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MISSION STATEMENT

The mission of the Wisconsin Center for Education Research is to improve
the quality of American education for all students. Our goal is that
future generations achieve the knowledge, tolerance, and complex thinking
skills necessary to ensure a productive and enlightened democratic
society. We are willing to explore solutions to major educational
problems, recognizing that radical change may be necessary to solve these
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Our approach is interdisciplinary because the problems of education go
far beyond pedagogy. We therefore draw on the knowledge of scholars in
psychology, sociology, history, economics, philosophy, and law as well as
experts in teacher education, curriculum, and administration to arrive at
a deeper understanding of schooling.

Work of the Center clusters in four broad areas:

aLearning and Development focuses on individuals, in particular
on their variability in basic learning and development processes.

Classroom Processes seeks to adapt psychological constructs to
the improvement of classroom learning and instruction.

m School Processes focuses on schoolwidA issues and variables,
seeking to identify administrative and organizational practices
that are particularly effective.

0 Social Policy is directed toward delineating the conditions
affecting the success of social policy, the ends it can most
readily achieve, and the constraints it faces.

The Wisconsin Center for Education Research is a noninstructional unit
of the University of Wisconsin-Madison School of Education. The Center
is supported primarily with funds from the Office of Educational Research
and Improvement/Department of Education, the National Science Foundation,
and other governmental and nongovernmental sources in the U.S.
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PREFACE

This set of papers, published in three volumes as a monograph
of the School Mathematics Monitoring Center, presents the
rationale, background, and framework for a comprehensive monitoring
system being developed for the National Science Foundation. The
system is being designed to gather information about the effects of
national, state, and local policy actions designed to change the
teaching and learning of mathematics in the schools of America.

To build the monitoring system three assumptions were made.
First, as a society we are involved in a major economic revolution.
This revolution, addressed in Chapter 2, directly affects
mathematics, its use, and what is deemed fundamental. As a
consequence we believe "that most students need to learn more, and
often different, mathematics" (Romberg, 1984, p. xi). Second, in
spite of the changes in school mathematics inherent in the first
assumption, we believe that there is general concensus about the
goals for school mathematics and about the kinds of changes needed
to achieve those gcals. Thus, to develop the framework for the
system one must begin with an understanding of those goals and the
ideas on which they are based. Only then can indicators be
developed to see whether the goals are being reached. Third, the
policy actions with respect to the specific goals set for school
mathematics must be consistent with the more general educational
goals for a free and democratic society.

The need to monitor changes in school mathematics was proposed
at two conferences. The first was organized by the Conference
Board of tie Mathematical Sciences (the New Goals Conference, CBMS,
1984), and the second by the National Council of Teachers of
Mathematics, the U.S. Department of Education, and the Wisconsin
Center for Education Research (School Mathematics: Options for the
1990s, Romberg, 1984). One conclusion from both conferences was
that information about the nature of proposed changes and their
effects on schooling practices was needed. During the past 25
years the federal government has invested considerable funds to
change the teaching and learning of mathematics in America's
schools, and today it is in the process of funding several new
projects. Unfortunately, evidence of the impact of past dollars on
classroom instruction is lacking. The special evidence that exists
was unsystematically gathered and is incomplete. As new monies are
spent and programs developed, it is crucial that a systematic plan
be adopted to gather information about the effects of these planned
changes.

During the past year the staff of the Monitoring Center
prepared a series of papers, commissioned additional papers,
convinced some authors to allow us to reprint a paper they had
recently prepared, and asked a few nationally recognized experts to



x

review and critique sets of papers. In all we have collected some
30 papers that address the issues of a new world view, what is
fundamental inmathematics, what implications recent research in
psychology or sociology has for school mathematics, etc. The
intent of gathering these papers was to assist the staff of the
project in the design of a monitoring system for school
mathematics. However, since they comprise a review of the current
thinking about schooling by a number of noted educators, we have
chosen to publish them in this three-volume monograph so that
others may have access to this information.

The first volume addresses the need for a monitoring center,
the new world view, and what is now considered a fundamental for
students to know about mathematics. In the second volume the
implications of psychology to the learning of mathematics is
addressed, and the problems of assessing learning based on both the
new mathematical fundamentals and our knowledge of learning is
examined. The final volume is comprised of papers that are based
on current sociological notions about schools and how that
knowledge affects the role of teachers and instruction in
classrooms.
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IMPLICATIONS FROM PSYCHOLOGY

One of the primary sources of research findings that support
the need for reform in the teaching and learning of mathematics is
psychology. During the past quarter of a century there has been a
major revolution in that field. Learners are no longer considered
passive recipients of information that is fixed via reinforcement.
Today learners are seen as active processors of information and
,constructors of knowledge. To portray the importance of this
research for the reform movement in school mathematics, we have
solicited five chapters.

In the initial chapter in this volume, chapter 12, Jim Greeno
summarizes the recent advances in cognitive psychology. Giyoo
Hatano and his colleague Kayoko Inagake summarize research on
intrinsic motivation in chapter 13. In chapter 14, Efriam
Fischbein covers the role of intuition in mathematical reasoning.
Each of these chapters, written by internationally known
psychologists who have worked in the learning of mathematics,

portrays important aspects of recent work that has implications for
the reform movement in mathematics. In chapter 15, Tom Romberg and
Fredric Tufte provide a review and synthesis of some of the recent
psychological research in relationship to curriculum engineering.
Chapter 16, the final chapter in this section; contains a critical
review of the previous chapters that was prepared by Gary Price.



Chapter 12

MATHEMATICAL COGNITION:
ACCOMPLISHMENTS AND CHALLENGES IN RESEARCH'

James G. Greeno

This paper presents an overview of research about knowledge
and cognitive processes in mathematical problem solving and
reasoning. I discuss broad trends that I illustrate with examples;
this is not thorough review of research findings.

The paper has three main sections. First I discuss research
accomplishments in the decade from the mid-1970s to the present.
In this period we have been successful in establishing what can be
called the Knowledge Structure Program for research in mathematics
education. The dominant goal of this research has been to
understand knowledge that is required for successful performance of
school tasks. Considerable progress has been made in the form of
cognitive models that simulate cognitive structures and processes
that students acquire when they are successful in the tasks that
are used in instruction. Results of this research are applicable
in the design of new tasks and representations that address
instructional problems, and some promising preliminary projects are
under way.

Next I discuss an alternative that many consider preferable to
the idea of knowledge structures as goals of mathematics edueatiJn.
Rather than focusing on the content of mathematics, instruction
could attempt to provide abilities to think mathematically and
cognitive resources for reasoning in situations other than
classrooms. I discuss recent research findings in cognitive
anthropology and developmental psychology that support the
feasibility of these deeper goals of mathematics education and
suggest some features of instruction that could be effective.

Then I discuss two general theoretical concepts about
knowledge that seem particularly germane to the goals of
mathematics education: the situated and generative character of
knowledge. I describe some research related to these concepts,
including some recent and current projects in instructional

1
An earlier version of this paper was presented at the annual

meeting of the American Educational Reseach Association in April
1986. I am grateful for discussions with my colleagues Andrea A.
diSessa, Peter Plrolli, Frederick Reif, and Alan N. Schoenfeld
about these matters, including reactions to a draft of this paper.

3
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research and development, as illustrations of research directions
that could inform educational development in the service of deeper
instructional objectives. Finally, I offer a few conclusions.

The Knowledge Structure Program

Cognitive Models as Instructional Objectives

A program of research that became feasible in the mid-1970s
has turned out to be remarkably productive and successful. An idea
about formulating objectives of instruction in the form of
cognitive models that simulate performance in school tasks was
discussed programmatically at a conference held in 1974, sponsored
by the Office of Naval Research. Hayes (1976), commenting on
Greeno's (1976) discussion, put the idea as follows:

Cognitive. objectives in education [are] intended to
replace the more traditional behavioral objectives. To
specify a behavior objective for instruction, we state a
particular set of behaviors we want the students to be
able to perform aftar instruction, e.g., to solve a
specified class of arithmetic problems or to answer
questions about a chapter in a history text. To specify
a cognitive objective, we state a set of changes we want
the instruction to brirg about in the students' cognitive
processes, e.g., acquisition of a particular algorithm
for division or the assimilation of a body cif historical
fact to :nformation already in long-term memory. (pp.
235-236)

Relevant Advances in Corgli.vePsystgzolo

The go-11 of formulating instructional objectives as cognitive
models seemed a feasible program at the time because of two
important advances in cognitive psychology that had just emerged: a
model of problem solving and a model of languag understanding.

A psychological model of knowledge used in solving novel
problems was published by Newell and Simon in 1972. This work
established both the feasibility of using ideas developed in
artificial intelligence as a basis for developing hypotheses about
human ,lognition and the methodology of testing those hypotheses
using thinking-aloud protocols obtained while individuals work on
solving problems. Newell and Simon characterized general
strategies of problem solving, including means-ends analysis, that
are effective when an individual without special instruction in a
domain is given instructions about the states and operators that
can be used to solve a puzzle. An important formal notion is the
use of production rules to represent knowledge for cognitive
activity. In a system of production rules, each rule specifies a
pattern of information and an action, which may be a physical
action or a cognitive action such as a decision or an inference,
and the action is performed whenever the condition is true in the
situation. A later development that was important for modelling

12
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knowledge for school tasks was a model of knowledge for planning,
published by Sacerdnti in 1977. Sacerdoti characterized knowledge
about actions in a domain with their consequences and prerequisites
P3 that a planner can construct sequences of actions to achieve
goals.

At about the same time there were significant advances in
artificial intelligence and cognitive psychology regarding
knowledge and cognitive processes involved in understanding
language. Winograd (1972) developed a system that takes English
sentences as input and constructs programs for examining conditions
in an environment and moving objects about in the environment.
Schank (1972) developed a system that converts English sentences to
structures of information about the actions and situations that the
sentences describe. Anderson and Bower (1973), Kintsch (1974),
Norman, Rumelhart, and the LNR Research Group (1975), and others
developed psychological models that simulate understanding of
language based on use of schematic knowledge and propositional
structures to form representations of meanings of sentences and
paragraphs of text. Meanings are represented as semantic networks
in which concepts correspond to nodes and relations among the
concepts correspond to links. Knowledge in the form of schemata
provides general structures that the understander uses to construct
semantic networks for the meanings of specific sentences and
situations. The outcome of understanding is a knowledge base that
can be used to answer questions, either by retrieving information
that was included directly in information that was understood, or
by retrieving information that was inferred as part of the process
of understanding, or by making inferences based on information that
was understood.

Progress in a Decade of Research

The idea that several investigators began to work on in the
mid-1970s is that the concepts and methods of cognitive psychology,
including the concepts of production systems, schemata, and
semantic networks and the methods of protocol analysis and
simulation modelling, could be used in understanding what students
need to learn to succeed in school instruction. Students' learning
is tested by questions they are asked and by problems they are
required to solve. The research effort that I call the Knowledge
Structure Program takes tasks that are used in instruction and
constructs models of the knowledge required to perform the tasks
successfully. Data used to guide construction of the models may
include detailed analyses of successful student performance, often
including thinking-aloud protocols. Data also may include
characteristic errors of performance or reasoning, with explicit
features of the models that overcome those difficulties. Some
important analyses have been based mainly on considerations of the
structure of subject-matter concepts and the experience of teachers
regarding student difficulties. The strongest work has combined
deep insights into the structure of subject-matter concepts with
empirical and theoretical analyses of students' successful
performance and their difficulties of understanding and learning.

13



Significant progress has been made in domains of school
mathematics. First, cognitive procedures for solving routine
problems of calculation have been simulated for elementary
arithmetic (Brown & Burton, 1980) and algebra (Sleeman, 1984).
These analyses include detailed hypotheses about the incorrect
cognitive procedures of students who make systematic errors as well
as the structure of procedures acquired by students who succeed.
Simulations of problem-solving procedures of successful students in
high school geometry have also been developed (Green, 1978). This
analysis included hypotheses about schemati: knowledge of general
patterns that enables flexible planning and solution of problems
requiring constructions.

Ideas about language understanding have been combined with
problem-solving hypotheses in models of schematic and procedural
knowledge for solving word problems in elementary arithmetic
(Briars & Larkin, 1984; Kintsch & Greeno, 1985; Riley, Greeno, &
Heller, 1983). Students' understanding based on schemata of
general quantitative relations has been simulated in domains of
computational procedures (Resnick, 1983; VanLehn & Brown, 1978) and
proof exercises (Greeno, 1983).

Although most of the analyses of school mathematics tasks have
been simulations of performance, a promising simulation of learning
has been provided in the domain of high school geometry (Anderson,
1983), and a tutoring system based in part on that model has been
developed and is being tested (Anderson, Boyle, Farrell, & Reiser,
1984).

Models of knowledge required for successful performance are
potentially quite important for instruction, especially when they
reveal aspects of knowledge that are implicit in performance.
Implicit knowledge includes the patterns of information that
students need to recognize in understanding word problems or the
constraints of a computational procedure and the search strategies
that are used to organize problem-solving activity when working on
proof exercises. An important possibility for instruction is that
by making some of these usually tacit components of knowledge
explicit, students who would otherwise fail to acquire the
knowledge that is needed for success might be able to succeed.

The analyses that have been developed do not "cover" the
school mathematics curriculum, by any means. However, the
feasibility of projects that would develop models of knowledge in
the remaining topics seems well established. Many important
aspects of problem solving, reasoning, and understanding remain to
be analyzed in topics such as rational number computation, ratios,
percentages, symbolic algebra, and graphing. Cognitive analysis in
these and other domains undoubtedly will require significant effort
and nontrivial insight. E an so, with a reasonable investment of
scientific resources, it would not be surprising if a quite
complete set of analyses of the standard precollege mathematics
curriculum could be assembled within five to ten years, at the

14
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theoretical level that has been achieved in the analyses that I
have mentioned.

More Ambitious Goals for Mathematics Education

Alternative Goals and Assumptions

One consequence of having models of knowledge for tasks that
describe knowledge structures specifically is a possibility of
reflecting on whether that knowledge is what we want students to
learn. The models that simulate students' performance in routine
mathematical tasks emphasize limitations that have been noticed
many times. Students can learn to solve the problems that are used
in standard instruction without acquiring very deep understanding
of the mathematical concepts and principles that the problems are
meant to convey, and learning to solve problems in the context of
instruction often fails to transfer significantly to other
contexts.

