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Confirmatory Factor Analyses of Multitrait-multimethod Data:
Many Problems and a Few Solutions

ABSTRACT
During the last 15 years there has been a steady increase in the

popularity and sophisgication of the confirmatory factor analysis (CFA)

approach to multit-zit-multimethod (MTMM) data. There exist, however,
important problems, the most serious being the ill-defined solutions that
plague MTMM studies and the assumption that so-called method factors
reflect primarily the influence of method effects. In three different MTMM
studies ill-defined sclutions were frequent and alternative
parameterizations designed to solve this problem tended to mask the
symptoms instead of eliminating the problem. More importantly so-called
method factors apparently represented trait variance in addition to, or
instead of, method variance for at least some models in all three studies.
Further support for this counter interpretation of method factors was
found when external validity criteria were added to the MTMM models and
correlated with the trait and so-called method factors. This problem, when
it exists, invalidates the traditional interpretation of trait and method
factors and the comparison of different MMM models. A new specification
of method effects as correl ated uniquenesses instead of method factors was
less prone to ill-defined solutions and, apparently, to the confounding of
trait and method effects.




Multitrait-multimethod data 1

The purpose of this investigation is to demonstrate and critically
evaluate recently developed applications of confirmatory factor analysis
(CFA) to multitrait-multimethod (MTMM) data. Campbell and Fiske (1959)
argued that construct validation requires multiple indicators of the same
construct to be substantially correlated with each other but substantially
less correlated with indicators of different constructs. They proposed the
HTMM design in which each of a set of multiple traits is assessed with each
of a set of multiple methods of assessment, and developed four g idelines
for evaluating MTMM data. Their MTMM design has become, perhaps, the most
frequently employed construct validation design, and their original
guidelines continue to be the most frequently used guidelines for examining
MTMM data. Important problems with their guidelines are, however, well
known (e.g., Althauser & Heberlein, 1970; Alwin, 1974; Campbell &
0’Connell, 1967; Marsh, in press; Wothke, 1984) and bave led to many
alternative analytic approaches (e.9., Browne, 1984; Hubert & Baker, 1978;
Jackson, 1969; 1977; Marsh, in press; Marsh & Hocevar, 1983; Schaitt,
Coyle, & Saari, 1977; Schaitt & Stults, 1986; Stanley, 1961; Wothke, 1984).
Factor analytic approaches (e.g., Boruch & Wollins, 1970; Joreskog, 1974;
Marsh, in press; Marsh & Hocevar, 1983; Widasan, 1985) or sathesatically
similar path-analytic approaches (e.g., Werts & Linn, 1970; Schaitt, Coyle
& Saari, 1977) currently appear to be the most popular approach and will be
the focus of the present investig4tion.

A GENERAL MTMM MODEL AND A TAXONOMY OF ALTERNATIVE MODELS
The General MTMM Model,

In the CFA approach to MTMM data a priori factors defined by different
measures of the same trait support the construct validity of the measures
but a priori factors defined by different traits measured with the same
method argue for method effects. For purposes of the present investigation
I will emphasize a general MTMM model (Table 1) adapted from Joreskog
(19743 also see Marsh & Hocevar, 1983; Widaman, 1983) in which: a) there
are at least 3 traits (T=3) and 3 methods (M=3); b) T x M measured
variables are used to infer T ¢+ M & priori common factors; c) each measured
variable loads on the one trait factor and the one method factor that it
represents but is constrained so as not <o load on any other factors; d)
correlations among the trait factors and among the sethod factors are
freely estimated, but correlations between trait and method factors are
constrained to be zero. For this model I assuse there are at least three
traits and three methods, but alternatives have been proposed f.r studies
with only two methods (Kenny, 1979) or only two traits (Marsh & Hocevar,
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Multitrait-multimethod data 2

1983). While sose researchers have estimated correlations between trait
and method factors there are important logical, interpretive, and pragmatic
reasons for fixing these correlations to be zero (see Jackson, 1974; Marsh
& Hocevar, 1983; Widaman, 1985). This constraint allows the decompositior
of variance into additive trait, sethod, and error camponents, and without
this constraint the solution is almost always empirically underidentified
(also see Widaman, 198S; Wothke, 1984). In justifying this castramt
Joreskog (1971, p. 128) noted that: *This is our way of defining each
method factor to be independent of the particular traits that the method is
used to measure. In other words, method factors are what is left aver after
all trait factors have been eliminated.”
Insert Table 1 About Here

In the present investigation CFA models were fit with LISREL V (Joreskog
& Sorbom, 1981) and three design matrices from LISREL were used ta define all
the NTM models. For T=3 traits and M=3 methods (see Table 1) the three
design matrices are: a) Lasbda Y, a 9 (M x T = nusber of measured variables)
by 6 (M + T = nusber of factors) matrix of factor 1..adings; Psi, a 6 (M + T =

nusber of factors) x & factor variance-cavariance matrix of relations asong
the factors; and c) Theta, a 9 (M x T = number of measured variables) x 9
satrix of error/uniquenesses in which the diagonal values are analogous to
one minus the communality estimates in exploratory factor analyses. All
parameters (Table 1) with values 6f O or 1 are fixed and values for other
paraseters are estimated so as to maximize goodness of fit. Standard errors
are estimated for all estimated parameters but not for parameters with fixed
values. This model is easily modified to accommodate more traits or methods,
to confora to other models and other parameterizations that will be
described, or to incorporate unique factors for the measured variablas
(Rindskopf, 1983).
A Taxonomy of Alternative Models

Researchers have proposed sany variations of the general MTMM model to
examine inferences about trait or method variance or to test substantive
issues specific to a particular study (e.g., Bagozzi, 1978; Joreskog, 1974;
Marsh, Barnes & Hocevar, 1985; Marsh & Hocevar, 1983; Widaman, 198S; Wothke,
1984). Widaman (1985) proposed an important taxonomy of such models that
systematically varied different characteristics of the trait and msethod
factors. This taxonomy was designed to be appropriate for all MTMM studies,
to provide a general framework for making inferences about the effects of
trait and method factors, and to objectify the complicated task of
formulating models and representing the NTMM data. One purpose of the present

'
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Multitrait-multimethod data 3

investigation is to evaluate the taxonomy in relation to these goals and to
describe an expansion of the taxonomy formulated for the present
investigation. The expanded taxonomy (see Table 2) represents zll possible
combinations of 4 trait structures (trait structures 1 - 4) and S method
structures (method structures A - E). The 4 trait structures posit no trait
factors (li, one general trait factor defined by all measured variables (2),
T uncorrelated trait factors (3), and T correl ated trait factors (4). The S
method structures. posit no method factors (A), one general method factor
defined by al) measured variables (B), M uncorrelated method variables (C), M
correlated method factors (D), and method effects inferred on the basis of
correlated uniqueness (E). This taxonomy differs from Widasan’s original
taxonomy only in the addition of Method structure E.
Insert Table 2 About Here

The general factors posited in method structure B and trait structure 2
aay present interpretive or estimation problems. Widaman (1985) avoided some
probless by constraining each general factor to be uncorrelated with all
other factors and this constraint is used here. The rationale for this
constraint is consistent with the requiresent that trait and sethod factors
be uncorrel ated. Models 1B and 2A are, however, are the same, whereas Model
2B requires ore additional, perhaps arbitrary, zero constraint to assure
ratationa! identification. Finally, even for models that contain a general
sethod factor in combination with T trait factors, or a general trait factor
in combination with M method factors, the interpretation of the general
factor may be problematic.

POTENTIAL PROBLEMS IN THE ESTIMATION AND INTERPRETATION OF MTMM MODELS
Goodness Of Fit

An important, unresolved problem in CFA is the assessment of goodness of
fit. To the extent that a hypothesized madel is identified and is able to fit
the observed data, there is support for the model. The problem of goodness of
fit is how to decide whether the predicted and observed results are

sufficiently alike to warrant support of a model. Whereas X values can be

used %0 test whether these differences are statistically significant, there
is a growing recognition of the inappropriateness of this classical
hypothesis testing approach. Because hypathesized models are only designed to
approximate reality, all such restrictive models are a priori talse and will
be shown to be false with a sufficiently large sample size (Cudeck & Browne,
1983; Marsh, Balla & McDonald, in press; McDorald, 1985). Hence, a variety of
f%t indices have been derived to aid in this decision process such as the

X /df ratio and the Tucker-Lewis index (TLI; Tucker & Lewis, 1973) that are
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Multitrait-multimethod Jata 3

used here. In simulation studies of more than 30 such indices Marsh, Balla
agd McDonald (1988) and Marsh, McDonald and Balla (1987) found that both the
X /df and TLI indices imposed apparently appropriate penalty functions for
the inclusion of additional parameters that controlled for capitalizing on
chance, whereas the TLI was the only widely used index that was also
relatively independent of sample size. The TLI is emphasized in subsequent
discussions, out valu@s for other fit indices like the Bentler and Bonett’s
(1980) index can easily be computed from the results.

Model seleztion must be based on subjective evaluation of substantive
issues, inspection of parameter values, mcdel parsimony, and a comparison of
the performances ui competing models as well as goodness of fit. In the
application of CFA to MTMM data there is an unfortunate tendency to under-
emphasize the examination of parameter estimates and to aver-emphasize
goodness of fit. If a solution is ill-defined, then further interpretations
sust be made very cautiously if at ail. If the parameter estimates for a
sodel make no sense in relation to the substantive, a priori model, then fit
may be irrelevant.

