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ABSTRACT

The Intelligent Maintenance Training System (IMTS) is a set of
software toolS for compoSing,and deliVering simulation -based technical
training. The goal deVeloping,IMTSwas'ta generate instructional
interactions from device models of instances of generic objects.

Problenrselectionin ;NITS relies On the use of a normative model that
refleets.the struchire.of the target device. Proficiendy measures are
maintained for each:student in terms .6ft14 modet-and 'support-the selection
of problems' of appropriate CliffiCuity. aniftype.

IMTS incorporates a formulation of generia,diagnostic expertise,
termedProfite,:that 1),Oxplains the significance ofparticular test outcomes
and'reinediateS student beliefs about symptom implications,.2) recommends
what to do next, taking 'completedlests into account,.3).assesses student
proficiency; and 4) debriefs the student following each fault isolation
exercise.

A number of findings and recommendations are listed. The next steps
for IMTS development are also outlined, including techniques for
simulating devices whose complete functional behaviors cannot reasonably
be specified and the addition `of features to support procedural training.
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SECTION I. INTRODUCTION

This is the final technical report covering development of the Intelligent
Maintenance Training System (IMTS) developed at Behavioral Technology
Laboratories over the past three years.

The IMTS serves three purposes. First, it is a demonstration of the feasibility
of generating device-specific maintenance instruction from generic troubleshooting
intelligence applied to device specifications.. Second, it provides a tool for the
developMent and delivery of maintenance training for such applications as the SH-
3H Helicopter-Bladefold system and a WSC-3Satellite Communications System.
Third, it provides an extendable environment for further research on a variety of
topics, including the application of direct manipulation methodologies to graphic
simulation composition; the effectiveness of generated instruction as opposed to
authored instruction; and appropriate roles for interactive graphics in technical
training.

The Goal: Maintenance Instruction Derived from Device Models

An overriding goal in the development of IMTS has been to generate device-
specific training using device-general intelligence applied to technical specifications
of a particular device. Of course, hand tailored instructional materials are valuable
and even necessary in many contexts. Still, there are considerable advantages to
generated instruction. Where instruction can be effectively generated, it may be
possible to guarantee greater thoroughness, completeness, and consistent accuracy
than is possible with purely human-generated instructional materials. Generated
instruction allows meaningful interactions when a huge number of situations and
requirements could be encountered and allows production of training courseware at
a reduced cost, in comparison to manually authored instruction.

Creating instructional interactions at run time based on a device description has
a number of advantages, both for the student and for those who must develop,
mairtain, and administer the training system. Chief among the advantages for the
student is that a wide range of interactions are possible. This makes it feasible for
students to control many of the surface characteristics of their interactions with the

1
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IMTS tutor/advisor. Students can utilize options of a data-driven system that would
not be feasible in a system in which all the interactions are pre-authored. For
example, IMTS students can insert simulated malfunctions for which the human
author has prepared no instructional materials and then experiment with the
simulated device exhibiting that failure mode.

For the developers and maintainers of a technical training package, there are
also great advantages to basing training on a device model. Many different kinds of
aiding and instructional interchanges can be delivered to the student without having
to be separately authored. Ifthe target device is modified, the corresponding
change can be made to the description, and all the instructional elements related to
the change will automatically have the appropriate form. Similarly, if an error in
the expert author's understanding of the device description is detected, itcan
usually be repaired with a simple change to the technical specifkation.

Our objective was to make this process as easy as possible. The IMTS
development system consists of a number of generalized tools for describing
devices (a "device", as used here, is any collection of component parts). Graphics
editors are used to draw the components of a device and position them
appropriately in scenes. A behavior editor is used to describe the ways in which
generic objects function in normal and failed states. Most of the actual
troubleshooting advice and instruction provided to the student is created at run time
by an IMTS generic expert module that has access to the device description and to
the student's' diagnostic performance.

Approach

One key to the generation of instruction in the IMTS is the separation of the
generic intelligence required to instruct corrective maintenance from the device-
sper!f^ technical information (knowledge) that characterizes each particular
system. The generic intelligence built into the IMTS consists of 1) diagnostic
expertise, and 2) instructional expertise.

Because the instructional intelligence is provided in the IMTS, it is possible for
technical experts to supply the necessary specifications to support training without

2
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also requiring instructional expertise, diagnostic expertise, or programming skills.
The drawback ofthe approach is that users cannot alter the instructional strategy or
the diagnostic approach, if they feel that these could be imi.roved or adapted to
better meet particular requiraments. A future version of IMTS may incorporate
tools for customizing the instructional approach and the diagnostic strategy.

We now.briefly describe the instructional approach and diagnostic strategy
employed in the IMTS.

The Instructional Orientation

The IMTS was designed to provide troubleshooting practice to technicians
already-trained in general principles (of electronics or hydraulics) and already
familiar with the appearance, organization, and function of the device they are
learning to maintain.

Instruction is simulation-oriented, i.e., the student learns by attempting to
perform troubleshooting tasks on a simulation of trig target device. For each
exercise, the student is presented with a failure report and a simulation of the
device, containing a failure selected by the training system. The student performs
tests and replacements on the simulation until he or she claims that the system has
been restored' to normal operation. When necessary, or upon student request,
advice and commentary about the student's troubleshooting actions are provided.

The IMTS training philosophy is built upon a foundation of research in
intelligent tutoring. Twenty-one principles from this research guided the
development of instructional decisions within the training context. In brief, these
are the principles, listed with the research studies that justify them:

1. Instruction ceould be relevant to the problem-solving context.
(Tulving, 1983; Tulving & Thompson, 1973)

2. Provide immediate feedback on errors.
(Bilodeau, 1969; Skinner, 1958)

3 12



3. Sustain the simulation session by postponing instructional content which would
obviate,the motivation for the session. (Don't give it all away!)

4. Provide quick response.

5. EXplicitlyidentify the goal structure ,of the problem domain.
(Anderson, Parte% Sauers, 1984)

6. Minimize the student's working memory load.
(McKendree, Reiser; & Anderson 1984)

7. Prevent superstitious behavior.

8.. Help students to approach target skills by successive approximations.
(Anderson, 1983; Anderson, Farrell& Sauers, 1984)

9. Protect students from building extended chains of misconceptions.

10. Protect students from negative consequences of appropriate actions.

11. Instruct opportunistically.

12. Maintain the credibility of the tutor.

The remaining principles are taken from (Burton & Brown, 1982)."
13. Before giving advice, be sure that the student needs it.

14. When illustrating an issue, use an example for which the correct move is
dramatically superior to the move made by the student.

15. After remediating, give the student an opportunity to exercise the new
knowledge:

16. If the student is about to fail, interrupt and provide moves that will prevent
failure.

17. Never intervene and tutor on two consecutive student moves.

18. Don't prevent student discovery by overtutorhg.

19. Intervene on exceptional successes, as well as on failures.

4
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20. Always have the artificial expert play an optimal game.

