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Lauren B. Resnick Ill-structured Mathematics--2

Educators and cognitive scientists commonly think of mathematics as the

paradigmatic 'well-structured discipline. Mathematics is regarded as a field in which

statements have unambiguous meanings, there is a clear hierarchy of knowledge, and the

range of possible actions in response to any problem is both restricted and well defined in

advance. Cognitive scientists frequently contrast mathematics and mathematical logic

problemswhich must and can be solved within the narrow constraints of accepted

postulates and transformationswith problems in such domains as the social sciences,

where large amounts of external knowledge must be brought to bear, texts draw

alternative interpretations, and conclusions can be defended rationally but not always

strictly proven. Educators typically treat mathematics as a field with no open questions

and no arguments, at least none that young students or those not particularly talented in

mathematics can appreciate. Consider in evidence how little discussion occurs in typical

mathematics classrooms compared with English, social studies, and some science

classrooms. Even when we teach problem solving, we often present stereotyped problems

and look for rules that students can use to decide what the right interpretation of the

problem isso that they can find the single appropriate answer.

One result of this common way of teaching mathematics is that many children

come to think of mathematics as a collection of symbol manipulation rules, plus some

tricks for solving rather stereotyped story problems. They do not adequately link

symbolic rules to mathematical conceptsoften informally acquiredthat give symbols

meaning, constrain permissible manipulations, and link mathematical formalisms to real-

world situations (Resnick, 1987,a). Widespread indications of this problem include

children's use of buggy arithmetic algorithms and algebra malrules and their general

inability to use mathematical knowledge for problem solving. There is some evidence,

February 29, 1988
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Lauren B. Resnick Ill-structured Mathematics--3

however, that strong mathematics students are less likely than other students to detach

mathematical symbols from their referents. These students seem to use implicit

mathematical principles and knowledge of situations involving quantities to construct

explanations and justifications for mathematical rules, even when such explanations and

justifications are not required by teachers.

Research in other fields of learning supports this conjecture. Studies show, for

example, that good readers are more aware of their own level of comprehension than

poor ones; good readers also do more elaboration and questioning to arrive at sensible

interpretations of what they read (e.g., Brown, Bransford, Ferrara, & Campione, 1983).

Good writers (e.g, Flower & Hayes, 1980), good reasoners in political science and

economics (e.g., Voss, Greene, Post, & Penner, 1983), and good science problem solvers

(e.g., Chi, Glaser, & Rees, 1982) all tend to t: eat learning as a process of interpretation,

justification, and meaning construction. As in these other fields, students who

understand mathematics as a domain that invites interpretation and meaning

construction are those most likely to become flexible and inventive mathematical

problem-solvers.

All of this suggests that we urgently need to begin investigating possibilities for

teaching mathematics as if it were an ill-structured discipline. That is, we need to take

seriously, with and for young learners, the propositions that mathematical statements

can have more than one interpretation, that interpretation is the responsibility of every

individual using mathematical expressions, and that argument and debate about

interpretations and their implications are as natural in mathematics as they are in

politics or literature. Such teaching would aim to develop both capability and

February 29, 1988
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Lauren B. Resnick III-structured Mathematics-4

disposition for finding relationships among mathematical entities and between

mathematical statements and situations involving quantities, relationships, and patterns.

It would aim to develop skill not only in applying mathematics but also in thinking

mathematically.

To embark on such a venture requires an analysis of the various possible meanings

of mathematical expressions. From one perspective the meaning of a mathematical

expression is entirely :ontained within the formal proof system of postulates and

acceptable derivations from those postulates. We establish the truth of a mathematical

statement by proving it. If the initial assumptions and rules of proof are accepted, there

Is no ambiguity about whether a mathematical statement is true (although some

statements may be 'not yet proven' and, therefore, not yet of established truth). The

meaning of the statement lies in its place within a system of statementsnothing less.

Mathematical statements need not refer to objects or concepts as the statements of

ordinary language normally do. This is the essence of the formalist position on the

nature of mathematical knowledge (cf. von Neumann, 1985).

In its purest form, the formalist position would deny any necessary relationship

between mathematics and physical reality. But viewed from another perspective, if

mathematical statements really had no meaning beyond their relationship to other

statements in the same formal system, mathematics could not be used to describe

patterns or relations in the world or to draw inferences of new, not yet observed patterns

and relations. Mathematics would be merely an intricate game, entrancing to those who

loved it, but of no general value to society. Like music, it would be valued for emotional

and aesthetic qualities, without reference and 'utility.' But mathematics is useful. It

February 29, 1988
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Lauren B. Resnick Ill-structured Mathematics-5

helps us describe and manipulate real objects and real events in the real world.

Mathematical expression therefore, must have some reference. Numerical expressions

refer to numbersabstract entitles which. in turn, stand in some regular relationship to

actual physical quantities or enumerable events. A useful essay by Carnap (1956)

explores the complications of a language that refers to abstract entitles. Statements in a

geometry proof refer to points, lines, angles, and trianglesabstract entitles which stand

in some regular relationship to actual physical shapes. Algebra equations refer to

functional relationships between numbers and between the quantities or events to which

numbers can be reliably mapped. These referential meanings of mathematical

statements are what allow mathematics to be used.

Accepting as the reference of mathematical statements only abstract (but still real)

entities such as numbers, points, and lines would permit alternatives of interpretation for

mathematical statements, but their number would be limited. We encounter an

explosion of interpretations, however, when we include as potential referents for

mathematical statements the actual things in the world to which abstract mathematical

entitles can be reliably mappedwhat we might term situations that we can

mathematize. If we are willing to treat mathematizable situations as in some sense the

potential referents of mathematical statements, we must take seriously this explosion of

possible interpretations. In other words, we must recognize that there is no single

meaning for a mathematical expression and no single reason the relationships it expresses

are true.

We usually regard mathematical problem-solving, or at least the part of it that

treats real-world problems, as a process of building a mathematical interpretation of a

February 29, 1988



Lauren B. Resnick III-structured Mathematics-6

situation and then using a formal, fully determined system to manipulate relationships

that have been smathematized" by this interpretation. Our ability to do this depends

.Apon treating the mathematizable situation as part of the potential referential meaning

of mathematical expressions and doing so opens mathematics to Interpretation and

meaning construction of the kind that is an inherent part of all language use. Children

initially learn mathematics by interpreting mathematical symbols in terms of situations

about which they already know certain defining relations. And people who become good

mathematics learners continue for some time to build Justifications for mathematical

statements and algorithmic rules that are couched in terms other than mathematical

proof (cf. Resnick, 1986). They do this even though their teachers do not demand it, in

fact may even discourage it because it seems to be a form of thinking too imprecise for

mathematics. Could all children be taught to regularly think about mathematics in this

Justificatory, 'ill-structured way? What would be the effects?

The Nature of Meaning Construction for Mathematical
Language

If mathematical expressions refer to real things, both abstract and physical, not

Just to a system of other mathematical expressions, it makes sense to think of them as a

language. In this case our knowledge of natural language understanding can guide our

thinking about mathematical language understanding. People do not understand natural

language statements by simply registering the words. Instead they use a combination of

what is said, what they already know, and various inference processes to construct a

plausible mental representation of what the statement refers to. This representation

omits material that does not seem central to the message; it also adds information

needed to make the message coherent and sensible. The process of understanding natural

February 29, 1988
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language is an inferential, meaning construction process. So is the process of

understanding mathematical language. As already noted, there are two domains of

reference for mathematical language: the world of abstract mathematical entities and the

world of mathematizable situations. The next two sections explore ways in which

children might come to treat these two domains as spaces in which to construct plausible

mental representations of the meaning of mathematical statements.