As described by Bentler and Bonett (1980), when tug models are nested
the statistical significanze of the difference in the X s can be tested
relative to the difference in their df. Widaman (1985) emphasized this
feature in developing his taxonomy of MTMM models and in comparing the fit of
different models. However, the prc;blens associated with the application of
the classical hypothesis testing approach also apply to this test of X
differences. When the sample s:ze is sufficiently large the saturated model
(i.e., a model with df = 0) will performs significantly better than any
restricted model (see Cudeck & Browne, 1983) such as those in Table 2, thus
making problematic the interpretation of tests between any two restricted
models. Furthermore, many important comparisons are not nested and so cannot
be made with this procedure (e.g., the trait-only (4A) and method-only (1D)
models in Table 2). Because of these problems with the X2 difference test, a
perhaps more useful test is simply to compare the TLIs for competing models.

Insert Table 2 About Here
Poorly Defined Solutions
Poorly defined solutions represent & serious, unresolved problem for CFA

that is particularly prevalent in MTMM studies. Poorly defined solutions
refer to underidentified or empirically underidentified models (Kenny, 1979;
Wothke, 1984), failures in the convergence of the iterative procedure used to
estimate paraseters, paraseter estimates that are outside their permissible
range of values (e.g., negative variance estimates called Heywood cases), or

7
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standard errors of paraseter estimates that are excessively large. Each of
these problems is an indication that the empirical solution is poorly

defined, even if the model is apparently identified otherwise and even if
goodness of fit is adequate (Joreskog & Sorbom, 1981). Such prablems are
apparently more likely when: the sample size is small; there are few
indicators of each latent factor; measured variables are allowed to load on
more than one factor; “measured variables are highly correlated; there is a 1ot
of missing data and covariance matrices are estimated with pairwise deletion
for missing data; and the model is msspecified. Knowingly or unknowingly such
probless are usually ignored, and the implications of this practice have not
been explored for MTMM studies. Although there is no generally appropriate
resolution for such problems, alternative parameterizations of the MTMM model
(see below) may eliminate some improper parameter estimates.

There are apparent asbiguities about the identification status of MTMM
models. Some rzsearchers (e.g., Alwin, 1974; Browne, 1984; Joreskog, 1974;
Scheitt, 1978) suggest that models with correlations between traits and
methods are permissible, and Long (1983, p. 55) claimed to prove the
identification for this sodel. However, Bollen and Joreskog (1985)
desonstr ated that the criteria used by Long were not sufficient to demonstrate
identification, and Widaman (1985, p. 7) explicitly eliminated such models
from his taxonomy, claiming that they "are very likely not identified.”

In order to test the identification status of a model with correlated
traits and methods David Kenny (personal communication, 23 January, 1987)
used simulated data "to see if LISREL could recover loadings for your model
4D with traits and methods correlated. It did S0, but not exactly. It was not
clear whether the difference was due to under-identification or rounding
error.” 1 also attempted to fit model 4D with correlations between method
and trait factors to the simulated population covariance satrix published by
Cole and Maxwell (1985) in which the population correlations between trait
and method factors were simulated to be zero. Whereas | was able to recover
the population values, it took more than 300 iterations. For their sample
matrices that included random error, however, the solutions failed to
converge after more than 1000 iterations. It appearr that whereas the model
with correlated trait and method factors may technically be identified, it is
unlikely to result in a proper solution for actual data so that it is of
little practical use. Because models in Table 2 do not posit traits/method
correlations and because all studies considered here have at least 3 traits
and 3 methods, these ambiguities will not be examined here but they
illu'strato that the issue of identification has not been resolved.

8
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Different Parameterizations; Potential Cures Eor Poorly Defined Solutions

The standard parameterizations, In order for the models in Table 2 to be
identified, one parameter for each latent factor must be fixed -- typically at
a value of 1.0 (see Joreskog & Sorbom, 1981; Long, 1983). This is usually

done by: (a) {ixing the factor loading of one measured variable for each

latent factor to be 1.0 and estimating tha factor variance, or (b) fixing the

factor variance of eath latent factor to be 1.0 (so that the factor
variance/covariance matrix is a correlation matrix) and estimating all the
factor loadings. For purposes of the present investigation these will be
called the fixed factor loading and fixed factor variance parameterizations,
and collectively they will be referred to as the standard parameterizations.
So long as the CFA solution is well defined both parameterizations are
equivalent, but fixing the factor variances introduces an implicit inequality
constraint that restricts the factor variances to be nonnegative. Thus, fixing
factor variance estimates may lead to a proper solution when fixing factor
loadings does not.

The Rindskopf Raramseterization., Rindskopf (1983) proposed a solution for
negative uniqueness estimates by using M x T additional factors -—- one unique
factor for each of the M x T measured variables —— to define each
uniquenesses. Because the factor loading on each unique factor is the square
rcot of the uniqueness, the uniqueness is implicitly constrained to be non-
negative. Joreskog (1981), coq.enfing on the merits of imposing inequality
constraints, noted that if a solution is inadmissible, then LISREL will find a
solution outside the permissible parameter space whereas the imposition of
inequality constraints will produce a solution on the boundary of the
paraseter space. Joreskog (p. 91) concluded: "In both cases the conclusion
will be that the model is wrong or that the sample size is too small.”
Similarly, Dillon, Kumar and Mulani (1987) noted that in their research the
Rindskopf parameterization always resulted in the offending parameter estimate
taking on a zero value that resulted in the same solution as simply fixing the
parameter to be zero.

Hethod structure E -- an alternative congeptualization of sethod
varjance. Method variance is an undesirable source af systematic variance that
distorts correlations between different traits measured with the same method.
As typically depicted in MTMM models (i.e., method structures C and D) a
single method factor is used to represent the method effect associated with
variables assessed by the same method. The sffects of a particular method of
assessaent are implicitly assumed to be unidimensional and the sizes of the
notﬂpd factor loadings provide an estimate of its influence on each ssasured

3




Multitrait-multimethoo data 7

variable. Hence, method structures C and D restrict method covariance
components to have a congeneric-like structure (but see Wothke, 1984).
Alternatively, method effects can be represented as correlated uniquenesses
(method structure E) and this representation does not assume either the
*nidimensionality of effects associated with a particular method or a
congeneric structure. Kenny (1979; also see Marsh & Hocevar, 1983; Marsh, in
press) proposed this mkethod structure for the special case in which there are
only two traits, but it is also reasonable when there are more than two
traits. Method structure E also resembles McDonald’s multi-mode analysis
(1985) and Browne’s multiple battery analysis (1980).

Method structure E corresponds most closely to method structure C (Table
2) in that the method effects associated with one method are assumed to be
uncorrelated with those of other methods. When there are 3 traits and the
solutions are well-defined, method structures C and E are merely alternative
parameterizations of the same model. When T > 3, however, the nusber of
correl ated uniqueresses in method structure E (M x (T x (T-1)/2) is greater
than the nusber of factor loadings used to define method factors in method
structure C (T x M). Thus method structure C is a special case of method
structure E in which each method factor is required to be unidimensional and
this assumption is testable when T > 3.

A particularly important advantage of method structure E is that it
apparently eliminates some inpropé} solutions without limiting the solution
space or forcing parameter estimates to the boundaries of the pers.ssible
Space. Because method variance is one source of uniqueness, uniqueness 1s
reflected in both method factors and error/uriquenesses. Improper solutions
are frequently due to either negative method factor variances or negative
error/uniquenesses, but not both. In sethod structure E all sources of
uniqueness are contained in the diagonal of Theta, and in many cases -- as
demonstrated in the present investigation -- this combined influence will not
be negative even when method factor variances or uniquenesses are negative for
other parameterizations. Thus, even when there are 3 traits so that method
structures C and € ars equivalent when the solutions are well defined, it is
possible that method structure C will results in poorly defined solutions
whereas method structure E will not. When there are more than three traits it
is possible for method structure E to fit the data better than either method
structures C or D, thus calling into question the assumed unidimensionality of
method effects in structures C and D.

Erobless in the Interpretetion of Irait and Method Factors
'Uidaaan’s taxonomy and the MTMM models in Table 2 implicitly assume that:

10




rait-multimethod data 8

t

a) sethod factors represent sethod variance, b) trait factors represent trait
variance, c) a general factor in combination with trait factors represents
sethod variance, and d) a general factor in combination with method factors
represents trait variance. For present purposes these assumptions will be
referred to as the traditional interpretation of the MTMM models. These
assusptions are probably reasonable when correlations among the trait factors
and asong the method factors are small, but this situation is unusual. These
assumptions may not be reasonable when correlations among trait factors and
correlations among method factors are substantial. For present purposes I
will examine the possibility that so-called method factors actually reflect
trait variance, but the problea might also apply to so-called trait factors
that actually reflect method variance.

