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The idea that cognitive science can provide useful guidance to

the teaching of physics has been met with skepticism. One argument

is that the current understanding of cognition is too crude to be

helpful; another, that any scientific approach to education stifles the

art of teaching. Several months ago an article in this journal by

Davis Hestenes addressed these arguments and suggested that art and
1

science need not be incompatible. In that same spirit we offer several

illustrations of the ways in which cognitive science can be used to refine

the art of physics teaching.

For a theory to be pedagogically useful it should: (a) help teachers

to see things they might not otherwise have noticed: (b) provide an

overall organizing scheme (philosophy) for instruction; and (c) suggest

specific activities that can improve instruction. In this paper we

focus on one aspect of physics teaching: the physics problem. Most of

our examples will come from a two-semester introductory calculus-based

course for engineering students which R.L.G. has taught for the past five

years (current enrollment, 500 students). We will also use examples from

a small, 20-35 student, pre-physics course which has been taught by J.L.

Cognitive Development and the Direction of Learning

The essential insight of modern cognitive science is that human

intelligence is not a fixed entity but that it develops gradually from

birth through a series of increasingly powerful levels of function.
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The developmental sequence has been described differently by Piaget2,

Bruner
3
, Perry

4
, Vygotsky5 , and others, but there is general agreement

on certain aspects. The direction of growth is from the perceptual to

the conceptual, from the reflexive to the reflective. The mental activity

of a newborn infant is dominated by direct sensory perceptions and

reflex actions. Only later in life does the child acquire the ability

to organize its perceptions via conceptual structures and to modify

reflexive actions by reflection.

The direction is evidelit not only through the life span but also

during the acquisition of new concepts. This natural flow of learning,

from the concrete to the abstract, is reflected in the Piagetian based

high school curricula which Lawson describes in his contribution to this

issue. If, for example, one wants to teach students about momentum,

one usually starts with perceptual examples of objects possessing momentum.

This is the function of the demonstration lecture and the laboratory.

However, as the subject matter becomes more abstract it becomes increasingly

difficult to maintain this approach. The study of advanced topics can

only begin at the conceptual level. Hamiltonians just are not perceivable

objects, and as we shall show at the end of this paper, neither are

accelerations. For this reason one major function of the college level

calculus-based physics course should be to help students modify their

approach to learning so that it can begin with abstract concepts 6 The

fact that this involves undoing a twenty-year-old, well established pattern

is precisely why physics is so difficult to teach.

2
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What is the Instructional Purpose of a Question or Problem?

If one role of physics instruction should be to teach students

conceptual thought, how well do current physics problems measure up to

that objective? Arons sees a major shortcoming:?

"One of the weakest links in our chain of instruction
consists of the questions and exercises that are
embalmed at the ends of chapters... We are desperately
in need of collections of questions and problems that,
sensitive to the obstacles that arise in students'
minds, lead the student through the difficulties and
subtleties in thinking and reasoning that he must face
and overcome. We need questions that challenge his
curiosity and ability to perceive relationships but
that he can encompass and deal with successfully a
reasonable fraction of the time...Above all, we need
questions and problems that, gently and gradually, lead
the student into extending, inventing, perceiving
questions of his own."

Arons' point is not that the questions are bad but rather that they are

inappropriate for the students' current level of reasoning. To generate

more suitable questions we first have to understand how the students

work problems. Cognitive research (cf. Larkin, Clement, Simon & Simon)
8

'

9
'

10

contradicts the notion that student thinking is similar to that of physics

teachers, just less practiced. The methods students use to solve a

problem often bear no relationship to those intended by the problem's
effective

author. If we are to write questions we need to know how beginning

students think and how their reasoning develops over time. Again we

quote Arons:7

"In other cases, eager authors have generated rather more
interesting problems, but wittingly or unwittingly, they
have written for the eyes of their colleagues rather than
for students, and the results are problems far beyond the
readiness or immediate comprehension of the students
being addressed."



Questions and problems in physics are instructionally good to the

extent they satisfy two criteria implicit in the quotations above: (1)

they reflect the intellectual style of the scientific community and

(2) they offer students a genuine opportunity to extend the boundaries of

their intellectual competence.
Content-specific memorization, algebraic

manipulation, and formula sifting are frequently the principal means

whereby students attempt to deal with and understand physics. Many

textbook problems and examination questions are solvable by application

of specific algorithms.

