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TECTURE 1

THE CHIP WITH THE COLLEGE EDUCATION: the HP-28C

Herbert S. Wilf
The University of Pennsylvania

NOTE: The following article, reprinted with permission from the
American Mathematics Monthly, Vol. 94, No. 9, November, 1987,
pp. 895-902, is an accurate summary of Herb Wilf's lecture.
Dr. Wilf sugg,sted reprinting this article since it does give the
main flavour of his lecture and WAS written, as we understand ic, at
the suggestion of Dr. Wilf. We reprint it here with thanks to the
MAA and the author so that others who may not have access to it can
be enlightened on this new development.
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THE CUIP WITH THE COLLEGE EDUCATION: THE HP-28C

Yves Nievergelt
Graduate School of Business Administration,

Executive M.B.A. Program,
University of Washington, Seattle, WA 98195

Five years ago in Cae American Mathematics Monthly [15], the
present editor of the Monthly augured a future in which students
would have pocket calculators that could do symbolic calculus.
Exactly five years later, The Wall Street Journal [1] announced the
calculus calculator: the HP-28C. This hand-held machine deserves
some attention - if it could walk into a standard lower-division
mathematics course, it might well pass on its own. The following
examples, which demonstrate the new capabilities of the HP-3C,
provide a basis for the subsequent discussion of the potential of
such saper- calculators in the teaching of mathematics.

1. The power of the HP-28C

CALCULUS. First, watch how the HP-28C solves homework problems
selected from various calculus texts.

baProblem 1. Let f(x,y) := x In xy; find ax (Fleming [4, p. 79,
x#1]).

To find of /ax, enter the formula for f in the form 1X*LN(X*Y)1,
specify the variable by entering 1X1, and press the differentiation
key. The calculator answers

I LN (X*Y) + X* (Y/ (X*Y) ) .

To simplify this expression, select the ALGEBRA menu and then the
FORM sutmenu; move the cursor onto the second * and execute the COLCT
command. The machine collects similar terms and displays

lui(x*y) + .

Problem 2. Find the Maclaarin polynom2-1 of degree 3 for Ill + x
(Stein [13, p. 547, #10]).

To determine this Taylor polynomial, enter the formula 14-(17.-T)1,
specify the variable with IX' and the degree with 3, and select the
TAYLR command from the ALGEBRA menu. The HP 28C responds: 11 + .5*X
- .1253E42 + .0625*X431.

Problem 3. Calculate f(ax
2

+ bx + c)dx (Leithold [10, p. 376,
#20]). To calculate this indefinite integral, enter the integrand,
IA*X42 + B*X + CI, the variable of integration, 'XI, and the degree
cf the integrand, 2; then press the integration key. Now add your
favorite constant to the display.
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IC*X + B /2 *X'2 + A*2/2/3*XA3I .

If desired, the COLCT command can simplify the redundant form
A*2/2/3. This redundancy arises from the Maclaurin polynomial of the
integrand, which the HP-28C integrates term by term. Although this
pro7edure may seem unwieldly for mere polynomials, it also enables
the calculator to tackle harder problems.

2

Problem 4. Find the Maclaurin series for (2/4i)ge-t dt (Hurley
[6, p. 618, #31]) .

As in problem 3, enter the integrand, 12/47t *e' - TA2I, the variable
ITS, and the degree of the desired Taylor polynomial, for example 3
(with a higher degree, the calculator runs out of memory space); then
press the integration key. The HP-28C replies:

12/4-ii*T + 2HW*(LN(e)*(-2)/2/3*TA30 .

To end this calculus quiz, let the calculator try a curve-sketching
problem:

Problem 5. Graph the function f(x) = e sinx
(spivak [12, p. 326,

#4b]). To sketch this curve, store the formula leASIN(X)I, or
1EXP(SM(X))1, into the PLOT menu, and exect-.e the DRAW command.
Within thirty seconds, the HP-28C traces the graph in exhibit la.
Since the curve does not quite fit into the display, translate the
center of the screen upward by 1.4; this will produce the graph in
exhibit lb. For a hard copy, enter the command CLLCD DRAW PRLCD and
point the calculator toward its printer (with which it communicates
by infrared beam).

(a)

(b)

(c) (e)

eASIN(X) 1/(X*4(2*71))* Automatic
exp(-.5*LN(X)A2) scaling

eASIN(X)
pushed down

(d) (f)

My program smile Sample
program REGR
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EXHIBIT 1. These slightly enhanced, actual- -sized copies from
the HP-82240A printer are identical to the HP-28C displays,
in both size and resolution. (a) and (b) graphs from Problem
5. (c) and (d) other examples of graphs. (e) and (f) scatter
plots from problem 6.

STATISTICS In addition to computing means, variances,
correlations, and regressions, the HP-28C also distinguishes itself
with two other novelties. First, it draws scatter plots.

Problem 6. Fit a least-squares line to the data (Freund [5,
p. 352, #11.1)):

(5,16), (1,15), (7,19), (9,23), (2,14), (12,21).

"Always plot the data" f5, p. 367). Therefore, enter the data with
the STAT menu, revert to PLOT and execute the DRWZ command. At first
the screen shows the axes bnt no data, because the points lie outside
its range. To correct this mismatch, press the ELCE key, which
automatically fits the display onto the data set (but sends the axes
away), as in exhibit le. To superimpose the least-squares line and
bring the axes back '.nto the picture, run the following sample
program. which produces exhibit lf:

<<SOLE (0,0) MIN LR <X PREDV>> STEQ CLLCD DRAW DRWE >> .

Besides drawing scatter plots, the HP-28C computes upper-tail

probabilities, upt(x) := rmi(t)dt, for normal, chi-square, t, and F

random variables. For example, to compute the probability that a x
2

random variable with 357 degrees of freedom takes a value bigger than
401.9, enter 357 and 401.9 and execute the UTP9 command. The
calculator gives .050599..., .meaning that P(x357 > 401.9) 0.0506.

Combined with the HP-28C equation solver, upper-tail probabilities
also give an easy solution to the following "percentile problem".

Problem 7. Determine the 99th percentile of the distribution x2

To determine the value of x such that P(x
357

> x) = 1 - 0.99, program

this equation in the form <<.01 357 X UTPC ->> and invoke the SOLVR,
the equation solver. After about a minute, the HP-28C displays X:
422.08... To appreciate this prowess, recall that this amounts to
solving for x the equation

1

357/2
t355/2e

-t/2
dt = 0.01 .

x
r(357/2)235712
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NUMERICAL ANALYSIS AND LImEAR ALGEBRA. Tn addition to its
equation solver, the HP-28C offers further numerical routines that
evaluate definite integrals, solve linear systems, and compute dot
and cross products, determinants, uperator norms, and inverses of
real or complex matrices. Since similar features have been available
for over five years on a predecessor, the HP-15C, a few illustrations
will suffice to describe the speed and accuracy of the HP-28C.

Problem 8. Solve the following moderately ill-conditioned system,

withconditionnunberWIIA
1
II-10 6

(Burden and Faires, [2, p.
1 1

331, #5c]):

1

4

1 1 z=1.v+ 1-w+
3
-x+ y+

2 5

1 1 1 1 1-iv+ -3-w+ 4x+ -i-y+ -.z= 1 .

1 1 1 1v+ w+ x+ -y+ j z= 1 .

3 4 5 6 7

1 1-4 v+
1
-5 w+ -6

1
x + -7- y+

1
z 1 .

5

1 1 1 1v+ 1 w+
9
z= 1 .

6

After entering the right-hand vector, B, and the matrix of
coefficients, A, simply press the division key, +. The calculator
thinks for three secords and displays its solution:

[5.00000076461 -120.000014446 630.000062793
-1120.00009538 630.000046863]

This result compares favorably to that of a largs mainframe CDC CYBER
180/855 running IMSL (International Mathematical and Statistical
Library), which blinked for just 0.01 second and printed:

5.000000002094 -120.000000038932 630.000000167638
-1120.000000253036 630.000000123768

Problem 9. Evaluate P(X) = 8118X
4

- 11482X
3
+ X

2
+ 5741X - 2030

for X = 0.707107 (Kulisch and Miranker [9, p. 12, #5]).

According to Kulisch and Miranker, P(0.70107) = -1.91527325270... X 10
-11

Using double precison (28 digits) the CYBER found -1.91527325270819

x 10
-11

. Working with 16 digits only, the HP-28C returned the single



digit 0.

However, the HP-28C and the CYBER agreed on the answer to this
last problem:

Problem 10. Find the eigenvectors of the following matrix (Johnson
and Reiss [8, p. 104, #7]).

64 4c 41 14

A-
4 1 6 4

1 4 4 6

One possible solution (which takes advantage of the
matrix multiplication and transportation) consists
Jacobi's method according to the algorithm in [14,
Three sweeps of Jacobi's method take only a minute

HP-28C built-in
of programming
pp. 341-342].
and yield the

6

following eigenvalues and eigenvectors:
X
3

= 5 =
4-
, with

7l1 = -15, X
2

= -1, and

.5 -.5

.5 .5 .689629312165v1

.5 ' v2 5 '

v3

[-.155356107285

.689829312166 '

.5 -.5 .155356107285

-.689829312165
.155356107285

v4 -.155356107285
.689829312166

COMPUTER SCIENCE. Besides its symbolic and numerical
capabilities, the HP-2 - alsr provices bit-by-bit logical operators
(AND, OR, NOR, NOT), register shifty, and hexadecimal, octal, and
binary arithmetic, all on 64-bit words. This relatively large word-
length makes the HP-28C well suited to one of computer scientists'
favorite homework assignments: the simulation of one machine on
another.

Exercise. The CDC CYBER mainframe computer operates with 60-bit
words, in which it represents integers by "complement to 1." (Thus,
the CYBER stores a positive integer as its binary expansion, but it
represents a negative integer as the bit-by-bit logical complement of
its absolute value.) Simulate the integer arithmetic of the CYBER on
the HP-28C.

2. Supercalculators in the mathematics classroom.

FIRST ACADEMIC REACTIONS. Left to their own devices, four
freshman familiarizeu themselves with the HP-28C in just two hours,

i2
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with the help of the well-written Getting Started Manual. However,
they felt that they needed a better understanding of the mathematics
involved in order to use the calculator more intelligently.
Anyway", sighed one. "teachers won't allow it on tests, or wilL

they?"

Nobody knows; in a recent informal poll, faculty showed mixed
reactions: would I ask on tests now?" wondered one professor,
obviousl:- threatened, while at another school, a colleague
exclaimed: "It will save hours of calculations!" Because of such a
divergence of opinions, the HP-28C and its successors will probably
influence individual mathematics curricula in different ways, as does
the use of different textbooks now.

Possibly, the HP -28C might enable students instantly to punch,
read, and speak calculus. In extemely cook-book courses, students
might do nothtng but scan the HP -28C UNITS menu from "A" to "tap" to
find that one teaspoon equals 4.92892159375E - 6 m431.

The HP-28C may also allow users to leave the calculations to the
machine, and to focus on ideas and strategies. For thinkers,
including non-mathematicians, the availablity of supercalculators
may increase the practial importance of theory. Indeed, this
conjecture seems supported by the following informal survey.

THE EDUCATION OF THE UNDERGRADUATE M. 'HEMATICAL PRACTITIONER.
What do employers look for in the mathematical education of a new
graduate?

Peter Eriksen, who holds a bachelor's degree in mathematics and
works for Boeing Military Airplane Co. near Seattle, also has a

degree in philosophy, which he finds more helpful than mathematics.
He considers most useful "the training from a particular philosophy
professor, who insisted that we analyze pr'blems logically. that we
arrive at some answer, and that we write up our argument in a
flawless style."

"Proficiency in undergraduate mathematics, experience in
utilizing the mathematics library, attention to detail, and written
communications skills," says Dr. Stephen P. Keller, who hires and
supervises mathematicians at Boeing Compter Services Co. He
illustrates the need for these intellectual abilities with the
following exa'ple: "Suppose that you have to code a two - dimensional
integration routine. Then you must understand something about the
Riemann integral, be able to review the literature on you own, code
your algorithm correctly, and document your work in a manner
understandable to your colleagues." Unfortunately, Dr. Keeler has
found that he cannot assume such an intellectual maturity from
students with only a bachelor's degree in mathematics. He suggests
one way in which supercalculators might help in education: "To
emphasize the importance of details, give students a mathematical
programming assignment (for instance as above] and insist that they
get it absolutely right, be it on a LISP machine or on an HP-28C."
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Aside from the aerospace industry, indications about the
potentials of supercalculators in education may also come from
elsewhere in the corporate world.

THE MATHEMATICAL EDUCATION OF THE EXECUTIVE. The Executive
Master of Business Administration (EMBA) Program of 1...ne University of
Washington offers a propitious environment for testing new ideas in
the teaching of business calculus, including the use of fancy
calculators. Immediately before entering the program, the
participating senior executives attend a "business calculus" course
designed to meet their needs on the job and in such EMBA courses as
finance, microeconomics, and statistics. For this mathematics
course, every executive must bring a powerful financial HP-12C (or a
scientific HP-15C), which allows for more substantial case-studies,
as in the following example.

Example 1. Consider a thirty-year Treasury bond purchased on 15
May 1984 for $9933.90 with $662.50 interest coupons every six months.
The "yield rate" of this bond, r, is by definition given by the
solution v = 1/(1 + r/2) of the equation

10,000v
60

+ 662.50(v
60

+ v
59

+ + v
2

+ v) - 9933.90 = 0 .

Calculus shows that this equation has exectly one positive solution.
While the calculators were computing the yield rate, one banker
remarked that "the equation implies that you reinvest every coupon
into a similar bond." Freed from the computations, the executive
realized what the yield rate means and how to interpret it in
business. Then the calculators gave the yield rate in the form of
rationals on either side of a Dedekind cut or the starts of
equivalent Cauchy sequences. The calculators also left time to
explain those concepts.

Nevertheless, executives do not feel that supercalculators free
them from mastering the basics, "I still need to understand my
algebra thoroughly," says a company vice-president, "so that I can
explain to myself what a formula means for my business." A health-
services director adds that "we need much more graphical analysis,
including the concepts of slope and area." Even a supercalculator
would not help in the following assignment.

Example 2. Imagine that you sit on the board of directors of your
local utility company. Discuss the advantages and disadvantages of
setting the price equal to the marginal cost, instead of the average
cost.

CONCLUSIONS. The HP-28C introduces one new element into the
teaching of mathematics, namely awesome computing power at both a

,lodest price and size, with admirable user-friendliness (all three
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characteristics compared to those of a CYBER, for instance).
Students may thus purchase, carry, and utilize a power close to that
of a main-frame as easily as they do textbooks. Still, in spite of
the availability of this hand-held power, proficiency in certain
basic skills remains essential to the students' ability to apply
mathematics. Indeed, it appears that a new trend toward the use of
the HP-28C and its successors would requ're that students understand
the underlying concepts even better than before in order to decide
what computations to perform, to interpret tle results with lucidity
(11, pp. 40-42], vr even first to recognize that no calculator can
address the issue at hand. In practice, the need for a deeper
understanding of theory grows dramatically, as seen in two excerpts
from the The Wall Street Journal:

software defects have killed sailors, maimed patients,
wounded corporations and threatened to cause the government
securities market to collapse [3].

Morton Thiokol Inc., admitting that it never fully understood
tle corking of the booster rocket blamed for the explosion of
the space shuttle Challenger, said it made major changes [7].

Short)- after the Challenger disaster, a junior mathematics major
at a university expressed the desire to work on the shuttle program

but could not cope with the evaluation of f
1

1
IxIdx. The faculty

nevertheless decided to graduate the stude..t. With pressure on the
faculty to pass students weighed against the need to train students
to detect software defects in supercalculators, mathematics
instructors face a difficult choice. We may refrain from feeling
partly responsible for mistested drugs and shuttle clashes, or we may
insist that students (even students with supercalculators) be able to
solve unfamiliar problems, detect errors in proofs and programs, and
verify the validity of mathematical algorithms, models, and theories.

