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MEANING CONSTRUCTION IN MATHEMATICAL PROBLEM SOLVING
Lauren B. Resnick and Sharon Nelson-Le Gail

University of Pittsburgh

In J. C. Bergeron, N. Herscovics, & C. Kieran (Eds.), Proceedings of the
11th Annual Conference of the Psychology of Mathematics Education (Vol. 3,
pp. 215-221). Montreal: International Group for the Psychology of Mathematics
Education. ABSTRACT

This paper reports early results of a program of research that aims to improve
children's mathematics learning by developing attitudes and strategies that
support processes of interpretation and meaning construction in mathematics.
We are examining processes of socially shared problem solving, in which an
adult and other children provide scaffolding for individuals' early problem
solving efforts. Different ways of scaffolding problem solving efforts and
building self-monitoring strategies are explored in early studies. These studies
also show that the intimate relationship between conceptual knowledge and
problem-solving in mathematics sets special constraints for instruction and
learning.

Considerable research now shows that many children learn mathematics as symbol
manipulation rules. They do not adequately link formal rules to mathematical concepts
often informally acquiredthat give symbols meaning, constrain permissible

manipulations, and link mathematical formalisms to real-world situations (Resnick, in
press a). Widespread indications of this problem include buggy arithmetic algorithms,
algebra malrules, and a general inability to use mathematical knowledge for problem
solving. However, hints exist that strong mathematics students are less likely than other
students to detach mathematical symbols from their referents. These students seem to
use implicit mathematics' principles and knowledge of situations involving quantities to
construct explanations end justifications for mathematics ruleseven when such
explanations and justifications are not required by teachers.

This conjecture is supported by research in other fields of learning. For example, it has
been shown that good readers are more aware of their own level of comprehension than
poor ones; good readers also do more elaboration and questioning to arrive at sensible
interpretations of what they read (e.g., Brown, Bransford, Ferrara, & Campione, 1983).
Good writers (e.g, Flower & Hayes, 1980), good reasoners in political science and
economics (e.g., Voss, Greene, Post, & Penner, 1983), and good science problem solvers
(e.g., Chi, Glaser, & Rees, 1982) all tend to treat learning as a process of interpretation,
justification and meaning construction. In a few instances intervention programs have
improved both the tendency and the ability of students to engage in meaning

construction. The best developed line of such research is in the field of reading. Palincsar
and Brown (1984), broadly following a Vygotskian analysis of the development of
thinking, proposed that extended practice in communally constructing meaninbs for texts
should eventually internalize the meaning construction processes within each individual.
Their instructional experiments, !n which small groups of children worked cooperatively to

interpret a text, showed broad and long-lasting effects on reading comprehension.

We report here on a program of research that is aiming to improve children's
mathematics learning by developing attitudes and strategies that support processes of
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interpretation and meaning construction in mathematics. Our choice of collaborative
problem-solving as a means for meeting this goal reflects an analysis of the nature of
cognition that we share with d small, but growing number of psychologists,

anthropologists, linguists and sociologists who have been analyzing socially distributed
cognition in various applied and school settings (see Resnick, in press c, for a review and
interpretation of some of this research).

Socially shared problem-soiving sets up several conditions that may be important in the
development of mathematic& competence. The social setting provides occasions for
modeling effective thinking strategies. Thinkers with more skill (often the instructor, but
sometimes more advanced fellow students) can demonstrate desirable ways of attacking
problems and constructing arguments. It also permits critiquing and shaping of thinking
because processes of thought as well as results become visible. The social setting is also
motivating; through encouragement to try new, more active approaches, and social
support even for partially successful efforts, students come to think of themselves as
capable of engaging in interpretation and meaning construction. Finally, collaborative
problem solving can provide a kind of scaffolding for an individual learner's initially
limited performance. Instead of practicing small bits of thinking in isolation, so that the
significance of each bit is not visible, a group solves a problem together. In this way,
extreme novices can participate in actually solving the problem and can, if things go well,
eventually take over all or most of the work themselves.

INITIAL STUDIES: SPECIFIC KNOWLEDGE AND
GENERAL STRATEGIES

Our initial efforts were aimed at examining the extent to which the method of reciprocal
teaching, developed by Palincsar and Brown to teach reading comprehension skills, could
be applied to mathematics learning. Palincsar and Brown use a highly organized small-
group teaching situation, in which children took turns playing the role of teacher, a role in
which th.'y pose questions about texts, summarize them, offer clarifications and make
predictions. These four activities are thought to induce the kinds of self-monitoring of
comprehension tnat are characteristic of good readers. The adult's role I-, these sessions,
in addition to keeping the general process flowing smoothly, is to model problem-solving
processes (including encountering and overcoming difficulties); to provide careful
reinforcement for successively better approximations to good meaning construction
behaviors on the part of the children; and, above all, to provide scaffolding for the
children's problem-solving efforts.

