the year in which the school year ended ²Estimate

SOURCE: U.S. Department of Education, National Center for Education Statistics, Statistics of State School Systems, and Revenues and Expenditures for Public Elementary and Secondary Education. Center for Education Statistics, Common Core of Data survey and unpublished data: and National Education Association, annual Estimates of State School Statistics (Latest edition 1986-87. Copyright 1987 by the National Education Association. All rights reserved.) (This table was prepared December 1987.)

Table B12.—Average annual salaries of classroom teachers (constant 1987 dollars) in public elementary and secondary schools, with alternative projections and confidence limits: 50 States and D.C., 1972-73 to 1997-98

	Constant 1987 dollars			
Year	Average annual salary	Lower 95 percent confidence limit ²	Upper 95 percent confidence limit ²	
972-73 .	\$26,051		_	
973-74 .	24,864	_	_	
974-75	24,695	_	_	
975-76	25,181	_	_	
	25,056	_	_	
777-78 .	24,758	_	_	
778-79	23,549	_	_	
779–80	22,049	_	_	
80-81	22,070	_	_	
081-82	22,713	_	_	
82-83	23,628	_	_	
83-84	24,001	-	_	
84–85	24,951	_	_	
85-86	26,154	_	_	
86–87	26,704	_	_	
	,	Middle alternative projection	ns	
87–88	27,428	\$26,826	\$28,030	
88-89	28,015	27,224	28,806	
89-90	28,183	27,336	29,031	
90-91	28,727	27,823	29,630	
91-92	29,485	28,496	30,474	
92-93	30,056	29,013	31,098	
93-94	30,544	29,466	31,622	
94–95	31,009	29,896	32,121	
95-96	31,343	30,217	32,469	
96-97	31,605	30,474	32,737	
97-98	31,856	30,717	32,737 32,995	
	51,050	Low alternative projections		
87-88	27,209	26,616		
88-89	27,598	26,828	27,803 28,368	
89-90	27,596 27,601	26,783	28,308 28,419	
90-91 .	27,964	20,783 27,104	28,419 28,824	
91-92	28,558	27,104 27,627	28,824 29,488	
92-93	28,960	27,991	29,488 29,930	
93-94	29,274	28,284	29,930 30,264	
94–95	29,557	28,547		
95-96	29,708	28,699	30,566	
96-97 .	29,771	28,772	30,717	
97-98	29,798	28,808	30,770 30,788	
		High alternative projections	;	
87–88	27,676	27,063	28,288	
88-89	28,521	27,702	29,340	
39-90	28, 96 3	28,072	29,855	
90-91	29,794	28,822	30,766	
91-92	30,854	29,769	31,939	
92-93 .	31,740	30,573	32,906	
93-94	32,558	31,327	33,789	
94-95 .	33,370	32,073	34,667	
95-96	34,072	32,729	35,416	
96 -97 .	34,722	33,337	36,106	
97-98	35,387	33,959	36,815	

¹Based on the all urban consumer price index of the Bureau of Labor Statistics, U.S. Department of Labor. Each value is adjusted by the CPI for the year in which the school year ended.

These confidence limits were calculated by using an equation for computing the asymptotic mean square error when ARI has been used to correct for first order autocorrelation. This equation is equation (8.3.14) of

G Judge, Griffiths, Hill, Lutkepohl, and Lee, The Theory and Practice of Econometrics, New York: John Wiley and Sons, 1985, page 318

SOURCE. National Education Association, annual Estimates of School Statistics. (Latest edition 1986-87 Copyright 1987 by the National Education Association All rights reserved.) (This table was prepared December 1987.)

Appendix C

Data Sources

Sources and Comparability of Data

The information in this report is from many sources including Federal and State agencies, private research organizations, and professional associations. The data were collected by many methods including surveys of a universe (such as all colleges) or of a sample, and compilations of administrative records. Use care when comparing data from different sources. Differences in procedures, such as timing, phrasing of questions, and interviewer training mean that the results from the different sources are not strictly comparable. More extensive documentation of one survey's procedures than of another's does not imply more problems with the data, only that more information is available.

Accuracy of Data

The accuracy of any statistic is determined by the joint effects of "sampling" and "nonsampling" errors. Estimates based on a sample will differ from the figures that would have been obtained if a complete census had been taken using the same survey instruments, instructions, and procedures. Besides sampling errors, all surveys, both universe and sample, are subject to errors of design, reporting, processing, and errors due to nonresponse. To the extent possible, these nonsampling errors are kept to a minimum by methods built into the survey procedures. In general, however, the effects of nonsampling errors are more difficult to gauge than those produced by sampling variability.

