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Confirmatory Factor Analyses of Multitrait-multimethod Data:

Many Problems and a Few Solutions

ABSTRACT

During the last 15 years there has been a steady increase in the

popularity and sophistication of the confirmatory factor analysis (CFA)

approach to multitait-multimethod (MTMM) data. There exist, however,

important problems, the most serious being the ill-defined solutions that

plague MTMM studies and the assumption that so-called method factors

reflect primarily the influence of method esfects. In three different MTMM
studies ill-defined solutions were frequent and alternative

parameterizations designed to solve this problem tended to mask the

symptoms instead of eliminating the problem. More importantly so-called
method factors apparently represented trait variance in addition to, or

instead of, method variance for at least some models in all three studies.

Further support for this counter interpretation of method factors was
found when external validity criteria were added to the MTMM models and

correlated with the trait and so-called method factors. This problem, when

it exists, invalidates the traditional interpretation of trait and method

factors and the comparison of different MTMM models. A new specification

of method effects as correlated uniquenesses instead of method factors was
less prone to ill-defined solutions and, apparently, to the confounding of

trait and method effects.
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Multitrait- multimethod data 1

The purpose of this investigation is to demonstrate and critically

evaluate recently developed applications of confirmatory factor analysis
(CFA) to multitrait-multimethod :MTMM) data. Campbell and Fiske (1939)

argued that construct validation requires multiple indicators of the same
construct to be substantially correlated with each other but substantially

less correlated with indicators of different constructs. They proposed the
MTMM design in which each of a set of multiple traits is assessed with each
of a set of multiple methods of assessment, and developed four guidelines
for evaluating MTMM data. Their MTMM design has become, perhaps, the most

frequently employed construct validation design, and their original

guidelines continue to be the most frequently used guidelines for examining

MTMM data. Important problems with their guidelines are, however, well

known (e.g., Althauser & Heberlein, 1970; Alwin, 1974; Campbell &

O'Connell, 1967; Marsh, in press; Nothke, 1984) and have led to many

alternative analytic approaches (e.g., Browne, 1984; Hubert & Baker, 1978;
Jackson, 1969; 1977; Marsh, in press; Marsh & Hocevar, 1983; Schmitt,
Coyle, & Saari, 1977; Schmitt & Stults, 1986; Stanley, 1961; Nothke, 1984).
Factor analytic approaches (e.g., Boruch & Wollins, 1970; Joreskog, 1974;
Marsh, in press; Marsh & Hocevar, 1983; Wideman, 1985) or mathematically

similar path-analytic approaches (e.g., Werts & Linn, 1970; Schmitt, Coyle
& Saari, 1977) currently appear to be the most popular approach and will be
the focus of the present investigation.

A GENERAL MTMM MODEL AND A TAXONOMY OF ALTERNATIVE MODELS

The knecel MTMM Model

In the CFA approach to MTMM data a priori factors defined by different

measures of the same trait support the construct validity of the measures
but a priori factors defined by different traits measured with the same
method argue for method effects. For purposes of the present investigation
I will emphasize a general MTMM model (Table 1) adapted from Joreskog
(1974; also see Marsh & Hocevar, 1983; Wideman, 1985) in which: a) there
are at least 3 traits (T=3) and 3 methods (M=3); b) T x M measured

variables are used to infer T t M a priori common factors; c) each measured
variable loads on the one trait factor and the one method factor that it
represents but is constrained so as not co load on any other factors; d)
correlations among the trait factors and among the method factors are
freely estimated, but correlations between trait and method factors are
constrained to be zero. For this model I assume there are at least three
traits and three methods, but alternatives have been proposed fir studies
with only two methods (Kenny, 1979) or only two traits (Marsh & Hocevar,
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Multitrait-multimethod data 2

1983). While some researchers have estimated correlations between trait
and method factors there are important logical, interpretive, and pragmatic
reasons for fixing these correlations to be zero (see Jackson, 1974; Marsh
& Hocevar, 1983; Widaman, 1985). This constraint allows the decomposition
of variance into additive trait, method, and error components, and without
this constraint the solution is almost always empirically underidentified
(also see Widaman, 1985; Wothke, 1984). In justifying this constraint,

Joreskog (1971, p. 128) noted that: "This is our way of defining each

method factor to be independent of the particular traits that the method is
used to measure. In other words, method factors are what is left over after
all trait factors have been eliminated."

Insert Table 1 About Here

In the present investigation CFA models were fit with LISREL V (Joreskog
& Sorbom, 1981) and three design matrices from LISREL were used to define all
the MTMM models. For T=3 traits and M=3 methods (see Table 1) the three

design matrices are: a) Lambda Y, a 9 (M x T = number of measured variables)

by 6 (M + T = number of factors) matrix of factor Ladings; Psi, a 6 (M + T =

number of factors) x 6 factor variance-covariance matrix of relations among
the factors; and c) Theta, a 9 (M x T = number of measured variables) x 9

matrix of error/uniquenesses in which the diagonal values are analogous to

one minus the communality estimates in exploratory factor analyses. All

parameters (Table 1) with values 6f 0 or 1 are fixed and values for other

parameters are estimated so as to maximize goodness of fit. Standard errors

are estimated for all estimated parameters but not for parameters with fixed

values. This model is easily modified to accommodate more traits or methods,

to conform to other models and other parameterizations that will be

described, or to incorporate unique factors for the measured variables

(Rindskopf, 1983) .

A J.B19092Y gf eltermatin M94212
Researchers have proposed many variations of the general MTMM model to

examine inferences about trait or method variance or to test substantive

issues specific to a particular study (e.g., Bagozzi, 1978; Joreskog, 1974;

Marsh, Barnes & Hocevar, 1985; Marsh & Hocevar, 1983; Nidaman, 1985; Wothke,

1984). Widasan (1985) proposed an important taxonomy of such models that

systematically varied different characteristics of the trait and method

factors. This taxonomy was designed to be appropriate for all MTMM studies,
to provide a general framework for making inferences about the effects of

trait and method factors, and to objectify the complicated task of

formulating models and representing the MTMM data. One purpose of the present
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Multitrait-multimethod data 3

investigation is to evaluate the taxonomy in relation to these goals and to

describe an expansion of the taxonomy formulated for the present

investigation. The expanded taxonomy (see Table 2) represents all possible
combinations of 4 trait structures

(trait structures 1 - 4) and 5 method

structures (method structures A - E). The 4 trait structures posit no trait
factors (1), one general trait factor defined by all measured variables (2),

T uncorrelated trait factors (3), and T correlated trait factors (4). The 5

method structureu posit no method factors (A), one general method factor

defined by all measured variables (8), M uncorrelated method variables (C), M

correlated method factors (D), and method effects inferred on the basis of

correlated uniqueness (E). This taxonomy differs from Widaaan's original

taxonomy only in the addition of Method structure E.

Insert Table 2 About Here

The general factors posited in method structure B and trait structure 2

may present interpretive or estimation problems. Widaman (1985) avoided some
problems by constraining each general factor to be uncorrelated with all

other factors and this constraint is used here. The rationale for this

constraint is consistent with the requirement that trait and method factors

be uncorrelated. Models 18 and 2A are, however, are the same, whereas Model
28 requires one additional, perhaps arbitrary, zero constraint to assure

rotational identification. Finally, even for models that contain a general

method factor in combination with T trait factors, or a general trait factor

in combination with M method factors, the interpretation of the general

factor may be problematic.

POTENTIAL PROBLEMS IN THE ESTIMATION AND INTERPRETATION OF MTMM MODELS

Gogdnesi gi Fit

An important, unresolved problem in CFA is the assessment of goodness of
fit. To the extent that a hypothesized model is identified and is able to fit
the observed data, there is support for the model. The problem of goodness of
fit is how to decide whether the predicted and observed results are

2sufficiently alike to warrant support of a model. Whereas X values can be
used to test whether these differences are statistically significant, there
is a growing recognition of the inappropriateness of this classical

hypothesis testing approach. Because hypothesized models are only designed to
approximate reality, all such restrictive models are a priori false and will
be shown to be false with a sufficiently large sample size (Cudeck & Browne,

1983; Marsh, Balla & McDonald, in press; McDonald, 1985). Hence, a variety of
fit indices have been derived to aid in this decision process such as the
X /df ratio and the Tucker-Lewis index (TLI; Tucker 1 Lewis, 1973) that are
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Multitrait-multimethod data 4

used here. In simulation studies of more than 30 such indices Marsh, Balla
and McDonald (1988) and Marsh, McDonald and Balla (19871 found that both the2
X /df and TLI indices imposed apparently appropriate penalty functions for
the inclusion of additional parameters that controlled for capitalizing on

chance, whereas the TLI was the only widely used index that was also

relatively independent of sample size. The TLI is emphasized in subsequent

discussions, but values for other fit indices like the Bentler and Bonett's

(19801 index can easily be computed from the results.

Model selrction must be based on subjective evaluation of substantive

issues, inspection of parameter values, model parsimony, and a comparison of

the performances of competing models as well as goodness of fit. In the

application of CFA to MTMM data there is an unfortunate tendency to under-

emphasize the examination of parameter estimates and to over-emphasize

goodness of fit. If a solution is ill-defined, then further interpretations

must be made very cautiously if at all. If the parameter estimates for a

model make no sense in relation to the substantive, a priori model, then fit

may be irrelevant.

