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PREFACE

This set of papers, published in three volumes as a monograph
of the School Mathematics Monitoring Center, presents the
rationale, background, and framework for a comprehensive monitoring
system being developed for the National Science Foundation. The
system is being designed to gather information about the effects of
national, state, and local policy actions designed to change the
teaching and learning of mathematics in the schools of America.

To build the monitoring system three assumptions were made.
First, as a society we are involved in a major economic revolution.
This revolution, addressed in Chapter 2, directly affects
mathematics, its use, and what is deemed fundamental. As a
consequence we believe "that most students need to learn more, and
often different, mathematice” (Romberg, 1984, p. xi). Second, in
spite of the changes in school mathematics inherent in the first
assumption, we believe that there is general concensus about the
goals for school mathematics and about the kinds of changes needed
to achieve those gcals. Thus, to develop the framework for the
system one must begin with an understanding of those goals and the
ideas on which they are based. Only then can indicators be
developed to see whether the goals are being reached. Third, the
policy actions with respect to the specific goals set for school
mathematics must be consistent with the more general educational
goals for a free and democratic society.

The need to monitor changes in school mathematics was proposed
at two conferences. The first was organized by the Conference
Board of tte Mathematical Sciences (the New Goals Conference, CBMS,
1984), and the second by the National Council of Teachers of
Mathematics, the U.S. Department of Education, and the Wisconsin
Center for Education Research (5chool Mathematics: Options for the
1990s, Romberg, 1984). One conclusion from both conferences was
that information about the nature of proposed changes and their
effects on schooling practices was needed. During the past 25
years the federal government has invested considerable funds to
change the teaching and learning of mathematics in America's
schools, and today it is in the process of funding several new
projects. Unfortunately, evidence of the impact of past dollars on
classroom instruction is lacking. The special evidence that exists
was unsystematically gathered and is incomplete, As new monies are
spent and programs developed, it is crucial that a systematic plan
be adopted to gather information about the effects of these planned
changes.

During the past year the staff of the Monitoring Center
prepared a series of papers, commicsioned additional papers,
convinced some authors to allow us to reprint a paper they had
recently prepared, and asked a few nationally recognized experts to

ix
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review and critique sets of papers. In all we have collected some
30 papers that address the issues of a new world view, what is
fundamental in-mathematics, what implications recent research in
psychology or sociology has for school mathematics, etc. The
intent of gathering these papers was to agsist the staff of the
project in the design of a monitoring system fecr school
mathematics. , However, since they comprise a review of the current
thinking about schooling by a number of noted educators, we have
chosen to publish them in this three-volume monograph so that
others may have access to this information.

The first volume addresses the need for a monitoring center,
the new world view, and what is now considered a fundamental for
students to know about mathematics. In the second volume the
implications of psychology to the learning of mathematics is
addressed, and the problems of assessing learning based on both the
new mathematical fundamentals and our knowledge of learning is
examined. The final volume is compriged of papers that are based
on current sociological notions about schools and how that
knowledge affects the role of teachers and instruction in
classrooms.




IMPLICATIONS FROM PSYCHOLOGY

One of the primary sources of research findings that support
the need for reform in the teaching and learning of mathematics is
psychology. During the past quarter of a century there has been a
major revolution in that field. Learners are no longer considered
passive recipients of information that is fixed via reinforcement.
Today learners are seen as active processors of information and

. constructors of knowledge. To portray the importance of this

research for the reform movement in school mathematics, we have
solicited five chapters.

In the initial chapter in this volume, chapter 12, Jim Greeno
summarizes the recent advances in cognitive psychology. Giyoo
Hatano and his colleague Kayoko Inagake summarize research on
intrinsic motivation in chapter 13. 1In chapter 14, Efriam
Fischbein covers the role of intuition in mathematical reasoning.
Each of these chapters, written by internationally known
psychologists who have worked in the learning of mathematics,
portrays important aspects of recent work that has implications for
the reform movement in mathematics. In chapter 15, Tom Romberg and
Fredric Tufte provide a review and synthesis of some of the recent
psychological research in relationship to curriculum engineering.
Chapter 16, the final chapter in this section) contains a critical
review of the previous chapters that was prepared by Gary Price.




Chapter 12

MATHEMATICAL COGNITION: 1
ACCOMPLISHMENTS AND CHALLENGES IN RESEARCH

James G. Greeno

This paper presents an overview of rcsearch about knowledge
and cognitive processes in mathematical problem solving and
reasoning. I discuss broad trends that I illustrate with examples;
this is not thorough review of research findings.

The paper has three main sections. First I discuss research
accomplishments in the decade from the mid-1970s to the present,
In this period we have been successful in establishing what can be
called the Knowledge Structure Program for research in mathematics
education. The dominant goal of this research has been to
understand knowledge that is required for successful performance of
school tasks. Considerable progress has been made in the form of
cognitive models that simulate cognitive structures and processes
that students acquire when they are successful in the tasks that
are usad in instruction. Results of this research are applicable
in the design of new tasks and representations that address
instructional problems, and some promising preliminary projects are
under way.

Next I discuss an alternative that many consider preferzble to
the idea of knowledge structures as goals of mathematics education.
Rather than focusing on the content of mathematics, instruction
could attempt to provide abilities to think mathematically and
cognitive resources for reasoning in situations other than
classrooms. I discuss recent research findings in cogritive
anthropology and developmental psychology that support the
feasibility of tnese deeper goals of mathematics education and
suggest some features of instruction that could be effective.

Then I discuss two general theoretical concepts about
knowledge that seem particularly germane to the goals of
. mathematics education: the situated and generative character of
knowledge. I describe some research related to these concepts,
including some recent and current projects in instructional

An earlier version of this paper was presented at the annual
meeting of the American Educational Reseach Association in April
1986. I am grateful for discussions with my colleagues Andrea A.
diSessa, Peter Plrolli, Frederick Reif, and Alan . Schoenfeld
about these matters, including reactions to a draft of this paper.

3
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research and development, as illustrations of research directions
that could inform educational developmenrt in the service of deeper
instructional objectives. Finally, I offer a few conclusions.

The Knowledge Structure Program

Cognitive Models as Instructional Objectives

4 program of research that became feasible in the mid-1970s
has turned out to be remarkably productive and successful, An idea
about formulating objectives of instruction in the form of
coguitive models that simulate performance in school tasks was
discussed programmatically at a conference held in 1974, sponsored
by the Office of Naval Research. Hayes (1976) , commenting on
Greeno's (1976) discussion, put the idea as follows:

Cognitive .objectives in education [are] intended to
replace the more traditional behavioral objectives. To
specify a behavior objective for instruction, we state a
particular set of behaviors we want the students to be
able to perform aftar instruction, e.g., to solve a
specified class of arithmetic problems or to answer
questions about a chapter in o history text. To specify
a cognitive objective, we state a set of changes we want
the instruction to brirg about in the students' cognitive
processes, e.g., acquisition of a particular algorithm
for division or the assimilation of a body of historical
fact to ‘nformation already in long-term memory. (pp.
235-236)

Relevant Advances in Cognitive Psychology

The gcal of formulating instructional objectives as crgnitive
models seemed a feasible program at the time because of two
important advances in cognitive psychology that had just emerged: a
model of problem solving and a model of languag~ understanding.

A psychological model of knowledge used in solving novel
problems was published by Newell and Simon in 1972. This work
established both the feasibility of using ideas developed in
artificial intelligence as a basis for developing hypotheses about
human cognition and the methodology of testing those hypotheses
using thinking-aloud protocols obtained while individuals work on
solving probleme. Newell and Simon characterized general
strategies of problem solving, including means-ends analysis, that
are effective when an individual without special instruction in a
domain is given instructions about the states and operators that
can be used to solve a puzzle. An important formal notion is the
use of producticm rules to represent knowledge for cognitive
activity. In a system of production rules, each rule specifies a
pattern of informaticn and an action, which may be a physical
action or a cognitive action such as a decision or an inference,
and the action is performed whenever the condition is true in the
situation. A later development that was important for modelling
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knowledge for school tasks was a model of knowledge for planning,
published by Sacerdeoti in 1977. Sacerdoti characterized knowledge
about actions in a domain with their consequences and prerequisites
£o that a planner can construct sequences of actions to achieve
goals.

At about the same time there were significant advances in
artificial intelligence and cognitive psychology regarding
knowledge and cognitive processes involved in understanding
language. Winograd (1972) develored a system that takes English
sentences as input and constructs programs for examining conditions
in an environment and moving objects about in the environment.
Schank (1972) developed a system that converts English sentences to
structures of information about the actions and sicuations that the
sentences describe. Anderson and Bower (1973), Kintsch (1974),
Norman, Rumelhart, and the LNR Research Group (1975), and others
developed psychological models that simulate understanding of
language based on use of schematic knowledge and propositional
structures to form representations of meanings of sentences and
paragraphs of text. Meanings are represented as semantic networks
in which concepts correspond to nodes and relations among the
concepts correspond to links. Knowledge in the form of schemata
provides general structures that the understander uses to construct
semantic networks for the meanings of specific sentences and
situations. The outcome of understanding is a knowledge base that
can be used to answer questions, either by retrieving information
that was included directly in information that was understood, or
by retrieving information that was inferred as part of the process
of understanding, or by making inferences based on information that
was understood.

Progress in a Decade of Research

The idea that several investigators began to work on in the
mid-1970s is that the concepts and methods of cognitive psychology,
including the concepts of production systems, schemata, and
semantic networks and the methods of protocol analysis and
simulation modelling, could be used in understanding what students
need to learn to succeed in school instruction. Students' learning
is tested by questions they are asked and by problems they are
required to solve. The research effort that I call the Knowledge
Structure Program takes tacks thal are used in instruction and
constructs models of the krowledge required to perform the tasks
successfully. Data uszd to guide construction of the models may
include detailed analyses of successful student performance, often
including thinking-aloud protocols. Data also may include
characteristic errors of performance or reasoning, with explicit
features of the models that overcome those difficulties. Some
important enalyses have been based mainly on considerations of the
structure of subject-matter concepts and the experience of teachers
regarding student difficulties. The strongest work has combined
deep insights into the structure of subject-matter concepts with
empirical and theoretical analyses of students' successful
performance and their difficulties of understanding and learning,
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Significant progress has been made in domains of school
mathematics. First, cognitive procedures for solving routine
problems of calculation have been simulated for elementary
arithmetic (Brown & Burton, 1980) and algebra (Sleeman, 1984).
These analyses include detailed hypotheses about the incorrect
cognitive procedures of students who make systematic errors as well
as the structure of procedures acquired by students who succeed.
Simulations of problem-solving procedures of successful students in
high school geometry have also been developed (Greeno, 1978). This
analysis included hypotheses about schemati: knowledge of general
patterns that enables flexible planning and solution of problems
requiring constructions.

Ideas about language understanding have been combined with
problem-solving hypotheses in models of schematic and procedural
knowledge for selving word problems in elemantary arithmetic
(Briars & Larkin, 1984; Kintsch & Greeno, 1985; Riley, Greemo, &
Heller, 1983). Students' understanding based on schemata of
general quantitative relations has been simulated in domains of
computational procedures (Resnick, 1983; VanLehn & Brown, 1978) and
proof exercises (Greeno, 1983).

Although most of the analyses of school mathematics tasks have
been simulations of performance, a promising simulation of learning
has been provided in the domain of high school geometry (Anderson,
1983), and a tutoring system based in part on that model has been
developed and is being tested (Andersonm, Boyle, Farrell, & Reiser,
1984).

Models of knowledge required for successful performance are
potentially quite important for instructionm, especially when they
reveal aspects of knowledge that are implicit in performance.
Implicit knowledge includes the patterns of information that
students need to recognize in understanding word problems or the
constraints of a computational procedure and the search strategies
that are used to organize problem-solving activity when working on
proof exercises. An important possibility for instruction is that
by making some of these usually tacit components of knowledge
explicit, students who would otherwise fail to acquire the
knowledge that is needed for success might be able to succeed.

The analyses that have been develdped do not "cover" the
school mathematics curriculum, by any means. However, the
feasibility of projects that would develop models of knowledge in
the remaining topics seems well established. Many important
aspects of problem solving, reasoning, and understanding remain to
be analyzed in topics such as rational number computation, ratios,
percentages, symbolic algebra, and graphing. Cognitive analysis in
these and other domains undoubtedly will require significant effort
and nontrivial insight. E an so, with a reasonable investment of
scientific resources, it would not be surprising if a quite
complete set of analyses of the standard precollege mathematics
curriculum could be assembled within five to ten years, at the
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theoretical level that has been achieved in the analyses that I
have mentioned.

More Ambitious Goals for Mathematics Education

Alternative Goals and Assumptions

One consequence of having models of knowledge for tasks that
describe knowledge structures specifically is a possibility of
reflecting on whether that knowledge is what we want students to
learn. The models that simulate students' performance in routine
mathematical tasks emphasize limitations that have been noticed
many times. Students can learn to solve the problems that are used
in standard instruction without acquiring very deep understanding
of the mathematical concepts and principles that the problems are
meant to convey, and learning to solve problems in the context of
instruction often fails to transfer significantly to other
contexts.

Many individuals have wished for a deeper orientation in the
teaching of mathematics. Davis (1984) put the point as follows:

Mathematics is presented from a vrong point of view: it
is presented as a matter of learning dead "facts" and
"techniques," and not in terms of its true nature, which
involves processes that demand thought and creacivity:
confronting vague situations and refining them to a
sharper conceptualization; building complex knowledge
representation structures in your own mind; criticizing
these structures, revising them and extending them;
analysing problems, employing heuristics, setting
sub-goals and conducting searches in unlikely (but
shrewdly chosen) corners of your memory. (p. 347;
emphasis in the original)

On this view, the goals of instruction in mathematics should be to
strengthen students' abilities to understand and reason
productively about the concepts and techniques of mathematics,
rather than only knowing the content of the concepts and how to
perform the techniques correctly,

This is a lofty goal--in effect, it proposes that students
should learn to understand and reason in mathematics as
mathematicians understand and reason. Opinions differ about
whether such a goal is feasible. For example, a pessimistic view
was laid out by Poincaré (1956).

We know that this feeling, this intuition of mathematical
order, that makes us divine hidden harmonies and
relations, can not be possessed by every one. Some will
not have either this delicate feeling so difficult to
define, or a strength of memory and attention beyond the
ordinary, and then they will be absolutely incapable of
understanding higher mathematics. Such are the majority.

o
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Others will have this feeling only in a slight degree,
but they will be gifted with an uncommon memory and a
great power of attention. They will learn by heart the
details one after another; they can understand
mathematics and sometimes make applications, but they
cannot create. Others, finally, will possess in a less
or greater degree the special intuition referred to, and
then not only can they understand mathematics even if
their memory is nothing extraordinary, but they may
become creators and try to invent with more or less
success according as this intuition is more or less
developed in them. (p. 2043)

Others are more optimistic. Davis (1984) asserted that

the trials of the 1950s and 1960s demonstrated that
students are well able, cognitively or intellectually, to
move ahead far faster in mathematics and to deal with a
"problem-analysis” and a "heuristic" approach to
mathematies. (p. 348)

And in a delightful book titled Thinking mathematically, Mason,
Burton, and Stacey (1982) presented the following optimistic
message for their student readers:

ASSUMPTION 1  You can think mathematically

ASSUMPTION 2 Mathematical thinking can be
improved by practice with
reflection

ASSUMPTION 3  Mathematical thinking is
provoked by contradiction,
tension and surprise

ASSUMPTION 4 Mathematical thinking is
supported by an atmosphere of
questioning, challenging, and
reflecting

ASSUMPTION 5 Mathematical thinking helps in
understanding yourself and the
world (p. v, emphasis in
original)

Historically, emphasis on rote training of calculation in the
curriculum has been justified by a belief that most students could
not achieve understanding of mathematical concepts and principles
(Cohen, 1982). On the classical associationistic conception of
learning, it is assumed that basic learning is the formation of
bonds between ideas or between stimuli and responses, and that
simple procedures such as arithmetic calculation are relatively
easy to acquire (e.g., Thorndike, 1922). In that theory,
conceptual understanding is harder to account for (e.g., Greeno,
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James, DaPolito, & Polson, 1978), and perhaps because of that
theoretical difficulty it is expected that conceptual understanding
requires exceptional ability by the learner.