In most MTMM studies the multiple traits are correlated and this may
produce a general trait factor that makes ambiguous the interpretation of so-
called general method factors or even correlated method factors. When traits
are substantially correlated, the so-called general method factor (method
structure B) may represent trait variance instead of, or in addition to,
method variance. When traits are substantiagly correlated, each so-called
correl ated method factors (method structure D) may represént'this general
trait factor and correlations among the sethod factors may represent the
convergence of this general trait across the methods of assnssment. If this
problem exists, the traditional interpretation of MTMM models and the
comparison of alternative models is unjustified. Hence, tests of this
Plausible counter interpretation of method factors must be examined.

Results to be discussed here suggest that the traditional interpretation
of method factors may be unjustified if: (a) interpretations based on the
Campbell-Fiske guidelines and an examination of the MTMM matrix differ
substantially from those based cn the CFA approach (there are, of course,
problems with the Campbell-Fiske approach, but if both the Campbell-Fiske and
the CFA approaches lead to consistent conclusions then confidence in these
conclusions is increased); (b) substantive theory dictates an expected pattern
of correlations among trait factors that is not supported; (c) the substantive
nature of the data dictates an expected pattern of correlations among method
factor that is not supported (though a priori hypotheses of relations among
method factors may be difficult to formulate); (d) Model 4A (trait factors
only) and 1D (method factors only) both fit the data reasonably well and Model
4D provides only a modest improvement; (e) the amount of variance explained by
trait factors is substantially reduced by the inclusion of method tactors; (f)
external validity criteria collected in addition to the MTMM variables are

11




Hultitraitumultimethod data ¢

|ore substantially correl ated with s0-called methad factors than with trait
factors and there is an a priori basig for assuming the external criteria to
be more strongly related to trait factors than method factors (it may be
impossible to obtain external validity criteria thet are free of all method
effects so that the aim is to ensure that any method effects associated with
the external validity criteria are unrelated to those associated with the MTMM
data; there jg still a danger that, unknown to the researcher, the external
validity criteria are affected by

variables). whereas each of these indications of potential probleas with the
interpretation of method effects i fallible, taken together they provide a
stronger basis for evaluating these interoretat,ons than do typical

(b) the problems of poorly defined

eliminate them, (c) the merits of ,
method structure E, and (d) the validity of traditional interpretations of
trait and methog factors. Data come from three MTMM studies: Ostrom (1969),

the present analysis of each of the studies: a) models in the taxonomy were

fit to just the MTMM data; b) the behavior of the solutions was xamined;

in order tg test
of the trait and method factors.
The Ostrom (1969) Study

cognitive components (T1

different methods of sca Ostrom ajso collected
additional "gyert behavioral indices" and hypothesized that these should be
most highly correlatzd with the behavioral traijt component. For purposes of
the present investigation one of these, responses to the item "How many days
out of the year do You attend church services” was used. Ostrom presented the
correlations based o responses by 189 subjects as well as 4 more detailed

12
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account of the theoretical rationale, the :2 MTMM variables, and the external
validity criterion, My application of the Campbell-Fiske guidelines suggested
strong support for convergent validity. However, suppurt for discriminant
validity was problematic and there appeared to be method variance associated
with at least M2 and M4, The substantive nature of the data indizates that
the traits should be substantially correlated, but there is no a priori basis
for positing the relavive size of these different correlations, Finally, for
models in which the external validity criterion was added, the criterion
should be: a) more correlated with specific and general trait factors than
with specific and general method factors; and b) most highly correlated with
the behavioral trait component.

CFA models similar to those considered here have been applied to this
data by Bagozzi (1978), Schmitt (1978), and Widaman (1985). Schmitt (1978)
excluded one of the methods and estimated trait/method correlations, and so
his results are not comparable. Bagozzi (1978) fit Model 4A to the 12
variables considered here, but an inspection of correlations between the
error/uniquenesses led him to eliminate one of the methods from subsequent
analyses. It should be noted that such correlated uniquenesses are indicative
of a method effect as depicted in method structure E. Widaman (1983) also
noted this apparent misinterpretation of method effects and was critical of
other conclusions by Bagozzi. Widaman (1985) it many of the models used here
and chose to represent the MTMM data with Model 4D. However, his solution for
Model 4D was poorly defined in that an error/uniqueness was estimated to be
zero and had a large standard error . None of these previous CFAs of the
Ostrom data incorporated the external validity criterion included here.
Behavior of the Solutjons For Different Barameterizations,

All models in Table 2 were tested with both the fixed factor loading and
the fixed factor variance parameterizations, and the Rindskopf
parameterization was used when both standard parameterizations produced poorly
defined solutions (Table 3). For the fixed factor loading parameterization, 7
of the 19 models were poorly defined as indicated by a failure to converge or
improper solutions. For the fixed factor variance parameterization, 35 of these
7 models were stiil poorly defined but the probles symptoms were not always
the same. When these five mcdels were tested with the Rindskopf
p-~ameterization, one solution was improper and the remaining four had
error/uniquenesses estimates close to zero with extremely large standard
errors. In Model 1D there were factor correlations greater than 1.0 for all
three parameterizations, demonstrating that none of the parameterizations
progect against this type of improper solution. Whereas the different

13
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parameterizations varied in their behavior and manifest symptoms, none
eliminated the poorly defined solutions.
Method Structure E

In method structure € correlated uniquenesses are used to represent
method effects, and in support of this structure all four solutions based on
it are well de‘ined. When there are 3 traits, method structure E is equivalent
to method structure C 50 long as the models are well defined. For the Ostrom
data this was demonstrated for Models 1C and 1E, but Models 2C, 3C, and 4C
were poorly defined for all three parameterizations. Even though Model 2C
failed to converge for either of the standard parameterizations, the parameter
estimates for the trait factors and overall fit were nearly the same as for
Model 2E. Model 3C converged to an improper solution for the fixed factor
variance parameterization, but the parameter estimates for trait factors and
overall fit were the same as for Model 3E. Model 4C converged to an improper
solution for the fixed factor loading parameterization but parameter estimates
for trait factors and overall fit were the same as for Model 4E. The Rindskopf
parameterization eliminated improper solutions for Models 2C, 3C, and 4C, but
resulted in error/uniqueness estimates of zero with large standard errors.
These findings suggest that method structure E is a better representation of
method effects thar method structure C.

The substantive interpretation of trait and method factors

Interpretations based on just the MIMM Data. Model 4D provides an
exceptionally _sod fit to the data, but there are problems with the solution.
First, it is poorly defined for all three parameterizations. Second, the trait
factors are very weak in that 7 of the 12 factor loadings are not
statistically significant, and this contradicts conclusions based on the
Campbell-Fiske guidelines. Models 4C, 4E, and 3D also fit the data very well
(TLIs > .98), and Models 4A, 1D and even 2A/1B explain most of the variance
(TLIs > .9). In contrast to Model 4D, Models 4E, 4C, and 4A have strong trait
factors for which all factor loadings are significant. As noted by Widaman it
may be problematic to compare trait and method variance for this data because
most of the variance can be explained by either trait or method factors and
neither trait nor method factors uniquely explain much variance. Also, gince
trait factor loadings are so much lower when correlated method factors are
included, these so-called method factors may reflect trait variance.

Widaman (1985) chose Model 4D to represent this MTMM data on the basis of
fit. However, Model 4E (Tat'e 4) also provides a good fit and has important
advantages over Model 4D. First, it is well defined whereas Model 4D is not.
Second, the strong trait factors in Model 4E more accurately reflect
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more parsimonious Model 4E may be preferable.
Summary of Analyses of Ostrom data,

None of the three parameterizations eliminated problems of poorly defined
solutions for Ostrom data. The fixed factor loading parameterization was most
prone to improper =olutions. The Rindskopf parameterization was more likely to
converge to proper solutions, but only at the expense of error/uniqueness
estimates of zero with extremely large standard errors. In contrast solutions
for method structure E were always well defined, suggesting that it Right be a
more appropriate formulation of method effects. For the Dstrom data most of
the variance can be explained in terms of either method factors or trait
factors, whereas the inclusion of both trait and method factors produced only
a small improvement in fit. Since relatively little variance was uniquely due
to either trait or method factors, any conclusions about their relative
importance are problematic. Even more serious problems exist in the
interpretation of the correlated method factors. These so-called method
factors were more substantially correlated with an external validity criterion
than were the trait factors, and apparently reflect trait variance instead of,
or in addition to, method effects. The solution for Model 4E apparently
provides a better representation of the MTMM data than the solution for Model
4D selected by Widaman even though the fit of Model 4D is slightly better. The
assumption of uncorrelated method effects in Model 4E is worrisome, but the
traditional interpretation of the method factors in Model 4D is clearly
unjustified and undermines any comparisons between it and other models. This
illustrates the probiems associated with using fit as the primary basis for
selecting between alternative models instead of substantive interpretations of
the parameter estimates.

Description of the Study and Data.