Mathematical Entities as the Referents for Mathematical

Language

Constructing representations that involve mathematical entities can be difficult,

because the mathematical entities are themselves abstract mental constructions.

Furthermore, informal discussions about mathematical entities can be difficult, because,

other than the mathematics symbols themselves, we do not usually develop vocabularies

for discussing mathematics. Nevertheless, children sometimes can describe the meaning

of formal statements and expressions in ways that show they think of the symbols as

referring to these abstractions. Here is an example of a seven-and-a-half-year-old

explaining why 2 x 8 and 3 x 2 both equal 6:

What's two times three? Six. How did you get that? Well, two threes...one
three Is three; one more equals six. Okay, what's three times two? Six.
Anything interesting about that? They each equal six and Zaay're
different numbers....I'll tell you why that happens.... Two has more
ways; well it has more adds...like two has more twos, but it's a
lower number. Three has less threes but it's a higher number.... All
right, when you multiply three times two, how many adds are there?
Three...and in the other one there's two. But the twothat's two
threesbut the other one is three twos, 'cause twos are littler than
threes but two has more...more adds, and then the three has less
adds but it's a higher number.

In the following example, the same child explains his sti..tegy for making the

February 29, 1988
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Lauren B. Resnick Ill-structured Mathematics-8

quantity, 64, from various combinations of numbers. Asked how 23 -0- 41 (written

vertically on paper) could be rewritten but still equal 64, he first wrote 24 + 40 and then

continued:

I'm going one less than 40 and this one more...25 plus 39. Tell me
what you're doing now to get that. I'm just having one go lower; take
one away and put it on the other....I'm taking the 3 (from 231 away
and making that 2 and putting it on the 41 to make it 42. Like dirt,
I was going lower, lower, higher, higher. Okay, you gave me three
examples of how you could change the numbers. Now why do all those
numbers equal the same amount? Because this is taking some away from
one number and putting on the other number. And that's okay to do?
Yes. Why is that okay to do? Why not? Well, can you give me a reason? No,
anyone can do that...Because you still have the same amount. You're
keeping that but putting that on something else You're not just
taking it away.

These examples reveal an awkwardness of expression characteristic of children

discussing mathematical ideas. The child struggles to findeven inventwords to express

his knowledge about the mathematical objects to which the formal statements refer. In

part this reflects his lack of practice in talking about these mathematical entities. His

knowledge of them is largely implicit, expressed more in the variety of things he can do

with numbers than in a developed ability to talk about them (cf. Gelman and Greeno, in

press).

Other examples of children talking about the mathematical objects to which formal

, tatements refer appear in Magdalene Lampert's (1986) descriptions of her fourth grade

mathematics classes. In those classes, children argue about the meaning of mathematical

expressions, attempting to convince each other (and Lampert) that various arithmetic

algorithms they Invent are correct. This is an important ingredient of Lampert's classes.

The children are not just doing mathematics. They are discussing mathematics, arguing

February 29, 1988
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about it, disagreeing about it. In short they are, within some important limits, treating

mathematics as an ill-structured discipline in which multiple points of view are legitimat,e

and proposals must be justified, not so much on the basis of their being correct as of

their being sensible.

Situations as Referents for Mathematical Statements

Even more room for argument and discussion exists in the relationship between

mathematical language and real-world situations, because the same mathematical

expressions can refer to different situations. A simple subtraction sentence (5 - 8 for

example) illustrates the three classes of situations that have become familiar to us from

research on early story problems (e.g., Riley & Greeno, in press): Change situations in

which a starting quantity (5) is modified by removing a certain quantity (3) from it;

Combine (and decomposition) situations in which a whole (5) is broken into two parts (3

and 2); Compare situations in which two quantities (5 and 3) are compared and their

difference found. The numbers in the expression refer to different kinds of entities in

each of the three situations. Decomposition situations require only cardinal numbers.

That is. the 5, the 3, and the 2 in a decomposition story problem all derive from

measurement or counting operations. In change situations, the 5 and 2 are both measures

(cardinals), but the 3 describes an operator, i.e., a number that transforms other

numbers. And in the comparison situation, the 5 and the 3 are both cardinals, but the 2

refers to a third kind of number, one that represents a difference, a relationship between

measures.

We have conducted several studies examining students' abilities to interpret simple

algebra and arithmetic expressions in terms of situations. In the first of these studies

February 29. 1988
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(Resnick, Cauzinille-Marmeche, & Mathieu, 1987), we asked French middle school

children to make up stories that could be represented by expressions such as 17-11-4 or

its equivalent, 17- (11 +4). Initially we were interested in whether we could use children's

knowledge of the relationship between stories and expressions to help them understand

the reasons for symbolic algebra rules such as the sign-change rule. We never reached

the algebra goal, however, since many of the children were not able to reliably relate

arithmetic expressions to stories. The most interesting aspect of the data for the current

context of discussion is that many children were reluctant to treat the numbers in the

written expression as anything other than expressions of cardinals. Some of the youngest

children (11-12 years old) could not construct a simple story in which a child went out to

play with 17 marbles in his pocket and lost 11, then 4 of them, in two successive games.

For example, they told stories in which 6 marbles were lost, so that the child could have

11 marbles after the first game. Older children could generally construct the two-step,

marble-losing story, but many did not believe that they could combine the two operator

numbers (11 and 4) to determine how many marbles had been lost in all. This difficulty,

which echoes earlier findings by Vergnaud (1982, 1983) and Escarabajal, Kayser,

Nguyen-xuan, Poitrenaud, & Richard (1984), suggests that by middle school the children

had not rellabt constructed interpretations of numbers as referring to anything other

than card in alities.

Our more recent studies (Putnam, Lesgold, Resnick, & Sterrett, 1987) attempt to

confirm these surprising findings and extend the work on relationships between

expressions and story situations to multiplicative as well as additive numbers. We

interviewed 28 students from each of grades 5, 7, and 9. Both studies included three

interview phases. In Phase 1 the child read several sets of three story situations. In each

February 29, 1988
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set, two stork. ould be represented by equivalent forint! expressions, but the

expressions were not presented. The child was asked to decide which stories were

equivalent and why, without actually solving the problems. Phase 2 assessed the child's

knowledge of the equivalence of the formal expressions. The child was asked to judge as

equal or not equal, pairs of expressions representing correct and incorrect

transformations and then to justify each judgment. Phase 3 examined the child's ability

to link the story situations with the formal expressions. Given a story situation and a set

of three expressions, the child was asked to choose the expression best describing the

situation and justify that choice. For the other expressions, the child was asked to

modify the situation to fit the expression.