21. Provide help in several layers.

The largely non-invasive, non-controlling nature of the IMTS instructional
system can be attributed to adherence to many of these principles. A student who
has been doing fairly well in a problem will occasionally perform a rather poor
test. :If progress hasbeen,generally good in comparison with expert performance,
the IMTS will remain silent and let the student continue. In this respect, IMTS
behaves muchlike many human tutors, who often allow students to continue when
their behavior, is not optimal, so long as progress is being made. This hands-off
approach givesstudents an opportunity to practice without constant interruption.
Naturally, performance is still monitored in this silent mode, and aid is given to
help students avoid long unproductive periods. Further discussion of these
principles can be found M an earlier report (Towne, Munro, Pizzini, Surmon, and
Johnson, 1985).

Profile a Generic Model of Diagnostic Expertise

Under funding from the Engineering Psychology program of the Office of
Naval Research, BTL developed a generic expert diagnostician called Profile
(Towne, Fehling, & Bond, 1981; Towne, 1984; 1985; 1986) and conducted
empirical studies of its troubleshooting behavior in comparison with that of human
experts (Towne, Johnson, & Corwin, 1982; 1983). The Profile model of diagnostic
expertise is the foundation for a number of different research efforts at Behavioral
Technology Laboratories (Figure 1).

Profile can be applied to generated fault data in several different ways. For
example, it can be used in conjunction with a commercial computer-aided
engineering (CAE) package to evaluate designs for their maintainability (Towne &
Johnson, 1984; 1987). In the research reported on here, Profile is used to generate
intelligent advice and commentary on troubleshooting actions made on a simulated
devLe.

5
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A Generic CAD/CAE System

Generic Object
Contruction

Editor:
GRAPHICS

FUNCTIONS

System
Construction

Editor

Gentile
Fault Simulator

Diagnostic Analysis

Generic Expert
Diagnostician

Design for
Maintainability

Figure I. Profile Fills Multiple Roles

Training Configurations

The present IMTS has been implemented on Xerox Artificial Intelligence
workstations, including the models 1108, 1186, and 1132. These computers are
microcoded for Lisp, and they offer high speed graphical displays of moderately
high resolution (at least 1024 x 800). All IMTS development/authoring tools,
simulation routines, and instructional presentation routines were written in
Interlisp-D, a Lisp dialect for which the Xerox machines have been optimized.

The IMTS is designed to work in two different training delivery environments,
either 1) as an intelligent adjunct to some other training device, such as a high-
fidelity simulator, or 2) as a stand-alone training system.

6



Adjunct Configuration

When IMTS is connected to an external simulator that adheres to the IMTS
communications protocol, students can interact primarily with the external
simulator, relying on the IMTS display for advice and ancillary instruction. The
high-fidelity simulator involved in this dual- mode configuration might be a full-
scale mock-up, a computer-controlled 2-D simulator, or just a videodisk unit.

At present, one external simulator, the Generalized Maintenance Trainer
Simulator (GMTS) supports this communication protocol. GMTS is a
microcomputer-based:surface-behavior simulator that pre-tents- dolor images stored
on videodisk under computer contrOl(Tow4e, 1986; Munro, Towne, & King, 1980;
ToWne &Munro, 1981; Johnson, Munro, & Towne, 1981). Students use a touch-
sensitive panel on the external monitor to change controls and to place test
equipment probes on the displayed video images.

IMTS supports the textual communication features of GMTS by providing a
window that acts as a virtual terminal display for the use of the GMTS software
(Figure 2). This window provides a 25-line by 80- character screen that presents
the text output of the GMTS computer, replacing the ASCII terminal that is used
with GMTS simulations not augmented with IMTS instruction.

DOWN ONE

ITEM

Curren; Student : STMENT4

CLASSROOM ACTIVITIES

Select a student
'ctiv.ate troubleshooting tar current student
Activate tutoria for current student
Return to previous menu

UP ONE

ITEM

SELECT

ITEM

fr

Figure 2. A Virtual Terminal Window Under the Control of GMTS
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The GMTS simulator has no built-in instructional capacities when it is used in
the simulated troubleshooting mode (it does provide a general-purpose
instructional function as a separate facility). Communicating over an RS232
interface, tie GMTS informs the IMTS of every action that the student takes. The
IMTS recognizes what tests are being performed, and it evaluates them by calling
Profile. Profile-based evaluations and Profile-generated suggestions provide the
bulk of the instructional features available in the combined IMTS-GMTS mode.

IMTS

Functional
Simulation
Model

InstrUction
Module

GMTS

STUDENT

Device or
Device Model -
Surface
Simulation

Figure 3. Student Interactions in the IMTS /GMTS Environment

Students can interact with at least three different modules in the integrated
IMTS/GMTS environment (see Figure 3): 1) they can manipulate and observe the
functional simulation shown on the IMTS graphics display, 2) they can interact with
the instruction module in ways that will be described below, or 3) they can
manipulate and observe the physical surface simulation portrayed by the GMTS
using videodisk and graphics overlays.

In fact, the box labeled GMTS in the above figure is not constrained to be a
videodisk-based simulator. It could as well be a flat panel or a 3-1) simulator that
has a computer interface that can communicate with IMTS using the IMTS/GMTS
communications protocol. Even an actual device could conceivably be used, so long
as it was modified so that it would report all user actions to the IMTS using the



IMTS.communications protocol. Viewed this way, IMTS is an intelligent aiding
station .that can be used with any of a variety of training devices.

Stand-alone Configuration

In the stand-alone configuration, currently under development, the IMTS will
perform all the simulation and instruction functions without a mediating GMTS
computer system, as shown in Figure 4.

Functional
Simulation
Model

1MTS'

instruction
Module

IMI

Device Model -
Surface
Simulation

( STUDENT )

Figure 4. Student Interactions with Stand-alone IMTS

In this environment, the surface simulation currently provided by GMTS may
be presented graphically on the IiV1TS computer display or may be displayed using a
videodisk under the direct control of the BATS computer.

IMTS Elements

Regardless of the configuration (adjunct or stand-alone), the primary elements
in the IMTS design are these:

a functional model of the device,

graphical representations of the device, functional and/or physical,

9
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a model of the student,

generic diagnostic expertise,

generic instructional expertise.

Section II describes techniques for producing and using the functional device
model, including graphical representations of the device; Section III describes the
techniques for modeling the student and selecting appropriate problems; Section IV
describes the IMTS processes for monitoring student proficiency and progress, and
for providing appropriate assistance; and Section V presents conclusions.