Many individuals have wished for a deeper orientation in the
teaching of mathematics. Davis (1984) put the point as follows:

Mathematics is presented from a wrong point of view: it

is presented as a matter of learning dead "facts" and
"techniques," and not in terms of its true nature, which
involves processes that demand thought and creazivity:
confronting vague situations and refining them to a
sharper conceptualization; building complex knowledge
representation structures in your own mind; criticizing
these structures, revising them and extending them;
analysing problems, employing heuristics, setting
sub-goals and conducting searches in unlikely (but
shrewdly chosen) corners of your memory. (p. 347;
emphasis in the original)

On this view, the goals of instruction in mathematics should be to
strengthen students' abilities to understand and reason
productively about the concepts and techniques of mathematics,
rather than only knowing the content of the concepts and how to
perform the techniques correctly.

This is a lofty goal--in effect,
should learn to understand and reason
mathematicians understand and reason.
whether such a goal is feasible. For
was laid out by Poincarg (1956).

it proposes that students
in mathematics as
Opinions differ about

example, a pessimistic view

We know that this feeling, this intuition of mathematical
order, that makes us divine hidden harmonies and
relations, can not be possessed by every one. Some will
not have either this delicate feeling so difficult to
define, or a strength of memory and attention beyond the
ordinary, and then they will be absolutely incapable of
understanding higher mathematics. Such are the majority.

t.
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Others will have this feeling only in a slight degree,
but they will be gifted with an uncommon memory and a
great power of attention. They will learn by heart the
details one after another; they can understand
mathematics and sometimes make applications, but they
cannot create. Others, finally, will possess in a less
or greater degree the special intuition referred to, and
then not only can they understand mathematics even if
their memory is nothing extraordinary, but they may
become creators and try to invent with more or less
success according as this intuition is more or less
developed in them. (p. 2043)

Others are more optimistic. Davis (1984) asserted that

the trials of the 1950s and 1960s demonstrated that
students are well able, cognitively or intellectually, to
move ahead far faster in mathematics and to deal with a
"problem-analysis" and a "heuristic" approach to
mathematics. (p. 348)

And in a delightful book titled Thinking mathematically, Mason,
Burton, and Stacey (1982) presented the following optimistic
message for their student readers:

ASSUMPTION 1 You can think mathematically

ASSUMPTION 2 Mathematical thinking can be
improved by practice with
reflection

ASSUMPTION 3 Mathematical thinking is
provoked by contradiction,
tension and surprise

ASSUMPTION 4 Mathematical thinking is
supported by an atmosphere of
questioning, challenging, and
reflecting

ASSUMPTION 5 Mathematical thinking helps in
understanding yourself and the
world (p. v, emphasis in
original)

Historically, emphasis on rote training of calculation in the
curriculum has been justified by a belief that most students could
not achieve understanding of mathematical concepts and principles
(Cohen, 1982). On the classical associationistic conception of
learning, it is assumed that basic learning is the formation of
bonds between ideas or between stimuli and responses, and that
simple procedures such as arithmetic calculation are relatively
easy to acquire (e.g., Thorndike, 1922). In that theory,
conceptual understanding is harder to account for (e.g., Greeno,

16
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James, DaPolito, & Polson, 1978), and perhaps because of that
theoretical difficulty it is expected that conceptual understanding
requires exceptional ability by the learner.

Evidence in Developmental Psychology

Recent findings in developmental psychology support a very
different picture of cognitive capabilities of young children than
that of the classical association theory. In the domain of
mathematics, Gelman and Gallistel (1978) found considerable
evidence that preschool children implicitly understand principles
of order, one-to-one correspondence, and cardinality, rather than
having only a mechanical knowledge of counting rules and
procedures. A telling piece of evidence is that children can
modify their counting procedure correctly when an unusual
constraint is imposed. After the child counted a set of objects
the experimenter selected one of them and said, "Now count them
again, but make this the 'one". On different trials different
objects were selected and different numerals were associated with
the selected objects. Most five-year-olds produced counting
performance that complied with the novel constraints as well as the
principles of counting. Because these counting procedures could
not have been learned, the children's generative knowledge must
have included implicit understanding of the principles.

In a related domain, Bullock, Gelman, and Baillargeon (1982)
showed that preschool children make judgments about causality that
reflect significant implicit understanding of principles such as
temporal order (causes precede their effects), local action, and
mechanism. Children also probably have implicit understanding of
causal relations among quantities--for example, throwing something
harder makes it travel farther. diSessa (1983) has begun to
formulate a theory of implicit structures of reasoning about
quantitative causality that he calls phenomenological primitives.

Carey (1985) and Keil (in press) have studied children's
knowledge about living things and have shown that their
understanding grows in ways that reflect a structure of concepts
and principles, rather than haphazard accretion of facts and
experiences. Carey (1985) argued that, between the ages of about
six and ten years, children move from an understanding of activity,
b'dy parts, and functions such as eating based on psychological
concepts such as intention (e.g., people eat because they get
hungry) to an understanding in terms of biological principles and
concepts (e.g., people eat because food is needed to stay alive and
grow). Keil (in press) provided particularly compelling evidence
that children acquire principles with inferential force that goes
beyond simple classification by features. He showed that
principles of biological origin replace features of appearance in
determining children's judgments of the category that animals
belong to. Children were shown pictures of two animals, a raccoon
and a skunk, and were told that an animal that used to look like
the raccoon had been changed by some scientists to look like the
other by changing its color, the shape of its tail, and ita body
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size. Older children, though not younger ones, said that the
animal was still a raccoon, because a change in appearance does not
change what an animal is. On the other hand, changes in the
functional properties of artificats related to their use lead
children to change their judgement of what the object is--for
example, when a coffee pot's features are changed to those of a
bird feeder.

These studies and others strongly suggest that children's
learning should be considered as an active process in which general
principles and concepts play a significant role in organizing
information and procedures that the child acquires. The fact that
most children acquire the procedures of arithmetic more or less
correctly but without significant understanding may be the result
of a perverse method of instruction, rather than of any significant
limitations of the children's ability to grasp the mathematical
concepts and principles that make the procedures meaningful.

Evidence in Reasoning About Quantities Outside of School Settings

Further evidence of children's ability to reason intelligently
with mathematical ideas, rather than merely learning rote
procedures, has been obtained in studies of performance of young
salesmen and saleswomen in street markets in Recife, Brazil.
Children who sell produce or lottery tickets compute complex
quantities involving novel combinations virtually without errors.
As an example, in a study of produce sellers (Carraher, Carraher, &
Schliemann, 1935) a customer asked a 12-year-old saleswoman the
price of ten coconuts that she had said cost 35 cents each. The
reply was "Three will be 105; with three more, that will be 210. I
need four more. That is--315--I think it is 350". Children whose
computations in the market had been observed were later given a
paper-and-pencil test of problems identical to problems they had
solved correctly in the marker; their average score was only 74%.
Performance of children who sell lottery tickets is even more
impressive, because their calculations depend on the number of
combinations of numbers that can win, based on numbers chosen by
the bettor (Acioly & Schliemann,'1986).

The important characteristic of quantizative reasoning by the
street marketeers in Brazil is its situatedness--it is richly
connected to the setting in which it occurs. This also
characterizes performance of adults who have been observed in tasks
that involve reasoning about quantities in practical settings.
Scribner (1984) studied performance in the task of preloading
orders in a dairy, a poorly paid job that is done in a cold-storage
room and presumably does not attract workers who have achieved high
levels of academic success. The preloaders are given orders to
assemble in an unusual notation: a number of cases, a + or a -
sign, and a number of units. "a + b" means "a" full cases and "b"
additional units, and "a - b" means "a" full cases less "b" units.
Actions of the preloaders in assembling the orders were observed,
and in most cases they chose an action that required minims ?.
effort. This frequently involved use of a partially filled case

18
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and a conversion of the problem; for example, to assemble a "1 - 6"
order of a product that has 16 units per case, a literal solution
would be to remove six units from a full case, but if there was a
half-filled case available, preloaders typically used that and
added two units to it.

Lave, Murtaugh, and de la Rocha (1984) have studied
quantitative reasoning of shoppers and individuals learning to
control their diets. They found that calculation was involved in a
significant number of decisions made by individuals shopping for
groceries--about one in every six items purchased involved explicit
consideration of alternatives. And virtually all of the
calculations--98%--were correct. But many of the calculations also
were nonstandard. In one example, the price marked on a package of
cheese seemed too high, but rather than multiplying its weight by
the unit price, the shopper searched for another similar package to
confirm that the marked price was in error. In comparing a
32-ounce package of noodles priced at $1.12 and a 64-ounce package
priced at $1.79, a shopper said, "That's two dollars for four
pounds. This is a dollar. That's 50 cents a pound, and I just
bought two pounds for a dollar twelve, which is 60. So there is a
difference." Arithmetic is apparently used to explain or justify
quantitative judgments that are made informally; in the last case,
the initial approximation did not agree with a judgment that the
shopper already had made (and announced), but an adjusted
approximation was more satisfactory. In contrast with their
accuracy in judging best buys, the shoppers in Lave et al.'s study
only scored 59Z on a paper-and-pencil test of arithmetic operations
involving integer, decimal, and fractional numbers.

An especially clear example of generative quantitative
reasoning situated in a task setting was observed in de la Rocha's
study of reasoning in the kitchen. A new member of Weight Watchers
was asked to work out an allotment of cottage cheese that is
three-quarters of the two-thirds cup the program allows. The
person filled a measuring cup two-thirds full, dumped the cottage
cheese onto a cutting board, spread it into a circle, marked the
circle into four quadrants, removed one of the quadrants, and
served the rest. de la Rocha also found many examples in which
individuals created alternatives to standard measuring procedures,
honoring equivalences of units--for example, using the decoration
on a drinking glass to measure an amount of milk, or a number of
serving spoons of rice that is equal to a prescribed fraction of a
cup.

Directions for Research and Development

The Knowledge Structure Program discussed earlier has provided
analyses of performance in standard instructional tasks. That is
now an established research effort and can be continued
productively with strong potential benefits for cognitive theory
and educational practice.
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At the same time, there are opportunities to develop new
directions for research and instructional development related to
deeper goals than those that currently dominate mathematics
education. I now discuss two general issues for which research
findings and methods are in a less developed state than the
Knowledge Structure Program, but there have been some beginnings.
The two issues are understanding knowledge as a resource for
reasoning and instructional settings that promote conceptual
growth. These issues arise from the two main features of
productive knowledge seen in the research discussed above: it is
situated, and it is generative.

Understanding and Fostering Knowledge Resources for Situated
Reasoning

I discussed research in the previous section that indicates
that individuals, including unschooled children, reason in flexible
and strong ways about quantities in practical situations. The
relation of school mathematics to this situated reasoning is
tenuous, at most; indeed, in the cases that have been studied it
can be argued that mathematics learned in school plays no helpful
role in the individuals' reasoning and prublem solving. At the
same time, the reasoning that has been demonstrated occurs at a low
level of mathematics. As Resnick (in press) has noted, nearly all
of the examples that have been observed are limited to additive
compositions of quantities.

A major educational advance would be achieved if we could find
ways to teach mathematics beyond the level of addition and
subtraction so that it rad become part of individuals' reasoning
in everyday situations. This goal is not an easy one to achieve,
and recent theoretical analyses have begun to clarify reasons for
the difficulty.

Recent analyses have focused on a crucial distinction between
symbolic knowledge and knowledge for activity in physical and
social situations. School instruction in mathematics and other
subjects is primarily in symbolic domains. If symbolic. knowledge
transferred easily into physical and social situations,
school-based knowledge would be applied naturally and broadly.

Two important recent discrssions have emphasized the
distinction between symbolic and situated knowledge in the context

2
I am assuming that little everyday reasoning by most persons even

includes multiplicative and proportional relations, although the
evidence that I have for that involves extrapolations from
laboratory studies where proportional reasoning is often
problematic. If some level of arithmetic above addition and
subtraction is commonly used in everyday reasoning, then my remarks
would apply to a somewhat higher level of mathematics instruction.
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of computer programs. Dreyfus and Dreyfus (1986) and Winograd and
Flores (1986) have developed arguments that use an idea that
Heidegger developed. Heidegger argued that most of the
interactions we have with objects in the world are direct, rather
than involving intermediate representations such as images or
descriptions. Symbolic representations play a significant role in
cognition when something in the world departs from what an
individual expects. As an example, the action of opening a door,
including reaching to the doorknob, grasping and turning it, and
pushing or pulling, is ordinarily done without any significant
processing of symbols. However, if the knob doesn't turn or the
door is stuck, the individual may well engage in some propositional
reasoning ("Is it locked? Do I have the key?") or create a mental
model to help in inferring where to push or kick the door to get it
to open.

Dreyfus and Dreyfus (1986) used Heidegger's idea in analyzing
the acquisition of cognitive skills. They argued that rules,
descriptions, and explanations play a significant role only in the
early stages of acquiring a skill, and that expertise in a domain
depends crucially on acquisition of knowledge for responding
directly to a very large variety of patterns in complex and
flexible ways, most of which is not articulable in verbal or other
symbols. While this general idea has been expressed before,
notably in Fitts' (1962) theory of skill acquisition, Dreyfus and
Dreyfus' emphasis on the limits of symbolic representations to the
early stages of skill acquisition sheds new light on the
significance of the analysis.

Another recent analysis by Smith (1983) provides a framework
for clarifying the problem further. Smith's analysis is also in
the domain of computer programming, but like the analyses discussed
previously, it apples as well to procedures that are learned by
students in mathematics instruction. Smith was concerned with the
semantics of programming languages and provided an integration of
two previously separate ideas of meaning.

The left panel of Figure 1 shows some of the components of
Smith's analysis. He considered a field of symbolic expressions
and a domain of objects that the expressions can refer to. In a
programming language, the symbolic field is the set of data
structures that can be expressed. In mathematics, the symbolic
field is the set of expressions that can be written with numerals,
operators, variables, and so on. There is a mapping from the
symbolic field to the denotational domain, 4), in the manner of
standard model-theoretic semantics. There also is a mapping within
the symbolic domain, Y, which refers to the rules for transforming
expressions into other expressions. In a programming language, 'Y
is the set of transformations that can be made using statements in
the language. In mathematics, 'Y is the set of transformations
that can be performed with the rules that are available. An
important result in Smith's analysis is a set of conditions on T
and (10 that make them coherent. It is important that the
transformations on symbols do not change the denotations and
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tr,athvalues of expressions, and Smith showed how an appropriate
set of coherence conditions can be satisfied. (In effect, this
generalizes the metsmathematical concept of soundness.)

symbolic .
expressions

concrete objects

symbolic
expressions

objets

concrete
objects

Figure 1. Components of an analysis of symbols and meanings.