Sampling Errors

The standard error is the primary measure of sampling variability. It provides a specific range—with a stated confidence—within which a given estimate would lie if a complete census had been conducted. The chances that a complete census would differ from the sample by less than the standard error are about 68 out of 100. The

chances that the difference would be less than 1.65 times the standard error are about 90 out of 100; that the difference would be less than 1.96 times the standard error, about 95 out of 100; and that it would be less than 2.5 times as large, about 99 out of 100.

Standard error can help assess how valid a comparison between two estimates might be. The standard error of a difference between two sample estimates is approximately equal to the square root of the sum of the squared standard errors of the estimates. The standard error (se) of the difference between sample estimate "a" and sample estimate "b" is:

$$se = \sqrt{se + se - 2se}$$

Note that most of the standard errors in subsequent sections and in the original documents are approximations. That is, to derive estimates of standard errors that would be applicable to a wide variety of items and could be prepared at a moderate cost, a number of approximations were required. As a result, most of the standard errors presented provide a general order of magnitude rather than the exact standard error for any specific item.

Nonsampling Errors

Both universe and sample surveys are subject to non-sampling errors. Nonsampling errors are of two kinds—random and nonrandom. Random nonsampling errors may arise when respondents or interviewers interpret questions differently, when respondents must estimate values, or when coders, keyers, and other processors handle answers differently. Nonrandom nonsampling errors result from total nonresponse (no usable data obtained for a sampled unit), partial or item nonresponse (only a portion of a response may be usable), inability or unwillingness on the part of respondents to provide information, difficulty interpreting questions, mistakes in recording or keying data, errors of collection or processing, and overcoverage or undercoverage of the target universe. Random nonresponse errors usually, but not always, result in an under-

137

statement of sampling errors and thus an overstatement of the precision of survey estimates. Since estimating the magnitude of nonsampling errors would require special experiments or access to independent data, these magnitudes are seldom available.

To compensate for suspected nonrandom errors, adjustments of the sample estimates are often made. For example, adjustments are frequently made for nonresponse, both total and partial. An adjustment made for either type of nonresponse is often referred to as as an imputation, that is substitution of the "average" questionnaire response for the nonresponse. Imputations are usually made separately within various groups of sample members which have similar survey characteristics. Imputation for item nonresponse is usually made by substituting for a missing item the response to that item of a respondent having characteristics that are similar to those of the nonrespondent.

Although the magnitude of nonsampling error in the data collected in this *Projections* is frequently unknown, idiosyncrasies that have been identified are noted on the appropriate tables.

Federal Agency Sources

National Center for Education Statistics (NCES)

Common Core of Data

NCES uses the Common Core of Data (CCD) survey to acquire and maintain statistical data on the 50 States, the District of Columbia, and the outlying areas from the universe of State-level education agencies. Information about staff and students is collected annually at the school, LEA (local education agency or school district), and State levels. Information about revenues and expenditures is also collected at the State level.

Data are collected for a particular school year (July 1 through June 30) by survey instruments sent to the States by October 15 of the subsequent school year. States have 2 years in which to modify the data originally submitted.

Since the CCD is a universe survey, the CCD information in *Projections* is not subject to sampling error. However, nonsampling error could come from two sources—nonreturn and inaccurate reporting. Almost all of the States submit the six CCD survey instruments each year, but there are many delays in submitting data and the submissions are sometimes incomplete.

Understandably, when 57 education agencies compile and submit data for over 85,000 public schools and approximately 15,800 local school districts, misreporting can occur. Typically, this results from varying interpretation of NCES definitions and differing recordkeeping

systems. NCES attempts to minimize these errors by working closely with the Council of Chief State School Officers (CCSSO) and its Committee on Evaluation and Information Systems (CEIS).

The State education agencies report data to NCES from data collected and edited in the regular reporting cycles for which NCES reimburses them. NCES encourages the agencies to incorporate into their own survey systems the NCES items they do not collect so those items will also be available for the subsequent CCD survey. Over time this has meant fewer missing data cells in each State's response, reducing the need to impute data.

NCES subjects data from the education agencies to a comprehensive edit. Where data are determined to be inconsistent, missing, or out of range, NCES asks the education agencies for verification. NCES-prepared State summary forms are returned to the State education agencies for verification. States are also given an opportunity to revise their State-level aggregates from the previous cycle.