10
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SECTION II. MODELING AND REPRESENTING THE DEVICE

Virtually all of the IMTS instruction is derived from manipulations of a
functional model. This model is produced automatically when the functional scenes
are composed, i.e., underlying the graphical representation are all the generic
object rules and connectivity data necessary to determine the behavior of the
particular device. Interactions with,the student may be based either on the
functional representation or upon a physical representation that is created in terms
of the functional form. We first discuss the functional model and its associated
representation.

The Functional Model

The functional model is regarded as the primary medium for illustrating and
explaining the behaviors of the target system. The model is represented to the
student via computer graphic drawings that respond to the effects of the student's
actions and to inserted failures. The first device we have modeled in this fashion is
a complex helicopter bladefolding system in which the components are organized as
thirteen interrelated schematic 'diagrams', or scenes. Figure 5 shows a portion of a
representative scene from the Bladefold simulation set.

The student changes the setting of a control by selecting the desired new position
with the mouse (all references to 'selecting' imply that the user positions the mouse
cursor on the desired object or menu item and clicks the mouse button). The
simulation is then updated, i.e., all effects of the switch change are determined,
including effects that are off screen (on other scenes). This complete evaluation is
necessary, since effects on the currently displayed scene may be caused by changes
in portions of the simulation not in view (which were in turn caused by the switch
change accomplished on screen). The currently displayed scene is then updated by
displaying all new object states, inchding the switch that was changed. Because the
non-dynamic background elements in the scene are not redisplayed, the user sees
the changes in object states without visual disruption.
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Figure 5. A Scene from the IMTS Bladefold Graphical Simulation

The total time to update the thirteen-scene Bladefold simulation, in response to a
student action, is now approximately four seconds. This response time was attained
only after extensive experimentation, analysis, and modification of alternative
simulation algorithms.

The student can also observe the value at a test point by selecting the
graphical object representing the test equipment to be used, and then selecting the
test point, as diSplayed on the functional diagram. The test equipments currently
provided are a multimeter, oscilloscope, and pressure gauge. Course developers
can add new test equipments by defining them graphically and using
the standard IMTS object authoring system, described below.

The simulation can represent a normally operating system, or one with one
or more failures present. If there are failures present, they can either be known to
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the student or they may be of unknown character, to be determined by the student's
diagnosdc actions. Student can replace simulated objects with ones known to be
good. Upon replacing the malfunctioning component, the student will observe
entirely normal test results (if thire was only one failure present).

Students move through the scenes of a complex simulation by using a
hierarchical map of the functional subsystems of the device. The map (Figure 6) is
always on display, in the upper left portion of the screen. To bring a particular
scene into, the main scene window, the student selects the corresponding terminal
node in the map.

wood ,fold

1;123 ? inroad,
Off

ze-31(

Crossed Vhen !His
Paver from 66

kotatIon Control
Valve P166

Figure 6. The Scenes Hierarchy and Special Objects Panels

Students or instructors can create an ad hoc scene containing objects of
particular interest at any time by selecting the objects from their main scenes and
copying them into the gray panel at the left of the ninin scene window. The objects
in this scratch area can be manipulated exactly as are the originals, and they respond
graphically to all student actions made either on the ad hoc sceneor upon the main
scenes. This feature also facilitates the demonstration and examination of
interactions of objects that belong to different scenes.



Authoring the Functional Model

This section will briefly outline the simulation construction process within the
IMTS. A more thorough description of the IMTS simulation composition system is
presented in Towne, Munro, Pizzini & Surmon (1987).

Authors build graphical simulations using a series of four editors. A
graphical editor is used to draw new types of components, whenever the required
component type is not already present in a library. After drawing a component, a
behavioreditoriszsed to specify-how a component operates, and hew it can be
connected to other components.

The scene editor is used to create and to innect instances of the generic
component types (an instance of an object is 'created' by simply selecting a generic
object type from the library and assigning the object a more specific name).
Finally, a scene connection editor is used to indicate how the scenes of simulation
are interconnected. The scene connection editor also creates links between the
elements of the scene map and the actual scenes that are accessed by clicking on
those elements.

The graphical object editor and the object behavior editor are currently being
merged into one integrated object creation editor. Likewise, the scene editor and
scene connection editor are being merged into a single multi-scene simulation
creation editor.

In some important respects the process of creating IMTS simulations is
similar to that used in STEAMER (Hollan, 1983; Hollan, Hutchins, & Weitzman,
1984), which also makes use of graphical editors for objects. A crucial difference
between the two approaches is that in IMTS, system level behaviors are derived
from object behaviors, whereas in STEAMER the simulation is produced via
conventional computer programming techniques, and the generic objects portray
values within the simulated system.

The Object Graphics Editor. The object graphics editor allows
construction of objects using graphical primitives such as line segments, rectangles,



ovals, and text elements. Figure 7 illustrates the editor in use, expanding a library
containing functional representations of objects. Each object shown is
fundamentally unique, although some may appear similar. Additionally, most of
the objects are multi-state devices, although each is shown in only one graphic state
in Figure 7. The toggle switch in the upper left-hand corner, for example, is shown
in the Up position. The switch below it is also a two-state switch, but differs in the
number of poles available.

Figure 7. A Library of Functional Object Graphics

The Object Behavior Editor. The object behavior editor is used to describe
how a component operates in each state. In this editor, the user enters rules that
state the conditions under which the object will take on each state and what output
values it will propagate to the outside world, as a function of its inputs. The state-
rules for an object may be functions of the previous state of the object, values of its
inputs, and relations among its inputs (such as input x > input y).
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Figure 8 shows this editor being used to define the operation of a two-state,
hydraulically-actuated, locking device.

Figure 8. The Behavior Editor in Use

The behavior editor automatically generates Lisp code for the user-supplied
behavior rules, compiles the code, and adds the resulting function to the object
library. The IMTS simulation driver routine executes these compiled routines
during training to maintain an accurate graphical representation in response to the
student's actions.

The Simulation Editor. The graphic scenes representing sections of the
real device are composed using the simulation editor. Authors select generic
component types from the libraries and position them on the screen, as shown in
Figure 5. When a new component is juxtaposed to another, adjoining ports are
automatically connected, i.e., outputs from one component are automatically
recorded as flowing to the input of the other. The simulation scenes can be
arbitrarily complex.
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The Scene Composition Editor. After producing the individual scenes, the
simulation developer creates a map of the scenes, pre-iously shown in Figure 6.

The Physical Model

The primary vehicle operated upon by the student to practice diagnostic actions
is the physical representation of the target system.

Adjunct Configuration

In the adjunct configuration the physical representation is provided in the form
of videodisk images. A touchpanel mounted over the videodisk screen allows the
student to change a switch setting by touching the desired new position. Likewise, a
test point may be read, after selecting a test equipment, by touching a displayed test
point and observing the resulting display of the test equipment face. The responses
of the target device are computed by GMTS, employing its condition- evaluation

technique (a rule-based form), rather than the device model approach.