I include the right side of Figure 1 to emphasize that in
mathematics the denotations of expressions are primarily abstract
entities--numbers, operations, functions, and so on--that can be
understood as abstract structures in physical and social
situations.

The mapping g in Figure 1 refers to transformations that can
be performed on the objects in a domain. pc refers to
transformations on ordinary objects--moving chem about, for
example. ga refers to transformations of abstract entities, such
as adding two numbers.

I now can state a conjecture about the reason that school
mathematics learning transfers so poorly to reasoning in physical
and social situations. School mathematics instruction focuses on
symbolic operations, Ts. Students may even believe that the
symbolic operations are a selfcontained system that is unconnected
with any referents in the world. (Children interviewed by
Ginsburg, 1977, for example, seem to take that view.) Expert
mathematicians understand that the symbols refer to the abstract
entities of mathematics; that is, they have a conceptual domain
containing those entities, they know the mapping cp and they know
what transformations in that domain, vs, correspond to
transformations of symbols, T , because of the denotational
mapping 0 In contrast, children may well learn the
manipulations of symbols, , without connecting them to their
denotations in the domain of either abstract entities or concrete
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objects. The quantitative reasoning of unschooled domain experts
involves a manipulation of quantities, pa, in contexts of specific
domains of objects, and their lack of success in paper-andpencil
tests indicates that these operations are not connected well with
symbolic expressions of arithmetic. It is reasonable to conjecture
that the abstract structures that these individuals have are not as
general as those that are known by experts in mathematics. Indeed,
there is evidence (L. Resnick, personal communication) that the
reasoning of unschooled experts is limited to a subset of numbers
that occur frequently in the domain.

The question of teaching so that operations on symbols are
meaningful has been a concern of many educators and cognitive
psychologists. Wertheimer (1945/1959) and Dienes (1967) provided
examples that became classical, involving spatial representations
coordinated with formulas and proofs in geometry and algebra. The
use of manipulative materials in the teaching of arithmetic has
been advocated and studied at least since Brownell's (1935)
well-known work, and Bransford (1986) is developing methods of
providing concrete contexts for using arithmetic to solve problems
that use the technology of video disks.

The mere use of concrete materials and contexts does not
guarantee that children will understand the meanings of symbolic
expressions and operations, of course. The framework provided by
recent discussions of symbolic representations and cognitive skill
may enable a clearer theoretical characterization of the conditions
for such instruction to be effective. In particular, the idea
would be that to understand the meanings of mathematical symbols it
is important for students to acquire the appropriate mathematical
concepts that the symbols denote. These are abstract structures,
and they probably are not acquired automatically by experiencing
connections between the symbols and specific concrete embodiments.
Dienes' (1967) idea of multiple embodiments of concepts and Skemp's
(1979) discussions of abstraction are clearly relevant to this
task, but the various illustrations of concepts need to be
carefully focused on specific conceptual targets and related
systematically to symbolic expressions and operations.

The relations between alternative representations of abstract
concepts is not a simple matter; some of their complexities have
been discussed recently by Schoenfeld (in press, a). Recent
findings by Resnick and Omanson (in press) illustrate the
complexity of these matters. They conducted a systematic study of
the effects of an instructional procedure developed and discussed
previously by Resnick (1983) for multidigit subtraction. Resnick
was concerned with students who made systematic errors in their
test performance of a kind studied in detail by Brown and Burton
(1980) and called "bugs," by analogy to flawed computer programs.
Resnick had preliminary success with a procedure called mapping
instruction, in which a procedure of subtraction with place-value
blocks is taught and related in a detailed, step-by-step fashion
with the paper-and-pencil procedure of subtraction with numerals.
Resnick and Omanson's study applied the mapping instruction
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systematically to a number of children with bugs. Although a few
of the children learned to subtract correctly, several did not.
There was an intriguing trend in the data for those children who
were remediated to talk about the quantities represented in the
problems more than the children whose performance remained buggy.
The trend in the data should be examined in a systematic way, but
it is consistent with the conjecture that understanding involves
linking symbolic expressions with abstract concE.,:tuel structures,
rather than only with concrete objects.

Some recent results by Brown and Kane (1986) are suggestive
about the process of acquiring general concepts involving relations
between domains. Brown and Kane addressed the issue of transfer
and showed that children can learn in ways that transfer to new
problems when (a) they have a positive set to learn generalizations
rather than solutions of specific problems, (b) they perceive the
solution tool of a problem as one of many uses of the tool, and (c)
the structure of analogous problems is made salient to the
children. These conclusions, coupled with the suggestive trend in
Resnick and Omanson's data, suggest that instruction that includes
discussion as well as presentation of the general properties of
quantities and their representations both in written symbols and
concrete materials might be especially effective. Exploration of
this possibility seems a useful target for research.

Instruction for the Growth of Conceptual Systems

In this final section I discuss some ideas and frameworks for
developing educational systems that could support the kind of deep
conceptual growth that is needed for students both to understand
the concepts and principles of mathematics and to use those
concepts as resources for reasoning in the situations of their
nonacademic lives.

An idea that may be very useful has been developed by Kitcher
(1984) in an analysis of mathematical knowledge. Kitcher developed
the idea of a mathematical practice, which he used to analyze
significant historical changes in mathematics. Components of a
mathematical practice include (1) the questions that are understood
as meaningful and legitimate, (2) the methods of reasoning that are
accepted as supporting conclusions, and (3) a set of

3
The idea is meant to capture valid aspects of Kuhn's (1970)
concept of a paradigm while avoiding the excesses of Kuhn's
concept. For example, an important part of Kitcher's
accomplishment is to show in considerable detail how changes in
practice occur naturally as progress within a field, not as a
revolution that restructures the entire framework of inquiry, and
how meaningful communication occurs between adherents of different
practices as part of the process of modifying and extending
knowledge.

,; 24
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metamathematical views that characterize goals and structures of
mathematical knowledge, as well as (4) the mathematical language
and (5) the statements of findings and conclusions that are
accepted as established.

The educational idea that Kitcher's discussion suggests is
that we could try to Iommunicate significant components of
mathematical practice to school children, rather than only
communicating mathematical concepts and techniques. This idea is
consistent with a view that students should learn processes of
mathematical thinking, rather than only the content of mathematics.
However, Kitcher's formulation of the components of mathematical
practice could be a beginning of a more explicit formulation of the
goal of teaching students to think mathematically.

Current instruction focuses on the fourth and fifth components
of Kitcher's list, the language of mathematics and the accepted
findings and conclusions. The further goals of educating students
in mathematica: uractice would include questions, methods of
reasoning, and metamathematical views. That is, we would attempt,
in mathematics instruction, to educate students so they would be
able to ask meaningful mathematical questions, construct and
evaluate arguments, and understand the goals and structures of
mathematical knowledge. All of these goals are attractive, and
they have been proposed before (for example, see Brown & Walter,
1983; Kilpatrick, in press; and Schoenfeld, 1985, especially
chapter 5). The question is what we can do now to make these goals
more feasible and effective as guides for educational practice.

Each of these goals of education--asking questions,

formulating and evaluating sequences of reasoning, and
understanding metamathematical views--involves cognitive
capabilities that are poorly understood. We now know how to
analyze cognitive capabilities for solving problems and answering
questions, and these scientific advances have potential value for
developing improved instruction for problem solving and question
answering. To move from this successful program of research to the
deeper issues of questioning, reasoning, and metamathematics (in
Kitcher's sense) would take cognitive research into territory that
is almost entirely uncharted, but it would provide important
opportunities to extend cognitive theory as well as potentially
significant resources for changing mathematics education.

In fact, progress on achieving educational goals will be
needed if we are to make progress on the theoretical questions of
questioning, reasoning, and metamathematical beliefs. These deeper
educational objectives are not achieved frequently in current
educational practice, and therefore there are few opportunities to
study the phenomena that we want to understand. To study these
phenomena from a cognitive standpoint, as well as to provide
examples for educational practice, we need to create environments
in which students learn to ask meaningful questions, compose
arguments, and come to understand metamathematical considerations.
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It will require modifications of the environments in which we
conduct education to achieve the deeper intellectual goals of
communicating mathematical practice. Some interesting innovations
ha'e been and are being explored, and I close this essay with a
brief characterization of some of their features.

The main feature of learning that is emphasized in recent
research and the idea of acquiring a practice is a more active role
played by learners. We are coming to understand several ways in
which learning involves construction of knowledge, rather than its
passive acquisition. Environments that encourage the construction
of knowledge include (1) collaborative settings in which teachers
and students work together to construct meanings and ideas; (2)
settings in which teachers or tutors function as coaches and models
of the activities the students are -.earning to engage in; and (3)
settings in which students engage in exploration of ideas and
environments,

A classic case of collaborative learning was described by
Fawcett (1938), who developed a course in deductive reasoning that
included geometry as well as material from everyday life such as
newspaper articles and advertisements. Fawcett and his students
diccueued definitions of concepts, assumptions that were required
for conclusions to follow, the relative advantages of different
ways of proving conclusions, and other aspects of reasoning that
are ordinarily not explicitly discussed in geometry courses.
Lampert (in press) is providing a current example of collaborative
instruction in her teaching of mathematics in the fifth grade.
Lampert and her students engage in conversations about the meanings
of mathematical concepts, operations, and notation, and the
students play an active role in the process of making sense of
mathematics. Activities of collaborative mathematical work
probably offer the best chance of educating students for activities
of the practice of mathematics. As Schoenfeld (in press, b) put
it:

A significant part of what I attempt to do (in my problem
solving courses in particular, but increasingly in all of
my mathematics instruction) is to create a microcosm of
mathematical culture--an environment in which my students
create and discuss mathematics in much the same wny that
mathematicians do. Having experienced mathematics in
this way, students are more likely to develop a more
accurate view of what mathematics is and how it is done.
(p. 23)

A second way of organizing an instructional environment
emphasizes modelling by an instructor of the kind of activity that
students are atcempting to acquire and then coaching the student3
as they carry out the activity. This is the standard method of
instruction in domains that are understood primarily as domains of
skill., such as athletics or musical performance. It has been less
standard in school subjects, perhaps because we have understood
these as consisting of knowledge, rather than skill. But if we
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shift our goals toward having students learn the practice of
mathematics, modelling and coaching will become more appropriate as
teaching methods. Modelling and coaching have been discussed
especially in the context of increasing students' metacognitive
skills, for example by Palincsar and Brown (1984) in reading
comprehension, by Bereiter and Scardamalia (1982) in written
composition, by Schoenfeld (in press, b) in mathematical problem
solving, by Brown, Burton, and deKleer (1982) in electronic
troubleshooting, and by Burton and Brown (1982) in strategies of an
arithmetic same.

Flexible learning activities can also be encouraged in
environments in which students can explore the structure of an
environment, generate and test their own hypotheses, and discuss
the phenomena that they experience. Exploratory environments for
Yearning. can be quite open (e.g., Papert, 1980), or they can have
relatively definite structure designed to communicate quite
specific ideas. Relatively structured microworlds and systems for
representing problems have been developed and discussed by many
individuals, for example, by Bork (1981), diSessa (1982), Greeno
(in press), Schwartz (1985), and Schwartz, Yerushalmy, and Gordon
(1985).

Cole and his group (Laboratory of Comparative Human Cognition,
1982) have created and are studying an environment that combines
aspects of exploration, coaching, and collaboration. Their
experiment is in many ways the most adventurous of the various
attempts to construct new environments for learning.

Conclusions

I have been discussing recent advances in theory and research
that are relevant to some problems of long standing. The problems
of teaching mathematics so that its concepts and principles are
understood and ,so that it can be used by students in their everyday
activities have been recognized for decades. These are not the
kinds of problems for which we are likely to find "solutions" in
the usual sense. I am impressed with another idea about problems,
however, that was spelled out in a book about metaphor by Lakoff
and Johnson (1980).

An Iranian student, shortly after his arrival in
Berkeley, took a seminar on metaphor from one of us.
Among the wondrous things that he found in Berkeley was
an expression that he heard over and over and understood
as a beautifully sane metaphor. The expression was "the
solution of my problems"--which he took to be a large
volume of liquid, bubbling and smoking, containing all of
your problems, either dissolved or in the foim of
precipitates, with catalysts constantly disdolving
some problems (for the time being) and precipitating out
others. He was terribly disillusioned to find that the
residents of Berkeley had no such chemical metaphor in
mind. And well he might be, for the chemical metaphor is

2q,
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both beautiful and insightful. It gives us a view of
problems as things that never disappear utterly and that
cannot be solved once and for all. All of your problems
are always present, only they may be dissolved and in
solution, or they may be in solid form. The best you can
hope for is to find a catalyst that will make one problem
dissolve without making another one precipitate out. And
since you do not have complete control over what goes
into the solution, you are constantly finding old and new
problems precipitating out and present problems
dissolving, partly because of your efforts and partly
despite anything you do.

The CHEMICAL metaphor gives us a new view of human
problems. It is appropriate to the experience of finding
that problems which we once thought were "solved" turn up
again and again. The CHEMICAL metaphor says that
problems are not the kind of things that can be made to
disappear forever. To treat them as things that can be
"solved" once and for all is pointless. To live by the
CHEMICAL metaphor would be to accept it as a fact that no
problem ever disappears forever. Rather than direct your
energies toward solving your problems once and for all,
you would direct your energies toward finding out what
catalysts will dissolve y3ur most pressing problems for
the longest time without precipitating out worse ones.
The reappearance of a problem is viewed as a natural
occurrence rather than a failure on your part to find
"the right way to solve it." (pp. 143-144)

The problems of understanding and reasoning in and with
mathematics surely are the kind to which the chemical metaphor
applies; they will not be solved in a simple way, and they probably
will not go away completely. It is still reasonable, of course, to
work toward improving on the solution that has already been
achieved. Perhaps some reagents can be found that can cause more
of these problems to go into solution without causing other
problems to reappear more stubbornly.

The Knowledge Structure program of research has clarified the
solution that we currently have. The models of knowledge
structures that have been developed show the essential

characteristics of knowledge that many students acquire in order to
be successful in tasks that are used in instruction. It is likely
that instruction in performing those tasks can be improved, partly
because of the clearer definitions of the needed structures that
cognitive models are providing.

Those models also provide a clearer view of important
limitations of instruction that uses those tasks. The models
reinforce our realization that students can learn to solve the
problems that are used in instruction without achieving significant
understanding of mathematical principles and concepts and without
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realizing that mathematical knowledge is a significant resource for
reasoning in a broad range of nonacademic settings.