The two questions below are not atypical:

Vo 21. An analysis of projectile motion shows the range to be R ----sin 20.
What is the initial speed Vo of a projectile fired at an
angle e = 450 such that its range is 800 meters?

2. A grinding wheel starts from rest and acquires an angular
rad

velocity of 15 -6- in 3 sec. The angular acceleration of
the wheel is:

a. 151E1.0
b. Ars)

; A. grad
; 0.2rsec' ' " 'TE"' '

d.
"-S-e-E2 ' sec

Correct answers to questions of this type need not reflect an understanding

of the underlying physics. The first problem is straight algebraic

substitution. The second requires a choice, but that choice can be made

solely on the basis of units analysis. Such questions can mislead students

in their quest for understanding what the subject is all about because

they confirm the notion that it is mostly formula sifting.

On the other hand, the following problem is hardly better:

3. A ball of mass 0.5kg is thrown 40m/sec at Carl Yastremski who,
alas, flies out. The ball is caught 100m away (at the same

4
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height that it was hit). The ball stays in the air for7 seconds. At what speed did the ball leave his bat?

It has been carefully designed so as not to conform to any of the

commonly memorized trajectory formulae. But the resulting complexity

puts it beyond the reach of any but the best introductory students.

Yet there is a sense in which problem 1 appears more sophisticated than

3, and we suspect many novices might feel it is a better test of

physics knowledge.

We'can only be certain that a particular problem is an instructionally

useful physics problem if we know how students in fact solve it. However,

in a large lecture course it is difficult to determine the instructional

or learning implications of correct or incorrect solutions to isolated

problems. One method of obtaining such information is to use paired questions.

Figures 1 and 2 show two questions given on the same examination to 300

students. Figure 3 shows the correlated performance of approximately

100 randomly selected students. It is clear in this example that

flexible understanding results from mastery of problem 2, but not problem 1.

Most of those students who scored over 50% on question 2 also scored high

on question 1. However, success on question 1 does not predict success

on question 2. This is true in spite of the fact that most physics texts

discuss projectile motion after the material of problem 2. Inconsistent

performance of this type is evidence of learning strongly coupled to

situational particulars. This is characteristic of Piaget's2 concrete

operational or Bruner's3 ikonic student. Their learning is dependent
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upon particulars of specific situations. Another example is shown in

figure 4. This problem was placed on a final examination in a large

course. The intent was to see the extent to which a problem forces

students to use inappropriate analysis techniques. An earlier question

on the exam had asked students to write an equation appropriate to a

quadratic function. Student performance on this was excellent. Nevertheless,

on the energy problem, far fewer students wrote a correct equation.

The second part of the energy problem gave even more discouraring

evidence. 15-20% of the students used mgx1 = hilly
2

+ mgx2 in an attempt

to solve it.

To write a question pitched at the appropriate level requires

detailed knowledge about the students. Recently, one of us (J.L.),

placed the following question on the final exam in a course which stressed

graphical methods for physics:

Ed K. is driving a car at 60 miles per hour (88 ft/sec) when he
suddenly notices that exam-crazed U. Mass students have constructed
a 10,000 lb ice cream sundae in the middle of the road 200 ft ahead.
If Ed takes 1/2sec to react and step on the brakes how fast will he
e going when (if) he hits the sundae? The car can decelerate at

20 ft/sec2.

In the course only one kinematical equation had been discussed:

x(t) = xo + vot + hat2

It was assumed that students would graph velocity vs. time and by examining

the area under the graph construct an equation relating the unknown time

to the known distance. From this they could calculate the time and from

that determine the final velocity. Viewed this way, the question

6
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requires that students bring concepts to the problem, and it does not

prompt their activity. Unfortunately, several students had looked

up and memorized the equation Vi = VI tax. For them the problem required

little more than simply selecting
the correct formula and executing

it. The given information, velocity, distance, and acceleration guided

the students' action. Even more discouraging, those who attempted

the graphical approach often were overcome by the complexity of the

problem. Thus in the end the question rewarded the type of formula

plug-in approach it had been designed to discourage. It is our impression

that this type of confusion between the intent of a question and its

actual affect is disturbingly common even among questions that have been

carefully thought out.