Acknowledgement. I thank Joyce D. Kehoe, Seattle writer, for her
professional help in editing this review.
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LECTURE 2

TOWARDS AN INSTRUCTIONAL THEORY: THE ROLE OF STUDENT'S MISCONCEPTIONS

iearla Nesher
The University of Haifa



I. Introduction

During the past decade we have witnessed a new trend in cognitive
research emphasizing expert systems. A great deal of effort has
been dedicated co the study of experts' performance in various
fields of knowledge. My presentation today deals with the question:
what kind of expertise is needed for instruction? Researchers in
the field agree that the process of learning necessarily combines
three factors: The student, the teacher and the subject to be
learned. In addition, it seems obvious that to teach a given
subject matter we need at least two kinds of expertise: the
subject matter expert who can knowledgeably handle the discipline
to be learned, who can see the underlying conceptual structure to
be learned with its full richness and insights; and there is also,
obviously, the expert teacher whose expertise is in successfully
bringing the student to know the given subject matter by various
pedagogical techniques that makes him the expert in teaching. In
this framework of experts' systems, what is, then, the role of the
student? What does he contribute to the learning situation? And
though it might seem absurd, I would like to suggest that the student's

"expertise" is in making errors; that this is his cont: bution to
the process of learning.

My talk consists of three main parts. First, I will focus on the
contribution of performing errors to the process of learning. I

will, then, demonstrate that errors do not occur randomly, but
originate in a consistent conceptual framework based on earlier
acquired knowledge. I will conclude by arguing that any future
instructional theory will have to change its perspective from
condemning errors into one that seeks them. A good instructional
program will have to predict types of errors and purposely allow
for them in the process of learning. But before we reach such an
extreme conclusion let me build the argument and clarify what
these "welcomed" errors are.

II.

In order to better understand the process of learning, I would
like to make a digression here and learn something from the scientific
progress. Science involves discovering truths about our universe,
and does so by forming scientific theories. These theories then
become the subject matter for learning. Philosophers worried for
a long time about these truths. Ho' ran one be sure that he has
reached truth and not falsehood? Are there clear criteria to
distinguish truth from falsehood? These philosophical discussions
can also Enlighten our understanding.

It was C.S. Peirce, the American scientist and Philosopher (1839 -

1914), who brought to our attention how we all act most of the time
according to habits which are shaped by beliefs, (and from the history

r-1
I C;

L

12
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of science we know that there have been many false beliefs). But
we do not regularly question these beliefs; they are established
in the nature of our habitual actions. It is only when doubts
about our beliefs are raised, that we stop to examine them and
start an inquiry in order to appease our doubts and settle our
opinion. Thus, in Peirce's view, this is not an arbitrary act of
starting inquiry on a certain question, but rather an unavoidable
act when some doubt arises. When do such doubts arise? It is
when ones expectation is not fulfilled because it conflicts with
some facts. On such occasions when one feels that something is
wrong, only then, does a real question arise and an inquiry is
initiated, as inquiry that should settle our opinions and fix our
'reliefs (PeirLe, 1877).

A similar, though not identical view was strongly advocated by K.
Popper (1963). In his book Conjectures and Refutations he argues
against an idealistic and simplistic view of attaining truths in
science. He claims that "Erroneous beliefs may have an astonishing
power to survive, for thousands of years" (Popper, 1963, p. 8),
and since he does not believe in formulating one method, leading
us to the revelation of truth, he suggests changing the question
about "sources of our knowledge" into a modified one - "How can we
hope to detect error?" (Ibid. p. 25). If we are lucky enough to
detect an error we are then in a position to improve our set of
beliefs. Thus for Popper science should adopt the method of
"critical search for error" (Ibid. p. 26), which has the power of
modifying our earlier knowledge.

In the systems of these philosophers which I only touched upon here,
there are several points relevant to learning in general that
should be clearly stated:

1) Falsehood is adjunct to the notion of truth, or in the words
of Russel: "Our theory of truth must be such to admit of its
opposite, falsehood." (Russell, 1912, p. 70)

2) Though having a truth-value is a property of beliefs, it is
established by many methods and it is independent of our beliefs
whether it will ultimately become true or false (a point which
I will take up again later).

3) We hold many beliefs that we are unaware of and which are
part of our habits, yet, once such a belief clashes with some
counter evidence or contradicting arguments, it becomes the
focus of our a6Lertion and inquiry.

Is all this relevant to the child's learning? I believe it is.
If I replace the terms "truth and false" with "right and wrong" or
"correct and error" we will find ourselves in the realm of schools
and instruction, in which unlike the philosophical realm, "being
wrong", and "making errors" are negatively connotated. The system,
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in fact, reinforces only "right" and "correct" performances and
punishes "being wrong" and "making errors", by means of exams,
marks etc, a central motive in our educational system.
I found it very refreshening when visiting a second grads class to
hear the following unusual dialogue:

Ronit (second grader with tears in her eyes): "I did it wrong"
(referring to her geometrical drawing).

"Never mind", said the teacher, "What did we say about making
mistakes?"
Ronit (without hesitating) answered: "We learn from our mistakes".

"So", added the teacher, "Don't cry and don't be sad, because we
learn from our mistakes".

The phrase "we learn from mistakes" was repeated over and ovar. The
atmosphere in the classroom was pleasant and use of this phrase
was the way the children admitted making errors on the given task.
At this point I became curious and anxious to know what children
really did learn from their mistakes. I will describe the task,
and how the children knew when they made mistakes. Let us now
observe a geometry lesson in which the students learned about the
reflection transformation. The exercises consisted of a given
shape and a given axis of reflection (see figure 1) which the
children first had to hypothesize (or guess) and draw the reflected
figure in the place where tliey thought it would fall, and then to
fold the paper on the reflection axis and by puncturing with a pin
on the original figure (the source) to see whether their drawing
was right or wrong.

I would like to make it explicit that, from the child's point of view,
he or she had to discover the "theory" of reflection. The teslher
did not intend to serve as the authority for this knowledge,
lecturing about the tnvarian s of reflection, but instead supplied
the child with a structured domain which his erroneous conceptions
could be checked against. The line of dats created by the pin
puncture served as ideal reality for this kind of reflection, and
as feedback for the child's conjectures. In my view this resembles
in a nutshell scientific inquiry in several important aspects.

Delighted to find such a supportive atmosphere in the classroom, I

became interested in the epistemological question, what did the
children really learn from their mistakes? When each child who
made an error was asked to explain to me what was learned from his
or her mistake I could not elicit a clear answer. Instead they
repeated again and again that one learns from mistakes in a way
that started to sound suspiciously like a parroting of the teacher's
phrase. At this point it became clear to me that the teacher
tolerated errors, but did not use them as a feedback mechanism for
real learning on the basis of actual performance. I then drew on
the blackboard three different errors:
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The first one which I named Sharon's error, dealt with the property
that a reflection is an opposite transformation, thus, what was
right will become left in the reflection, and vice versa (see
figure 2). The second error, I named for Dan, was dedicated to
the size property, i.e., that lengths are invariant under the
reflection (see figure 3). This was also the basis for the third
error named after Joseph, that had to do with the distance from
the reflection axis (see figure 4). I asked the children, whether
one learns the same thing from each of the above errors? Should
Sharon, Dan and Joseph learn the same thing? or, is there something
---4fic to each error?.

At this point we turned from psychological support and tolerance or
errors to discover the epistemological and cognitive value of
errors in the process of learning. From these errors the child
could learn the distinct properties of reflection, that he or she
was not aware of before. (If they were aware, they would not
commit this kind of error). Committing the error, however, revealed
the incompleteness of their knowledge and enabled the teacher to
contribute additional knowledge, or lead them to realize for
themselves where were they wrong. The clash between their expecta-
tions, demonstrated by their drawings and the "reality" as was
shown in the pin functure created a problem, uneasiness (up to
tears), that they had now to settle. The solution to this problem
in fact involved the process of learning a new property of the
reflection transformation not known to them until then. As Popper
(Ibid p. 222) wrote:

"Yet science starts only with problems. Problems crop up especially
when we are disappointed in our expectations, or when our theories
involve us in difficulties, in contradictions; and these may arise
either within a theory, or between two different theories, or
as the result of a clash between our theories and our observations.
Moreover, it is only through a problem that we become conscious
of holding a theory. It is the nroblem which challenges us to
learn; to advance our knowledge; to experiment and to aserve"
(Ibid p. 222).

I think that if we use the word "theory" in r too rigorous a manner,
and substitute the word learning for science, then Popper's description
is most pertinent to our issue.

In the title of this presentation, I did not use the word "error"
or "mistake" but rather "misconception". The notion of misconception
denotes a line of thinking that causes a series of errors all resulting
from an incorrect underlying premise, rather than sporadic, unconnected
and non-systematic errors. It is not always easy to follow the child's
line of thinking and reveal how systematic and consistent it is.

4,1
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Most studies, therefore, report on classification o errors and
their frequency, though this does not explain their source and
therefore cannot be treated systematically. Or, when dealt with,
it is on the basis of a mere sutface structure analysis or errors,
as in the case of "Buggy" (Brown and Burton, 1978; Brown and
VanLehn, 1980), where we end up with a huge, unmanageable catalogue
of errors. It seems that this lack of parsimony could be avoided
is one looked into deeper levels of representation in which a
meaning system evolves that controls the surface performance.
When an erroneous principle is detected at this deeper level it can
explain not a single, but a whole cluster of errors. We tend to call
such an erroneous guiding rule a misconception.

I would like to describe now two detailed examples of misconceptions
(out of many others) that demonstrate how errors do not occur at random
but rather have their roots in erroneous principles. Moreover, these
misconceptions were not created arbitrarily but rely on earlier learned
meaning systems, and again, although seemingly absurd, they are
actually derivations of our own previous instruction. These
examples wera chosen because they are each based on extensive
research programs which deal with unveiling the students' misconcep-
tions and focus on plausible explanazions for their erroneous
performance.

The first example is taken from a series of studies about the
nature of errors made by elementary school children in comparing
or ordering decimal numbers. In these studies at attempt was male
to trace the sources of the student's systematic errors. The
findings which emerge, following studies in England, Fran-e,
Israel and USA (Leonard and Sackur-Grisvald, 1981- Nesher and
Peled, 1984, Swan, 1983) show that in all these countries there is
a distinct and common system of rules employed by those who fail
in comparing decimals.

Consider for example the following tasks which were administered to
children of grades 6, 7, 8, and 9. The subjects had to mark the larger
number in the following pairs.

case I
case II

0.4
0.4

VS.
VS.

0.234
0.675

Jeremy marked in case I that 0.234 is larger than 0.4; and in case
II he marked that 0.675 is the larger one. Does he or does he not
know :he order of decimal numbers? In our study in Israel the
data was gathered in individual interviews, so that the children
could explain their eloices. This helped us understand their
guiding principles. In both cases Jeremy said that the number
with the longer number of digits (after the decimal point) is the
larger number (in value). Jeremy had one guiding principle as to
the order of decimals and, accordingly, in case I Jeremy was wrong
while in case II he was right. Although his guiding principle was

L. 4
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a mistaken one, he succeeded in correctly solving all the exerciser
similar to case II. It is also not hard to see that his guiding
principle was one that served him well up to this point, having
been imported from his knowledge of whole numbers where the louger
numbers really are larger in value. And, unless something is done
Jeremy's "success" or "failure" on certain tasks is going to depend
on the actual pair of numbers given to him. This, of course,
blurs the picture of his knowledge in any given test. Now imagine
Ruth who decided in both cases I and II ( in the above example)
that 0.4 is the larger number, i.e., in each case she pointed to
the shorter number as the larger one in value. Ruth gave the
following explanation: "Tenths are bigger than thousandths,
therefore, the shorter number that has only tenths is the larger
one." Ruth does not differentiate between case I and case II
either. She will be correct in all the cases similar to case I,
but wrong in all cases which are similar to case II. We can
understand this kind of erroneous reasoning in light of what is learned
in fractions. Ruth has a partial knowledge or ordinary fractions
and cannot integrate what she knows about them with the new chapter
on decimal fractions and their notation. In particular she found
it difficult to decide whether the number written as a decimal
fraction is the numerator, or the denominator. She cannot coordinate
tie size of the parts with their number in the decimal notati

It is interesting to note that about 35% of the sixth graders in Israel
who completed the chapter on decimals acted like Jeremy and were,
in fact, using the above mentioned rule which relies heavily on
the knowledge of whole numbers, and abcit 14% of the Israeli
sample of sixth grades made r.th's type of mistake. Even more
interesting, is the fact that while Jeremy's rule frequency declines
in higher grades, Ruth's rule is more persistent and about 20% of
the seventh and eighth graders Ill maintain Ruth's rule. (Nesher
and Peled, 1984).

As I remarked before, these misconception are hard to detect.
This is so because on some occasions the mistaken rule is disguised
by a "correct" answer. [Or, the student may get the "right"
answer for tle wrong rea.-lns.] Thus, for the student who holds a
certain misconception no, all the exercises consisting of pairs of
decimal numbers will elicit an incorrect answer. For example,
decimals with the same number of digits are compared as if they
are whole number and, therefore, usual'y answered correctly. In
fact this is also a method taught in schools: add zeros to the
shorter number until it becomes as long as the longer one and thee.
compare ti ,m.

An interesti.z cuestion emerged: If the teacher is not aware of the
cases that discriminate between various types of misconceptions and
those cases that do not discriminate misconceptions at all, what
is the probability that he or she will give a test (or any other
set of exercises) that detects systematic errors. Irit Peled, my
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former student, in her Ph.D thesis dealt with precisely this
question (Peled, 1986). She built a series of simulations that
make it possible to evaluate quantitatively the probability of
getting discriminating items on a test.

Let me return to the question of a discriminating item for a certain
error. For example, given the following item "Which is the larger
of the two decimals 0.4 and 0.234?" If the student answers 0.234
my may suspect that he holds Jeremy's misconception. But, if he
answers 0.4, we cannot know whether he knows how to order decimals,
or if he is holding Ruth's error, but happened to get lucky numbers
and be correct on this particular item. Thus this item can dis-
criminate and elicit those holding Jeremy's misconception, but
cannot discriminate between those Ruth's misconception and experts
(i.e. those who really know the domain). Along these lines, for
the same task, the pair of numL-rs 0.4 and 0.675 can discriminate
those holding Ruth's misconception, but cannot discriminate between
those holding Jeremy's misconception and experts. Similarly
comparing the numbers 0.456 and 0.895 cannot discriminate either
Jeremy's, or Ruth's misconception (whether the child answers
correctly or not).

So, if a teacher composes a test (or any other assignment) without
looking intentionally for the discriminating items, there is little
change that such items will be included. In Peled's simulations
it was found that when pairs of numbers are randomly selected from
all the possible pairs of numbers having at most three digits
after the decimal point, the probability of getting an item that
will discriminate Jeremy's error was C.10, and Ruth's error 0.02.
Thus both Jeremy and Ruth will succeed up to 90% on a test composed
by their teacher, if she is not aware of this problem. It is not
surprising, then, that teachers are usually satisfied w4th the
performance of children holding Jeremy's or Ruth's misconceptions,
and they should not be blamed. On the basis of one wrong item it
is impossible to discover the nature of the student's misconception.

The teacher could of course increase the difficulty of the test by
allowing only pairs of timbers with unequal lengths (up to three digits
after the decimal point), which will raise the probability of getting
discriminating items on the test, but will taot insure correct
diagnosing of a specific misconception (see Appendix B for a
sample test). The probability is that on such a random test
Jeremy will get 58% correct and Ruth - 48%. With awareness of the
problem, the teacher can desio a test to intentionally diagnose
and discriminate the known misconceptions to a proportion and
distribution already determined.

The teachers, however, are hardly aware of such analysis of misconcep-
tions. Some of them listening to our report, could not believe
the existence of Ruth's type of misconception at all, until they
returned to their classes and found it for themselves.

`It
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Teachers do not generally build such knowledge into their instruction
and evaluation of the student's performance. Thus, frequently the
teacher completes the section of instruction on comparing decimals,
gives a final test, and believes that the children know it perfectly
well, not noticing that many of them still hold important misconcep-
tions such as Jeremy's and Ruth's, as we and others found in our
studies. In sucn a classroom it will be also very difficult for
Jeremy or Ruth to give up their misconceptions since they are
rewarded daily for their erroneous guiding principles by correctly
answering non discriminating items.

Several lessons can be learned from these studies:

a) In designing the instruction of a new piece of knowleage it is
not enough to analyze the procedures and their prerequisites which
is, in many cases, done. We must know how this new knowledge is
embedded in a larger meaning system that the child already holds
and from which he derives his guiding principles.
b) It is crucial to know specifically how the already known procedures
may interfere with material now being learned. In the case of decimal
knowledge a fine analysis will show the similarity and dis-similarity
between whole numbers and decimals, or between ordinary fractions
and decimals. Some of the elements of earlier knowledge may
assist in the learning of decimals, but some of them are doomed to
interfere with the new learning, because of their semi-similarity
(see Appendix A).

c) All the new elements, which resemble but differ from the old ones,
should be clearly discrIminated in the process of instruction, and
the teacher should expect to find errors on these elements.
Needless to say, although they elicit more erroneous answers, such
elements should be presented to the children and not avoided.