Questions concerning the Common Core of Data can be directed to:

Suzanne Triplett
Elementary and Secondary Education Statistics Division
National Center for Education Statistics
555 New Jersey Avenue NW

Washington, DC 20208

Higher Education General Information Survey

The Higher Education General Information Survey (HEGIS) was a coordinated effort administered by NCES to acquire and maintain statistical data on the characteristics and operations of institutions of higher education. Developed in 1966, HEGIS was an annual universe survey of institutions listed in the NCES Education Directory, Colleges and Universities.

The information presented in this report draws on HEGIS surveys which solicited information concerning institutional characteristics, faculty salaries, finances, enrollment, and degrees. Since these surveys cover all institutions in the universe, the data are not subject to sampling error. However, they are subject to nonsampling error, the sources of which vary with the survey instrument. Each survey will therefore be discussed separately. Information concerning the nonsampling error of the enrollment and degrees surveys is drawn extensively from the HEGIS Post-Survey Validation Study conducted in 1979.

Institutional Characteristics of Colleges and Universities. This survey provides the basis for the universe of institutions in the *Education Directory*, *Colleges and Universities*, and it is used in all other HEGIS data collection activities. The universe comprises institutions that

offer at least a 1-year program of college-level studies leading toward a degree and that meet certain accreditation criteria. In the fall, institutions included in the *Directory* the previous year receive a computer printout of their information to update. Institutions not previously included and that applied for *Directory* listing are sent a questionnaire. All institutions reported are certified as eligible to be listed by the Division of Eligibility and Agency Evaluation, U.S. Department of Education.

Opening Fall Enrollment in Colleges and Universities. This survey has been part of the HEGIS series since its development. The enrollment survey does not appear to suffer significantly from problems associated with nonresponse: The 1985 response rate was 92 percent. Major sources of nonsampling error for this survey are classification problems, the unavailability of needed data, interpretation of definitions, the survey due date, and operational errors. Of these, the classification of students appears to be the main source of errors. Institutions have problems in correctly classifying first-time freshmen, other first-time students, and unclassified students for both full-time and part-time categories. These problems occur most often at 2-year institutions (both private and public) and private 4-year institutions. In 1977-78, the classification problem led to an estimated overcount of 11,000 fulltime students and an undercount of 19,000 part-time students. Although the ratio of error to the grand total was small (less than 1 percent), the percentage of errors was as high as 5 percent for detailed student levels and even higher at certain aggregation levels.

Earned Degrees Conferred. This survey has been part of the HEGIS series since its development. However, the degree classification taxonomy was revised in 1970-71 and 1982-83. Though information from survey years 1970-71 through 1981-82 is directly comparable, care must be taken if information before or after that period is included in any comparison. Degrees-conferred trend tables arranged by the 1982-83 classification have been added to the Digest of Education Statistics to provide consistent data from 1970-71 to 1983-84. Data in this edition on associate and other formal awards below the baccalaureate are not directly comparable with figures for earlier years. The nonresponse rate does not appear to be a significant source of nonsampling error for this survey. The return rate over the years has been extremely high, with the response rate for the 1983-84 survey at 95 percent. Because of the high return rate, nonsampling error caused by imputation would also be minimal.

The major sources of nonsampling error for this survey are differences between the HEGIS program taxonomy and taxonomies used by the colleges, classification of double majors and double degrees, operational problems, and survey timing. In the 1979 validation study, these sources of nonsampling error were found to contribute to an error rate of 0.3 percent overreporting of bachelor's degrees and 1.3 percent overreporting of master's degrees. The differences, however, varied greatly among fields. Over

50 percent of the fields selected for the validation study had no errors identified. Categories of fields which had large differences were business and management, education, engineering, letters, and psychology. It is also shown that differences in proportion to the published figures were less than 1 percent for most of the selected fields which had some errors. Exceptions to these were: master's and doctoral programs in labor and industrial relations (20 percent and 8 percent); bachelors's and master's programs in art education (3 percent and 4 percent); bachelor's and doctoral programs in business and commerce, and in distributive education (5 percent and 9 percent); master's programs in philosophy (8 percent); and doctoral programs in psychology (11 percent).

Questions concerning the surveys used as data sources for this report or other questions concerning HEGIS can be directed to:

Postsecondary Education Statistics Division National Center for Education Statistics 555 New Jersey Avenue NW Washington, DC 20208

Bureau of the Census

Current Population Survey

Estimates of school enrollment as well as social and economic characteristics of students are based on data collected in the Census Bureau's monthly survey of about 60,000 households. The monthly Current Population Survey (CPS) sample is of 614 areas comprising 1,113 counties, independent cities, and minor civil divisions throughout the 50 States and the District of Columbia. The sample was initially selected from the 1970 census files and is periodically updated to reflect new housing construction.