The task of moving toward a better understanding of how to
teach mathematics more meaningfully is one that has attracted much
research attention in the past and will continue to be an important
and productive topic. Recent developments in several fields
provide resources that can play a role in the next phase of this
effort. These include important recent work in the study of
cognitive development of children, studies of reasoning processes
by children and adults in practical settings, studies of expert
reasoning, progress toward a theory of meaning of symbolic
representations, and significant development of new instructional
settings. The detailed implications of these ideas for mathematics
education are not completely clear yet, but they give considerable
promise to the prospects for significant progress during the next
period of research and educational development.
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Chapter 13

A THEORY OF MOTIVATION FOR COMPREHENSION AND
ITS APPLICATION TO MATHEMATICS INSTRUCTION

Giyoo Hatanc and Kayoko Inagaki

1. Why Do We Need Instructional Strategies for Enhancing
Motivation for Comprehension

One of the major goals of education is the acquisition of a
well-organized body of knowledge through comprehension. For this
reason, it is essential for educational researchers to give close
attention to students' motivation for comprehension and to
teachers' strategies for enhancing it. Although motivation and
comprehension have been studied extensively as discrete topics,
motivation for comprehension and how to enhance it have been
neglected in educational research, and no well-articulated theory
of instructional strategy has yet been offered. In this paper, we
will argue that the study of workable instructional strategies for
enhancing motivation for comprehension should be given high
priority. Then, we will present an outline of our theory of
motivation for comprehension. Finally, we suggest some
instructional strategies, derived from the theory, which may be
used in mathematics classes.

Before turning to the main issues, we will define
comprehension (or understanding, a term to be used interchangeably)
as it is used in this paper. Since we are concerned with
comprehension in relation to mathematical and scientific problem
solving, the term comprehension might be defined as apprehending
"the 'how' and 'why' of the connections observed and applied in
action" (Piaget, 1978). In other words, to comprehend means to
achieve insight or to find satisfactory explanations for the
validity of a given rule or the success of a procedure. Whether a
given set of explanations is satisfactory or not may vary from
individual to individual. It depends not only on
logico-mathematical validity of the explanations but also on how
plausible and illuminating they are in an individual's
phenomenological world. For example, knowing the mathematical
derivation of a theorem does not necessarily guarantee insight.

When we refer to the process of achieving insight we will use
another term, comprehension activity. Comprehension activity
includes generating inferences, checking their plausibility, and
coordinating pieces of old and new information to build an enriched
and coherent representation, which will serve as the basis for
insight. Motivation for comprehension is equivalent to motivation
for directed, persistent comprehension activity.
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To illustrate and clarify comprehension activity, we present a
hypothetical example directed to a well-defined procedure for
preparing fish, making sashimi of a bonito. We have intentionally
chosen this non-mathematical/scientific example, because we want to
stress that comprehension activity for insight may occur in our
everyday life as well as in instruction. The recipe (from Fish and
vegetable cooking, by NHK publishers, 1984), starting with a big
cut of a bonito, requires us:

1. to roast its skin-covered surface quickly with strong
heat;

2. to put the side into ice water, and cool it for five
minutes;

3. to take it out of the water, and wipe it off;
4. and finally, to cut it into slices 1 cm thick. These

slices are ready to eat with soy-sauce and seasonings.

People can follow the recipe without truly comprehending what
they are doing and get delicious bonito sashimi. But why does this
procedure (the recipe) work? Why are these steps necessary?
Suppose that you are interested in questions like these, and that
you are engaged in comprehension activity. If you can generate
some inferences relying on your prior knowledge, you might test
them. If you cannot, you have to proceed in a trial-and-error
fashion, i.e., run the procedure with one or more critical steps
removed or modified. For example, you might examine how the
sashimi tastes without roasting, or when roasted with mild heat.
You will soon find that, without roasting, the skin of the sashimi
is too tough to swallow, even after chewing it for a couple of
minutes. You will also learn that "quickly with strong heat" is
critical, because otherwise you have well-done bonito steak,
instead of sashimi. From this experience, you can make an
inference as to the next step: the ice water is needed to cool the
roasted fish very quickly. You can confirm this inference by
putting the bonito in water without ice or by putting it in a
refrigerator.

You may be tempted to go on. You may run more experiments
with varying parameters, consult cookbooks or books on ichthyology,
question your family or friends, relate the set of observed facts
to similar experiences, e.g., making sashimi of other fish. If you
comprehend the recipe, you can modify it flexibly when you have to
meet a different set of constraints, e.g., when you have no ice or
no strong heat. To achieve the comprehension, you have to engage
in prolonged comprehension activity, spending much time, effort,
and cost. We do not claim that every comprehension activity is
like this. However, it is almost always true that comprehension
takes time.

Now let us return to the main issue. Why do we need
instructional strategies for enhancing motivation for
comprehension? Our answer is divided into two parts. First, we
claim that these strategies cannot be derived from more general
theories of motivation. Second, we claim that, without such
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strategies, it is highly unlikely that a majority of students will
engage in persistent comprehension activity directed to a target
rule or procedure. We will elaborate these assertions in turn.

Studies on "motivation in education," despite the progress of
the past 15 years, have either ignored or paid little attention to
motivation for comprehension. Many of them, having historical
roots in the theory of achievement motivation, have developed a

cognitive-attributional approach to motivation (Ames & Ames, 1984;
Levine & Wang, 1983; Paris, Olson, & Stevenson, 1983). The studies
revealed that causal attribution for success or failure influences
student3' motivation for achievement and thus their performances
(e.g., Weiner, 1980). Students' attribution of success /failure--
and conception of ability/effort underlying the attribution--
constitutes a significant part of metacognition which, as we shall
see later, plays an important mediating role in determining whether
they engage in comprehension activity.

However, these studies have been concerned primarily not with
comprehension but with achievement or problem solving competence.
Dependent measures were usually based on the number of correctly
solved problems. Although correct solutions may reflect
comprehension, the distinction between competently solving problems
using a certain procedure and understanding that procedure is
critical, especially in mathematics and science instruction. To be
a competent problem-solver on standard achievement tests, one needs
to know how and when to apply a given procedure, but it is not
necessary to demonstrate comprehension.

We can solve a great number of mathematical problems using a
target procedure at the right time, without achieving insight,
without enjoying "the pleasure of understanding" (Piaget, in Tanner
& Inhelder, 1960). Very few of us can explain why a given
mathematical procedure works, though we believe it valid and can
apply it efficiently. Consider, for example, the Euclidean
algorithm. It is often presented in high school algebra but its
proof, which involves mathematical induction, is omitted. Students
believe it valid because with little thought or effort they produce
the greatest common divisor of two integers. Later, their lack of
insight becomes a serious handicap when novel problems are posed
for solution. For example, if asked to find integral solutions for

and z given that 21z - 15y. = 9, they would fail to recognize the
relevance of the algorithm. This is similar to the fact that we
can make delicious bonito sashimi promptly by just following the
recipe, without understanding why the steps in the recipe are
needed. Lack of insight becomes a serious deficit only when
unusual, novel problems are posed. After having applied a
procedure many times successfully, we tend to lose interest in
knowing why it works. Therefore, strong motivation for achievement
does not guarantee strong motivation for comprehension. Those
procedures enhancing the former may not be effective for the
latter.
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The problem is compounded by the fact that, using Nicholls'

(1983) distinction, most attributional studies have dealt with the
extrinsic and egoinvolvement aspects of motivation for
achievement. In other words, they have dealt with attaining high
achievement as a means to an end, that of external rewards, or of
looking smart, or avoiding looking stupid. Although some
comprehension is necessary for high achievement, the subjects'
activity in these studies was not directed to knowing or
understanding. Only a few studies have pursued taskinvolvement or
intrinsic aspects of motivation, which are most important for
comprehension.

A group of studies on the relationships between extrinsic and
intrinsic motivations, another major stream of recent research on
motivation, have revealed that extrinsic rewards tend to undermine
intrinsic motivation (Deci, 1975; Lepper, 1983; Lepper & Greene,
1978; Maehr, 1976). This finding is also relevant to motivation
for comprehension, since, as we shall see, it is possible that
external rewards may also undermine intrinsic motivation for
comprehension. However, these studies have not paid due attention
to the intrinsic pleasure of understanding, nor suggested
strategies for enhancing intrinsic interest in comprehension.

Now we will move to the second part of the argument supporting
the need for instructional strategies to enhance motivation for
comprehension. Cognitively oriented instructional psychology has
been interested in the process of comprehension and strategies for
presenting stimuli to enhance it, but it has neglected motivation
for comprehension. In Resnick's (1981) review of instructional
psychology, for example, there is no reference to motivation for
knowing or understanding. Cognitive researchers use four major
reasons to justify their indifference to and neglect of
motivational issues related to comprehension. First, it is claimed
that comprehension is performed automatically; thus, no motivation
is involved. However, this is not convincing if we reflect on the
example of bonito sashimi. Unlike the perceptual rccoguition of an
object or the processing of a sentence, which is also sometimes
called comprehension, comprehension as insight, or finding
satisfactory explanations, is far from automatic. It requires much
time and a considerable measure of conscious effort.

Second, cognitive researchers sometimes claim that active
human beings are always motivated to engage in comprehension,
though the process is not automatic. Therefore, no instructional
strategies are needed to enhance the motivation. We believe that
this claim is based on a misunderstanding of the "zeitgeist" of

contemporary cognitive psychology, namely the assertion that human
beings are active agents of information processing. We would agree
that "active human beings" almost always try to comprehend, and
comprehension gives them intrinsic satisfaction, irrespective of
any accompanying external rewards. However, this does not mean
that they always engage in persistent comprehension activity
directed to a target rule or procedure. In fact, while many
Japanese do know how to make bonito sashimi, very few comprehend
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how or why the recipe works. Comprehension activity may cease
without producing any satisfactory explanations. Since there are
so many targets to which one's comprehension activity can be
directed, it has to be selective. In other words, although the
zeitgeist may enable us to ignore the initiation and reinforcement
questions, we are compelled to attend to the issues of persistence
and choice.

There may be a practical basis for this misunderstanding:
Subjects in the laboratory experiments, often college students, try
hard to comprehend as soon as they are instructed to do so.
However, as you will notice, students in the usual classroom are
not always motivated to comprehend the target.

Third, some cognitive researchers believe that motivation is
beyond the teacher's control. Therefore, although they are willing
to accept the fact that students' motivation for comprehension
makes a difference, it is impractical to consider it. We believe,
however, that it is possible to formulate instructional strategies
that are likely to enhance students' intrinsic motivation to
comprehend the particular target, assuming that the students have
acquired a specified set of prior knowledge. We will describe some
of those strategies in more detail in the last section of this
paper.

Finally, other cognitive researchers assert that efforts to
enhance students' motivation are not very rewarding because it is
doubtful whether enhanced motivation leads to "correct"
comprehension. We believe, on the contrary, that through
increasing motivation a teacher can indirectly enhance the
likelihood of students' correct comprehension. Unlike students'
acquisition of procedures and memory of rules, their comprehension
is not amenable to a teacher's direct control, since comprehension
means to find "satisfactory" explanations, wIrInh may differ from
individual to individual. However, we can assume thrit strong
motivation for comprehension usually leads to deeper comprehension;
many significant inferences are generated and relevant pieces of
information interrelated. Strong motivation is also likely to lead
students to "correct" solutions and explanations because it makes
them engage in more persistent and meticulous comprehension
activity. They will check carefully whether generated inferences
are harmonious with the given set of information, thus eliminating
erroneous explanations. If their comprehension activity is still
not sufficient for excluding all of the incorrect explanations, the
teacher may intervene by giving additional information or drawing
their attention to relevant information that refutes their
conclusions.

In summary, instructional procedures for intrinsically
motivating students to comprehend cannot be derived from any
available achievement-oriented theories, and none of the arguments
by cognitive researchers can justify the neglect of motivational
isines related to knowing and understanding. We need instructional
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strategies specifically for enhancing motivation for comprehension,
and educational researchers must seriously pursue this task.

2. Outline of Cognitive Berlynean Theory

In this section, we summarize our theory of motivation for
comprehension (Inagaki & Hatano, 1986). Within the framework of
recent cognitive instructional psychology, it elaborates and
extends Berlyne's theory of epistemic behavior and may be called a
cognitive Berlynean theory.

When seeking a groundwork on which to construct a tenable
theory of motivation for comprehension, it was necessary to return
to Berlyne's work of the early 1960s. Berlyne (1960, 1963, 1965a,
1965b) conceptualized the motivation inherent in epistemic behavior
and suggested a number of possible instructional strategies to
motivate students to acquire knoWldge. Thougl. his theory does not
deal with motivation for comprehension itself, it has at least
three properties indispensable to any theory of motivation for
comprehension: (1) it focused on intrinsic motivation for knowing;
(2) it systematically described when (or by what ELimuli) such
motivation is aroused, and what kind of behaviors the motivation
induces; and (3) it had a prescriptive component, suggesting how we
can motivate students. Recently, Malone (1981), who was interested
in taking advantage of the attractiveness of computer games for
educatiOnal settings, tried to conceptualize intrinsically
motivating instruction relying in part on Berlyne's theory.
However, he seemed to concern himself much more with the
characteristics that make instruction enjoyable than with
characteristics that would motivate students to deeply comprehend
the target.

Summarizing and Restating Berlyne's Theory

We will first demonstrate that Berlyne's "motivation of
epistemic behavior" implicitly included "motivation for
comprehension." We will then incorporate the resul^; of recent
research in order to update the theory.

Berlyne (1963 stated,

the epistemic behavior refers to behavior whose function is to
equip the organism with knowledge. . . . Epistemic behavior
can be divided into three categories, namely, epistemic
observation, which includes the experimental and other
observational techniques of science, consultation, which
includes asking other people questions or consulting reference
books, and directed thinking. (p. 322)

Directed thinking is "thinking whose function is to convey us
to solutions of problems" (1965a, p. 19). It should be noted that
Berlyne defined critical terms like epistemic behavior and directed
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thinking in terms not of processes but of functions. Thus, if
comprehension is regarded as achieving satisfactory explanations to
the "how" and "why," then the corresponding comprehension activity
is a case of epistemic behavior, more specifically, of directed
thinking. Berlyne's notion of knowledge acquisition by directed
thinking is very similar to what we now call "acquisition of an
organized body of knowledge through comprehension activity."

According to Berlyne (1963), epistemic behavior is initiated
by a specific dissatisfaction called epistemic curiosity, which is
produced by conceptual conflict, and the behavior is reinforced by
the reduction of epistemic curiosity, that is by relief of that
conceptual conflict. Since comprehension activity is a form of
epistemic behavior, we assume that it is initiated and maintained
toward a specific object by strong epistemic curiosity. We add the
qualifier strong because comprehension requires much time and
effort. However, we do not agree with Berlyne that epistemic
curiosity is a kind of discomfort drive state.