My second example is taken from a series of studies by Fischbein
et al (1985). In their study Fischbein's group claimed that in
choosing the operation for a multiplicative word problems (let's
say, choosing between multiplication and division) students tend
to make specific kind of mistakes derived from their implicit
intuitive models that they already have concerning multiplication.
Thus, identification of the operation needed to sole a probleL,
does not take place directly but is mediated by an implicit,
unconscious, and primitive intuitive model which imposes its own
constraints on the search process. The primitive model for multiplica-
tion is assumed to be "repeated addition".

The data supporting their hypothesis is based on the following
findings. Multiplication word problems, in which according to the
context the multiplier was a decimal number (i.e., 15 x 0.75)
yielded 57% success, while those consisting of a decimal number in
the multiplicand (0.75 x 15) yielded 79% success. Fischbein's
group attributed this to the fact that the intuitive model of
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multiplication as repeated addition does not allow for a non-
integer number as a multiplier.

Similarly, in division when the numbers presered in the word problem
were such that the students had to divide a smaller number by a larger
one, they reversed the order and divided the larger one by the smaller,
so that it would fit their previous notions of division. It also
became apparent in the series of studies and students misconceive
that "multiplication always makes bigger" (Bell et al., 1981,
Hart, 1981). Fischbein's research paradigm was repeated several
times with different populations always yielding the same results.
(Greer and Mangan, 1984; Greer, 1985; Tirosh, Graeber and Glover,
1986; Zeldis-Avissar, 1985).

This set of misconceptions, again, is not easy to detect, without
somebody isolating and comparing various variables in a controlled
study. This is where research can directly effect school teaching.
The probability of occurance of multiplication and division word
problems that eLicit such misconceptions in the textbooks is low.
In the absence of items or problems purposely directed to detect
misconceptions we are shooting in the dark. We are likely to put
too much emphasis on trivial issues while overlooking serious
misconceptions.

There is another les an from these studies which is harder to
implement. We can trace the sources of major misconceptions in
prior learning. Most of them are over-generalizations of previously
learned, limited knowledge which is now wrongly applied. Is it
possible to teach in a manner that will encompass future applications?
Probably not. If so, we need our beacons in the form of errors,
that will mark for us the constraints and limitations of our knowledge.

IV.

So far, what I have said suggests that teachers should be more
aware of the possible misconceptions and incorporate them into
their instructional considerations. But this is not sufficient,
and I would like to return to the example of the second graders
working on the reflection transformation.

Let us suppose that in designing the pin puncture booklet the teacher
was aware of the possible misconceptions and incluavd all the
discriminating items she could think of. However, another significant
characteristic of this booklet was that it embled the child to
decide for himself whether he was right or wrong and in what
respect was he wrong. This was possible because the rules by
which the pin puncture behaved were dependent only on the mathematical
reality and not .3n the learner's beliefs. The fact that the rules
of mathematics and one's set of beliefs are independent allows for
discrepancies between Olem. Therefore when the student held a

20
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false belief, or a false conjecture it clashed with "reality" as
exemplified in their booklet. This kind of instructional device
enabled the child to pursue his own inquiry and discover truths
about the reflection transformation, and at the same time make errors
resulting from his misconceptions, some of which were not anticipated
bj the teacher. He was working within what I call a Learning
Ustma to which I will devote the rest of my talk.

A Learning System (LS) is based on the following two components:

1) an art-culation of the unit of knowledge to be taught based
upon tae expert's knowledge, which is referred to ae the
knowledge component of the system, and

2) an illustrative domain, homomorphic to the knowledge component
and purposely selected to serve as the exemplification component.

Although "microworld" may seem a natural choice of term for a 1,earninz
System, I prefer to use a different term sit. e "microworld" is

sometimes identified with the exemplification component only, and
sometimes with the entire Learning System. I, therefore, have
introduced the term "Learning System" to ensure we understand that
a microworld here encompasses both components. Various concrete
materials employed in the past, such as Cuisenaire Rods, or Dienes'
Blocks (:;ot.:egno, 1962; Dienes, 1960) serve as illustrative aspects
of Learning Systems. Moreover, I believe that the rapid progress
of computers in the last decade, with their tremendous feedback
power, will lead to the development of many more such Learning Systems.

The knowledge component in a Learning System i3 _rticulated, not by
experts who are scientists In that field, but rather by those who
can tailor the body of knowledge to tha learner's particular
constraints (age, ability, etc) and form the learning sequence.
In r der for the exemplification component to fulfil its role, it
must be familiar to the learner. He should intuitively grasp the
truths within this component. It is necessary that the learner
while still ignorant about the piece of knowledge to be learned,
be well acquainted with the exemplification so that he can predict
results of his actions within that domain and easily detect unexpected
outcomes. The familiar aspects of the Learning System provide an
anchor from which to develop an understanding of the new concepts
and new relations to be learned.

Familiarity, however, is not sufficient. The selection of the
exemplification component should ensure that the relations and the
operations among the objects be amenable to complete correspondence
to the knowledge component to be taught. For example, in the case
of teaching the reflection transformation, the exemplification by
the pin puncture corresponded more to the knowledge component,
rather tt..,n a mirror which enables reflection of only one half of



the plain on the other (There were some other advantages as well
which I will not go into here).

The gist of the Learning System is that we have a system with a
component familiar to the child, from previous experience, which
will be his stepping stone to learn new concepts and relationships,
as defined by the expert in the knowledge component. A system
becomes a Learning System, once the knowledge component and the
egeullification component are tied together by a set of well
defined correspondence (mapping) rules. These rules map the
objects, relations and operations in on,-. component to the objects,
relations, and operations of the other component.

Functioning as a model, the exemplification component of a Learning
System must fulfil the requirements described by Suppes (1974)
i.e., it must be simple and abstract to a greater extent than the
phenomena it intends to model, so that it can connect all the
parts of the theory in a way that enables one to test the coherence
and consistency of the entire system. This forms the basis for
the child's ability to judge for himself the truth value of any
given mathematical conjecture in a specified domain. It provides
the learner with an environmert within which he can continuously
obtain comprehensible feedback on his actions, as was apparent
from the second graders' behavior.

I believe that arriving mathematical truths is the essence of
what we do in teaching mathematics. This brings me back to the
question I raised at the beginning of my talk about mathematical
truths. This is a deep philosophical question that I will not
delve into here, recalling instead, Russell's formulation on the
correspondence theory of truth. Russell (1.159/1912) clarifies
that truth consists in some form of a correspondence between
belief and fact. Thus, though the notion of truth is tied to an
expressed thought or belief, by no means can it be determined only
by it. An independent system of facts is needed toward which it
is tested. This, however, is not the only theory of truth. In
the same chapter Russell also mentions a theory of tru-h that consists
of coherence. He writes that the mark of falsehood the failure
to cohere in the body of our beliefs.

How children arrive at truths is problematic. Clearly the child cannot
reach conclusions about the truths of mathematics with such rigorous
methods as those applied by a pure mathematician. While mathematicians
can demonstrate the truth of a given sentence by proving its coherence
within the entire mathematical system, young children cannot. If
a young child is to gain some knowledge about truths in mathematics
not based on authoritative sources, he should rely on the correspon-
dence theory of truth rather than on the coherence theory. Thus,
he should examine the correspondence between the belief and the
state of events in the mathematical world. In our example this
was between his conjecture where to draw the image of a reflection,
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and the result of his pin puncture as representing the mathematical
reality.

But his approach is not without difficulties. Employing exemplifica-
tioils as the source for verification commits one to introducing
mathematics as an empirical science rather than a deductive one.
On the other hand, I, believe that young children and even many
not so young will be unable to reach mathematical truths merely by
chains of deduction without first engaging in constructing and
feeling intuitively the trust of these truths. Therefore, I

think, that constructing a world in which the learner will be able
to examine the truth of mathematical sentences via an independent
state of events is the major task for any future theory of mathematical
instruction. Such a world, which I have labelled a Learning
System is the one in which all our knowledge about true conjectures
as well as of misconceptions should be built in as its major
constraints. Being limited by the System's constraints, the child
will learn by experimentation and exploration the limitations and
the constraints of the mathematical truths in question. On this
basis can he later attend to the more rigorous demands of deductive
proofs.

V.

In summary I would like to recapitulate z.averal points touch on
today. At the moment, unlike the promised of the title of this
presentation, my remarks do not look like a theory at all, but
rather they specify some assumptions that, in my view, will underlie
any future instructional theory.

a) The learner should be able in the process of learning to
test the limitations and constraints of a given piece of
knowledge. This can be enhanced by developing learning
environments functioning as feedback systems within which
the learner is free to explore his beliefs and obtain specific
feedback to his actions.

b) In cases where the learner receives unexpected feedback, it
not condemned, he will be intrigued and highly motivated to
pursue an inquiry.

c) The teacher cannot fully predict the effect of the student's
earlier knowledge system in a new environment. Therefore, betore
he completes his instruction, he should provide opportunity
for the student to manifest his misconceptions and then
relate his instruction to these misconceptions.

d) Misconceptions are usually an outgrowth of already acquired
system of concepts and beliefs applied wrongly in an extended
domain. They should not be treated as terrible things to be

rs.



24

uprooted, since, this may confuse the learner and shake his
confidence in his previous knowledge. Instead, the new
knowledge should be connected to the student's previous
conceptual framework and be put in the right perspective.

e) Misconceptions are found not only behind an erroneous perfor-
mance, but also lurking behind many cases of correct performance.

Any instructional theory will have to shit its focus from
erroneous performance to an understanding of the student's
whole knowledge system from which he derives his guiding
principles.

f) The diagnosing items that discriminate between one's proper
concepts and his misconceptions are not neceslarily the ones
that we traditionally use in exercises and tests in schools.
A special research effort should oe made to construct diagnostic
it ms that dis-Aose the specific nature of the misconceptions.

I nave tried to examine the instructional issues via the misconception
angle. The examination consisted of more than the analysis of
pedagogical problems; it had to penetrate epistemological questions
concerning the truth and falsehood. Delving into questions of
knowledge has traditionally been the prerogative of philosophy,
particularly epistemology. Mental representation and the acquisition
of knowledge, on the other hand, have been dealt with in the field
of cognitive psychology. Obviously, each discipline adopts a
different angle when dealing with the study of knowledge. While
philosophers are concerned with the questions related to sourr,es
of knowledge, evidence and truth, cognitive scientists are mainly
interested in questions related to the representation of knowledge
within hum:. memory and understanding the higher mental activities.

The edLcational questions are quite different. The agenda in education
is to facilitate the acquisition and construction of knc-dedge by
the younger members of society. While scholars of cognitive
science and recently of artificial intelligence are interested
mainly in the perforluance of experts who are already skilled in
various domains, educators, on the contrary, ar-. interested in
naive learners, or novices and how they develop into experts.
Sometimes I am afraid that the whole notion of 'expertise' is
alien. My claim is that the road to the expert state is paved
with errors and misconceptions. Each error might become a significant
milestone in learning. Let these errors be welcomed.

al 0
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Appendix A

A Random Comparing Decimal Test

(numbers up to three decimal digits)

.66 .1f)4 Discriminating Jeremy's rule

.254 .045 Not discriminating

.122 .002 Not discriminating

.101 .067 Not discriminating

.885 .106 Not discriminating

.238 .433 Not discrir4linating

.233 .244 Not discriminating

.713 .838 Not discriminating

.245 .885 Not discriminating

.806 .702 Not discriminating



ARandom Comvaring Decimals Test

(Unequal lengths of numbers up to three decimal digits)

.15 .114 Discriminatin3 Jeremy's rule

.185 .06 Discriminating Ned's rule (Not discussed here)

.51 .446 Discriminating Jeremy's rule

.31 .438 Discriminating Ruth's rule

.861 .33 Discriminating Ruth's rule

.606 .82 Discriminating Jeremy's rule

.72 .722 Discriminating Ruth's rule

.08 .822 Discriminating Ned's rule

.814 .46 Discriminating Ruth's rule

.404 .33 Discriminating Ruth's rule

28
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APPENDIX B

Knowled e of Dec mal actions. Identif ins Place Value of Individual Digits

Corresponding Elements of
Elements of Decimal Knowledge Whole Number Knowledge + or -

A. Column Values:
1. Correspond to column names
2. Decrease as move 1 to r
3. Each column is 10 times

greats: that column to r
4. Decrease as move away from

decimal point

B. Column Names:
1. End in <ths>
2. Start with tenths
3. Naming sequence (tenths,

hundredths...) moves 1 to r
4. Reading sequence is tenths,

hundredths, thousandths

C. Role of Zero:
1. Does not affect digits

to its left
2. Pushes digits to its right

to next lower place value

D. Reading Rules:
1. The number can be read

either as a single quantity
(tenths for one place,
hundredths for two places,
etc.) or as a composition
(tenths plus hundreds etc.)

A.

B.

C.

D.

j

Column Values:
1. Correspond to column names
2. Decrease as move 1 to r
3. Each column is 10 times

greater than column to r
4. Increase as move away from

ones column (decimal point)

Column Names:
1. End in <s>
2. Start with units
3. Naming sequence (tens,

hundreds...) moves r to 1
4. Reading sequence is thou-

sands, hundreds, tens, ones

Role of Zero:
1. Does not effect digits

to its left
2. Pushes digits to its left

to next higher place value

Reading Rules:
L. The number can be read as a

single quantity and as a
composition at the same time
(e.g., seven hundred sixty
two means seven hundred plus
six tens plus two).
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Knowledge of Decimal Fractions: Identifying Place Value of Individual Digits

Elements of Fractional Corresponding Elements of
Decimal Knowledge Ordinary Fraction Knowledge + or -*

E. Fraction Values:
1. Expresses a value

between 0 and 1
2. The more parts a whole is

divided into, the smaller
is each part.

3. There are infinite decimals
between 0 and 1

F. Fraction Names:
1. The number of parts divided

into is given implicitly by
the column position

2. The number of parts included
in the fractional quantity
are the only numerals
explicitly stated.

3. The whole is divided only
into powers of 10 parts

4. The ending "-th" ("tenth') is
typical for a fractional part

E.

F.

Fraction Values:
1. Expresses a value

between 0 and 1
2. The more parts a whole is

divided into, the smaller
is each part.

3. There are infinite frac-
tions between 0 and 1

Fraction Names
1. The number of parts divided

into is given explicitly by
the denominator

2. The number of parts included
in the functional quantity
are the numerator of
the fraction.

3. The whole is divided into
any number of parts

4. The ending "-th" ("fourth')
is typical for a fractional
part.

* Supports (+); contradicts (-)
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LECTURE 3

THE LIMITS OF RATIONALITY

David Wheeler
Concordia University, Montreal
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0. When I was invited to give an address to the Study Group, the
title seemed to choose itself. I had in my mind traces of recent
readings that had rubbed against each other and created a disturbance.
The period of almost a year between the invitation and the delivery
appeared to offer / fine opportunity to do what needed to be done
to arrive at a fresh, structured, survey of the territory. As is
usual with me, the opportunity somehow slipped by unseized. I

bring only a few out-of-focus snapshots.

1. The phrase itself I take from the introduction to Herbert Simon's
The Sciences of the Artificial. This particular occurrence of it
has lodged with me, though the phrase - as against the context in
which it is used - is unlikely to be original. Simon is talking
about "artificial" phenomena which "are as they are only because
of a estem's being molded, by goals or purposes, to the environment
in which it lives." (Simon, 1981, p. ix) How is it possible, he
asks, to make empirical propositions about systems "that, given
different circumstances, might be quite other than they are?"
(ibid., p.x)

My writing ... has sought to answer those questions by showing

that the empirical content of the phenomena, the necessity
that rises above the contingencies, stems from the inabilities
of the behavioral system to adapt perfectly to its environment
- from the limits of rationality, as I have called them.
(ibid., p.x; my italics, D.W.)

Simon offers the image of an ant making its laborious way across
rough ground. The track the ant makes is irregular and apparently
unpredictable. Yet it is not a random walk for it takes the ant
towards a particular goal. We can readily suppose that any very
small animal starting at the same point and having the same destination
may well follow a very similar path.

bn ant. viewed as a behaving system. is quite simple, The
apparent complexity of its behavior over time is largely a
ref_ection of the complexity of the environment in which it
finds itself." (ibid., p. 64; author's italics)

Could we not hypothetically substitute the words "human being" for
"ant"? Simon continues.