Byrne and Shavelson (1986) examined the relations between three academic
self-concept traits (Math, Verbal, and School self-concepts) measured by
three different self-concept instruments (M1-M3). School performance measures
were also available for English and mathematics. Marsh and Shavelson (1985)
reported Math and Verbal self-concepts to be nearly uncorrel ated with each
other even though both were substantially correlated with School self-
concept. They posited two higher-order academic facets -- verbal/academic and
math/academic self-concept -- to explain specific facets of academic self-
concept. Their research posits a specific pattern of correlations among the
trait factors and suggests that two general trait factors may provide a

reasonable fit to the Byrne and Shavelson data. For the expanded MTMM models
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that include validity factors, each validity factor should be substantially
correlated with the trait factors, particularly the trait factor in the
matching content area and, to a less extent, the school factor, and
relatively uncorrelated with the method factors. The Byrne and Shavelson
study is unusual because there is just a good a priori basis for predicting
the structure of the trait factors and also because two of the trait factors
are relatively uncorrel ated.

My application of the Campbell-Fiske guidelines to the MTMM matrix
(Marsh, in press) suggested strong support for convergent and discriminant
validity; every convergent validity was substantial, was larger than every
heterotrait-heterosethod coefficient, and was larger than nearly every
heterotrait-monomethod coefficient. For all three instruments School sel¢-
concept was moderately correlated with Math and Verbal sel f-concepts whereas
Math and Verbal self-concepts were nearly uncorrelated with each other. There
was evidence of some method effects associated with at least M3 and, perhaps,
M2. The Byrne and Shavelson study is an exemplary MTMM study because of the
clear support for the Campbell-Fiske guidelines, because of the large sample
size (817, after case-wise deletion for missing data), because of the good
psychometric properties of the medsures, and because of the a priori knowledge
of the trait factor structure. All models in Table 2 were fit ~sing the fixed
factor loading parameterization, the fixed factor variance parameterization
was used for models that were poorly defined with the first parameterization,
and the Rindskopf parameterization was used for solutions that were poorly
defined by both standard parameterizations.

Insert Table & About Here
Behavior of the Solutions Under Different Parameterizations,

Nearly half of the solutions, 9 of 19, were poorly defined for the fixed

factor loading parameterization (Table 6); 4 solutions were improper, and S of

the solutions failed to converge. When these 9 poorly defined solutions were
tested with the fixed factor variance parameterization, 2 of the solutions
were well defined but the remaining 7 were still poorly defined. For the
Rindskopf parameterization only 1 of the 7 problem solutions was improper but
the all offending estimates were approximately zero and had large standard
errors in the other & solutions.

1. All four solutions for method structure E were well defined whereas
all four corresponing models for method structure C were poorly defined. When
the four solutions for method structure C converged to improper solutions with
either of the standardized parameterizations, the parameter estimates for
traif factors and the overall fit were the samse as for the corresponding
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solution for method structure E. For the Rindskopf parameterization, the
parameter estimates varied somewhat, the fit was always somewhat poorer, and
Some parameters had values close to zero with large standard errors. For this
application method structure E provides a better representation of sethod
effects than method structure C.

2. Vodel 1D (correlated methods) produced the same improper solution,
factor correlations greater than 1.0, for all three parameterizations.
Because none of these paraseterizations constrain factor correlations to be
less than 1.0, they praovide no protection from this problem.

3. Model 3D converged to an improper solution with the fixed factor
loading parameterization. Whereas the solution was constrained to be proper
by the Rindskopf parameterization, the X was approximately twice as large.

4. For Model 4D the fixed factor loading parameterization resulted in an
improper solution whereas the fixed factor variance paraseterization produced
a well defined solution. The fit of the fixed factor variance solution was
somewhat poorer indicating that it apparently imposed a limitation on the
solution space.

Substantive Interpretations of Trajt and Method Factors

Interpretations based on the MIMM data. Models positing only sethod
factors fit the data poorly. Model 2B with one so called general method factor
and one general trait factor did substantially better. However, partly due to
the way Model 2B was specified, these two general factors represent the
sath/academic and verbal/acadesic factors that were originally posited. The
interpretation of either of these as a general aethod factor is unjustified.

Model 2D (3 correlated M factors and 1 general T factor) provided a
reasonable fit to the data, but inspection of the parameter estimates
demonstrated interpretational problems. The three School measures should have
loaded substantially on the general trait factor, but all three loadings were
small (.10 to .22). Loadings for Verbal and Math scales were larger, but in
the opposite direction, suggesting that the so-called general trait factor
represented a bipolar (verbal vs. math self-concept) factor. For each of the
method factors all loadings were substantial and positive, and the three
methrd factors were substantially intercorrelated (.80 to .97). However, these
so-called method factors and the high correlations among them seem to
represent convergence on general trait factors associated with each of the
self-concept instruments. The interpretation of these factors is specul ative,
though substantively interesting, but the traditional interpretation of the
factors is clearly unjustified.

Insert Table 7 About Here
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Model 4D, particular.y given the large sample size, provides a resarkably
good fit to the data (TLI=.99). Parameter estimates (Table 6) indicate that
each of the trait-factors is well defined. Consistent with theory and previous
research, the School trait factor is substantially correlated with the Verbal
and Math factors whereas the Verbal and Math factors are nearly uncorrelated
with each other. These trait factors are stronger than the method factors in
that all nine measured variables have higher trait factor loadings than method
factor loadings, but models without any method factors (e.g., Model 4A)
provide a pcorer fit to the data.

Models 4C and 4E also provide good fits to the data (TL1=.977). For
Models 4C, 4D and 4E the factor loadings are similar for the School and Math
traits, but the Verbal trait-factor loadings are smaller for Model 4D.
Correlations among the trait factors are similar for all three models. Model
4D may be preferred because it fits the data slightly better, but there is no
compelling basis for rejecting the more parsimonious model 4E and the two
models lead to similar conclusions.

Relations between MIMM factors and external validity criterion. Two
validity factors defined by achievements in English and mathematics were added
to selected MTMM models (Table 8). In contrast to the external validity
criterion used with the Ostrom data, method effects associated with the self-
report measures are unlikely to be related to the achieveaent test scores.
Support for the validity of the interpretation of the MTM solutions requires
each achievesent factor to be most highly correlated with its matching trait
factor, less correlated with the School trait factor, substantially less
correlated with the non-satching trait factor, and relatively uncorrel ated
with the method factors. The validity of the sethod factors would also be
supported if the hypothesized pattern of correlations between trait factors
and validity factors is improved by the addition of method factors.

Five models contain three trait factors and two validity ¢actors in
combination with: correlated method factors (Model 4D); uncorrelated sethod
factors (Model 4C); uncorrelated method effects represented as correl ated
errors (Model 4E); 1 General method factor (Model 4B); or no method factors
(Model 4A). For each of these models, there is reasonable support for the
predicted pattern of correlations between validity and trait factors. The
inclusion of sethod factors improves support for this hypothesized relation in
terms of Verbal sel f-concept, but has little effect on predictions in relation
to Math self-concept or School sel f-concept. These results provide clear
support for the a priori interpretation of the trait factors.

The comparison of Models 4C and 4E is informative. Model 4C is il1-
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defined but its TLI is much better than Model 4E. In Model 4C the validity
factors are correlated with the method factors whereas in Model 4E no
correlations were posited between validity factors and the error/uniquenesses
that represent method effects. The results from both Miydels 4C and 4D suggest
that the method factors are correlated with validity factors, and this
apparently exrlains the poarer fit of Model 4E. The hypothesized pattern of
relations between trait and validity factors is also stronger for Models AC
than Model 4E. However, when selected error/uniquenesses in Model 4€ were
correlated with the validity factors (Model 4E’ in Table 8) support for the
posited pattern of correlations and goodness of fit were similar to Model 4C.

Correlations between the trait and validity factors are similar in Models
4C, 4D and 4E’ (Table 8). The only substantive difference is that Engl ish
achievement is somewhat more highly correlated with School sel f-concept than
Verbal self-concept in Model 4D, whereas English achievement is more highly
correlated with Verbal self-concept than School self-concept for Madels 4E°
and 4C. Support for the posited pattern of relations is somsewhat weaker for
Model 4D even though its fit is best, Model 4C is poorly detined, and the
correlations between method effects and validity factors are not easily
represented in Model 4E’. There is no compelling reason for rejecting either
Model 4D or 4€. In fact, the similar interpretations based on each of these
different models suggests that the traditional interpretation of these sodels
is probably justified.

Insert Table 8 About Here

Four models contain three method factors and two achievesent factors in
combination with: correlated trait factors (Model 4D discussed above),
uncorrelated trait factors (Model 4C discussed above), 1 General trait factor
(Model 2D), and no trait factors (Model 1D). Neither Models 2D nor 1D contain
specific trait factors, and their method factors are substantially and
positively correlated with the validity factors. In fact, English achievesent
is more highly correlated with M3 in Model 2D, and mathesatics achievesant is
more highly correlated with M1 and M3 in Model 1D, than any trait factors in
any of the other models. These results provide clear support for the earlier
supposition that these so-called method factors contain substantial asounts of
trait variance. In Model 2B there are just two general factors that might be
interpreted to reflect a general method factor and a general trait factor.
However, the correlations between these two general factors and the validity
factors demonstrate that they reflect the math/acadesic and verbal /acadesic
factors originally posited.