In both studies, the students successfully judged the equivalence of the story

situations and justified the equivalences (Phase 1). Students were very poor, however, at

Judging the equivalence of the formal expression pairs (Phase 2). When explicitly asked

(in Phase 3) to link stories with expressions, students could often do so, even when they

had not spontaneously used stories to help them reason in Phase 2. This pattern of

results suggests that many students have relevant informal knowledge that they do not

normally craw upon In thinking about formal expressions, although difficulties like those

in the earlier Fr nch study persisted. For these students, instruction focused on the task

of interpreting mathematical expressic as mathematizations of possible real-world

situations seems essential to their development as mathematical problem-solvers. In such

instruction, as in practice on more typical problem solving in which students are given

situations to interpret mathematically, the key is learning to identify the mathematical

entities that map to elements in the situation. In all such instruction, both the processes

of meaning construction and the relevant situational and mathematical knowledge should

February ,F94, 1988
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Socializing Mathematics Learning

Several lines of cognitive theory and research point toward the hypothesis that we

develop habits and skills of interpretation and meaning construction through a process

more usefully conceived of as socialization than instruction. Psychologists use the term

socialization to refer to the long-term process by which personal habits and traits are

shaped through participation in social interactions with particular demand and reward

characteristics. Theorists such as George Herbert Mead (1934) and Lev Vygotsky (1978)

have proposed that thought is an internalization of initially social processes. Mead refers

to thinking as conversation with the generalized other. Vygotksy describes learning as a

process in which the child gradually takes on characteristics of adult thought as a result

of carrying out activities in many situations in which an adult constrains meaning and

action possibilities.

A small but growing number of psychologists, anthropologists, linguists, and

sociologists have begun to study the nature of cognition as a social phenomenon. (See

Resnick, 1987,c, for a review and interpretation of some of this research.) In education,

the best developed line of work on socialized learning is in the field of reading. Palincsar

and Brown (1984), broadly following a Vygotskian analysis of the development of

thinking, propose that extended practice in communally constructing meanings for texts

will eventually produce an internalization of the meaning construction processes in each

individual. They used a highly organized small-group teaching situation in which

children took turns playing the teacher's role by posing questions about texts,

summarizing them, offering clarifications, and making predictions. These four activities

February 29, 1988
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are thought to induce the kinds of self-monitoring of comprehension characteristic of

good readers. The adult's role in these reciprocal teaching sessions, although informal in

style, is highly structured. In addition to facilitating the general process, the adult is

expected to model problem-solving processes and provide careful reinforcement for

successively better approximations of good self-monitoring behaviors on the part of the

children.

Using a social setting to practice problem solving is a method shared by other

investigators, at least some in the field of mathematics learning. (See Resnick, 1987,b,

and Collins, Brown, and Newman, in press, for a more general review.) I have already

mentioned the work of Magdalene Lampert, who conducts full-class discussions in which

children invent and Justify solutions to mathematical problems. Lamp:It's discussions,

like those in reciprocal teaching, are carefully orchestrated by the teacher and include

considerable modeling of interpretive problem solving by the teacher. Schoenfeld's

(1985) work with college students shares many features of the Lampert class lessons. In

Schoenfeld's problem-solving sessions, groups of students work together to solve

mathematics problems. The instructor works with them, often stepping in when students

reach an impasse to restart the problem-solving process. The instructor's special role is to

"think aloud' while solving problems, thereby modeling for students heuristic processes

usually carried out privately, hidden from view. To facilitate this modeling, students

sometimes generate problems for the instructor, and the instructor occasionally pretends

more puzzlement than actually experienced in order to show how several candidate

solutions may be developed and evaluated. In contrast, Lesh's (1982, 1985) problem-

solving sessions share reciprocal teaching's small-group format for collaborative problem

solving but have no teacher present. This means that Lesh's problem-solving groups

February 29, 1988
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Lauren B. Resnick III-structured Mathematics-14

benefit from children's debate and mutual critiquing, but children do not have the

opportunity to observe expert models engaging in the process and are not taught any

specific techniques for problem analysts or solution.

Another line of work, this one rooted in a convergence of Piagetian and European

social psychology theory, offers further support for the idea that collaborative problem-

solving experience ought to promote general cognitive development. The research of

Genevan social psycholozists (Mugney, Perret-Clermont, & Dolse, 1981) has shown that

peer discussion of certain classical Piagetian problems (e.g., conservation) can improve

performance even when both discussants begin at the same low level. The importance of

this finding is that it eliminates the possibility that a more advanced child simply taught

a new response to a more backward child. Instead something in the conflict of opinions

apparently sets constructive tearing processes in motion (cf. Murray, 1983).

Socially shared problem solving, then, apparently sets up several conditions that

may be important in developing problem-solving skill. One function of the social setting

is that it provides occasions for modeling effective thinking strategies. Thinkers with

more skill--often the instructor, but sometimes more advanced fellow studentscan

demonstrate desirable ways of attacking problems, analyzing texts, constructing

arguments. This process opens to inspection mental activities that are normally hidden.

Observing others, the student can become aware of mental processes that might

otherwise remain entirely implicit. When Palincsar and Brown compared modeling alone

with modeling embedded .:- the full reciprocal teaching situation, however, modeling

alone did not produce very powerful results. Thus there is more to the group process

than Just the opportunity to watch others perform.

February 29, 1988
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Something about performing in social settings seems to be crucial to acquiring

problem-solving habits and skills. 'Thinking aloud' in a social setting makes it possible

for other: - -peers or an instructorto critique and shape a person's performance,

something that cannot be done effectively when only the results, but not the process, of

thought are visible. It also seems likely that the social setting provides a kind of

scaffolding (Wood, Bruner, & Ross, 1978) for an individual learner's initially limited

performance. Instead of practicing bits of thinking in isolation so that the significance of

each bit is not visible, a group solves a problem, writes a composition, or analyzes an

argument together. In this process, extreme novices can participate in solving a problem

that would be beyond their individual capacities. If the process goes well, the novices

can eventually take over all or most of the work themselves, with a ueveloped

appreciation of how individual elements in the process contribute to the whole.

Yet another function of the social setting, for practicing thinking skills may be what

many would call motivational. Encouraged to try new, more active approaches, and

given social support even for partially successful efforts, students come to think or

themselves as capable of engaging in interpretation. The public setting also lends social

status and validation to what may best be called the disposition to meaning construction

activities. Here the term disposition does not denote a biological or inherited trait, but

rather a habit of thought, one that can be learned and, therefore, taught. Thus, it seems

possible that engaging in problem solving with others may teach students that they have

the ability, the permission, and even the obligation to engage in a kind of independent

interpretation that does not automatically accept problem formulations as presented (cf.

Resnick, 1987,0).

L i
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There is good reason to believe that a central aspect of developing problem-solving

abilities in students is a matter of shaping this disposition to meaning construction.

There is surprisingly little research linking cognitive skills and disposition to use them.

On the whole, research on cognitive ability has proceeded separately from research on

social and personality development, and only the latter has attended to questions of how

dispositionsoften labeled traits in the social and personality research literaturedevelop

or can be modified. Some recent work takes important steps toward creating links

between the quality of thinking and dispositions. For example, Dweck (in press; Dweck &

Elliot, 1983) proposes that individuals differ fundamentally in their conceptions of

intelligence and that these conceptions mediate very different ways of attacking

problems. She distinguishes between two competing conceptions of ability or 'theories of

intelligence that children may hold. One, called the entity conception, treats ability as

a global, stable quality. The second, called the incremental conception, treats ability as a

repertoire of skills that can be expanded through efforts to learn. Entity conceptions

orient children toward performing well so that they can display their intelligence and

toward not revealing lack of ability by giving wrong responses. Incremental

conceptions orient children toward learning goals, seeking to acquire new knowledge or

skill, mastering and understanding something new. Most relevant to the present

argument, incremental conceptions of ability and associates learning goals lead children

to analyze tasks and formulate strategies for overcoming difficulties. We can easily

recognize these as close cousins of the interpretive, meaning construction activities

discussed here. Such analyses suggest that participation in socially shared problem

solving should, tinder certain circumstances, produce dispositional as well as cognitive

ability changes.