Evidence in Developmental Psychology

Recent findings in developmental psychology support a very
different picture of cognitive capabilities of young children than
that of the classical association theory. 1In the domain of
mathematics, Gelman and Gallistel (1978) found considerable
evidence that preschool children implicitly understand principles
of order, one-to-one correspondence, and cardinality, rather than
having only a mechanical knowledge of counting rules and
procedures. A telling piece of evidence is that children can
modify their counting procedure correctly when an unusual
constraint is imposed. After the child counted a set of objects
the experimenter selected one of them and said, "Now count them
again, but make this the 'one'". On different trials different
objects were selected and different numerals were associated with
the selected objects. Most five-year-olds produced counting
performance that complied with the novel constraints as well as the
principles of counting. Because these counting procedures could
not have been learned, the children's generative knowledge must
have included implicit understanrding of the principles.

In a related domain, Bullock, Gelman, and Baillargeon (1982)
showed that preschool children make judgments about causality that
reflect significant implicit understanding of principles such as
temporal order (causes precede their effects), local action, and
mechanism. Children also probably have implicit understanding of
causal relations among quantities--for example, throwing something
harder makes it travel farther. diSessa (1983) has begun to
formulate a theory of implicit structures of reasoning about
quantitative causality that he calls phenomenological primitives.

Carey (1985) and Keil (in press) have studied children's
knowledge about living things and have showa that their
understanding grows in ways that reflect a structure of concepts
and principles, rather than haphazard accretion of facts and
experiences, Carey (1985) argued that, between the ages of about
six and ten years, children move from an understanding of activity,
brdy parts, and functions such as eating based on psychological
concepts such as intention (e.g., people eat because they get
huagry) to an understanding in terms of biological principles and
concepcs (e.g., people eat because food is needed to stay alive and
grow). Keil (in press) provided particularly compelling evidence
that children acquire principles with inferential force that goes
beyond simple classification by features. He showed that
principles of biological origin replace features of appearance in
determining children's judgments of the category that animals
belong to. Children were shown pictures of two animals, a raccoon
and a skunk, and were told that an animal that used to look like
the raccoon had been changed by some scientists to look like the
other by changing its color, the shape of its tail, and its body
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size. Older children, though not younger ones, said that the
animal was still a raccoon, because a change in appearance does not
change what an animal is. On the other hand, changes in the
functional properties of artificats related to their use lead
children to change their judgement of what the object is--for
example, when a coffee pot's features are changed to those of a
bird feeder.

These studies and others strongly suggest that children's
learning should be considered as an active process in which general
principles and concepts play a significant role in organizing
information and procedures that the child acquires. The fact that
most children acquire the procedures of arithmetic more or less
correctly but without significant understanding may be the result
of a perverse method of instruction, rather than of any significant
limitations of the children's ability to grasp the mathematical
concepts and principles that make the procedures meaningful,

Evidence in Reasoning About Quantities OQutside of School Settings

Further evidence of children's ability to reason intelligently
with mathemetical ideas, rather than merelv learning rote
procedures, has been obtained in studies of performance of young
salesmen and saleswomen in street markets in Recife, Brazil,
Children who sell produce or lottery tickets compute complex
quantities involving novel combinations virtually without errors.
As an example, in a study of produce sellers (Carraher, Carraher, &
Schliemann, 1385) a customer asked a 12-year-old saleswoman the
price of ten coconuts that she had said cost 35 cents each. The
reply was "Three will be 105; with three more, that will be 210. I
need four more. That is--315-~I think it is 350", Children whose
computations in the market had been observed were later given a
pPaper-and-pencil test of problems identical to problems they had
solved correctly in the marker; their average score was only 74%.
Performance of children who sell lottery tickets is even more
impressive, because their calculations depend on the number of
combinations of numbers that can win, based on numbers chosen by
the bettor (Acioly & Schliemann, '1986).

The important characteristic of quantj.ative reasecning by the
street marketeers in Brazil is its situatedness--it is richly
connected to the setting in which it occurs. This also
characterizes performance of adults who have been observed in tasks
that involve reasoning about quantities in practical settings.
Scribner (1984) studied performance in the task of preloading
orders in a dairy, a poorly paid job that is done in a cold-storage
room and presumably does not attract workers who have achieved high
levels of academic success. The preloaders are given orders to
assemble in an unusual notation: a number of casegs, a + or a -
sign, and a number of units. "a + b" means "a" full cases and "b"
additional units, and "a ~ b" means "a" full cases less "b" units.
Actions of the preloaders in assembling the orders were observed,
and in most cases they chose an action that required minimal
effort., This frequently involved use of a partially filied case
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and a conversion of the problem; for example, to assemble a "1 - 6"
order of a product that has 16 units per case, a literal solution
would be to remove six units from a full case, but if there was a
half-filled case available, preloaders typically used that and
added two units to it.

Lave, Murtaugh, and de la Rocha (1984) have studied
quantitative reasoning of shoppers and individuals learning to
control their diets. They found that calculation was involved in a
significant number of decisions made by individuals shopping for
groceries-~about one in every six items purchased involved explicit
consideration of alternatives. And virtually all of the
calculations--987%--were correct. But many of the calculations also
were nonstandard. In one example, the price marked on a package of
cheese seemed too high, but rather than multiplying its weight by
the unit price, the shopper searched for another similar package to
confirm that the marked price was in error. In comparing a
32-ounce package of noodles priced at $1.12 and a 64-ounce package
priced at $1.79, a shopper said, "That's two dollars for four
pounds. This is a dollar. That's 50 cents a pound, and I just
bought two pounds for a dollar twelve, which is 60. So there is a
difference." Arithmetic is apparently used to explain or justify
quantitative judgments that are made informally; in the last case,
the initial approximation did not agree with a judgment that the
shopper already had made (and announced), but an adjusted
approximation was more satisfactory. 1In contrast with their
accuracy in judging best buys, the shoppers in Lave et al.'s study
only scored 59% on a paper-and-pencil test of arithmetic operations
involving integer, decimal, and fractional numbers.

An especially clear example of generative quantitative
reasoning situated in a task setting was observed in de la Rocha's
study of reasoning in the kitchen. A new member of Weight Watchers
was asked to work out an allotment of cottage cheese that is
three-quarters of the two-thirds cup the program allows. The
person filled a measuring cup two-thirds full, dumped the cottage
cheese onto a cutting board, spread it into a circle, marked the
circle into four quadrants, removed one of the quadrants, and
served the rest. de la Rocha also found many examples in which
individuals created alternatives to standard measuring procedures,
honoring equivalences of units--for example, using the decoration
on a drinking glass to measure an amount of milk, or a number of
serving spoons of rice that is equal to a prescribed fraction of a
cup.

Directions for Research and Development

The Knowledge Structure Program discussed earlier has provided
analyses of performance in standard instructional tasks. That is
now an established research effort and can be continued
productively with strong potential benefits for cognitive theory
and educational practice,
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At the same time, there are opportunities to develop new
directions for research and instructional development related to
deeper goals than those that currently dominate mathematics
education. I now discuss two generzl issues for which research
findings and methods are in a less developed state than the
Knowledge Structure Program, but there have been some beginnings.
The two issues are understanding knowledge as a resource for
reasoning and instructional settings that promote conceptual
growth. These issues arise from the two main features of
productive knowledge seen in the research discussed above: it is
situated, and it is generative.

Understanding and Fostering Knowledge Resources for Situated

Reasoning

I discussed research in the previous section that indicates
that individuals, including unschooled children, reason in flexible
and strong ways about quantities in practical situations. The
relation of school mathematics to this situated reasoning is
tenuous, at most; indeed, in the cases that have been studied it
can be argued that mathematics learned in school plays no helpful
role in the individuals' reasoning and prublem solving. At the
same time, the reasoning that has been demonstrated occurs at a low
level of mathematics. As Resnick (in press) has noted, nearly all
of the examples that have been observed are limited to additive
compositions of quantities.

A major educational advance would be achieved if we could find
ways to teach mathematics beyond the level of addition and
subtraction so that it yould become part of individuals' reasoning
in everyday situations.” This goal is not an easy one to achieve,
and recent theoretical analyses have begun to clarify reasons for
the difficulty,

Recent analyses have focused on a crucial distinctinn between
symbolic knowledge and knowledge for activity in physical and
social sitvations. School instruction in mathematics and other
subjects is primarily in symbolic domains. If symbolic knowledge
transferred easily intc physical and social situations,
school-based knowledge would be applied naturally and broadly.

Two important recert discvssions have emphasized the
distinction between symbolic and situated knowledge in the context

2I am assuming that little everyday reasoning by most persons even
includes multiplicative and proportional relations, although the
evidence that I have for that involves extrapolations from
laboratory studies where proportional reasoning is often
problemutic. If some level of arithmetic above addition and
subtraction is commonly used in everyday reasoning, then my remarks
would apply to a somewhat higher level of mathematics instruction.
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of computer programs. Dreyfus and Dreyfus (1986) and Winograd and
Flores (1986) have developed arguments that use an idea that
Heidegger developed. Heidegger argued that most of the
interactions we have with objects in the world are direct, rather
than involving intermediate representations such as images or
descriptions. Symbolic representations play a significant role in
cognition when something in the world departs from what an
individual expects. As an example, the action of opening a door,
including reaching to the doorknob, grasping and turning it, and
pushing or pulling, is ordinarily done without any significant
processing of symbols. However, if the knob doesn't turn or the
dcor is stuck, the individual may well engage in some propositional
reasoning ("Is it locked? Do I have the key?") or create a mental
model to help in inferring where to push or kick the door to get it
to open.

Dreyfus and Dreyfus (1986) used Heidegger's idea in analyzing
the acquisition of cognitive skills. They argued that rules,
descriptions, and explanations play a significant role only in the
early stages of acquiring a skill, and that expertise in a domain
depends crucially on acquisition of knowledge for responding
directly to a very large variety of patterns in complex and
flexible ways, most of which is not articulable in verbal or other
symbols. While this general idea has been expressed before,
notably in Fitts' (1962) theory of skill acquisition, Dreyfus and
Dreyfus' emphasis on the limits of symbolic representations to the
early stages of skill acquisition sheds new light on the
significance of the analysis.

Another recent analysis by Smith (1983) provides a framework
for clarifying the problem further. Smith's analysis is also in
the domain of computer programming, but like the analyses discussed
previously, it apples as well to procedures that are learned by
students in mathematics instruction. Smith was concerned with the
semantics of programming languages and provided an integration of
two previously separate ideas of meaning.

The left panel of Figure 1 shows some of the components of
Smith's analysis. He considered a field of symbolic expressions
and a domain of objects that the expressions can refer to. In a
programming language, the symbolic field is the set of data
structures that can be expressed. In mathematics, the symbolic
field is the set of expressions that can be written with numerals,
operators, variables, and so on. There is a mapping from the
symbolic field to the denotational domain, ¢, in the manner of
standard model-theoretic semantics. There also is a mapping within
the symbolic domain, V¥, which refers to the rules for transforming
expressions into other expressions. In a programming language, ¥
is the set of transformations that can be made using statements in
the language. In mathematics, ¥ is the set of transformations
that can be performed with the rules that are available. An
important result in Smith's analysis is a set of conditions on ¥
and ¢ that make them coherent. It is important that the
transfermations on symbols do not change the denotations and
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tiuth-values of expressions, and Smitk showed how an appropriate
set of coherence conditions can be satisfied. (In effect, this
generalizes the metamathematical concept of soundness,)

v

symbolic
_ yg:lcpressxons

sy&%‘r)gs%ions

/ X
K
concrete objects

Figure 1. Components of an analysis of symbols and meanings,

I include the right side of Figure 1 to emphasize that in
mathematics the denotations of expressions are primarily abstract
entities-~numbers, operations, functions, and so on--that can be
understood as abstract structures in physical and social
situations.

The mapping u in Figure 1 refers to transformations that can
be performed on the objects in a domain. u, refers to
transformations on ordinary objects--moving chem about, for
example. p_ refers to transformations of abstract entities, such
as adding two numbers.

I now can state a conjecture about the reason that school
mathematics learning transfers so poorly to reasoning in physical
and social situations. School mathematics instruction focuses on
symbolic operations, ?8. Students may even believe that the
symbolic operations are a self-contained system that is unconnected
with any referents in the world. (Children interviewed by
Ginsburg, 1977, for example, seem to take that view.) Expert
mathematicians understand that the symbols refer to the abstract
entities of mathematics; that is, they have a conceontual domain
containing those entities, they know the mapping ¢ a’ and they know
what transformations in that domain, B corresponﬁ to
transformations of symbols, vy , becauSe of the denotational
mapping ¢ __. In contrast, children may well learn the
manipulatigns of symbols, vy , without connecting them to their
denotations in the domain of°either abstract entities or concrete

22




15

objects, The quantitative reasoning of unschooled domain experts
involves a manipulation of quantities, My in contexts of specific
domains of objects, and their lack of sucess in paper-and-—pencil
tests indicates that these operations are not connected well with
symbolic expressions of arithmetic. It is reasonable to conjecture
that the abstract structures that these individuals have are not as
general as those that are known by experts in mathematics. Indeed,
there s evidence (L. Resnick, personal communication) that the
reasoning of unschooled experts is limited to a subset of numbers
that occur frequently in the domain.

The question of teaching so that operations on symbols are
meaningful has been a concern of many educators and cognitive
psychologists. Wertheimer (1945/1959) and Dienes (1967) provided
examples that became classical, involving spatial representations
coordinated with formulas and proofs in geometry and algebra. The
use of manipulative materials in the teaching of arithmetic has
been advocated and studied at least since Brownell's (1935)
well-known work, and Bransford (1986) is developing methods of
providing concrete contexts for using arithmetic to solve problems
that use the technology of video disks.

The mere use of concrete materials and contexts does not
guarantee that children will understand the meanings of symbolic
expressions and operations, of course. The framework provided by
recent discussions of symbolic representations and cognitive skill
may enable a clearer theoretical characterization of the conditions
for such instruction to be effective. In particular, the idea
would be that to understand the meanings of mathematical symbols it
is important for students to acquire the appropriate mathematical
concepts that the symbols denote. These are abstract structures,
and they probably are not acquired automatically by experiencing
connections between the symbols and specific concrete embodiments.
Dienes' (1967) idea of multiple embodiments of concepts and Skemp's
(1979) discussions of abstraction are clearly relevant to this
task, but the various illustrations of concepts need to be
carefully focused on specific conceptual targets and related
systematically to symbolic expressions and operationms.