As our examples have shown, students have a preference for, and

ample opportunity to use, formula manipulation in dealing with the

subject of physics. We have also tried to show the extent to which

even their success can be misleading in terms of mastery or growth.

Pedagogically the situation is even more serious. The inflexible character

of the topic specific, formula centered, intellectual style is at odds

with both the discipline of physics and the developmental growth requirements

of the student.

If we are to avoid these difficulties, then we must, as Reif

suggests in his contribution to this issue, describe both to ourselves and to

our students explicitly what type of performance we are seeking. The naive

7
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interpretation of Reif's dictum would have us break down each difficult
concept into finer and finer components until students were able to master
each part. In our experience

students are capable of learning almost any
well defined operation if the need to do so is clearly

indicated and fully

reflected by the grading system. They can already do an amazing job in

memorizing formulas! But this type of mastery rarely results in flexible

knowledge; that is, what students have learned is often rigidly specific
to the original details

and reflects little understanding.

A less naive interpertation of Reif suggests that we must be explicit
in our desire for flexible knowledge; for learning that is transferable

to unfamiliar situations. Here lies a paradox; we must be explicit about

our desire for students to learn in such a way that they can use their

knowledge in novel situations. But if these situations are to be truly
novel some details must remain unexplicit. To be a test of understanding

a problem cannot explicitly tell the students how they are to solve it.

In the next section we suggest solutions to this paradox.

A Framework for Constructing Questions

Fig. 5 is the result of our attempt to impose some pattern on the

ways in which students approach problems. The idea of classifying questions

according to the type of cognitive activity they require is not new.

Perhaps the best known method is Bloom's taxonomy.11
What

we have added to the traditional
categories is a second dimension: namely,

the way in which the student acts on the question.

The three categories on the horizontal axis describe the level of

8
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conceptual sophistication required by the content of the question. An

algorithmic operation is z procedure which can be carried out on a

collection of objects: labeling something with a name, adding two numbers,

looking up sin X in a table. This type of activity can be thought of as

manipulating e jects or symbols. It does not involve the creation of new

objects or symbols. A representation (literally "repeat presentation")

involves a procedure for symbolizing objects or their interrelationships.

The emphasis here is on preserving certain critical features of the original
or letters

set: assigning numbersAto
lengths, describing velocities with vectors,

plotting points on a graph. The activity is something like copying but

can involve the creation of new objects or symbols that stand for old ones.

A transformation (literally a change in form) is a procedure for symbolizing

objects or relationships in such a way that certain aspects are not preserved.

Here the emphasis is on deliberately discarding
information in order to

generate new information: making a two dimensional cross section of a three

dimensional object, differentiating a function.

While all actions can in some sense be conceptualized
in any of our

three categories, we are interested in how the activities are consciously

conceptualized by the actor undertaking them. One may calculate the

derivative of a polynomial without consciously recognizing that the new

function has a new form and that it represents a conceptually distinct though related
quantity. One may start out with work and distance and end up with force,

a transformation, but one may also manipulate two algebraic symbols W and L

and call the resulting quantity F. This latter activity is simply an

algorithm.

9
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The three categories on the vertical axis refer to the way in which

the student acts on the question. Execute refers to what are essentially

reflexive activities. These are relatively automatic, mindless, though

by means unimportant actions. They can be conceptualized as carrying

out a prescribed series of steps as in a simple computer program. The

select category refers to situations in which the student makes a choice

among several known possibilities. These require some thought and judgment,

especially when the choices are not explicitly listed. There is a need

for the student to cast the problem into some context, to apply additional

knowledge which can elaborate beyond the content explicitly given. If the

question carries in it all the selection rules necessary for the choice,

then we would classify it as an execution problem, and not a selection.

Finally, the construct category refers to those situati.h%. in which

the student exhibits true creativity. Here th.: student creates a new

object or operation. But questions such c..s, "construct a perpendicular

bisector to the line..." normally would not be examples since they are

asked after that procedure has become a well practiced algorithm. The

circumstances which determine whether a question 4nvolves construction

depend crucially on the current state of the student's knowledge. It is

extraordinarily difficult to write questions which elicit this behavior

since they cannot be composed without a detailed understanding of the student's

knowledge and skill.

