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Understanding Fraction Addition

An understanding of fraction addition can be thought to involve two
1

1quantitative ideas: (1) the idea that adding to an original quantity
increases its size, that is, an understanding of the addition operation, and
(2) a sense of how much increase occurs that is, an understanding of fraction
size. Both of these ideas should underlie or inform children's approach to
problems involving fraction addition and thereby constrain the class of
possible answers to ones that "make sense" (cf. Gelman & Meek, 1986). It is
well known, however, that many children do not give reasonable answers when
asked to compute or estimate the sum of two fractions.

This pirrao..," has

generated much discussion in the mathematics
education community and, in

1general, such discussions suggest that poor understanding of fraction size is
at the heart of children's difficulties (e.g., Behr, Wachsmuth, & Post, 1985;
Behr, Post, & Wachsmuth, 1986; Carpenter, Coburn, Reys, & Wilson, 1976; Post,
1981).

For example, in the 1973 and 1978 mathematics assessments of the National

Assessment of Education
Progress (NAEP), 30 percent of the 13-year-olds in the

samples found the sum of 1/2 and 1/3 by adding numerators and denominators,

obtainingan answer, 2/5, that was less that one of the original addends. In
their discussion of the 1973 results, Carpenter ct al. (1976) recommended
increased emphasis on initial conceptual work with fractions to ensure that

children are "able to answer questions like 'How much is shaded?' or 'Which

fraction is greater?' before there is much emphasis of formal addition with

unlike fractions" (p. 140). Their view was that a firm initial
understanding

of fraction size wolad facilitate later computational, learning and

performance.

3
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Similarly, Behr et al. (1985) found that many fifth grade children were

unable to estimate the sum of two fractions. The task required children to

make two fractions, from a given set of numerals, that when added together

were as close to one as possible but not equal do one. According to Behr et

al. (1986), "a large percentage oethe responses (20 of 41, or 49%) suggested

a processing of fraction addition that showed little understanding of fraction

size" (p. 107). They recommended increased emphasis on estimation activities

that focus on and develop concepts of fraction size.

Despite the logic and intuitive appeal of the above views, there is

little solid evidence for thinking that children today fail to develop a

general idea or fraction size by the time they leave elementary school. For

example, in the 1978 assessment of NAEP, 13-year-olds did not perform all that

poorly on items assessing basic ideas about fractions (Carpenter, Corbitt,

Kepner, Lindquist, & Reys, 1981; Post 1981). It is puzzling, therefore, that

they performed so poorly on computational items, such as 1/2 + 1/3, and on

estimation items, such as 12/13 + 7/8, in the same assessment. Clearly,

fraction arithmetic remains a persistent trouble spot in the elementary school

mathematics curriculum. What is not clear is why this is the case.

The purpose of this study was to determine what children who compute

fraction sums incorrectly and, as it turns out:, estimate the same sums poorly

do and do not understand about fraction addition. Sixth grade children were

asked to compute sums for pairs of unlike fractions. Their computational

performance was classified as "high" or "low" and their performance on three

estimation tasks was analyzed in terms of these groupings. The first task

asked children to estimate sums for the same addition problems, the second,

presented the same problems in terms of circular regions, and the third asked

for estimates of the size of single fractions. Present focus is on the

estimation performance of 15 children who consistently computed fraction sums

4
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. by adding across numerators and denominators.

Interpretive Framework

Figure 1 shows a tentative framework for viewing possible relationships

between understanding, estimation, and computation. The arrows represent-

logical or previously proposed connections between these three general aspects

of mathematical competence. For present purposes, connections-are viewed as

segments of paths to computational skill, and estimation and various types of

understanding, as sites along these paths. For example, connections B, E, and

G form a path that leads from Understanding Symbols (e.g., 1/8, 3/5,+) to

Understanding Symbol Phrases (e.g., 1/B+ 3/5) to Estimating Results to

Performing Computations. Difficulties with computation are assumed to reflect

a deficiendy at one or more of the sites along a path and/or weakness or

nonexistence of one or more of the path's segments. The framework in Figilre 1

is tentative in that some important mathematical competencies are missing, for

example, informal understand.7.ng of verbal problem situations, and some of the

connections may not actually exist as shown, for example, connection A between

Understanding Symbols and Understanding Algorithms. It is useful, however,

for understanding previous discussions of children's difficulties with

fractions as well as the rssults and implications of the present study.

For exempla, the above recommendation by Carpenter et el. (1976) can be

viewed as a suggestion for instructional focus on the path leading from

Understanding Symbols to Understanding Algorithms to Performing Computations

and, within that path, on the initial site of Understanding Symbols.