The relations between alternative representations of abstract
concepts is not a simple matter; some of their complexities have
been discussed recently by Schoenfeld (in press, a). Recent
findings by Resnick and Omanson (in press) illustrate the
complexity of these matters. They conducted a systematic study of
the effects of an instructional procedure developed and discussed
previously by Resnick (1983) for multidigit subtraction. Resnick
was concerned with students who made systematic errors in their
test performance of 4 kind studied in detail by Brown and Burton
(1980) and called "bugs," by analogy to flawed computer programs.
Resnick had preliminary success with a procedure called mapping
instruction, in which a procedure of subtraction with place~-value
blocks is taught and related in a detailed, step~by-step fashion
with the paper-and-pencil procedure of subtraction with numerals.
Resnick and Omanson's study applied the mapping instruction
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systematically to a number of children with bugs. Although a few
of the children learned to subtract correctly, several did not.
There was an intriguing trend in the data for those children who
were remediated to talk about the quantities represented in the
problems more than the children whose performance remained buggy.
The trend in the data should be examined in a systematic way, but
it is consistent with the conjecture that understanding involves
linking symbolic expressions with abstract concestual structures,
rather than only with concrete objects.

Some recent results by Brown and Kane (1986) are suggestive
about the process of acquiring general concepts involving relations
between domains. Brown and Kane addressed the issue of transfer
and showed that children can learn in ways that transfer to new
problems when (a) they have a positive set to learn generalizations
rather than solutions of specific problems, (b) they perceive the
solution tool of a problem as one of many uses of the tool, and (c)
the structure of analogous problems is made salient to the
children. These conclusions, coupled with the suggestive trend in
Resnick and Omanson's data, suggest that instruction that includes
discussion as well as presentation of the general properties of
quantities and their representations both in written symbols and
concrete materials might be especially effective. Exploration of
this possibility seems a useful target for research.

Instruction for the Growth of Conceptual Systems

In this final section I discuss some ideas and frameworks for
developing educational systems that could support the kind of deep
conceptual growth that is needed for students both to understand
the concepts and principles of mathematics and to nse those
concepts as resources for reasoning in the situations of their
nonacademic lives.

An idea that may be very useful has been developed by Kitcher
(1984) in an analysis of mathematical knowledge. Kitcher developed
the idea of a mathematical practice, which he ysed to analyze
significant historical changes in mathematics. Components of a
mathematical practice include (1) the questions that are understood
as meaningful and legitimate, (2) the methods of reasoning that are
accepted as supporting conclusions, and (3) a set of

3The idea is meant to capture valid aspects of Kuhn's (1970)
concept of a paradigm while avoiding the excesses of Kuhn's
concept., For example, an important part of Kitcher's
accomplishment is to show in considerable detail how changes in
practice occur naturally as progress within a field, not as a
revolution that restructures the entire framework of inquiry, and
how meaningful communication occurs between adherents of different
practices as part of the process of modifying and extending
knowledge.
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metamathematical views that characterize goals and structures of
mathematical knowledge, as well as (4) the mathematical language
and (5) the statements of findings and conclusions that are
accepted as established.

The educational idea that Kitcher's discussion suggests is
that we could try to ‘ommunicate significant components of
mathematical practice to school children, rather than only
communicating mathematical concepts and techniques. This idea is
consistent with a view that students should learn processes of
mathematical thinking, rather than only the content of mathematics.
However, Kitcher's formulation of the components of mathematical
practice could be a beginning of a more explicit formulation of the
goal of teaching studenis to think mathematically.

Current instruction focuses on the fourth and fifth components
of Kitcher's 1ist, the language of mathematics and the accepted
findings and conclusions. The further goals of educating students
in mathematical onractice would include questions, methods of
reasoning, and metamathematical views. That is, we would attempt,
in mathematics instruction, to educate students so they would be
able to ask meaningful mathematical questions, construct and
evaluate arguments, and understand the goals and structures of
mathematical knowledge. All of these goals are attractive, and
they have been proposed before (for example, see Brown & Walter,
1983; Kilpatrick, in press; and Schoenfeld, 1985, especially
chapter 5). The question is what we can do now to make these goals
more feasible and effective as guides for educational practice.

Each of these goals of education--asking questions,
formulating and evaluating sequences of reasoning, and
understanding metamathematical views--involves cognitive
capabilities that are poorly understood. We now know how to
analyze cognitive capabilities for solving problems and answering
questions, and these scientific advances have potential value for
developing improved instruction for problem solving and question
answering. To move from this successful program of research to the
deeper issues of questioning, reasoning, and metamathematics (in
Kitcher's sense) would take cognitive research into territory that
is almost entirely uncharted, but it would provide important
opportunities to extend cognitive theory as well as potentially
significant resources for changing mathematics education.

In fact, progress on achieving educational goals will be
needed if we are to make progress on the theoretical questions of
questioning, reasoning, and metamathematical beliefs. These deeper
educational objectives ere not achieved frequently in current
educational practice, and therefore there are few opportunities to
study the phenomena that we want to understand. To study these
phenomena from a cognitive standpoint, as well as to provide
examples for educational practice, we need to create environments
in which students learn to ask meaningful questions, compose
arguments, and come to understand metamathematical considerations.
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It will require modifications of the environments in which we
conduct education to achieve the deeper intellectual goals of
communicating mathematical practice. Some interesting innovations
have been and are being explored, and I close this essay with a
brief characterization of sume of their features.

The main feature of learning that is enphasized in recent
research and the idea of acquiring a practice is a more active role
played by learners. We are coming to understand several ways in
which learning involves construction of knowledge, rather than its
passive acquisition. Environments that encourage the construction
of knowledge include (1) collaborative settings in which teachers
and students work together to construct meanings and ideas; (2)
settings in which teachers or tutors function as cosches and models
of the activities the students are “earning to engage in; and (3)

settings in which students engage in exploration of ideas and
environments. )

A classic case of collaborative learning was described by
Fawcett (1938), who developed a course in deductive reasoning that
included gecmetry as well as material from everyday life such as
newspaper articles and advertisements. Fawcett and his students
diccussed definitions of concepts, assumptions that were required
for conclusions to follow, the relative advantages of different
ways of proving corclusions, and other aspects of reasoning that
are ordinarily not explicitly discussed in geometry courses,
Lampert (in press) is providing a current example of collaborative
ingtruction in her teaching of mathematics in the fifth grade,
Lampert and her students engage in conversations about the meanings
of mathematical concepts, operations, and notation, and the
students play an active role in the process of making sense of
mathematics. Activities of collaborative mathematical work
probably offer the best chance of educating students for activities

of the practice of mathematics. As Schoenfeld (in press, b) put
it:

A significant part of what I attempt to do (in my problem
solving courses in particular, but increasingly in all of
my mathematics instruction) is to create a microcosm of
mathematical culture--an environment in which my students
create and discuss mathematics in much the same way that
mathematicians do. Having experienced mathematics in
this way, students are more likely to develop a more

accurate view of what mathematics is and how it is done,
(p. 23)

A second way of organizing an instructional environment
emphasizes modelling by an instructor of the kind of activity that
students are attempting to acquire and then coachirg thc student;
as they carry out the activity. This is the standard method of
instruction in domains that are understood primarily as domains of
gkill, such as athletics or musical performance. It has been less
standard in schoo’ subjects, perhaps because we have understood
these as consisting of knowledge, rather than skill. But if we
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shift our goals toward having students learn the practice of
mathematics, modelling and coaching will become more appropriate as
teaching methods. Modelling and coaching have been discussed
especially in the context of increasing students' metacognitive
skille, for example by Palincsar and Brown (1984) in reading
compzehension, by Bereiter and Scardamalia (1982) in written
composition, by Schoenfeld (in press, b) in mathematical problem
solving, hy Brown, Burton, and deKleer (1982) in electronic
troubleshooting, and by Burton and Brown (1982) in strategies of an
arithmetic game.

Flexible learning activities can also be encouraged in
environments in which students can explore the structure of an
environment, generate and test their own hypotheses, and discuss
the phenomena that they experience. Exploratory environments for
learning. can be quite open (e.g., Papert, 1980), or they can have
relatively definite structure designed to communicate quite
specific ideas. Relatively structured microworlds and systems for
representing problems have been developed and discussed by many
individuals, for example, by Bork (1981), diSessa (1982), Greeno
(in press), Schwartz (1985), and Schwartz, Yerushalmy, and Gordon
(1985).

Cole and his group (Laboratory of Comparative Human Cognition,
1982) have created and are studying an environment that combines
aspects of exploration, coaching, and collaboration. Their
experiment is in many ways the most adventurous of the various
attempts to construct new environments for learning.

Conclusions

I have been discussing recent advances in theory and research
that are relevant to some problems of long standing. The problems
of teaching mathematics so that its concepts and principles are
understocd and So that it can be used by students in their everyday
activities have been recognized for decades. These are not the
kinds of problems for which we are likely to find "solutions" in
the usual sense. I am impressed with another idea about problems,
iowever, that was spelled out in a book about metaphor by Lakoff
and Johnson (1980).

An Iranian student, shortly after his arrival in
Berkeley, took a seminar on metaphor from one of us.
Among the wondrous things that he found in Berkeley was
an expression that he heard over and over and understood
as a beautifully sane metaphor. The expression was "the
solution of my problems”"--which he took to be a large
volume of liquid, bubbling and smoking, containing all of
your problems, either dissolved or in the fofm of
precipitates, with catalysts constantly dissolving
some problems (for the time being) and precipitating out
others. He was terribly disillusioned to find that the
residents of Berkeley had no such chemical metaphor in
mind. And well he might be, for the chemical metaphor is
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both beautiful and insightful. It gives us a view of
problems as things that never disappear utterly and that
cannot be solved once and for all. All of your problems
are always present, only they may be dissolved and in
solution, or they may be in solid form. The best you can
hope for is to find a catalyst that will make one problem
dissolve without making another one precipitate out. And
since you do not have complcte control over what goes
into the solution, you are constantly finding old and new
problems precipitating out and present problems
dissolving, partly because of your efforts and partly
despite anything you do.

The CHEMICAL metaphor gives us a new view of human
problems. It is appropriate to the experience of finding
that problems which we once thought were "solved" turn up
again and.again. The CHEMICAL metaphor says that
problems are not the kind of things that can be made to
disappear forever. To treat them as things that can be
"solved" once and for all is pointless. To live by the
CHEMICAL metaphor would be to accept it as a fact that no
problem ever disappears forever. Rather than direct your
energies toward solving your problems once and for all,
you would direct your energies toward finding out what
catalysts will dissolve your most pressing problems for
the longest time without precipitating out worse ones.
The reappearance of i problem is viewed as a natural
occurrence rather than a failure on your part to find
"the right way to solve it." (pp. 143-144)

The problems of understanding and reasoning in and with
mathematics surely are the kind to which the chemical metaphor
applies; they will not be solved in 2 simple way, and they probably
will not go away completely. It is still reasonable, of course, to
work toward improving on the solution that has already been
achieved. Perhaps some reagents can be found that can cause more
of these problems to go into solution without causing other
problems to reappear more stubbornly.

The Knowledge Structure program of research has clarified the
solution that we currently have. The models of knowledge
structures that have been developed show the essential
characteristics of knowledge that many students acquire in order to
be successful in tasks that are used in instruction. 1t is likely
that instruction in performing those tasks can be improved, partly
because of the clearer definitions of the needed structures that
cognitive models are providing.

Those models also provide a clearer view of important
limitations of instruction that uses those tasks. The models
reinforce our realization that students can learn to solve the
problems that are used in instruction without achieving significant
understanding of mathematical principles and concepts and without
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realizing that mathematical knowledge is a significant resource for
reasoning in a broad range of nonacademic settings.

The task of moving toward a better understanding of how to
teach mathematics more meaningfully is one that has attracted much
research attention in the past and will continue to be an important
and productive topic. Recent developments in several fields
provide resources that can play a role in the next phase of this
effort. These include important recent work in the study of
cognitive development of children, studies of reasoning processes
by children and adults in practical settings, studies of expert
reasoning, progress toward z theory of meaning of symbolic
representations, and significant development of new instructional
settings. The detailed implications of these ideas for mathematics
education are not completely clear yet, but they give considerable
promise to the prospects for significant progress during the next
period of research and educational development.
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Chapter 13

A THEORY OF MOTIVATION FOR COMPREHENSION AND
ITS APPLICATION TO MATHEMATICS INSTRUCTION

Giyoo Hatane and Kayoko Inagaki

1. Why Do We Need Instructional Strategies for Enhancing
Motivation for Comprehension

One of the major goals of education is the acquisition of a
well-organized body of knowledge through comprehension. For this
reason, it is essential for educational researchers to give close
attention to students' motivation for comprehension and to
teachers' strategies for enhancing it. Although motivation and
comprehension have been studied extensively as discrete topics,
motivation for comprehension and how to enhance it have been
neglected in educational research, and no well-articulated theory
of instructional strategy has yet been offered. In this paper, we
will argue that the study of workable instructional strategies for
enhancing motivation for comprehension should be given high
priority. Then, we will present an outline of our theory of
motivation for comprehension. Finally, we suggest some
instructional strategies, derived from the theory, which may be
used in mathematics classes.

Before turning to the main issues, we will define
comprehension (or understanding, a term to be used interchangeably)
as it is used in this paper. Since we are concerned with
comprehension in relation to mathematical and scientific problem
solving, the term comprehension might be defined as apprehending
"the 'how' and 'why' of the connections observed and applied in
action" (Piaget, 1978). In other words, to comprehend means to
achieve insight or to find satisfactory explanations for the
validity of a given rule or the success of a procedure. Whether a
given set of explanations is satisfactory or not may vary from
individual to individual. It depends not only on
logico~mathematical validity of the explanations but also on how
plausible and illuminating they are in an individual's
phenomenological world. For example, knowing the mathematical
derivation of a theorem does not necessarily guarantee insight.

When we refer to the process of achieving insight we will use
another term, comprehension activity. Comprehension activity
includes generating inferences, checking their plausibility, and
coordinating pieces of old and new information to build an enriched
and coherent representation, which will serve as the basis for
insight. Motivation for comprehension is equivalent to motivation
for directed, persistent comprehension activity.
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To illustrate and clarify comprehension activity, we present a
hypothetical example directed to a well-defined procedure for
preparing fish, making sashimi of a bonito. We have intentionally
chosen this non-mathematical/scientific example, because we want to
stress that comprehension activity for insight may occur in our
everyday life as weli as in instruction. The recipe (from Fish and
vegetable cooking, by NHK publishers, 1984), starting with a big

cut of a bonito, requires us:

1. to roast its skin-covered surface quickly with strong

heat;

2. to put the side into ice water, and cool it for five :
minutes;

3. to take it out of the water, and wipe it off;

4. and finally, to cut it into slices ! cm thick. These *

slices are ready to eat with soy-sauce and seasonings.

People can follow the recipe without truly comprehending what
they are doing ard get delicious bonito sashimi. But why does this
procedure (the recipe) work? Why are these steps necessary?
Suppose that you are interested in questions like these, and that
you are engaged in comprehension activity. If you can generate
some inferences relying on your prior knowledge, you might test
them, If you cannot, you have to proceed in a trial-and-error
fashion, i.e., run the procedure with one or more critical steps
removed or modified. For example, you might examine how the

sashimi tastes without roasting, or when roasted with mild heat.