The matrix of fig. 5 resulted from a casual exercise cnncerning

student difficulties in dealing with problem situations on several levels.

idea was to present a single SITUATION asking students questions in

10
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order to inventory thei ability to function at different cognitive levels.

The words SEEING, REPRESENTING, and ACTING were selected to identify

three types of cognitive functioning making them as explicit as possible.

The SITUATION of fig.6 is a picture from Halliday and Resnick12

at the end of a chapter on statics. Eight students volunteered to answer

these questions. All satisfactorily answered questions concerning number

of rungs and free body diagrams. The startling result was that six of

the students answered the last question as h = YAEXAC)! Only two students

made any attempt to determine the height of the ladder in terms of the

presumed height of the man. Even these two evidenced an uncertain feeling.

At best they thought the question tricky, having no place in a physics

course since the nature of the answer could at best be tentative, i.e.,

what if the man was a midget or a professional basketball player?

Readers will recognize the incorrect student answer for the height

as an algorithm concerning the area of triangles. It is as though the

SITUATION prompts the use of a remembered formula concerning triangle,

because one SEES a triangle.

The same SITUATION was subsequently given to several different students,

the letters A through E being deleted. Here no one used an algorithm

concerning triangles, but all were vehement in their unwillingness to

"bring something" to the question of tallness.

What these results suggest is that students expect the answer to be

in the qestion. They manipulate the data in the question with

algorithms associated with the situation but they have no mechanism

11
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for placing the question in a context. Several years ago we made the

mistake of including on the final exam a statics question concerning a

monkey and a ladder. Earlier in the course a monkey had been involved

in a dynamics question. A full twenty five percent of the students

treated the statics question as though it were about dynamics, probably

because of the monkey.

Most students only feel comfortable with activities which can fit

in the upper left hand cell of figure 5. Our goal as teachers has been

to move them towards the lower right hand cell. In the next section we

will provide two examples of ways in which we have tried to do that.

Our techniques have been simple and they do not require a detailed

knowledge of cognitive psychology. However, our own knowledge of the

subject has helped in two ways. First it has made us sufficiently

interested in student thought to observe and categorize it. Second, it

has made us sensitive to the ambitious nature of our undertaking and,

we hope, a bit more patient with our students.

Constructing the Transformation

In ord.,T to move students out of the upper left hand corner of

our conceptual matrix, R.L.G. developed a series of exercises which

would as explicitly as possible make students aware of the type of reasoning

expected from them. Over two semesters some 25 SITUATION sheets were

written for the 70-80 students in two recitation sections of the calculus

based course for engineers. These were accompanied by frequent references,

both in lecture and in recitation on the need to go beyond algorithmic

12
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manipulation of information and to begin to think in terms of transformations.

The first problem (figure 7) was given six weeks into the course; the

results from 80 students are shown in figure 8.

Two features of the data deserve mention. Nearly a quarter (23%)

of the students showed evidence that they did not understand the meaning

of slope or velocity though they were able to correctly determine it

in the second stage of the problem. Many correctly wrote x = mt + b =
5
/2t+ 20 but reverted to M =

t 8
= 85 when asked to transform position

to obtain velocity; i.e., they reverted back to the mode in which they

were most comfortable -- SEEING.

The other aspect implicit in the data is what the outcome might have

been had the intercept in the original problem been zero. Quite likely

a very large fraction of the students would have answered all the questions

correctly. The instructor would have been tempted to assume comprehension

on their part and successful teaching on his.

The tendency of students to revert back to a SEEING type r,3ponse

when confronted with an ACTING type question has been referred to by

Bruner13 as "perceptual seduction". The exercise in figure 9 was used

with 35 of the original 80 students to seek further evidence for this

dominance of the perceptual over the conceptual. Seven students gave

the answer t = 4 seconds. Several still quoted a slope of 2 in the

REPRESENTING part in spite of considerable class discussion of that error

on the SITUATION of figure 7.