Similarly, the above recommendation by Behr et al. (1986) can be viewed as a

suggestion for instructional focus on the connection between Understanding

SymbolS and Estimating Results, with particular emphasis on the site of

Understanding Symbols. Both of these recommendations locate the deficiency in

children's competence with fractions at the site of Understanding Symbols,
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Figure .1. Tentative Interpretive Framework.
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specifically, numerical symbols.

In terms of the framework in Figure 1, the present study can be viewed as

an attempt to verify a particular path between understanding fraction symbols

and performing fraction computations and to locate children's difficulties

along that path. We were interested in the path involving Understanding.

Symbols, Understanding Symbol Phrases, Estimating Results, and Performing

Computations for three main reasons. First, this path includes estimation as

an intermediary site between understanding and computation, and thus

exemplifies recent thinking about estimation and its role in children's

mathematics learning (e.g., National Council of Teachers of Mathematics, 1980;

Reys, 1985; Shoen, 1986). Second, this path bypasses the site of

Understanding Algorithms, an important but well-known source of difficulty for

students (e.g., Payne 1976). Indeed, even students who do well in fraction

computation generally do not understand the algorithms they apply (e.g.,

Carpenter et al., 1981; Post 1981). Finally, this path was of interest

because it includes Understanding Symbol Phrases as an intermediary between

two sites, Understanding Symbols and Estimating Results. Previous work by the

Rational Number Project showed little relationship between competence at the

latter two sites (Wachsmuth, Behr, & Post, 1983). Since the ability to

estimate results logically requires quantitative understanding of symbols, it

must be the case that some additional competence is required. The importance

of distinguishing between individual symbols and symbol phrases becomes clear

in the present study.

Method

Computation task. Twelve addition problems were generated from a 2 x 6,

fraCtioni x fraction2 factorial design. Fraction]. values were 1/8 and 1/4.

Fraction2 values were 2/9, 2/7, 3/9, 2/5, 3/7, and 3/5. Problems were

presented one at a time on a computer screen. Subjects were asked to write
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out their solutions on paper. Order of presentation of the 12 problems was

randomized separately for ea.1111 subject for each of three replications.

Computational estimation task (numerical symbols). Subjects were asked

to make graphite estimates of the results of the same problems used in the

computation task. A 16 cm horizontal line served as the response scale (see

Figure 2). Left and right ends were labelled "0" and "1", respectively, so

that the response scale was essentially an unpartitioned number line from zero

to one. Subjects responded to a given problem by moving a short vertical

line, positioned at the zero end, along the response scale until they thought

its position corresponded to the sum of the displayed addition problem. There

were 99 possible positions on the response scale, corresponding to numerical

responses of 0.01 to 0.99. Order of presentation of the 12 problems was

randomized separately for each subject for each of three replications.

The 2 x 6 factorial design is shown in Figure 3A (fraction2 values are

equally spaced along the x-axis for convenience). Each point represents the

value of one of the resulting fraction]. + fraction2 sums. Note that the

points form two parallel curves. By definition, estimates of these sums

should show a similar graphical 'parallelism even if they are not precisely

accurate. Using the logic of functional measurement theory (Anderson, 1981),

this parallelism serves as an index of correct understanding of the operation

of addition.

The six fraction2 values were generated from the 2 x 3, numerator x

denominator factorial design shown in Figure 3B. Numerators were 2 and 3.

Denominators were 5, 7, and 9. Each point in Figure 2B represents the value

of one of the resulting fractions. Note that tLe curves form a slight linear

fan. By definition, implicit estimates of the size of single fractions, that

is, estimates not actually made but implied by subjects' estimates of sums,

should show a similar linear fan pattern. Such an obtained pattern would i
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indicate correct understanding of fraction size (Anderson, 1981; Cuneo, 1987).

Computational This task 'as the same as the

previous estimation task except that the 12 addition problems were presented

in terms of the region model for fractions (see Figure 4). Subjects were

asked to estimate the sum of two shaded parts of a region. Since the actual

values of the sums correspond to the points in Figure 3A, estimates of these

sums should exhibit a similar graphical parallelism.

ratimpsigatulsrsthatmmakalenttsagl. This task employed the same

response scale as the previous estimation tasks but asked subjects to estimate

the size of single fraction symbols. Fifteen fractions were generated from

the 3 x 5, numerator x denominator factorial design shown in Figure 5.

Numerators were 1, 2, and 3. Denominators were 3, 7, 9, 11, and 13. Note

that this design includes the one used to generate fraction2 values in the

computational estimation tasks. Each point in Figure 5 represents the value

of one of the resulting fractions. By definition, estimates of the size of

these fractions should show a linear fan pattern similar to the one shown in

Figure 5.

Qr4exsftgal. Subjects completed the computation task, computational

estimation task involving numerical symbols, computational estimation task,

involving regions, and estimation task involving single numerical symbols, in

that order, in a single session. 'A final task involving estimates of the size

of single regions fs not reported here. Session length varied from 30 to 75

minutes.