February 29, 1988
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Collaborative Problem Solving

We have begun a line of research that attempts to adapt the principles of

reciprocal teaching, as developed by Palincsar and Brown (1984) to teaching

mathematics problem solving. Using the reciprocal teaching procedure for mathematics

problem solving is not the straightforward process it might initially seem, primarily

because mathematics problem solving is more strictly knowledge-dependent than reading.

Part of what makes reciprocal teaching work smoothly in reading is that the same

limited set of activities (summarizing, questioning, predicting, clarifying) is carried out

over and over again. Finding repeatable activities of this kind in mathematics is not

easy. Polya-like heuristics (Polya, 1973), as Schoenfeld (19xx) points out. are so general

they provide little guidance for people who are not already good at solving mathematics

problems. In reading activities, furthermore. children are rarely totally wrong but are

more likely to be Just weakthit is, while responses may not enhance comprehension

very much, they do not turn it off course. either. In mathematics problem solving,

however, children frequently come up with incorrect formulations that do actively

interfere with problem solving. Another difficulty lies in our inability to calibrate

mathematics problems to increase the value of practice and assessment, because nothing

equivalent to readability or grade-level difficulty allows us to group problems according

to difficulty, as we do texts for reading.

We have, then, three main problems to solve in adapting the reciprocal teaching

strategy to mathematics problem solving. First, we need to find a set of repeatable (thus

general) yet adequately constraining (thus specific) activities that children can use and

develop over many practice problems. Second, we need to find an appropriate balance

l S)
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between attention to general problem-solving strategies and processes and attention to

the specific mathematical knowledge required for problem solving. Third, we need to

find ways of grouping and calibrating problems for instructional and assessment

purposes. My colleagues and students and I have been working on these problems in the

context of a series of exploratory studies discussed briefly below. Although none of the

work is definitive at this time, it is helping us to refine questions and develop research

methods that will allow us to move into the relatively uncharted waters of research lying

at the intersection of social and cognitive processes.

Knowledge-dependence of Mathematical Problem Solving

In a series of four sessions, we asked a group of five fifth-grade children to solve

collaboratively word problems involving some aspect of rational numbers, with children

alternating as discussion leader. Sessions were tape recorded, with full transcriptions

prepared. Study of the protocols revealed that two fundamental problems must be

resolved if we are to adapt the principles of reciprocal teaching to mathematics. Both

problems are rooted in the fact that mathematics problem solving is more strictly

knowledge-dependent than reading.

First, in our problem-solving sessions, children frequently foundered because tIly

lacked knowledge of relevant mathematical content, despite our efforts to match session

content to what children were studying in their regular mathematics classes. Insecure

basic mathematical knowledge at times dramatically blocked successful problem solving

in our group. In one such instance the children drew a pizza and divided it into six

parts, each called 'a sixth"; they shaded three of those parts and then asserted that each

shaded part was 'a third." In such situations, the adult must either interrupt problem-

2 0
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solving processes to teach basic mathematics concepts or allow the children to continue

with fundamental errors of interpretation. Neither choice seems likely to foster the

proper development of appropriate meaning construction abilities.

Second, since part of what makes reciprocal teaching work smoothly in reading is

the repetition of the same limited set of activities (summarizing, questioning, predicting,

clarifying) and since it is not as easy to find such activities in mathematics, we had the

adult leader introduce and repeat some very general questions, e.g., "'What is the

question we are working on? 'Would a diagram help ?' Does that (answer] make

sense?* and ' What other problem is like this one ?' As is also often the case for more

mathematically sophisticated Polya-like heuristics, however, these questions appeared to

be too general to adequately constrain the children's efforts. They did not know what

diagram to draw, for example, or they drew it incorrectly, or could not decide if an

answer was sensible because they had misunderstood basic concepts.

Using Strategies Versus Talking About Them

In a second effort, we attempted to respond to each of these problems in a

systematic way. The children involved were fourth graders who were asked to work in a

group of 5 for 13 sessions, each led by the same adult. To control for children's lack of

specific relevant mathematical knowledge, we used problems that invoked concepts from

the previous year of mathematics instruction rather than the current year. With this

control for unmastered mathematical content, we encountered very few occasions in

which fundamental mathematical errors or lack of knowledge impeded problem solving.

Based on cognitive theories of problem solving, we identified four key processes

that should be repeated in each new problem-solving attempt: (a) planning--!.e.,

fl .;
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analyzing the problem to determine appropriate procedures; (b) organizing the steps for

a chosen procedure; (c) carrying out those steps; and (d) monitoring each of the above

processes to detect errors of sense and procedure. For each problem to be solved, these

functions were assigned to four different children. The Planner was charged with

leading a discussion of the problem in order to set forth applicable strategies and

procedures. Once the group chose a procedure, the Director's task was to state explicitly

the steps in the procedure. These steps were then to be carried out by the Doer at a

chalkboard visible to all. The Critic's role was to intervene if any unreasonable plan or

error in procedure was detected.

The tactic of dividing mental problem-solving processes into overt social roles was

not initially successful. Although our research community has specific meaning for such

terms as planning, directing, and critiquing /monitoring, with the exception of the Doer

role, these meanings were not conveyed to children by the labels, and we were not

successful in verbally explaining them to the children. As a result, the roles became

instruments for controlling turntaking and certain other social aspects of the sessions,

but did not give substantive direction to problem solving. And while children discussed

the roles a great deal, they did not become adept at performing them. This points to a

fundamental problem with certain metacognitive training efforts that focus attention on

knowledge about problem solving rather than on guided and constrained practice in

doing problem solving. Such efforts may be more likely to produce ability to talk about

processes and functions than to perform them.

In session 6, we attempted a modification of the Critic role in order to deal with

this problem. The Critic's function was now shared by two children, who received cue

'(2
February 29, 1988



Lauren B. Resnick III-structured Mathematics-21

cards to use in communicating their criticisms. The cue cards read:

1. Why should we do that? [request for Justification of a procedure]

2. Are you sure we should be adding (subtracting, multiply:ag, dividing)?
[request for Justification of a particular calculation]

3. What are we trying to do right now? [request for clarification of a goal]

4. What do the numbers mean? [insistence that attention focus on meanings
rather than calculation and symbol manipulation]

The cue cards served to scaffold the Critic function by limiting the possible critiques and

providing language for them. At first the children used the cue cards almost randomly

and rather intrusively. During the seven succeeding sessions, however, children's use of

the cue cards became increasingly refined, i.e., used on appropriate occar ons and in

ways that enhanced rather than disrupted the group's work. Nevertheless, at the end of

13 sessions there was no strong evidence that the overall level of problem- solving activity

had improved substantially. It seemed appropriate, therefore, to turn away from this

global approach to collaborative problem solving and try to develop more targeted forms

of scaffolded problem-solving experience.

Forms of Scaffolding

A continuing problem in this research has been finding adequately controlled

methods of study. Just recording and transcribing conversations among five children is a

daunting task. Finding systematic ways to analyze these conversations that enable us to

go beyond the anecdotal without losing their essential character In the service of

quantification is even more challenging. One way of solving these problems is to conduct

an interrelated series of studies, each designed to answer particular questions. With such

a strategy, the program of research as a whole instead of any one study should produce

n:,
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strong conclusions. We are now conducting several studies in this spirit, each aimed at

exploring how specific aspects of scaffolded problem- solving practice, together with

discussion and argument, may shape the dispositions and skills of problem solving.