As described by Bentler and Bonett (1980), when two
2

models are nested

the statistical significance of the difference in the X s can be tested

relative to the difference in their df. Widaman (1985) emphasized this

feature in developing his taxonomy of MTMM models and it comparing the fit of

different models. However, the problems associated with the application
2

of

the classical hypothesis testing approach also apply to this test of X

differences. When the sample size is sufficiently large the saturated model

(i.e., a model with df = 0) will perform significantly better than any

restricted model (see Cudeck & Browne, 1983) such as those in Table 2, thus

making problematic the interpretation of tests between any two restricted

models. Furthermore, many important comparisons are not nested and so cannot

be made with this procedure (e.g., the trait-only (4A) and method-only (1D)
2

models in Table 2). Because of these problems with the X difference test, a

perhaps more useful test is simply to compare the TLIs for competing models.

Insert Table 2 About Here

Ply Driiot4 Whams
Poorly defined solutions represent a serious, unresolved problem for CFA

that is particularly prevalent in MTMM studies. Poorly defined solutions

refer to underidentified or empirically underidentified models (Kenny, 1979;

Nothke, 1984), failures in the convergence of the iterative procedure used to

estimate parameters, parameter estimates that are outside their permissible

range of values te.g., negative variance estimates called Heywood cases), or

7



Multitrait-multimethod data 5

standard errors of parameter estimates that are excessively large. Each of

these problems is an indication that the empirical solution is poorly

defined, even if the model is apparently identified otherwise and even if

goodness of fit is adequate (Joreskog & Sorbom, 1981). Such problems are

apparently more likely when: the sample size is small; there are few

indicators of each latent factor; measured variables are allowed to load on

more than one factorOmeasured variables are highly correlated; there is a lot

of missing data and covariance matrices are estimated with pairwise deletion

for missing data; and the model is misspecified. Knowingly or unknowingly such

problems are usually ignored, and the implications of this practice have not

been explored for MTMM studies. Although there is no generally appropriate

resolution for such problems, alternative parameterizations of the MTMM model

(see below) may eliminate some improper parameter estimates.

There are apparent ambiguities about the identification status of MTMM

models. Some researchers (e.g., Alwin, 1974; Browne, 1984; Joreskog, 1974;

Schmitt, 1978) suggest that models with correlations between traits and

methods are permissible, and Long (1983, p. 55) claimed to prove the

identification for this model. However, Bollen and Joreskog (1985)

demonstrated that the criteria used by Long were not sufficient to demonstrate
identification, and Widaman (1985, p. 7) explicitly eliminated such models

from his taxonomy, claiming that they are very likely not identified."

In order to test the identification status of a model with correlated
traits and methods David Kenny (personal communication, 23 January, 1987)

used simulated data "to see if LISREL could recover loadings for your model
4D with traits and methods correlated. It did so, but not exactly. It was not
clear whether the difference was due to under-identification or rounding
error." I also attempted to fit model 4D with correlations between method
and trait factors to the simulated population covariance matrix published by
Cole and Maxwell (1985) in which the population correlations between trait
and method factors were simulated to be zero. Whereas I was able to recover
the population values, it took more than SOO iterations. For their sample
matrices that included random error, however, the solutions failed to
converge after more than 1000 iterations. It appear, that whereas the model
with correlated trait and method factors may technically be identified, it is
unlikely to result in a proper solution for actual data so that it is of
little practical use. Because models in Table 2 do not posit traits/method

correlations and because all studies considered here have at least 3 traits
and 3 methods, these ambiguities will not be examined here but they

illustrate that the issue of identification has not been resolved.
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Riiiscsnt etctestsciLttinast Eatsntial Cures For Poorly Defined Solutions
the standard Rarameterizatign2L In order for the models in Table 2 to be

identified, one parameter for each latent factor must be fixed -- typically at
a value of 1.0 (see Joreskog & Sorbom, 1981; Long, 1983). This is usually
done by: (a) fixing the factor loading of one measured variable for each
latent factor to be 1.0 and estimating thE factor variance, or (b) fixing the
factor variance of eat% latent factor to be 1.0 (so that the factor

variance/covariance matrix is a correlation matrix) and estimating all the
factor loadings. For purposes of the present investigation these will be
called the fixed factor loading and fixed factor variance parameterizations,

and collectively they will be referred to as the standard parameterizations.

So long as the CFA solution is well defined both parameterizations are

equivalent, but fixing the factor variances introduces an implicit inequality

constraint that restricts the factor variances to be nonnegative. Thus, fixing

factor variance estimates may lead to a proper solution when fixing factor

loadings does not.

The Rindskgg Rarameterization. Rindskopf (1983) proposed a solutio, for

negative uniqueness estimates by using M x T additional factors -- one unique

factor for each of the M x T measured variables -- to define each

uniquenesses. Because the factor loading on each unique factor is the square

root of the uniqueness, the uniqueness is implicitly constrained to be non -

negative. Joreskog (1981), commenting on the merits of imposing inequality

constraints, noted that if a solution is inadmissible, then LISREL will find a

solution outside the permissible parameter space whereas the imposition of

inequality constraints will produce a solution on the boundary of the

parameter space. Joreskog (p. 91) concluded: 'In both cases the conclusion

will be that the model is wrong or that the sample size is too small."

Similarly, Dillon, Kumar and Mulani (1987) noted that in their research the

Rindskopf parameterization always resulted in the offending parameter estimate
taking on a zero value that resulted in the same solution as simply fixing the

parameter to be zero.

Ufltb8d stustmcs E = to mitscostiYe Edossetutlittlide ei stlbod

virlecl. Method variance is an undesirable source of systematic variance that

distorts correlations between different traits measured with the same method.

As typically depicted in MTMM models (i.e., method structures C and D) a

single method factor is used to represent the method effect associated with

variables assessed by the same method. The effects of a particular method of

assessment are implicitly assumed to be unidimensional and the sizes of the

method factor loadings provide an estimate of its influence on each measured

9



Multitrait-multimethoo data 7

variable. Hence, method structures C and D restrict method covariance
components to have a congeneric-like structure (but see Wothke, 1984).

Alternatively, method effects can be represented as correlated uniquenesses
(method structure E) and this representation does not assume either the
f idimensionality of effects associated with a particular method or a
congeneric structure. Kenny (1979; also see Marsh & Hocevar, 1983; Marsh, in
press) proposed this method structure for the special case in which there are
only two traits, but it is also reasonable when there are more than two
traits. Method structure E also resembles McDonald's multi-mode analysis
(1985) and Browne's multiple battery analysis (1980).

Method structure E corresponds most closely to method structure C (Table
2) in that the method effects associated with one method are assumed to be

uncorrelated with those of other methods. When there are 3 traits and the
solutions are well-defined, method structures C and E are merely alternative

parameterizations of the same model. When T > 3, however, the number of

correlated uniquenesses in method structure E (M x (T x (T-1)/2) is greater
than the number of factor loadings used to define method factors in method
structure C (T x M). Thus method structure C is a special case of method
structure E in which each method factor is required to be unidimensional and
this assumption is testable when T > 3.

A particularly important advantage of method structure E is that it

apparently eliminates some improper solutions without limiting the solution
space or forcing parameter estimates to the boundaries of the perxAssible
space. Because method variance is one source of uniqueness, uniqueness is
reflected in both method factors and error/uniquenesses. Improper solutions
are frequently due to either negative method factor variances or negative

error/uniquenesses, but not both. In method structure E all sources of
uniqueness are contained in the diagonal of Theta, and in many cases -- as
demonstrated in the present investigation -- this combined influence will not
be negative even when method factor variances or uniquenesses are negative for
other parameterizations. Thus, even when there are 3 traits so that method
structures C and E are equivalent when the solutions are well defined, it is
possible that method structure C will results in poorly defined solutions
whereas method structure E will not. When there are more than three traits it
is possible for method structure E to fit the data better than either method
structures C or 0, thus calling into question the assumed unidimensionality of
method effects in structures C and D.

Caitlin to lb! IntersEttation of Iceit oaQ Utlbod Eactoco
Widaman's taxonomy and the MTMM models in Table 2 implicitly assume that:

10



MUltitrait-multimethod data 8

a) method factors represent method variance, b) trait factors represent trait
variance, c) a general factor in combination with trait factors represents
method variance, and d) a general factor in combination with method ,factors

represents trait variance. For present purposes these assumptions will be
referred to as the traditional

interpretation of the MINN models. These
assumptions are probably reasonable when correlations among the trait factors
and among the method factors are small, but this situation is unusual. These
assumptions may not be reasonable when correlations among trait factors and

correlations among method factors are substantial. For present purposes I

will examine the possibility that so-called method factors actually reflect

trait variance, but the problem might also apply to so-called trait factors

that actually reflect method variance.

In most MTMM studies the multiple traits are correlated and this may

produce a general trait factor that makes ambiguous the interpretation of so-

called general method factors or even correlated method factors. When traits

are substantially correlated, the so-called general method factor (method

structure 8) may represent trait variance instead of, or in addition to,

method variance. When traits are substantially correlated, each so-called

correlated method factors (method structure D) may represent this general

trait factor and correlations among the method factors may represent the

convergence of this general trait across the methods of assessment. If this

problem exists, the traditional interpretation of MTMM models and the

comparison of alternative models is unjustified. Hence, tests of this

plausible counter interpretation of method factors must be examined.