Sungcxntlhs&nﬂuunt&hs!xzmmshmlmnnh
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The Byrne and Shavelson study is an exemplary MTMM study that should be
well suited to the CFA approach. For this reason it is particularly
disappointing that so many of the models from Table 2 resulted in poorly
defined solutions. So long as both correlated trait and either correlated or
uncorrel ated method factors were in_luded in the MTMM model, support for the
traditional interpretation of MTMM factors appaared reasonable. However, for
models with no trait faectors, or only one general trait factor, the
interpretation of sethod factors as representing method variance was clearly
unjustified. Instead, the so-called method factors reflected the influence of
trait variance. Further support for this counter-interpretation was provided
by the substantial correlations between these so-called sethod factors and
the validity factors.

The Marsh and Ireland (1984) Study.
Description of the Study and data,

Marsh and Ireland (1984) asked each of six teachers (M1-M6) to evaluate
139 student essays on six singie-item scales of writing effectiveness:
Mechanics, Sentence Structure, Word Usage, Organization, Content/ideas and
Buality of style (T1-T4). Previous research reported a large general component
of writing effectiveness suggesting that trait factors should be substantially
correlated. There was no a priori hypothesis about the relative size of
different trait correlations, but the traits were roughly ordered from lower-
level components to higher-order cosponents according to Foley’s (1971)
adaptation of the Bloom taxonomy. Unlike the first tw: MTMM studies, ratings
for the different methods were not completed by the same person. The teachers
did not know any of the students who had written the essays or, typically, oacg
other, and each teacher performed the rating task independently of the others.
In addition to the 36 measured variables that constitute the MTMM data, a
school performance measure of writing effectiveness was also available. My
application of the Campbell-Fiske guidelines (Marsh & Ireland, 1984) suggested
strong support for the convergent validity of all & traits. However, there was
little support for discriminant validity and some indication of method effects
associated with ratings by each of the six teachers.

Behavior of the Solutions,

Because the number of variables in this MTMM study was large only a
subset of the MTMM models was tested with the fixed factor variance
parameterization (Table 9). Nevertheless, 12 of these 13 sodels resulted in
well defined sclutions. Model 4B was improper in that several trait
correlations exceeded 1.0, but this type of improper paraseter estimate is
unlil‘zoly to be eliminated by any of the parameterizations. Model 4D was
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technically improper in that the factor correlation matrix (see Table 9) was

not positive definite even though none of the correlations were greater than

1.0. Despite these probless, the solutions for the Marsh and Ireland data

dppear to be better behaved than for either of the first two MTMM studies.
Insert Tables 9 and 10 About Here

Substantive Interpretation of Irajt and Method Factors.

Interoretations based on the MM data. The goodness-of-fit statistics
(Table 9) demonstrated that such of the variance can be explained by either

six correlated method factors (Model 1D) or six correlated trait factors
(Model 4A), but that Model 1D it the data slightly better than 4A. For Model
4D method factor loadings were consistently much larger than trait factor
loadings. A superficial inspection of these results might suggest that the
ratings reflect primarily sethod effect, but there are probless with this
interpretation. First, it contradicts conclusions based on the Caspbell-Fiske
guidelines. Second, trait-factor loadings were substantially saaller in Model
4D than 4A. This suggests that the so-called method factors may represent
general trait factors associated with each teacher and the high correlations
represent agreement across teachers on this general trait.

Correlations between MTMY factors and the validity factor, In order to
test the counter interpretation of the sethod factors, the school perforsance
Measure was added to Model 4D. The paraseters for the MTMM variables were
relatively unaffected by the inclusion of this additional variable. However,
the school perforsance factor was substantially sore correlated with the so-
called method factors ( .56 to .68) than with the trait factors ( .14 to .30).
Because this pattern of results is sa implausible, the traditional
interpretation of the so-called method factors in this model must be rejected.
Models 2D and 1D also posited correlated method factors and correlations
between these method factors and the validity factor were also very high ( .53
to .75), whereas the general trait factor in Model 2D was only sodestly
correlated with the validity factor. In contrast to models with correlated
methods, Model 4C posited method factors to be uncorrelated. For Model 4C
correlations between the trait factors and the validity’factor varied between

<71 and .8Y whereas 5 of the 4 correlations between method factors and the
validity factor were nonsignificant. Even though the fit for Model 4C was
somewhat poorer than Model 4D, the substantive interpretation of the solution
argues that it better reflected the MTMM data.
Method Structure €,

The first two MTMM studies both contained three trait factors, and for
such MTMM studies method structure E results are equivalent to those for
method structure C so long as the solutions are well defined. However, when
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there are more than 3 traits, as here, the two structures are not equivalent.
For T = 6, method structure C uses 6 paraseters to define each method factor,
whereas there are 15 (T x (T-1)/2) correlations among the error /uniquenesses
associated with each method. Insofar as method structures C and E are both
well defined and it the data equally well, then the more parsimonious sethod
structure C is preferable. Housver, the fit of models based on sethod
structure E was much ;;tter than those based on method structure C for this
data. This suggests that the 15 correl ated error/uniquenesses associated with
each method effect cannot be explained by a single method factor and that
sethod effects do not have a congeneric-like structure. This is very important
in that all the method factors in the entire taxonomy are based on these
assumptions. This also explains why Model 4E (TLI=,948) fits the data better
than Model 4D (TLI=.935) even though Model 4E posits uncorrelated method
effects whereas Model 4D posits correlated sethod factors.

The superiority of Model 4E over 4C is also shown in the expanded models
containing the validity factor. Correlations between trait factors and the
validity factor are substantial for both Models 4E and 4C, but are higher for
Model 4E. As noted for the first two MTMM studies, correlations between sethod
effects and the validity factor are not easily incorporated into Model 4E.
However, correlations between validity and method factors were ssall and
generally nonsignificant for Model 4C. Similarly, inspection of the
modification indices provided by LISREL (see Joreskog & Sorbom, 1981)
indicated that error/uniquenesses in Model 4E were essentially uncorrel ated
with the validity factor. For this reason no alternative model corresponding
to Model E’ in the first two studies was proposed.

SUMMARY AND IMPLICATIONS

Why does cne use sho kinds of analyses discussed here? One perception in
accordance with my own is that the motivation for MTMM analyses has been the
desire to establish specific trait representations in measures. Method
variance is seen as contaminating that representation. The CFA approach as
traditionally applied has modelled trait and method factors as if they were
equally important. The approach advocated here places greater emphasis on
the interpretation of trait representations. This is accomplished by
comparing different models to determine if the introduction of method factors
substantially alters the interpretation of trait representations, by
introducing an alternative method structure (method structure E) that
apparently prevides a more accurate representation of the trait
representation, and by demonstrating how external validity criteria can be
used to test the validity of the traditional interpretations of different
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models. Whereas the conventional approach was due at least in part to early
work by Joreskog, the perspective taken here is consistent with Joreskog’s
statement that “"method factors are what is left over after all trait factors
have been eliminated” (1971, p. 128).

Despite the growing enthusiasm for the CFA approach to MTMM data,
problems denonstrated_}here call into question its value, the traditional
interpretation of MTMM factors, and the validity of previous MTMM research.
The most important of these problems are the technical difficulties in
estimating parameters and the interpretation of so-called method effects that
apparently represent the effects of trait variance in addition to, or instead
of, method variance. So long as problems as basic as these remain unresol ved,
the promise of the CFA approach to MYMM data cannot fulfilled.

The CFA approach to MTMM data is Plagued by technical difficulties in the
estimation of parameter values and different parameterizations of MTMM godels
were propos2d to eliminate such problems. The fixed factor loading
parameterization was apparently most prone to ill-defined solutions, whereas
the Rindskopf parameterization was most likely to converge to proper
solutions. However, when error/uniquenesses were negative for the standard
paraseterizations, the offending parameters were estimated to be close to zero
(also see Dillon et al., 1987) with very large standard errors with the
Rindskopf parameterization. Hence the Rindskopf parameterization did not solve
the the problem, but merely made the manifest symptoms less obvious.

Method structures in Widaman’s 198% taxonomy and those used in most
applications of CFA to MTMM data posit a separate method factor associated
with each method of assessment. An alternative conceptualization, Method
structure E, was formulated in which method effects are represented as
correlated error/uniquenesses. Method structure E has three important
advantages over method structures C and D. First, models with method
structures C and D were frequently ill-defined no matter what parameterization
was used, whereas models based on method structure E were always well defined
in the present applications. Second, when there were more than three traits,
sethod structure E provided a test of the implicit assumption that all the
correlated error/uniquenesses associated with a single method of assesssent
could be explained in terms of a single method factor. The importance of this
second advantage was demonstrated for the Marsh and Ireland data in that Model
4E provided a better fit than the corresponding Models 4C and 4D. Third,
method structure E apparently provided a more accurate interpretation of trait
variance than alternative sodels when these interpretations were evaluated in
relation to external validity criterion. In this respect, the use of external
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validity criteria to validate interpretations of the method and trait effects
is an important conceptual innovation.

The most serious potential problem with MTMM models is the implicit
assumption that so-called method factors represent primarily the effects of
method variance. If this assumption is violated, then the interpretation of
trait and method factors in most CFA studies and the detailed comparison of
nested models proposed by Widaman (1985) may be unjustified. Results from
the MTMM studies considered here suggested that this assumption is often
implausible. In all three MTMM studies the so-called method factors for at
least some of the MTMM models apparently represented trait variance in
additiun'to or instead of method variance (also see Marsh & Butler, 1984, for
another compelling example). When there actually are distinct traits that are
at least moderately correlated, this phenomenon is most likely in models that
posit correlated method factors (method structure D). Using method structure
D the problem is likely to be most severe in models that posit no trait
factors (1D) and to become less severe as the trait structure proceeds from 1
to 4. The problems will apparently be least likely when method factors were
required to be uncorrelated as in method structures C and E.