You will soon find that, without roasting, the skin of the sashimi
is too tough to swallow, even after chewing it for a couple of
minutes. You will also learn that “quickly with strong heat" is
critical, because otherwise you have well-done bonito steak,
instead of sashimi. From this experience, you can make an
inference as to the next step: the ice water is needed to cool the
roasted fish very quickly. You can confirm this inference by
putting the bonito in water without ice or by putting it in a
refrigerator.

You may be tempted to go on. You may run more experiments
with varying parameters, consult cookbooks or books on ichthyology,
question your family or friends, relate the set of observed facts .
to similar experiences, e.g., making sashimi of other fishk. If you
comprehend the recipe, you can modify it flexibly when you have to
meet a different set of constraints, e.g., when you have no ice or .
no strong heat. To achieve the comprehension, you have to engage
in prolonged comprehension activity, spending much time, effort,
and cost. We do not claim that every comprehension activity is
like this. However, it is almost always true that comprehension
takes time.

Now let us return to the main issue. Why do we need
instructional strategies for enhancing motivation for
comprehension? Our answer is divided into two parts. First, we
claim that these strategies cannot be derived from more general
theories of motivation. Second, we claim that, without such
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strategies, it is highly unlikely that a majority of students will
engage in persistent comprehension activity directed to a target
rule or procedure. We will elaborate these assertions in turn.

Studies on "motivation in education," despite the progress of
the past 15 years, have either ignored or paid little attention to
motivation for comprehension. Many of them, having historical
roots in the theory of achievement motivation, have developed a
cognitive-attributional approach to motivation (Ames & Ames, 1984;
Levine & Wang, 1983; Paris, Olson, & Stevenson, 1983). The studies
revealed that causal attribution for success or failure influences
student3' motivation for achievement and thus their performances
(e.g., Weiner, 1980). Students' attribution of success/failure--
and conception of ability/effort underlying the attribution--
constitutes a significant part of metacognition which, as we shall
see later, plays an important mediating role in determining whether
they engage in comprehension activity.

However, these studies have been concerned primarily not with
comprehension but with achievement or problem solving competence.
Dependent measures were usually based on the number of correctly
solved problems. Although correct solutions may reflect
comprehension, the distinction between competently solving problems
using a certain procedure and understanding that procedure is
critical, especially in mathematics and science instruction. To be
a competent problem-solver on standard achievement tests, one needs
to know how and when to apply a given procedure, but it is not
necessary to demonstrate comprehension.

We can solve a great number of mathematical problems using a
target procedure at the right time, without achieving insight,
without enjoying "the pleasure of understanding" (Piaget, in Tanner
& Inhelder, 1960). Very few of us can explain why a given
mathematical procedure works, though we believe it valid and can
apply it efficiently. Consider, for example, the Euclidean
algorithm. It is often presented in high school algebra but its
proof, which involves mathematical induction, is omitted. Students
believe it valid because with little thought or effort they produce
the greatest common divisor of two integers. Later, their lack of
insight becomes a serious handicap when novel problems are posed
for solution. For example, if asked to find integral solutions for
Yy and z given that 21z ~ 15y = 9, they would fail to recognize the
relevance of the algorithm. This is similar to the fact that we
can make delicious bonito sashimi promptly by just following the
recipe, without understanding why the steps in the recipe are
needed. Lack of insight becomes a serious deficit only when
tnusual, novel problems are posed. After having applied a
procedure many times successfully, we tend to lose interest in
knowing why it works. Therefore, strong motivation for achievement
does not guarantee strong motivation for comprehension. Those
procedures enhancing the former may not be effective for the
latter.
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The problem is compounded by the fact that, using Nicholls'
(1983) distinction, most attributional studies have dealt with the
extrinsic and ego-involvement aspects of motivation for
achievement. In other words, they have dealt with attaining high
&chievement as a means to an end, that of external rewards, or of
looking smart, or avoiding looking stupid. Although some
comprehension is necessary for high achievement, the subjects’
activity in these studies was not directed to knowing or
understanding. Only a few studies have pursued task-involvement or
intrinsic aspects of motivation, which are most important for
comprehension.

A group of studies on the relationships between extrinsic and
intrinsic motivations, another major stream of recent research on
motivation, have revealed that extrinsic rewards tend to undermine
intrinsic motivation (Deci, 1975; Lepper, 1983; Lepper & Greene,
1978; Maehr, 1976). This finding is also relevant to motivation
for comprehension, since, as we shall see, it is possible that
external rewards may also undermine intrinsic motivation for
comprehension. However, these studies have not paid due attention
to the intrinsic pleasure of understanding, nor suggested
strategies for enhancing intrinsic interest in comprehension.

Now we will move to the second part of the argument supporting
the need for instructional strategies to enhance motivation for
comprehension. Cognitively oriented instructional psychology has
been interested in the process of comprehension and strategies for
presenting stimuli to enhance it, but it has neglected motivation
for comprehension. 1In Resnick's (1981) review of instructional
psychology, for example, there is no reference to motivation for
knowing or understanding. Cognitive researchers use four major
reasons to justify their indifference to and neglect of
motivational issues related to comprehension. First, it is claimed
that comprehension is performed automatically; thus, no motivation
is involved. However, this is not convincing if we reflect on the
example of bonito sashimi. Unlike the perceptual rccoguition of an
object or the processing of a sentence, which is also somecimes
called comprehension, comprehension as insight, or finding
satisfactory explanations, is far from automatic. It requires much
time and a considerable measure of conscious effort.

Second, cognitive researchers sometimes claim that active
human beings are always motivated to engage in comprehension,
though the process is not automatic. Therefore, no instructional
strategies are needed to enhance the motivation. We believe that
this claim is based on a misunderstanding of the "zeitgeist' of
contemporary cognitive psychology, namely the assertion that human
beings are active agents of information processing. We would agree
that "active human beings" almost always try to comprehend, and
comprehension gives them intrinsic satisfaction, irrespective of
any accompanying external rewards. However, this does not mean
that they always engage in persistent comprehension activity
directed to a target rule or procedure. In fact, while many
Japanese do know how to make bonito sashimi, very few comprehend
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how or why the recipe works. Comprehension activity may cease
without producing any satisfactory explanations. Since there are
so many targets to which one's comprehension activity can be
directed, it has to be selective. In other words, although the
zeitgeist may enable us to ignore the initiation and reinforcement
questions, we are compelled to attend to the issues of persistence
and choice.

There may be a practical basis for this misunderstanding:
Subjects in the laboratory experiments, often college students, try
hard to comprehend as soon as they are instructed to do so.
However, as you will notice, students in the usual classroom are
not always motivated to comprehend the target.

Third, some cognitive researchers believe that motivation is
beyond the teacher's control. Therefore, although they are willing
to accept the fact that students' motivation for comprehension
makes a difference, it is impractical to consider it. We believe,
however, that it is possible to formulate instructional strategies
that are likely to enhance students' intrinsic motivation to
comprehend the particular target, assuming that the students have
acquired a specified set of prior knowledge. We will describe some
of those strategies in more detail in the last section of this
paper.

Finally, other cognitive researchers assert that efforts to
enhance students' motivation are not very rewarding because it is
doubtful whether enhanced motivation leads to "correct"
comprehension. We believe, on the contrary, that through
increasing motivation a teacher can indirectly enhance the
likelihood of students' correct comprehension. Unlike students'
acquisition of procedures and memory of rules, their comprehension
is not amenable to a teacher's direct control, since comprehension
means to find "satisfactory" explanations, which may differ from
individual to individual. However, we can assume that strong
motivation for comprehension usually leads to deeper comprehension;
many significant inferences are generated and relevant pieces of
information interrelated. Strong motivation is also likely to lead
students to "correct" solutions and explanations because it makes
them engage in more persistent and meticulous comprehension
activity. They will check carefully whether generated inferences
are harmonious with the given set of information, thus eliminating
erroneous explanations. If their comprehension activity is still
not sufficient for excluding all of the incorrect explanations, the
teacher may intervene by giving additional information or drawing
their attention to relevant information that refutes their
conclusions,

In summary, instructional procedures for intrinsically
motivating students to comprehend cannot be derived from any
available achievement-oriented theories, and none of the arguments
by cognitive researchers can justify the neglect of motivational
isiwues related to knowing and understanding. We need instructional
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strategies specifically for enhancing motivation for comprehension,
and educational researchers must seriously pursue this task.

2. Outline of Cognitive Berlynean Theory

In this section, we summarize our theory of motivation for
comprehension (Inagaki & Hatano, 1986). Within the framework of
recent cognitive instructional psychology, it elaborates and
extends Berlyne's theory of epistemic behavicr and may be called a
cognitive Berlynean theory.

When seeking a groundwork on which to construct a tenable
theory of motivation for comprehension, it was necessary to returr
to Berlyne's work of the early 1960s. Beriyne (1960, 1963, 1965a,
1965b) conceptualized the motivation inherent in epistemic behavior
and suggested a number of possible instructional strategies to
motivate students to acquire know'edge. Thougi. his theory does not
deal with motivation for comprehension itself, it has at least
three properties indispensable to any therry of motivation for
comprehensior: (1) it focused on intrinsic motivation for knowing;
(2) it systematically described when (or by what ¢:imuli) such
motivation is aroused, and what kind of behaviors the motivation
induces; and (3) it had a prescriptive component, suggesting how we
can motivate students. Recently, Malone (1981), who was interested
in taking advantage of the attractiveness of computer games for
educational settings, tried to conceptualize intrinsically
motivating instruction relying in part cn Berlyne's theory.
However, he seemed to concern himself much more with the
characteristics that make instruction enjoyable than with
characteristics that would motivate students to deeply comprehend
the target.

Summarizing and “.estating Berlyne's Theory

We will first demonstrate that Berlyne's "motivation of
epistemic behavior" implicitly included "motivation for
comprehension." We will then incorporate the resul” ; of recent
research in order to update the theory.

Berlyne (1963 stated,

the epistemic behavior refers to behavior whose function is to
equip the organism with knowledge. . . . Epistemic behavior
can be divided into three categories, namely, epistemic
observation, which includes the experimental and other
observational techniques of science, consultation, which
includes asking other people questions or consulting reference
books, and directed thinking. (p. 322)

Directed thinking is "thinking whose function is to convey us

to solutions of problems" (1965a, p. 19). It should be noted that
Berlyne defined critical terms like epistemic behavior and directed
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thinking in terms not of processes but of functions. Thus, if
comprehension is regarded as achieving satisfactory explanaticons to
the "how" and "why," then the corresponding comprehension activity
is a case of epistemic behavior, more specifically, of directed
thinking. Berlyne's notion of knowledge acquisition by directed
thinking is very similar to what we now call "acquisition of an
organized body of knowledge through comprehension activity,"

According to Berlyne (1963), epistemic behavior is initiated
by a specific dissatisfaction called epistemic curiosity, which is
produced by conceptual conflict, and the behavior is reinforced by
the reduction of epistemic curiosity, that is by relief of that
conceptual conflict. Since comprehension activity is a form of
epistemic behavior, we assume that it is initiated and maintained
toward a specific object by strong epistemic curiosity. We add the
qualifier strong because comprehension requires much time and
effort. However, we do not agree with Berlyne that epistemic
curiosity is a kind of discomfort drive state.

By conceptual conflict Berlyne means "conflict between
incompatible symbolic response patterns, that is, beliefs,
attitudes, thoughts, ideas" (1965a, p. 255). He distinguished
several types of conceptual conflict--doubt, perplexity,
contradiction, conceptual incongruity, confusion, and irrelevance
(1965a)~~and added surprise to the list when he discussed the use
of conceptual conflict in educational settings (1965b).

Let us restate those constructs. First, in cognitive terms,
conceptual conflict inducing strong epistemic curiosity is a state
in which a person is aware that his/her comprehension is
inadequate, but is within his/her reach. To avoid a behaviorist
flavor, we call this state cognitive incongruity. This state
motivates a person to pursue insighc, to find satisfactory
explanations to the target rule or procedure, by:

1. seeking further information from outside;

2. retrieving another piece of prior knowledge;

3. generating new inferences;

4. examining the compatibility of inferences more closely.

In other words, cognitive incongruity motivates a person to pursue
insight through comprehension activity. Success in achieving
adequate comprehension or insight would bring a stop to all this
comprehension activity, and the comprehended rule or procedure is
recalled and used subsequently on similar occasions more promptly
and properly.

Second, Berlyne identified several types of conceptual
conflict (our cognitive incongruity) that we group into two: One
is the surprise type, which is induced when a person encounters an
event or information that disconfirms his/her prediction based on a
prior knowledge. He/she will be motivated to understand why and to
seek new information by which the prior knowledge can be repaired.
The other is the perplexity type, which is induced when a person is
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aware of equally plausible but competing ideas (pre“ictions,
assertions, explanations) related to the target object or
procedure. In this case he/she seeks further information to choose
one of the alternatives.

Reformulating Berlyne's Theory

Now we propose some reformulations of Berlyne's theory. His
theory about epistemic behavior was constructed in the early 1960s.
Since then, as cognitive psychology has developed, a number of
important ideas related to the issue of motivation for knowing and
urderstanding have been proposed, and data have been collected
based on them. To bring Berlyne's theory closer to an "ideal"
theory, we incorporate four constructs., First, we append a third
type of cognitive incongruity, discoordination, to the list
producing strong epistemic curiosity. Second, we propose that, for
cognitive incongruity to occur, students must recognize the
inadequacy of their comprehension; in other words, they must be
able to monitor their comprehension. Third, we believe that
cognitive incongruity induces comprehension activity only when
students realize the importance and possibility of comprehension
about the target rule or procedure. Fourth, we argue that one is
unlikely to engage in prolonged comprehension activity unless one
is free trom any urgent need, such as the need often produced by
expecting material or other rewards. With these reformulatioms,
the resultant theory, the cognitive Berlynean theory, can better
describe stimulus conditions under which students possessing
specified prior knowledge are always (or nearly always) motivated
to engage themselves in comprehension activity, and without which,
they are never (or almost never) motivated to do so. Figure 1
shows these reformulations schematically.

Discoordination Induces Comprehension Activ. :y

Since Berlyne's death, psychologists' views of human beings
have changed. As Hunt (1963, 1965) aptly put it, human beings had
been considered as idle under behaviorists' drive-reduction theory.
Berlyne, in his attempt to "liberate" this drive-reduction theory,
was not free from such a passive view of human beings.

Current cognitive psychology views human beings as active
agents; it assumes that human beings actively seek pieces of
information and try to organize them. .\ good example of this
active information seeking occurs after a person has chosen a
target as the object of his/her comprehension activity (e.g.,
Clement, in press; Collins, Brown, & Larkin, 1980; Hatano &
inagaki, 1983). We do not think the subjects of these experiments
were suffering from prolonged (aversive) curiosity, or from
potential danger to their survival. They certainly felt
satisfaction and tension reduction when they had understood the
target, but, we believe, they had enjoyed the process of performing
the coamprehension activity as well.
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This change in perspective prompts our first reformulation of
Berlyne's theory. People may try hard to comprehend without the
incentive of inconsistency or incompatibility., Thus we propose
that there is a third type of cognitive incongruity in addition to
surprise and perplexity, namely, discoordination. This last type
of cognitive incongruity is the awareness of a lack of coordination
among the pieces of knowledge involved. 1In other words, it is the
recognition that, although pieces of knowledge about the target are
available, they are not well connected, or that other pleces of
related information cannot be generated by transforming the
existing ones. More specifically, people may be aware of the
inadequacy of their comprehension in four conditions:

1. they are not yet certain whether two pieces of information
they know about the target are identical or not,
contradictory or not;

2. they cannot apply a known principle to concrete
situations;

3. they cannot justify each step of the procedure;

4. they have rich examples but cannot abstract a rule.