Stand-alone Configuration

In the stand-alone configuration, the INffS functional model is used to
determine system behaviors, and both the functional and the physical
representations are updated to reflect these computed responses. In this
configuration the physical model may be represented with either videodisk images
or computer graphic images. The graphic form of physical objects is created using
the object graphic editor as shown in Figure 9.

The graphic views of front panels and other hardware sections are created by
buildingscenes in which the physical objects are simply tied, or slaved, to their
counterparts in the functional scenes. The slaved physical objects therefore react
correctly by.simply referring to the underlying functional model. A physical scene
can therefore be constructed in which the objects appear to be connected to each
other, but in fact these apparent connections are not involved in determining system
behavior.
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Figure 9. Objects in a Physical Representation

Links Between the Physical and Functional Representatirms

An important concern in designing the IMTS was providing linkages between
the physical and functional representations, so that students would experience
frequent and memorable exposures relating the two. The intention is to promote
the student's ability to find, recognize, and manipulate physical elements in the real
system, while maintaining a conception of the functional relationships that cannot
be seen directly in the real system.

The techniques to do this involve 1) providing both physical and functional
representations of the system so that students can examine equivalent views either
sequentially or simultaneously, and 2) providing both physical and functional views
of single objects.
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Physical and Functional System Representations. Because physical
objects are linked to their functional counterparts, for the purpose of supporting the
physical simulation, the IMTS will be able to automatically alternate between the
two, at the request of the student. Additionally, the videodisk representation can
follow along automatically as the student operates in the functional form. Of course
functional organization is not likely to correspond with physical structure,
therefore the physical scene corresponding to one functional object might be
different than that of a neighbor object, and vice versa.

Physical and Functional Views of Individual Objects. To -trengthen
the student's understanding of physical and functional equivalence, the IMTS can
display 'pictures' of individual objects within their functional context. In Figure 10
the student was viewing a functional scene and was curious about the appearance of
the #1 Damper Positioner (near the upper left). Upon requesting a pictorial view of
the part, the student sees the presentation shown.

This object is the selected
one that is depicted in the
bitmap picture

Rydr
Rosy

win.

8 -4~ 1401

Figure 10. Bladefold Scene with a Digitized Picture
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SECTION III. Problem Selection and Student Modeling

In, the current IMTS, the student model is used primarily for the automatic
selection of appropriate problems for individual students. In future versions the
current state of the student model may play a role in determining other aspects of
instruction and aiding, such as frequency of intervening.

Normative Student Modeling

IMTS uses an expert, or normative, model to represent device understanding
for diagnostic functions. This hierarchical model of domain knowledge is created
by the device expert, and used as the default model of each individual student. As
the student performs troubleshooting problems, the node weights of the model are
adjusted based on the quality of the problem solving work. This approach is loosely
based on the student modeling mechanism employed in BIP (Wescourt, Beard, &
Gould, 1977; Wescourt & Hemphill, 1978; Wescourt, Beard, Gould, .& Barr, 1977;
Beard, Barr, Gould, & Wescourt, 1978) in which a model of student knowledge and
skill was based on a component analysis of the content of a curriculum. The
curriculum content was represented as a set of elementary concepts and skills. Each
instructional exercise or problem. as considered diagnostic for a particular subset
of these concepts and skills. Student performance on tha problems was used to
modify a student-specific model of knowledge in the domain.

The model has the form of a tree in which each node represents the knowledge
about some aspect of the equipment. The highest nodes in the tree represent the
most abstract knowledge about the global functions of the equipment. The nodes
immediately below that represent top-level knowledge about the major subsystems.
Lower nodes represent more specifid skills and knowledge about modules and
Components. The terminal nodes in the knowledge tree represent knowledge about
specific component modes, including different possible types of component
failures.

The model is linked closely to the structure of the device being simulated.
This has the advantage of making the creation of such models fairly
straightforward, and offers the potential for making the normative modeling
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process automatic. A disadvantage is that generic kinds of knowledge, such as
Ohm's law, are not easily represented in such an equipment-specific knowledge
model.

Creating the Normative Model

The normative knowledge tree is built using the IMTS knowledge network
editor (see Figure 11). The current implementation of the Knowledge Network
Editor Makes very fewassumptions about the structure of knowledge in device
domains. (Enhancing the editor to capitalize on domain-specific features is a likely
topic for future research and development efforts.) Providing structure is the task
of the knowledge network author. One assumption of the Editor is that device
knowledge can be represented in a simple tree structure. Less specific, more global
information is represented by nodes near the top or root of the tree. Detailed
information, such as the particular failure modes of particular elements in the
device, are represented by nodes at the bottom of the tree.

Maintaining an Individual Student Model. The understanding of
individual students is represented by a set of weights for the nodes of the tree.
These weights represent how well the student understands the corresponding
portions or functional subsystems of the device.

When a student finishes a problem, a measure of his or her performance for
that problem is computed to modify the student model. The node that corresponds
to the actual malfunction is directly assigned the value of the performance measure.
Each of the ancestor nodes for that node is also modified to reflect the performance
as well. The immediate parent is modified in the direction of the performance by
an amount weighted by the number of child nodes that it has. Its parent node is
similarly modified by an amount relative to the extent of the change in that node,
and so on up the ancestor tree. A change in a single specific malfunction node can
have a (usually small) effect even on the top level node, which represents the
student's understanding of the whole system.
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Figure 11. The Knowledge Network Editor

Problem Selection

Problem selection is made on an individual basis, using the proficiency
records for the student, as encoded in the student model, and the global measures of
student ability and cognitive styla. Proficiency is measured by normalized time to
solve the previous problem and on average test power for the exercise. The model
is updated at the conclusion of each problem, to support the selection of appropriate
subsequent problems for students.
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The problem selection process relies on two measures taken from the
knowledge structure: conceptual distance and conceptual difficulty. Conceptual
distance is a simple measure of how related two problems are in terms of the
domain representation. The conceptual distance between two problem nodes is the
number of nude links that must be: traversed in the knowledge element hierarchy to
find one node from another, weighted by the student's current mastery levels for
the intervening nodes. Conceptual difficulty is the value of the "Problem
Difficulty" field created by the instructor.

To select a new problem, the remaining troubleshooting, exercises are evaluated
for their conceptual distances from the last problem and their difficulty. An ideal
conceptual step size and an ideal difficulty for the next problem are then computed
for the student. The desired conceptual step size is .a function of the student's
estimated learning speed (which is based on prior performance and an instructor
estimate), a student-controlled value that expresses how large a conceptual jump
the student likes to make, and the student'sperformance on the last problem.

If the student h:ls a high learning speed, conceptual distance can be
larger.