Results to be discussed here suggest that the traditional interpretation

of method factors may be unjustified if: (a) interpretations based on the

Campbell-Fiske guidelines and an examination of the MTMM matrix differ

substantially from those based cn the CFA approach (there are, of course,

problems with the Campbell-Fiske approach, but if both the Campbell-Fiske and

the CFA approaches lead to consistent conclusions then confidence in these

conclusions is increased); (b) substantive theory dictates an expected pattern

of correlations among trait factors that is not supported; (c) the substantive
nature of the data dictates an expected pattern of correlations among method

factor that is not supported (though a priori hypotheses of relations among

method factors may be difficult to formulate); (d) Model 4A (trait factors

only) and 18 (method factors only) both fit the data reasonably well and Model

4D provides only a modest improvement; (e) the amount of variance explained by
trait factors is substantially reduced by the inclusion of method factors; (f)

external validity criteria collected in addition to the MTMM variables are

11



Multitrait-multimethod data 9

more substantially
correlated with so-called method factors than with t-aitfactors and there is an a priori basis for assuming the external criteria tobe more strongly related to trait factors than method factors (it may beimpossible to obtain external validity criteria that are free of all methodeffects so that the aim is to ensure that any method effects

associated withthe external
validity criteria are unrelated to those associated with the MTMMdata; there is still a danger that, unknown to the researcher, the externalvalidity criteria are affected by the same method effects as the original MTMMvariables). Whereas each of these indications of potential problems with theinterpretation of method effects is fallible, taken together they provide astronger basis for evaluating these interoretatIons than do typical

application_ of the CFA approach. They also require that more emphasis beplaced on the substantive interpretation of results than is typical in the CFAapproach to MTMM data.

APPLICATION OF THE CFA APPROACH IN THREE MTMM STUDIESThe purposes of the present
investigation are to evaluate: a) theapplication of the MTMM taxonomy (Table 2), (b) the problems of poorly definedsolutions and

parameterizations designed to eliminate them, (c) the merits of ,method structure E, and (d) the validity of traditional
interpretations oftrait and method factors. Data come from three MTMM studies: Ostrom (1969),Byrne and Shavelson (1986), and Marsh and Ireland (1984). For all three ofthese studies there were at least three traits and three methods, and therewas at least one external

validity criterion in addition to the MTMM data. Inthe present analysis of each of the studies: a) models in the taxonomy werefit to just the MTMM data; b) the behavior of the solutions
was examined; c)the substantive nature of the data and the parameter estimates were used toevaluate alternative

interpretations of the method and trait factors; and d)external validity criteria were added to the MTMM models ;.n order to testalternative interpretations of the trait and method factors.
The 02trom (1969) Study

Qescriktion of the Study and Data.

Ostrom (1969) examined the distinction between affective,
behavioral, andcognitive components (T1-T3) of attitudes

toward the church assessed with fourdifferent methods of scale construction
(MI-M4). Ostrom also collectedadditional "overt behavioral indices" and hypothesized that these should bemost highly

correlated with the behavioral trait component. For purposes ofthe present
investigation one of these,

responses to the item "How many daysout of the year do you attend church services" was used. Ostrom
presented thecorrelations based on responses by 189 subjects as well as a more detailed

12



Multitrait-multImetl-M data 10

account of the theoretical rationale, the 12 MTMM variables, and the external
validity criterion. My application of the Campbell-Fiske guidelines suggested
strong support for convergent validity. However, support for discriminant
validity was problematic and there appeared to be method variance associated1
with at least M2 and M4. The substantive nature of the data indicates that
the traits should be substantially correlated, but there is no a priori basis
for positing the relative size of these different correlations. Finally, for
models in which the external validity criterion was added, the criterion
should be: a) more correlated with specific and general trait factors than
with specific and general method factors; and b) most highly correlated with
the behavioral trait component.

CFA models similar to those considered here have been applied to this
data by Bagozzi (1978), Schmitt (1978), and Widaman (1985). Schmitt (1978)
excluded one of the methods and estimated

trait/method correlations, and so
his results are not comparable. Bagozzi (1978) fit Model 4A to the 12
variables considered here, but an inspection of correlations between the
error/uniquenesses led him to eliminate one of the methods from subsequent
analyses. It should be noted that such correlated uniquenesses are indicative
of a method effect as depicted in method structure E. Widaman (1985) also
noted this apparent misinterpretation of method effects and was critical of
other conclusions by Bagozzi. Widaman (1985) fit many of the models used here
and chose to represent the MTMM dita with Model 4D. However, his solution for
Model 4D was poorly defined in that an error/uniqueness was estimated to be2
zero and had a large standard error . None of these previous CFAs of the
Ostrom data incorporated the external validity criterion included here.
Behavior of the Solution2 For Different Paramaterixitioau

All models in Table 2 were tested with both the fixed factor loading and
the fixed factor variance parameterizations, and the Rindskopf

parameterization was used when both standard parameterizations produced poorly
defined solutions (Table 3). For the fixed factor

loading parameterization, 7
of the 19 models were poorly defined as indicated by a failure to converge or
improper solutions. For the fixed factor variance parameterization, 5 of these
7 models were still poorly defined but the problem symptoms were not always
the same. When these five models were tested with the Rindskopf

p-rameterization, one solution was improper and the remaining four had
error/uniquenesses estimates close to zero with extremely large standard
errnrs. In Model 1D there were factor correlations greater than 1.0 for all
three parameterizations, demonstrating that none of the parameterizations
protect against this type of improper solution. Whereas the different

13



Multitrait multimethod data 11

parameterizations varied in their behavior and manifest symptoms, none
eliminated the poorly defined solutions.

Method Structure E

In method structure E correlated uniquenesses are used to represent

method effects, and in support of this structure all four solutions based on
it are well de'ined. When there are 3 traits, method structure E is equivalent

to method structure Cso long as the models are well defined. For the Ostrom
data this was demonstrated for Models 1C and 1E, but Models 2C, 3C, and 4C
were poorly defined for all three parameterizations. Even though Model 2C
failed to converge for either of the standard parameterizations, the parameter
estimates for the trait factors and overall fit were nearly the same as for

Model 2E. Model 3C converged to an improper solution for the fixed factor

variance parameterization, but the parameter estimates for trait factors and
overall fit were the same as for Model 3E. Model 4C converged to an improper
solution for the fixed factor loading parameterization but parameter estimates
for trait factors and overall fit were the same as for Model 4E. The Rindskopf

parameterization eliminated improper solutions for Models 2C, 3C, and 4C, but
resulted in error/uniqueness estimates of zero with large standard errors.
These findings suggest that method structure E is a better representation of
method effects than, method structure C.

The substantive intecaretation of trait and egthod factors

Interaretations based on lust the MTMM Rata. Model 4D provides an

exceptionally ,3od fit to the data, but there are problems with the solution.
First, it is poorly defined for all three parameterizations. Second, the trait
factors are very weak in that 7 of the 12 factor loadings are not

statistically significant, and this contradicts conclusions based on the

Campbell-Fiske guidelines. Models 4C, 4E, and 3D also fit the data very well
(TLIs > .98), and Models 4A, ID and even 2A /1B explain most of the variance
(TLIs > .9). In contrast to Model 4D, Models 4E, 4C, and 4A have strong trait
factors for which all factor loadings are significant. As noted by Widaman it
may be problematic to compare trait and method variance for this data because
most of the variance can be explained by either trait or method factors and
neither trait nor method factors uniquely explain much variance. Also, since
trait factor loadings are so much lower when correlated method 4actors are
included, these so-called method factors may reflect trait variance.

Widaman (1985) chose Model 4D to represent this MTMM data on the basis of
fit. However, Model 4E (Tare 4) also provides a good fit and has important

advantages over Model 4D. First, it is well defined whereas Model 4D is not.
Second, the strong trait factors in Model 4E more accurately reflect
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more parsimonious Model 4E may be preferable.

Summary of Analyses of Ostrom data.

None of the three parameterizations eliminated problems of poorly defined
solutions for Ostrom data. The fixed factor loading parameterization was most
prone to improper solutions. The Rindskopf parameterization was more likely to

converge to proper solutions, but only at the expense of error/uniqueness

estimates of zero with extremely large standard errors. In contrast solutions

for method structure E were always well defined, suggesting that it might be a

more appropriate formulation of method effects. For the Ostrom data most of

the variance can be explained in terms of either method factors or trait

factors, whereas the inclusion of both trait and method factors produced only

a small improvement in fit. Since relatively little variance was uniquely due
to either trait or method factors, any conclusions about their relative

importance are problematic. Even more serious problems exist in the

interpretation of the correlated method factors. These so-called method
factors were more substantially correlated with an external validity criterion
than were the trait factors, and apparently reflect trait variance instead of,

or in addition to, method effects. The solution for Model 4E apparently

provides a better representation of the MTMM data than the solution for Model
4D selected by Widaman even though the fit of Model 4D is slightly better. The
assumption of uncorrelated method effects in Model 4E is worrisome, but the

traditional interpretation of the method factors in Model 4D is clearly

unjustified and undermines any comparisons between it and other models. This

illustrates the problems associated with using fit as the primary basis for

selecting between alternative models instead of substantive interpretations of
the parameter estimates.

Byrne and Shavelaon (1986) Study.

Description of the Study and Rata.

Byrne and Shavelson (1986) examined the relations between three academic
self-concept traits (Math, Verbal, and School self-concepts) measured by
three different self-concept instruments (MI-M3). School performance measures
were also available for English and mathematics. Marsh and Shavelson (1985)
reported Math and Verbal self-concepts to be nearly uncorrelated with each
other even though both were substantially correlated with School self-
concept. They posited two higher-order academic facets -- verbal/academic and
math/academic self-concept -- to explain specific facets of academic self-

concept. Their research posits a specific pattern of correlations among the
trait factors and suggests that two general trait factors may provide a

reasonable fit to the Byrne and Shavelson data. For the expanded MTMM models

16



Multitralt-multimethod data 13

more parsimonious Model 4E may be preferable.

Summary of Analyses of Ostrom data.