An initial study examined pairs of children solving problems particularly suited to

classical means-ends strategies (cf. Newell & Simon, 1972). The limitation to pairs of

children allowed us to record all conversation and develop a way of analyzing the

conversation that captured key aspects of both the problem-solving structure and the

social interaction. The problems given to the children, highly structured arithmetic

story problems, were suitable for developing our method of analysis, although they

limited the range of discussion and interpretation we would eventually like to develop in

problem-solving groups. For the problems used, we were able to determine the probable

paths of solution and points of diMculty in advance, and this guided our data analysis.

Participants in the study were 12 pairs of children, 3 pairs each from grades 4, 5, 6,

and 7. Each pair of children met 3 times for 40 minutes and solved from 2 to 6 problems.

To scaffold the means-ends problem-solving strategy, children were given a Planning

Board on which to work. The board provides spaces for recording what is known (either

stated in the problem or generated by the children) and what knowledge is needed (goals

and subgoals of the problem). Using the board, children can work both bottom-up

(generating "what we know entries) and top-down (generating what we need to

know entries). A space at the bottom is provided for calculation. Figure 1 shows a

Planning Board with some typical entries. Each child writes on the hoard with

different color pen to facilitate tracking the ,ocial exchange.

,
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Insert Figure 1 about here

At each grade level, one pair of children was assigned to each of the following three

conditions:

1. Planning Board with Maximum Instruction. The children solved problems
using the Planning Board. The adult demonstrated use of the Planning
Board during the first session and then participated in the first two sessions
by providing hints and prompts to further scaffold the problem-solving
process and increase use of the board.

2. Planning Board with Minimum Instruction. The children solved problems
using the Planning Board. The adult demonstrated use of the board and
provided hints and prompts during the first session only.

3. Control. The children solved problems without the Planning Board during all
three sessions.

Since this was a pilot study, we have results on only a few problems and can draw

no strong conclusions about processes of interaction under the three conditions 'of

scaffolding. It is possible, however, to use these initial data to demonstrate some

possibilitles for detailed analysis of collaborative problem solving. In the following

paragraphs we examine data on the final problem of the third session in the studya

problem that all dyads worked without adult intervention.

Efficiency in using the board. We rated efficiency in use of the Planning

Board on a three-point scale reflecting the extent to which the children reduced the

language in the problem statement to a more succinct form. Table 1 shows the results of

this coding for the children who used the Planning Board with minimum and maximum

instruction. As can be seen, fourth graders, regardless of amount of instruction, and fifth

graders with minimum instruction mostly recopied the words of the problem onto the

25
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Planning Board. In contrast, seventh graders with maximum training tended to reduce

the information to a symbolic form that could be entered directly into calculations. Not

surprisingly, older children used the planning board more efficiently. It is encouraging

that even the very brief training and practice in this study seemed to produce more

efficient use of the board among all but the youngest children. With more extended

practice all children could conceivably become very efficientin the limited sense thus

far considered--at using the board.

Insert Table 1 about here

The board as a scaffold for goal analysis. The Planning Board was not

meant simply as a recording device for students, however. It was intended to prompt and

support them in identifying goals and subgoals and clarifying the relationship of the

given informatior to these goals. We wanted to examine the extent to which children in

the different groups carried out such problem analysis. We began by delineating the

goal-given structure of a problem in "expert" terms. Figure 2 shows both this structure

and the problem statement given to the children. Although apparently simple, this

problem is deceptive. The basic structure of the problem requires adding the amount of

money spent to the amount left at the end of the day to determine the money in hand at

the beginning of the day. In basic structure the problem is a Riley/Greeno (in press)

Change-3 problem, one of the most difficult additive story problems. The problem can

be stated algebraically as ? - b = c. But it is complicated by the fact that Mark alsJ

gains money during his outing, and this money must be subtracted from the amount

spent before the amount spent is added to the amount left at the end of the day. The

algebraic structure thus becomes ? - (b - d) = c. Our research on children's ability to

connect additive story problems with arithmetic statements (Putnam, Lesgold, Resnick,
n --I
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& Sterrett, 1987) has shown this composition-of-transformation type problem to be

among the most difficult for children to interpret. Thus this problem provides extensive

complex material for fourth through seventh graders.

Insert Figure 2 about here

In the goal analysis shown in Figure 2, direct statements from the problem are

shown without brackets; statements in brackets contain information the problem solver

must generate (either implicitly or explicitly) to solve the problem. Go represents the

'top goal' which, when reached, means that the whole problem has be. n solved. To

meet this goal it Ls necessary to find out how much money Mark spent (G1), how much

he received in the course of the day (G2), and how much he had left at the end of the

day (G3). G1 has several sdbgoals (G11, G13, G14), each asking for a specific portion of

the day's expenditure. Information provided to help satisfy goals is coded as V (for

givens); the subscripts specify the relevant goal or subgoal for each piece of information.

With this analysis in hand, it was possible to use the typed protocol of each dyad's

problem-solving session to construct a record similar to a problem behavior graph (cf.

Ericsson & Simon, 1984) showing the sequence in which the dyad generated and used the

goals and givens of the problem. In our working records, we enter statements made by

each subject in the same color as the subject's pen. This color imding enables us later to

recapture informat'on about the social aspects of the joint problem solving.

From the problem behavior graphs, different kinds of informatim can be .r:ra..,:ed.

For example, we examined the extent to which each of the dyads in the study noted the

necessary information (goals and givens) in the problem statement and the extent to

11 .4
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which they generated explicitly (in writing or orally) the necessary subgoals. For the

problem under consideration here, all dyads specified at least 7 of the 9 pieces of given

information, exhibiting no differences due to grade level or treatment. This high level of

noting the given information was common to all problems studied. The children were

not so good, however, at generating goals. As shown in Figure 2, six subgoals could be

specified for this problem. Table 2 shows how many of these each dyad specified. As

can be seen, no dyad was complete in its goal specification. It must be noted, however,

that it is possible to properly use the information in V111, V131, V and
111' 112' 131' 132' 141'

V142 without specifying the intermediate subgoals, i.e., without explicitly asking how

much was spent on the subcategories of bus rides, puzzle books, and lunch. Thus it is

only absolutely necessary to specify three subgoals (G1, G2, and G3) in order to solve the

problem. Both the Planning Board and the level of training apparently affected the

number of goals specified. Groups with the board and with maximum training on it

generated a much higher proportion of the goals.

Insert Table 2 about here

Solution structures. Despite the greater proportion of goal generation, no dyad

gave exactly correct responses to the Saturday Shopping problem. Our goal analysis and

algebraic analysis of the probkm allow us to examine the points of difficulty and nature

of errors for each group. Table 3 shows a structural analysis of the responses to this

problem and characterizes each dyad's responses.

Insert Table 3 about here

We have described the problem as being of the form ? - (1) - d) = c, where b =

the amount spent, d = the amount received along the way, and c = the amount left at

2
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the end of the day. Since the amount left at the end of the day is directly stated in the

story, the problem can be rerepresented as ? - - = $4.48. Correct solution requires

adding the quantity (b - to $4.43. We look first at which dyads correctly added the

result of their calculations on spending and receiving to the $4.43, despite the minus sign

in front of this quantity. All responses above the midline in Table 3 were of this kind;

those below the midline subtracted rather than added or carried out no arithmetic

linking b and d to 4.43. Table 4 shows the data organized by grade and treatment.