If the student prefers larger conceptual steps, the conceptual distance
can be larger.

If the student did well on the last problem, the conceptual distance can
be larger. (If the student did poorly on the last problem, a related one
is called for.)

The ideal difficulty level for the student is a function of the student's
learning speed.

It is rare that the ideal conceptual distance metric and the ideal difficulty
metric pick the same problems. A weighting scheme combines these factors.

Dimensions of Troubleshooting Problem Difficulty

One of the goals of simulation training is to provide practice at an
appropriate level of difficulty. If students are presented with problems that are too
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easy, they will simply reapply old skills and learn nothing new. On the other hand,
if problems are too difficult, students may become discouraged and fail to learn.
To a large extent, the difficulty of a troubleshooting problem depends on the
idiosyncratic knowledge of a student. One student of a helicopter bladefolding
system may be very familiar with the, hydraulic components responsible for
positioning the No. 1 blade, while another is more cognizant of the subsystems
related to the rotor brake. These two students would not order a set of problems
for difficulty in the same way.

The major components of problem difficulty in IMTS include
the size of the initial suspicion set
the level of representation required to discriminate the fault
the knowledge of detailed component behavior required
the remoteness of symptoms from the suspected faults

IMTS offers senral means of presenting a fault isolation exercise so as to
reduce or increase its difficulty. These means include managing the instructional
and aiding features described in Section IV. In addition, it is possible to manipulate
the complexity of the device representation.

Controlling the Complexity of the Representation. Using the same
approach employed for constructing physical representations, simulation
developers may create alternate forms of representations in which the objects are
simply slaved to the fully detailed functional model. As a result, highly simplified
diagrams can be produced :.:Lat still exhibit accurate behaviors. For students who
are unfamiliar with the helicopter bladefold system, for example, a simplified
simulation can be constructed showing only one blade and omitting auxiliary parts
that are not central to the operation of the device. The simplified forms may be
either functional or physical.

While the problem selection process does not yet consider moving to problems
hi alternative representations, it will be enhanced to do so when the complete
authoring capabilities have been completed.

24

33



SECTION IV. IMBEDDED GENERIC EXPERTISE

Two kinds of generic expertise are imbedded in IMTS, 1) diagnostic expertise
and 2) instructional expertise.. The diagnostic expertise, in the form of the Profile
fault-isolatiOn process, is called frequently to assess the student's work and to
provide technical advice and explanations. The instructional strategy is embodied
in executive routines that continually assess student progress and call on the
specialized functions to respond to the student's needs. We first describe the
generic diagnostic expert model.

Diagnostic Expertise from Device Data

An important gt,a1 of the IMTS was to generate the diagnostic intelligence for
a particular device from the same functional model that supports the graphical
representation. This leads to high efficiency of course development, andit ensures
that the diagnostic expert and the student operate upon the same system model. As a
result, all diagnostic advice provided can be explicitly rationalized to the student.

To identify, justify, and interpret a good next test, Profile requires data
specifying the significance of each possible symptom for each possible test, in each
mode of interest (a mode is a combination of switch settings). This is turn requires
that the device be simulated in each failure condition to determine what symptoms
are produced in each specified mode. Because this involves considerable compute
time, the computation of symptoms is done during the development phase, and the
results are stored in a data file for quick access during training.

The utility program that produces the symptom data inserts a failure into the
device model, it runs the IMTS simulation program in all the modes of interest, as
specified by the course developer, and it records the results at each indicator and
test point. By comparing each result to that obtained with no failure inserted, the
program can identify all abnormal symptoms resulting from the failure. This
process is repeated for each possible failure.

While the resulting data file is large, only limited portions are accessed for any
one practice proble.; The complaint-specific data are read in at the beginning of
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each problem, and remain accessible throughout the problem. When Profile is
called upon to suggest a test early in a problem, when there are many alternative
tests and suspected elements, it requires between five to ten seconds to complete its
analysis of the alternatives. If the student has performed even one or two useful
tests, the Profile compute time drops off rapidly to just a few seconds.

Required Human Expertise

As mentioned above, human intelligence is required to specify the modes to be
considered in computing fault effects. Toinot constrain this variable would lead to
impossible data file sizes and compute times. The training implication of this
restriction is that the IMTS can only monitor and advise the student as long as he or
she works in one of the recognized modes. Preliminary experience indicates that
this limitation is not particularly distressing, as each problem has a natural and
relatively limited set of modes appropriate for fault diagnosis.

Human knowledge is required to provide a second element, a failure report for
each practice problem that states the general nature of the problem as it would be
reported by the equipment operator. These statements typically list one or more
high-level system functions that dd not operate normally, and some conditions, such
as the mode, under which the abnormality was observed.

The failure report is displayed at the beginning of each problem, and may range
from highly informative to quite vague. The course developer has the option of
issuing the same failure under different failure reports, thereby varying the
difficulty of the problem.

Fold Power On Light does not come on when Master Switch
is placed On. The system Is in Accessory Drive with blades
spread. In order to carry cut testa for this complaint: 1.
Fssure that the Safety Valve Switch is "OPEN." 2. Ensure
that the Master Switch is On. 3. Ensure that the Pylon Is
spread and locked.

Figure 12. An Initial Failure Report
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Options for Adding Human Knowledge

There are two options for enhancing each practice problem by adding human
knowledge, 1) a hint to help the student get started on the problem, and 2) a
technical summary that explains the physical (electronic, hydraulic, etc.)
mechanisms of each practice failure. Each of these may be extensive, brief, or
omitted entirely.

Problem Hint. If provided, the hint is automatically presented if a student
is foundering early in the problem and has not requested assistance from the IMTS.
The hint is associated with the failure report, thus one hint may support
presentation of many problems.

IK107 met be energized to have power to the Spread/Fold
ckcult.

Figure 13. A Pre-Authored Hint

Failure summary. If available, the failure summary is presented upon
completion of a problem to more fully explain why and how the symptoms were
produced. Although the simulation routine generated the symptoms, by applying
and propagating each object's behavior rules, human-supplied explanations provide
the most rich and meaningful account of the technical nature and consequences of
the simulated failure. A typical failure summary is shown in Figure 14.

In order for the safety valve motor to operate, relay K102 must energize,
closing contact B1 to B2. Contact B2 receives its 24VDC directly from the
safety valve switch. The Safety Valve light also receivas its 24VDC from the
switch. Therefore, with K102 B2 shorted to B3, the light can go on, but the
motor will not operate.

Figure 14. A Failure Summary
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Generic Instructional Expertise

Students have partial control of the aiding features described below. These
instructional options will be presented automatically to students who need them,
but, in addition, they can be requested by students.