By conceptual conflict Berlyne means "conflict between
incompatible symbolic response patterns, that is, beliefs,
attitudes, thoughts, ideas" (1965a, p. 255). He distinguished
several types of conceptual conflict--doubt, perplexity,

contradiction, conceptual incongruity, confusion, and irrelevance
(1965a)--and added surprise to the list when he discussed the use
of conceptual conflict in educational settings (1965b).

Let us restate those constructs. First, in cognitive terms,
conceptual conflict inducing strong epistemic curiosity is a state
in which a person is aware that his/her comprehension is
inadequate, but is within his/her reach. To avoid a behaviorist
flavor, we call this state cognitive incongruity. This state
motivates a person to pursue insight, to find satisfactory
explanations to the target rule or procedure, by:

1. seeking further information
2. retrieving another piece of
3. generating new inferences;
4. examining the compatibility

from outside;

prior knowledge;

of inferences more closely.

In other words, cognitive incongruity motivates a person to pursue
insight through comprehension activity. Success in achieving
adequate comprehension or insight would bring a stop to all this
comprehension activity, and the comprehended rule or procedure is
recalled and used subsequently on similar occasions more promptly
and properly.

Second, Berlyne identified several types of conceptual
conflict (our cognitive incongruity) that we group into two: One
is the surprise type, which is induced when a person encounters an
event or information that disconfirms his/her prediction based on a
prior knowledge. He/she will be motivated to understand why and to
seek new information by which the prior knowledge can be repaired.
The other is the perplexity type, which is induced when a person is
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aware of equally plausible but competing ideas (pre "ictions,

assertions, explanations) related to the target object or
procedure. In this case he/she seeks further information to choose
one of the alternatives.

Reformulating Berlyne's Theory

Now we propose some reformulations of Berlyne's theory. His
theory about epistemic behavior was constructed in the early 1960s.
Since then, as cognitive psychology has developed, a number of
important ideas related to the issue of motivation for knowing and
understanding have been proposed, and data have been collected
based on them. To bring Berlyne's theory closer to an "ideal"
theory, we incorporate four constructs. First, we append a third
type of cognitive incongruity, discoordination, to the list
producing strong epistemic curiosity. Second, we propose that, for
cognitive incongruity to occur, students must recognize the
inadequacy of their comprehension; in other words, they must be
able to monitor their comprehension. Third, we believe that
cognitive incongruity induces comprehension activity only when
students realize the importance and possibility of comprehension
about the target rule or procedure. Fourth, we argue that one is
unlikely to engage in prolonged comprehension activity unless one
is free tom any urgent need, such as the need often produced by
expecting material or other rewards. With these reformulations,
the resultant theory, the cognitive Berlynean theory, can better
describe stimulus conditions under which students possessing
specified prior knowledge are always (or nearly always) motivated
to engage themselves in comprehension activity, and without which,
they are never (or almost never) motivated to do so. Figure 1
shows these reformulations schematically.

Discoordination Induces Comprehension Activ..,:y

Since Berlyne's death, psychologists' views of human beings
have changed. As Hunt (1963, 1965) aptly put it, human beings had
been considered as idle under behaviorists' drive-reduction theory.
Berlyne, in his attempt to "liberate" this drive-reduction theory,
was not free from such a passive view of human beings.

Current cognitive psychology views human beings as active
agents; it assumes that human beings actively seek pieces of
information and try to organize them. A good example of this
active information seeking occurs after a person has chosen a
target as the object of his/her comprehension activity (e.g.,
Clement, in press; Collins, Brown, & Larkin, 1980; Hatano &
Inagaki, 1983). We do not think the subjects of these experiments
were suffering from prolonged (aversive) curiosity, or from
potential danger to their survival. They certainly felt
satisfaction and tension reduction when they had understood the
target, but, we believe, they had enjoyed the process of performing
the comprehension activity as well.
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This change in perspective prompts our first reformulation of
Berlyne's theory. People may try hard to comprehend without the
incentive of inconsistency or incompatibility. Thus we propose
that there is a third type of cognitive incongruity in addition to
surprise and perplexity, namely, discoordination. This last type
of cognitive incongruity is the awareness of a lack of coordination
among the pieces of knowledge involved. In other words, it is the
recognition that, although pieces of knowledge about the target are
available, they are not well connected, or that other pieces of
related information cannot be generated by transforming the
existing ones. More specifically, people may be aware of the
inadequacy of their comprehension in four conditions:

1. they are not yet certain whether two pieces of information
they know about the target are identical or not,
contradictory or not;

2. they cannot apply a known principle to concrete
situations;

3. they cannot justify each step of the procedure;
4. they have rich examples but cannot abstract a rule.

The Role of Comprehension Monitoring

Berlyne (1965a, 1965b) described some tactics to arouse
conceptual conflict. However, it has been found that these
operations do not always work well. According to Berlyne, for
example, presenting material containing information that
contradicts prior knowledge should arouse surprise, but is practice
this operation induces no conceptual conflict in some students.
Using our terminology, when presented with information that
purports to reveal inadequacy in their comprehension, some students
may fail to recognize the inadequacy and thus feel no cognitive
incongruity.

Recent research on comprehension monitoring, following the
pioneering work by Merkman (1977, 1979), has shown that younger
children fail to perceive the insufficiency or inconsistency of a
given message more often than do older children or adults, but
another line of research on mecacomprehension has revealed that
even college students tend to have this "illusion of comprehension"
(Glenberg & Epstein, 1985; Glenberg, Wilkinson, & Epstein, 1982;
Maki & Berry, 1984). College students often believe that they have
understood a given text, though in fact they have not, at least as
assessed by a multiple-choice test. This suggests a more or less
general tendency among human beings to fail to recognize the
inadequacy of their own comprehension.

As indicated earlier, we believe that people must be selective
in directing prolonged comprehension activity, not through
idleness, but because the activity recuires much time and effort.
This need for selection may be operant in recognition of inadequacy
of comprehension as well as in the decision to pursue more adequate
comprehension. In one sense, the illusion of comprehension guards
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people from engaging in prolonged comprehension activity too often,
or in too diverse domains.

A few implications for effective strategies of motivating for
comprehension may be derived from the studies in comprehension
monitoring. First, students can promptly recognize inadequacy of
comprehension only in domains where they have acquired rich and
wellstructured knowledge, in their domains of expertise. Second,
to induce cognitive incongruity in less wellstructured domains, it
is necessary to make the inadequacy of comprehension abundantly
clear, for example by ensuring that students' predictions are
specific and explicit before disconfirming information is given.
Any concurrent cognitive activity, which may tax the resources of
less experienced people, must be removed. Third, it is desirable
to provide the opportunity for students to check their
comprehension in the context of another activity. Requiring
children to translate what they understand into action, for
example:, may induce cognitive incongruity that would otherwise be
not induced. Dialogical interactions, such as discussion,
controversy, and reciprocal teaching, in which knowledge or
comprehension is to be shared, often provide appropriate contexts
for children to perceive cognitive incongruity.

The Role of Metacognitive Beliefs About Comprehension

Will people engage in prolonged comprehension activity
whenever they experience cognitive incongruity? Certainly not.
Selectivity in seeking adequate comprehension operates also after
cognitive incongruity is induced. Berlyne (1965a) indicated the
possibility that aroused conceptual conflict neither induces
epistemic behavior nor thus leads one to acquire knowledge. He
proposed that "suppression" relieves conceptual conflict and
thereby also precludes epistemic behaviour. We offer a more
targetspecific explanation: comprehension activity is induced or
inhibited depending on metacognitive beliefs about comprehension of
the target.

Two aspects of metacognition play an important part here. One
is the belief about one's own capability of comprehending a
specific target or of comprehending in general. If students have
confidence in their ability to understand, they are likely to
pursue comprehension. They will not be inhibited, even by an
apparent deadlock. If they are not confident, however, they may
suppress the motivation to comprehend, even when they feel
incongruity. Studies on learned helplessness and causal
attribution of successfailure (e.g., Diener & Dweck, 1978) give
indirect support for the importance of students' beliefs.

The second aspect of metacognition is belief about the
importance of comprehension in general or the significance of
comprehending a specific target. In other words, whether or not
cognitive incongruity leads to comprehension activity depends, in
part, on whether or not students believe that the target is worth

46



38

comprehending. When subjects experience cognitive incongruity
about a target which they value (because it is relevant to their
lives), they are likely to engage in comprehension activity. On
the other hand, when they feel cognitive incongruity about a target
of little interest or value to them, they will be reluctant to
exert the mental effort required for comprehension activity.

In summary, we assume that each individual has personal
"domains of interest," in which they believe comprehension to be
both valuable and attainable. When individuals experience
cognitive incongruity, they are willing to engage in prolonged
comprehension activity within, but not outside of, those domains.

This creates a serious problem for the teacher who is trying
to motivate students to comprehend a target rule or procedure
outside their domains of expertise/interest. In these
circumstances, students are unlikely to recognize the inadequacy of
their comprehension, unlikely to engage in comprehension activity
even when incongruity is aroused and, as a consequence, unlikely to
acquire knowledge through comprehension. This vicious cognitive
cycle can be broken only by introducing other activities, social-
interactional ones in most cases. Miyake (1986), for instance,
effectively demonstrated that dialogical interaction motivates
people to engage in prolonged comprehension activity.

Extrinsic Reward Reduces Motivation for Comprehension

Teachers' conventional methods of motivating students, ruch as
grades or rewards, are based on extrinsic motivation. What effects
do such extrinsic motivational methods have on epistemic behavior
or comprehension activity? Berlyne (1965a) pointed out the
differences between learning based on conceptual conflict and
learning relying on external reinforcement but did not clarify
further the relationship between extrinsic motivation and intrinsic
motivation. This relationship has been conceptualized much more
satisfactorily since Berlyne's death.

Studies on the so-called underminirg effects of extrinsic
rewards have shown that promised and/or given rewards deteriorate
both the quality of performance in the task and intrinsic interest
(Lepper, 1983; Lepper & Green, 1978). This suggests, indirectly,
the possibility that extrinsic rewards inhibit motivation for
comprehension.

In her review of the literature, lnagaki (1980) maintained
that the expectation of rewards changes the goal of ongoing
cognitive activity from comprehension to obtaining the reward and
thus prevents learners from achieving deep understanding. Inagaki
also hinted that the expectation of external evaluation- -a grade
based on a test score or of the right answer to be provided
immediately- -may have similar effects of changing the goal.
Activities pursuing external rewards will not enhance motivation
for comprehension.
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3. Instructional Strategies for Enhancing
Motivation for Comprehension

In this final section, relying on our cognitive Berlynean
theory, we specify instructional strategies for inducing cognitive
incongruity. To heighten motivation for comprehension, urgent
extrinsic needs--external rewards, favorable evaluations,
authorized right answers--should be removed from classroom
learning. It is also necessary to help those students who are not
confident in their ability to comprehend, or who do not value
comprehension, to change their metacognitive beliefs about
comprehension. However, we will proceed without further discussion
of these issues because they have been in part pursued in general
studies of motivation in education.

Strategies for Inducing Cognitive Incongruity

Strategies for inducing cognitive incongruity may be grouped
according to the types of incongruity that they are to induce.
When pupils have acquired fairly rich and well-structured
knowledge, which includes "erroneous" rules or procedures--called
misconceptions, false mental models, bugs--we can arouse surprise
by asking the pupils to make a prediction and then providing an
event or information that clearly disconfirms it. For example,
junior high school students usually believe that the quotient a/b
must be a specific quantity. Therefore, when they are taught that
12/0 is undefined, they are surpris,:d (Tokuda, 1975). This
surprise may be strengthened by having had the pupils express a
clear and specific prediction beforehand. Before the experiment is
run or disconfirming information is given, students may also feel
surprise by finding out in the course of peer interaction that
there exists a whole range of plausible options differing from
theirs.

We can induce perplexity easily by taking advantage of the
fact that there are usually many different ideas generated among
students in a classroom. A teacher need only tally pupils'
responses to induce perplexity. For the quotient of 12/0,
students' modal answers are 0 or co, but other answers are usually
offered. Peer interaction, thy: presence of others expressing
different ideas, is especially advantageous for amplifying
perplexity, because the students have a chance for argumentation;
it is hard to recognize as plausible those ideas that are merely
read or encountered passively.

When students do not have rich and well-structured knowledge
regarding the target, it is sometimes necessary to first teach a
specific rule and to encourage them to apply this rule to a number
of confirming cases. This approach will make students commit
themselves to the given rule, because they are likely to appreciate
its effectiveness. Subsequently, the students experience surprise
when shown information that is dissonant with this newly acquired
rule. When the teacher asks whether this rule works for another
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example that seems radically different from the confirming cases,
or whether the rule always holds true, the students will have
difficulty in deciding whether it applies; that is, they will feel
doubt, a subtype of perplexity. Berlyne (1965a) reported that this
type of procedure was successfully used by David L. Page to teach
third-graders that the diqeren2e between the squares of two
adjacent integers, (n + 1) - n , is always an odd number.

Discoordination may be experienced by a student in the process
of explaining why his/her views are reasonable when asked for
clarification or when the views are directly challenged or
disputed. Why is discoordination induced in these situations?
First, in the process of trying to convince or teach other
students, one has to verbalize, or make explicit that which is
known only implicitly. One must examine one's own comprehension in
detail and thus become aware of any inadequacies, thus far
unnoticed, in the coordination among those pieces of knowledge.
Second, since persuasion or teaching requires the orderly
presentation of ideas, one has to better organize
intra-iudividually what one knows. Third, effective argumentation
or teaching must incorporate opposing ideas, in other words,
coordinate different points of view inter-individually between
proponents and opponents or between tutors and learners. Of
course, it is practically impossible to coordinate all the pieces
of information available at any given moment. Thus, in one sense,
an "illusion of comprehension" is adaptive because it frees one
from endless comprehension activity. One feels strong
discoordination only when one struggles to coordinate.

Peer Interaction Enhances Motivation for Comprehension

The above discussion suggests that peer interaction, or
dialogical interaction in general, such as discussion, controversy,
and reciprocal teaching, tends to induce persistent comprehension
activity directed to the target. It creates and amplifies surp_ise
and perplexity, produces discoordination, and relates the target to
one's domains of expertise and interest. It also invites students
to "commit" themselves to some ideas, by asking them to state their
ideas to others, thereby placing the issue in question in their
domains of interest. In addition, the social setting makes the
enterprise of comprehension more meaningful. Unless extrinsic
motivation is so strong that it supersedes motivation for
comprehension, this social aspect will make comprehension activity
more enduring.