While we cannot determine statistical significance, it appears that the Planning Board

with maximum instruction may have had some effect in supporting students' analyses of

the problem at this level.

Insert Table 4 about here

We can also examine the extent to which students understood that the amounts

received during the day (d) reduced the amount spent. They could show this

understanding either by subtracting d from b before adding the result to 4.43 (following

the form we have given: ? - (b - = 149) or by converting the problem to the

equivalent form (? - b c = 4.48), which requires adding b to 4.43 and subtracting d.

No dyad did this correctly by either method. The arguments and elaborations children

provided for each other, however, showed that for several of the dyads the question of

what to do with the d quantities constituted a major point of discussion. Thus most of

the dyads located the difficult aspect of the problem but could not resolve their questions

successfully.

Social collaboration. We have been considering the problem-solving processes of

the dyad as those of an individual. Now we turn to the examination of social interaction

29
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between the pairs of children, unpacking their performance according to which child

engaged in various parts of the shared problem-solving process. This is possible because

our sequential coding of each dyad's problem-solving process retained information about

which child was responsible for each statement or written operation.

A question often raised in considering the effects of discussion and interaction on

learning concerns whether children adopt highly specialized roles in such interactions and

thus fail to practice all of the different activities that comprise successful problem

solving. The result of consistent, long-term specialization in these situations might be

that, while the group becomes effective at problem solving, individual members (or at

least some individual members) could not function independently. According to the

theory of scaffolded learning, early in their learning individuals ought to succeed in

Jointly solving problems that they cannot solve individually, but eventually they should

take on more components of problem solution and function independently. Presumably

then, in successfully scaffolded learning, specialization would be apparent during early

phases but less so later.

Our present data do not follow dyads over long enough periods to track changes in

specialization, but we can show how our analyses would permit us to determine such

specialization. Table 5a (columns 1-3) shows overall utterances by the two children in

each dyad and t.,- r.: number of utterances by each child (H for the child with the higher

math achievement score, L for the child with the lower math achievement score): The

amount of overt activity by the dyads varies considerably, with the total number of

utterances ranging from 5 (dyad 7 Con) to 106 (dyad 8 MM). We examined the

percentage of talk by the dominant member of each dyad, but for this problem no clear

..-
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pattern seemed attributable to either grade level or treatment condition. Table 5b

shows that there was somewhat more total talk by the two Plann!ng Board groups,

especially by the more intensively trained group.1411
Insert Tables 5a and b about here

The remaining columns of Table 5a break down the interaction more specifically

according to who states the givens in the problems (columns 4-5), who makes the goal

statements (columns 6-7), and who does calculations (columns 8-9). There were wide

variations among the dyads, but again no clear pattern seemed attributable to grade

level or treatment condition. Given more problems, more stable assessments for each

dyad might be made, and some pattern might emerge. In addition, studies following

subjects over many sessions of shared problem solving could track changes in degree of

specialization.

We are interested not only in role specialization, but also in the quality of the

shared interaction over problem solving. One way to examine this is to identify

statements by one member of the dyad showing some level of direct response to the

other's problem-solving effort. These direct responses can then be contrasted with simple

division of labor (such as we examined in the last paragraph) and purely parallel work,

where each student solves the problem separately, despite the shared work space. In one

analysis, we identified three kinds of direct responserepetition, argument, and

elaboa ation. Of the three, arguments and elaborations correspond roughly to the two

main ways in which socially shared problem solving is thought to facilitate learningpeer

conflict and peer scaffolding.
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Only a small minority of all utterances made while working on the problem were

coded as arguments or elaborations. This is characteristic of other data we have

examined and represents one of the difficulties of both studying shared intellectual

activity and using it as a pedagogical method. There is a very low density of the kind of

activity we believe is most instrumental in producing learning. Shared problem solving

looks inefficient by usual pedagogical standards. These children, for example, could very

probably work on more problems in a similar amount of time if they worked alone.

Shared problem solving alto requires tremendous patience from the researcher who

would study it. Not only are the data harder to collect and transcribe and the sessions

longer, but also the density of 'interesting' eventsevents probably worth detailed

scrutiny and qualitative analysisis very low. Nevertheless much can be learned from

such scrutiny. Important to our research agenda will be establishing what patterns of

challenge and elaboration exis and how givers and receivers of challenges and

elaborations benefit from the exchange.

Issues for Further Investigation
In this chapter I have suggested a broad point of view on the nature of

mathematical problem-solving and illustrated some of the research questions and

strategies such a point of view generates. To explore more fully the possibilities for and

the difficulties of teaching mathematics as an ill-structured discipline, we need

continuing research of several kinds. My concluding statements identify some of the

questions requiring additional research.
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Natural Language and Mathematical Language

At the heart of the suggestion that we teach mathematics as an ill-structured

discipline lies the proposal that talk about mathematical ideas should become a much

more central part of students' mathematics experience than it now is. This will

inevitably entail greater use of ordinary language, rather than the specialized language

and notation of mathematics, in mathematics classrooms. The ways in which ordinary

language expresses mathematical ideas have been little studied. We know that under

current teaching conditions students have little opportunity to develop a vocabulary that

expresses their implicit knowledge of mathematical concepts. In what ordinary language

terms can mathematical ideas be discussed? What complications can we expect as we

begin to talk more with students about mathematics?

Recent work by Kintsch and Greeno (1985) uses the rich body of cognitive theory

about how people interpret and make sense of texts to explain how children understand

arithmetic story problems. Kintsch's work shows how children at different levels of

linguistic and mathematical competence use story problem texts to construct

representations of quantities and their relationships. This work represents a valuable first

Joining of cognitive research on mathematics problems and on language understanding. It

focuses on a narrow band of problems, however, and on textual forms that are so

stereotyped as to function almost as quasi-formalisms. To solve these problems, students

must learn to interpret the spedal linguistic code in which story problems are expressed.

But this kind of special code is unlikely to be the vehicle for active discussions of

mathematical relationships or concepts.

When students themselves generate linguistic expressions of mathematical

(10
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arguments, we move closer to natural language discussion of mathematics. A recent

book by Eleanor Wilson Orr (1987), a teacher who has for many years required students

studying algebra and geometry to develop inform al, natural language justifications for

problems they work, describes some of the difficulties that ma; be encountered in such a

program. Orr's.book documents the ways in which some students' vernacular language

may fail to encode precisely t ey mathematical relationships. These relationships include

distinctions between distances and locations, between directions of movement, and

between quantities and differences among quantities. Orr is concerned that some

vernaculars--especially Black English Vernacular (BEV)may be particularly poor at

expressing tnese mathematical relationships. Researchers interested in mathematics

problem solving should not stop with this admittedly controversial issue, however, for

Orr raises a much more general and fundamental question about the relationship

between natural language and mathematical thought. The successes and difficulties of a

mathematics teaching program that has been grounded in natural language expression

will suggest many new questions for systematic investigation.