The Role of Comprehension Monitoring

Berlyne (1965a, 1965b) described some tactics to arouse
conceptual conflict. However, it has been found that these
operations do not always work well. According to Berlyne, for
example, presenting material containing information that
contradicts prior knowledze should arouse surprise, but i1n practice
this operation induces no conceptual conflict in some students.
Using our terminology, when presented with information that
purports to reveal inadequacy in their comprehension, some students

may fail to recognize the inadequacy and thus feel no cognitive
incongruity.

Recent research on comprehension monitoring, following the
pioneering work by Merkman (1977, 1979), has shown that younger
children fail to perceive the insufficiency or inconsistency of a
given message more often than do older children or adults, but
another line of research on mectacomprehension has revealed that
even college students tend to have this "illusion of comprehension"
(Glenberg & Epstein, 1985; Glerberg, Wilkinson, & Epstein, 1982;
Maki & Berry, 1984). College students often believe that they have
understood a given text, though in fact they have not, at least as
assessed by a multiple-choice test. This suggests a more or less
general tendency among human beings to fail to recognize the
inadequacy of their own comprehension.

As indicated earlier, we believe that people must be selective
in directing prolonged comprehension activity, not through
i¢leness, but because the activity recuires much time and effort,
This need for selection may be operant in recognition of inadequacy
of comprehension as well as in the decision to pursue more adequate
comprehension. In one sense, the illusion of comprehension guards
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people from engaging in prolonged comprehension activity too often,
or in too diverse domains.

A few implications for effective strategies of motivating for
comprehension may be derived from the studies in comprehension
monitering. First, students can promptly recognize inadequacy of
comprehension only in domains where they have acquired rich and
well-structured knowledge, in their domains of expertise., Second,
to induce cognitive incongruity in less well-structured domains, it
is necessary to make the inadequacy of comprehension abundantly
clear, for example by ensuring that students' predictions are
specific and explicit before disconfirming information is given.
Any concurrent cognitive activity, which may tax the resources of
less experienced people, must be removed. Third, it is desirable
to provide the opportunity for students to check their
comprehension in the context of another activity. Requiring
children to translate what they understand into action, for
example, may induce cognitive incongruity that would otherwise be
not induced. Dialogical interactions, such as discussion,
controversy, and reciprocal teaching, in which knowledge or
comprehension is to he shared, often provide appropriate contexts
for children to perceive cognitive incongruity.

The Role cf Metacognitive Beliefs About Comprehension

Will people engage in prolonged comprehension activity
vhenever they experience cognitive incongruity? Certainly not.
Selectivity in seeking aderuate comprehension operates also after
cognitive incongruity is induced. Berlyne (1965a) indicated the
possibility that aroused conceptual conflict neither induces
epistemic behavior nor thus leads one to acquire knowledge. He
proposed that "suppression" relieves conceptual conflict and
thereby also precludes epistemic behaviour. We offer a more
target-specific explanation: comprehension activity is induced or
inhibited depending on metacognitive beliefs about comprehension of
the target.

Two aspects of metacognition play an important part here. One
is the belief about one's own capability of comprehending a
specific target or of comprehending in general. If students have
confidence in their ability to understand, they are likely to
pursue comprehension. They will not be inhibited, even by an
apparent deadlock. If they are not confident, however, they may
suppr:ss the motivation to comprehend, even when they feel
incongruity. Studies on learned helplessness and causal
attribution of success-failure (e.g., Diener & Dweck, 1978) give
indirect support for the importance of students' beliefs,

The second aspect of metacognition is belief about the
importance of comprehension in general or the significance of
compreliending a specific target, In other words, whether or not
cognitive incongruity leads to comprehension activity depends, in
part, on whether or not students believe that the target is worth
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comprehending. When subjects experience cognitive incongruity
about a target which they value (because it is relevant to their
lives), they are likely to engage in comprehension activity. On
the other hand, when they feel cognitive incongruity about a target
of little interest or value to them, they will be reluctant to
exert the mental effort required for comprehension activity.

In summary, we assume that each individual has personal
"domains of interest," in which they believe comprehension to be
both valuable and attainable. When individuals experience
cognitive incongruity, they are willing to engage in prolonged
comprehension activity within, but not outside of, those domains.

This creates a serious problem for the teacher who is trying
to motivate students to comprehend a target rule or procedure
outside their domains of expertise/interest. In these
circumstances, students are unlikely to recognize the inadequacy of
their comprehension, unlikely to engage in comprehension activity
even when incongruity is aroused and, as a consequence, unlikely to
acquire knowledge through comprehension. This vicious cognitive
cycle can be broken only by introducing other activities, social-
interactional ones in most cases. Miyake (1986), for instance,
effectively demonstrated that dialogical interaction motivates
people to engage in prolonged comprehension activity.

Extrinsic Reward Reduces Motivation for Comprehension

Teachers® conventional methods of motivating students, ruch as
grades or rewards, are based on extrinsic motivation. What effects
do such extrinsic motivational methods have on epistemic behavior
or comprehension activity? Berlyne (1965a) pointed out the
differences between learning based on conceptual conflict and
learning relying on external reinforcement but did not clarify
further the relationship between extrinsic motivation and intrinsic
motivation. This relationship has been conceptualized much more
satisfactorily since Berlyne's death.

Studies on the so-called underminirg effects of extrinsic
rewards have shown that promised and/or given rewards deteriorate
both the quality of performance in the task and intrinsic interest
(Lepper, 1983; Lepper & Green, 1978). This suggests, indirectly,
the possibility that extrinsic rewards inhibit motivation for
comprehension.

In her review of the literature, lnagaki (1980) maintained
that the expectation of rewards changes the goal of ongoing
cognitive activity from compr:hension to obtaining the reward and
thus prevents learners from achieving deep understanding. Inagaki
also hinted that the expectation of external evaluation--a grade
based on a test score or of the right answer to be provided
immediately--may have similar effects of changing the goal.
Activities pursuing external rewards will not erhance motivation
for compiehension.
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3. Instructional Strategies for Enhancing
Motivation for Comprehension

In this final section, relying on our cognitive Berlynean
theory, we specify instructional strategies for inducing cognitive
incongruity. To heighten motivation for comprehension, urgent
extringic needs-~external rewards, favorable evaluations,
authorized right answers--should be removed from classroom
learning. It is also necessary to help those students who are not
confident in their ability to comprehend, or who do not value
comprehension, to change their metacognitive beliefs about
comprehension. However, we will proceed without further discussion
of these issues because they have been in part pursued in general
studies of motivation in education.

Strategies for Inducing Cognitive Incongruity

Strategies for inducing cogaitive incongruity may be grouped
according to the types of incongruity that they are to induce.
When pupils have acquired fairly rich and well-structured
knowledge, which includes "erroneous" rules or procedures--called
migconceptions, false mental models, bugs--we can arouse surprise
by asking the pupils to make a prediction and then providing an
event or information that clearly disconfirms it. For example,
junioxr high school students usually believe that the quotient a/b
rust be a specific quantity, Therefore, when they are taught that
12/0 is undefined, they are surpriscd (Tokuda, 1975). This
surprise may be strengthened by kaving had the pupils express a
clear and specific prediction beforehand. Before the experiment is
run or disconfirming information is given, students may also feel
surprise by finding out in the course of peer interaction that
there exists a whole range of plausible options differing from
theirs,

We can induce perplexity easily by taking advantage of the
fact that there are usually many different ideas generated among
students in a classroom. A teacher need only tally pupils'
resporses to induce perplexity. For the quotient of 12/0,
students' modal answers are 0 or », but other answers are usually
offered. Peer interaction, thc presence of others expressing
different ideas, is especially advantageous for amplifying
perplexity, because the students have a chance for argumentation;
it is hard to recognize as plausible those ideas that are merely
read or encountered passively,

When students do not have rich and well-structured knowledge
regarding the target, it is sometimes necessary to first teach a
specific rule and to encourage them to apply this rule to a number
of confirming cases. This approach will make students commit
themselves to the given rule, because they are likely to appreciate
its effectiveness. Subsequently, tke students experience gurprise
when shown information that is dissonant with this newly acquired
rule. When the teacher asks whether this rule works for another
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example that seems radically different from the confirming cases,
or whether the rule always holds true, the students will have
difficulty in deciding whether it applies; that is, they will feel
doubt, a subtype of perplexity. Berlyne (1965a) reported that this
type of procedure was successfully used by David L. Page to teach
third-graders that the difserenge between the squares of two
adjacent integers, (n + 1)° - n“, is always an odd number.

Discoordination may be experienced by a student in the process
of explaining why his/her views are reasonable when asked for
clarification or when the views are directly challenged or
disputed. Why is discoordination induced in these situations?
First, in the process of trying to convince or teach other
students, one has to verbalize, or make explicit that which is
known only implicitly. One must examine one's own comprechension in
detail and thus become aware of any inadequacies, thus far
unnoticed, in the coordination among those pieces of knowledge.
Second, since persuasion or teaching requires the orderly
presentation of ideas, one has to better organize
intra-iudividually what one knows. Third, effective argumentation
or teaching must incorporate opposing ideas, in other words,
coordinate different points of view inter-individually between
proponents and opponents or between tutors and learners. Of
course, it is practically impossible to coordinate all the pleces
of information available at any given moment. Thus, in one sense,
an "illusion of comprehension" is adaptive because it frees one
from endless comprehiension activity. One feels strong
discoordination only when one struggles to coordinate.

Peer Interaction Enhances Motivation for Comprehension

The above discussion suggests that peer interaction, or
dialogical interaction in general, such as discussion, controversy,
and reciprocal teaching, tends to induce persistent comprehension
activity directed to the target. It creates and amplifies surp..ise
and perplexity, produces discoordination, and relates the target to
one's domains of expertise and interest. It also invites students
to "commit" themselves to some ideas, by asking them to state their
ideas to others, thereby placing the issue in question in their
domains of interest. In addition, the social getting makes the
enterprise of comprehension more meaningful. Unless extrinsic
motivation is so strong that it supersedes motivation for
corprehension, this social aspect will make comprehension activity
more enduring.

Is it possible for teacher-pupil interaction to produce the
same effect as peer interaction? If so, it will be more desirable,
because the teacher wishes to maintain control. 1In principle, a
teacher who has richer and better-organized knowledge about the
target than any of the students can help them recognize the
inadequacy of their comprehension by giving counterexamples,
proposing plausible alternatives that students have not offered, or
by asking questions to clarify the students' ideas. The Socratic
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method of teaching is a good example of such instructional
strategies. Collins (1977), in his attempts to describe the
Socratic method, listed 24 specific strategies teachers could use,
which included a number probably effective for enhancing motivation
for comprehension.

However, practically, teacher-pupil interaction as a means for
enhancing motivation for comprehension has serious limitations.
First, since students know that their teacher is more knowledgeable
than they are, if the teacher is actively intervening, they will
depend on the authorized "right" answer. This anticipation of the
right answer must weaken the motivation, as mentioned in the
preceding section. Second, even when the teacher tries to behave
as one of the less knowledgeable students by asking questions
rather than giving answers, it is almost impossible to completely
eliminate artificiality. This inevitably reduces the value the
students assign to the comprehension they ultimately achieve,

Being a good Socratic teacher is at least as hard as functioning as
a good organizer of peer interactions.

A Concrete Example

How shall we organize peer interaction to enhance students'
motivation for ccmprehension? Though teacher-pupil interaction has
limited effectiveness in inducing cognitive incongruity, the
teacher's role in enhancing motivation for comprehension by
organizing peer interaction is critically important,

Deriving therry-based instructional stratezies, in other words
translating a theory into practice, is often nct an easy task.
Fortunately, in this case, wes have model system of instruction that
has developed independently but is haruwonious with our theory.

This 1. a Japane:. science-education method called
Hypotliesis-Experiment~Instruction" (Itakura, 1962), originally
devised by Itakura, used in science clasces from elementary to high
school. A few have applied the same instructional procedures to
mathematics and to limited areas of social studies. From our
perspective, Hypothesig-Experiment-Instruction is effective in
enhancing motivation for comprehension because it maximally
utilizes classroom discussion and arrznges a series of problems to
induce all three types of incongruity.

The procedure is as follows: (1) Pupils are presented with a
question with three or four alternative answers. (2) They are asked
to choose one by themselves. (J) Pupils' responses, counted by a
show of hands, are tabulated on the blackboard. (4) They are
encouraged to explain and discuss their choices with one another.
(5) They are asked to choose an alternative once again. They may
change their original choice. (6) Pupils test their predictions by
observing an experiment or reading a given passage.

The response alternatives should represent a plausible idea
embodying a common bug or misconception held by pupils as well as

o0

ot



42

the correct response. For example, the first lesson on "buoyancy"
begins with the following question, alternative answers to which
are all plausible and are usually chosen by at least several
students (Shoji, 1975). "Suppose that you have a clay ball on the
end of a spring. You hold the other end of the spring and put half
of the clay ball into water. Will the spring (a) become shorter,
(b) become longer, or (c) retain its length?" Thus the right
answer, e.g., (a) in the above example, often contradicts
predictions of a majority of pupils at the beginning part of a
topic. It is also emphasized that pupils can clearly confirm or
disconfirm their predictions by observing an experiment or
consulting a reference book.

If you visit a classroom in which Hypothesis~Experiment-
Instruction is implemented successfully, you will be impressed by
lively discussions in a large group of 40~45 students. You will
recognize that the teacher, after presenting a problem, is a
chairperson, who tries to stay as neutral as possible during
students' discussion. Several students may express their opinions
often, but a majority of them are vicariously participating in the
discussion, nodding or shaking their heads, or making just brief
remarks. When asked, most of them reply that they enjoy discussion
and feel the method exciting.

We have done a number of studies examining the effectiveness
of this method, paying special attention to its effect on
motivation for comprehension (Inagaki, 1986; Inagaki & Hatano,
1968, 1977). Materials of instruction were taken from mathematics
as well as from science. Each class was randomly divided into
experimental and control groups. In the former, the above 6 steps
were followed, while in the latter, steps 3, 4 and 5 were omitted.
All the pupils were required individually during the instruction to
answer a short test consisting of a few multiple~choice items and
also a questionneire about their interest. They were also given a
test involving a number of comprehension or transfer items and
asked about their reactions to the opinions expressed by other
pupils after the instruction. In addition, the process of
discussion in the experimental condition was audio-taped, and
behaviors of some selected pupils were observed.

General findings were as follows: (a) Experimental subjects
showed higher interest than the control subjects in testing their
predictions or knowing explanativns; that is they showed higher
epistemic curiosity before step 6. (b) The experimental subjects
offered adequate explanations of the observed fact or stated rule;
that is they showed explicit understanding more often than the
control group. (c) They could apply the rule or procedure more
promptly and more properly to a variety of situations, in other
words, showed better implicit understanding. (For the above
distinction between explicit and implicit understanding, see
Greeno, 1980.) (d) Epistemic curiosity and understanding were
correlated even within the experimental or control group.

(e) Cognitive changes among the experimental subjects occurred

~
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primarily after they tested their predictions. In other words,
group discussion produced few conversions by itself but made the
students more sensitive to the feedback in step 6.