Several types of help are available, in addition to the simple hints mentioned
above. The help functions range in purpose from discussing a single symptom to
direct instructions about what course of action to follow next. These levels of
aiding mge.it possibleto help a student while still preserving some potential for
student discovery. Those students who cannot make it through a difficult
troubleshooting problem on their own can still solve, and learn from, a problem
-through the use of the more directed' aiding features. (Currently, the student model
does nottake the degree of assistance provided into account when updating the
student's proficiency; this will be 'incorporated in the future.)

The PMTS uses four, different styles of aiding and instructing the student, all
based on the generic troubleshooting expertise of Profile in exploring and applying
the fault effect data.

Within-problem Monitoring and Assistance

Student performance is monitored within problems to determine what help
or instruction is required to minimize unproductive time and to help ensure success
on the problem. Two major elements of the student's performance are tracked
within a problem: time on the problem and average test power per unit of time on
the problem. The measure of time spent on a problem is a relative one; time on the
troubleshooting problem is compared with a parameter that compensates for the
difficulty of that problem. The average test power measure is more interesting.
Profile determines the relative power of each test performed by a student by
comparing it to the one Profile would have performed at that point. The average of
these values provides a good assessment of a student's diagnostic performance on a
problem.
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Parameters ranging from zero to one may be entered by an instructor in
order to specify the degree to which students may deviate from ideal performance
before receiving assistance. Four different test power Parameters can be set. The
first of these determines at. what test power threshold the student will be offered
instructional help for the first time. A second parameter determines at what
threshold subsequent offers of help will be made. The third parameter sets the test
power value at which assistance will be given whether the student wants it or not,
and the fourth prescribes the test power level for subsequent enforced assistances.
A value of 0.5 permits significant departures from maximum test power before
overt aiding or instructional features are brought into play.

A prime objective of IMTS is to operate in au unobtrusive manner, allowing the
student to practice fault isolation in a more realistic context than one in which
advice continually intrudes on the troubleshooting process. The IMTS remains
largely invisible to the student until the student requests aid or until the monitoring
process reveals that the student is having difficulty. The indications of difficulty
include tfiking too much time relative to the norms for a problem and making too
many tests of low power. Possible causes of low diagnostic productivity include
misinterpretation or misapplication of an earlier test result or inability to identify a
test that has potential in isolating the source of the problem.

Eliciting (and Refining) a Student's Suspicions. There are occasions
during training when assessment of student actions requires knowing the student's
beliefs or intentions. The major means of ascertaining the student's beliefs about
the malfunction state is to use the IMTS suspicion eliciting system. The student is
posed a number of questions about what portions of the device he or she suspects.
The student's responses are corrected until a set of suspicions has been agreed upon
that is correct based on the information thus far available. At this point the student
and IMTS hz,e collaborated to identify a set of suspicions that make sense, given the
test results that have been seen.

This process relies upon a representation of the subject device as a hierarchy
of functional subsystems. In the case of the helicopter bladefold system, for
example, the bladefolding mechanism was analyzed as consisting of, first, a
hydraulic and an electrical subsystem. Each of these was treated as having a
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number of major descendent subsystems, and so on. At the lowest level in this
analysis are particular failures; just above this level are replaceable components.
This analysis of the higher level structure of the device is similar in many respects
to the normative student model created with the knowledge network editor
described in Section III. In a future version of IMTS, the same data structure will
fill both roles the normative knowledge model and the hierarchical structure of
the device used to discuss suspicions.

The first time that a student's suspicions are elicited, the IMTS asks whether
the student suspects any of the highest level subsystems. In the case of the Bladefold
system, the student would be asked whether anything should be suspected in the
electrical system and whether anything should be suspected in the hydraulic system.
If the symptoms obtained by the student justify reducing the suspected set to only
one of the subsystems, then the process of eliciting suspicions continues by
inquiring about each of the subsystems of that system.

Figures 15 and 16 present the suspicion eliciting system of IMTS in action. The
panel in Figure 15 lists the subsystems that should be considered at any particular
level of system organization. The routine steps through this list, highlighting the
subsystem currently in question.

No the GRIPE doesn't suggest the CHECK BLADEFOLD CIRCUIT

ELECTRICAL SUBSYSTEM
m

HYDR/SERM SHUTOFF SYSTEM

ROTOR BRAKE SYSTEM

ROTOR HEAD POSITIONING SYSTEM

BLADE FOLD/SPREAD SUBSYSTEM

MISCELLANEOUS

SAFETY VALVE CONTROL CIRCUIT .

CHECK BLADEFOLD CIRCUIT

,LAt H ;,,,;,:
ACCESSORY DRIVE CONTROL CIRCUIT

PYLON UNLOCKED CIRCUIT

Figure 15. A Portion of the IMTS Suspicion Eliciting Mechanism
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Figure 16 shows the student being asked about his suspicion of the Bladefold
Power Circuit, and being shown the components in this subsystem, for reference.

Do you suspect some part of the BLADEFOLD POWER
CIRCUIT

YES
I I N°

81adefold Mister Switch (S24)
No. 2 Fire.Emergency Shut Off (S5)
Fold Power On Light Bulb (0S7)
K181 A2/A3
K188 Al/A2
K108 Coil
K187-311/A2
Cable, K1G7 Al to KI94 A2
KIM 01/02
K111 A2/A3
Cable, Bladefold Mister Switch to K189 01
Cable, KIM 02 to K112 Coil
Cable, Mister Switch to K111 A3
Cable, K111 A2 to K187 A2
Cable, K187 Al to K115 A2
K115 A2/A3
Cable, K115 A3 to K181 A2
Cable, K181 A3 to K180 A2
Cable, K108 Al to Fold Power On Light
Cable, K188411 to Fold Spread Switch
Circuit breaker 58
Cable, Circuit Breaker 58 to No.2 Emergency Shutoff Switch
Cable, No.2 EngincEmergency Shutoff to No.2 Firewall Valve
Wo. 2 Engine Firmiall Valve Switch
,Cablt. No, 2 point Firigefll Vtiv, 51rltchK 01 B colt

Figure 16. The Details Panel in Suspicion Eliciting

The IMTS keeps track of the significance of tests as they are performed by
the student, remembering which suspected elements could have been eliminated by
each. It can therefore tell a student why a particulir element should no longer be
suspected. If a student suspects an element when a previously-conducted test should
have eliminated it from suspicion, then IMTS reminds the student of that test and
the value it revealed (see Figure 17). Here the student has just indicated that he
suspects the Bladefold Master Switch. IMTS points out that a previously seen test
result should have eliminated this circuit from suspicion.
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No -- Bladefoldilaster Switch (S24) was eliminated with test K181-A2
value of test was 213V-DC

BLADEFOLO POWER ancurr
.. . 8I

Bladefold Master.Switch-(S24)'

.:.) : !i1,) f :7),IF I1,-,-..) Ut Ut t I

Fold Pager On Light Bulb (DS7)

)
.