The emphasis of the present investigation has been on potential probleas
in the interpretation of so-called method factors that really reflect variance
that should be attributed to a general trait effect. This is consistent with
Joreskog’s (1971) conceptualization of sethod effects as what is left after
trait factors have been removed and Ay perspective on the the intent of MTMM
analyses. It is important to note, however, that the converse phenomenon may
also exist. That is, it is possible that so-called trait effects really
reflect variance that should be attributed to a general method effect. If an
appropriate method structure is not employed, then so-called trait factors may
represent method variance in addition to, or instead of, trait variance. An
unresolved conceptual and technical problem is how to discriminate between
method and trait factors when both are highly correlated. In the extreme, it
is easy to imagine the case where a MTMM matrix of correlations produced by
highly correlated trait and method factors could be explained by a single
factor (Model 1B/2A). Whereas this situation would clearly indicate a lack
discriminant validity there would be little basis for deteraining whether the
single factor represented a general trait effect, a general method effect, or
a combination of the twa.

The taxonomy of NTMM models in Table 2 was basad in large part on
Widaman’s taxonomy. Widaman (198%) used essentially the same CFA approach,
sany: of the sase NTMM sodels, and even analyzed one of the same MTMM studies.
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Because Widaman’s evaluation of the CFA approach was much more optimistic than
mine, it is informative to critically evaluate his findings in relation to the
criteria used here. Widaman did not provide a detailed report of the behavior
of his CFA solutions, but results reported here indicate that poorly defined
solutions occurred for the Ostrom data considered in both studies. Widaman

chose to presert five MTMM solutions as the most appropriate representations
9

of his MTMM analyses. However, four of these solutions had error/uniquenesses
of zero in conjunction with large standard errors whereas the fifth solution
required a correlation between two method factors to be 1.0. Wothke (1984)
also reported that 21 MTMM matrices -- including the three analyzed by
Widaman -- resulted in poorly defined solutions when he fit Model 4D.
Apparently, none of the solutions chosen by Widaman was well defined according
to criteria used here suggesting that Widaman was also plagued by poorly
defined solutions. Widaman did not report a critical evaluation of alternative
interpretations of his method factors, but results reported here suggest that
this was a problem for the Ostrom data. Using criteria described earlier there
is reason to suspect that so-called method factors in at ]least some of
Widaman’s resclts of other MTMM matrices may have also represented trait
variance in addition to, or instead of, method variances. In summary, a
critical evaluation of Widaman’s results provides little basis for optimisa
about the application of CFA to MTMM data. His results suggest the same sort
of problems that were identified here.
RECOMMENDAT IONS

Problems with the CFA approach to MTMM data appear to be most serious
for MTMM studies in which method effects are substantially correlated and for
MTMM models that posit correlated method factors. Campbell and Fiske (1959)
originally stressed that the multiple methods shoulq be as distinct as
possible, and this advice seems appropriate for the CFA studies as well. The
choice of method effects is, however, often dictated by the nature of the
study, and the pattern of correlations among method factors may be difficult
to determine a priori. Particularly when both traits and methods are
substantially correlated, the researcher must critically evaluate the MTMM
solutions for alternative interpretations. Because the traditional
interpretation of trait and method factors may frequently be unjustified, the
burden of proof lies with the researchers to demonstrate that they are
justified. This requires that more emphasis be given to the substantive
interpretations than has typically been the case in CFA studies.

The use of uncorrel ated traits may also be helpful, though this is
unusual in MTMM studies. Byrne and Shavelson (1986), however, did consider
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and method factors (4D and 4C) and method effects represented as correlated
uniquenesses (4E) seem most useful, supplemented perhaps by those positing 1
general factor (1A/2B), only trait factors (4A), and only method factors
(1D). Particularly when Models 4D and 4E are both well-defined and lead to
similar conclusions as with the Byrne and Shavelson (1986) data, then *qe
trazZitional interpretetion of these models is probably justified. In this
case it may be reasonéble to base inferences about method and trait effects
on ,ust these models -- dispensing with other models altogether . QOther
models from the taxonomy or models idiosyncratic to particular substantive
issues may, however, provide useful supplemental information about the data.
Because model 4E has not been widely applied elsewhere, it is important to
further examine its apparent advantages in other studies. A particularly
useful evaluation would be to apply various models -- including method
structure E -~ to simulated data in which the underlying factor structure
was known. Subject to the results of this further research 1 recommend that
Model 4E should be at least one of the MTMM models examined in all
applications of CFA to MTMM data.

27
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Footnotes
1 -- Campbell and Fiske (1939, p. 85) stated that "the presence of method
variance is indicated by the difference in level of correl ations between
parallel values of the monomethod block and the heteromethod block,
assuming comparable reliabilities among the tests." Marsh (in press)
operationalized this statement to provide estimates of the relative size of
method effects associated with each method of assessment and discussed
limitations in the inferences based upon it.
2 -- Standard errors of estimated parameters that were extremely large were
indicated to be 1.0 by Widaman (1985), though the footnote indicating this
was mistakenly omitted from the published article (Widaman, personal
communication, 3 September, 1987).
3 -- The CFA aporoach to MTMM data assumes that the different methods
represent fixed effects. Whereas this limitation may be reasonable for
some aoplications, it is probably inappropriate for the Marsh and Ireland
data where the different raters more realistically constitute a random
effects facet (i.e., a sample of potentially much larger sample of raters).

I am not aware, however, of any solution to this problem.

4 -- This perspective was expressed by an anonymous reviewer.
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Table 1

Paraseters To De Estisated For the Geseral NTMN Model (Model 4B)
Factor Loadisgs (Lashda Y) Error/Uniquenesses (Theta)

Varisbles T1 T2 T35 M 2 N3 tisl t2a1 t3al t1e2 t2e2 t3a2 t1e3 t2s3 t3a3

tisl o o o o W

3 [ ]
t2el 0O LY 0 LY 0 O o. TE
tlel 0 0 LY LY O O o0 o0 T
tie2 LY o o ¢ LY 0 0 o0 O IE
[
t2e2 0O LY 0o O LY 0 0o o0 O o. IE
[
tle2 0 0 LY 0 LY 0 ©0 O0 O o o T
[
tied Yy o o 0 O0 LY 0 o O o0 o O TE
t2a3 6 LY 0 0 0 LY O 0 o0 o0 O0 O o0
TE
R H [ ]
t3e3 6 0 LY 0 0 LY O 0 o0 O O o0 o
0 T

Factor Variaace/Covariasces (PS1)
Factors M 272 7T 2 KB
c

n !
c
T2 ’ 1
c
3 s s 1
c
n o 0o o0 1
c
" o0 o M 1
c
L 0 0 o0 P s 1

Note. Confirsatory factor amalysis (CFA) sodels to be considered in this
investigation are defined in teres of the three LISREL design satrices
presented here. The WTIN probles shewn here is has 3 traits factors (T1 - T3)
and 3 sethod factors (M1 - N3) that are defined in teres of the 9 seasered
varishle (tial - t3a3). ALl paraseters with valu . of 0 or 1 are fixed and
sot estisated shaveas all other paraseters are estisated without comstraint.
The paranrterization shewn here, with fact~r variances (in PS1) fixed to be 1,
is reforred to as the fined factor variance paraseterization.

e
-

’ For the fixed facter loading paraseterization tbc:o factor loadings would be
fized to be 1 and factor variances would be freed. For the fixed factor
loading paraseterization these factor varisnces would be fixed to be 1 and no
factor loadings would be fixed to 1. ‘ For sethod structure E (see Table 2)
these correlations between error/uniquenesses would be estisated, and the
sethod facters and their asseciated paraseters would be elininated froa Lashéa
Y and P51,
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Table 2
Taxenssy of Structwral Vedels for KT Bata Adapted Fres Widasan (1983)

fethod Structure
Trait
3
Structure A ] C ] €
F [ ]
| 1A Wl 18 1 General 1C 8 wncorrelated 1D 8 correlated 1E T x N cor-
flodel H-factor H-factors N-factors related errors
b 4 d
2 27 1 Gemeral 23 2 Gemeral 2 | General 2 1 General 2% T1xMHcor-
V-¢actor factors T-factor. N T-factor, ¥ related errors,
wncorrel ated correlated 1 General
#-factors H-factors T-factor
3 32 T encorre- 30 1 General 3C T wncorre- D T wmcorre- JETx 8cor-
lated T-factors W-factor, T lated T-factors lated T-factors, related errors,
wncorrel ated N uncorrelated N correlated T wacorrel ated
T-4actors #-factors #-factors T-factors
4 4A T Correlated 48 1 General 4C T Correlated 4B T Correlated 4E T x N cor-
T-factors Mfactor, T T-factors, N T-factors, N related errors,
correl ated encorrelated correlated T correlated
T-factors #-factors H-factors T-factors