While our theory is more or less universal, its application
must be culture-bound. The instructional strategies described are
based on several assumptions. Enhancing motivation for
comprehension through peer interaction presupposes that each
student is attentive to remarks made by others and tries to
incorporate them into his or her cognitive structure; that is, he
or she listens well to peers. Also, discussion in a large group of
40-45 pupils, with the teacher as chair, is possible only when most
students behave well. Therefore, we do not suggest the application
of ready-made instructional strategies to other social~cultural
settings. Further studies will enable us to specify effective
strategies that motivate students to engage in comprehension
activity in a variety of mathematics classes.
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Chapter 14
THE INTUITIVE DIMENSION OF MATHEMATICAL REASONING
Efraim Fischbein

In any mathematical activity one may identify three basic
components:

1.  The formal aspect is expressed in the strictly Aeductive,
logical structure of mathematics: axioms, defin’tionms,
theorems, proofs,

2. The algorithmic aspect, which includes standardized
mathematical operations, formulae, and solving strategies, is
the instrumental component of any mathematical activity.

3. The intuitive dimension refers chiefly to the dynamics of the
subjective acceptance of a mathematical idea.

Let us consider, for example, elementary arithmetical
operations. One must define what one means by addition,
subtraction, multiplication, and division and the relations among
them. One must define the laws of associativity, distributivity,
and commutativity and how they apply to elementary arithmetical
operations; one identifies the group properties of various sets of
numbers under these operations. Such components comprise the

formal aspect of mathematical activity.

At the algorithmic level, we are interested in the techniques
of mathematical operations as applied to various classes of
mathematical entities. Students also learn standard strategies for
solving standard problems with the help of these operations (such
as the famous "rule of three").

A third aspect of mathematical activity which is very often
overlooked in the instructional process is the intuitive dimension.
In learning mathematics, one does not deal exclusively with the
logical structure of mathematical truths. One must also assimilate
and integrate such truths into the fundamental scheuas of mental
behavior in order to apply them in problem solvirz. As a matter of
fact, one tends to confer automatically on the various types of
mathematical ideas a certain subjective interpretation--which makes
these ideas directly accessible and acceptable to the individual.
In other words, one confers on the respective concept or statement
an intuitive meaning. Even after an individual has acquired
sufficient training to consider a certain topic in a general and
abstract rigorous manner, he remains dependent on primary intuitive
interpretations. For example, although one knows that a point, a
line, and a surface are "pure" concepts, i.e. abstract, ideal
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mental entities, one tends to attach to them figural, intuitive
representations. This tendency may influence reasoning even when
the individual is aware of the purely abstract nature of the
respective entities.

The formal, the algorithmic, and the intuitive aspects of
mathematical reasoning describe neither developmental levels nor
learning stages, though their description may be helpful in
explaining some developmental phenomena or in devising teaching
programs. In our opinion, every genuine mathematical activity--no
matter the age of the individual or the complexity of the
mathematical concepts involved--includes all three aspects. Any
attempt to reduce a child's mathematical activity to mere intuitive
processes or a university student's reasoning to pure formal
inferences will have a negative result.

This uper focuses on the intuitive dimension of mathematical
activity.

The Concept of Intuition

The concept of intuition has a long history. Philosophers,
mathematicians, other scientists, and pedagogical specialists have
all used it, and a variety of meanings, some contradictory, have
been attached to the term. According to Descartes (1967) and
Spinoza (1967), intuition is the initial source and the ultimate
reliable guarantee of certitude. In Bergson's view (1954),
intuition is the key to understanding the essence of life
phenomena, of duration, of motion. Modern science philosophers,
like Hahn (1956) and Bunge (1962), consider intuition a primitive,
unreliable form of knowledge.

Although various definitions have been proposed, some features
are commonly accepted. Intuition is always described as immediate
knowledge, as a cognition which is accepted directly as
self-evident, with a feeling of intrinsic certitude, and without
any need for verification or proof.

Mathematicians and other scientists use the term intuition in
two different but related ways: (a) as similar to the moment of
"illumination" in a problem-solving process (the initial, global
grasp of a possible solution to a problem); or (b) when referring
to a statement which may be accepted as self-evident (e.g., the
whole is bigger than each of its parts). Both meanings are
fundamentally important for mathematics education.

The "illumination" meaning refers to the student's approach to
problem solving. Shall we teach students algorithmic techniques
exclusively, to enable them to identify classes of problems and to
solve them? Or shall we encourage students to guess a solution
before having firm grounds for accepting it? Bruner raises the
question: "Should students be encouraged to guess, in the interest
of learning eventually how to make intelligent conjectures?

-
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Possibly there are kinds of situations where guessing is desirable
and where it may facilitate the development of in.uitive thinking
to sSome reasonable degree. There may, indeed, be a kind of
guessing that requires careful cultivation™ (p. 64).

The second meaning refers to the way in which the student
represents and accepts a certain concept or statement., The
learning of a formal definition or a formal proof does not
determine absolutely the manner in which a student understands and
uses it. Obstacles to understanding, misconceptions, and
inadequate solving strategies are very often the effect of
intuitive influences,

Let us consider in more detail these two categories of
intuition,

Anticipatory Intuitions

Describing the problem-solving process, Hadamard (1949),
following the autobiographical accounts of Poincaré
(1914)--describes four stages: preparation, incubation,
illumination, and verification. The moment of illumination
cocrresponds to what we have called anticipatory intuition.

Much problem-solving solution activity is unconscious, but the
unconscious segment is preceded by a preparatory stage which is
conscious and purposeful. The preparatory stage refers to the
activity of learning the problem, to analyzing the concepts and
relationships involved. During the preparatory stage, we try to
become aware of the implications and consequences of available
information. We try to organize this data and to grasp a new
structure to lead us to the solution. Hadamard (1949) observed
that very often the path to the correct solution is blocked by
choosing and following rigidly a too-narrow path: ". . . in both
domains the mathematical and the experimental, the fact of not
sufficiently 'thinking aside' is a most ordinary cause of

failure. . . ." (p. 49).

To succeed, one must maintain a strict balance between
following a chosen investigative line and keeping the mind open to
all available options. The delicate equilibrium between openness
and flexibility on the one hand, and stability and consistency on
the other, represents what may be the most essential ability of a
good problem solver. Excessive rigidity or excessive divergency
during problem solving are insurmountable obstacles.

The incubation stage is largely an unconscious segment of the
problem-solving endeavor. The individual, tired from his effort,
changes his line of thought or rests. Between this moment and the
moment of illumination~the initial grasp of the soclution--something
must occur because there is often a fundamental difference between
the representation of the problem before and after interruption of
the conscious activity; the solution seems to appear suddenly, as
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if the mind has continued to work in the respective interval. What
kind of work is this? 1Is this a blind, automatic work which
produces many combinations (via associations)? According to
Poincaré, (1914) this combinational production does not represent a
characteristic aspect of the creative process; everybody, says
Poincaré, may associate blindly everything with everything, and
this would not lead to any solution. The unconscious mind's
essential task is to select and retain those combinations which
would be plausibly useful in attaining an acceptable solution. "To
invent means to discern, to choose' (Poincaré, 1914, p. 48). But
good choices follow certain criteria, and Poincaré (1914) mentions
several:

« + o the mathematical facts worthy of being studied are those
which, by analogy with other facts, are able to lead us to the
knowledge of a mathematical law in the same manner in which
experimental facts lead us to the discovery of a physical law.
They are those aspects which reveal surprising affinities
between different facts known for very long but which have
been considered unjustly alien one to the other. (p. 49)

According to Poincaré, the most fertile combinations are those
which consist of elements borrowed from very distant, very
different domains. But this alone is insufficient: the number of
possible combinations ma; be so great that a lifetime would not be
enough to examine them.

Poincaré offers a second criterion for successful selection of
combinations useful to mathematical invention. This he calls the
feeling of mathematical beauty, an awareness of the harmony of
numbers and forms of mathematical elegance. "This is a genuina
aesthetic feeling known to every true mathematician' (Poincare,
1914, p. 57). Certainly, we may disagree. Mathematicians may
occasionally enjoy the harmony and elegance of a solution or a
proof, but one may assume that these qualities are not always
apparent. What seems to be a fundamentul component of mathematical
invention, however, is what Poincarée (1914) has called the
intuition of mathematical order, which helps us to guess the
existence of harmonies and hidden relationships (p. 7).

The third stage in the problem-solving process is
illumination, or what we have called anticipatory intuition. It is
characterized by suddenness and by a feeling of certainty.

Let me recall a well-known autobiographical note of Poincaré
(1913) which refers to the izvention in mathematics:

Just at this time I left Caen where I was then living, to go
on a geologic excursion under the auspices of the school of
mines. The changes of travel made me forget my mathematical
work. Having reached Coutances we entered an omnibus to go
some place or other. At the moment when I put my foot on the
step the idea came to me, without anything in my former
thoughts seeming to have paved the way for it, that the
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transformations I had used to define the Fuchsian functions
were identical with those of non-Euclidean geometry. I did
not verify the idea; I should not have had time, as, upon
taking my seat in the omnibus, I went on with a conversation
already commenced, tut I felt a perfect certainty. On my
return to Caen, for conscience' sake I verified the result at
my leisure.

Then I turned my attention to the study of some arithmetical
questions apparently without much success and without a
suspicion of any connection with my preceding researches.
Disgusted with my failure, I went to spend a few days at the
seaside, and thought of something else. One morning, walking
on the bluff, the idea came to me, with just the same
characteristics of brevity, suddenness and immediate
certainty, that the arithmetic transformations of
indeterminate ternary quadratic forms were identical with
those of non-Euclidean geometry. (p. 388)

David Tail (1980) describes his complicated efforts to solve a
problem related to infinitesimal quantities,

Reconsidering the theory as a whole it now all seems so
inevitable. The ideas were not invented. They were
discovered. Reading about the process of discovery written in
these pages it is amazing to see the nuwmber of errors made and
the false intuitions which had the ring of truth. Yet such
was the intensity of excitement at the time that these
temporary setbacks were insufficient to cause permanent
blockages.

. A classic description of “problem solving" involves
conjec.ures which are then checked out. Here the researcher
never felt that he made "conjectures." What he saw were
"truths"” evinced by strong resonarces in his mind. Even
though they often later proved to be false, at the time he
felt much emotion vested in their truth. These were no cold,
considered possibilities, they were intense, intuitive
certainties. Yet at the same time its contact with them often
seemed tenuous and transient; initially he had to write them
down even though they might seem imperfect, before they
vanished like ghosts in the night.

When such "truth" later proved false, it was rarely because of
a coolly corsidered counter-example. That usually came later
still after a period of mental vaease already mentioned. In
fact, the researcher, when in a state of mental excitement did
not wish to check the detail at all, lest he lose the thread
of the overall idea. It is remarksblc the number of times
that there were small errors which went unnoticed at the time
but later produced unease then correction. (pp. 33-34)
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The Nature of Anticipatory Intuition

Several aspects of problem solving may be deduced from these
descriptions of its stages. Anticipatory intuition is generally
preceded by conscious preparatory work and by a tacit period of
incubation. One assumes that many combinations are tested but that
these are not produced by mere fortuitous associations. 1Inductive
attempts may oiten play an important role (Polya, 1954, pp. 3-11).
Before a specific general statement is identified, one checks
several cases, as in the empirical sciences. But sometimes a
general statement first comes to mind, and one then checks several
instances before a formal proof is found.

Analogy also plays a fundamental role in mathematical
invention; through analogy one guesses the common mathematical
structure of different classes of entities.

It appears that after the period of conscious preparatory
work, the same researcn process continues in the "underground," at
the tacit level. The difference is that, at the unconscious level,
the producticn of associations, the identification of analogies,
and the inductive-deductive reciprocal controls are activated at a
much greater speed through automatic means.

The suddenness of the illumination moment becomes apparent.
In fact, it represents, the final moment of a complex process,
which starts with a feeling of satisfaction, of liberation, and of
tension reduction. Suddenly, one has a global picture of the
solution, a picture in which formerly disparate or even
contradictory elements fic together in a new, unitary, coherent,
seli-consistent conception. Sometimes, these solution flashes have
the appearance of a positive breakthrough "accompanied by
pleasurable feelings" (Tall, 1980, p. 33).

A fu-ijamental characteristic of anticipatory intuitions is
that they appear to be absolutely certain. Although they represeat
no more than cenjectures--before a complete verification is
achieved--this is masked by the appearance of definitive truth
(Poincaré, 1913 and Tall, 1980). The impression, according to Tall
(1980), is that these ideas were not invented, but discovered.

Eugen Rusu (1962) a Rumanian mathematician and psychologist,
also emphasized these aspects:

« « . in the unstable and undecided atmosphere of the clouds
before the storm, suddenly appears a lightning. In its brief
light one grasps a convergent line of facts, a structure. The
proof did not yet appear in all its details. What appea:ed is
its guiding idea and the conviction that it indicates the
right direction. (p. 22)

Polya (.954) also speaks about beliefs when referring to
mathematical discovery.
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A scientist deserving the name endeavors to extract the most
correct belief from a given experience and to gather the most
appropriate experience in orzder to establish the correct
belief regarding a given question. (p. 3)

A belief is different from a formal conviction based on a
complete proof. A belief implies incompleteness in the arguments
on which the conclusion is based. We need to believe when we
cannot display a complete set of arguments; we must hide the gap
with our conviction that the missing elements are there but not yet
identified. Referring to beliefs in mathematical reasoning
suggests that mathematical reasoning, like empirical investigation,
uses heuristic means, (e.g., induction, analogies, the preliminary
solution of a2 simpler problem) by which one jumps from a limited
amount of empirically gathered arguments to a general idea. This
jump is the moment of illumination, the moment of anticipatcry
intuition,

N

Emergence of a solution usually cannot be the result of
gradual elaboration. The process' inductive, constructive nature
implies a jump from finite (a limited number of examined facts) to
infinite (the universal statement); one obtains a sudden belief
that one is on the right path.

A polief implies intrinsic consistency, coherence, resistance
to change, imperativeness. Certainly, the first global
representation of a solution must be followed by analysis and
verification for it is only then that empirical belief becomes a
conviction based on formal, complete justification. But even,
after the formal, analytical proof has been found, a global
representation remains necessary.

+ + . any mathematical argument, however, complicated must
appear to me as a unique thing. I do not feel that I have
understood it as long as I do not succeed in grasping it in
one global idea and unhappily . . . this often requires a more
or less painful exertion of thought. (Hadamard, 1949, p.
65-66) .

This is no longer anticipatory intuition (more syncretic than
synthetic). The final, global representation, the conclusive
intuition, provides the problem solver with a concentrated summary
through which, on the basis of a subtle hierarchical organizationm,
the main line of thought becomes salient and directly convincing.

As a matter of fact, the unconscious and the zonscious
components of the mental work are less distinct than might be
deduced from Hadamard's (1949) description. Certainly there are
periods of apparent relaxation during which tacit elaboration seems
to continue (as evidenced by the apparently sudden discovery of a
new idea that follows) but the stages of preparation, incubation,
illumination, and verification do not occur in succession, one
following another like acts in a play. The search activity is a
mixture of associations, analogies, inductive attempts, guesses,

;(’
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hopes, beliefs, and efforts of verification, in which unconscious
efforts occur simultaneously with conscious or semiconscious
endeavors. There is, of course, a specific direction in the
solution process, but this direction is far from consistent.