The monthly CPS deals primarily with labor force data for the civilian noninstitutional population (i.e., excluding military personnel and their families living on post and inmates of institutions). In addition, supplemental questions are asked about the education of all eligible members of the household. The October 1982 survey obtained information about highest grade completed, level of current enrollment, attendance status, number and types of courses, degree or certificate objective, and type of organization offering instruction. Information on enrollment status by grade is gathered each October.

The estimation procedure used for the monthly CPS data involves inflating weighted sample results to independent estimates of characteristics of the civilian noninstitutional population in the United States by age, sex, and race. These independent estimates are based on statistics from decennial censuses; statistics on births, deaths, immigration, and emigration; and statistics on the population in

the armed services. Generalized standard error tables are in the *Current Population Reports*. The data are subject to both nonsampling and sampling errors.

More information is available in the Current Population Reports, Series P-20, or by contacting:

Population Division
Bureau of the Census
U.S. Department of Commerce
Washington, DC 20233

School Enrollment. Each October, the Current Population Survey (CPS) includes supplemental questions on the enrollment status of the populations 3 years old and over. The main sources of nonsampling variability in the responses to the supplement are those inherent in the survey instrument. The question concerning educational attainment may be sensitive for some respondents, who may not want to acknowledge the lack of a high school diploma. The question of current enrollment may not be answered accurately for various reasons. Some respondents may not know current grade information for every student in the household, a problem especially prevalent for households with members in college or in nursery school. Confusion over college credits or hours taken by a student may make it difficult to determine the year in which the student is enrolled. Problems may occur with the definition of nursery school (a group or class organized to provide educational experiences for children) where respondents' interpretations of "educational experiences" vary.

Questions concerning the CPS "School Enrollment" survey may be directed to:

Education and Social Stratification Branch Bureau of the Census U.S. Department of Commerce Washington, DC 20233

Other Organization Sources

National Education Association

Estimates of School Statistics

The National Education Association (NEA) reports revenues and expenditure data in its annual publication, Estimates of School Statistics. Each year NEA prepares regression-based estimates of financial and other education statistics and submits them to the States for verification. Generally about 30 States adjust these estimates based on their own data. These preliminary data are published by NEA along with revised data from previous years. States are asked to revise previously submitted data

as tinal figures become available. The most recent publication contains all changes reported to the NEA.

Some tables use revised estimates of financial data prepared by NEA because it was the most current source. Since expenditure data reported to NCES must be certified for use in Department of Education formula grant programs (such as Chapter I of the Education Consolidation and Improvement Act), NCES data are not available as soon as NEA estimates.

Further information on NEA surveys can be obtained from:

National Education Association—Research 1201 16th Street NW Washington, DC 20036

Status of the American Public School Teacher

The Status of the American Public School Teacher survey is conducted every 5 years by the National Education Association (NEA). The survey was designed by the NEA Research Division and initially administered in 1956. The intent of the survey is to solicit information covering various aspects of public school teachers' professional, family, and civic lives. Participants for the survey are selected using a two-stage sample design, with the first-stage stratum determined by the number of students enrolled in the districts. Selection probabilities are determined so that the resulting sample is self-weighting. In 1980-81, a sample of 1,768 was selected from the approximately 2.185 million public school teachers, and 1,326 usable replies were obtained, yielding a response rate of 75 percent.

Possible sources of nonsampling errors are nonresponses, misinterpretation, and—when comparing data over years—changes in the sampling method and instrument. Misinterpretation of the survey items should be minimal, as the sample responding is not from the general population but one knowledgeable about the area of concern. Since the sampling procedure changed after 1956, and some wording of items has changed over the different administrations, care is taken to present only comparable data.

Questions concerning the "Status of the American Public School Teacher" survey may be directed to:

National Education Association—Research 1201 16th Street NW Washington, DC 20036

Data Resources, Inc.

Data Resources, Inc. (DRI) provides an information system that includes more than 125 data bases; simula-

tion and planning models; regular publications and special studies; data retrieval and managements systems; and access to experts on economic, financial, industrial, and market activities. One service is the DRI U.S. Annual Model Forecast Data Bank which contains annual projections of U.S. economic and financial conditions, including forecasts for the Federal Government, incomes,

population, prices and wages, and State and local government, over a long-term, (10- to 25- year), forecast period.