A thinking human being is an adaptive system; man's goals
define the interface between his inner and outer environments,
including in the latter his memory store. To the extent
that he is effectively adaptive, his behavior will reflect
characteristics largely of the outer environment (in the
light of his goals) and will reveal only a few limiting
properties of the inner environment - of the physiological
machinery that enables a person to think. (ibid., p. 66).
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To show that there are only a few "intrinsic" cognitive characteristics

and that "all else in thinking and problem solving is artificial"
(ibid., p. 66), Simon analyses a familiar cryptarithmetic problem.
He finds that solvers differ mainly in their solution strategies
and suggests that efficient strategies could easily be taught to
those subjects who do not spontaneously produce them. The "limits
of rationality" are not to be found here but in the general weakness
of human short-term memory, a weakness that makes it necessary for
human beings to adopt compensatory strategies.

Insofar as behavior is a function of learned technique
rather than "innate" characteristics of the human information-
processing system, our knowledge of behavior must be
regarded as sociological in nature rather than psychological-
than is, revealing what human beings in fact learn when
they grow up in a particular social environment.
(ibid., p. 76).

As always in reading anything by Simon, I get the sense of an
immensely powerful intellect sailing on towards the magnetic
rather than the true North. The clarity, however, is bracing, the
ideas challenging to many of my presuppositions. I feel I am
closer to grasping the nature and purpose of strategies in problem
solving, for example; and the proposition that the complexity of
behaviour arises from the complexity of the task and not the
complexity of the organism working on the task becomes a hypothesis
worth struggling to refute. But before I give in to the temptation
to enlarge the first snapshot, let me change the slide.

2. A different and more alarming view of "the limits of rationality"
is captured in the following sentence from Leon Brunschwicg's
paper, "Dual aspects of the philosophy of mathematics";

... the preconceptions of an overly abstract and narrow
definition transforms reason into a machine for fabricating
irrationality. (Brunschwicg, 1971, 1. 228)

Brunschwicg draws his theme from the Pythagoreans.

When, by representing numbers by points, they showed that
the successive addition of the odd numbers furnished the
law for the formation of squared numbers, they were extracting
evidence of a perfect harmony....between what is conceived
in the mind and what is obvious to one's vision. (ibid.,
p. 225)

This "triumph of reason should have been decisive; it was immediately
compromised by a twofold weakness in itself." (p. 226) On the
one hand the Pythagoreans could not vsist the temptation of push
their luck, to go far too far. "Thus 5, the sum of the first even
number, 2, and the first odd number, 3 (unity remained outside the
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series), would be the number for marriage because even is feminine
and odd is masculine." (p. 226) And on the other hand, when the
difficulty of incommensurability surfaced, the Pythagoreans turned
their backs on rationality by banishing incommensurable magnitudes
to a "beyond."

They receive a command from their avenging gods to deliver
to the fury of the tempest the sacrilegious member who had
the audacity to divulge the mystery of incommensurability.
(ibid., p. 227)

They implicitly - and the more dangerously because of the implicitness
- decide that incommensurability will be "something that one does
not dare to speak of" and so, Brunschwicg says, "the irrational
threatens to obscure the whole philosophy of science." (p. 227)

From a rich and subtle pipe?: I select another example.

Pascal art Leibniz seem to be working together to force
open *_ho doors of mathematical infinity. But is this to be
done by pushing beyond the normal resources of reason?
Leibniz parts company with Pascal on this fundamental
issue. He returns to the path of Cartesian analysis,
while Descartes and Pascal find themselves united in their
opposition to Leibniz's position that the deductive process
is self-sufficient. The two of them have proclaimed the
primacy of intuxtion, even though they otherwise give it a
radically different meaning. (ibid., p. 232)

All three mathematicians reject the position that mathematics is a
natural system reduced -o its ultimate abstraction; for them "it
is the fitting prelude to, and the relevInt proof of, a spiritual
doctrine wherein the truths of science and religion will lend each
otter mutual support." (ibid., p. 233) Not every mathematician,
of course, chooses this same path.

Brunschwicg's general message is that there are fundamental
characteristics of mathematical thought that underlie the disagreements

among mathematicians about the sovereignty of reason, and that
undercut all dogmatisms that would place the limits of reason
"here" or "there." Fortunately for mathematics "the manner of
investigation has no bearing on the value of a discovery."
(p. 234) As to this, I can't be sure; meanwhile I retain that
particular image of the Pythagorean machine, reason gone mad,
spewing forth irrationalities. The image resonates unnervingly.

3. Less unnerving, but decidedly unsettling, is the drift of Dick
Tahta's article, "In Calypso's arms", (For the Learning of Mathematics,
6, 1). Did mathematics originate in c,mmerce of ritual?
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There was a time, for instance, when historians of mathematics

would very confidently assert that mathematics began in the
needs of highly organised social systems to cal. Az taxes
and to deep inventories. In a less confident economic climate,
there has begun to be some cautious speculations about other
origins (Tahta, 1986, p. 17)

We have no records to tell us unequivocally how mathematic, began,
and just as in other cases where we don't know the "facts", we
construct "myths." Even the procedures and purposes of the high
culture of Greek mathematics, about which we may feel we know a
lot, remain essentially a matter for conjecture.

For the purist, there is almost nothing that can be said about
the early classical period with any certainty. We know the
names of a handful of individual mathematicians ... (The)
arithmetic tradition (of the Pythagoreans) is mainly
interpreted from commentaries written several centuries
later. (ibid., p. 18)

Tahta goes on:

Such aspects have been mythologised to such an extent that
it harely seems relevant to question whether they describe
what was the ce,e. This is, however, to accept a view
that "narrative" truth, or myth, is - in some situations-
more important than historical truth; it is to accept
willingly that myths grow by accretion, so that, for
example, what people have thought about Greek mathematics
may become part of the history of Greek mathematics. (p. 18)

When alternative myths are available, as they are for the origins
of dPeuctive geometry, say, which shall we choose? There is no
real possibility of settling the euestion objectively. "It is, I
claim, a question of preferred myth." (p. 21) Some myths may
work bettel than others, especially for pedagogical purposes, and
it i- sensible to choose, openly and knowingly, those myths that
are most powerful and helpful. Historians will naturally disapprove
but the continuing reflective generation of the account mathematics
gives of its own history is too important to be left solely to
historians - or to mathematicians. Teaching is part of the
mathematical enterprise acid teachers can help decide what is to be
considered significant at any one tims. (ibid., p. 22)

It is, indeed, unsettling to suggest that reason cannot lead Is to
the unique right answers to questions about the nature of
Pythagoreanism, the origins of deductive proof, the purpose of the
arithmetisation of analysis ... or whatever. Well, we shall just
have to be as brave as we requi.e our students to be when we would
prise them away from their treasured beliefs in the unique riphtnt.
of solutions to mathematical problems.
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4. Consider the words of the title.

LIMIT > ULTIMATE

BOUNDARY

OBSTACLE

RATIONALITY REASON

REASONABLENESS

RATIONALISATION

The alternatives seem to run from "high" to "low". This is
particularly obvious in the second case. "Reason" cries out for a
capital letter: for some it is the greatest of the mental powers,
the characteristic that makes a human being he-man. "Reasonableness",
on the other hand, is moderate and modest, a characteristic of the
ordinary man, whether in the street or on the Clapham omnibus.
"Rationalisation" is a low form of reason, a misprision of reason's
power to grasp phenomena and make them comprehensible.

Rationality reminds us of the sober virtue of getting things "in
proportion". Is it a coincidence that intelligence tests are full
of questions of the form, "A is to E as C is to ?"? On the other
hand, being rational may be no more than exhibiting common sense.
It is this latter connection that supplies the essential social
and consensual flavour. Rationality is an endowment of all human
beings in the sense that everyone has the possibility of learning
to be rational just as everyone is born able to acquire a spoken
language, but the particular form of rationality (i.e. common
sense) that a person acquires is determined by social and cultural
factors as is the particular language that the person learns to speak.

5. David Bloor, in a speculative article contrasting Hamilton's and
Peacock's views on the essence of algebra, talks of Hamilton's
involvement with Idealism, which he learned mainly from Coleridge
and Carlyle.

Carlyle ... goes on to explain precisely how Idealism has
a practical bearing ... By making matter dependent on
min,. rather than something in its own right, Idealism
lemme- the threat of a rival conception of Reality.
(Piot, 1981, p. 208)

In Carlyle's view, all conclusions of the Understanding have only
a relative truth: "the Understanding is but one of our mental
faculties. There is a higher faculty which transcends the
Understanding and gives us contact with non-relative and non-dependent
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Absolutes." (ibid., p. 209) This higher faculty is, of course,
Reason which, in Carlyle's words, should

"conquer ... all provinces of human thought, and everywhere
reduce its vassal, Understanding, into fealty, the right
and only useful relation for it."

This elevation of Reason to the level of the sac: d (echoes of
"which passeth all understanding"?) has powerful social and political
implications, but I will not follow that track here. Bloor suggests
that in relating algebra to our intuition of pure time, Hamilton
was attempting to raise algebra to the level 3f the holy too.

The essence of algebra was given a direct association with
the Reason, with what was prior to and determ!led the form
of experience. At the same time it was thereby put in
close proximity to our insights into moral truths and
their divine origin. In a word, Hamilton was irradiating
algebra with spirit. (1.1, p. 216)

In the controversy between British mathematicians about the nature
of algebra, Hamilton took neither the side of Frend, for whom
algebra was universal arithmetic, nor the side of Peacock, for
whom algebra was a symbolic system with arbitrary rules, but
implied that "its essence was derived from the laws and constitution
of the mind itself - and the most exalted part of the mind at
that." (p. 217)

It may be arguable whether this last proposition necessarily
belongs to Idealism or not, but the whole story (which I have not
been able to offer here) suggests that attempts to give Reason an
autonomous role, a position above all conflict, safe from refutation,
only succeeds in embedding it the more firmly to a local, contingent,
metaphysics.

6. In "Reflections on gender and science", Evelyn Fox Keller says:

I argue that we cannot properly und( .stand the development
of modern science without attending to the role played by
metaphors of gender in the formation of the particular set
of values, aims, and goals embodies in the scientific
enterprise. (Keller. 1985, p. 43)

At around the time of the fe Anda.tion of the Royal Society, intellectual

history could be described schematically in terms of two competing
philosophies: hermt is and mechanical: "two visions of a "new
science" that often xpeted even within the minds of individual
thinkers." (p. 44)
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In the hermetic tradition, material nature was suffused
with spirit; its understanding accordingly required the
joint and integrated effort of heart, hand, and mind. By
contrast, the mechanical philosopher s ught to divorce
matter from spirit, and hand and mind from heart.
(ibid., p. 44)

The founding of the Royal Society in 1662 marked the victory of
the mechanical philosophers and the defeat of the alchemists,
stigmatimd as anti-rationalists. The Baconian programme was
adopted, and with it, the sexual metaphors in which it was expressed.

A recurrent token of this is their Baconian use of " masculine"
as an epithet for privileged, productive knowledge. As
Thomas Sprat (1667) explained 'n his defense of the Royal
Society, "the WJI that is founded on the Arts, of men's
hands is masculine and durable." In true Baconian idiom,
Joseph Glanvill adds that the function of science is to
discover "the ways of gffipttvating Nature, and making her
subserve our purposes." ;Easlea, 1°80, p. 214) (ibid., p.
54)

The last quotation suggests a clear association between scientific
rationality and that act of rape. I am not sure one could wish that
the hermetic alternative had enti-ely won, but the metaphors give
an appalling indication of thn social price that had to be paid
for the establishment of modern science and certainly supply a
motive for considering whether any of its damaging side-effects
may be ameliorated. Three hundred and more years later, are we
any wiser in our day?

7. The achievements of scientific .ationality may seem so substantial
that we choose to forget its tendency to tip over into
irrationality. The process is more apparent in the human sciences
where the danger of pushing rationality too far and forcing it to
tip over is only too obvi.ls. Or should be.

Pedagogy provides an illuminatin6 example. It is a reasonable
pedagog,cal principle to brehe.x up what is to be learned into
managewde pieces; but this p; -,ciple becomes an absurdity when
everything presented to be learn is broken into separate pieces,
each as small as possible, so that the totality cannot be perceived.
It is a reasonable pedagogical principle to guide students in such
a way that the do not fall into egregious error; but this principle
tips over into foolishness when iz becomes an attempt to prevent
students from making any mistal j, denying them access to an
important source of feedback. It seems to me a legitimate matter
for rage and the gnashing of teeth when teachers (ha!) and educators
(ha!ha!) close their minds to the irrationality of their actions.
In my more pessimistic moments I fear that the educational system
will always manage to pervert Ana rational principle in short
order by pushing it further than it will stretch.

4 4
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Of course, for many people, including a lot of teachers and educators,
pedagogy has a dubious existence. They don't believe teaching is
an activity one need be, or can be, scientific about. But teaching
is not a transparent process for transporting something from place
A t' place B; it is not a catalyst, facilitating learning without
influencing it. Consider how one may introduce students to, say,
the solution of simple linear equations in algebra. The m'taphor
of the balance may t %gest certain operations on an equation while
making others, algeuraically just as important, seem implausible.
It is well known, that the "think of a number" approach and the
"unravelling" technique it suggests work adma.rably for equations with
a single appearance of other unknown but fail to give a lead to the
solution of, say, 5x 3x + 6. On the other hand, the Dienes
method of representing both sides of a linear equation with suitable
pieces of wood gets around the particular limitation of the "think
of a number" approach while introducing another obstacle: that of
regarding two manifestly different amounts of wood as representing
two equivalent algebraic expressions.

All pedagogical devices cast their imprint on the matter they are
designed to teach. And in case one would be so naive as to suppose
that this difficulty might be avoided by suppressing pedagogical
devices altogether, let us remember that when we teach anything to
someone who does not yet know it, we cannot proceed without the
offering the person at least an implicit model of what is to be
learred.

The need for pedagogy comes from another source too. There is an
inevitable tension between engaging with mathematics in order to
use it and engaging with it in order to teach it. The teacher and
the mathematician do not have the same professional insights into
mathematics; what is illuminating for one is not necessarily so
for fue other. The Hindu-arabic notation, when it leached Europe,
played hell with the teaching of arithmetic, causing teachers to
substitute "ciphering" for the counting and manipulation of beads
and other objects. (Smith, 1900) Giving the number system a
solid foundation in set theory was a liberation for mathematics
and an aberration in the classroo.i. The HP 28C is a remarkable
mathematical aid, but it is not the calculator that educators
would like to have been able to design to sort out some of the
difficulties for the learner of college mathematics. Indeed, what
is best for mathematics and the mathematician is not always best
for teachers and would-be mathematicians.

8. In coming to the end of this magic show, it seems appropriate
to ask whether rationality is an instrument of human liberation or
of human enslavement. To the extent that rationality is

institutionalized and embedded in a specific culture, it has the
power to be both. As Jules Henry puts it:
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Thus, the dialectic of man's effort to understand the
universe has always decreed that he should be alternately
pulled forward by what has made him homoinquisitor and
held back by the fear that if he knew too much he would
destroy himself, i.e. his culture. So it is that though
language has been an instrument with which man might
cleave open the universe and peer within, it has also been
an iron matrix that bound his brain to ancient modes of
thought. And thus it is that though man has poured what
he knows into his culture patterns, they have also frozen
round him and held him fast. (Henry, 1960, closing passage)

Henry, as always, stresses he negative side of the evolutionary
dialectic. However difficult it may be to bring about ceztain
shifts, nevertheless new knowledge can be constructed, language
does gradually change, and cultural patterns are transformable.
Past achievements are indeed a potential obstacle to future
achievements. But that poses the challenge: to break the grip of
past knowledge, fight the hegemony of language, and evade the
restrictions of one's culture. One can't always win, but one
won't always lose. These constraints are all inside us, in the
mental schemata we have formed out of the experience of living in
our world. As Bartlett reminds us, we have the power to "turn
round upon our own schemata". (Bartlett, 1932, p. 301) That is
what human consciousness is for.
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Le passé et le futur de GCEDM/CMESG

Bernard R. Hodgson
Universite Laval

A l'occasion de cette rencontre 10e anniversaire du Groupe canadien
d'etude en didactique des mathematiques, le Comite executif du
Groupe a pense inscrire au programme une table ronde visant a
faire un bilan des activites du GCEDM au cours des dix dernieres
amides et A tracer des perspectives d'avenir. Quatre invites ont
donc ete appeles a presenter leur point de vue a ce sujet.