None of the three parameterizations eliminated problems of poorly defined
solutions for Ostrom data. The fixed factor loading parameterization was most
prone to improper solutions. The Rindskopf parameterization was more likely to

converge to proper solutions, but only at the expense of error/uniqueness

estimates of zero with extremely large standard errors. In contrast solutions

for method structure E were always well defined, suggesting that it might be a

more appropriate formulation of method effects. For the Ostrom data most of

the variance can be explained in terms of either method factors or trait

factors, whereas the inclusion of both trait and method factors produced only

a small improvement in fit. Since relatively little variance was uniquely due
to either trait or method factors, any conclusions about their relative

importance are problematic. Even more serious problems exist in the

interpretation of the correlated method factors. These so-called method
factors were more substantially correlated with an external validity criterion
than were the trait factors, and apparently reflect trait variance instead of,

or in addition to, method effects. The solution for Model 4E apparently

provides a better representation of the MTMM data than the solution for Model
4D selected by Widaman even though the fit of Model 4D is slightly better. The
assumption of uncorrelated method effects in Model 4E is worrisome, but the

traditional interpretation of the method factors in Model 4D is clearly

unjustified and undermines any comparisons between it and other models. This

illustrates the problems associated with using fit as the primary basis for

selecting between alternative models instead of substantive interpretations of
the parameter estimates.

Byrne and Shavelaon (1986) Study.

Description of the Study and Rata.

Byrne and Shavelson (1986) examined the relations between three academic
self-concept traits (Math, Verbal, and School self-concepts) measured by
three different self-concept instruments (MI-M3). School performance measures
were also available for English and mathematics. Marsh and Shavelson (1985)
reported Math and Verbal self-concepts to be nearly uncorrelated with each
other even though both were substantially correlated with School self-
concept. They posited two higher-order academic facets -- verbal/academic and
math/academic self-concept -- to explain specific facets of academic self-

concept. Their research posits a specific pattern of correlations among the
trait factors and suggests that two general trait factors may provide a

reasonable fit to the Byrne and Shavelson data. For the expanded MTMM models
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that include validity factors, each validity factor should be substantially

correlated with the trait factors, particularly the trait factor in the

matching content area and, to a less extent, the school factor, and

relatively uncorrelated with the method factors. The Byrne and Shavelson
study is unusual because there is just a good a priori basis for predicting

the structure of the trait factors and also because two of the trait factors

are relatively uncorralated.

My application of the Campbell-Fiske guidelines to the MTMM matrix

(Marsh, in press) suggested strong support for convergent and discriminant

validity; every convergent validity was substantial, was larger than every

heterotrait-heteromethod coefficient, and was larger than nearly every

heterotrait-monomethod coefficient. For all three instruments School self -

concept was moderately correlated with Math and Verbal self-concepts whereas

Math and Verbal self-concepts were nearly uncorrelated with each other. There

was evidence of some method effects associated with at least M3 and, perhaps,

M2. The Byrne and Shavelson study is an exemplary MTMM study because of the

clear support for the Campbell-Fiske guidelines, because of the large sample

size (817, after case-wise deletion for missing data), because of the good

psychometric properties of the measures, and because of the a priori knowledge

of the trait factor structure. All models in Table 2 were fit ;..sing the fixed

factor loading parameterization, the fixed factor variance parameterization

was used for models that were pooily defined with the first parameterization,

and the Rindskopf parameterization was used for solutions that were poorly

defined by both standard parameterizations.

Insert Table 6 About Here

Behavior of the Sglutions Under Diffgrent Pargmetgrilations:

Nearly half of the solutions, 9 of 19, were poorly defined for the fixed

factor loading parameterization (Table 6); 4 solutions were improper, and 5 of

the solutions failed to converge. When these 9 poorly defined solutions were

tested with the fixed factor variance parameterization, 2 of the solutions

were well defined but the remaining 7 were still poorly defined. For the

Rindskopf parameterization only 1 of the 7 problem solutions was improper but

the all offending estimates were approximately zero and had large standard

errors in the other 6 solutions.

1. All four solutions for method structure E were well defined whereas

all four corresponding models for method structure C were poorly defined. When

the four solutions for method structure C converged to improper solutions with

either of the standardized parameterization', the parameter estimates for

trait factors and the overall fit were the same as for the corresponding
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solution for method structure E. For the Rindskopf parameterization, the
parameter estimates varied somewhat, the fit was always somewhat poorer, and
some parameters had values close to zero with large standard errors. For this
application method structure E provides a better representation of method
effects than method structure C.

2. Model 1D (correlated methods) produced the same improper solution,
factor correlations greater than 1.0, for all three parameterizations.
Because none of these

parameterizations constrain factor correlations to be
less than 1.0, they provide no protection from this problem.

3. Model 3D converged to an improper solution with the fixed factor
loading parameterization. Whereas the solution was constrained to be proper

2by the Rindskopf parameterization, the X was approximately twice as large.
4. For Model 4D the fixed factor loading parameterization resulted in an

improper solution whereas the fixed factor variance parameterization produced
a well defined solution. The fit of the fixed factor variance solution was
somewhat poorer indicating that it apparently imposed a limitation on the
solution space.

Substantive Interpretations of Trait lad Mathg4 FaGtgra

Interaretatigna based on the MTMM data: Models positing only method
factors fit the data poorly. Model 28 with one so called general method factor
and one general trait factor did substantially better. However, partly due to
the way Model 2B was specified, these two general factors represent the
math/academic and verbal/academic factors that were originally posited. The
interpretation of either of these as a general method factor is unjustified.

Model 2D (3 correlated M factors and 1 general T factor) provided a
reasonable fit to the data, but inspection of the parameter estimates
demonstrated interpretational problems. The three School measures should have
loaded substantially on the general trait factor, but all three loadings were
small (.10 to 22). Loadings for Verbal and Math scales were larger, but in
the opposite direction, suggesting that the so-called general trait factor
represented a bipolar (verbal vs. math self-concept) factor. For each of the
method factors all loadings were substantial and positive, and the three
method factors were substantially intercorrelated (.90 to .97). However, these
so-called method factors and the high correlations among them seem to
represent convergence on general trait factors associated with each of the
self-concept instruments. The interpretation of these factors is speculative,
though substantively interesting, but the traditional interpretation of the
factors is clearly unjustified.

Insert Table 7 About Here
MIMMIONM11111111.1NNIONNIII11111401011111nMPINIMMEN
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Model 4D, particular4 given the large sample size, provides a remarkably
good fit to the data (TLI=.99). Parameter estimates (Table 6) indicate that
each of the trait-factors is well defined. Consistent with theory and previous
research, the School trait factor is substantially correlated with the Verbal
and Math factors whereas the Verbal and Math factors are nearly uncorrelated
with each other. These trait factors are stronger than the method factors in
that all nine measured variables have higher trait factor loadings than method
factor loadings, but models without any method factors (e.g., Model 4A)

provide a poorer fit to the data.

Models 4C and 4E also provide good fits to the data (TLI=.977). For

Models 4C, 4D and 4E the factor loadings are similar for the School and Math
traits, but the Verbal trait-factor loadings are smaller for Model 4D.

Correlations among the trait factors are similar for all three models. Model

4D may be preferred because it fits the data slightly better, but there is no
compelling basis for rejecting the more parsimonious model 4E and the two

models lead to similar conclusions.

Relations tetween MTMM factors and external validity criterion. Two
validity factors defined by achievements in English and mathematics were added
to selected MTMM models (Table 8). In contrast to the external validity

criterion used with the Ostrom data, method effects associated with the self -

report measures are unlikely to be related to the achievement test scores.

Support for the validity of the interpretation of the MTMM solutions requires

each achievement factor to be most highly correlated with its matching trait

factor, less correlated with the School trait factor, substantially less

correlated with the non- matching trait factor, and relatively uncorrelated

with the method factors. The validity of the method factors would also be
supported if the hypothesized pattern of correlations between trait factors

and validity factors is improved by the addition of method factors.

Five models contain three trait factors and two validity factors in

combination with: correlated method factors (Model 4D); uncorrelated method

factors (Model 4C); uncorrelated method effects represented as correlated

errors (Model 4E); 1 General method factor (Model 48); or no method factors

(Model 4A). For each of these models, there is reasonable support for the

predicted pattern of correlations between validity and trait factors. The
inclusion of method factors imprces support for this hypothesized relation in

terms of Verbal self - concept, but has little effect on predictions in relation

to Math self-concept or School self-concept. These results provide clear
support for the a priori interpretation of the trait factors.

The comparison of Models 4C and 4E is informative. Model 4C is ill-
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defined but its TLI is much better than Model 4E. In Model 4C the validity

factors are correlated with the method factors whereas in Model 4E no
correlations were posited between validity factors and the error/uniquenesses

that represent method effects. The results from both Models 4C and 4D suggest
that the method factors are correlated with validity factors, and this
apparently exrlains the poorer fit of Model 4E. The hypothesized pattern of

relations between trait and validity factors is also stronger for Models 4C

than Model 4E. However, when selected error/uniquenesses in Model 4E were
correlated with the validity factors (Model 4E' in Table 8) support for the
posited pattern of correlations and goodness of fit were similar to Model 4C.

Correlations between the trait and validity factors are similar in Models

4C, 4D and 4E' (Table 8). The only substantive difference is that English

achievement is somewhat more highly correlated with School self-concept than

Verbal self-concept in Model 4D, whereas English achievement is more highly
correlated with Verbal self-concept than School self-concept for Models 4E'

and 4C. Support for the posited pattern of relations is somewhat weaker fbr
Model 4D even though its fit is best, Model 4C is poorly defined, and the

correlations between method effects and validity factors are not easily

represented in Model 4E'. There is no compelling reason for rejecting either
Model 4D or 4E. In fact, the similar interpretations based an each of these

different models suggests that the traditional interpretation of these models
is probably justified.