Knowledge-dependence of Mathematical Problem-solving

We began with a series of four sessions with a group of five fifth grade children. In these
sessions, word problems involving some aspect of rational numbers were to be solved
collaboratively, with children taking turns serving as leader of the discussion. Sessions

were tape recorded and full transcriptions prepared. Study of the protocols revealed two
fundamental problems that would have to be met in adapting the principles of reciprocal
teaching to mathematics. Both are rooted in t e fact that mathematics problem-solving is
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more strictly knowledge-dependent than is reading.

First, in our problem-solving sessions, children frequently foundered on sheer lack of
knowledge of relevant mathematics! contentdespite our having chosen rational number
problems in order to match our sessions' content to what children were studying in their
regular mathematics class. This contrasts sharply with conditions in reciprocal teaching
groups in reading, where children are rarely outright wrong in their summaries and
questions; their responses may not enchance comprehension very much, but they do not
drive it off course, either. An example of the dramatic ways in which insecure basic
mathematical knowledge blocked successful problem solving is a situation in which the
children had drawn a "pizza" and divideu it into six parts, each called "a sixth"; they
then shaded three parts, after which they asserted that each shaded part was "a third."
In situations like this, the adult must choose between interrupting attention to problem-
solving processes to teach basic mathematics concepts and attempting to continue
problem-solving with fundamental errors of interpretation. Neither choice seems likely to

foster the development of appropriate meaning construction abilities.

Second, part of what makes reciprocal teaching work smoothly in reading is that the same
limited set of activities (summarizing, questioning, predicting, clarifying) is carried out
again and again. It is not as easy to find repeatable activities of this kind for mathematics,
because specific knowledge plays such an important role in solving each problem. We
used some very general repeated questionsintroduced and repeated by the adult leading
the sessionssuch as "What is the question we are working on?" "Would a diagram
help?" "Does that [answer] make sense?" or "What other problem is like this one?"
However, as is also often the case for more mathematically sophisticated Polya-like
heuristics, these appeared too general to adequately constrain the children's efforts. For
example, they did not know what diagram to draw (or drew it incorrectly), or could not
decide whether an answer was sensible because they had misunderstood basic concepts.

Using Strategies Versus Talking About Them
In a second effort, we attempted to respond to each of these problems in a systematic
way. The children were fourth graders; they worked in a group of five for 13 sessions,
each led by the same adult. To control for children's lack of specific relevant
mathematical knowledge, we chose problems that invoked concepts from the previous year
of mathematics instruction rather than the current year. This control for unmastered
mathematical content was successful. We encountered very few occasions in which
fundamental mathematical errors or lack of knowledge impeded problem solving.

On the basis of cognitive theories of problem solving, we identified four key processes that
should be repeated in each new problem-solving attempt. These functions are (1)
planning--i.e., analyzing the problem to determine what kinds of procedures are

appropriate; (2) organizing the steps for a chosen procedure; (3) carrying out the steps of
the procedure; and (4) monitoring each of the above processes to detect errors of sense
and of procedure. For each problem to be solved, the four functions were assigned to four
different children. The Planner was to take responsibility for leading a discussion of the
problem, in order to decide what particular strategies and procedures should be appl:ed.
Once a procedure was chosen by the group, the Director's task was to explicitly state the

6
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steps in the procedure. These steps were to be carried out by the Doer at a publicly visible
board. The Critic was to intervene whenever an unreasonable plan or an error in
procedure was detected.

The tactic of dividing mental problem-solving processes into overt social roles was not
initially a success. The research community has shared meaning for terms such as
planning, directing aid critiquing/monitoring. But, with the exception of the Doer role,
these meanings were not conveyed to children by the labels, and we were not successful in
verbally explaining them to the children. As a result, the roles became instruments for
controlling turn-taking and certain other social aspects of the sessions, but they did not
successfully give substantive direction to problem-solving. Children discussed the roles a
great deal, but they did not become adept at performing them. This points to a
fundamental problem with certain metacognitive training efforts that focus attention on
knowledge about problem solving rather than on guided and constrained practice in doing
problem-solving. Such efforts are more likely to produce abilities to talk about processes
and functions than to actually perform them.