K1814%2/43 ,

Figure 17. Refining Student Suspicions

Explaining the Meaning of the Most Recent Test. The elicitation and
remediation of beliefs about possible failures considers all previous tests performed
by the student on that problem. Sometimes the student may need assistance in
interpreting a particular symptom. He or she may request that IMTS interpret the
symptom when it is displayed.

In response to the request, the IMTS first recapitulates the observation and
states whether the observed value is normal .or abnormal. Based on that judgement,
it lists the subsystems or objects that should still be suspected and those that should
no longer be suspected.

The voltage at K101-A2 was 28V-DC, which is
'NORMAL, so we now know that the following components
are working normally:

Circuit Breaker 80

defeo7Master Switch (S24)
Drive Switch (S51)

K111 A2/A3
K107 A1 /A2
K115 A2/A3
Safety Valve Switch (S25)
K107 Coil
Pylon Lockpin Limit Switch (S76)
Pylon Limit Switch (S77)
and associated cables

We still suspect the following
BLADEFOLD POWER CIRCUIT
ACCESSORY DRIVE CONTROL CIRCUIT

Figure 18. Explaining Diagnostic Test Results

Suggesting Troubleshooting Actions. Sometimes a student requires
very direct assistance in proceeding on a problem. In general, this could be termed
a 'planning' skill, although in diagnosis tho scope of future considerations is
normally limited to just identifying the next best action.
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It could be argued that in such a case the student's instructor should be notified
so that the student can receive individual attention and instruction. In those cases in
which instructor time is largely committed, this level of individualized instruction
may be difficult to guarantee. Even-if the instructor were always available,
however, :it is likely that a mandatory interruption in the student's practice problem
for instructor remediation could quickly come to be viewed as a signal of failure.

An alternative approach is to provide mechanisms that assure that the student
can never reach a complete impasse. Recent research (Fox, 1987) suggests that
human tutors try to prevent failure. The HATS approach to doing this on the
troubleshooting task is to provide the student with suggested troubleshooting
actions that are guaranteed to be useful and rational (and are actually near-optimal)
Figure 19 shows the form of such advice.

Measure the voltage at K101-A2
28V-DC would be normal.

If normal, the failure is one of:
K101 A2/A3
K106 Al /A2
K106 Coil
Fold Power On Light Bub (DS7)
Circuit Breaker 50
No. 2 Engine Firewall Valve Switch
No.'2 Fire Emergency Shut Off (S6)
Linear Actuator
and associated cables

If abnormal, thelallure Is one of:
Circuit Breaker 80
Access Iry Drive Switch (951)
Safety Valve Switch (S25)
Bladefold Master Switch (S24)
Pylon Li Swmit itch (S77)
K111 A2/A3
K107 A1 /A2
Pylon Lookpin Lknit Switch (S76)
K115 A2/A3
K107 Coil
and associated cables

Figure 19. Generated Troubleshooting Suggestions

By exploring the fault-effect data, following each test performed by the
student, Profile identifies the next test that will best discriminate among the current
suspicions. This process is done whether or not the student requests assistance. If
the student proceeds without getting help, then Profile simply compares the
student's test to its own selection, to yield a test power measure. If the student
requests assistance in proceeding, then Profile presents and explains its selection.



Between-problem Instruction

Because a fault isolation exercise involves an unknown to be discovered by the
student, the IMTS attempts to defer some remediations and explanations those
that would destroy the value of the problem until after the problem has been
completed. At that time, a number of choices are offered for further exploring the
now-known failure, as shown in Figure 20.

What do you want to do next

Figure 20. The Student's Choices Between Problems

These choices include two instructional options that, like those already
discussed, make use of the Profile analysis of the troubleshooting context:
presentation of an expert solution and a critiqued replay of the student's solution.

Expert Troubleshooting of the Same Problem. The IMTS describes
each action that Profile dictates for troubleshooting the reported fault and it
interprets the results that would be seen for each. The interpretation lists the
elements eliminated from suspicion by the test and those for which suspicion should



increase as a result of the test. Figure 21 shows the start of such an expert solution
of a problem.

Fold Power On Light does not come on when Master Switch
Is placed On. The system Is in Accessory Drive with blades

=In order to carry out testa for this complaint 1.
that the Safety Valve Switch Is "OPEN." 2. Ensure

that the Master Switdr is On. 3. Ermine that the Pylon Is
spread and "'aced.

I will meanie the voltage at K101-A2

The voltage at K101-A2 was 28V-DC, which is
NORMAL, so we now know that the following components
are working normally:

Ch a.ilt Breaker 80
Accessory Drive Switch (S51)
Iideoiastes Switch (S24)
K111 A2/A3
K107 Al /A2
K115 A2/A3:
Safety Valve Switch (S25)
K107 Coil
Pylon Lockpin Lim Switch (S76)
Pylon Limit Switch

it
(S77)

and associated cab

I ittillta oect the following
OLC POWER CIRCUIT

ACCESSORY DRIVE CONTROL CIRCUIT

Figure 21. Presentation of a Generated Expert Troubleshooting Sequence

Debriefing the Student with a Problem Replay. Another option
offered to students at the end of a troubleshooting problem is to review their own
sequence of actions, with generated commentary. This presentation describes what
the student should have learned from each test that was performed, and identifies
tests that had no value in the context of the troubleshooting sequence followed. See
Figure 22.

Fold Power On Light does not come orr when Master Switch

spread

aced On. The system Is in Accessory Drive with blades
. In order to carry out tests for this complaint 4..
that the Safety Valve Switch Is "OPEN." 2. Ensure

that the Master Switch Is On. 3. Ensure that the Pylon Is
spread and locked.

Next, you set the Etc:Arlo/Hydraulic Power
switch to On

Next, you set the Safety Valve Switch (S25)
switch to Open

Neil, you set the Master Switch (S24)
switch :o On

Observing the Fold Power On Light Bulb did not provide
any information that couldn't be figured out from the
original symptoms.

Figure 22. Problem Replay with Generated Commentary
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SECTION V. CONCLUSIONS

Findings and Recommendations

In the course of this research and development project, we have explored a
number of alternative approaches to simulation, student monitoring, problem
selection, and student aiding. In, addition to the techniques presented here, other
less successful approaches were developed, evaluated, and discarded. To share both
the successes and failures, we present the following conclusions.

Device models for simulation-based diagnostic training should
support quantitative modeling. To some extent, the object behavior rules in
the IMTS appear qualitative. For example, a typical rule states that something
happens when a value at one port is larger than the value at another port. This type
of expreSsions effective because-that is the way the object actually behaves. In
other cases objects respond,to the values at ports. For example, certain pressure
valves change state when the pressure exceeds some characteristic value.
Furthermore, to correctly determitie how resistive parts will behave in an electrical
circuit, it is necessary to keep track of very precise values within the circuit. As a
result, the IMTS simulation program is essentially quantitative.