Le fait d'organiser une discussion comme celle-ci fait prendre
conscience, si besoin en etait, de la diversite et de la richesse
des themes auxquels se rapportent les activites du GCEDM. Ces themes
peuvent etre abordes tant du point da vue du mathematicien que de
celui du didacticien des mathematiques; A la fois en tant qu'enseignant
et en tant que chercheur; en rapport avec l'enseignement aussi
bien au niveau primaire ou secondaire que post-secondaire; soit
comme universitaire, soit comme conseiller pedagogique a l'oeuvre
dans les ecoles; etc. Cette diversite de points de vue releve de
l'esprit meme de notre Groupe et contribue a son caractere original.

("est en tentant de refleter tant bien que mal une telle diversite
que les quatre panelistes ont ete choisis, chacun etant bien sur
libre de determiner quels aspects des activites du Groupe it
vouiait souligner ainsi que le point de vue qu'il comptait adopter.
Ces invites connaissent tres bien les activites du Groupe pour y
avoir participe depuis de nombreuses annees, certain meme depuis
les tous debuts. Les textes qui suirent contiennent l'essentiel
des commentaires qu'ils ont livres Tors de cette rencontre 10e
anniversaire.

Les invites ayant pris la parole lors de la table ronde etaient
(dans l'orAre)

Tasoula BERGGREN Department of Mathematics and Statistics

Simon Fraser University

Charles VERHILLE Faculty of Educaton
University "f New Brunswick

John POLAND Department of Mathematics and Statistics

Carl.tton University

William C. HIGGINSON Faculty of Education
Queen's University
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PANEL PRESENTATION OF
Tasoula BERGGREN

Department of Mathematics and Statistics
Simon Fraser Univ3rsity

I would like to begin with a story from The Greeks told by H.D.F.
Kitto.

"Xenophon tells an immortal story which can be
retold here. An army of vicitorious Greeks were on
their way home after a battle without a leader,
paymaster or purpose. It was a group of people
who wanted to go home but not through the whole
length of Asia Minor. They had seen enough of it
already. They decided to go North. They had
hopes for reaching the Black Sea. They got a
leader, Xenophon himself and held together week
after week. They marched through unknown nountains
and encounters with many natives, but they survived
as an organized force. One day, after climbing to
the top of a pass they all shouted: "Thalatta,
Thallatta" the greek word of 'sea.' They were
excited when they pointed North. A long nightmare
was over. There was shimmering in the distame
salt water; and where there was salt water Greek
was understood. Their way home was open. As one
of the The Ten Thousand said, "we can finish our
journey like Oeyszztis. lying on our backs."

The above reading was the story of a mercenary army concerning an
incident in The March of The Ten Thousand. Xenophon described it
in his book Kyrou Anabasis, which translates as Expedition of
Cyrus. This story seems to me relevant to the history and future
of CMESG. Like those Greeks we have been together for many years,
we are a group of people on our way to better mathematics education.

For ten years we have gathered for the CMESG meetings, with their
inspiring talks, workshops covering all aspects of mathematics
education, panels, discussions about the talks, the past and the
future. Like Xenophon's band we have chosen good leaders and we
have loyal followers. Over the past ten years we have built a
strong and dedicated group. A group of people consisting of those
who have participated year after year by their presence, people
who have p:tt in time to administer and organize these meetings,
and people who have shared their classroom work and research. Our
members worked, produced and searched together.

But also what was good about the conference is that it presented
to its ideas. The speakers conveyed to us exciting experiences and
explorations and a fine search for better mathematics education.
I g lerally like our meetings, I like their form, and I would like

r ti
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to see us continue and exrand. CMESG is the kind of a conference
which leaves me enthusiastic, refreshed and with renewed inspiration
towards better mathematics education. I think, however, that we
need to go beyond the stage of talk and translate all we have
learned into action.

In the past we shared a lot of thoughts about various aspects of
mathematics education and we shared thoughts about mathematics,
its curriculum and the impact of high technology. I come to this
mee.ing with concerns. We live in a time when technological
changes -- from small calculators to microcomputers - have a
highly visible influence in the lives of our students. CPIESG has
long recognized the potential impact of high technology on mathematics
education.

In fact in 1982 Working Group A discussed "The
influence of Computt-x Scierce on Undergraduate
Mathematics Education." with Bernard Hodgson and
Tony Thompson.

In 1984 The Impact of the Computer on Undergraduate
Mathematics" was the sut:Iect in a panel discussion
with Peter Taylor, Johh Poland, Keith Geddes, and
George Davis.

In 1985 the group led by Bernard Hodgson and Eric
Muller participated in a workshop with a similar
topic on The Impact of Symbolic Manipulation
Software on the Teaching of Calculus."

We all worked hard and thought deeply about the consequences of
high technology for mathematics education. Yet, five years later,
our group has no definite stand on the subject. We still have no
definite conclusions about whether programmable calculators are
acceptable in the classroom, or if computers are part of our
curriculum.

Our invited speaker, Professor H. Wilf, five years ago in his
article on "Symbolic Manipulation and Algorithms in the Curriculum
of first two years" gave a list of topics that are often taught
and that could be done on a little symbolic calculatDr of the
future. Five years ago it was a 3" X 8" flat imaginary object.
Today the dream of a symbolic calculator is a reality.

And now just as the victorious Greeks knew that where there was
salt water Greek was understood and, therefore, the u.y home was
open, we must recognize that where there is technology, mathematics
is understood, and, therefore, the way to better mathematics
education is open.

As a result of the 1982 Working Group A, discussions I mentioned
before, Adler has already recommended that:
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"CMESG Study Group must try to find what computer
knowledge our students should have, identify the
mathematical ideas which generate this knowledge,
debate whether this mathematics should be included
in our curriculum, how and at what point."

Today, I would like to recommend that CMESG form a group, a group
of volunteers who are willing to make recommendations on the
changes in calculus, so that technology comes in. We nee6 to
identify specifically what goes out and what comes in. It is time
to be ready for these big changes, and CMESG must play a leading
part. I am sure that somewhere someone is already working to
proauce the light texts with the changes needed. I would like us
to recommend the changes in the curriculum. CMESG should lead the
way in the revision of Calculus. We have already done a lot of
the work and now what is needed is to collect together all the opinions
and take a specific stand on this subject.

For example, as a group we must know if we are going to continue
teaching integration techniques. Is it fair to our students to
spend their time memorizing? Perhaps, with computers doing the
drudgery, we can ask: Is this the time to emphasize proofs? Can
computers help our students understand the course material? How
do we irmerse our mathematics students in high technology?

I have assumed that much of our attention for university and
college level should be focussed on the calculus, but I know some
have said that calculus does not have to be gateway to university
mathematics. For too many students, the critics say, it has been
a gateway like that to Dante's Inferno with the words emblazoned
on it "Abandon Hope, all ye who enter here".

These critics argue that number theory or combinatorics, or some
other area of finite mathematics would be more suitable. In my
opinion, however, elimination of calculus may be risky to mathematic:
education. Sherlis and Shaw say that "A mathematician's calculus
course can serve as an excellent introduction to mathematical
thinking". I claim that mathematical maturity also can be a
direct conseaience of calculus courses.

We all know that the physical sciences, computing science, and
even economics all require their students to take calculus courses
because they need it. For example, my own son, ,rho is studying
engineering, has told me how much he wished he had had a lot more
calculus a lot earlier in his studies. Other disciplines such as
business administration use calculus as a screening device. The
verdict is in. Calculus is important for a student as early as
she or he can get it. It follows that re-thinking its teaching in
light of the new technology is a matter of great importance. Can
we use computers and calculators to aid us? This group of volunteers
which I recommend we form will choose the way to incorporate high
technology. It will take calculus and reform its teaching. It
will choose and plan curricula even planning model lectures if
necessary
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CMESG can start conducting pilot projects of incorporating computers
into the mathematics curriculum, encouraging teachers to experiment
using computers and to compare results. We should be setting up a
network with computer conferencing functions which allows members
to send and receive data. Using electronic mail we can reach the
mathematics teachers across Canada. CMESG must provide guidance
and leadership.

Another and last point I have to make, which we can also do as a
group is that we must raise the level of mathematics interest
among our first and second year university students. Our best
students come to us excited about their good scores in Euclid or
AHSME. They are enthusiastic about mathematics competitions, and
then what do they get in their first year of university? The
Putnam examinations. Disaster!

So I recommend that we organize across Canada competitions or a
paper on mathematics, even a group project on mathematics and its
history for these undergraduate students. The level of the
competitions must be somewhere between high school and Putnam
examinations. The paper can be an expansion on ideas of theorems
and problems from undergraduate mathematics, while the group
project can be something similar in which students are working as
a team. Such activities will give the opportunity to members of
our group to work together, to gain support of many more members,
increase the membership for CMESG and raise the level of our
mathematics education. It will also bring together undergraduates,
create a further inducement for our calculus students to do
mathematics. It will demonstrate our commitment to encouraging
excellence. It is time for CMESG to become the leading force in
mathematics education.

I would like to thank Dr. J.L. Berggren, Ms. M. Fankboner, and
Dr. H. Gerber of the Department of Mathematics and Statistics at Sinrn
Fraser University for many helpful suggestions.



48

PANEL DISCUSSION OF
Charles Verhille

Faculty of Education
University of New Brunswick

When the Working Group on Methods Courses for Secondary School Teathc.
began the working group leaders, David Alexander and John Clark
distributad the following letter from Mathematics Teaching by
Chris Breen:

I recently tried to imagine myself an
anthropologist studying the now extinct
society of South Africa in the mid 1980's.
The only records that survive are some
mathematical textbooks. What picture would
I construct?

As a teacher education I immediately thought that this would be an
interesting task to give either pre or in-service teachers to do.
Over the years at CMESG gatherings I have gathered several gems
like this and use them regularly to enrich my teaching as well as
provide interesting environments for ,eflecting on mathematics
teaching.

My first CMESG meeting was also here at Queen's in 1979. That
meeting occurred shortly after my first acquaintance with Bill
(Higginson) and David (Wheeler) who were both major speakers in
Freder ton at a gathering of Maine and Maritime mathematicians.
This is my third CMESG visit to Queen's in the elapsed nine years.
From my first meeting I noticed that people became excized during
our otherings. Our meetings are professionally stimulating and
the approach refreshing. On numerous occasions over the years,
various people have suggested these as well as the following for
their continued attachment to CMESG:

our small size
working groups
active participation
the people
the guest speakers

Because many of our group cherish these attributes, including
myself, I am not about to suggest a future that would alter this
image in any significant way. But I do believe that it is time
for us to emerge above ground and take an active, visible role.
In that regard, I wo,,ld make four additional suggestions for
future directions of the CMESG.

First, that the CMESG actively undergo a moderate increase in
membership to give us a more representative national image.
Currently we are not represented by several provinces. Also, a
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modest increase would provide the possibility for better financial
st bility.

Second, that we assume a lobby.ng role for mathematics education
in Canada. We are possibly the oily existing group that has a (or
at least potential) national face that can legitimately address
issues related to mathematics education.

Third, that this group has an opportunity, even a responpiility
to offer its assistance to ICME 7 which is currently in the oevelopment
stages for Laval.

Fourth and last, the CMESG occasionally makes quiet noises about
publication. But other than th, proceedings, nothing happens that
is directly identified with the group. Certainly the group may
very well play a catalyst role in this regard by stimulating
individual or collaborative efforts. A publication group at an
annual meeting structured on the same style as the working groups
may be a workable format to try.

Thank you.
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PANEL PRESENTATION OF
John Poland

Department of Mathematics and Statistics
Carleton University

Since CMESG meetings are a highlight of the year for me, I'm
obviously not here to rock the boat. I've been to LMESG meetings
which were a continuous high for me from breakfast to after midnight
every day, bouncing ideas off people, people who care, like I do,
about gocd teaching, what it is and what it is L.aout. Rare people,
who have thought deeply and carefully about many aspects of education.
People with the same ideas as I and people with what seem to be
very different ideas, people willing to test me ("maybe calculators
and symbolic programming won't have any effect on the classroom
situation" - "maybe it's better not to target special help to
woman in math classes") and people willing to support me.

I teach in a uni.vel:sity setting, a ,;epartment of 35 mathematicians,
with classes from 5 students to over 200. Cost of my colleague::
fit into and believe in the standard framework: respect for good
research - original contributions to the subject matter If mathematics.
They believe in objective criteria: objective in judging the
value of research ("how important is this?", "how often do you
publish?"); objective in evaluating textbooks ("does it cover the
material?"); objective in evaluating their students: ("did they
pass the final exam? Did they know the proofs and the methods of
the course?"). And so good math teaching clarity of exposition
+ coverage of the topic, very objective criteria. What then do we
teach: the tools of math to the unwashed masses who will never
really understand the glory of math (or what we do), and initiation
to a few disciples. My colleagues believe in mathematical talent,
something that no amount of hard work can compensate for. A
university mathematician who cares about teaching can be a lonely
figure in this milieu, not only isolated (with very lw like-
minded colleagues in the same department) in the quest for good
teaching, but also attempting to grow and find self worth in a
hostile medium of publish-research-mathematics-or perish. Of
course, this individual may react in the very way one classically
sees many woman and blacks react to their oppressive environments-
producing the super, all-round mathematician who publishes excellent
research, effective in administration, growing and interest in
excellence in teaching and concerned with education issues. Even
then, one's colleagues in the mathematics department say; "Yes,
but imagine what research you could really do if you didn't waste
your time on education issues". So once a year I get a chance to
explode: to come to CMESG, lattle ideas off dozens of like-minded
caring individuals, who know !low badly matnematics can be and is
taught, at all levels. And receive their support and well wishes.
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Let me end my ranting and briefly turn to two concerns that I
would like to see CMESG in future address. One is my desire to
see CMESG promote good mathematics teaching more broadly in Canada.
CMESG is ar mbrella for its members, and this umbrella played its
(minor) role, at least as a network of support, in Claude Gaulin's
superb efforts to land the 1992 ICME meeting for Canada. My other
desire is to see a modest extension of the time spent in working
groups, to an extra 90 minutes, perhaps as at Memorial University
on the initial evening of the meeting in 1986.

i 1
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CMESG 1987

REPORT OF WORKING GROUP "A"

Members of Workgroup "A":

Hugh Allen, Queen's University
Rick Blake, University of New Brunswick
Charlotte Danard, University of Rochester
Claude Gaulin, University Laval
Ha_vey Gerber, Simon Fraser University
Bill Higginson, Queen's University
Lars Jansson, University of Manitoba
Tom Kieren. University of Alberta
Erika Kuendiger, University of Windsor
Bob McGee, Cabrini College
Lionel Mendoza, Memorial University
Barbara Rose, University of Rochester
Charles Verhille, University of New Brunswick
Leaders: David Alexander, University of Toronto

John Clark, Toronto Board of Education

Methods Course for Secondary Teacher Education

The group began by identifying issues related to the role of
teachers of mathematics in the secondary schools. This led to a
list of needs to be met by the combination of in-service and pre-
service courses.

Some of the issues identified were:

risk taking;
critical thinking;

. examination of student learning with its relationship
to diagnosis and remediation and "student talk";

. examination of personal beliefs both of students and of
teachers;

. evaluation of program and of students with related
assessment;

. the study of mathematics both as prc ess (including
problem-solving, use of technology, and values education)
and as product (including a study of new content, a
re-examination of previously studied content from a variety
of perspectives, and the i.mpact of technology);

. the features of methodology such as questioning techniques,

planning and execution of teacher-centred and
student- ceLLtred lessons;

. the awareness of curriculum change and the understanding
of the process _f curriculum implmentation.
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The usup also identified the contextual forces which influence
teacher education.

. pre-service/in-service structure
. practice teaching pattern
. backg.ound of participants in mathematics courses
. participants' instructional experiences
. tyranny of mathematics texts
. influence of associate teachers
. curriculum implementation imilosophy of Ministry/Board
. influence of unions

We considered the differing needs of pre-service teachers and .n-
service teachers both as perceived by them, and as perceived by us
anq also the differing resources that each has:

pre-service: time to interact with individual students;
opportunity to search for resources.

in-service: opportunity to try ideas with a class;
opportunity to relate newly introduced
theory to previous experiences.