Insert Table 8 About Here

Four models contain three method factors and two achievement factors in

combination with: correlated trait factors (Model 4D discussed above),

uncorrelated trait factors (Model 4C discussed above), 1 General trait factor
(Model 2D), and no trait factors (Model 1D). Neither Models 2D nor 10 contain
specific trait factors, and their method factors are substantially and
positively correlated with the validity factors. In fact, English achievement
is more highly correlated with M3 in Model 2D, and mathematics achievement is
more highly correlated with M1 and M3 in Model 1D, than any trait factors in
any of the other models. These results provide clear support far the earlier
supposition that these so-called method factors contain substantial amounts of
trait variance. In Model 28 there are just two general factors that might be
interpreted to reflect a general method factor and a general trait factor.
However, the correlations between these two general factors and the validity
factors demonstrate that they reflect the math /academic and verbal/academic

factors originally posited.

loseFx of lb: &tants of Mt hcao and Ibmasoo Rau
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The Byrne and Shavelson study is an exemplary MTMM study that should be
well suited to the CFA approach. For this reason it is particularly
disappointing that so many of the models from Table 2 resulted in poorly

defined solutions. So long as both correlated trait and either correlated or
uncorrelated method factors were inLludel in the MTMM model, support for the
traditional interpretation of MTMM factors appeared reasonable. However, for
models with no trait factors, or only one general trait factor, the

interpretation of method factors as representing method variance was clearly

unjustified. Instead, the so-called method factors reflected the influence of

trait variance. Further support for this counter-interpretation was provided

by the substantial correlations between these so-called method factors and

the validity factors.

TPA neElb and rgl and (1_V4) 6/44Y.T.

Description Of tht $tudv and data.

Marsh and Ireland (1984) asked each of six teachers (M1 -M6) to evaluate

139 student essays on six single -item scales of writing effectiveness:

Mechanics, Sentence Structure, Mord Usage, Organization, Content/ideas. and

Duality of style (T1 -T6). Previous research reported a large general component

of writing effectiveness suggesting that trait factors should be substantially

correlated. There was no a priori hypothesis about the relative size of

different trait correlations, but the traits were roughly ordered from lower-

level components to higher-order components according to Foley's (1971)

adaptation of the Bloom taxonomy. Unlike the first two MTMM studies, ratings

for the different methods were not completed by the same person. The teachers

did not know any of the students who had written the essays or, typically, each
3other, and each teacher performed the rating task independently of the others.

In addition to the 36 measured variables that constitute the MTMM data, a

school performance measure of writing effectiveness was also available. My
application of the Caopbell -Fiske guidelines (Marsh & Ireland, 1984) suggested

strong support for the convergent validity of all 6 traits. However, there was
little support for discriminant validity and some indication of method effects

associated with ratings by each of the six teachers.

Behgvigr gf the SglgtignIL

Because the number of variables in this MTMM study was large only a

subset of the MTMM models was tested with the fixed factor variance

parameterization (Table 9). Nevertheless, 12 of these 13 models resulted in

well defined solutions. Model 48 was improper in that several trait

correlations exceeded 1.0, but this type of improper parameter estimate is

unlikely to be eliminated by any of the parameterization,. Model 40 was
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technically improper in that the factor correlation matrix (see Table 9) was
not positive definite even though none of the correlations were greater than
1.0. Despite these problems, the solutions for the Marsh and Ireland data
appear to be better behaved than far either of the first two MTMM studies.

Insert Tables 9 and 10 About Here

lubstantin Intmetstatigo 1 'WA end fttbsd EastmaL

Intematitigas band 120 tbt data= The goodness-of-fit statistics

(Table 9) demonstrated that much of the variance can be explained by either
six correlated method factors (Model 1D) or six correlated trait factors

(Model 4A), but that Model ID fit the data slightly better than 4A. For Model
4D method factor loadings were consistently such larger than trait factor
loadings. A superficial inspection of these results might suggest that the
ratings reflect primarily method effect, but there are problems with this

interpretation. First, it contradicts conclusions based on the Campbell-Fiske

guidelines. Second, trait-factor loadings were substantially smaller in Model
4D than 4A. This suggests that the so-called method factors may represent

general trait factors associated with each teacher and the high correlations
represent agreement across teachers on this general trait.

Porrglations between MTMM faram tad tilt validity factor. In order to
test the counter interpretation of the method factors, the school performance
measure was added to Model 4D. The parameters for the MTMM variables were

relatively unaffected by the inclusion of this additional variable. However,

the school performance factor was substantially more correlated with the so-

called method factors ( .56 to .68) than with the trait factors ( .14 to .30).

Because this pattern of results is so implausible, the traditional

interpretation of the so-called method factors in this model must be rejected.
Models 2D and ID also posited correlated method factors and correlations
between these method factors and the validity factor were also very high ( .53
to .75), whereas the general trait factor in Model 2D was only modestly

correlated with the validity factor. In contrast to models with correlated
methods, Model 4C posited method factors to be uncorrelated. For Model 4C

correlations between the trait factors and the validity factor varied between

.71 and .89 whereas 5 of the 6 correlations between method factors and the

validity factor were nonsignificant. Even though the fit for Model 4C was

somewhat poorer than Model 4D, the substantive interpretation of the solution

argues that it better reflected the MTMM data.

ftitast glamture

The first two MTMM studies both contained three trait factors, and for

such MTMM studies method structure E results are equivalent to those for

method structure C so long as the solutions are well defined. However, when
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there are more than 3 traits, as here, the two structures are not equivalent.
For T = 6, method structure C uses 6 parameters to define each method factor,
whereas there are 15 (T x (T-1)/2) correlations among the error/uniquenesses

associated with each method. Insofar as method structures C and E are both
well defined and fit the data equally well, then the more parsimonious method
structure C is pre4erable. Hatlever, the fit of models based an method
structure E was much better than those based on method structure C for this

data. This suggests that the 15 correlated error /uniquenesses associated with
each method effect cannot be explained by a single method factor and that

method effects do not have a congeneric-like structure. This is very important
in that all the method factors in the entire taxonomy are based on these

assumptions. This also explains why Model 4E (TLI=.948) fits the data better
than Model 4D (TLI=.935) even though Model 4E posits uncorrelated method

effects whereas Model 4D posits correlated method factors.

The superiority of Model 4E over 4C is also shown in the expanded models

containing the validity factor. Correlations between trait factors and the
validity factor are substantial for both Models 4E and 4C, but are higher for

Model 4E. As noted for the first two MTMM studies, correlations between method
effects and the validity factor are not easily incorporated into Model 4E.

However, correlations between validity and method factors were small and

generally nonsignificant for Model 4C. Similarly, inspection of the

modification indices provided by LISREL (see Joreskog & Sorbom, 1981)

indicated that error/uniquenesses in Model 4E were essentially uncorrelated
with the validity factor. For this reason no alternative model corresponding
to Model E' in the first two studies was proposed.

SUMMARY AND IMPLICATIONS

Why does cne use the kinds of analyses discussed here? One perception in

accordance with my own is that the motivation for MTMM analyses has been the
desire to establish specific trait representations in measures. Method

variance is seen as contaminating that representation. The CFA approach as

traditionally applied has modelled trait and method factors as if they were

equally important. The approach advocated here places greater emphasis on

the interpretation of trait representations. This is accomplished by

comparing different models to determine if the introduction of method factors

substantially alters the interpretation of trait representations, by

introducing an alternative method structure (method structure E) that

apparently provides a more accurate representation of the trait

representation, and by demonstrating how external validity criteria can be
used to test the validity of the traditional interpretations of different
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models. Whereas the conventional approach was due at least in part to early

work by Joreskog, the perspective taken here is consistent with Joreskog's
statement that "method factors are what is left over after all trait factors
have been eliminated" (1971, p. 128).

Despite the growing enthusiasm for the CFA approach to MTMM data,

problems demonstrated here call into question its value, the traditionalI

interpretation of MTMM factors, and the validity of previous MTMM research.
The most important of these problems are the technical difficulties in

estimating parameters and the interpretation of so-called method effects that

apparently represent the effects of trait variance in addition to, or instead

of, method variance. So long as problems as basic as these remain unresolved,
the promise of the CFA approach to MTMM data cannot fulfilled.

The CFA approach to MTMM data is plagued by technical difficulties in the
estimation of parameter values and different parameterizations of MTMM models
were proposed to eliminate such problems. The fixed factor loading

parameterization was apparently most prone to ill-defined solutions, whereas
the Rindskopf parameterization was most likely to converge to proper

solutions. However, when error/uniquenesses were negative for the standard

parameterizations, the offending parameters were estimated to be close to zero
(also see Dillon et al., 1987) with very large standard errors with the
Rindskopf parameterization. Hence the Rindskopf parameterization did not solve

the the problem, but merely made the manifest symptoms less obvious.

Method structures in Widaman's 1985 taxonomy and those used in most

applications of CFA to MTMM data posit a separate method factor associated
with each method of assessment. An alternative conceptualization, Method
structure E, was formulated in which method effects are represented as
correlated error/uniquenesses. Method structure E has three important
advantages over method structures C and D. First, models with method
structures C and D were frequently

ill-defined no matter what parameterization
was used, whereas models based on method structure E were always well defined
in the present applications. Second, when there were more than three traits,
method structure E provided a test of the implicit assumption that all the
correlated error/uniquenesses associated with a single method of assessment
could be explained in terms of a single method factor. The importance of this
second advantage was demonstrated for the Marsh and Ireland data in that Model
4E provided a better fit than the corresponding Models 4C and 4D. Third,

method structure E apparently provided a more accurate interpretation of trait
variance than alternative models when these interpretations were evaluated in
relation to external validity criterion. In this respect, the use of external
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validity criteria to validate interpretations of the method and trait effects
is an important conceptual innovation.