: beneral factors are defined to be mncorrelated with other factors in the sodel. Although
general factors are posited to represeat either trait variance or sethod variance, this
assuaption will act aluays be accurate and say be difficult to test, ' Nodels 28 and 1B are
equivaleat, and it is geserally ot possible to detersine whether the ene general factor
reflects trait variance, sethod variance or sose cosbination of trait and sethod variance. ‘
Rodel 78 requires additional constraints that say be arbitrary and that say sot provide
equivaleat solutions. Neace its usefulness say be dubious wnless there is an a priori basis for
the constraints. Medels under sethod structure E have no sethod factors. Instead sethod
effects are inferred on the basis of correlated error/wniquenesses (see Table 1). This sethod
struocture, particularly when there are three traits, corresponds sost closely to eethod
structure C in which there are N wacorrelated eethods.
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Teble 3
Sussary of Goodness of Fit and Solution Behavior for the Ostros Data

Parassterization
Fined Factor Loadings Fixed Factor Variances Rindskopt Parsssterization
a 2 X /d¢ b c 2 ledf 2 ledf
Model X df Ratio TLI Problea X df Ratio TLI Probles X df¢ Ratio TLI Probles
fodels #ithout Validity Factors
1A 1872 66 28.36 .000 -—--
1B/2A 141 S4 2,61 .941 ~--—
1c 776 S4 14.36 .312 -——
10 73 48 1.5 .980 2 75 48 1.5 .980 2 75 48 1.5 .9680
1€ 776 S4 14.36 .512 —-
c 28 187 44 4.26 .88 --—
Y. 73 42 1.73 .973 1 73 42 1.73 .973 1 73 42 1.73 .973
20 40 36 1.11 .§ 6 1 39 3% 1.09 .997 ---
2k 73 42 1.73 .973 -—--
3A 722 54 13.37 .548 —-
38 112 42 2.8 .79 109 42 2.0 .942 —-
3C 608 42 14.47 .508 1 607 42 14.46 .508 4 607 42 14.46 .3080
3 4 3% 1.23 .91 —
3€ 607 42 14.46 .508 -
4A 135 81 2.66 .939 -
48 57 39 1.47 .983 -~
AC 54 39 1.38 .986 3 54 39 1.38 .9686 1 54 39 1.38 .986
4D 29 33 0.87 1.005 4 22 33 0.66 1.012 1 29 33 0.87 1.005 S
4E 34 39 1.38 .986 —-
Models Mith validity Factors
1A 2041 78 26.16 .000 -—
1D 127 87 2.2 .91 2
20 S 44 1.20 .992 —
4A 164 61 2.9 .933 -—
4B 89 48 (.85 .966 -——
4C 57 45 1.27 .989 O
4D 38 39 .97 1,001 S
4Ed 79 49 1.61 .976 —
4E° d 6 4 1.26 .99 -—
factor

Note. All models were first tested with both the fixed factor loading and the fixed
varisnce paraseterizations. However, in all cases in which the ¢ixed factor loading

parasasterization resulted in a well defined solution the solution for the $ixed factor variance

parsasterization was the seme and s0 it is not presented. When neither of these standerd
paraseterizations resulted in a well-defined solution the Rindskopf parameterization was used.
For models that also had a validity factor, only the Rindskopf parameterization was used
because the previous analyses showed that this parameterization facilitated convergence for

this application.
a
see Table 2 for a description of the sodels.

b [ 4
TLI ® Tucker Lewis Index. Probleas: 1 *

$ailed to converge in 250 iterations; 2 = factor correlation > 1.0; 3 = Negative factor
variance; 4 = Negative error/uniqueness; & = estisates with excessively lerge standard errors.
Probless 2, 3 and 4 were only exanined 1§ the solution converged, and problnds was examined

o only 1 the solution converged and had no out-of-range paraseter estisates.
EMC" correlated with trait factors but not with any err
ST yg sects in Model 4€ wheress two euch correlations appear in Model 4€°.

Validity factor
or /uni queneeses used to represent asthod
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Toble ¢
Paraseter Estisetes For ladel 4 For the Gutres Beta

Facter Losdings Errer/iaiquenessss (Theta)
Vorisbles T! T2 T3 tial t2a a1 the2 282 t3a2 t1e3 263 t3e3 tist t2ed t2a4
tlst 0 0 .3
t2t 0.4 0 .01 .48
tht 0 0 .ms-01 .4 .u8

ti2 Mo o o o o .2
t2e2 O MO0 0 0 0 .2

t3a2 O 0 .8 0 0 0 .M .8.28

ties MO 0 0 0 0 0 0 0 .M

23 O 780 0 0 0 0 0 0 -03 .02

t3e3 O 0 008 0 0 0 0 0 0 -0 .01.%

tiet 480 0 0 0 0 0 0 0 0 0 o .m

24 O 480 0 0 0 0 0 0 0 0 0 .u48.u48

tiet O 0 .7 0 0 0 0 0 0 0 0 0 .148.15 .45

Facter Varisace/Covarisaces (PSI)
Factes T 12 13

n 1

12 S68 1

3 JI88 08

Sote, See Table 1 for o definition of the NTWN facters and the varisbles. Al)
parassters with valees of @ or 1 are fisad sheress sl other paraseters were freely
estissted. Correlated errers/Giiguseesses in the Theta aatrix are between different
traits assessed with the saee sethod and are used to fnfer sethod effects.

$p (.05
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' s ® Multitrait-multimethod data

Table S
Correlations Between Trait (T1-T3), Method (M1-M4), General (61-62) and
Validity (V1) Factors for Selected MTMM Models Based on Ostrom study

a
MTMM Factors

Model s T1 T2 T3 M1 M2 M3 M4 61 G2 vi
Model 4E°’
11 1
12 .96% 1
13 97% 943 1
Vi .68% 748 608 --- == e e e oo g
Model 4E
T1 1
12 .96% 1
13 -.97% .94% 1|
Vi -69% 778 618 - = —em em e - g
Model 4D
T1 1
T2 .91% 1
13 .95% .91% 1|
M1 0 0 0 1
= 0 0 0 917 1
f3 0 0 0 .89% .843 1
M4 o] 0 (o) .79% .70% .74 1|
Vi <338 .3B% .258 .6C%  .65% 668 468 -— — |
Maodel 4B
T1 1
12 .96% 1
13 .97% .94 |
61 o 0 (o) el LI 1
Vi -69% .76%8 .58 - ——= e —ee 218 - |
Model 4A
T1 1
12 .98% 1
T3 998 .97% 1
Vi 678 .76% 608 -——= e e e . -
Model 2D
) - == — 1
M2 ——=  mm= == 973 1
M3 ——— === == ,96% ,95% 1
g; --= —-=-=- --— .88% .87t .88t .
Vi == === === 09% .62% .59% .51% — .S59% 1
c
Model 1D
M1 === ee= e |
M2 —_—— == ——= 973 1
M3 ——= === === 1,013 .99% 1
M4 === === === .89% .B7t .93% 1
Vi === w== == ,70% .68% .73% .58% -— - |
Note. Only parameter estimates from the matrix of factor correlations (PSI)
are presented.
£t p< .05
a

T1 = Trait 1, T2 = Trait 2, T3= Trait 3, Mi= Method 1, M2=Method 2, M3=
Method 3, G1 = General 1 (general method), G2 = General 2 (general trait), Vi
= Validity Criterion 1. b Ses Table 2 for a description of the models. ¢ This
model resulted in an improper solution in that 1 of the method factor
correlations was greater than 1.0. Similar results were found when the
[ERJ!:« validity criterion was not included (see Table 3).
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M, Teble & ' 2
Sussary of Goodness of Fit and Solution Behavior for the Byrne and Ghavelson Data .
Perassterization

Fixed Factor Loadings Fixed Factor Variances Rindskopf Paraseterization

2
2 X /d¢ 2

a b c
Model X df Rstio TLI Probles X
Without Validity Criteria

X /d¢ 2 X /d¢
df Ratio TLI Probles X df Ratio TLI Probles

1A 5272 36 146.48 .000 -——
1B/2A 2365 27 87.39 .405 -——

IC 3807 27 141.02 .057 1 3807 27 141.02 .037 1 3934 27 143.71 .005 S

1D 2302 24 935.92 .347 2 2302 24 95.92 .347 2 2302 24 95.92 .347 2

1€ 3807 27 o

28 s34 20 26.70 .623 -—

2 1698 18 94.34 .3%6 1 1528 18 64.00 .425 4 1528 18 84.90 .423 S

20 385 15 25.63 .631 1 323 15 21.52 .859 —-

€ 1528 18 B84.90 .423 -—— .
32 1107 27 1.0t .726 -——

. B 313 18 17.37 .667 1 310 18 17.21 .889 1 387 18 21.51 .859 S
3C 708 18 39.31 .737 1 707 18 39.26 .737 4 707 18 39.28 .737 S
30 9 15 6.30 .964 3 135 15 9.03 .945 1 188 15 12.54 .921 S
3 707 18 39.26 .737 -—-

A 451 24 18.81 .878 -——-

48 112 15 7.49 .955 S

4C 6% 1S5 4.3 .977 3 4 65 1S5 4.3 .977 ¢ 6 1S 4.38 .977 3
4 28 12 2.35 .991 1 40 12 3.32 .984 -——-

s 65 12 4.31 977 —-

With Validity Criteria

1A 6399 45 142.21 .000 -—

1D 2699 38 71.03 .504 4

28 800 36 22.23 .850 -—-

20 469 27 17.35 .684 ——

A 697 38 16.33 .877 -—

a8 268 27 9.92 .957 -——-

A 132 27 S.73 .967 1 148 23 6.45 .961 S
) 735 20 3.65 .981 —-

" 363 29 12.52 .918 -—

" 149 26 S.73 .966 ——

Note. All models were first tested with the fixed factor variance paraseterization, sodels
with solutions that had probless were then tested with the fixed factor variance
paramsterization, and if there were still probless with the Rindskopf paraseterization. The
expanded models with the validity criteria were tested with the fixed factor variance
parameterization and then the Rindskopé parameterization was used if a poorly defined

solution was obtained.