Tall's (1980) autobiographical note accentuates this
observation:

I recall that my mind was buzzing with ideas--1 still wasn't
clear about the archimedean bit, nor completeness. . . .
However I spent an hour photocopying music, including
"Virginia don't go too far" (a Gershwin song). I thought
about the hyperreals of Robinson 'going too far' extending to
many functions. (p. 29)

Reconsidering the theory as a whole, it now all seems so
inevitable. These ideas were not invented, they were
discovered. Reading about the process of discovery written in
these pages it is amazing to see the number of errors made and
the false intuitions which had che ring of truth. Yet such
was the intensity of excitement at the time that these
temporary setbacks were insufficient to cause permanent
blockages. . . . Before.-a major "illumination" takes place
there are various moments of intuitive leaps characterized by
the same feeling of belief that something essentially new has
been grasped, that an important break-through has occu~red.
These are positive, apparently successful, breaks-through.

But there are also negative break-~through with a vague feeling
of un2ase, with the conscious rationalization of the error
sometimes taking days or even months to register. (p. 33)

These micro~intuitions, usually based on tacit elaborations
expressed at the conscious level facilitate the relatively sudden
formation of apparently coherent structures in which various
elements seem to fit together in a unique, meaningful picture.
Their essential role is to organize ideas, and to include in the
constructive search activity moments of apparent success, of
apparent clarity and certitude from which the endeavor may continue
with confidence. These intuitive leaps have a double function:
they synthesize in new, apparently coherent and intrinsically
believable representations the progress already achieved and they
increase the perspective of further efforts in terms of analytical
control and new avenues of exploration. -

Affirmative Intuitions

A second category of intuition, inextricably related to the
first, we have termed affirmative intuition. Affirmative
intuitions are cognitions (representation, interpretations) which
are directly acceptable to the individual as certain and
self-evident. Such cognitions also are associated with a feeling
of belief which generally exceeds data at hand. Some of these
beliefs are considered correct by the scientific community, while
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others are viewed as false and must be rejected or corrected via
instruction.

Intuitive affirmatory cognitions may refer to concepts, to
relations, to inferences or to operations. In all these
circumstances, we deal with meanings expressed in representations
or interpretations directly acceptable to the individual as clear
and self-consistent.

Intuitive Meanings of Mathematical Comcepts

A person's knowledge of a formal definition or description of
a mathematical object does not generally eliminate the intuitive
meaning attached to that concept, and it is this intuitive meaning
that makes the respective cognition directly acceptable to the
individual. Such acceptance is achieved by conferring upon the
respective cognitions some globally representative, behaviorally
meaningful interpretation.

Let us consider several examples. In formal mathematics, the
concepts of point, straight line, surface--in fact, every
geometrical concept--are abstractions. They are defined by axioms
or by formally established definitions, and they do not exist as
objective, material realities. But one tends automatically to
confer upon them intuitive meanings. It is psychologically
impossible to think of a point other than as a small spot, or of a
line as anything but a fine ink stripe or a well stretched string.

David Hilbert (in Reid, 1970) observed:

Who does not always use, along with the double inequality

a >b > ¢, the picture of three points following one another
on a straight line as the geometrical picture of the idea
"between"? Who does not make use of drawings of segments and
rectangles enclosed in one another when it is required to
prove with perfect rigor a difficult theorem on the continuity
of functions or the existence of points of condensation? Who
could dispense with the figure of the triangle, the circle
with its center or with the cross of the three perpendicular
axes? Or would give up the representation of the vector field
or the picture of a family of curves or surfaces with its
envelope which plays so important a part in differential
geometry, in the theory of diffe. itial equations, in the
foundations of the calculus of variation and in other purely
mathematical sciences? (p. 79)

These are not mere pictorial representations with no influence
on the course of mathematical reasoning. In fact, these
representations wield active influence, often beyond conscious
control, on reasoning strategies ané solution choice.
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Figure 1

Comparing two sets of points--line segment AB and line segment
CD--one intuitively arrives at =2 contradiction (Figure 1): if one
agrees with Cantor that the two sets are equivalent, the intuitive
reaction is that segment CD is longer.

If one draws perpendiculars AE and BF, it becomes intuitively
obvious that one may establish a one-by-one correspondence between
the sets of points of AB and EF. What about CE and FD? Such
reasoning is correct when one considers pictorial representations
rather than mathematical points. But let us attempt to eliminate
the pictorial representation and to consider only the abstract
mathematical notion of a point. It is very difficult to do so.
How is it poscible to compare quantitatively sets of 0-dimensional
entities? There.is a well-known proof (see Figure 2) that shows
how a one-to-one correspondence may be established between two sets
of points. Nevertheless, a feeling of uneasiness persists. The
intuitive impression is that CD is somehow a stretched version of
AB (a compromise between the original intuitive representation and
the formal meaning attached to the respective concepts).
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A child trying to overcome the contradiction affirmed: "Both
segments contain the same number of points. In both there is an
infinity of points. But the points in CD are bigger." The theory
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of infinity, és established by Cantor in the 19th century, has
faced enormous difficulties because of intuitive obstacles.

A similar situation occurs with the number concept. It took
hundreds of years for mathematicians to confer on the concept of
negative number a formal mathematical status; negative number is

intuitively a contradictory notion. The intuitive roots of the
notion of number are to be found in the representation of
equivalent sets. A number refers intuitively to the act of
evaluating what has been called the cardinal of the set. This is
an abstract notion--all equivalent sets have the same cardinal.
This may be established behaviorally by establishing the
bijections. Briefly speaking, the idea of number is intuitively
meaningful, as long as it is related to sets of objects (or, at a
higher level, to the notion of measure). But a negative number has
ro such practical interpretation. It is true that one may consider
the absence of something, a certain deficit. One may claim, for
example, that one has $5 less than is needed to buy a specific
object. But to affirm that a number may absolutely represent a
quantity less than nothing is something totally different, An
existing quantity or a ratio between quantities (representable by
numbers) which is less than nothing is intuitive nonsense-—and so
are operations with such numbers. What is the intuitive meaning of
aultiplving (-2)x(~5)? For this reason, mathematicians, after
discovering that one may obtain negative numbers when solving
certain equations, have claimed that such curiosities are mere
artifacts and must be eliminated.

The Scottish mathematician McLaurin (1698-1746) clearly
understood the formal nature of mathematical entities: "It is not
necessary to really describe the objects of our theories or that
they should really exist. But it is essential that their
relationships should be conceived clearly and deduced obviously"
(in Glaeser, 1981, p. 318).

In spite of this, Maclaurin's Treatise of Algebra observed
that an isolated quantity cannot be negative; that it may be so
only by comparison. Rigorously speaking, a negative quantity is
not less than nothing; it is not less real than a positive quantity
when considered in an opposite sens¢ (in Glaeser, 1981, p. 317).
Such great mathematiciang, as Descartes, Fuler, Laplace, and Cauchy
have struggled with these contradictions, and it was not until 1867
that German mathematician Hankel definitely solved the problem. He
affirmed that negative numbers are not symbols of given realities
but formal constructs, and that operations with them are governed
only by formal considerations of consistency and not by practical
meanings.

Today, students experience with less acuity the inner,
intuitive contradictions inherent in the notion of negative
numbers; they became accustomed to the contept during childhood.
But the psychological difficulties reappear when dealing with the
operations with negative numbers.
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In order to understand the child's difficulties and successes
when operating with fractions, one must know the underlying
intuitive models the child has in mind. Behr and Wachsmuth (1982)
describe such models. Some children use unit-fraction iteration:
three-fifths is established by finding one-fifth and then
performing an iterative behavior. While this procedure is
sufficient for understanding the meaning of a fractional number, it
does not independently support the more abstvact idea of the
equivalence of fractions such as the equivalence between 3/5 and
6/10 (Hunting, 1986).

Relational intuitions are expressed in self-evident,
self-consistent statements: "The whole is bigger than each of its
parts"; "Every number has a successor'; "Through a point outside a
line, one may draw one parallel and only one to that line."
Intuitively acceptable, they may become obstacles te theoretical
developments that would ‘contradict them. Indeed, the first
statement above prevented mathematicians for many centuries from
accepting the concept of actual infinity. If one accepts the
concept of actual infinity, one muet accept that a set may be
equivalent to some of its proper subsets (e.g., the equivalence
between the set of naturil numbers and that of even numbers). In
admitting the fifth postulate of Euclides as absolute aud
self-evident, the path to non-Fuclidean geometries is closed. The
development of mathematical ideas has been hindered for many
centuries by such intuitively accepted statements.

Let us present another example. Carolyn Kieran, quoting
various sources, has shown that for elementary and junior high
school pupils the equality symbol represents an operator rather
than a symbol of equivalence. Intuitively, the equality symbol
represents for these subjects "a do-something signal." The
sentence 3+5=8, for example, is interpreted as "3 and 5 make 8."
Children rejected a sentence such a3 4+5=3+6 because they expected
an answer and not another problem to follow the cquality symbol
(Kieran, 1981, p. 319). The underlying intuitive model is that of
an input-output operator, which prevents the child from
interpreting the equality sign as a relation symbol, or as the
symbol of equivalence with properties of symmetry, transitivity and
reflexivity. When children were asked about the meaning of "3=3,"
a typical response was: "This could mean 6-3=3 or 7-4=3."

The problem of the intuitiveness of mathematical statements
also raises important didactical problems:

1. If a statement is intuitively evident, students are reluctant
to accept the necessity of a proof. The proof appears to be
an unnecessary requirement which may cast doubt on the
seriousness of mathematics itself. (We refer to such theorems
as: "Two crossing lines determine pairs of equal opposite
angles" or "If two sides of an isosceles triangle are equal,
the opposite angles are also equal."
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2, Self-evident statements are not absolute truths, and they may
be replaced formally by statements which are
counter-intuitive. For example, one may consider axiomatic
systemg in which Euclides' postulate is replaced by
counter-intuitive axioms (e.g., through a point outside a
line, one may draw an infinity of parallels to that line).
Students will certainly be shocked by such statements, but the
acceptance of counter-intuitive statements freely chosen or
deductively proven (not leading to contradictions) is a
sine-quo-non part of mathematics education.

3. Certain mathematical statements may not have a direct,
intuitive meaning, but such a meaning may be created by using
adequate intuitive models. The statement "if A > B, then
~A < -B" has no intuitive meaning, but an intuitive model may
easily be associated and understood using the number line.

4, There are many situations in which a statement has no
intuitive meaning and in which such a meaning cannot te
produced. The definition a® = 1, or the relaticn ap =val
has no intuitive meaning, and no curresponding behavioral
representation is possible. We do not recommend that eff.rt
be exerted to create artificial models for justifying sach
relations. The stulent must learn that mathematics is a
formal, deductive body of knowledge in which statements are
formally justified. Adequate, intuitive models may help in
grasping th: meaning of a concept or statement, but such
intuitive means cannot always be provided.

The Intuitive Meaning of Operations

Arithmetical operations are formally defined by axioms.
Nevertheless, one tends to attach to these operations intuitive
meanings which are commonly based on a corresponding practical
operation. The sentence "5+3=8" intuitively means putting together
two sets of elements But it may also be interpreted as counting
from five on three addit.onal elements (for instance, by using
fingers). The sentence "7-3=4" may direct students to eliminate
from a gset of seven a set of three elements, or to build up from
three to seven. If the text of the problem suggests intuitively a
different operation than that which must actually be performed, the
child encounters difficulties: "John has $5. He neoeds $8 to buy a
pocket calculator. How much does he need?" The child must
actually add, but the formal operation to be performed is
subtraction.

The typical intuitive interpretation of multiplication is
repeated addition, but this imposes several constraints. In formal
rmathematics multiplication is commutative. But if multiplication
must solve a practical problem, the situation may be different.

One must consider both the operator and the operand, "3 x 5" means
"3+43+3+3+3"0r"5+54+5.," In the first interpretation, 5
is the operator and 3 is the operand. In the second

68



60

interpretation, 3 is the operator and 5 is the operand.

Intuitively this makes a great difference: one cannot intuitively
conceive of taking a quantity 0.63 times, or 3/7 times, whereas one
can easily conceive of 3 x 0.63 = 0.63 + 0.63 + 0.63, even if one
is unable to perform the operation,

It has been shown that adults as weil as children encounter
difficulties vhen asked to solve a multiplication problem in which
the operator is a decimal. A problem in which the same numbers
intervene, but in which their role is changed, is solved more
easily. Let us consider the following questions:

1. From ! quintal of wheat, you get 0.75 quintal of flour. How
much do you get from 15 quintals of wheat?

3
2. The volume of 1 quintal of gypsum is 15 em”. What is the
volume of 0,75 quintal?

These are examples taken from research in Pisa, Italy, and all
subjects were familiar with the term "quintal." In both problems,
the solution is derived from multiplying 15 by 0.75. Grades five,
seven and nine were investigated: grade five scored 79% and 57%
correct on questions 1 and 2, respectively; grade sc zn scored 74%
and 57% correct, respectively; grade nine scored 76% and 46%
correct, respectively. When 0.75 was used as an operator, a
dramatic deterioration of scores was observed,

A second constraint of the repeated addition model is that the
product of multiplication must be larger than each of the factors.
A difficulty appesrs if the operator is smaller than 1, since in
this case the multiplication "makes smaller" (see Fischbein et al.,
1985).

It also has been assumed that division is assuciated
intuitively with two models: partitive division (sharing division)
and quotative division (measurement division). The structure of
the problem determines the model which is activated. In the first
case, division is seen as an operation through whicn an object or a
collection of objects is divided into equal fragments. In this
interpretation, the dividend must be larger than the divisor, the
divisor {the operator) must be a whole number, and the quotient
must be smaller than the dividend (operand). Quotative division
refers to a situation in which one seeks to determine how many
times a given quantity is contained in a larger quantity. The only
restriction is that the dividend must be larger than the divisor.
As with multiplication, problems that violate these constraints
create difficultizs at various age levels (Fischbein, et al.,
1985).

Thus, the intuitive meanings of mathematical operations play
an important role in solution choice. Schools should develop in
children an awareness of intuitive interpretations and an ability
to understand and to control them.
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Let us consider an additional example: A bottle of 0.75 litre
of juice costs $2. What would be the price of 1 litre of juice?"
The intuitive tendency is to choose multiplication as the solution
operation; the idea that the correct solution is 2 # 0.75 is not
suggested intuitively. It is not the structure of the problem
itself wiich creates the difficulty, but the relationship between
the numerical data: the divisor is a decimal.

Let us consider the same problem with different data: "For
$10, one can buy 5 litres of juire. What is the price of 1 litre?"
It is intuitively clear that one must divide 10 by 5. It is not
the presence of the decimal which is the main source of difficulty,
but its function. In the research mentioned above, one finds the
following problem: "Five friends bought together 0.75 kg. of
chocolate. How much does each one get?" Even fifth graders solved
the problem easily (85% correct answers).

These examples show that conflicts may arise between the
formally correct solution and the tendencies supported by intuitive
primitive models. We assume that in multiplication and division
problems, the didactical solution is to develop proportional
reasoning in pupils. According to Inhelder and Piaget {1958)
proportion is one of the main operational schemas. As a matter of
fact, each schema is only a potentiality. The elementary intuitive
forms of proportional reasoning are present even in
concrete—-operational children. The challenge is to improve that
intuitive background and to develop corresponding quantitative
strategies. The famous "rule of three” may play an essential role
in overcoming these intuitive difficulties through the use of
formal strategies.