Additional information is available from:

Data Resources, Inc. 24 Hartwell Avenue Lexington, MA 02173

Appendix D

Glossary

Data Terms

Associate degree: A degree granted for the successful completion of a sub-baccalaureate program of studies, usually requiring at least 2 years (or equivalent) of full-time college-level study. This includes degrees granted in a cooperative or work/study program.

Average daily attendance (ADA): The aggregate attendance of a school during a reporting period (normally a school year) divided by the number of days school is in session during this period. Only days on which the pupils are under the guidance and direction of teachers should be considered days in session.

Average daily membership (ADM): The aggregate membership of a school during a reporting period (normally a school year) divided by the number of days school is in session during this period. Only days on which the pupils are under the guidance and direction of teachers should be considered as days in session. The average daily membership for groups of schools having varying lengths of terms is the average of the average daily memberships obtained for the individual schools.

Bachelor's degree: A degree granted for the successful completion of a baccalaureate program of studies, usually requiring at least 4 years (or equivalent) of full-time college-level study. This includes degrees granted in a cooperative or work/study program.

Class size: The membership of a class at a given date.

Classroom teacher: A staff member assigned the professional activities of instructing pupils in self-contained classes or courses, or in classroom situations. Usually expressed in full-time-equivalents.

Cohort: A group of individuals that have a statistical factor in common, for example, year of birth.

College: A postsecondary school which offers general

or liberal arts education. usually leading to an associate, bachelor's, master's, doctor's, or first-professional degree. Junior colleges and community colleges are included in this term.

Constant dollars: Dollar amounts that have been adjusted by means of price and cost indexes to eliminate inflationary factors and allow direct comparison across years.

Consumer Price Index (CPI): This price index measures the average change in the cost of a fixed market basket of goods and services purchased by consumers.

Current expenditures (elementary/secondary): The expenditures for operating local public schools excluding capital outlay and interest on school debt. These expenditures include such items as salaries for school personnel, fixed charges, student transportation, school books and materials, and energy costs.

Current expenditures per pupil in average daily attendance: Current expenditures for the regular school term divided by the average daily attendance of full-time pupils (or full-time equivalency of pupils) during the term. See also current expenditures and average daily attendance.

Current Population Survey: See Data Sources.

Disposable personal income: Current income received by persons less their contributions for social insurance, personal tax, and nontax payments. It is the income available to persons for spending and saving. Nontax payments include passport fees, fines and penalties, donations, and tuitions and fees paid to schools and hospitals operated mainly by the government. See also personal income.

Doctor's degree: An earned degree carrying the title of doctor. The Doctor of Philosophy degree (Ph.D.) is the highest academic degree and requires mastery within a field of knowledge and demonstrated ability to perform

scholarly research. Other doctorates are awarded for fulfilling specialized requirements in professional fields, such as education (Ed.D.), musical arts (D.M.A.), business administration (D.B.A.), and engineering (D.Eng. or D.E.S.). Many doctor's degrees in both academic and professional fields require an earned master's degree as a prerequisite. First-professional degrees, such as M.D. and D.D.S., are not included under this heading.

Elementary school: A school classified as elementary by State and local practice and composed of any span of grades not above grade 8. A preschool or kindergarten school is included under this heading only if it is an integral part of an elementary school or a regularly established school system.

Elementary/secondary school: As reported in this publication, includes only regular school, i.e., schools that are part of State and local school systems, and also mornot-for-profit private elementary/secondary schools, boreligiously affiliated and nonsectarian. Schools not reported include subcollegiate departments of institutions of higher education, residential schools for exceptional children. Federal schools for Indians, and Federal schools on military posts and other Federal installations.

Enrollment: The number of students registered in a given school unit at a given time, generally in the fall of a year.

Expenditures: Charges incurred, whether paid or unpaid, which are presumed to benefit the current fiscal year. For elementary/secondary schools, these include all charges for current outlays plus capital outlays and interest on school debt. For institutions of higher education, these include current outlays plus capital outlays. For government, these include charges net of recoverics and other correcting transactions other than for retirement of debt, investment in securities, extension of credit, or as agency transaction. Government expenditures include only external transactions, such as the provision of perquisites or othe payments in kind. Aggregates for groups of governments exclude intergovernmental transactions among the governments.

Expenditures per pupil: Charges incurred for a particular period of time divided by a student unit of measure, such as average daily attendance or average daily membership.