This led to the sharing of the introductory activities employed in
t' e pre-service maeoematics education courses for secondary teachers
offered by members of the group.

Such activities included:

- rolc playing
- mini-lessons to peers
- lessons to high school students
- diagnosis and remediation experiences
- simulated evaluation experiences
- assignments, tests, or simulated teaching experiences

to raise awareness of weaknesses in content
- problem-solving activities
- activities to involve students in styles of questioning

and basics of lesson planning

Further sharing of ideas related to more long-term strategies:

- jot.rnal writing
- modules produced by "editorial boards"
- technology as a classroom aid
- technology as a medium in the production of 'modules

GO
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Three specific problems were identified which require farther study:

1. In most one-year pre-service programs for secondary
teachers *:fete is insufficient time to deal with all
the issues sufficient depth, yet there is no assurance
that teachers will receive any further opportuniz.les
to extend their knowledge in a systematic way.

2. The role and status of associe, ..eachers needs to be
enhanced so that the benefits that their potential
contribution to the development of pre-service and
practising teachers is realized.

3. Practising teachers need opportunities to upgrade
their knowledge and skills in relation to the use of
technology, content, and process components.

The group recommends that future meetings include study groups
which over a number of years would address:

1. in-service teacher education for elementary scrool and
secondary school mathematics

2. mathematics education component of elementary teacher
pre-service education

3. mathematics education component of secondary education
(i.e. don't wait 10 years for another run at this topic)

We also recommend that a topic group next year might well focus on:

Writing in the classroom (We would like to hear more of
Barbara Rose's experience with journal writing).

Resources:

Morris, R. (ed.), Studies in Mathematics Education.
The Education of Secondary School Teachers of Mathematics,
Vol. 4 UNESCO, 1985

Fullan, M. and Connelly, F.M., Teacher Education in Ontario:
Current Practice and Options for the Future.
A Position Paper written for Ontario Teacher Review.
Ontario Ministry of Education, 1987

Johnson, D.A. and Rising, G.R. Guidelines for Teaching
Mathematics (2nd edition), Wadsworth, 1972

Skemp, R.R. The Psychology of Learning Mathematics.
Penguin, 1971
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Farrell, M.A. and Farmer, W.A. Systematic Instruction in
Mathematics for the Middle and High School Years.
Addison-Wesley, 1980

Osbo-ne, Alan (ed.) An In-Service Handbook for Mathematics
Education, N.C.T.M., 1977

Corbitt, M.K. (ed.) The input of Computer Technology on
School Mathematics: Report of an N.C.T.M. Conference,
Mathematics Teacher, April 1985, pp. 243-250

Taylor, Ross (ed.) Professional Development for Teachers
of Mathematics - A Handbook. N.C.T.M., 1986
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WORKING GROUP B

THE PROBLEL! OF FORMAL REASONING IN UNDE'qRADUATE PROGRAMS

David Henderson
Cornell University

David Wheeler
Concordia University
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Working Group Title: The Problem of Formal Reasoning
Sta-ting Premise: Rigour and formalism are powerful tools of
mathematics but are not the goal of mathemaacs. The goal of
mathematics is understanding and meaning.

Working group B was atteIded by 18 people. There follows personal
re-ports by 9 of these participants. Sc:fie quotes were read which
not us started:

In mathematics, as in any scientific research, we find two
tendencies present. On the oLe hand, the tendency toward
abstraction seeks to crystallize the logical relatior inherent

in the maze of material that is being studied, and to correlate
the material i% a systematic and orderly manner. On the
other hand, LI:a tendency toward intuitive understanding
fosters a more immediate grasp of the objects one studies,
a live rapport with them, so to spe-k, which stresses the
concrete meaning of their relations. David Hilbert (from
the introduction to the book Geometry an6 the Imagination
by Hilbert and Cohn-Vossen).

It is impossible to understand these definitions (of
continuity) until you already know what continuity is.

R.H. Bing (Elementary Point Set T000logy, Slaught Memorial
Paper #8).

It is in the intuition that the ultima ratio of our faith
in the truth of a theorem resides. ...The evidence leading
to persuasion results from having a sufficiently clear
understanding of each symbol involved, so that their
combination convinces the reader. ...No elaborate axiomatic
structure or refined conceptual machine is needed to judge
the validity of a line of reasoning. Rene Thom ("Modern"
Mathematics: An Educational and Philosophic Error?,
American Scientist 59 (1971), 695.599.

During the workinr, sessions we discussed and compared the formal
and non-formal . athematics. The table on the next page is a
summary of this cu.scussion and comparison and was prepared during
our discussions.
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NON-FORMAL

Intuitive

Can present the whole

Expressing what is seer

Living

Multiple definitions

Tmmediate and direct under-
standing

Direct seeing

Analogue and pictorial

Student is the producer anu
has more of a sense of power

Misconceptions are illuminated

Interaccive

Is imprecise and therefore
shows the need to be careful

How mathematics is discovered

Is difficult to apply in some
areas

Friend

Trust

Intimate

FORMAL

Abstract,

One meaning at a time

Emy%asizes or reduces to logic

Mechanical

Logical consistency

Reduction to an (axiomatic) basis

fear of inconsistency

Connectional understanding

Digital and logical

Student can reproduce without
understanding

Misconceptions are obscured

Is bound to a specific formal
context

Is precise and therefore often
illusion of safety

How mathematics is presented

Extends intuition into other
areas

Enemy

Fear

Distant

It was suggested that these differences along with the emphasis in
schools on the formal may be a major twItor ia the lack of
participation of wlmen in mathematics today.
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FEAR, SAFETY AND DANGEROUS THINGS: REASONS FOR BELIEF
David Pimm, The Open University, England

Residues

As my colleague John Mason is fond of commenting, there is a
dangerous myth going around that people learn from experience. He
prefers to assert that the best that can be claimed is the Possibility
of learning from reflecting on 3xperience. Pearls Nesher gave an
evocative instance of a classroom where 'we learn from out mistakes'
was apparently a shared belief, but pupils were unable to say what,
it was that they had learnt. There is a related (possibly apocryphal)
story in the LOGO community about the nine-year-old who had learnt
that the response "I'm debugging procedures" to the question "What
are you doing" was very effective in causing an adult to pass on
to bothering someone else.

Rather than attempt to give an account of (or even to try to
account for) what happened in the Working Group on Formal Reasoning,
I have chosen to offer some of the resiaues that I came away with
for reflection and therefore possible learning.

Words

The first level of sediment is provided by individual words,
evocative and potent, forming into clusters.

logical, rigorous, abstract, explicit

cleanse situation of extraneous elements (contaminants, hygiene)

generality, power, precision, ambiguity, clarity.

But it was also possible to listen behind the words that were
being spoken to how they were being used to convey ocher, more
subtle and covert meanings. It is possible to hear values expressed
in the tone with which some of these words were being uttered.
Such tone-rich talk is one of the feeble ways in which mathematicians
communicate the values of part of the mathematical community; that
is, the way mathematicians talk about what they do.

External Quotations

These were some of the thoughts of
were offered either as support for
for discussion. 'Rigour is not the
Hilbert.

others outside the group that
claims or as starting points
enemy of understanding' David

'If certainty is not to be found in maths, then where is it to be
found' David Hilbert
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'It is impossible to understand these definitions (of continuity)
until you already know what continuity is' R.H. Bing.

'The Greek style of proof involves drawing the right picture and
then saying the right ..sings about it' David Fowler.

Internal Quotations

Things always are lift out of proofs - frequently on the
choice and judgement of presenter.

Formal proofs can fool students into thinking they can be safe.

Our culture makes certain ways of mathematising accessible
and others inaccessible.

One powerful but dangerous practice of mathematicians, that
of detaching the symbol from its referent and working solely
with the symbols, is a semantic pathology.

As a student I experience a sense of power as a producer of
one's own knowledge.

I study mathematics in order to learn about myself.

Some Problems of formal reasoning

stability of conceptions.

working outwards from mathematicians' definitions rather than
inwards from everyday lanbuaga and experience.

fee.r of pictures. One answer to question of why formal
reasoning - apply in places where no geometric intuition
available.

ways to encourage students to develop discrimination about
mathematical arguments.

SOME COMMENTS ON FORMAL REASONING
Ed Barbeau, University of Toronto, and Gila Hanna, OISE

That reasoning is a pedagogical issue at all bespeaks a conviction
that mathematics is a dynamic rather than static process, in which
student progress towards deeper levels of insight and skill.
Thus, a classroom activity, including formal or informal reasoning,
can be judged insofar as it enhances or retards greater understanding.
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At the beginning is the naive idea, rooted in everyday experiences.
To provide a base for further work, the idea must be clarified.
This involves a degree of formalism. A language is created;
symbols are defined; their rules of manipulation are specified;
the scope of mathematical operations of delineated. Greater
precision is afforded, so that the essential can be separated from
the nonessential and greater generality is achieved.

However, a price has to be paid. Becoming removed from the original
context, the student loses a sense of being connected with reality
and becomes a symbol pusher. Experienced mathematicians have
learned to handle this danger by acquiring the ability to make
mental shifts in moving among levels of generality and formalism,
and to build on specific examples, drawing on only those
charac:2ristics pertinent to a more general situation under study.
They exploit symbolism and algorithms to work automatically and
efficiently, and yet can intervene to monitor the accuracy and
effectiveness of their work.

What are the issues to be kept in mind in teaching mathematics,
and in particular developing reasoning power?

1. Formalism should not be seen as a side issue, but as an
important implement for clarification, validation and
understanding. When there is a felt need fcr justification,
and when this can be provided to the appropriate degree
of rigour, learning will be greatly enhanced.

2. It is not enough to provide mathematical experiences. It
is reflecting on experience which leads to growth. As
long as students see mathematics as a black box for
instantaneous productior of "answers", they will not
develop the necessary patience t./ cope with their minds'
erratic paths towards grasping what the mathematics is
about. One goal of pedagogy should be to help pupils
maintain a level of concentration to negotiate a line of
reasoning.

3. Ironically for a discipline touted as precise, the student
has to develop a tolerance for ambiguity. Pedantry can
be the enemy of insight. Sometimes, an explanation is
better given pictorially, loosely, by example or through
an analogue; sometimes distinctions are better left
blurred (e.g. the various roles of the minus sign, the
use of f(x) as both the function and the value of the
function at x), and sometimes a symbol varies its role in
the discussion (e.g. the parameter which is now held
constant, now allowed to vary). At the same time, when
genuine confusion might develop, the student must become
conscious of looseness and apply the necessary amount of
rigour. It is this judgmental aspect of reasoning,

t
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essential in mathematics education, that should be
communicated to students.

Mastering mathematics is like mastering a musical piece. There
are tecbnical and conceptual problems which must be first handled,
often by isolation from the larger task (learning the notation,
analyzing the key and time structure, negotiating scales and
arpeggios) before the final synthesis can occur (dynamics, rbythm,
lterpretation).

CON'"INUUM :ROM NON-FORMAL TO FORM REASONING
R.S.D. Thomas, University of Manitoba

t- the non-formal extreme there is the situation, the actual
content of which is sometimes unclear, in which a conclusion can
be immediately seen. Such a conclusion depends upon the situation's
being generic if the conclusion seen is to be .egarded as a general
or-v. At the formal extreme there are chains of reasoning where
the connection between successive links :3 clear but the wood
cannot be seen for the trees; there is no inkling of the conclusion
in the hypotheses and no hint of the hypotheses in the conclusion.
Between the extremes there are stages making a proof more careful,
more sywbuiic, some rigorous, more lengthy. In -ome examples an
informal proof cannot itself be made formal, but a new tack needs
to be taken, e.g., when a result seems somewhat plain but must be
proved by induction. However, in some examples, many intermediate
stages do exist. Wherever a specific argument lies on this continuum,
it can always he taken further; at no point is absolute certainty
achieved. At .to point should an instructor or the instructed by
entirely uncritical.

INFORMAL GEOMETRY IS THE TRUE GEOMETRY
David W. Henderson, Cornell University

In the schools today formal geometry (with its postulates, definitions,
theorems and proofs) is usually considered to be the apex or goal
of learning geometry. Informal geometric topics and activities
which do not fit into the formal structures are often given sec,nd
class status and rr egated to the domain of mere motivation or
help for those who are not smart enough to learn the "real thing" -
formal geometry. I am a mathematician and as a mathematician I
wish to argue that this so-called informal geometry is closer to
true mathematics than is formal geometry. I do not believe that
formal structures are the apex or goal of learning mathematics.
Rather, I believe, the goal is understanding - a seeing and
construction of meaning. Formal structures are powerful tools in
mathematics but they are not the gt.. 1. I don't blame teachers for
giving formal geometry too much emphasis; mos_iy I blame my fellow
mathematicians because :e have done much to perpetuate the rumor
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that formal systems are an adequate description of the goal of
mathematics.

As an example consider ...he notion of 'straight line'. I claim
that this notion is not now and never could be entirely encompassed
by s formal structure. I am talking here both about the notions
of 'straight line' as used in everyday language and the notions as
used by mathematicians. In fact, these various notions are closely
interrelate' through the felt idea of straightness that underlines
them all. Ask any child who hasn't had formal geometry or any
research geometer and they will te'l you that "straight" means
"not turning" or "without bends". (Of course the research geometer
is likely to mumble something containing the formal notions of
"Affine connection" or "covarient derivative", but if pressed for
wi.-t that means he will admit that it is a formalization of "not
turning".) Now "not turning" clearly has a different meaning from
"shortest distance". So both the child and the researal geometer
have a natural question: Is a "non-turning" path always the
"shortest" path? And, if so, Why? They then look for examples of
"non-turning paths". (The child can do this by imagining and/or
observing nor turning crawling bugs on spheres and around corners
of rooms.) They can then convince themselves the* the great
circles are the str.';ht 1i7Les on the sphere. (Thi. 's not something
to assume, it is something to check; and it has meanir, in the
sense that a crawling bug on the sphere whose universe is the
surface of the sphere will experience the great circles as straight.)
It is then clear that going three-quarter, of the way _round the
sphere on a great circle is a straight path but not the shortest
path. (Going on, ,quarter the w y around in the opposite direction
is shorter.) Thus a straight path is not always the shortest.
(This can also be seen in situations where it is sometimes a
shorter distance to go around a steep mountain rather than to go
straight over the top.) But on the sphere it is true that every
shortest path is straight. So the question becomes: Is the
shortest path always straight? The research geometers have proved
that this Is true on any smooth (no creases or corners) surface
which is complete (no edges or holes) and the basic ideas of their
proof can easily be conveyed to high school students. But then
the child might think about a bug crawling on a desk with a rectangular
block on it and notice that there are two points on either side of
the block such that the obvious straight path joining these points
is not the shortest path and the shortest path not straight.
These explorations, whether by the child or the research geometer,
are a good example of doing mathematics (or in this case, doing
geometry) and they are not encompassed by any formal system. The
mathematician will use formal systems to help in the explorations
but the driving force and motivation and ultimate meaning comes
from outside the system. It Comes from a desire which the
mathematician shares wi..11 the inquisitive child - the desire to
explore the human ideas of "straightness" and "shortest distance".
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So, should we teach formal structures? Definitely, yes. But not
in geometry. The power of formal structures does not come through
clearly in geometry - it would be better to look at the formal
structure of a group with its -carious examples in geometric symmetry
groups and number theory. The emphasis on formal structures in
school geometry obscures the meaning of geometry and does not in
the context in which it is used add any power.

REFLECTIONS ON FORMAL REASONING
Raffaella Borasi, University of Rochester

Through reasoning seems to be an essential 1-art of mathematics
(despite what students and high school curricula seem to believe!)
it was very valuable for me to realise that there are fundamentally
different kinds of mathematical reasoning. We identified two
dimensions (at least) that could be considered to this regard:
informal vs. formal, and non-rigorous versus rigorous (this last
being rather a continuum that a dichotomy. It was quite a discovery
for me to realize that these two dimensions are distinct ani
rather independent, and I think it will be worthwhile to explore a
bit more, conceptually, what are the similarities, differences,
interactions, between them (at the moment, I'm a bit confused to
this rpaard). In rartirnlsar. T wish T hart stImP mnrp Pxamnlps of

what mathematicians would consider as "acceptable informal proofs",
to analyze.