Let us return to the probiem of the $2 0.75 litre of juice and
tue price of 1 litre. The proportionality is not intuitively
evident; schema may help. One begins with 2 simpler problem in
which the proportion is evident:

6 licre --—- S10
3 litre -~~~ x dollars

The ratio between the quantities is equal to the ratio between
their prices. If the quantity of juice is higher, the price is
also proportionally higher. The problem becomes 6/3 = 10/x. If the
quantity of juice is one half, the price is also one half, and

= 5. On the other hand, the student must learn the
transformations which would enable him to generalize the solution
procedures.

I would like to emphasize that developing intuitive, active
attitudes and teaching adequate algorithms are not opposite,
didactical strategies. On the contrary, students must learn to
merge the two approaches in a unitary, complex
information-processing strategy on a strong, formal basis. As
Vergnaud (1983) has shown, arithmetical operations must be
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assimilated not as isolated procedures but in the “ealm of complex
conceptual systems.,

Intuition and inferences. Some inferences seem to express
intuitions, while others do not. From A = B, B = C, one concludes
as a direct intuitive consequence, that A = C. Similarly, from
A> B and B > C, one concludes that, evidently A > C. Such logical
intuitions develop during the concrete-operational stage.

Conditional reasoning becomes more complicated. According to
Inhelder and Piaget (1958), the formal-operational period is
characterized by the emergence of hypothetical and combinatorial,
propositional rzasoning. This means that the logical structures of
implication, conjunction, and disjunction should work to guarantee
the adolescent's capacity to perform the logical operations
requested by mathematical reasoning. In fact, things are very
often no: so. Even if one knows the truth table of the basic
logical operations, one is not necessarily able to use these
operations correctly in concrete problem-solving situations.

Knifong (1974), referring specifically to conditional
reasoning, claims that children snswer correctly only if the
correct solution may be found by transduction, and this may occur
with forms of reasonings called modus ponens and modus tollens-
For example: "If this object is sugar, then it is sweet."

Modus ponens: "This object is sugar--then it is sweet.

Modus tollens: "This cbject is not sweet--then it is not sugar.

According to Knifong, childrer do not conclude correctly when
denying the antecedent (the object is not sugar) or when affirming
the consequent {this object is sweet). In the first case, the
tendency is to demy the consequent; in the second, to affirm the
antecedent. Knifong calls this relation non-directional
justaposition.

In research by Galbraith (1981), pupils were asked about
numbers for which the sum of the digits can be divided by 7.
(Examples include 34 [3+4=7]; 185 [1+8+5=14].)

The question continues:

If we make a list L of all such numbers which are less than
70, the start of it looks like this: 67, 16, 25, 34. Write
down the next largest number on the list. Gary says: If you
start with 7 and keep adding you always get a number on the
list L.
(1) 1Is Gary right?

Brenda says: "Every number in the list can be forad hy
adding 9 to the previous number. You start with 7.
(2) 1s Brenda right?" (Galbraith, 1981, pp. 9-10)
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"If a rule goes for one, it will go for another"; "If it works
for three, it should work." These pupils do not use implication as
a logical, formal tool; their approach is an empirical one. Even
after locating numbers in the list L (59 and 68) whose sum of the
digits is divisible by 7, but which could not be obtained by adding
successively 9, many subjects did not accept that Brenda's
statement is thereby refuted (that is, if p + q, then T+ ).

0'Brien et al. (1971) found that only 20% of grade 10 students
were able to answer implication tests correctly. The authors
concluded that this inability may explain student's failure in
constructing a mathematical proof or checking its validity.

Logical schemas do not necessarily develop as actual
capabilities in children and adolescents, and systematic training
is requested. This training must be considered at all three levels
of mathematical reasoning:

1. The formal level implies knowledge of truth tables of the most
commonly used logical operations (implication, disjunction,
conjunction).

The algorithmic level involves drill-and-practice cztivities
referring to transformations of logical relations. Computer
programs may be helpful at this level.

b

3. Intuitive unierstanding and use of logical operations may be
developed by asking students to solve probiems through global,
direct evaluations before any systematic explicit control is
performed. For example:

If figure A is a square, its dlagonals are equal. Let us
suppose that one has proven that the diagonals of A are equal.
Is figure A a square?

An irrational number has an infinity of decimals. Number A
has an infinity of decimals. Is it an irrational number?

In order to answer intuitively--and, not by resorting to the
truth table of implication--one must imagine the situation and try
to produce concrete instances which may confirm or deny the inverse
implication (q + p). It is essential to compare the solution
deduced from the truth table with that which is produced by
analyzing concrete examples. For example, the truth table
indicates that the truth of q does not imply the truth of p: a
number may have an infinity of decimals and, still be a rational
number.

Intuition and proof. Are students aware of the profound
distinction between an empirical proof and a formal (logical,
mathematical) proof? Fischbein and fedem (1982) have reported that
fer many high school students such a distinction is not clear cut.
About 400 students in grades 10, 11, and 12 were presegted with the
following sentence: "Dan claims that the expression n” - n is
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divisible by 6 for every n." The sentence was followad by a
complete proof (n” - n =(n 1) n (n+ 1l). This expression is
divisible by 2 and by 3, etc. About 81% of the subjects claimed
that the proof is fully correct. The question was then asked:
""Moshe clgims that he has checked the number n = 2357 and has found
that 23577 - 2357 is not divisible by 6. What is your opinion on
that matter?" Only 32% of the students claimed that it must be a
mistake, or that it is impossible. Many did not explain the
apparent contradiction. A portion of the subjects claimed that the
theorem is true only for some classes of numbers, or that Moshe's
result refutes the statement of Dan. There were subjects who
claimed that one must check the theorem for various numbers or that
"an exception is always possible." Most of the same students have
affirmed previously that they accept the proof as fully correct.

In reality, their basic, intuitive attitude towards a general,
mathematical statement was identical to that in empirical
situations in which there are no universally valid proofs.
Exceptions are possible and additional controls are therefore
welcomed (Fischbein & Kedem, 1982). The act of learning the theory
and the meaning of mathematical proofs does not necessarily change
the intuitive, the deep~structure attitude of the individual. Our
opinion is that special training is required whick would create in
the student an intuitive understanding of the meaning of a formal
proof (with its absolute, universal validity).

Summary and Didactical Suggestions

For a long time, reasoning has been analyzed largely in terms
of propositional networks governed by logical rules. The modern
information-processing approach~~inspired by computer
programming-~has continued along the same line and emphasized the
conceptual algorithmic structure of thinking. But since 1960,
researchers have become aware of the 7 ‘isive role played by
cognitive components deeply rooted in .ur adaptive behavior, such
as images, models, and beliefs. Kelly (1963) emphasized the role
of beliefs and expectztions; Norman (1979, 1982) analyzed the
structure of models with their limitations. Paivio (1971), and
more recently Shepard (1978), were concerned with the impact of
images on reasoning. (This is only to recall a few from the
hundreds of contributions.)

The term intuition accounts for constructs that synthesize
these various aspects of problem solving in unitary cognitive
structure. An intuition is a nodal moment in the flow of
cognition, expressed with a stabilized, confident expectation which
exceeds the data at hand. Intuitions--both anticipatory and
affirmatory--represent in the stream of thoughts the apparently
firm, reliable grounds that allow an individual to progress in
problem solving.,

But the crystallization of intuitions implies additional,

often extraconceptual, elements. Pictorial and behavioral
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interpretations, analogies, and paradigms contribute to the imbuing
of ideas with an appearance of familiarity, practicality, and
direct accessibility. An anticipatory intuition may inspire a new
direction for solution attempts, and affirmative intuitions may
enable the student to achieve a deeper, more personal, and more
productive understanding of a concept or statement.

On the other hand, the intuitive loading of a concept may omit
or distort its genuine meaning. Conflicts between intuitive
meaning and formal constraints may arise without either the student
or the teacher becoming aware of them.

Mathematical entities do not have an external, independent
existence as do the objects of empirical sciences. Mathematics
involves entities whose properties are fixed by axioms and
definitions; dealing with such entities requires a mental attitude
that is fundamentally different from that required by empirical,
materially existing realities. When one defines a category of
concrete objects, one knows that the defir”tion only approximates
the knowledge of the respective r.cegory. New properties, not
deducible from the definition, may be discovered. Mathematical
entities owe their very existence and all of their properties to
that which has been imposed by definition. This creates a new
dicdactical situation: the student must learn to understand and to
use mathematical concepts in absolute conformity with the
corresponding axioms and definitions, no less and no more. This is
an important and very difficult task.

Consequently, special exercises should be devised to train
students to analyze concepts and definitions in order to
distinguish clearly between the properties imposed by definitions
and those suggested by intuitive components. Is a square a
parallelogram? Certainly it is, because it corresponds to the
definition of the paralielogram. May a tangent have more than one
point of contact with the curve? Why not? The unicity of the
point of « ontact is not included in the definition of the tangent
(expressing the slope of the curve in a given point). Are the set
of points of a line segment and the set of points of a square
equivalent? If a point is identified as a small spot, the two sets
are certainly not equivalent. If the point is considered
zero~dimensional, there is no intuitive auswer to this question;
the answer is purely abstract, based on a formal proof.

Une cannot eliminate the usual intuitive representations
associated with matiiematical concepts. We cannot eliminate these
analogies, behavioral meanings, images, and paradigms because this
is the way we think. Our thinking activity remains profoundly

rooted in our adaptive, practical behavior, which implies
spatiality, structurality, and fluent continuity. The main problem
is to learn to live with the intnitive loading of
corcepts--necessary to the dynam.cs of reasoninpg--and,
simultaneously, to control conceptually the impact of these
intuitive influences.

4
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Wittmann put it clearly:

The students should gradually learn to analyze concepts,
constructions, theorems and proofs. Such analyses are based
on a written piece of mathematics, e.g., a proof, a small
context of concepts and theorems. They aim at deeper
understanding of the assumptions of a proof, of the form of
inferences, of logical relationships and at the formulation of
more systematic versions of the text at hand. (1981, p. 395)

What we would like to emphasize is that such analyses should
habituate the student to become aware of the exact formal meaning
and implications of mathematical concepts, as distinct from the
implications of the underlying intuitions. Without its engine and
wheels, a car could not move--but the steering wheel controls its
direction.

Secondly, students should also learn to analyze and formalize
their primary intuitive acquisitions. The student must learn to
abstract formal structures from practical realities, to define
them, to render explicit the properties of a class of entities, to
produce proufs after anticipatory intuition has suggested a certain
statement.

A third aspect refers to the role of heuristic attitudes in
mathematical reasoning. A creative mathematical activity is a
constructive process not reducible to mere deduction. In a
constructive process, one must anticipate, and this implies a
certain amount of guessing. Guessing in a problem-solving endeavor
is not a blind trial-and-error process. Some general heuristics
have been described, including the means-end strategy, jntuitions
based on analogy or induction, and reference to a known or more '
simple problem.

When one guesses, one usually does so in accordance with the
lines of force determined by intuitive tendencies and not
necessarily in conformity with formal constraints. The first basic
recommendation for developing anticipatory intuitions is to improve
the capacity to discern the formal matnematical properties beyond
the intuitive representationms.

Analogies seem to play a fundamental role in generating new
ideas as Poincare (1913) and Polya (1954) have emphasized. Much
greater attention should be given, in our opinion, to instilling in
students a sensibility for similarities, an ability to identify
isomorphisms and to describe common structures. Our assumption Is
that if the student is consciously accustomed to proceeding this
way he will develop similar capacities at a subconscious level.
During his problem-solving efforts, apparently spontaneous,
produ tive analogies will emerge automatically and will become a
source of anticipatory intuitionms.

We propose that the capacity to evaluate preliminary solutions
and the plausibility of intuitive leaps can also be trained. This
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probably does not involve teaching formal problem~solving
strategies. It is rather a problem of practical training in which
systematic classroom discussions and evaluation of competing
hypothesis may play an important role.
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Chapter 15

MATHEMATICS CURRICULUM ENGINEERING: SOME SUGGESTIONS FROM
COGNITIVE SCIENCE

Thomas A. Romberg and Fredric W, Tufte

The purpose of this paper is to present some of the
implications that recent research in cognitive science has for the
engineering of mathematics curricula. To build a curriculum one
must make several decisions about the content that is to be
included, how that content is to be segmented, how the segments are
to be sequenced, approx.mately how much time is to be spent on each
segment, and what is to be considered acceptable work. These are
all curriculum engineering decisions. In this paper we propose a
set of principlis on which such decisions should be made. The
principles have been derived from recent psychological research.
Since this research is not about curriculum engineering but about
how people process and retain information, the principles must be
considered as suggestions based on this research rather than as
findings. To build a list of principler, we first describe the
curriculum engineering problem being addressed; second, we briefly
outline what it means to draw infevence from research; third, we
give a summary of cognitive science research related to how
information is stored in long-term memory; and finally, from this
research we draw curriculum engineering principles,

The rationale for preparing this paper is that, if significant
gains are to be made in the mathematical accomplishments of school
children, then as Romberg and Carpenter (1985) have argued,
"researchers and curriculum developers must be attuned to a changed
perception of what it means to know mathematics and to what the
rapidly expanding literature from cognitive science has to say
about how children, adolercents and young adults store and process
information" (p. 852). In this chapter findings from cognitive
psychology that appear to have application in an educational
setting are presented.

Furthermore, it is a premise of t“is paper that, as expressed
by Romberg (1983), to know mathematics is to do mathematics, and
that among the essential activities involved in doing mathematics
are abstracting, inventing, proving, and applying. Hathematics is
not, as it is often taugnt, a static collection of bits and pieces,
leading nowhere except to achievement on a test measuring knowledge
of terminology and algorithmic procedures. The fragmentary nature
of many existing mathematics programs leaves the student with an
almost total inability to apply mathematics in any but routine
situations and, in fact, with very little experience with
mathematical thought itself. The future emphases of instruction
must be on the powerful idea. of mathematics, their
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interrelatedness, and the development of quantitative reasoning
(Romberg, 1984). To accomplish mathematics programs with these
emphases new curricula will have to be developed. This paper was
prepared to give direction to that work.

CURRICULUM ENGINEERING

A curriculum 1s an operational plan detailing what content is
to be taught to students, hLow students are to acquire and use that
content, and what teachers are to de¢ in carrying out that
curriculum (Romberg, 1970). The key to this definition is the
notion of planning and that human beings are involved in the
planning effort. Romberg and Price {1983) have pointed out that
such a plan is viewed differently at different levels. There will
be general specirfications and needs at a "board of directors"
level, a package of materials at a publishers level, guidelines to
ceachers at a local level, and daily lesson plans at the teacher
level.

Curricula also can be viewed from different content
conceptualizations: an ideal curriculum as envisioned by curriculum
theorists; an availlable curriculum as reflected in the current
textbooks, curriculum frameworks, etc.; the actual curriculum that
is implemented in a particuiar clagsroom; and the learned
curriculum (Romberg, 1985). Becaise of these differing
perspectives it should be clear that building an operational plan
for a curriculum 18 a complex task. Curriculum engineering iy the
iterative process by which parts for the operational plan are
invented and then put together into the final plan to be
implemented. The process is iterative in that no product is ever
viewed as a final "best" plan. Rather, changes are always
anticipated, and each new model is to be an improvement over the
old. 1In this section the traditional concerns in bullding a
curriculum are first deescribed, then a rationale for challenging
that tradition is presented.

Traditional Curriculum Engineering

The steps of traditional curriculum engineering have been
common practice for decades, They were formalized in the 1930s by
Ralph Tyler (1931). The process begins with an epistemological
assumption that knowledge is external to the knower. For example,
mathematics 13 viewed as a body of knowledge (concepts, skills,
procedures) that is well defined and agreed on in