It is tempting to develop a simulation composition system that does not require
that accurate quantitative values be passed from one object to another. At first
blush, it appears that both the authoring of object behaviors and the simulation
driver software can be made simpler by using a qualitative or 'fuzzy' quantitative
approach. Unfortunately, when objects pass imprecise values, two serious
problems arise in the simulation. First, it becomes awkward or impossible to
provide simulated test equipment. Special-purpose simulated test equipment must
be constructed that translates inaccurate or non-quantitative values and converts
them into the nominal values expected in the device. This would be necessary if the
student is to be able.to practice interpreting quantitative readings back to qualitative
judgements such as "normal" or "high".

Second, in complex devices, it becomes difficult or impossible to avoid
incorrect device responses, owing to inaccuracies in internal effects. In summary,



simulations of complex systems tend not to work when the underlying model is
approximate.

This is in no way intended to minimize the fascinating work being done with
qualitative models. We simply find that complex models may not respond correctly
when they operate upon approximate values. Further this finding does not suggest
that human diagnosticians operate quantitatively. In fact, the quantitative
manipulations that the IMTS ;simulation program performs, to maintain the
graphical simulation, are not apparent to the student.

Visual representations must not be tightly linked to the device
model. Instructors and simulation developers need to be able to make simplified
presentations that do not involve every element in the real device. Yet, if the
graphical objects can obtain their behaviors only from their own underlying
functional behavior rules, then every component would have to be included. This
awkward restriction led to the development of the feature that allows physical
simulations and simplified simulations to obtain their behaviors from objects in the
functional model.

Advice does not have to be optimal, but it must be rational. One
of the most important aspects of successful training using computer-generated
materials is maintaining the trust and confidence of the learner. For complex
systems, slight non-optimalities in advice are very unlikely to be noticed in the
course of a single student's instruction. In fact, moderate, non-optimalities are
scarcely a matter of concern, since even excellent human tutors are significantly
non-optimal in the troubleshooting strategies they demonstrate. On the other hand,
irrational advice is devastating to student confidence. It is much better for an
artificial instructor to remain silent than to risk offering truly questionable advice.

Assessment of student performance must be accurate and based
upon very recent performance. It is frustrating for a student who has been
struggling, but who has just seen the light and begun to make progress in a problem,
to suddenly be interrupted with unwanted admonitions and instruction. It is
probably better to err on the side of too few interruptions than to interrupt
excessively. Further, it has been found crucial to only consider very recent
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performance, in deciding when to intervene, as lengthy moving averages can
trigger interruptions even when the student has just corrected course, and is on the
way to a solution.

Accurate tracking of the student conflicts with the goal of a
transparent and efficient practice environment. Many of the actions that
studentstake could haveseveral different rational motivations. The number of
irrational' motivations for a test or replacement is unbounded. In order to really
know what the student intends, it isprobably necessary to ask. Unfortunately,
constantly harassing the student with demands that every action be justified in detail
radically changes the nature of the troubleshooting task (and makes it very
unpleasant). A balance must be, sought to ensure effective training, and the artificial
instructor must always be aware that its model of student intent is probably
imperfect.

The need to ask,the student about beliefs or intentions was part of the
motivation for the development of the suspicion eliciting system used in 'MTS.
Further work :s underway to reduce the intrusiveness of this process, so that it can
be used more often. This will make it possible to track student intent more closely
without damaging the natural troubleshooting process.

Parameters currently used to manage instruction are arbitrary.
In the present system, interventions are based upon accurate computations of
student performance, compared to quite arbitrary threshold values (such as
inactivity exceeding three minutes, or two irrational tests in a row). Ideally, a
science of instruction would serve as the basis for determining the appropriate
parameters for making decisions about instructional intervention.

Precomputing of fault effects is necessary. For a very complex
device, a single fault can have many effects. To discriminate among possible faults,
all the effects of each fault must be computed. Although we have made very
significant improvements in simulation speed by aggressively pursuing that goal,
computed simulations cannot be made'instantaneous. Where a large number of
faults must be considered, each with a significant number of effects, preconiputing
these effects is essential to providing advice to students in a timely fashion.
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The Next Steps for Enhancing Training in IMTS

IMTS represents a powerful environment for producing and delivering
interactive simulation training. It also constitutes a promising foundation on which
to build an even more capable technical training system. Here we briefly touch on
the featureslo be implemented in the near future.

Simulation of Partially Specifiable Systems. Some equipment
systems,:such as Bladeiold, lend themselves to simulation based on detailed
descriptions at the coMpOnent level: This level of description is appropriate when
the number of low-levdtcOnipOnents (such as relay contact sets, switches, lights,
and pressure snubbers) is not so large that it is' infeasible to draw them, describe
their behaviora,,andspecify their connections. This is the way that the IMTS
BladefOld simulation has been implemented.

Other equip.thent systems are much too large and complex to be described in a
similar manner; as too much time would be required to produce detailed behavior
descriptions of every component. An alternative approach, capable of providing
training for devices of arbitrary complexity, is required. For such complex
systems, IMTS will make use of system level descriptions instead of component
level descriptions.

In both approaches to IMTS simulation training, the aiding and instructional
features are based on the Profile system's analysis of fault effect data. In the case of
simulations based on detailed component descriptions, this fault effect information
is generated automatically from the 'deep' device model. In the case of simulations
based on system-level descriptions, a subject matter expert generates the fault effect
data. For the latter type of IMTS simulations, the fault effect data are used to drive
the simulation of the target equipment. For the former type, the simulation is
generated by a device model based on detailed descriptions of the behavior of the
device's components (see Figure 23).
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Figure 23. Two IMTS Approaches to Device Representation & Training

Authored Procedure Training. Instructors will be able to create guided
simulations for teaching particular procedures. The authoring process will consist
of putting a graphical simulation into record mode, and then carrying out the set of
actions that they want to require their students to perform. Authors will also have
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the option of entering small blocks of text that can appear at specified points in the
sequence of actions they record.

During the procedure training, students see the text blocks, which describe
what is required of them. When a student performs a required action, the
simulation updates and the next text block is presented. If the student performs
some action other than the scripted (recorded) one, then the required action will be
graphically highlighted.

The same methods will bb applicable to other training requirements in
addition to procedure training. For example, ad hoc instructional elements will be
easily, authored using the simulation record mode. Instructors who wish to teach a
particular approach to troubleshooting a certain fault will be able to record the
sequence of actions they use to troubleshoot the fault, adding explanatory text as
they go, In the simulation playback mode, students will be guided to perform the
same troubleshooting steps.
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