Is it possible for teacher-pupil interaction to produce the
same effect as peer interaction? If so, it will be more desirable,
because the teacher wishes to maintain control. In principle, a
teacher who has richer and better-organized knowledge about the
target than any of the students can help them recognize the
inadequacy of their comprehension by giving counterexamples,
proposing plausible alternatives that students have not offered, or
by asking questions to clarify the students' ideas. The Socratic
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method of teaching is a good example of such instructional
strategies. Collins (1977), in his attempts to describe the
Socratic method, listed 24 specific strategies teachers could use,
which included a number probably effective for enhancing motivation
for comprehension.

However, practically, teacher-pupil interaction as a means for
enhancing motivation for comprehension has serious limitations.
First, since students know that their teacher is more knowledgeable
than they are, if the teacher is actively intervening, they will
depend on the authorized "right" answer. This anticipation of the
right answer must weaken the motivation, as mentioned in the
preceding section. Second, even when the teacher tries to behave
as one of the less knowledgeable students by asking questions
rather than giving answers, it is almost impossible to completely
eliminate artificiality. This inevitably reduces the value the
students assign to the comprehension they ultimately achieve.
Being a good Socratic teacher is at least as hard as functioning as
a good organizer of peer interactions.

A Concrete Example

How shall we organize peer interaction to enhance students'
motivation for comprehension? Though teacher-pupil interaction has
limited effectiveness in inducing cognitive incongruity, the
teacher's role in enhancing motivation for comprehension by
organizing peer interaction is critically important.

Deriving theory-based instructional strategies, in other words
translating a theory Into practice, is often not an easy task.
Fortunately, in this case, we have model system of instruction that
has developed independently but iG hamonious with our theory.
This a Japanev_ science-education method called
Hypothesis-Experiment-Instruction" (Itakura, 1962), originally
devised by Itakura, used in science classes from elementary to high
school. A few have applied the same instructional procedures to
mathematics and to limited areas of social studies. From our
perspective, Hypothesis-Experiment-Instruction is effective in
enhancing motivation for comprehension because it maximally
utilizes classroom discussion and arranges a series of problems to
induce all three types of incongruity.

The procedure is as follows: (1) Pupils are presented with a
question with three or four alternative answers. (2) They are asked
to choose one by themselves. (3) Pupils' responses, counted by a
show of hands, are tabulated on the blackboard. (4) They are
encouraged to explain and discuss their choices with one another.
(5) They are asked to choose an alternative once again. They may
change their original choice. (6) Pupils test their predictions by
observing an experiment or reading a given passage.

The response alternatives should represent a plausible idea
embodying a common hug or misconception held by pupils as well as
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the correct response. For example, the first lesson on "buoyancy"
begins with the following question, alternative answers to which
are all plausible and are usually chosen by at least several
students (Shoji, 1975). "Suppose that you have a clay ball on the
end of a spring. You hold the other end of the spring and put half
of the clay ball into water. Will the spring (a) become shorter,
(b) become longer, or (c) retain its length?" Thus the right
answer, e.g., (a) in the above example, often contradicts
predictions of a majority of pupils at the beginning part of a
topic. It is also emphasized that pupils can clearly confirm or
disconfirm their predictions by observing an experiment or
consulting a reference book.

If you visit a classroom in which Hypothesis-Experiment-
Instruction is implemented successfully, you will be impressed by
lively discussions in a large group of 40-45 students. You will
recognize that the teacher, after presenting a problem, is a
chairperson, who tries to stay as neutral as possible during
students' discussion. Several students may express their opinions
often, but a majority of them are vicariously participating in the
discussion, nodding or shaking their heads, or making just brief
remarks. When asked, most of them reply that they enjoy discussion
and feel the method exciting.

We have done a number of studies examining the effectiveness
of this method, paying special attention to its effect on
motivation for comprehension (Inagaki, 1986; Inagaki & Hatano,
1968, 1977). Materials of instruction were taken from mathematics
as well as from science. Each class was randomly divided into
experimental and control groups. In the former, the above 6 steps
were followed, while in the latter, steps 3, 4 and 5 were omitted.
All the pupils were required individually during the instruction to
answer a short test consisting of a few multiple-choice items and
also a questionnaire about their interest. They were also given a
test involving a number of comprehension or transfer items and
asked about their reactions to the opinions expressed by other
pupils after the instruction. In addition, the process of
discussion in the experimental condition was audio-taped, and
behaviors of some selected pupils were observed.

General findings were as follows: (a) Experimental subjects
showed higher interest than the control subjects in testing their
predictions or knowing explanations; that is they showed higher
epistemic curiosity before step 6. (b) The experimental subjects
offered adequate explanations of the observed fact or stated rule;
that is they showed explicit understanding more often than the
control group. (e) They could apply the rule or procedure more
promptly and more properly to a variety of situations, in other
words, showed better implicit understanding. (For the above
distinction between explicit and implicit understanding, see
Green°, 1980.) (d) Epistemic curiosity and understanding were
correlated even within the experimental or control group.
(e) Cognitive changes among the experimental subjects occurred

51



43

primarily after they tested their predictions., In other words,
group discussion produced few conversions by itself but made the
students more sensitive to the feedback in step 6.

While our theory is more or less universal, its application
must be culture-bound. The instructional strategies described are
based on several assumptions. Enhancing motivation for
comprehension through peer interaction presupposes that each
student is attentive to remarks made by others and tries to
incorporate them into his or her cognitive structure; that is, he
or she listens well to peers. Also, discussion in a large group of
40-45 pupils, with the teacher as chair, is possible only when most
students behave well. Therefore, we do not suggest the application
of ready-made instructional strategies to other social-cultural
settings. Further studies will enable us to specify effective
strategies that motivate students to engage in comprehension
activity in a variety of mathematics classes.
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Chapter 14

THE INTUITIVE DIMENSION OF MATHEMATICAL REASONING

Efraim Fischbein

In any mathematical activity one may identify three basic
components:

1. The formal aspect is expressed in the strictly reductive,
logical structure of mathematics: axioms, defin'tions,
theorems, proofs,

2. The algorithmic aspect, which includes standardized
mathematical operations, formulae, and solving strategies, is
the instrumental component of any mathematical activity.

3. The intuitive dimension refers chiefly to the dynamics of the
subjective acceptance of a mathematical idea.

Let us consider, for example, elementary arithmetical
operations. One must define what one means by addition,
subtraction, multiplication, and division and the relations among
them. One must define the laws of associativity, distributivity,
and commutativity and how they apply to elementary arithmetical

operations; one identifies the group properties of various sets of
numbers under these operations. Such components comprise the
formal aspect of mathematical activity.

At the algorithmic level, we are interested in the techniques
of mathematical operations as applied to various classes of
mathematical entities. Students also learn standard strategies for
solving standard problems with the help of these operations (such
as the famous "rule of three").

A third aspect of mathematical activity which is very often
overlooked in the instructional process is the intuitive dimension.
In learning mathematics, one does not deal exclusively with the
logical structure of mathematical truths. One must also assimilate
and integrate such truths into the fundamental sci.lerAlas of mental
behavior in order to apply them in problem solving. As a matter of
fact, one tends to confer automatically on the various types of
mathematical ideas a certain subjective interpretation--which makes
these ideas directly accessible and acceptable to the individual.
In other words, one confers on the respective concept or statement
an intuitive meaning. Even after an individual has acquired
sufficient training to consider a certain topic in a general and
abstract rigorous manner, he remains dependent on primary intuitive
interpretations. For example, although one knows that a point, a
line, and a surface are "pure" concepts, i.e. abstract, ideal
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mental entities, one tends to attach to them figural, intuitive
representations. This tendency may influence reasoning even when
the individual is aware of the purely abstract nature of the
respective entities.

The formal, the algorithmic, and the intuitive aspects of
mathematical reasoning describe neither developmental levels nor
learning stages, though their description may be helpful in
explaining some developmental phenomena or in devising teaching
programs. In our opinion, every genuine mathematical activity--no
matter the age of the individual or the complexity of the
mathematical concepts involved--includes all three aspects. Any
attempt to reduce a child's mathematical activity to mere intuitive
processes or a university student's reasoning to pure formal
inferences will have a negative result.

This .per focuses on the intuitive dimension of mathematical
activity.

The Concept of Intuition

The concept of intuition has a long history. Philosophers,
mathematicians, other scientists, and pedagogical specialists have
all used it, and a variety of meanings, some contradictory, have
been attach to the term. According to Descartes (1967) and
Spinoza (1967), intuition is the initial source and the ultimate
reliable guarantee of certitude. In Bergson's view (1954),
intuition is the key to understanding the essence of life
phenomena, of duration, of motion. Modern science philosophers,
like Hahn (1956) and Bunge (1962), consider intuition a primitive,
unreliable form of knowledge.

Although various definitions have been proposed, some features
are commonly accepted. Intuition is always described as immediate
knowledge, as a cognition which is accepted directly as
self-evident, with a feeling of intrinsic certitude, and without
any need for verification or proof.

Mathematicians and other scientists use the term intuition in
two different but related ways: (a) as similar to the moment of
"illumination" in a problem-solving process (the initial, global
grasp of a possible solution to a problem); or (b) when referring
to a statement which may be accepted as self-evident (e.g., the
whole is bigger than each of its parts). Both meanings are
fundamentally important for mathematics education.

The "illumination" meaning refers to the student's approach to
problem solving. Shall we teach students algorithmic techniques
exclusively, to enable them to identify classes of problems and to
solve them? Or shall we encourage students to guess a solution
before having firm grounds for accepting it? Bruner raises the
question: "Should students be encouraged to guess, in the interest
of learning eventually how to make intelligent conjectures?
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Possibly there are kinds of situations where guessing is desirable
and where it may facilitate the development of immitive thinking
to some reasonable degree. There may, indeed, be a kind of
guessing that requires careful cultivation" (p. 64).

The second meaning refers to the way in which the student
represents and accepts a certain concept or statement. The
learning of a formal definition or a formal proof does not
determine absolutely the manner in which a student understands and
uses it. Obstacles to understanding, misconceptions, and
inadequate solving strategies are very often the effect of
intuitive influences.

Let us consider in more detail these two categories of
intuition.

Anticipatory Intuitions

Describing the problem-solving process, Hadamard (1949),
following the autobiographical accounts of Poincarg
(1914)--describes four stages: preparation, incubation,
illumination, and verification. The moment of illumination
corresponds to what we have called anticipatory intuition.

Much problem-solving solution activity is unconscious, but the
unconscious segment is preceded by a preparatory stage which is
conscious and purposeful. The preparatory stage refers to the
activity of learning the problem, to analyzing the concepts and
relationships involved. During the preparatory stage, we try to
become aware of the implications and consequences of available
information. We try to organize this data and to grasp a new
structure to lead us to the solution. Hadamard (1949) observed
that very often the path to the correct solution is blocked by
choosing and following rigidly a too-narrow path: ". . . in both
domains the mathematical and the experimental, the fact of not
sufficiently 'thinking aside' is a most ordinary cause of
failure. . . ." (p. 49).

To succeed, one must maintain a strict balance between
following a chosen investigative line and keeping the mind open to
all available options. The delicate equilibrium between openness
and flexibility on the one hand, and stability and consistency on
the other, represents what may be the most essential ability of a
good problem solver. Excessive rigidity or excessive divergency
during problem solving are insurmountable obstacles.

The incubation stage is largely an unconscious segment of the
problem-solving endeavor. The individual, tired from his effort,
changes his line of thought or rests. Between this moment and the
moment of illumination-the initial grasp of the solution--something
must occur because there is often a fundamental difference between
the representation of the problem before and after interruption of
the conscious activity; the solution seems to appear suddenly, as
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if the mind has continued to work in the respective interval. What
kind of work is this? Is this a blind, automatic work which
produces many combinations (via associations)? According to
Poincare, (1914) this combinational production does not represent a
characteristic aspect of the creative process; everybody, says
Poincare, may associate blindly everything with everything, and
this would not lead to any solution. The unconscious mind's
essential task is to select and retain those combinations which
would be plausibly useful in attaining an acceptable solution. "To
invent means to discern, to choose" (Poincare, 1914, p. 48). But
good choices follow certain criteria, and Poincare (1914) mentions
several:

. . . the mathematical facts worthy of being studied are those
which, by analogy with other facts, are able to lead us to the
knowledge of a mathematical law in the same manner in which
experimental facts lead us to the discovery of a physical law.
They are those aspects which reveal surprising affinities
between different facts known for very long but which have
been considered unjustly alien one to the other. (p. 49)

According to Poincare, the most fertile combinations are those
which consist of elements borrowed from very distant, very
different domains. But this alone is insufficient: the number of
possible combinations may be so great that a lifetime would not be
enough to examine them.

Poincare offers a second criterion for successful selection of
combinations useful to mathematical invention. This he calls the
feeling of mathematical beauty, an awareness of the harmony of
numbers and forms of mathematical elegance. "This is a genuine
aesthetic feeling known to every true mathematician" (Poincare,
1914, p. 57). Certainly, we may disagree. Mathematicians may
occasionally enjoy the harmony and elegance of a solution or a
proof, but one may assume that these qualities are not always
apparent. What seems to be a fundamental component of mathematical
invention, however, is what Poincare (1914) has called the
intuition of mathematical order, which helps us to guess the
existence of harmonies and hidden relationships (p. 7).

The third stage in the problem-solving process is
illumination, or what we have called anticipatory intuition. It is
characterized by suddenness and by a feeling of certainty.

Let me recall a well-known autobiographical note of Poincare
(1913) which refers to the invention in mathematics:

Just at this time I left Caen where I was then living, to go
on a geologic excursion under the auspices of the school of
mines. The changes of travel made me forget my mathematical
work. Having reached Coutances we entered an omnibus to go
some place or other. At the moment when I put my foot on the
step the idea came to me, without anything in my former
thoughts seeming to have paved the way for it, that the

59



51

transformations I had used to define the Fuchsian functions
were identical with those of non-Euclidean geometry. I did
not verify the idea; I should not have had time, as, upon
taking my seat in the omnibus, I went on with a conversation
already commenced, but I felt a perfect certainty. On my
return to Caen, for conscience' sake I verified the result at
my leisure.