The most serious potential problem with MTMM models is the implicit
assumption that so-called method factors represent primarily the effects of
method variance. If this assumption is violated, then the interpretation of
trait and method factors in most CFA studies and the detailed comparison of
nested models proposed by Widaman (1985) may be unjustified. Results from
the MTMM studies considered here suggested that this assumption is often

implausible. In all three MTMM studies the so-called method factors for at

least some of the MTMM models apparently represented trait variance in

addition to or instead of method variance (also see Marsh & Butler, 1984, for

another compelling example). When there actually are distinct traits that are

at least moderately correlated, this phenomenon is most likely in models that

posit correlated method factors (method structure M. Using method structure
D the problem is likely to be most severe in models that posit no trait

factors (1D) and to become less severe as the trait structure proceeds from 1

to 4. The problem will apparently be least likely when method factors were

required to be uncorrelated as in method structures C and E.

The emphasis of the present investigation has been on potential problems

in the interpretation of so- called method factors that really reflect variance

that should be attributed to a general trait effect. This is consistent with

Joreskog's (19711 conceptualization of method effects as what is left after

trait factors have been removed and my perspective on the the intent of MTMM

analyses. It is important to note, however, that the converse phenomenon may

also exist. That is, it is possible that so-called trait effects really

reflect variance that should be attributed to a general method effect. If an

appropriate method structure is not employed, then so-called trait factors may

represent method variance in addition to, or instead of, trait variance. An

unresolved conceptual and technical problem is how to discriminate between

method and trait factors when both are highly correlated. In the extreme, it

is easy to imagine the case where a MTMM matrix of correlations produced by

highly correlated trait and method factors could be explained by a single

factor (Model 18/24). Whereas this situation would clearly indicate a lack

discriminant validity there would be little basis for determining whether the

single factor represented a general trait effect, a general method effect, or

a combination of the two.

The taxonomy of MTMM models in Table 2 was based in large part on

Widaman's taxonomy. Wideman (1985) used essentially the same CFA approach,

manysof the same MTMM models, and even analyzed one of the same MTMM studies.
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Because Widaman's evaluation of the CFA approach was much more optimistic than
mine, it is informative to critically evaluate his findings in relation to the
criteria used here. Wideman did not provide a detailed report of the behavior
of his CFA solutions, but results reported here indicate that poorly defined
solutions occurred for the Ostrom data considered in both studies. Wideman
chose to present five MTMM solutions as the most appropriate representations
of his MTMM analyses. However, four of these solutions had error/uniquenesses
of zero in conjunction with large standard errors whereas the fifth solution
required a correlation between two method factors to be 1.0. Wothke (1984)
also reported that 21 MTMM matrices -- including the three analyzed by
Widaman -- resulted in poorly defined solutions when he fit Model 4D.
Apparently, none of the solutions chosen by Widaman was well defined according
to criteria used here suggesting that Widaman was also plagued by poorly
defined solutions. Wideman did not report a critical evaluation of alternative
interpretations of his method factors, but results reported here suggest that
this was a problem for the Ostrom data. Using criteria described earlier there
is reason to suspect that so-called method factors in at least some of
Widaman's resLlts of other MTMM matrices may have also represented trait
variance in addition to, or instead of, method variances. In summary, a
critical evaluation of Widaman's results provides little basis for optimism
about the application of CFA to MTMM data. His results suggest the same sort
of problems that were identified here.

RECOMMENDATIONS

Problems with the CFA approach to MTMM data appear to be most serious
for MTMM studies in which method effects are substantially correlated and for
MTMM models that posit correlated method factors. Campbell and Fiske (1959)
originally stressed that the multiple methods should be as distinct as
possible, and this advice seems appropriate for the CFA studies as well. The
choice of method effects is, however, often dictated by the nature of the
study, and the pattern of correlations among method factors may be difficult
to determine a priori. Particularly when both traits and methods are
substantially correlated, the researcher must critically evaluate the MTMM
solutions for alternative

interpretations. Because the traditional
interpretation of trait and method factors may frequently be unjustified, the
burden of proof lies with the researchers to demonstrate that they are
justified. This requires that more emphasis be given to the substantive
interpretations than has typically been the case in CFA studies.

The use of uncorrelated traits may also be helpful, though this is
unusual in MTMM studies. Byrne and Shaven= (1986), however, did consider
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and method factors (4D and 4C) and method effects represented as correlated

uniquenesses (4E) seem most useful, supplemented perhaps by those positing 1

general factor (1A/2B), only trait factors (4A), and only method factors
(1D). Particularly when Models 4D and 4E are both well-defined and lead to
similar conclusions as with the Byrne and Shavelson (1996) data, then *le

tra'iitional interpretation of these models is probably justified. In this

case it may be reasonable to base inferences about method and trait effects

on just these models -- dispensing with other models altogether. Other

models from the taxonomy or models idiosyncratic to particular substantive

issues may, however, provide useful supplemental information, about the data.

Because model 4E has not been widely applied elsewhere, it is important to
further examine its apparent advantages in other studies. A particularly

useful evaluation would be to apply various models -- including method

structure E -- to simulated data in which the underlying factor structure

was known. Subject to the results of this further research I recommend that

Model 4E should be at least one of the MTMM models examined in all

applications of CFA to MTMM data.
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Footnotes

1 -- Campbell and Fiske (1959, p. 85) stated that "the presence of method
variance is indicated by the difference in level of correlations between
parallel values of the monomethod block and the heteromethod block,

assuming comparable reliabilities among the tests." Marsh (in press)

operationalized this statement to provide estimates of the relative size of
method effects associated with each method of assessment and discussed

limitations in the inferences based upon it.

2 -- Standard errors of estimated parameters that were extremely large were

indicated to be 1.0 by Widaman (1985), though the footnote indicating this

was mistakenly omitted from the published article (Widaman, personal

communication, 3 September, 1987).

3 -- The CFA approach to MTMM data assumes that the different methods

represent fixed effects. Whereas this limitation may be reasonable for

some applications, it is probably inappropriate for the Marsh and Ireland

data where the different raters more realistically constitute a random

effects facet (i.e., a sample of potentially much larger sample of raters).

I am not aware, however, of any solution to this problem.

4 -- This perspective was expressed by an anonymous reviewer.

28
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Table 1

Paraders To le Estimated For the iueeral NTNN Nodal (Model 411

Variables

Factor Loadings (lambda Y1 Error/Nniquesesses (Theta)

T1

a

T2 T3 Ni N2 113 tie, t2e1 t3s1 tis2 t2s2 t3.2 t1s3 t2e3 t3.3

till LY 0 0 LY

a

0 0 TE

t2s1 0 LY 0 LY 0 0 0

b

TE

b

t3s1 0 0 LY LY 0 0 0 0 TE

t1s2 LY 0

a
0 0 LY 0 0 0 0 TE

t2s2 0 LY 0 0 LY 0
a

0 0 0 0
b

TE
b

t3.2 0 0 LY 0 LY 0
a

0 0 0 0 0 TE

t1s3 LY 0 0 0 0 LY 0 0 0 0 0 0 TE

t2a3 0 LY 0 0 0 LY 0 0 0 0 0 0 0

TE
a

t3.3 0 0 LY 0 0 LY 0 0 0 0 0 0 0
0 TE

Factor Variance/r.ovariasces Inn

Factors T1 T2 T3 NI N2 N3

TI

T2 PS 1

T3 PS PS 1

NI 0 0 0 1

N2 0 0 0 PS 1

N3 0 0 0 PS PS I

MIA Confireatory factor anahmis ICF111 models to be considered is this

investigation are Mimed in terms of the three LIM. design matrices

Presented here. The NTNN problem sheen hers is has 3 traits factors IT1 - T31

and 3 method factors 011 - N31 that art Mimed in terms of the 1 sneered

variable ItIml - t3s31. All printers with valor . of 0 or I are fixed and

lot mitigated shims all other parameters are estimated without constraint.

The paraterization shoe here, with factor variances him PSI1 fixed to be I,

is referred to as the fixed factor variance Parameterization.

a

For the fixed factor loading parameterization these factor loadings would be

fixed to be 1 and factor variances would be freed. For the fixed factor

loading Parameterization these factor variances would be fixed to be 1 aid so

factor loading mold he fixed to 1. For method structure E (see Table 21

tkese correlations between error/omissio ns,. would be estimated, aid the

lethal factors and their associated parameters meld be eliminated from Laubda

Y and PSI.
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Table 2

Taxonomy of Structural Models for KINN late Adapted From Vides= II1SS1

Nothod Structure

Trait

a

Structure A

a

C E

1 IA Noll 11 1 imeral IC N =correlated IS M correlated

Nodel N-factor N-factors N-factors

1E T M cor-

related errors

2A 1 General

1- factor factors

2 General Z 1 General

T-factor. N

=correlated

N-factors

71 1 General

T -factor, M

correlated

N-factors

d
2E T x M cor-

related errors,

1 6emeral

T -factor

3 3A T uncorre- 31 1 General

lated T-factors N-factor, T

=correlated

T-facters

3C T umcorre-

lated T -factors

N =correlated

N-factors

31 T umcorre-

lated T-factors,

M correlated

N-factors

3E T x M cor-

related errors,

T =correlated

T-factors

4 4A T Correlated 411 1 imeeeral

T-factors N- factor, T

correlated

T-factors

4C T Correlated 41 T Correlated

1-factors, N

=correlated

N-factors

1-factors, M

correlated

N-factors

4E T II cor-

related errors,

T correlated

T-factors

a

6eneral factors are denied to be =correlated with other factors in the model. Although

general factors are posited to represeet either trait variance or method mime, this

b
assumptiom will not always be accurate and may be difficult to test. Models 2A and 11 are

equivalent, and it is 'morally mot possible to determine whether the one 'rural factor

c
reflects trait mince, method variance or some combination of trait and method variance.