First-professional degree: A degree that signifies both completion of the academic requirements for 'eginning practice in a given profession and a level of professional skill beyond that normally required for a bachelor's degree. This degree usually is based on a program requiring at least 2 academic years of work before entrance and a total of at least 6 academic years of work to complete

the degree program, including both prior-required college work and the professional program itself. By NCES definition, first-professional degrees are awarded in the fields of dentistry (D.D.S. or D.M.D.), medicine (M.D.), optometry (O.D.), osteopathic medicine (D.O.), pharmacy (D.Phar.), podiatric medicine (D.F.M.), veterinary medicine (D.V.M.), chiropractic (D.C. or D.C.M.), law (LL.B. or J.D.), and theological professions (M.Div. or M.H.L.).

First-professional enrollment: The number of students enrolled in a professional school or program which requires at least 2 years of academic college work for entrance and a total of at least 6 years for a degree. By NCES definition, first-professional enrollment includes only students in certain programs. (See first-professional degree for a list of programs.)

Full-time equivalent (FTE) enrollment: For institutions of higher education, enrollment of full-time students, plus the full-time equivalent of part-time students as reported by institutions. In the absence of an equivalent reported by an institution, the FfE enrollment is estimated by adding one-third of part-time enrollment to full-time enrollment.

Full-time instructional faculty: Those members of the instructional/research staff who are employed full time as defined by the institution, including faculty with released time for research and faculty on sabbatical leave. Full-time counts exclude faculty who are employed to teach less than two semesters, three quarters, two trimesters, or two 4-month sessions; replacements for faculty on sabbatical leave or those on leave without pay; faculty for preclinical and clinical medicine; faculty who are donating their services; faculty who are members of military organizations and paid on a different pay scale from civilian employees; academic officers, whose primary duties are administrative: and graduate students who assist in the instruction of courses.

Full-time enrollment: The number of students enrolled in higher education courses with total credit load equal to at least 75 percent of the normal full-time course load

Full-time worker: In educational institutions, an employee whose position requires being on the job on school days throughout the school year at least the number of hours the schools are in session. For highe education, a member of an educational institution's start who is employed full time.

Graduate: An individual who has received formal recognition for the successful completion of a prescribed program of studies.

Graduate enrollment: The number of students who

hold the bachelor's or first-professional degree, or the equivalent, and who are working towards a master's or doctor's degree. First-professional students are counted separately. These enrollment data measure those students who are registered at a particular time during the fall. At some institutions, graduate enrollment also includes students who are in postbaccalaureate classes but not in degree programs. In specified tables, graduate enrollment includes all students in regular graduate programs and all students in postbaccalaureate classes but not in degree programs (unclassified postbaccalaureate students).

Higher education: Study beyond secondary school at an institution that offers programs terminating in an associate, baccalaureate, or higher degree.

Higher education institutions (traditional classification):

4-year institution: An institution legally authorized to offer and offering at least a 4-year program of college-level studies wholly or principally creditable toward a bachelor's degree. In some tables a further division between universities and other 4-year institutions is made. A "university" is a postsc condary institution which typically comprises one or more graduate professional schools (also see university). For purposes of trend comparisons in this volume, the selection of universities has been held constant for all tabulations after 1982. "Other 4-year institutions" would include the rest of the nonuniversity 4-year institutions.

2-year institution: An institution legally authorized to offer and offering at least a 2-year program of college-level studies which terminates in an associate degree or is principally creditable toward a baccalaureate.

High school: A secondary school offering the final years of high school work necessary for graduation, usually including grades 10, 11, and 12 (in a 6-2-4 plan).

Instructional staff: Full-time-equivalent number of positions, not the number of different individuals occupying the positions during the school year. In local schools it includes all public elementary and secondary (junior and senior high) day-school positions that are in the nature of teaching or the improvement of the teaching-learning situation Includes consultants or supervisors of instruction, principals, teachers, guidance personnel, librarians, psychological personnel, and other instructional staff. Excludes administrative staff, attendance personnel, clerical personnel, and junior college staff.

Master's degree: A degree awarded for successful completion of a program generally requiring 1 or 2 years

of full-time college-level study beyond the bachelor's degree. One type of master's degree, including the Master of Arts degree, or M.A., and the Master of Science degree, or M.S., is awarded in the liberal arts and sciences for advanced scholarship in a subject field or discipline and demonstrated ability to perform scholarly research. A second type of master's degree is awarded for the completion of a professionally oriented program, for example, an M.Ed. in education, an M.B.A. in business administration, an M.F.A. in fine arts, an M.M. in music, an M.S.W. in social work, and an M.P.A. in public administration. A third type of master's degree is awarded in professional fields for study beyond the first-professional degree, for example, the Master of Laws (LL.M.) and Master of Science in various medical specializations.