Then I turned my attention to the study of some arithmetical
questions apparently without much success and without a
suspicion of any connection with my preceding researches.
Disgusted with my failure, I went to spend a few days at the
seaside, and thought of something else. One morning, walking
on the bluff, the idea came to me, with just the same
characteristics of brevity, suddenness and immediate
certainty, that the arithmetic transformations of
indeterminate ternary quadratic forms were identical with
those of non-Euclidean geometry. (p. 388)

David Tail (1980) describes his complicated efforts to solve a
problem related to infinitesimal quantities.

Reconsidering the theory as a whole it now all seems so
inevitable. The ideas were not invented. They were
discovered. Reading about the process of discovery written in
these pages it is amazing to see the number of errors made and
the false intuitions which had the ring of truth. Yet such
was the intensity of excitement at the time that these
temporary setbacks were insufficient to cause permanent
blockages. . . .

. . . A classic description of "problem solving" involves
conjec6ures which are then checked out. Here the researcher
never felt that he made "conjectures." What he saw were
"truths" evinced by strong resonances in his mind. Even
though they often later proved to be false, at the time he
felt much emotion vested in their truth. These were no cold,
considered possibilities, they were intense, intuitive
certainties. Yet at the same time,its contact with them often
seemed tenuous and transient; initially he had to write them
down even though they might seem imperfect, before they
vanished like ghosts in the night.

When such "truth" later proved false, it was rarely because of
a coolly considered counter-example. That usually came later
still after a period of mental unease already mentioned. In
fact, the researcher, when in a state of mental excitement did
not wish to check the detail at all, lest he lose the thread
of the overall idea. It is remarkable the number of times
that there were small errors which went unnoticed at the time
but later produced unease then correction. (pp. 33-34)
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The Nature of Anticipatory Intuition

Several aspects of problem solving may be deduced from these
descriptions of its stages. Anticipatory intuition is generally
preceded by conscious preparatory work and by a tacit period of
incubation. One assumes that many combinations are tested but that
these are not produced by mere fortuitous associations. Inductive
attempts may often play an important role (Polya, 1954, pp. 3-11).
Before a specific general statement is identified, one checks
several cases, as in the empirical sciences. But sometimes a
general statement first comes to mind, and one then checks several
instances before a formal proof is found.

Analogy also plays a fundamental role in mathematical
invention; through analogy one guesses the common mathematical
structure of different classes of entities.

It appears that after the period of conscious preparatory
work, the same research process continues in the "underground," at
the tacit level. The difference is that, at the unconscious level,
the production of associations, the identification of analogies,
and the inductive-deductive reciprocal controls are activated at a
much greater speed through automatic means.

The suddenness of the illumination moment becomes apparent.
In fact, it represents, the final moment of a complex process,
which starts with a feeling of satisfaction, of liberation, and of
tension reduction. Suddenly, one has a global picture of the
solution, a picture in which formerly disparate or even
contradictory elements fir together in a new, unitary, coherent,
ser2-consistent conception. Sometimes, these solution flashes have
the appearance of a positive breakthrough "accompanied by
pleasurable feelings" (Tall, 1980, p. 33).

A fu-lamental characteristic of anticipatory intuitions is
that they appear to be absolutely certain. Although they represent
no more than conjectures -- before a complete verification is
achieved--this is masked by the appearance of definitive truth
(Poincare, 1913 and Tall, 1980). The impression, according to Tall
(1980), is that these ideas were not invented, but discovered.

Eugen Rusu (1962) a Rumanian mathematician and psychologist,
also emphasized these aspects:

. . . in the unstable and undecided atmosphere of the clouds
before the storm, suddenly appears a lightning. In its brief
light one grasps a convergent line of facts, a structure. The
proof did not yet appear in all its details. What appea7ed is
its guiding idea and the conviction that it indicates the
right direction. (p. 22)

Polya (,954) also speaks about beliefs when referring to
mathematical discovery.
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A scientist deserving the name endeavors to extract the most
correct belief from a given experience and to gather the most
appropriate experience in order to establish the correct
belief regarding a given question. (p. 3)

A belief is different from a formal conviction based on a
complete proof. A belief implies incompleteness in the arguments
on which the conclusion is based. We need to believe when we
cannot display a complete set of arguments; we must hide the gap
with our conviction that the missing elements are there but not yet
identified. Referring to beliefs in mathematical reasoning
suggests that mathematical reasoning, like empirical investigation,
uses heuristic means, (e.g., induction, analogies, the preliminary
solution of a simpler problem) by which one jumps from a limited
amount of empirically gathered arguments to a general idea. This
jump is the moment of illumination, the moment of anticipatory
intuition.

Emergence of a solution usually cannot be the result of
gradual elaboration. The process' inductive, constructive nature
implies a jump from finite (a limited number of examined facts) to
infinite (the universal statement); one obtains a sudden belief
that one is on the right path.

A b;lief implies intrinsic consistency, coherence, resistance
to change, imperativeness. Certainly, the first global
representation of a solution must be followed by analysis and
verification for it is only then that empirical belief becomes a
conviction based on formal, complete justification. But even,
after the formal, analytical proof has been found, a global
representation remains necessary.

. . . any mathematical argument, however, complicated must
appear to me as a unique thing. I do not feel that I have
understood it as long as I do not succeed in grasping it in
one global idea and unhappily . . . this often requires a more
or less painful exertion of thought. (Hadamard, 1949, p.
65-66).

This is no longer anticipatory intuition (more syncretic than
synthetic). The final, global representation, the conclusive
intuition, provides the problem solver with a concentrated summary
through which, on the basis of a subtle hierarchical organization,
the main line of thought becomes salient and directly convincing.

As a matter of fact, the unconscious and the conscious
components of the mental work are less distinct than might be
deduced from Hadamard's (1949) description. Certainly there are
periods of apparent relaxation during which tacit elaboration seems
to continue (as evidenced by the apparently sudden discovery of a
new idea that follows) but the stages of preparation, incubation,
illumination, and verification do not occur in succession, one
following another like acts in a play. The search activity is a
mixture of associations, analogies, inductive attempts, guesses,
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hopes, beliefs, and efforts of verification, in which unconscious
efforts occur simultaneously with conscious or semiconscious
endeavors. There is, of course, a specific direction in the
solution process, but this direction is far from consistent.

Tall's (1980) autobiographical note accentuates this
observation:

I recall that my mind was buzzing with ideas--1 still wasn't
clear about the archimedean bit, nor completeness. . . .

However I spent an hour photocopying music, including
"Virginia don't go too far" a Gershwin song). I thought
about the hyperreals of Robinson 'going too far' extending to
many functions. (p. 29)

Reconsidering the theory as a whole, it now all seems so
inevitable. These ideas were not invented, they were
discovered. Reading about the process of discovery written in
these pages it is amazing to see the number of errors made and
the false intuitions which had ache ring of truth. Yet such
was the intensity of excitement at the time that these
temporary setbacks were insufficient to cause permanent
blockages. . . . Before.a major "illumination" takes place
there are various moments of intuitive leaps characterized by
the same feeling of belief that something essentially new has
been grasped, that an important break-through has occu-red.
These are positive, apparently successful, breaks-through.
But there are also negative break-through with a vague feeling
of unease, with the conscious rationalization of the error
sometimes taking days or even months to register. (p. 33)

These micro-intuitions, usually based on tacit elaborations
expressed at the conscious level facilitate the relatively sudden
formation of apparently coherent structures in which various
elements seem to fit together in a unique, meaningful picture.
Their essential role is to organize ideas, and to include in the
constructive search activity moments of apparent success, of
apparent clarity and certitude from which the endeavor may continue
with confidence. These intuitive leaps have a double function:
they synthesize in new, apparently coherent and intrinsically
believable representations the progress already achieved and they
increase the perspective of further efforts in terms of analytical
control and new avenues of exploration.

Affirmative Intuitions

A second category of intuition, inextricably related to the
first, we have termed affirmative intuition. Affirmative
intuitions are cognitions (representation, interpretations) which
are directly acceptable to the individual as certain and
self-evident. Such cognitions also are associated with a feeling
of belief which generally exceeds data at hand. Some of these
beliefs are considered correct by the scientific community, while
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others are viewed as false and must be rejected or corrected via
instruction.

Intuitive affirmatory cognitions may refer to concepts, to
relations, to inferences or to operations. In all these
circumstances, we deal with meanings Expressed in representations
or interpretations directly acceptable to the individual as clear
and self-consistent.

Intuitive Meanings of Mathematical Concepts

A person's knowledge of a formal definition or description of
a mathematical object does not generally eliminate the intuitive
meaning attached to that concept, and it is this intuitive meaning
that makes the respective cognition directly acceptable to the
individual. Such acceptance is achieved by conferring upon the
respective cognitions some globally representative, behaviorally
meaningful interpretation.

Let us consider several examples. In formal mathematics, the
concepts of point, straight line, surface--in fact, every
geometrical concept--are abstractions. They are defined by axioms
or by formally established definitions, and they do not exist as
objective, material realities. But one tends automatically to
confer upon them intuitive meanings. It is psychologically
impossible to think of a point other than as a small spot, or of a
line as anything but a fine ink stripe or a well stretched string.

David Hilbert (in Reid, 1970) observed:

Who does not always use, along with the double inequality
a > b > c, the picture of three points following one another
on a straight line as the geometrical picture of the idea
"between"? Who does not make use of drawings of segments and
rectangles enclosed in one another when it is required to
prove with perfect rigor a difficult theorem on the continuity
of functions or the existence of points of condensation? Who
could dispense with the figure of the triangle, the circle
with its center or with the cross of the three perpendicular
axes? Or would give up the representation of the vector field
or the picture of a family of curves or surfaces with its
envelope which plays so important a part in differential
geometry, in the theory of diffe- ltial equations, in the
foundations of the calculus of variation and in other purely
mathematical sciences? (p. 79)

These are not mere pictorial representations with no influence
on the course of mathematical reasoning. In fact, these
representations wield active influence, often beyond conscious
control, on reasoning strategies and solution choice.
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Figure 1

Comparing two sets of pointa--line segment AB and line segment
CD--one intuitively arrives at a contradiction.(Figure 1): if one
agrees with Cantor that the two sets are equivalent, the intuitive
reaction is that segment CD is longer.

If one draws perpendiculars AE and BF, it becomes intuitively
obvious that one may establish a one-by-one correspondence between
the sets of points of AB and EF. What about CE and FD? Such
reasoning is correct when one considers pictorial representations
rather than mathematical points. But let us attempt to eliminate
the pictorial representation and to consider only the abstract
mathematical notion of a point. It is very difficult to do so.
How is it posdbie to compare quantitatively sets of 0-dimensional
entities? There-is a well-known proof (see Figure 2) that shows
how a one-to-one correspondence may be established between two sets
of points. Nevertheless, a feeling of uneasiness persists. The
intuitive impression is that CD is somehow a stretched version of
AB (a compromise between the original intuitive representation and
the formal meaning attached to the respective concepts).

(2
Figure 2

A child trying to overcome the contradiction affirmed: "Both
segments contain the same number of points. In both there is an
infinity of points. But the points in CD are bigger." The theory
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of infinity, as established by Cantor in the 19th century, has
faced enormous difficulties because of intuitive obstacles.

A similar situation occurs with the number concept. It took
hundreds of years for mathematicians to confer on the concept of
negative number a formal mathematical status; negative number is
intuitively a contradictory notion. The intuitive roots of the
notion of number are to be found in the representation of
equivalent sets. A number refers intuitively to the act of
evaluating what has been called the cardinal of the set. This is
an abstract notion--all equivalent sets have the same cardinal.
This may be established behaviorally by establishing the
bijections. Briefly speaking, the idea of number is intuitively
meaningful, as ion^ as it is related to sets of objects (or, at a
higher level, to the notion of measure). But a negative number has
no such practical interpretation. It is true that one may consider
the absence of something, a certain deficit. One may claim, for
example, that one has $5 less than is needed to buy a specific
object. But to affirm that a number may absolutely represent a
quantity less than nothing is something totally different. An
existing quantity or a ratio between quantities (representable by
numbers) which is less than nothing is intuitive nonsense--and so
are operations with such numbers. What is the intuitive meaning of
multiplying (-2)x(-5)? For this reason, mathematicians, after
discovering that one may obtain negative numbers when solving
certain equations, have claimed that such curiosities are mere
artifacts and must be eliminated.

The Scottish mathematician McLaurin (1698-1746) clearly
understood the formal nature of mathematical entities: "It is not
necessary to really describe the objects of our theories or that
they should really exist. But it is essential that their
relationships should be conceived clearly and deduced obviously"
(in Glaeser, 1981, p. 318).

In spite of this, MacLaurin's Treatise of Algebra observed
that an isolated quantity cannot be negative; that it may be so
only by comparison. Rigorously speaking, a negative quantity is
not less than nothing; it is not less real than a positive quantity
when considered in an opposite sense (in Glaeser, 1981, p. 317).
Such great mathematicians, as Descartes, Euler, Laplace, and Cauchy
have struggled with these contradictions, and it was not until 1867
that German mathematician Hankel definitely solved the problem. He
affirmed that negative numbers are not symbols of given realities
but formal constructs, and that operations with them are governed
only by formal considerations of consistency and not by practical
meanings.

Today, students evcperience with less acuity the inner,
intuitive contradictions inherent in the notion of negative
numbers; they became accustomed to the concept during childhood.
But the psychological difficulties reappear when dealing with the
operations with negative numbers.

''.
4 6 6
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In order to understand the child's difficulties and successes
when operating with fractions, one must know the underlying
intuitive models the child has in mind. Behr and Wachsmuth (1982)
describe such models. Some children use unit-fraction iteration:
three-fifths is established by finding one-fifth and then
performing an iterative behavior. While this procedure is
sufficient for understanding the meaning of a fractional number, it
does not independently support the more abstvact idea of the
equivalence of fractions such as the equivalence between 3/5 and
6/10 (Hunting, 1986).

Relational intuitions are expressed in self-evident,
self-consistent statements: "The whole is bigger than each of its
parts"; "Every number has a successor"; "Through a point outside a
line, one may draw one parallel and only one to that line."
Intuitively acceptable, they may become obstacles to theoretical
developments that would' contradict them. Indeed, the first
statement above prevented mathematicians for many centuries from
accepting the concept of actual infinity. If one accepts the
concept of actual infinity, one muet accept that a set may be
equivalent to some of its proper subsets (e.g., the equivalence
between the set of natural numbers and that of even numbers). In
admitting the fifth postulate of Euclides as absolute and
self-evident, the path to non-Euclidean geometries is closed. The
development of mathematical ideas has been hindered for many
centuries by such intuitively accepted statements.