Model 21 requires additional constraints that say be arbitrary and that may sot provide

equivalent 'elation'. Nesce its usefulness say be Idiom unless there is an a priori basis for

the constraints. Models ender method structure E have so method factors. Instead method

effects are 'shirred on the basis of correlated error/uniqueeesses (see Table 11. This method

structure, particularly ohm there are three traits, corresponds most closely to method

structure C is dick there are M =correlated methods.
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Summary of Goodness of Fit and Solution Behavior far the Ostrom Data

Parameterization

Fixed Factor Loadings Fixed Factor Variances Rindskopf Paraeeterization

a
Model

2
X df

2
X /df
Ratio

b c 2
TLI Problem X df

2
X /df
Ratio TLI Problem

2
X df

2
X /df
Ratio TLI Problem

Models Without Validity Factors

IA 1072 66 28.36 .000 ---

18/2A 141 54 2.61 .941 ---

1C 776 54 14.36 .512 ---

10 75 48 1.56 .980 2 75 48 1.56 .980 2 75 48 1.56 .980 2

1E 776 54 14.36 '.512 ---

' 28 187 44 4.26 .881

2C 73 42 1.73 .973 1 73 42 1.73 .973 1 73 42 1.73 .973 5

20 40 36 1.11 .9 6 1 39 36 1.09 .997

2E 73 42 1.73 .973 ---

3A 722 54 13.37 .548

38 112 42 2.68 .939 1 109 42 2.60 .942 ---

3C 608 42 14.47 .508 1 607 42 14.46 .508 4 607 42 14.46 .508 5

30 44 36 1.23 .991

3E 607 42 14.46 .508

135 51 2.66 .939

48 57 39 1.47 .983 ---

4C 54 39 1.38 .986 3 54 39 1.38 .986 1 54 39 1.38 .986 5

40 29 33 0.87 1.005 4 22 33 0.66 1.012 1 29 33 0.87 1.005 5

4E 54 39 1.38 .986 ---

Models With Validity Factors

IA 2041 78 26.16 .000

10 127 57 2.22 .951 2

2 0 53 44 1.20 .992 ---

4A 164 61 2.69 .933 ---

48 89 48 4.85 .966 ---

4C 57 45 1.27 .989 5

40
d

38 39 .97 1.001 5

4F 79 49 1.61 .976 ---

4E'
d

58 46 1.26 .990

Vag& All models were first tested with both the fixed factor loading and the fixed factor

variance parameterization,. However, in all cases in which the fixed factor loading

parameterization resulted in a well defined solution the solution for ithe fixed factor variance

parametrization was the same and so it is not presented. When neither of these standard

parameterization, resulted in a well-defined solution the Rindskopf parameterization was used.

For models that also had a validity factor, only the Rindskopf parameterization was used

because the previous analyses showed that this parameterization facilitated convergence for

this application.
a

see Table 2 for a description of the models. TLI = Tucker Lewis Index. Problems: 1 =

failed to converge in 250 iterations; 2 0 factor correlation > 1.0; 3 0 Negative factor

variance; 4 = Negative error/uniqueness; 5 estimates with excessively large standard errors.

Problems 2, 3 and 4 were only examined if the solution converged, and problem 5 was examined

only if the solution converged and had no out-of-range parameter estimates. Validity factor

is correlated with trait factors but not with any error/uniquenesses used to represent method

effects in Model 4E where.* two such correlations appear in Model 4E'.
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Table..

truer Estimates hr Mel 4E Far the farm kis

Factor Loodispi Ernrilhiposessee Metal
Variables Ti T2 13 tle1 tai Uel tle2 tai tid tle3 tai tid tle4 t2e4 t2e4
till .8U .3U

t2e1 0 .744 0 .01 .461

Uel .114 -.01 .16 .344

Us2 .I74 .254

tad .101 0 0 .051 .20

t3s2 .111$ 0 .04 .044 .221

tld .441 0 I 0 0 I .594

tai .76$ 0 0 0 -.03 .42

13s3 .0111 0 -.61 .01 .344

UM .84400 11000'0000.294
UN .744 0 0 0 0 0 .10 .444
UM .744 0 0 0 0 0 0 0 0 .141 .154 .451

Factor Ifariesce/Cevariasces (PSI)

Factors T1 T2 T3

Ti 1

12 .161 1

T3 .104 .544 1

Rai Ise Table 1 for a densities If the WM factors aed the serial's. All

parameters oith salon of 11 sr 1 are filed shwas all other paraders owe freely

'stinted. Correlated effers/saiwiessn is the Theta saris are betwes differed
traits assessed sib the sass method aed are owl to infer salsa effects.

I p ( .05.
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Table 5

Correlations Between Trait (T1 -T3), Method (M1 -M4), General (G1-62) and

Validity (V1) Factors for Selected MTMM Models Based on Ostrom study

a
MTMM Factors

Models T1 72 T3 MI M2 M3 M4 GI G2 VI

Model 4E'

T1 1

72 .96* 1

73 .97* .94$ 1
VI .68* .74$ .60* --- 1

Model 4E

Ti 1

7 2 . 96* 1

73 .97* .94* 1

VI .69* .77* .61* --- 1

Model 4D

T1 1

T2 .91$ 1

73 .95* .91* 1

M1 0 0 0 1

M2 0 0 0 .91, 1
M3 0 0 0 .89$ .86$ 1
M4 0 0 0 .75* .70$ .74 1
VI .33* .38$ .25* .65* .65$ .66$ .46* --- 1

Model 48

T1 1

72 96* 1

73 .97$ .94* 1
61 0 0 0 - -- 1
VI .69* .76* .58* --- -.21$ --- 1

Model 4A

TI
72 .98* 1

VI .67* .76*
1

.60* --- 1

Model 2D

M1 --- 1

M2 --- .97$ 1

M3 --- .96* .95* 1

M4 .88* .87* .88* .

G2
VI .59$ .62* .59* .51* --- .59* 1

Model 10

M1 __- __- --- 1

M2 --- --- .97* 1

M3 __- --- --- 1.01$ .99* 1
M4 --- --- .89* .87* .93* 1
V1 __- _-- --- .70* .68* .73* .58* --- 1

Ngte, Only parameter estimates from the matrix of factor correlations (PSI)

are presented.

$ p < .05
a
Ti = Trait 1, 72 = Trait 2, 73= Trait 3, Ml= Method 1, M2=Method 2, M3=

Method 3, G1 = General 1 (general method), G2 = General 2 (general trait), VI
b c

= Validity Criterion 1. See Table 2 for a description of the models. This

model resulted in an improper solution in that 1 of the method factor

correlations was greater than 1.0. Similar results were found when the

validity criterion was not included (see Table 3).

36



Table

Summary of Goodness of Fit and Oblation behavior for the Verne and Shavelson Data
Immamommimman.=.....minsaysimm

Parameterization

Fixed Factor Loadings Fixed Factor Variances Rindskopf Parameterization

2
2 X /df

Model X df Ratio
c

TLI Problem
2

df

2
X /di
Ratio TLI Problem

2
X df

Without Validity Criteria

3807

2302

1528

323

310

707

135

65

40

6399

2699

800

469

697

268

132

73

363

149

27

24

18

15

18

18

15

15

12

45

38

36

27

38

27

27

20

29

26

141.02

95.92

84.88

21.52

17.21

39.26

9.03

4.31

3.32

142.21

71.03

22.23

17.35

18.33

9.92

5.73

3.65

12.52

5.73

.037

.347

.423

.859

.889

.737

.945

.977

.984

.000

.504

.850

.884

.877

.937

.967

.981

.918

.966

1

2

4

3934

2302

1528

387

707

188

66

148

27

24

18

18

18

15

15

23

IA 5272 36 146.44

1B/2A 2365 27 87.59

IC 3807 27 141.02

ID 2302 24 95.92

1E 3807 27

28 534 20 26.70

2C 1698 18 94.34

20 385 15 25.63

2E 1528 18 84.90

3A 1107 27 41.01

se 313 18 17.37

3C 708 18 39.31

3D 94 15 6.30

3E 707 18 39.26

4A 451 24 18.81

48 112 15 7.49

4C 65 15 4.31

40 28 12 2.35

4E 65 12 4.31

With Validity Criteria

.000

.405

.037

.347

:823

.358

.831

.423

.726

.887

.737

.964

.737

.878

.955

.977

.991

.977

---

1

2

1

1 ---

1

4

1

1

- - -

---

1

1

3

---

5

3

1

4

IA

ID

2e

20

4A

4B

4C

4D
c

4E
c

4E'

---

4

---

1

---

---

---

2

RatioRatio TLI Problem

145.71 .005 5

95.92 .347 2

84.90 .423 5

21.51 .859 5

39.28 .737 5

12.54 .921 5

4.38 .977 5

6.45 .961 5

Wig,. All models were first tested with tine fixed factor variance parameterization, models

with solutions that had problems were then tested with the fixed factor variance

parameterization, and if there were still problems with the Rindskopf parameterization. The

expanded models with the validity criteria were tested with the fixed factor variance

parameterization and then the Rindskopf parameterization was used if poorly defined

solution was obtained.
a
see Table 2 for description of the maids. TLI Tucker Lewis Index. Probleesz 1 =

failed to converge in 250 iterations' 2 factor correlations > 1.01 3 Negative factor

variances 4 Negative error /uniqueness p 5 estimates with excessively large standard

crrors. Problems 2, 3 and 4 were only examined if the solution converged, and problem 5 was

examined only if the solution converged and had no out-of-range parameter estimates. In