Newly qualified teacher: Persons who (1) first became eligible for a teaching license during the period of the study referenced or who were teaching at the time of survey but were not certified or eligible for a teaching license and (2) had never held full-time, regular teaching positions (as opposed to substitute) before completing the requirements for the degree that brought them into the survey.

Part-time enrollment: The number of students enrolled in higher education courses with a total credit load less than 75 percent of the normal full-time credit load.

Personal income: Current income received by persons from all sources minus their personal contributions for social insurance. Classified as "persons" are individuals (including owners of unincorporated firms), nonprofit institutions serving individuals, private trust funds, and private noninsured welfare funds. Personal income includes transfers (payments not resulting from current production) from government and business such as social security benefits, military pensions, etc., but excludes transfers among persons.

Postbaccalaureate enrollment: The number of graduate and first-professional students working towards advanced degrees and of students enrolled in graduate-level classes but not enrolled in degree programs. See also graduate enrollment and first-professional enrollment.

Private institution: A school or institution that is controlled by an individual or agency other than a State, a subdivision of a State, or the Federal Government, which is usually supported primarily by other than public funds, and the operation of whose program rests with other than publicly elected or appointed officials.

Property tax: The sum of money collected from a tax levied against the value of property.

Preprietary institution: An educational institution that

is under private control but whose profits derive from revenues subject to taxation.

Public school or institution: A school or institution controlled and operated by publicly elected or appointed officials and deriving its primary support from public funds.

Pupil-teacher ratio: The enrollment of pupils at a given period of time, divided by the full-time-equivalent number of classroom teachers serving these pupils during the same period.

Revenues: All funds received from external sources, net of refunds, and correcting transactions. Noncash transactions such as receipt of services, commodities, or other receipts "in kind" are excluded as are funds received from the issuance of debt, liquidation of investments, and nonroutine sale of property.

Revenues receipts: Additions to assets that do not incur an obligation that must be met at some future date and do not represent exchanges of property for money. Assets must be available for expenditures.

Salary: The total amount regularly paid or stipulated to be paid to an individual, before deductions, for personal services rendered while on the payroll of a business or organization.

School: A division of the school system consisting of students in one or more grade or other identifiable groups and organized to give instruction of a defined type. One school may share a building with another school or one school may be housed in several buildings.

Secondary instructional level: The general level of instruction provided for pupils in secondary schools (generally covering grades 7 through 12 or 9 through 12) and any instruction of a comparable nature and difficulty provided for adults and youth beyond the age of compulsory school attendance.

Secondary school: A school comprising any span of grades beginning with the next grade following an elemen-

tary or middle school (usually 7, 8, or 9) and ending with or below grade 12. Both junior high schools and senior high schools are included

Senior high school: A secondary school offering the final years of high school work necessary for graduation.

Student: An individual for whom instruction is provided in an educational program under the jurisdiction of a school, school system, or other educational institution. No distinction is made between the terms "student" and "pupil," though "student" may refer to one receiving instruction at any level while "pupil" refers only to one attending school at the elementary or secondary level. The term "student" is used to include individuals at all instructional levels. A student may receive instruction in a school facility or in another location, such as at home or in a hospital. Instruction may be provided by direct student-teacher interaction or by some other approved medium such as television, radio, telephone, and correspondence.

Tax base: The collective value of objects, assets, and income components against which a tax is levied.

Total expenditure per pupil in average daily attendance: Includes all expenditures allocable to per pupil costs divided by average daily attendance. These allocable expenditures include current expenditures for regular school programs, interest on school debt, and capital outlay. Beginning in 1980-81, expenditures for State administration are excluded and expenditures for other programs (summer schools, community colleges, and private schools) are included.

Unclassified students: Students who are not candidates for a degree or other formal award, although they are taking higher education courses for credit in regular classes with other students.

Undergraduate students: Students registered at an institution of higher education who are working in a program leading to a baccalaureate or other formal award below the baccalaureate such as an associate degree.

Statistical Terms

Auto-correlation: When the error terms from different observations of the same variable are correlated. Also called serial correlation.

Confidence interval: A group of continuous or discrete statistics used to estimate a parameter and that tends to include the true value of the parameter a predetermined proportion of the time if the process of finding the group of values is repeated a number of times. Let (t_1, t_2) be the 95 percent confidence interval for the parameter b_1 , then upon repeated calculation of t_1 and t_2 (using different samples), the interval (t_1, t_2) will contain b_1 95 percent of the time.