These results can be summarized by saying that students, especially

i3

15



those in difficulty, resist go.. g beyond the information given 14 Physics

teachers have realized for a long time that multiple step problems are

hard. But that description is inadequate; it is the qualitative nature

of the steps rather than the number or their sequential character that

makes them hard. Students who have only recently become capable of

formal thought tend to be perceptually bound. They look for solutions

within the problem specifics rather than by bringing general prin,.ples to

bear. Problems such as those given at the beginning of this paper

encourage the former activity rather than help students to move beyond it.

A more recent example of paired examination questions is shown in

figure 11 The correlated scores of 54 students in a large lecture course

are shown in figure 12 These students received explicit instruction

in "going beyond the information given." Problem 1 of this pair is

conventional. Problem 2 is conceptually identical to problem 1 except

for the numerical value of the acceleration. Problem 2 is not conventional

in that students are given v as a function of x and asked questions about

time t, force F, etc. not obtainable by simple arithmetic operations

with numbers given. The student must bring something to the problem.

Comparison of figure 2 and figurel2 shows overall improvement

in performance where comprehensive understanding is being tested. In

particular, the data confirms the notion that teaching for flexible

understanding reduced the number of students who perform poorly on both

paired questions and shifts many students into the quadrant representative

of doing well on both questions. The fact that all but one student in

figurel2 is in the upper half of the graph is a desirable outcome of

16



instruction. Still more encouraging is the fact that some students actually

recognize the relationship between paired questions. They become aware

of the many ways they are able to deal with a single situation.

One further comment concerning problem 2 of this pair of questions.

2 2
J.L. described earlier in this paper how students used Vf = Vi + 2ax to

solve a problem presumably not designed to elicit its use. Very few

students used this handy formula to solve problem 2 even though it is

entirely appropriate. Solutions written by students on exam papers showed

their attempt to use a variety of conceptual formulations in solving the

problem.and in particular their attempts to determine consistent solutions

from different points of view.

A second approach to moving students beyond rote algorithms has

been developed by J.L. This approach has involved a rather substantial

modification of the curriculum in the form of a prephysics course in

problem solving 15 The goal of this course has been to have students

practice transforming information between three representations: graphs 16,

English, and equations. Figure 13 illustrates the types of problems used

in this course. Throughout the semester there is a constant attempt to

deny students access to the traditional algorithms. However, as we

indicated earlier this effort is not always successful.

A critical feature of the course is that students are required to

write out detailed verbal descriptions of how they solve each problem.

This discourages mindless execution of algorithms since even the weakest

students find that approach unsatisfactory once they come to writing it

up. However, this is also the major disadvantage of the approach since

grading papers is escessively time consuming. Until that problem can

be solved the method will have only limited application.

15
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Evaluation

In both approaches students showed significant progress in their

ability to solve the particular types of problems we gave them. Figure 10

is an example from R.L.G.'s course, late in the second semester when

Faraday's law was the topic of interest. The SITUATION of figure 10 is

simply figure 9 with a relabled graph. The rate of change of magnetic flux

was now understood as operationally similar to the rate of change of position.

The general abstract meaning of slope, intercept, etc. were now more

firmly held by students precisely because they could see the utility of

such conceptions quite apart from situational specifics. The differences

between situation. specifics were now not so successful in inhibiting the

use of conceptual similarities. This is the essence of moving from

concrete operational to formal operational in the Piagetian sense. Student

performance on figure 9 showed considerable improvement. While a few

students still made errors, all students recognized the overlap in the

two problems and all had begun to distinguish between SEEING, REPRESENTING,

and ACTING. The data in figure14 shows how student performance improved

in J.L.'S prephysics course. On these specific types of problems students

were significantly better than comparison groups two to three years their

senior. However, we have no evidence that success on these problems

transfers to an overall improvement in physics ability. Data on that

issue will not be available until after these students have completed

the two semester physics sequence. On the other hand, there is evidence

which suggests that students who worked on the SITUATION sheets were able

to transfer their skills. Their average grade on the course final was

significantly higher than the average for all the other students in the course.

Unfortunately, this data does not control for differences in the recitation

16
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instructors so the inference needs further support.

Some Unsolved Problems

One prediction of Piaget's theory is that people can only learn

new concepts if they already possess the necessary building blocks.

When they do not they will assimilate what they are told to "inappropriate"

structures and may remain unaware of the discrepancy. Thus no matter how

well we prepare an instructional sequence we will fail if the students are

not ready for it.