Subjects. Twenty-nine sixth graders and 27 undergraduates participated in

the study. Children were recruited through newspaper ads and flyers. Adults

were re- :1Ait:te, from en introductory psychology course.

12
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Results and Discussion

Computation Task

Subjects' performance on the computation task was classified as "high" if
all 12 problems were scored as correct; otherwise, it was classified as "low".

A problem was scored as correct if two of three solutions were correct. Due to

the similarity of the problems, subjects typically were correct on all 12

problems or incorrect on all. Using this classification scheme, the

computational performance of 14 children and 25 adults was classified as high,

and that of 15 children and 2 adult:, as low. Estimation results for the

first three groups are presented below. Only overall group results are

presented, so it is important to note here that results for individual

subjects within a group generally mirrored the results for the group as a
whole.

Computational Estimation Task (Numerical Symbols)

Understanding of addition. Figures 6A, 6C, and 6E show group results for
the computational estimation task involving numerical symbols. Estimates of

the children-high and adults-high groups (Figures 6C and 6E, respectively)

showed the expected parallelism, indicating correct understanding of the

addition operation. The graphical picture is quite different for the

children-low group (Figure 6A). Deviations from parallelism occurred and

suggest a problem with addition when fraction symbols are involved.

Understanding of fraction size. Figures 6B, 6D, and 6F show implicit

estimates of fraction size for the three groups. Those for the adults-high

group (Figure 6F) showed the expected linear fan pattern, indicating correct

understanding of fraction size. Implicit estimates for the two groups of

children, however, showed deviations from the expected pattern. As sholin in

Figure 6D, those for the children-high group exhibited graphical paralleliim.

This pattern suggests that these children understood the direct effect of

15
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Q gmlputational Estimat;ipn Task (Regions.

Understanding of Figures 7A, 7C, and 7E show group results for

the estimation task involving sums of two parts of a region. In contrast to the

previous task, estimates of- all three groups showed the expected graphical

parallelism. This indicates that all groups understood the operation of

addition within the region model for fractions.

Understanding of fraction size. Figures 7B, 7D, and 7F show implicit

estimates of fraction size within the region model for the three groups. Not

surprisingly, implicit estimates of all groups showed the normative linear fan

pattern.

Discussion. These results are important for interpreting the behavior of

the children-low group on the previous estimation task. Their estimates of

the sums of numerical symbols deviated from the normative pattern and it was

suggested that this deviation might simply indicate that a problem in using

the response scale. The appearance of the expected graphical parallelism in

their estimates of region sums provides a strong case against this argument,

since this pattern depends on appropriate use of the same response scale.

The results also indicate that the problem was not poor overall estimation

skill or weak understanding of the operation of addition per se. This group

gave quite accurate estimates of region sums (mean percent error was 17, 10,

and 11 for the children-low, children-high, and adult-high groups,

respectively). The obtained parallelism indicates that they understood the

addition operation per se, and extended this understanding to problems

involving two fractional parts of a region.

This leaves the interpretation,
consistent with the views of Carpenter et

al. (1976) and Behr et al. (1985, 1986), that poor understanding of fraction

symbols was the source of computational and estimation difficulties in the

first two tasks. However, this interpretation was ruled out by the results'of

18
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the following task.

Estimation Task (Single Numerical Symbols)

Figures 8A-C show mean estimates of fraction size for the three groups.

Estimates of all groups showed the normative linear fan pattern. This suggests

that all groups had reasonably good understanding of fraction size, at least

for the numerical symbols used in this study.

The above diagnosis is puzzling in the case of the children-low group.

Recall that the estimates of fraction sizt implicit in their estimates of

fraction sums in the computational estimation task suggested poor, if any,

understanding of fraction size. This kind of between-task discrepancy in

diagnosis is fairly common in the literature on mathematics education, and hes

led to the general notion that much of children's difficulties with school

mathematics derives from a failure to access and apply relevant intuitive or

conceptual knowledge (e.g., Ginsburg & Yamamoto, 1986; Hiebert & LeFevre,

1986; Lampert, 1986; Resnick, 1986; Resnick & Omanson, 1987). In the present

case, children in the low-computation group had knowledge of fraction size but.

failed to apply this knowledge when estimating fraction sums. The discrepant

diagnoses obtained in this study also serve as a reminder for us to exercise

caution in inferring conceptual knowledge states from performance in

computatiOnal tasks, even those that ask for estimates rather than computed

answers.