Social Engineering

How can we profitably organize collaborative problem solving and other forms of

mathematical talk and discussion, given typical teacher-student ratios of one adult to 25

or 30 students? An apparently simple answerleaving groups of students work problems

independently of the teacherseems unlikely to ',rove successful as the sole or even the

major mode in which students talk about mathematical ideas. There does not yet exist a

body of research that examines patterns of students' activity over extended periods of

collaborative work. It seems likely, however, that left to themselves students will often

fail to generate productive ideas and may allow one or two strong students to do the

f.
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group's work rather than supporting everyone's learning needs. Most cooperative

learning efforts have found it necessary to carefully engineer ways of posing questions,

grouping students, and providing incentives in order to develop productive patterns of

cooperative intellectual behavior. Slavin (1983), for example, has developed a successful

system of cooperative team learning. Children are organized into heterogeneous ability

teams that study together and coach each other; individuals then compete against others

of about the same ability from other teams to earn points for their study teams. The

homogeneous ability competitions allow even the weaker students to earn points for their

teams and thereby motivate the study teams to help each student learn. This system

works well for highly structured learning tasks where students can easily tutor one

another through drill and rehearsal. Might it also work for much more ill-structured

problem solving, where what is to be learned is a general approach and a set of heuristics

that cannot be so easily specified and rehearsed? We do not know. We must find out.

Edward A. Silver (personal communication, June 1987) has suggested another form

of classroom social engineering that seems promising and particularly well suited to open-

ended problem solving. In Silver's plan, a problem is posed to an entire class. Students

initially try to work it alone. Then they work in pairs; then pairs are joined to make

quartets of students who compare, share, and rework ideas. A whole class discussion of

the problem can next be used to merge and rework the quartets' ideas, but the final

solutions are left to quartets, pairs, and, eventually, individual students. This

organization forces individual students to formulate initial ideas but uses successively

larger groups as vehicles for confrontation and enlargement of ideas. The whole class

discussion allows the teacher to help students organize ideas, suggest new approaches,

raise questions, and otherwise orchestrate and nurture the problem solving of groups and
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individuals. Effective use of this and similar schemes will require detailed investigation

of the nature of student interactions in various work phases and of the outcomes of

extended participation in such activities for children of different characteristics.

Integrating Strategy and Content in Problem Solving

Future research must also concentrate on how to integrate teaching fundamental

mathematical concepts with teaching problem solving. As indicated earlier, if students do

not know key concepts on which a solution might be based, their problem-solving efforts

can go badly awry. In our research, we found that one solution was to base problem-

solving sessions on concepts that had been well learned a year or two earlier. This

allowed students to focus on strategies of problem analysis and interpretation, key

components of problem solving. Yet long-term or exclusive reliance on such a

pedagogical technique might lead students to view problem solving as a game or

application that is optional for those who have learned the 'real' content and not as an

integral part of mathematics.

One way to avoid this difficulty and to integrate problem-solving and sense-making

activities fully with the main body of students' mathematic? learning is to use discussion

and sense-making activities to introduce and develop basic mathematical content.

Lampert has taken this approach in her classroom work. It is also a regular feature of

Japanese elementary school mathematics teaching. It is typical there to base an entire

class lesson on working out only one to three problems. In the course of a class period,

children propose and evaluate multiple solutions under the teacher's careful guidance. In

classes I have observed. the discussion was punctuated with periods in which children

worked out solutions individually and recorded some of the solutions agreed upon by the

r, -..b
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group. We need research on lessons such as Lampert's and those of the Japanese,

research that tells us how expert teachers direct and manage discussions, how children of

differing abilities and learning characteristics participate in the discussions, and what

children of various types learn from their participation. We also need experimentation

and analysis that will provide sharper pedagogical guidelines for conducting lessons in

this discussion/problem-solving mode, including a careful working out of the kinds of

problems and concepts that can profitably be taught in this way. We need, in other

words, a much more extensive base of pedagogical lore for discussion-based conceptual

teaching than now exists, supported by the kind of theoretical analyses that researchers

can provide.

Contextualizing Problem Solving

Another approach to integrating conceptual and problem-solving activities is to try

to develop more contextualized problems for classroom use. Some of what appear to be

conceptual deficiencies may derive more from children's difficulty in working in a

decontextualized classroom situation than from complete lack of mathematical

understanding. As Lave (this veume) has shown, people often engage in successful

mathematical reasoning when working within a specific context of action and decision. In

stRh cases, they often use mathematical knowledge that they do notperhaps cannot

bring to bear on the kind of decontextualized problems presented in the classroom. Can

ways be found to make classroom mathematics approximate the contextualized

mathematics in which people engage outside school?

Traditionally story problems have been used with this intent. In such use, the

stories are intended to evoke familiar situations in which mathematics might be applied.
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Students are, in effect, invited to imagine themselves elsewhere and consider how the

mathematics they know might be used in that situation. Considerable evidence now

exists, however, that story problems do not effectively simulate the out-of-schcol co' texts

in which mathematics is used. As already noted, the language of story problems is highly

specialized and functions as almost a quasi-formalism, requiring special linguistic

knowledge and distinct effort on the part of the student to b:i.11d a representation of the

situation described. Furthermore, this representation, once built, is a stripped down and

highly schematic one that does not share the material and contextual cues of the real

situation.

If we are to engage students in contextualized mathematics problem solving, we

must find ways to create in the classroom situations of sufficient complexity and

engagement that they become mathematically engaging contexts in their owq right.

Several of the approaches to mathematical problem solving described in this chapter and

elsewhere in this volume represent efforts in this direction. Some of Lesh's extended and

not fully defined problems, for example, can be 'thought of not as stories containing

mathematics problems, but as settings in which planning a project (e.g., wallpapering a

room) engages a substantial amount of mathematical knowledge and strategy. Similarly

Bransford's (this volume) proposal for using videodisc presentations can be viewed as an

effort to bring complex situations into the classroom. The realism and engaging character

of the filmed sequences should more fully contextualize mathematical activity than

verbal presentations of the same story line would. They should also permit students to

develop questions, not only solve problems posed by others.

Computerized simulation environments can also provide settings for highly
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contextualized mathematical activity. College students who work in simulated

microPconomic environments, for example, do mathematical work in the context of the

simulation world. To the extent that they engage with this world, accepting its rules and

constraints, they are doing contextualized mathematics in much the same way that

Lave's supermarket shoppers and weightwatcher cooks are. Computer and board games

in which calculation, estimation, or other mathematical processes are required also can

be thought of as contextualizing devices. Such games do not so much sinnlate external

environments as provide fully engaging environments In their own right. Children who

play computer games such as 'Ho v the West Was Won' or board games such as

'Pactisiboth games that require strategic use of number combinationsare engaging

in highly contextualized arithmetic problem solving. In much the same way, students

captivated by the equatior./graph problems of Dugdale's (1982) 'Green Globs' game

engage in highly contextualized algebra problem solving. These various forms of

contextualized mathematical problem solving in the classroom need farther development

and study.

Scaffolding Supports for Problem Solving

As discussed earlier in this chapter and elsewhere in this volume, students can

often engage successfully in thinking and problem solving that is 'beyond their

capacities,' if their activity receives adequate support either from the social context in

which it is carried out or from special tools and displays that scaffold their early efforts.

In current cognitive theory, scaffolding Is a provocative but not fully developed idea. As

introduced by Wood and Middleton (1975), the term scaffolding referred to the support

for a child's cognitive activity provided by an adult when child and adult performed a

task together. In that original use, scaffolding described a natural way that adults
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Interact with children; little could be said prescriptively. Brown and others have

expanded the meaning of the term to include the support provided by other children in

joint problem-solving activity. This is a significant extension, for it implies that several

individuals, none of whom are expert at a task, can nevertheless scaffold each other's

inexpert performance, eventually resulting in independent performance by all individuals.