Whatever the results of the prior exploration, through the dismssions
in the working group I here come to realize the almost total
absence of informal reasonine; in the math curriculum, and I think
something should be done to change this situation. I don't buy
the argument that students should learn first to deal with mathematics

formally (even if that bears little meaning for them) and then,
almost m-gically, they will leap into creative mathematical thinking,

which involves reasoning to which they have not been trained in or
even been exposed to. If formal and informal reasoning are different
kinds, I think it follows that from the very beginning students
should be exposed to both. I am looking forward to reading of any
k.xreriencc which has attempted to introduce math students (at any
level) to informal reasoning.

I'd like to come back, once again, to the affective aspects involves.
in this d4s,:ussion. During our working group discussion, I felt
that many affective reasons (including our conceptions of the
nature of mathematics as well as less "intellectual" emotions)
were governing the behavior of many of us. II the insistence that
formal proofs were to be requested from students, one could see

--e or less explicitly expressed) ti.a fear of pathological case:
and unforeseen circumstances which could threaten the intuitive
argument, the search for the security in teaching to the students
only "right" things (how would we feel, then, if we had to teach
history or literature, instead of mathematics?), a distrust in the
students' ability to ret ,;nine the relative value (i.e. limitations)
of their intuitive arguments and to benefit from mistakes. How
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much is an emphasis on formal arguments, then, just to cover for
our insecurity as mathematicians m.d mathematics teachers, and an
illusion that we are avoiding mistakes and working only with '.:.rue
things? Similarly, we may question. if the students who do like
working with formal proofs are also showing the same lack of
courage, and thus if we are hurting them, too, by fooling them
that what they are doing is what researcher mathematicians do, and
that mathematics is a totally true and safe environment.

LOOKING BACK
Alberta Boswall, Concordia University

In asking myself the question "What happened?" I return to the
first day and my own initial question - Why is it that students
supposedly trained in 22me kind of logical reasoning (e.g. truth
tables) very often fail t3 use this background in their college
matho atics courses. One seems to be completely divorced from the
other. Are we asking too match in expecting at least some understanding
from the presentation of 4 reasonably reasonable logical process?

As for formal and non-formal, I think that these are labels we
have been trained to pin on certain proofs that follow a prescribed
pattern. Not only that but also that one is mor., valuable
(mathematically L:eaking) than the other. There may not in fact
be an et-y distinction. As for formal and non-formal reasoninz
tINFArp rws, h. vi.en 1... 4n.c.^--e0

intuitive and not as carefully presented. When one gives a detailed
written or spoken expression of informal reasoning then one hopes
that we have entered, if not a formal stage then at least a more
formal one. If in a classroom we try to fill in the missing gaps
in either informal and formal reasoning we run the risk of becoming
boring, pedantic and repetitive. We begin to debate (if only with
ourselves) issues which students regaLd as unimportant and irrelevant.

It occurred to me at one point that perhaps the teaching of mathematics

involves a successive shattering of belief systems from one level
to the na,:t. My examples are: a smaller number is always subtracted
from a larger number - or if r(x)-0 then f(. :) has extreme values
at solutions.

We should be helping students to gain power and confidence in
their own reasoning abilities. Can we promote this? Can we
present careful _easoning reasonably? Ought we to present occasionally
reasoning which seems reasonable but which leads to a false conclusion?
e.g. All triangles are isosceles.

If I may paraphrase a line from the paper Proportion: Interrelations
aLd Meaning by Avery Solomon in For the Learning of Mathematics-
perhaps not every pr,- position has to be carefully reasoned, but
certainly some should.

Students I think, have the right to expect that all propositions,
if true, can be supported by logical reasoning - either formal or
non-formal.

4
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A lot of things happened in this stimulating and even exciting
group.

FORMAL REASONING AND LEARNING MATHEMATICS
Constance Emith, University of Rochester

My opening thought was how does "formal reasoning" relate to
making mathematics your own as a student. I believe we reached
that point in the sense that we are concerned with that issue but
did not finish developing the relationship. Ideas that came out
were that we should (could?) build from the students' intuition to
informal reasoning to finally formalizing their own mathematics
The quote from Bing concerning the definition of continuity clarifie
some of these ideas for me.

Other important poi-As:

relation to creating doubts for students and then allowing
them to try to resolve them
correlation between philosophy's sign,..ignifier and
signifier and mathematical symbolism
importance of developing meaning at both ends of the
process; we should not leave the students with the feeling
that the result has only that meaning. We aunt rpinre
our results to the mathematics and the world
the influence of the students belief system and our
impact on those systems.

SOME THOUGHTS ABOUT OUR DISCUSSIONS
Dan Novak, Ithaca College

The central core of the conference was, in my view, how to make
learning mathematics meaningful for students. Our group focused
on formal reasoning and out of an attempt to clarify and define
the concept, it happened that ways of tLinking and modes of
understanding of the participants have shifted and changed. It
was apparent, at least to me, that a definition or formal reasoning
upon which everyone could agree, was not necessary any more. What
I found happening was F process of changing my views about teaching.
The non-formal way of presenting materials will become more frequent
in my classes and I will try to look for other ways of presenting
and looking at problems myself. (Shifts of .,reativity). One way
of looking at problems will be also the Formal Way, but one needs
to come back up to the fresh air of meaning of ideas. Otherwise
creativity, by and subsequently learning will die.
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SMALL GROUP WORK IN THE CLASSROOM

Partic17,ants: Tasoula Berggren, Dale Drost, Gary Vwelling,
Olive Fullerton, Malcolm Griffin, Fernand Lemay, John Poland,
Marilu Raman, Pat Rogers, Joan Routledge, Daiyo Sawada, Suzanne
Seager, Avery Solomon, Peter Taylor, Lorna Wiggan.

Introduction

In traditional classrooms students often earn to view mathelatics
as a fait accompli, something that is gi.en rather than created.
They learn that it is a collection of rules and procedures, an
environment where there is only one right answer to the teacher's
questions and one which, for many, causes great anxiety. Students
experience little control over their own learning and are not
usually encouraged to share their ideas with each other or to work
together towards a common solution. Research suggests that smali
group learning in which students work cooperatively leads to
superior achievement in problem solving and higher thinking
to positive attitudes towards a subject e,ea and to great motivation
to learn. The purpose of the working group was to er le small
group learning strategies in the light of recent re' h and to
identify those strategies which might be used effect -ly at the
post-secondary level. The interests and experience of the group
members ranged fr:m elementary school to the university level. A
variety of book' and articles were made available during the three
sessions but tt.re was insufficient time t, examine them in detail;
these are listed in the bibliography.

Session #1

Pair-interviewing was used at the beginning of the first session
as a means of building community in our group. Participants were
asked to find a partner they did not already know and to take
turns interviewing each other for five minutes to exchange roles.
After this exercise the whole group reconvened and partners introduced
each other to the group.

The pairs functioned in a variety of w..ys. Some pairs adhered
very closely to the instructions and tb.s prodaced some excellent
introductions. Others completely ignored the instructions and
found that their session bcame a discussion, the result being
that some introductions were more about the 4nterviewe- than the
interviewee. One early introduction was so good that it provided
a model for the later introductions. This created feelings of
inadequaly for those who felt unable to live up to the example and
a certain amount of discomfort and isolation for the 1.mccellent
student." Perhaps more care should have been taken to Insist on
adherence to the interview format. Nonetheless, there was general
agreement that this was a useful strategy for groups of people who
did not already 'mow one another, that the provision of questions

a
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helped to break the ice and focus discussion and that, omitting
the final introduction phase, this might be a good way to build
community in a class.

For the remainder of this session, participants worked in small
groups on two cooperative tasks.

The first task was a communication situation between two students
in which one produced a written or oral message for the other in
order to g' "nfornation essential for that student to complete
an essignec cask. The task used here was adapted from Laborde
(1986). Partner A of the pair received a card on which was drawn
a simple geometrical figure with a supplementary line of a different
colour. B had a sheet with a similPr but incongruent fi_ire, a
different orientation and no supplementary line. Both partners
were aware of the details of the situation as described. A's task
was to describe the supplementary line without drawing so that B
would be able to reproduce it perfectly. The purpose of this task
was to focus, in the context of a mathematics problem, on the role
of language in a cooperative activity.

The second activity was one of a series of small group cooperative
geometry exercises developed by EQUALS to teach students cooperative
skills. The exercise we used here was a complex spatial task in
which each member of a group of four people had resources essential
to the group's effort to solve the problem. Four congruent hexagons
were divided in different ways into four pieces. The pieces were
'abelled A, B, C, and D, sorted by letter into four sets and
_lipped together. Groups of four were formed. Each group received
an envelope containing the four clipped sets and were instructed
as follows:

. No talking!

. Each member of the group gets one clipped set of shapes.

. No one may take a shape from anyone else but may offer
a shape to someone who needs it.

. The group is done only when all four members have completed
their hexagons (Erickson, 1986).

ere were various responses to this task. Undoubtedly the most
aifficult and frustrating part of the exercise for everyone was
observing the rule of silence. One person commented that his desire
to talk was so great that it created enormous tension for him and
interfered with his ability to concentrate on the task. Evidently,
for some, talking is a way of lessening pressure when solving
problems. On the other hand, it was also quite clear that the
rule of silence facilitated our learning hey poorly we cooperat^
and also highlighted the fact that cooperatiN2 skills do need .,
be learned. One participant was alienated by the artificial
natur- of the task and found himself wishing he was elsewhere.
This was likened to the way many of our students feel about textbook
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word problems. One group so hated the imposed structure that the
members either disregarded the rCes completely or else conspired
to find ways around them. Nonetheless, despite the hostility
expressed, or perhaps even because of it, the experience of working
together on this activity evidently succeeded in fostering very
strong group feelings.

We concluded this session by formulating an agenda for discussion
in the remaining sessions:

1. competition;
2. time (space, size);
3. communication of mathematical ideas;
4. learning styles/teaching styles;
5. evaluation;
6. individual learning/cooperative learning;
7. open-ended/specific-ended investigations;
8. "group" theory.

Session # 2

We decided to base our discussion of the agenda above on personal
experiences with small group work. There was a rich variety of
e=7,eriel-ILL I. ...acuaLized

Small Grout Work Within Lecture Class

There was a brief discussion of the use of small tutorial groups,
and lab/problem sessions to provide students with cortact with
their lecturer and immediate feedback on their understanding of
concepts introduced in lectures. John stressed the imi-ortance of
the physical aspects of the room he has chosen for this purpose:
high tables and stools so that the students have to lean forward
and engage. However, in this kind of activity the students are
often working alongside one another rather than together. By
contrast, Pat descrioed her use of "pairing" during lectures
whereby students form pairs to work together on a problem, to
investigate or discuss an idea that has just been presented, or to
generate data for ensuing whole class discussion.

Group Proiects

Many of us had assigned group projects to our students. In a
large statistics course, Malcolm assigns projects to group of at
most four students and has found that while there are obvious
administrative advantages in terms of the decrease in time spent
grading, there are also a number of problems: some groups waste
all the time set aside for beginning the project in trying L:o set
a date for the next meeting; others work independently on small
parts of the project and then attempt, usually unsuccessfully, to
glue it all together: there are also complaints of students'
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"piggybacking" and these are usually left to the students themselves
to handle, often in an unsatisfactory manner.

These difficulties were familiar to other members of the group and
raised a number of questions. What is the purpose of a group
assignment? Is learning to work in a group so important that it
should be mandatory or should s 'ants be allowed to choose to
work alone? Marilu observed that, in one of her graduate courses
where students were given the choice whether to engage in group
wcrk or to work 'lone, only two out of twenty students chose to
work together. Do adillt learners, or any other learners for that
matter, naturally choose to work together? Is group work really
an artificial setup, or do we simply lack the experience of working
together? Has society imposed on us the notion that we are all
individuals? Daiyo observed that it is precisely when he imposes
group work on his students, or prescribes the size of the groups,
that problems arise. Perhaps choice is the key.

Another important question: should the product of group work be
evaluated and how? In the absence of any real training in
collaborative skills is it fair to grade the outcome? Yost proponents
of cooperative learning argue that group grades should not be
assigned if this is the only grade the project will receive.
The" Are MAnV wAyR of Pv.1:14-4^g grnr7 work 1.4,44.

elements of teacher-evaluation, peer-evaluation and self-evaluation
(see, for example, Johnson, D.W., & Johnson, R.T., 1987). In
support of this view, Gary offered his wife's success with evaluating
group work in his way.

Interviews

Tasoula s ggested that oral interviews might Le a good way to
evaluate ...ne individual's contribution to a group project. Avery
has used interviews as a means for evaluating his own teaching and
determining the direction of future lectures and Olive uses interviews
to get to know hex teacher candidates at the beginning of each
year. Interviews with pairs of students seem to be most successful
when used for these purposes. Both Avery and Olive observed that
these interviews have had an enormous beneficial influence on the
atmosphere in the class afterwards.

Structuring Small Group Activity in the Classroom

A distinction needs to be drawn between the use of group work as a
pedagogical device within the classroom and the use of group
projects and assignments where the activity of the group takes
place outside the classroom. Our collective experience of group
work within the classroom ranged widely in kind and with respect
to the amount of structure which was imposed.
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1. At one end of the spectrum was Gary who prefers to have teachers
in his inservice workshops move freely in and out of working
in pairs as the need may be.

2. Tasoula described her experience with students working together
in groups of four at the blackboard. (See also Davidson et
al., 1986?)

3. Fernand described in detail his experiment with a class of
thirty Grade 6 girls working on mathematical investigations in
geometry. The children divided themselves into two groups;
these groups in turn split in two and so on until the class
was divided into pairs (see also Gorman, 1969). The names of
the members of each group were recorded on a large sheet of
p -per. The main rule established was that the child must
first work on a problem alone; when stuck she may then seek
out her partner in her pair; if the pair needs help they seek
out their partner pair forming a quartet and so on. Theoretically
this might continue until the whole class is reconvened,
howeve', it was found that there was usually a preference for
a group of four. This format is reminiscent of a rule which
teachers who work with LOGO often adopt. This rule, known as
"Ask three before me," requires a student, or a pair of students,
to consult with three other students, or pairs, before seeking
assistance from the teacher.

4. Lorna briefly outlined the basic characteristics of cooperative
learning:

Students work in small heterogeneous groups and sit closely
together so that face to face interaction is facilitated;

Students work in positive interdependence - this means
that each group works on one assignment, with one piece _f
paper and pencil, or one piece of chalk if working at the
blackboard and they produce one product - they are constrained
to depend on each other and work together;

There is high individual accountability through shared
evaluation. Students evaluate themselves and know in
advance what skills they will be expected to evaluate
themselves on. Sometimes observers are assigned to help
group members assess how they are improving their group sills.

Interpersonal and small group skills are taught - rules
for working together are established, collaborative skills
may be modelled by the teacher who may also choose to work
on a distinct skill each day. Group work skills, as well
as content, are processed.
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The objectives of cooperative group learning are two-fold: there
is an emphasis on the group process as well as on the content.
Initially, there is more focus on developing the social skills and
less on the content. But later, as the students become more
skilled in working together, the stress shifts to the content. As
students become more experienced with this way of working they
become more independent and the concept of the teacher as the
source of all knowledge becomes meaningless. In this classroom
climate the teacher is a facilitatlr, a guide, rather than the
"expert."

Some members of the group expressed discomfort with such
a structured approach to teaching. However, E. Olive pointed out
there is a place for i^dividual work, for group nark, for competition,
and for lectures. Really skilled teachers are able to choose the
strategy that suits the objectives they want to achieve.

5. Peter described ais work with an extremely heterogeneous group
of Grade 13 calculus students with whom he developed a process
which bears much resemblance to the JIGSAW strategy described
below. At the end of the course, he provided the class with a
set of prob'ems of varying difficulty from which each student
had to select one. Working independently, students had to
solve their own problem, write it up and have it checked by
rEtei. IR chis way, eac.h SeudiaC became all expeLL in uue UL
the problems. The class then had to 2.o as many of the remaining
problems as they could, and consult t-ith the expert for each
problem. The expert would jndge the accuracy of the solution,
giving a hint if the solution was incorrect and a check mark
if correct. The final grade for this exercise was based on
the number of check marks a student received. Most earned
full marks.

6. The JIGSAW strategy is a variation on cooperative learning in
which everybody gets the chance to be both expert and learner.
For example, groups of four, called home groups, might be
formed to investigate the properties of the straight line.
The students in each home group are labelled A, B, C, and D and
sorted by letter into other groups called expert groups. Each
expert group might work together on one specific property of
the straight line. The students then return to their home
groups to teach each other what they know and to synthesize
all they have learned together.