Confidence limits: The values t_1 and t_2 which form the upper and lower limits of the confidence interval.

Degrees of freedom: The number of free or linearly independent sample observations used in the calculation of a statistic.

Dependent variable: A mathematical variable v hose value is determined by that of one or more other variables in a function. In regression analysis, when a random variable, y, is expressed as a function of variables, x_1 , x_2 ,..., plus a stochastic term, the y is known as the 'dependent variable.'

Double exponential smoothing: A method that takes a single smoothed average component of demand and smooths it a second time so as to allow for estimation of a trend effect.

Durbin-Watson statistic: A statistic testing the independence of errors in least squares regression against the alternative of first-order serial correlation. The statistic is a simple linear transformation of the first-order serial correlation of residuals and, although its distribution is unknown, it is tested by bounding statistics which follow R. L. Anderson's distribution.

Econometrics: The quantitative examination of economic trends and relationships using statistical techniques, and the development, examination, and refinement of those techniques.

Estimate: A numerical value obtained from a statistical sample and assigned to a population parameter. The particular value yielded by an estimator in a given set of circumstances; or, the rule by which such particular values are calculated.

Estimating equation: An equation involving observed quantities and an unknown which serves to estimate the latter.

Estimation: Estimation is concerned with inference about the numerical value of unknown population values from incomplete data such as a sample. If a single figure is calculated for each unknown parameter, the process is called point estimation. If an interval is calculated within which the parameter is likely, in some sense, to lie, the process is called interval estimation.

Exogenous variable: Variables for which the values are determined outside the model but which influence the model.

Exponential smoothing: A method used in time series to smooth or to predict a series. There are various forms, but all are based on the supposition that more remote history has less importance than more recent history.

Ex-ante forecast: The forecasting of unknown values.

Ex-post forecast: The forecasting of known values.

First-order serial correlation: When errors in one time period are correlated directly with errors in the ensuing time period. Also called auto-correlation.

Forecast: An estimate of the future based on rational study and analysis of available pertinent data, as opposed to subjective prediction.

Forecasting: Assessing the magnitude which a quantity will assume at some future point of time: as distinct from 'estimation' which attempts to assess the magnitude of an already existent quantity.

Forecast horizon: The number of time periods into the future which are forecasted. Forecasts for next year are said to have a 1-year forecast horizon.

Function: A mathematical correspondence that assigns exactly one element of one set to each element of the same or another set A variable that depends on and varies with another.

Functional form: A mathematical statement of the relationship among the variables in a model.

Independent variable: In regression analysis, when a random variable, y, is expressed as a function of variables, x_1, x_2, \ldots , plus a stochastic term, the x's are known as 'independent variables.'

Lag: An event occurring at time t + k (k>0) is said to lag behind an event occurring at time t, the extent of the lag being k. An event occurring k time periods before another may be regarded as having a negative lag.

Maximum likelihood estimation: A method of estimating a parameter or parameters of a population by that value (or values) which maximizes (or maximize) the likelihood of a sample.

Mean absolute percentage error (MAPE): The average value of the absolute value of errors expressed in percentage terms.

Model: A system of postulates, data, and inferences presented as a mathematical description of a phenomenon such as an actual system or process. The actual phenomenon is represented by the model in order to explain it, to predict it, and to control it.

Ordinary least squares (OLS): The estimator which minimizes the sum of squared residuals.

Parameter: An arbitrary constant whose value characterizes a member of a system. A quantity that describes a statistical population.

Projection: In relation to a time series, an estimate of future values based on a current trend.

R²: The coefficient of determination; the square of the correlation coefficient between the dependen variable and its OLS estimate.

 \bar{R}^2 (also called the adjusted R^2): The coefficient of determina $\rightarrow n$ adjusted for the degrees of freedom.

Regression analysis: Regression analysis is a statistical technique for investigating and modeling the relationship between variables.

Rho: A measure of the correlation coefficient between errors in time period t and time period t-1.

Serial correlation: When the error terms from different observations are correlated. Also called auto-correlation.

Time series: A time series is a set of ordered observations on a quantitative characteristic of an individual or collective phenomenon taken at different points of time. Usually the observations are successive and equally spaced in time.

Time series analysis: The branch of quantitative forecasting where data for one variable are examined for patterns of trend, seasonality, and cycle.

Variable: A quantity that may assume any one of a set of values.