One example is startling because of its simplicity: the concept of

acceleration. While beyond the grasp of the concrete thinker, it should

nevertheless be relatively easy for anyone skilled in formal operations.

It rarely appears as a source of serious confusion in standard physics

questions. However, when students are asked to graph acceleration as a

function of time they usually experience difficulty.

The data in figure 13 is a composite of that collected from several

schools. It shows that approximately 90% of the students who have had the

mechanics portion of a calculus based course in introductory physics are

unable to select the correct acceleration graph.

Surely this cannot be all that serious a confusion. If students

are given training in drawing graphs and especially in sketching the

shape of derivative graphs then the confusion should vanish. Their

understanding can be further strengthened by explicit instruction concerning

the difficult aspects of acceleration; one might for example repeatedly

point out cases where the velocity is zero but the acceleration is not.

This can be coupled with extensive laboratory experience and appropriate

17
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illustrations of F = ma. These were precisely the type of activities

covered in prephysics.

Last fall, students in the prephysics course were selected to have

average or above mathematical preparation and math SAT scores of 550

to 650. Figure 13 shows that while at the end of the course these students

were substantially above average in their ability to select the correct

velocity vs. time graph they showed little improvement in ability to

select the correct acceleration graph. This was after one intensive

semester specifically focused on developing that concept! To quote

Fullerss17 description of his own efforts to teach forces and their

components, "Never have so many students spent so much time on such a

small concept and shown so little mastery of it." We account for this

discouraging performance by recognizing that unlike velocity or distance,

acceleration can only be understood as an abstraction, i.e., a transformation

of the velocity function. Clearly, the course was only partially successful

in reversing twenty years of perceptually dominated learning and students

were not yet fully capable of conceptual learning.

Cognitive theory has not yet provided the insight needed to overcome

these difficulties. But it has shown us how to look for them; and how

to isolate and study them. It may be that a full understanding of some

concepts such as acceleration is not feasible in the first semester. If

that is so we ought to know it and then work to better understand why

that is the case.
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Problem 1 Standard Exam Question

1. A cannon placed on a hilltop fires a projectile at an angle of 30° above
the horizontal with a muzzle velocity of 180 m/sec. The projectile is seen
to strike its target in the valley below 20 seconds later. Neglect air
friction and use g = 10 m /sec'.

a) (5 pts) What are the horizontal and vertical components of the velocity?

b) (5 pts) What is the horizontal displacement for the entire trajectory?

c) (5 pts) What is the height of the cannon above its target?

d) (5 pts) What is the vertical component of the final velocity?

e) (5 pts) What is the speed of the cannon ball just before impact?

Figure 1

22



Problem 2 Question Requiring Active Mode

2. All of the questions below
concern the motion of a body moving in one

dimension. Parts a) to d) refer to body A and parts e) to g) refer
to body B.

Body A

The following is a graph of the
position of object A as a function
o4f

00
time.

.74

t (seconds)

a) (4 pts) Write an algebraic
expression for the position
of A as a function of time.
Include any constants as
numbers.

x(t) =

b) (4 pts) What is the average
acceleration of A during the
time interval t = 0 to t = 3 sec?

a

c) (4 pts) What is the velocity of
A at t = 4 sec?

v(t = 4 sec) =

d) (4 pts) Sketch the graph of
acceleration vs. time for body
A. No numbers are necessary.

i

t (seconds)
Figure 2
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Body B

The following is a graph of the velocity
of object B as a function of time.
Assume that object B starts at the origin
at t = 0 seconds.

The algebraic expression for this graph
is v(t) = 20 m/sec + 4 m/sec3t2

e) (3 pts) What is the average acceleration
of B during the time interval t = 0 to
t = 3 sec?

5 =

f) (3 pts) Where is the object B located
at t = 4 sec?

x(t = 4 sec) =

g) (3 pts) Sketch the graph of
acceleration vs. time for body B.
No numbers are necessary.

0
0
0
t-,
0
ri
0rt
0
0

I
0
Ill

td
I

t (seconds)
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5. An object is subject to conservative forces such that the potential energyof the object as a function of position is as shown below. If the objectis placed at rest at x = +6m what will be the velocity of the object atx = -4m? The mass of the object is 0.5kg.