: see Table 2 for a description of the models. ® TLI = Tucker Lewis Index. ¢ Problems: § =

failed to converge in 250 iterations; 2 = factor correlations > 1.0; 3 = Negative factor

variance; 4 = Negative error/uniqueness; S = estimates with excessively large standard

crrors. Probless 2, 3 and 4 were only examined if the solution converged, and problo: S was
O pxamined only if the solution converged and had no out-of-range parasster estisstes. In

Model 4€, error/uniquenesses used to represent method effects were uncorrelated with the 57
A

IToxt Provided by ERI

validity factor whereis for Model 4E° selected correlations were estisated. 3




Multitrait-sultioethod data

Table 7
Paraseters For Model 4B For the Byrne and Shavelson Data
Factor Loadings (Lashda Y)
Varisbles 71 T2 T3 M1 @ B3 m:ru:ms
tist B4 0 0 .18 0 0 .27
t2s1 0 .57 0 .58 0 o0 .35
t3et 0 0 .Ms.03 0 o0 .11
t1e2 08 0 0 0 .28 0 .48:
t2e2 0 .708 0 0 .68 0 .07
t3a2 0 0 .93 0 .198 0 .12:
0
0

t1e3 JIs 0 0 0 .b0s .03
t2e3 o 878 o0 0 .33 .15¢
t3a3 0 0 .85 0 o0 .25 .188
Factor Variance/Covariances (PS1)

Factors M 1727 1 M 28

n 1

12 591

M 008 .04 1

" 0 0 0 1

"R 0 0 0 .01
LY 6 0 0 .5 .2 1

Note. The three traics are School self-concept (T1), Verbal self-concept

(T2) and Nath self-concept (T3) whereas the three sethods corresponding to
three different self-report instrusents used to seaswre each of these

facets of self (N1-#3). All paraseters with values of 0 or 1 are fizxed and not
estisated whereas all other paraseters are estinated without cosstraiat.

The fixed factor variance paraseterization, with factor variances (in PSI)
fized to be 1, was used to estisate paraseters.

]
Because error/uniquenesses were constrained to be uncorrelated in this

sodel the estisates :re presented in this fore to save space (see Theta
satrix in Table 1).  Although these error/uniquenesses did not differ
significantly fros zero, their standard errors were very saall.
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Table 6 }
Correlations Between Trait (T1-T3), Method (N1-i3), General (61-62) and
Criterion (C1-C2) Factors for Selected MTI¥ Models Based on Byrne and

Shavelson Study

8
b NTMM Factors
Models T T2 T3 " "2 " 61 62 vi V2

Model 4E°

;’% 1611 1

T3 618

vi 368 4638 218 = oo eom e g

v2 488 .078 .378 == == e e — 823 i
Mode] 4E

T1 1

T2 .618 §

13 .61%8 .03 1

Vi .54 . 438 .22‘ o —— —— —— — 1

v2 . s .088 .398 -—- —— —— —— o .328 1
Model 4D

T1 1

T2 6183

T3 .618 .06 1

M1 (] 0 ] N |

" 0 0 0 .838 1

"3 ] ] o 22 .18 1

Vi -39 .37 .218 -.138% -.16% .108 —- —— 1

V2 .413 . 06 . 4 007 002 . 37‘ —— - . 52‘ 1
Model 4C

T1 1

12 .628 1

13 .618% .06 1

J 0 ] ] 1

"2 0 0 ] 838 1

"3 ] 4] o 22 .18 1

vi .328 .608 .21% -.29% -.38% .218 — -— 1

v2 .408 .07 .57% .07 .02 .318 —— = 528 1
Model 4B

T1 1

12 .668 1

73 «63% .108 1

61 ] ] e

Vi . s“ .50‘ . 20‘ — — ——— = 32‘ —— 1

v2 . s .12% .39 - - — =, 238 — . 328 1
Model 4A

T1 1

T2 .668 1

T3 .638 .088 1

vi .88 448 228 --- —-= o= - —— g

v2 .508 .09%8 .608 - = ——= - -~ 833 1
Model 2B

61 —e= mee mme —ee eee eee

62 ==  e==  —== eom eee eee 1

vt == mes eme eee —ee ——= 538 .218 1

v2 - ee— eme mee =ee e== 118 L6188 .8528 1
Model 2D

N

n —— === =< 898 .028 |

i O I Y % Y o le s

v2 DO w3 @ T -0 s
Model 1D

M1 i 1

n2 === === === 1,118 1

M3 == === === 1,038 .99% 1

vi s== me= === L 368 228 338 --- —— 1

v2 —-- = o=~ lsbs (84 1708 -— - 328 1

tote, Only paraseter estimates from the matrix of factor correlations (PSI)
are presented.
: p<.03 ) b

See Table 4 for a description of the MTMM fectors. See Table 2 for a
description of the sodels. ¢ This sodel resulted in an japroper solution
wWith 2 0f 3 authod fector correlations being greater than 1.0. qq




Multitrait-sultisethod data

Table ¢
Suseary of Goodness of Fit ané Solution Dehavior for the Marsh and Ireland
hta

a2 | 1] » 4
Model I df Ratio TLI Probles

Without Validity v iteria

IR 6407 630 10.17 .000 ---
IM/2A 2439 593 411 400 ---
IC 1991 394 3% .12 ---
10 129 2.4 .45 — ’
1IE 1590 540 2.94 .788 ---
X 119358 215 .75 --—-
i 97 U3 1.4 909 ---
% 0254 1.6 95 -
W %49 3% .67 —-
B M3 3.7 .12 2
«© %343 1.81 912 ---
o0 845 328 1.60 .935 ---
L3 W 1.48 .98 ---
With validity Criterion

I &3 66 9.9 .000 —-
1D 1334610 2.19 .867 -
2D 1035373 1.83 .99 ---
% 896 540 1.66 .93 ---
2331610 3.02 083 ---
8 1 317 7 2
€ 100958 1.78 .913 ---
90 333 1.4 9B ---
3 738520 1.5 .98 ---

Note. All sodels were firs: tested with the fized factor variance
:aruotmutioa. b

see Table 2 for a description of the sodels.  TLI = Tucker Lewis Index.
‘ Probless: 1 = failed to converge in 250 iterations; 2 = factor -
correlations ) 1.0 3 = Negative factor variance; 4 = Negative
error/uniqueness; 3 = estisates with excessively large standard errors of
estisate. Probless 2, 3 and 4 were only exasined if the solution
converged, and probles 5 was exanined only if the solution converged and had
"0 out-of-range paraseter estisates.
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Table 10

Multitrait-su.tisethod data

Correlations Detween Trait (T1-T6), Method (N1-Mb), General (61-62) and
Validity (V1) Factors for Selected TN Models Based on Marsh and Ireland Data

Factors in NTMM Models

mmnn
Nodel 4E
ni

5 908 918 938
T6 948 968 958
Vi 81s 808 M

NHodel 4B

ni

12 1068 1

13 648 008 1
T4 6t 648 178
15 458 39¢ 1018

" 0

a3s 768

-E

goooooo
:OOOOOO:—

3—
5—

aooooo (23

0000008
uoooooo

1
-
-
-

98 1
3t 768

1008 1

T6 718 82¢ 818 1108 1108

61 0 0 0
Vi 218 28 208

6

“OOOOOO—

Table 10 continued on next page

M M2 NS M M M 61 62 Vi

0 0 -
3 28 N8 - -

gooo-—

|

m 1

678 458 1

688 668 678 --- --- |
|

|

0 o0 1

12 168 - --- |
Eadi S I e |
T e
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Table 10 Continued

Multitrait-sultisethod data

Factors in WTAN NModels

n
Nodel 44
ni
12 1048
13 98
T4 98
Je L1

Vi s

=TSEaTOl=

vt

7 BN

|
998
988

758 1018 1038
T6 988 99¢ 1008 1048 1078 1

768

T3

i
1

™ M

2 1B MW

708
o9

By

788
o1

88
]

678

78 1
8
678 638 48

808 1
128 708 1
48 718 128

61 62 Wi

e e

|
33 1

T 1

Note Only factor correlation from the Psi satrix are presented. Paraseter

estisates are presented without decisal points. All paraseters with values of

1 or 0 are fixed, whereas factor correlations greater than 100 are out-of-

range estisates.

$p<05

3 b
See Table 4 for a description of the NTMM factors.  See Table 2 for a
description of the sodels
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