This Idea has not yet been rigorously tested. In the Palincsar and Brown (1984)

interventions, an adult worked with each group of children. Research on groups of

children working without an adult has not usually included pretests that establish the

entering competence of individual members of the group. As a result, the group

members may not be strictly peers; instead, some children may serve as expert

scaffolders for the less expert in the group. These various forms of socially mediated

scaffolding need thorough investigation if the notion of scaffolding is to move from a

description of a natural phenomenon to a prescription for teaching in which details of

scaffolding strategies and their conditions of application can be specified.

Our own recent work has introduced yet another extension of the scaffolding

metaphor. We have proposed that record-keeping and other tools can also be viewed as

scaffolds for learning. This conception, thus far tried with only the simple planning

board tool, suggests that many pedagogical devices can be considered and treated as

learning scaffolds. Representational devices that display an underlying theoretical

structure, for example, can be treated as tools for supporting problem solving in early

phases of learning. A number of microworldagraphic displays that 'objectify'

mathematical entities such as numbers and operators (e.g., Ohlsson, 1987; Pe led and

Resnick, 1987)can function as scaffolds. These displays can also support conversation

between two or more individuals about mathematical ideas, thus allowing two forms of
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scaffolding -- social and tool--to function together. In an example drawn from physics

rather than mathematics, Behrend, Singer, and Roschelle (1988) have described in some

detail the growth of concepts about projectile motion in two 9-year olds as the result of

their joint investigation of a graphic system that represents trajectories as a function of

force vectors. Scaffolding tools of these types need to be developed and explored more

fully as part of a full agenda of research on mathematical problem solving.

Socializing Problem Solving: A Long-Term Agenda

As suggested earlier in this chapter, the reconceptualization of thinking and

learning that is emerging from the body of recent work on the nature of %. Ignition

suggests that becoming a good mathematical problem solverbecoming a good thitiker in

any domain- -may be as much a matter of acquiring the habits and dispositions of

interpretation and sense-making as of acquiring any particular set of skills, strategies, or

knowledge. If this is so, we may do well to conceive of mathematics education less as an

instructional process fin the traditional sense of teaching specific, well-defined skills or

items of knowledge), than as a socializatiok. process. In this conception, people develop

points of view and abilities of mathematical thought in much the same way that they

develop points of view and behavior patterns associated with gender roles, ethnic and

familial cultures, and other socially defined traits. When we describe the processes by

which children are socialized into these cultural patterns of thought, affect, and action,

we de-nibe long-term patterns of interaction and engagement in a social environment,

not a series of lessons in how to behave or what to say on particular occasions. If we

want students to treat mathematics as an ill-structured disciplinemaking sense of it,

arguing about it, and creating it, rather than doing it according to prescribed ruleswe

will have to socialize them as much as instruct them. This means that we cannot expect
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any brief or encapsulated program on problem solving to do the job. Instead we must

seek the kind of long-term engagement in mathematical thinking that the concept of

socialization implies. This challenge is larger than those normally confronted by any

single discipline of the school curriculum. It is, however, a challenge whose time has

come. The theoretical bases for a conceptualization of mathematics as a way of thinking

rather than a set of skills now exist, along with an emerging body of research and theory

on the links between social and cognitive aspects of thought and learning. Building on

these foundations, research and development on teaching mathematics problem solving

may well lead the way in stimulating important changes in educational practice.
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PLANNING BOARD WITH TYPICAL ENTRIES

FIGURE 1

48
45

BEST COPY AVAILABLE



Figure 2. SATURDAY SHOPPING ANALYSIS

Problem Statement:

One Saturday, Mark went shopping with some friends. He rode the bus to the shopping center
for $.75. Mark bought a miniature race car for $1.12 and 3 puzzle books for $.75 each. He found
a quarter outside one of the stores. The boys ate lunch while they were out. Mark bought a
sandwich for $1.25 and milk for $.40. Mark's friend, Denny, talked him into selling his pen.
Denny paid Mark $1.50 for it. After lunch, Mark rode back home on the bus. The ride cost
$.75. After Mark got home, he counted his money. He had $4.43 left. How much money did he
start out with!

Goal Analysis:

Go' How much money did he start out with!

[G1: How much did he spend?)

[G11: How much did he spend on bus rides?)

V
111' He rode the bus to the shopping center for $.75

V112: [He) rode back home on the bus [for] $.75

V12: [He] bought a miniature race car for $1.12

[G
13' How much did he spend on puzzle books?)

V131' [He bought] 3 puzzle books

V132: Puzzle books [cost] $.75 each

[G14: How much did he spend on lunch?)

V141: [He) bought a sandwich for $1.25

V142: [He bought) milk for $.40

[G2: How much did he receive along the way?)

V21: He found a quarter outside. one of the stores ;$.251

V
22' Denny paid Mark [him] $1.50 for [his pen)

[G3: How much did he have left?)

V
31' He had $4.43 left

G = Goals
V = Givens
[ I = implicit



Table 1

Mean Planning Board Efficiency by Level of Training and Grade

4

Grade

5 6

Level of Training,

0 0 1 1.5Minimum

Maximum 0 1 1.5 2

Scale

0 - children expressed information on planning board in full
sentences, or, as worded in the problem;

1 - children paraphrased, or expressed phrases with quantities
and referents;

2 - children expressed information symbolically



Table 2

Number of Goals Generated by Dyads on Saturday Shopping

Grade

Condition 4 5 6 7 Mean

PB-Maximum 2 1 2 3 2.67

PB-MInimum 0 0 0 3 .75

Control x 0 1 0 .33

Mean 1 .3 1 2

Note: x = data not available



Table 3

Structural Analysis of Responses to 'SATURDAY SHOPPING'

Problem Structure: - 4.43

Dyad

Solution Structure

4M 41 5B 5M 51 6B 6M 61 7B 7M 71

ib+di + 4.43 X X
fb+dij + 4.43 X3 X2

[b+d2] + 4.43 X
Ibl + 4.43 X X
(b-d) + 4.43

tb+dj 4.43
lb+d1 (-4.43)
fb+dj - 4.43 X
Ibl 4.43

Xi

X

X



Table 4

Dyads That Added Their [bc] Result to 4.43 in Saturday Shopping

Grade

Condition 4 5 6 7 Mean

PB-Maximum 0 1 1 1 .73

PB-Minimum 1 0 1 1 .67

Control x 1 0 0 .33

Mean .5 .67 .67 .67

Note: x = data not available



Table 5

Analysis of Verbal Instructions

a. By Dyads

Number of Utterances Givens Goals Calculations

Dyads H L Total H L H L H L

4 Con x x x x x x x x x

4 Min 7 4 11 0 1 0 2 2 3

4 Max 43 31 74 8 3 7 5 6 0

5 Con 8 2 10 0 2 0 1 1 1

5 Min 21 13 34 8 10 1 2 0 2

5 Max 20 31 51 4 0 1 1 2 12

6 Con 6 22 28 4 3 1 1 0 7

6 Min 49 57 106 II 18 1 0 14 4

6 Max 9 15 24 4 5 1 1 6 8

7 Con 5 0 5 0 0 1 0 2 2

7 Min 20 11 31 3 8 0 3 0 8

7 MBA 7 4 11 7 3 4 1 3 0

b. Total Uttefances by Condition by Grade

4

Grade

5 8 7 Mean

Control x 10 28 5 14.33

Minimum 11 34 108 31 45.50

Maximum 74 51 24 II 40.00

42.5 31.67 52.67 15.67
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