Conclusions and Implications

Main interest revolves around the pattern of results for children who

computed fraction sums that did not "make sense." These children also did not

give reasonable estimates of fraction sums. However, they gave good estimates

of single fractions, indicating that they understood that fractions represent

quantities and have magnitudes. They also understood the meaning of "+" in

addition problems involving fractional parts of a region. This pattern of

20
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estimation performance suggests that these children had a respectable grasp of

the two basic ideas involved in fraction addition. In terms of the framework

in Figure 1, their difficulties at the sites of Estimating Results and

Performing Computati ms were not due to deficiencies at the site of

Understanding Symbols, at least not primarily. Instead, the problem seems to

be that sites were isolated from one another. That is, the children did not

draw upon their existing knowledge of addition and knowledge of fraction size

when they computed and estimated fraction sums.

This "isolated knowledge" problem can be viewed and discussed in two

slightly different ways, both of which make useful suggestions for

instruction. One view is that the problem reflects the absence of connection

between the site of Understanding Symbols, on the one hand, and the sites of

Estimating Results and Performing Computations, on the other. Similar views

have been offered- in .other mathematics domains, for example, multidigit

subtraction (Resnick & Omanson, 1987), multidigit multiplication (Lampert,

1986), and decimal computation (Hiebert & Wearne, 1985). The Implication is

that classroom instruction should focus on building the appropriate

connections. Lampert demonstrates some possible classroom strategies in the

case of multidigit multiplication and, of particular relevance here, Behr et

al. (1986)' suggest some promising estimation activities in the case of

fraction arithmetic. According to Behr et al., estimation activities focus

children's attention on the quantitative meaning of a symbol or symbol phrase,

and thus provides a good vehicle for developing such understanding.

A second and related,way of looking at the "isolated knowledge" problem

is in terms of a site of Understanding Symbol Phrases. Note that the

framework in Figure 1 distinguishes Understanding Symbols from Understanding

Symbol Phrases. This allows us to view estimation and computational

difficulties as arising when children do not understand or view the
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computational problem format, thee is, symbol phrases, in terms of an

arithmetic action involving twc quatities. However, this need not and,

according to present results, does not mean that they do not understand the

individual s..embol components. The suggestion is that children may fail to

integrate their separate knowledge of numerical symbols and knowledge of

arithmetic operational symbols. It seems likely that this would result in

their not applying either one to situations that require such integrated

knowledge, that is, situations involving symbol phrases. Asking them to

estimate rather than compute does not seem to facilitate this application.

According to this second view of the "isolated knowledge" problem,

instruction should focus on building both conceptual and quantitative

understanding of symbol phrases. One way to accomplish the former for

fraction symbol phrases would be to use concrete, or pictorial models to extend

the basic Ideas or meanings underlying arithmetic operations to the, domain of

fractions (see Post (1981) for a useful demonstration and discussion). For

example, in the present study, children understood the computational problem

format when regions rather than numerical fraction symbols were used. The

idea would l to help them use and extend this understanding' to the

corresponding numerical problem. Another way to build conceptual

understanding of fraction symbol phrases would by to use verbal or story

problems, as suggested by Hiebert (1984). Previous work on addition and

subtraction with whole numbers (e.g., Carpenter, Hiebert, & Moser, 1983;

Carpenter & Moser, 1984) and addition with fractions (VanLeuvan, 1988) shows

that many children adopt a "sense-making" approach to story problems but

resort to "symbol-manipulation" in dealing with the corresponding number

sentences, that is, symbol phrases. The idea would be to use children's

informal knowledge of verbal problem situations to help them build meaning for

the formal symbolism of fraction arithmetic.

23
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The above mentioned strategies for building conceptual understanding of

fraction symbol phrases focus more on the arithmetic operation than on the

fraction symbols. It might be expected that they would have limited success

unless combined with a strategy for focusing more directly on the quantitative

meaning of fraction symbols. One such combination would result from embedding

conceptual activities involving regions or verbal problems within an

estimation response context. For example, one of the tasks in this study

asked children to estimate the sums of fractional parts of a region. The

suggestion here is that this kind of task may be an important tool for

building understanding of fraction symbol phrases because it taps into

children's intuitive knowledge of arithmetic operations as well as their

understanding of fraction size.

The two different ways of discussing the "isolated knowledge" problem in

children's mathematics learning are perhaps more similar than they are

different. Both suggest instructional efforts aimed at building children's

intuitive understanding of mathematics, and both would attach importance to

the use of estimation activities. In the case of fraction arithmetic, both

views would endorse classroom activities that involve estimating fraction sums

or other fraction computational results. The difference seems to lie in the

particulai abilities and activities that would be expected to facilitate such

computational estimation. According to the first view, classroom activities

should also involve estimating the size of single fractions in order to build

upon and develop children's understanding of fraction size. In contrast or

perhaps in addition, the second view would recommend the joint use of

activities that involve estimating, say, region sums in order to tap into,

develop, and coordinate children's understanding of addition and their

understanding of fraction size. In either case, the estimation tasks used in

this study suggest themselves as possible classroom activities.

24
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