20-

15

10 -

1

1
!

1

1

-10 -8 -6 -4 -2 0 2 4 6 $
1 i

cmeterS)

(b) Write an equation for U = f(x)

!

(c) What is the acceleration of the object at x = +4m?

Figure 4
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SITUATION

SEEING REPRESENTING ACTING

How many rungs does the
ladder have?

Draw a free body diagram
showing the forces acting
on the man who is at rest.

How tall is the ladder?



SITUATION
,

The graph shown is data for the location (x) of a car as a function of time (t). The location is givenin meters and the time in seconds.

SEEING

80

70

60

40

30

20

10

2 4 6 8 10 12 14

t (seconds)

REPRESENTING ACTING

f I

Write an equation representing
the data of the graph. Make
sure that the equation is specific
to this graph.

What is the location of the car i

at t = 8 seconds?

29 Figur.? 7

Given that speed is the rate of
change of location, what is the
speed of this car at t = 8 seconds?

-_-______.... ._ ....i. _ .._.
30



The data below represent a total of 80 students in Sections 1 and 2

% Response
I. Seeing

1. Correct answer
97

2. Incorrect
3

U. Representing

1. Correct answer 45

2. Incorrect because of slope and/or intercept 28

3. Incorrect with no redeeming features 5

4. No answer given 22

III. Acting

1. Correct answer 22

2. Correct answer but inconsistent with II 4

3. Wrong answer but consistent with II 7

4. Wrong answer and inconsistent with II 21

5. Incorrect with no redeeming features 20

6. No answer given 26

Figure 8
3 1



SITUATION

The graph to the right represents the position x
of two objects as a function of time t. The dots
represent object A and the squares represent object
B.

Answer the questions below about these two objects.

SEEING
REPRESENTING

ACTING

Where is object B at t = 4 seconds? Write an equation representing the
position of object A as a function
of time. Any and all constants
should appear as numbers.

At what time t do these two objects
have the same velocity?

32 FinurP
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SITUATION

The graph to the right represents the flux of 13.
in two cases as a function of time t. The dots
represent case A and the squares represent case
B.

Answer the questions below about these two cases.

SEEING REPRESENTING ACTING

What is the flux of in case B
at t = 3 seconds?

Write an equation representing the

flux of -13. in case A as a function
of time. Any and all constants
should appear as numbers.

Suppose the flux of B in both cases
is associated with the same closed
circuit in each case. At what time
would the induced emf . be the same
in both cases

Figure 10
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1.) Joan isgiven an electric train for Christmas. But her parents
are cheap and she only gets enough track to make a four foot
diameter circle. She soon tires of watching the train go round
in circles and decides to look at it in as many different ways as
possible. On a single piece of graph paper draw graphs for the
following measures of the distance to the moving train.

a. Distance from the center of the circle.

b. Total distance covered along the track.

c. Distance from a point on the circle.

d. Distance above (+) or below (-) a diameter.

e. Distance from a point inside the circle (not the center).

f. Distance from a point outside the circle.

2.) Draw the distance vs. time graph corresponding to the following
velocity vs. time graph.

D

t

3.) Write an equation using the variables C and S to represent the following
statement:

"At Mindy's restaurant, for every four people who ordered cheesecake,
there were five who ordered strudel."

Let C represent the number of cheesecakes ordered and let S represent
the number of strudels ordered.

Finurp 11
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1. Weights are hung on the end of a spring
ant the stretch of the spring is measured.
The data are shown in the table below.

Write an equation using the letters
S and W to summarize the data below.

Stretch
S(ce)

Weight

W(E)
0 0
3 100
6 200
9 300

( The term weight was employed incorrectly
inorder to make the problem consistent
with popular language.)

2. A coin is tossed from point A straight up
into the air and caught at point E.

a

What is the shape of a speed vs. time
graph and an acceleration vs. time graph
for the coin while it is in the air?
Ignore friction.

0

al

Speed graph number:

Acceleration graph number:

0
S

a.

A
t

% Correct
prephysics' 2nd yr.
freshmen engineerin

97 66

% C sect

prephysics 3rd 4th yr.
freshmen mech. en ineering

71 30

21 11