In session 6, we attempted a modification of one of the roles, the Critic, in order to deal
with this problem. The critic's function was distributed to two children, who were each
given "cue cards" that they were to use to communicate their criticisms. The cue cards
read:

1. "Why should we do that?" [request for justification for a procedure]

2. "Are you sure we should be adding (subtracting, multiplying, dividing)?"
[request for justification of a particular calculation[

3. "What are we trying to do right now?" [request for clarification of a goal]

4. "What do the numbers mean?" [insistence that attention focus on meanings
rather than calculation and symbol manipulation]

The cue cards served to scaffold the critic function by providing language for a limited set
of possible critiques. At first the children used the cue cards more or less randomly and in
a rather intrusive fashion. However, during the course of the succeeding seven sessions,
children's use of the cue cards became more and more refined, so that they used them on
appropriate occasions and in ways that enhanced rather than disrupted the group's work.

CURRENT AND PLANNED STUDIES

In studies currently underway and planned, we are examining more restricted forms of
shared problem-solving, in order to gain greater experimental and analytical control. We
will study groups engaged in collaborative solution of various classes of mathematics
problems. We will also study groups whose task is to construct story situations that could
generate particular arithmetic expressions or equations (c!. Resnick, Cauzinille & Mathieu.
in press; Putnam, Lesgold, Resnick, and Sterret, this volume). Finally, we wilt study
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groups whose task is to instruct new (to them) mathematical procedures and algorithms.

Planning and Means-Ends Analysis

A study currently underway examines pairs of children solving problems that are
particularly suited to classical "means-ends" problem-solving strategies (cf. Newell &
Simon, 1972). Participants in the study were 12 pairs of children, 3 pairs each in grades
4, 5, 6 and 7. Each pair of children met three times for 40 minutes and solved two to six
problems.

To scaffold the means-end problem-solving strategy, children were given a Planning Board

to work with. The board provides spaces fo, recording what is known (either given in the
problem statement or generated by the children) and what knowledge is needed (goals and
subgoals of the problem). Using the board, children can work both "bottom-up"
(generating "what we know" entries) or "top-down" (generating "what we need to know"
entries). A space at the bottom is provided for calculation. Each child writes with a
different color pen, so that we can track who is responsible for each entry. Full verbal
transcripts of each session are also prepared.

At each grade level, one pair of children was assigned to each of three conditions. The
conditions were:

1. Planning Board With Maximum Instruction. The children solved problems
using the planning board. During the first session, the adult demonstrated use
of the planning board, and then participated in the first two sessions as a
provider of hints and prompts to further scaffold the problem solving process
and the use of the board.

2. Planning Board With Minimum Instruction. The children solved problems
using the planning board. The adult demonstrated the board and provided
hints and prompts during the first session only.

3. Control. The children solved problems without the planning board during all
three sessions.

Preliminary inspection of the data suggest that older children and children with more
training come to use the board more efficiently. They also generated more goals and
inferences on the board. However, in three sessions, there was no effect on accuracy of
solutions.

Protocols of the sessions are now being coded in a form that allows us to plot the logical
structure of the joint problem-solving efforti.e., what goals are generated and in what
order, what inferences are made from data that is given in the problem statement, how
what is known is mapped to goals. Our coding will also permit us to examine the nature
of the social sharing of the problem-solving effort. For example, we will be able to
determine whether the two children work together on a particular goal or whether they
work in parallel; and whether role specializations arise, such as one child working "bottom
up" and the other "top down."

8
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GENERAL DISCUSSION

The use of a social setting for practicing problem solving is shared by a number of other
investigators, including some in the field of mathematics (see Resnick, in press b).
Lampert (1986) conducts full-ez..is discussion in which children invent and justify solutions

to mathematical problems. Lampert's discussions are like those of reciprocal teaching in
that they are carefully orchestrated by the teacher, and include considerable modeling of
interpretive problem-solving by the teacher. Schoenfeld's (1985) work with college
students shares many features of the Lampert class lessons, but with considerably more
focus on overt discussion of general strategies for problem solving than Lampert uses. Lesh

(1982), by contrast, shares reciprocal teaching's small-group format for collaborative
problem solving, but has no teacher present. This means that Lesh's problem solving
groups benefit from the debate and mutual critiquing that children give each other, but
do not have the opportunity to observe expert models engage in the process and are not
taught any specific techniques for problem analysis or solution. Scaffolding will also be
limited to what children are able to provide spontaneously for one another. The kinds of
analyses that we are developing for our data could also be applied to problem-solving
groups functioning in these alternative modes. Eventually, comparative studies should
help us understand more how these alternative approaches to collaborative problem-
solving actually function in supporting and developing mathematical competence.
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