Model 4E, error/uniquenesses used to represent method effects were uncorrelted with the

validity factor wheret4 for Model 4E' selected correlations were estimated. 37
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Table 7

Paraders For Model 41 For the lyre. and lhavelson late

Factor Loadings (Lambda Y)

Error/
Variables T1 T2 T3 11 12 N3 Uniqueness

tie .041 0 0 .11 0 0 .271

t2m1 0 .571 0 .561 0 0 .351

t3.1 0 0 .941.03 0 0 .111

t1m2 .611 0 0 0 .261 0 .481

b
t2e2 0 .701 0 0 .651 0 .07

t3m2 0 0 .931 0 .191 0 .121

t1e3 .771 0 0 0 0 .601 .03

t2e3 0 .171 0 0 0 .331 .151

t3e3 0 0 .151 0 0 .251 .181

Factor Variance /Covariaaces IPS11

Factors

TI

T2

T3

NI

N2

N3

T1 T2

1

J91 1

.601 .04

0 0

0 0

0 0

T3

1

0

0

0

NI

1

.101

.25

N2

1

.22

N3

1

MIL The three traits are School self-concept (Ti), Verbal self-concept

1T21 and Nath self- concept 1T31 whereas the three methods corresponding to

three different self- report instruments used to masere each of these

facets of self 1M1 -131. All parameters with values of 0 or 1 are fixed and not

estimated *eras all other parameters are estimated without constraint.

The fixed factor variance parameterizatios, with factor variances lin PSI)

fixed to be 1, was used to estimate permitter..

a

lecaese error/solve/messes were constrained to be uncorrelated in this

model the estimates are presented in this fore to save space (see Theta

eatrix in Table 11. Although these error/seiquesesses did mot differ

significantly fro zero, their standard errors were very small.
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ay 1
Table 8

Correlations letusen Trait (T1 -T3), Method (M1 -M3), General (6142) and

Criterion (C1-C2) Factors for Selected MTMM Models Rased on Byrne and

Shaw/loon Study

b
Models

Model 4E'

T1
T2

PITIIM Factors

T1 T2 T3 MI M2 M3 61 62 VI V2

1

.61$ 1
T3
VI

.61$ .05

.56$ .63$
1

.21$ --- - -- - 1
- ___

V2 .48$ .07$ .57$ .52$ 1

Model 4E

T1 1

T2 .61$ I
T3 .61$ .05 1
VI .54$ .43$ .22$ 1
V2 .46$ .08$ .591 .52$ 1--- - - ___ -

Model 40

Ti 1
T2 . 61$ 1
T3 .61$ .06 1

MI 0 0 0 . 1

M2 0 0 0 .85$ 1

P13 0 0 0 1
VI .59$ .57$ .21$ -.13.22$ -.16.18$ .10S 1--- ---
V2 .41$ .06 .56$ .07 .02 .37$ .52$ 1--- ---

Model 4C

Ti 1
T2 . 1

T3 .62$61$ .06 1

MI 0 0 0 1

PO
M3

0 0
0 0

0
0 2852

.$

.

1

.18 1
VI .52$ .60$ .21$ -.29$ -.38$ .21$ I--- ---

---V2 .40$ .07 .57$ .07 .02 .31$ .02$ 1---

Model 48

T1 1
T2 $ 1
13 .. 6366$ .10$ 1
61 0 0 0 --- 1___ ___
VI .54$ .50$ .20$ -.32$ 1--- ___ --- ---
V2 .48$ .12$ .59$ -.25$ .521 1--- - --- ---

Model 4A

T1 1
T2 .66$ 1
13 .63$ .08$ 1

VI .58$ .44$ .22$ --- --- 1
V2 .50$ .09$ .60$ --- .52$ 1

Model 2B

61 --- 1- -
--- ---62 - -- 0 1

VI - -- --- .53$ .21$ I
Y2 ___ - --- .11$ .61$ .52$ 1

Model 2D

MI 1- -- -
M2 .99$ 1--- ---
113 .89$ .82$ 1

--- --- ---
62 0 0 0 1--- ---
VI - .54$ .39* .62$ .08 1

--- ---
---V2

c
--- .38$ .30$ .481 -.47$ .52$ 1

Model 10

MI - -- 1

M3 --- 1.05$ .95$ 1

YV2 ------

.6t .524$
.75$ -----

-
-----

- I

M t 1

gag, Only parameter estimates from the matrix of factor correlations (PSI)

are presented.

$ p ( .05

See Table 4 for a description of the MTMM factors. See Table 2 for a

description of the models. This model resulted in an improper solution

with-210,-3 mithed fatter cereistions being greater than 1.0. (.1(1



Nultitrait-multimethod data

Table 9

!smeary of Goodness of Fit and Solution lehavier for the Marsh and Ireland

Data

a 2 1

2
/df b c

Model 1 df Ratio TLI hellos

Nithout Validity iiteria

IA 6407 630 10.17 .000 ---

11/2A 2439 593 4.11 .660

IC 1991 594 3.36 .742

ID 1296 579 2.24 .865 ---

IE 1590 540 2.94 .788

2C 1199 558 2.15 .875

28 997 543 1.84 .909

2E 152 504 1.69 .925

4A 2714 479 3.96 .677

48 1776 543 3.27 .752 2

4C 981 543 1.81 .912 ---

d
4D 845 528 1.60 .935

4E 722 489 1.48 .948

Vith Validity Criterion....
IL 6593 666 9.90 .000

18 1334 610 2.19 .867 ---

28 1035 573 1.83 .909

2E 896 540 1.66 .923

4A 2331 610 3.82 .683

48 1814 573 3.17 .757 2

4C 1009 568 1.78 .913

4D 873 533 1.64 .928

4E 758 520 1.56 .948

Note. All models were first tested with the fixed factor variance

parameterization.
a

see Table 2 for a description of the models. TLI = Tucker Lewis Index.

Problem 1 = failed to converge in 250 iterations; 2 = factor

correlations ) 1.0; 3 = Negative factor variance; 4 = Negative

error /uniqueness; 5 = estisates with excessively large standard errors of

litigate. Problem' 2, 3 and 4 were only examined if the solution

converged, and problem S was examined only if the solution converged and had

no out-of-range parameter litigates.
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Multitrait-sultisethod data

Table 10

Correlations ktwees Trait 171-761, Method 1111-1161, boners' 161-621 and

Validity (VII Factors for Selected 117111 Models Based on Marsh and Ireland Data

.I.M.N.Mxib.......0.1.1.111

Factors in MTN Models
MMOION..M.F.0.0.0010

TI 72

Model 4E

T1 1

T2 981 1

13 921 961
T4 931 941
15 901 911
Tb 941 961
VI 811 101

Model 40

T1 1

T2 991 1

T3 641 761
T4 701 741
T5 571 5111

76 781 791
NI 0 0
112 0 0
N3 0 0
N4 0 0
N5 0 0
N6 0 0
VI 281 251

Nodel 4C

71 1

T2 991 1

T3 924 951
T4 921 941
15 891 891
76 941 951
111 0 0
12 0 0
13 0 0
114 0 0
15 0 0
116 0 0
VI 771 751

Model 4E

11 1

T2 981 1

13 921 961
T4 931 941
T5 tot 911
Tb 941 961
VI 811 801

Model 48

11 1

72 1061 1

T3 641 101
74 661 841
15 451 591

676

7
0 0

11 821
1

VI 271 261

'f3 T4

1

931 1

931 961
951 981
771 831

1

611 1

621 841
681 931
0 0
0 0
0 0
0 0
0 0
0 0
14 301

1

921 1

941 971
941 981
0 0
0 0
0 0
0 0
0 0
0 0
711 791

1

931 1

931 961
951 981
771 831

1

111 1

1011 1001
811
0

1101
0

201 351

T5

1

981
161

1

981
0
0
0
0
0
0
11

1

991
0
0
0
0
0
0

731

1

981
161

1

1101
0
261

T6

1

801

1

0
0
0
0
0
0
221

1

0
0
0
0
0
0
751

1

801

1

0
291

NI

---

1

111
721
721
661
121
661

1

0
0
0
0
0
08

W2

1

711
731
651
121
561

1

0
0
0
0

-10

113

1

791
191
781
691

1

0

0

0

06

114

1

771
611
611

1

0
0
12

115

1

651
661

1

0
08

116

1

671

1

161

61 62

--..

741

VI

1

I

Table 10 continued on next page
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Table 10 Continued111 Nultitrait-multisethod data

Factors in NTNN Models

TI T2 T3 T4 TS T6 NI N2 N3 N4 NS M6 61 62 VI

Model 4A

T1 1

T2 1041 1

T3 961 991 1

T4 961 981 981 1

15 941 951 1011 1031 1

T6 981 991 1001 1041 1071 1

VI 81$ 901 76$ 831 77$ 80$ ..M.

Model 28

111 1

N2 731 1

N3 711 1

N4 741 77
701 1

191 1

83 671 691 781i 781

e
1

/21 n s

VI 6in58 3$ 678 678 631

85

Model 111

111 1

N2 77$ I
751 751

NN34 7118 798 021 1

N5 731 731 811 901 I
N6 771 761 Ill 721 701
VI 731 611 754 741 711

1

1

6
0
41 331 1

1

721 721 1

Note Only factor correlation from the Psi matrix are presented. Parameter

estimates are presented without decimal points. All parameters with values of

I or 0 are fixed, whereas factor correlations
greater than 100 are out -of -

range estimates.

8 p ( OS

a
b

See Table 4 for a description of the NTNN factors. See Table 2 for a

description of the models