This approach concerned Gary who worried that we might simply
be replacing the single "expert" 'Leacher by a battery of
experts: "whereas, in the past, the teacher has cast the
student in the passive role, now you take them into groups and
have them cast in the passive role in smaller groups." There
was sotue debate as to whether this strategy makes "learning
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mathematics less a process of discovery and more one of finding
the page where the answer is. Most of the time we might want
kids put in groups when there is some ambiguity as to the
outcome and many answers, and it would be inappropriate to
think of experts."

Peer Teaching

Joan cautioned the group on the need for careful teacher training
if we are not to replace traditional methods with chaos in the
classroom She raised the issue of whether children have pedagogical
skills and observed that peer teaching, which occurs when using
cooperative learning techniques, is not a challenge for many
students. Undoubtedly, there is a tremendous amount of unlearning
that has to take place when ignorance has been pooled. However,
many members of the group felt that the language developed in
group work and in peer teaching is very important. Peer teachin,.,
affords students the opportunity to bring to the material the kind
of organization that is so essential to full understanding and
learning.

Towards the end of this session, Avery summed up the feelings of
the group beautifully: "What we need to do is to isolate those
things you can do with a small group that you actually could not
4n lqrcq grnr_ gt-1; t -L...

students to negotiate new meanings of mathematical concepts and to
make mathematics par:: of heir own individual understanding-
meanings that are invoked fr within. Our purpose is to put
students in control of their own learning. We want them to have
the experience of doing mathematics and thinking mathematically."
Peter felt that it was crucial that teeachers be provided with
printed material that inte;rates content and style of teaching.
This would seem to be a vitally important task for some members of
ov_r group to perform.

Daiyo concluded the session by listing cert- 'n distinctions which
had arisen during the course of our discussions:

1. social process/content control;
2. spontaneity/control;
3. cooperatio!e:ompetition;
4. the individual /the group-
5. the novice/the expert;
6. the means/the end;
7. life/death;
8. receiving/giving;
9. breaking /joining;

10. the group as obstacle/the group as facilitator.
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Are these dichotomies or reciprocities? Are they problems? Or
can we provide a more encouraging learning environment for our
students by keeping these distinctions in mind?

Session # 3

The intent of session # 3 was to return to the agenda developed
during session # 1. Group leaders therefore proposed that this be
done by having small groups focus on a particular agenda item
keeping in mind the distinctions developed in session # 2. People
then self-selected themselves into groups of two or three which
met for about an hour. The large group was then reconvened and
discussion was led by each of the small groups in turn. Highlights
are summarized below.

1. Evaluation [Fernand and Peter]

An analogy was made between works of art (paintings) which are
purchased and displayed in a home and the painting which the
homeowner may engage in herself. The works of art on display may
indicate that art is thriving in the home but it may be dangerous
to come to such a conclusion: The art may only indicate that the
people living there have money. Indeed, if the paintings are only
for show, then their presence foreshadows the death of art in the
bilme rArher than is-M V4/-04 47. Cften thc. 1.6

evaluated encourages, and sometimes forces, children to "display"
their acquired goods 4n the manner of pieces of art which they
relate to only for pu 3ses of display. As with the home, such a
classroom may witness more death than life in mathematics. Group
work provides the teacher with an opportunity to observe and
evaluate the alive part of the mathematics displayed.

2. Competition [Malcolm and Suzanne]

In the context of group work, competition is often minimized. Yet
without competition stagnation and sloth sometimes become problems.
Nevertheless, competition within a group can become a subversive
influence leading to the destruction of the group. How can we
have competition without subversion? One possibility is self-
competition in which the student competes with the problem, not
with others working on the problem. "To compete is to produce."
By choosing the "unit of production" (for example, a pair of
students) self-competition can be blended with cooperation.

3. Communication of Mathematical Ideas [Dale and Joan]

Usually communication as a process is associated with the learning
of mathematics rather than with the content itself. Yet it is
vitally important to get students talking about the content with
each other as well as trying to help each other learn it. In this
way communication should deal with the matheme-ical objectives per
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se as well as the processes for learning those ibjectives.
Student/teacher communi ation can help to get students talking
about tne content.

Self-communication is significant in making mathematics a personal
experience rather than a strictly objective experience with "something
out there." Self-communication with mathematics can therefore
involve commuAcation as a process for dialoguing with mathematics
as well as with other students. Since self-communication, from
the perspective of others, is often associated with silence, there
may indeed ae a vital role of "silence" in the mathematics classroom.
This kind of silence is quite different from the usual kind which
exists as a product of the t. :her who commands silence. A key
question: How does one achieve a balance between self-comnunicF Ion
and communication with others in group work?

4. Learning Styles/Teaching Styles [Lorna and Marilu)

Research consistenily reveals an incredible variety of learning
preferences. Do we as educators "use a wide enough range of
methods to accommodate all these learning styles?" Can group work
help to increase the sensitivity of teachers to these differences
and provide alternate ways of taking them into consideration?
What sort of teacher is "suited" to group work ta a way of teaching?
Are certain teaching styles more suited to the use of groups?
There is a delicate balance between helping students ay teaching
to their preferred learning styles and enslaving students by only
teaching to their preferred learning styles. Should there be as
great a priority on quid students to transcend their preferred
learning styles as there is on catering to 'nem? Perhaps a student's
prefercnce is simply a good starting point - "the art comes in
knowing when to s'-bvert preference."

5. Individual Learning/Group Learning [Gary, John and Tasoula]

There is the pervasive problem of the interests of the Flroup
interfering with the learning of the individual and vice versa.
Is all group work done simply to enhance the learning of 4nclividWmls?
Does group work have value alp of its own? If a group is a community,
then does the group as 'ommunity have value as a social entity?
Certainly mathematics can be a very individual and personal activity,
and many of the best students learn it largely on their own. Does
this indicate that mathematics has little and perhaps nothing to
do with community processes? Or do students often 1,-;arn mathematics
on their own because it is usually taught in the transmission mode
(lecturing) rather than as a community project perhaps in the form
of open -ended investigations? If educators were to loosen their
rains on the classroom, students might spontaneously choose to work
with others for E-Ae of the time in situations which naturally
arise In such situations, students might form a group when the
need arises; when the need subsi.s, they may choose to work alone



or perhaps with others. The problem of group versus individual
may be nonexistent in this setting.

A Theme for 1988

As a way of bringing closure to the three days of discussion
members were asked to suggest a recurrent theme which could serve
as a summary as well as a focus of the "FPelings Group" for the
conference in 1988. Although everyone was given the opportunity
of suggesting a theme, chesion quickly emerged around the idea of
"naturalness" as first volunteered by Gary: "... a natural way of
learning mathematics as opposed to how mathematics taught and
learned now which is quite unnatural, over-structured, always an
approximation. I'm thinking of all the happy experiences you have
had in the ways you are productive in the way you do mathematics.
I'm going to call those the natural 'ay."

Perhaps a significant aspect of naturalness in teaching is captured
in the expression, "A guide on the side rather than a sage on the
stage." As well as naturalness in the :earning and teaching of
mathematics tyre is naturalness in the content of mathematics.
Some content is focussed upon to excess, not because of its inherent
significance but simply because it occurs on tests. Some content
is studied because it is mandated in the curriculum guidelines,
but does that make it natural? In contrast, if a child were to
pursue a topic in mathematics as a spin off to an open-ended
investigation would her spontaneous pursuit be seen as unnatural?

The discuseon came to a natural end with a spontaneous remark
from Pat: "It is wonderful how a natural topic for next year
arose naturally."

In keeping with the way our working group had operated throughout
the three days of the meeting, we decided to open out discussion
to other participants who might have been interested in contributing
to the work of our group but had not been able to attend the sessions.

There were two main contributions from David Pimm of the Open
University, England and Jain Clark of the Toronto Board of Education.

In England small group activ:ty is common at the elementary level
and is now being used more and more at the sec mdary level. One
of the reasons David chooses group work is to remove himself as
the focus of attention. In the Open Unive ty Summer Schools, I
uses group work in investigation sessic with adult students.
For these sessions he deliberately chooses pairs because he finds
that domination by one person is frequently a problem in larger
groups. With pairs, turn-taking is easy to set up. Initially he
assigns students to pairs randomly, but then after monitoring the
work of the pairs, he is more selective. He has also experimented
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with the JI( AW method when working with students to explore the
meanings in a text.

There was some discussion at this point of the JIGSAW method.
Lorna has a sense that JIGSAW is more successful with older students.
But John Clark cautioned that there are some probl,ms having to do
with the nature of knowledge and knowing with the assumptions
begin. JIGSAW.

John went on to observe that while group work has become commonplace
in elementary schools in Canada, it is still rarely found elsewhere.
He first started investigative work with high school students some
ten years ago. He now miles investigations in his inservice workshops
with teachers as an introduction to group work and has been st....prised
at the excitement this activity has generated amongst grade 13
teachers. He emphasized two important aspects in setting up
successful investigative activity. diving each group good starting
points and setting up a good system for report.

BIBLIOGRAPHY

Aronson, E., Blaney, N., Stephan, C., Sikes, J., & Snapp, M.
(1978). The jigsaw classroom. Beve ly Hills, CA: Sage.

Brandes, D., & Ginnis, P. (1986). .guide to student-centred
learning. Oxford: Basil Blackwell.

Burns, M. (1981, September). Groups of four: Solving the management
problem. Learning, 46-51.

Davidson, h (1985). Small-group learning and teaching in mathematics:
A selective reviei., of the research. In R. Slavin, S. Sharan,
S. Kagan, R. Hertz-Tazarowitz, C Webb, & R. Schmuck (Eds.),
Learning to cooperate. cooperating to learn New York: Plenum.

Davidson, N., Agreen, L., & Davis, C. (1986). Small group learning
ia junior high school mathematics. School Science and
Mathematics, 23-30.

Dees, R. (1985).

increasing problem-solving
Special Interest Group for
of the American Educational
Texas.

How does working co- operatively help students in
ability? Paper presented to

Research in Mathematics Education
Research Association, San Antonio,

Erickson, T. (1986). Off and running: The computer offline
activities boolc. Berkeley, CA: EQUALS in Compute Technology,
Lawrence Hall of Science, University of California.



80

Gorman, A. (1969). TeacherE _nd learners: The interactive process
of education. Boston, MA: Allyn & Bacon.

Hirst, K.E. (19'6). Undergraduate investigations in mathematics.
Educational_Stqdies in Mathematics, 1Z, 373-367.

Hoyles, C. (1985). W t is the point
mathematicce Educational Studies in

Johnson, D.W., & Johnson, F.P. (1987)

theory and group skills (3rd ed.).
Prentice Hall.

of group discussion in
Mathematics, lk, 205-214.

Joining together. groin
Englewood Cliffs, NJ:

Johnson, ').W., & Johnson, P.T. (1987). learning together and
alone: Cooperative. competitive, and individualistic learning
(2nd ed.). Englewood Cliffs, NJ: Prentice Hall

Kagan, S. (1985). Cooperative learning resources for teachers.
Riverside, CA: University of California Department of Psychology.

Laborde, C. (1086). An example of social situations in mathematics
teaching: communication situations between mils. Response
to the Working Group: ',octal Psychology of Mathematics,
Tenth International Conference for the Psychology of Mathematics
Education, London, England.

Sharan, S., & Sharan, Y. (1976). Small group teaching. Englewood
Clif:6, NJ: Educational Technology PuLlications.

Slavin, R., Sharan, S., Kagan, S., Hertz- Lazarowicz, R., Webb, C.,
& Schmuck, R. (Eds.). (198'). Learning to cooperate. cooperating
to learn. New York: Plenum.

Webb, C. (1985). Cooperative learning in mathematics and science.
In R. Slavin, S. Sharan, S. Kagan, R. Hertz-Lazarowitz, C.
Webb, & R. Schmuck (Eds.), garrdr_Lo cooperate. cooperating
to learn. New York: Plenum.



TOPIC GROUP R

WORKING IN A REMEDIAL COLLEGE SITri-TION

Annick Boisset
John Abbott 17ollege

Martin Hoffman
Queens College (CUNY)

Arthur Powell
Rutgers University (Newark)

81



This one-hour Topic Group began with a brief discussion of the context
in which remediation in mathematics at the college level occurs.
Acknowledging inherent dif Eerences in each college setting, the discussants
agreed that students in their remedial courses tended to exhibit certain
common characteristics, among which are that student:

have sewn the material (several times) before.

hold belief systems about mathematics that have been convoluted
is time in ways not found in younger students.

have negative attitudes about mathematics.

have poor study habits.

are not attuned to understanding in mathematics.

exhibit low achievement levels based on standardized tests.

In spite of these difficulties, the discussants feel that progress can
be realized through activities which promote mathematical thinking.
This became the central theme for the topic group discussion.

Annick Boisset discussed a technique of wide applicability, called
Reverse Problem Solving (RPS), she has developed for teaching problem
solving skills. She demonstrated through several examples the pedagogical
utility of RPS in which students are asked "to construct in their own
words a problem statement to match a given worked out solution "1 RPS
contains both inductive and reductive comronents, promotes thinkirg,
seems to alleviate fears for some students of attempting problems, and
can be used effectively as a diagnostic instrument.

Arthur Powell discussed techniques relating co the affective domain, in
particular the use of writing as a device .Eor having students become
more reflective about their mathematical activitie. Pe outlined
several forms that the writing might assume including free writing,
focused writing, summary writing and j' sal..

Tie session ended with a brief discussion by Martin Hoffman of some of
the difficulties that arise when atternting to evaluate student's
progress. It was noted that standard evaluative instruments are often
rot able to measure the effect of techniques such as those mentioned in
this discussion.

1 Boisset, Annick. "The Reverse Problem Solving Method:
Diagncaing Underlying Causes of Inability." Paper presented
-' the National Council of Teachers of Mathematic: 62rd
Annual Meeting in San Antonio, Texan, April 1985.
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The short, but lively, question and answer period that followed indicated
an interest in the subject beyond the restricted group of CMESG/GCEDM
members who teach remedial level college classes. It was felt by the
discussants that since remediation is now a prominent part of mathematics
instruction at primary and secondary levels, that -onsideration of
remediation techniques will play a growing role in maematics education
courses.
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When pre-service teachers start teaching mathematics for the first
time, they very often experience a reality shock. Students do not
seem to respond as positively to their teaching efforts as is
expected by the pre-service teachers. To some extent this is true
for all subjects, yet pre-service teachers find it particularly
hard to motivate their students in mathematics, since many are not
particularly interested in mathematics. Motivating students in
this context does not mean getting short time attention, but
rather to induce a long tern involvement in mathematics.

If this experience occurs repeatedly during a pre-service teachers'
first student teaching experiences, then they tend to explain it
by either attributing tho reason to the students and/or to the
subject. Common explanations are: Mathematics is hard to understand;
many students lack the ability to be successful, that's why they
a.e not interested; or, mathematics is boring anyway, nothing is
going to change this, and since mathematics is an important subject,
we just have to teach it.

Obviously, the above explanations have an enormous impact on
future teaching if they become part of a teacher's general belief
system. In this case, there is a great chance that they forr the
basis for a self-fulling prcphecy. If further teacher's efforts
to motivate students are not rewarded immediately, he/she may give
up easily. Each perceived failure will in return strengthen
his/her belief that there is hardly any way to motivate those
students that are not successful in the first place.

To avoid the development of the above beliefs, it is necessary to
enable pre-service teachers to understand how some students are
motivated in mathematics, while others are not. At the moment they
recognize that motivation is the result of a learning process that
starts at the moment a student has /earned the first time about
mathematics, it becomes clear that change cannot occur over a
short period of time like two weeks of practice teaching.

Yotivation theory, based on attribution, provides a basis for
understanding how former and future achievement of a student are
interlinked and how the motivational framework of a +=lent develops.
Moreover, this theory provides a basis _hat enables a teacher to
understand his/her role in the development of a student's motivational
framework. A recent summary of research results, geared for pre-
service teachers, was done by Alderman et al. (1985). An application
of a motivational process model fot.-sin; on mathematics and a more
extensive discussion of the issue can be found in Kuendiger, (1987).

In mathematics education, the explanatory power of motivation
theory has become particularly obvious in research projects geared
understanding sex-related differences in bot'i achievement and
course-taking behaviour (sea e.g. Eccles et al., 1985; Fennema,
1985; Schildkamp-Kuendiger, 1982). It seems that the importance
of motivation and affect for the learning of mathematics in general
has become more recognize4. At the PME -XI 1987, for example, a
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whole series of papers focused on beliefs, attitudes and emotions
(McLeod, 1987).
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