Let us present another example. Carolyn Kieran, quoting
various sources, has shown that for elementary and junior high
school pupils the equality symbol represents an operator rather
than a symbol of equivalence. Intuitively, the equality symbol
represents for these subjects "a do-something signal." The
sentence 3+5=8, for example, is interpreted as "3 and 5 make 8."
Children rejected a sentence such as 4+5=3+6 because they expected
an answer and not another problem to follow the equality symbol
(Kieran, 1981, p. 319). The underlying intuitive model is that of
an input-output operator, which prevents the child from
interpreting the equality sign as a relation symbol, or as the
symbol of equivalence with properties of symmetry, transitivity and
reflexivity. When children were asked about the meaning of "3=3,"
a typical response was: "This could mean 6-3=3 or 7-4=3."

The problem of the intuitiveness of mathematical statements
also raises important didactical problems:

1. If a statement is intuitively evident, students are reluctant
to accept the necessity of a proof. The proof appears to be
an unnecessary requirement which may cast doubt on the
seriousness of mathematics itself. (We refer to such theorems
as: "Two crossing lines determine pairs of equal opposite
angles" or "If two sides of an isosceles triangle are equal,
the opposite angles are also equal."
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2. Self-evident statements are not absolute truths, and they may
be replaced formally by statements which are
counter-intuitive. For example, one may consider axiomatic
systems in which Euclidest postulate is replaced by
counter-intuitive axioms (e.g., through a point outside a
line, one may draw an infinity of parallels to that line).
Students will certainly be shocked by such statements, but the
acceptance of counter-intuitive statements freely chosen or
deductively proven (not leading to contradictions) is a
sine-quo-non part of mathematics education.

3. Certain mathematical statements may not have a direct,
intuitive meaning, but such a meaning may be created by using
adequate intuitive models. The statement "if A > B, then
-A < -B" has no intuitive meaning, but an intuitive model may
easily be associated and understood using the number line.

4. There are many situations in which a statement has no
intuitive meaning and in which such a meaning cannot be
produced. The definition a° = 1, or the relation 4. ,

has no intuitive meaning, and no corresponding behavioral
representation is possible. We do not recommend that eff_xt
be exerted to create artificial models for justifying such
relations. The student must learn that mathematics is a
formal, deductive body of knowledge in which statements are
formally justified. Adequate, intuitive models may help in
grasping th.. meaning of a concept or statement, but such
intuitive means cannot always be provided.

The Intuitive Meaning of Operations

Arithmetical operations are formally defined by axioms.
Nevertheless, one tends to attach to these operations intuitive
meanings which are commonly based on a corresponding practical
operation. The sentence "5+3=8" intuitively means putting together
two sets of elements But it may also be interpreted as counting
from five on three additional elements (for instance, by using
fingero). The sentence "7-3=4" may direct students to eliminate
from a set of seven a set of three elements, or to build up from
three to seven. If the text of the problem suggests intuitively a
different operation than that which must actually be performed, the
child encounters difficulties: "John has $5. He needs $8 to buy a
pocket calculator. How much does he need?" The child must
actually add, but the formal operation to be performed is
subtraction.

The typical intuitive interpretation of multiplication is
repeated addition, bot this imposes oeveral constraints. In formal
mathematics multiplication is commutative. But if multiplication
must solve a practical problem, the situation may be different.
One must consider both the operator and the operand, "3 x 5" means
"3 + 3 + 3 + 3 + 3" or "5 + 5 + 5." In the first interpretation, 5
is the operator and 3 is the operand. In the second
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interpretation, 3 is the operator and 5 is the operand.
Intuitively this makes a great difference: one cannot intuitively
conceive of taking a quantity 0.63 times, or 3/7 times, whereas one
can easily conceive of 3 x 0.63 = 0.63 + 0.63 + 0.63, even if one
is unable to perform the operation.

It has been shown that adults as well as children encounter
difficulties when asked to solve a multiplication problem in which
the operator is a decimal. A problem in which the same numbers
intervene, but in which their role is changed, is solved more
easily. Let us consider the following questions:

1. From 1 quintal of wheat, you get 0.75 quintal of flour. How
much do you get from 15 quintals of wheat?

2. The volume of 1 quintal of gypsum is 15 cm'. What is the
volume of 0.75 quintal?

These are examples taken from research in Pisa, Italy, and all
subjects were familiar with the term "quintal." In both problems,
the solution is derived from multiplying 15 by 0.75. Grades five,
seven and nine were investigated: grade five scored 79% and 57%
correct on questions 1 and 2, respectively; grade sc m scored 74%
and 57% correct, respectively; grade nine scored 76% and 46%
correct, respectively. When 0.75 was used as an operator, a
dramatic deterioration of scores was observed.

A second constraint of the repeated addition model is that the
product of multiplication must be larger than each of the factors.
A difficulty appears if the operator is smaller than 1, since in
this case the multiplication "makes smaller" (see Fischbein et al.,
1985).

It also has been assumed that division is assJciated
intuitively with two models: partitive division (sharing division)
and quotative division (measurement division). The structure of
the problem determines the model which is activated. In the first
case, division is seen as an operation through which an object or a
collection of objects is divided into equal fragments. In this
interpretation, the dividend must be larger than the divisor, the
divisor (the operator) must be a whole number, and the quotient
must be smaller than the dividend (operand). Quotative division
refers to a situation in which one seeks to determine how many
times a given quantity is contained in a larger quantity. The only
restriction is that the dividend must be larger than the divisor.
As with multiplication, problems that violate these constraints
create difficulties at various age levels (Fischbein, et al.,
1985).

Thus, the intuitive meanings of mathematical operations play
an important role in solution choice. Schools should develop in
children an awareness of intuitive interpretations and an ability
to understand and to contrcd them.
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Let us consider an additional example: A bottle of 0.75 litre
of juice costs $2. What would be the price of 1 litre of juice?"
The intuitive tendency is to choose multiplication as the solution
operation; the idea that the correct solution is 2 0.75 is not
suggested intuitively. It is not the structure of the problem
itself which creates the difficulty, but the relationship between
the numerical data: the divisor is a decimal.

Let us consider the same problem with different data: "For
$10, one can buy 5 litres of juice. What is the price of 1 litre?"
It is intuitively clear that one must divide 10 by 5. It is not
the presence of the decimal which is the main source of difficulty,
but its function. In the research mentioned above, one finds the
following problem: "Five friends bought together 0.75 kg. of
chocolate. How much does each one get?" Even fifth graders solved
the problem easily (85% correct answers).

These examples show that conflicts may arise between the
formally correct solution and the tendencies supported by intuitive
primitive models. We assume that in multiplication and division
problems, the didactical solution is to develop proportional
reasoning in pupils. According to Inhelder and Piaget (1958)
proportion is one of the main operational schemas. As a matter of
fact, each schema is only a potentiality. The elementary intuitive
forms of proportional reasoning are present even in
concrete-operational children. The challenge is to improve that
intuitive background and to develop corresponding quantitative
strategies. The famous "rule of three" may play an essential role
in overcoming these intuitive difficulties through the use of
formal strategies.

Let us return to the problem of the $2 0.75 litre of juice and
tue price of 1 litre. The proportionality is not intuitively
evident; schema may help. One begins with a simpler problem in
which the proportion is evident:

6 litre --- $10

3 litre --- x dollars

The ratio between the quantities is equal to the ratio between
their prices. If the quantity of juice is higher, the price is
also proportionally higher. The problem becomes 6/3 = 10/x. If the
quantity of juice is one half, the price is also one half, and
x= 5. On the other hand, the student must learn the
transformations which would enable him to generalize the solution
procedures.

I would like to emphasize that developing intuitive, active
attitudes and teaching adequate algorithms are not opposite,
didactical strategies. On the contrary, students must learn to
merge the two approaches in a unitary, complex
information-processing strategy on a strong, formal basis. As
Vergnaud (1983) has shown, arithmetical operations must be
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assimilated not as isolated procedures but in the realm of complex
conceptual systems.

Intuition and inferences. Some inferences seem to express
intuitions, while others do not. From A = B, B = C, one concludes
as a direct intuitive consequence, that A = C. Similarly, from
A > B and B > C, one concludes that, evidently A > C. Such logical
intuitions develop during the concrete-operational stage.

Conditional reasoning becomes more complicated. According to
Inhelder and Piaget (1958), the formal-operational period is
characterized by the emergence of hypothetical and combinatorial,
propositional reasoning. This means that the logical structures of
implication, conjunction, and disjunction should work to guarantee
the adolescent's capacity to perform the logical operations
requested by mathematical reasoning. In fact, things are very
often not so. Even if one knows the truth table of the basic
logical operations, one is not necessarily able to use these
operations correctly in concrete problem-solving situations.

Knifong (1974), referring specifically to conditional
reasoning, claims that children answer correctly only if the
correct solution may be found by transduction, and this may occur
with forms of reasonings called modus ponens and modus tollens.
For example: "If this object is sugar, then it is sweet."

Modus ponens: "This object is sugar--then it is sweet.

Modus tollens: "This object is not sweet--then it is not sugar.

According to Knifong, children do not conclude correctly when
denying the antecedent (the object is not sugar) or when affirming
the consequent (this object is sweet). In the first case, the
tendency is to deny the consequent; in the second, to affirm the
antecedent. Knifong calls this relation non-directional

j ustaposition.

In research by Galbraith (1981), pupils were asked about
numbers for which the sum of the digits can be divided by 7.
(Examples include 34 (3 +4'7]; 185 [1+8+5=14].)

The question continues:

If we make a list L of all such numbers which are less than
70, the start of it looks like this: 67, 16, 25, 34. Write
down the next largest number on the list. Gary says: If you
start with 7 and keep adding you always get a number on the
list L.
(1) Is Gary right?

Brenda says: "Every number in the list can be fo-nd by
adding 9 to the previous number. You start with 7.
(2) Is Brenda right?" (Galbraith, 1981, pp. 9-10)
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"If a rule goes for one, it will go for another"; "If it works
for three, it should work." These pupils do not use implication as
a logical, formal tool; their approach is an empirical one. Even
after locating numbers in the list L (59 and 68) whose sum of the
digits is divisible by 7, but which could not be obtained by adding
successively 9, many subjects did not accept that Brenda's
statement is thereby refuted (that is, if p+ q, then

O'Brien et al. (1971) found that only 20% of grade 10 students
were able to answer implication tests correctly. The authors
concluded that this inability may explain student's failure in
constructing a mathematical proof or checking its validity.

Logical schemes do not necessarily develop as actual
capabilities in children and adolescents, and systematic training
is requested. This training must be considered at all three levels
of mathematical reasoning:

1. The formal level implies knowledge of truth tables of the most
commonly used logical operations (implication, disjunction,
conjunction).

2. The algorithmic level involves drill-and-practice c:tivities
referring to transformations of logical relations. Computer
programs may be helpful at this level.

3. Intuitive understanding and use of logical operations may be
developed by asking students to solve problems through global,
direct evaluations before any systematic explicit control is
performed. For example:

If figure A is a square, its diagonals are equal. Let us
suppose that one has proven that the diagonals of A are equal.
Is figure A a square?

An irrational number has an infinity of decimals. Number A
has an infinity of decimals. Is it an irrational number?

In order to answer intuitively--and, not by resorting to the
truth table of implication--one must imagine the situation and try
to produce concrete instances which may confirm or deny the inverse
implication (q p). It is essential to compare the solution
deduced from the truth table with that which is produced by
analyzing concrete examples. For example, the truth table
indicates that the truth of q does not imply the truth of p: a
number may have an infinity of decimals and, still be a rational
number.

Intuition and proof. Are students aware of the profound
distinction between an empirical proof and a formal (logical,
mathematical) proof? Fischbein and Iedem (1982) have reported that
fer many high school students such a distinction is not clear cut.
About 400 students in grades 10, 11, and 12 were preseited with the
following sentence: "Dan claims that the expression n n is
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divisible by 6 fo5 every n." The sentence was followed by a
complete proof (n n = (n - 1) n (n + 1). This expression is
divisible by 2 and by 3, etc. About 81% of the subjects claimed
that the proof is fully correct. The question was then asked:
"Moshe claims that he has checked the number n = 2357 and has found
that 2357 - 2357 is not divisible by 6. What is your opinion on
that matter?" Only 32% of the students claimed that it must be a
mistake, or that it is impossible. Many did not explain the
apparent contradiction. A portion of the subjects claimed that the
theorem is true only for some classes of numbers, or that Moshe's
result refutes the statement of Dan. There were subjects who
claimed that one must check the theorem for various numbers or that
"an exception is always possible." Most of the same students have
affirmed previously that they accept the proof as fully correct.

In reality, their basic, intuitive attitude towards a general,
mathematical statement was identical to that in empirical
situations in which there are no universally valid proofs.
Exceptions are possible and additional controls are therefore
welcomed (Fischbein & Kedem, 1982). The act of learning the theory
and the meaning of mathematical proofs does not necessarily change
the intuitive, the deep-structure attitude of the individual. Our
opinion is that special training is required which would create in
the student an intuitive understanding of the meaning of a formal
proof (with its absolute, universal validity).

Summary and Didactical Suggestions

For a long time, reasoning has been analyzed largely in terms
of propositional networks governed by logical rules. The modern
information-processing approach -- inspired by computer
programminghas continued along the same line and emphasized the
conceptual algorithmic structure of thinking. But since 1960,
researchers have become aware of the r" 'isive role played by
cognitive components deeply rooted in vur adaptive behavior, such
as images, models, and beliefs. Kelly (1963) emphasized the role
of beliefs and expects ions; Norman (1979, 1982) analyzed the
structure of models with their limitations. Paivio (1971), and
more recently Shepard (1.978), were concerned with the impact of
images on reasoning. (This is only to recall a few from the
hundreds of contributions.)

The term intuition accounts for constructs that synthesize
these various aspects of problem solving in unitary cognitive
structure. An intuition is a nodal moment in the flow of
cognition, expressed with a stabilized, confident expectation which
exceeds thr.: data at hand. Intuitions--both anticipatory and
affirmatory--represent in the stream of thoughts the apparently
firm, reliable grounds that allow an individual to progress in
problem solving.

But the crystallization of intuitions implies additional,
often extraconceptual, elements. Pictorial and behavioral
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interpretations, analogies, and paradigms contribute to the imbuing
of ideas with an appearance of familiarity, practicality, and
direct accessibility. An anticipatory intuition may inspire a new
direction for solution attempts, and affirmative intuitions may
enable the student to achieve a deeper, more personal, and more
productive understanding of a concept or statement.

On the other hand, the intuitive loading of a concept may omit
or distort its genuine meaning. Conflicts between intuitive
meaning and formal constraints may arise without either the student
or the teacher becoming aware of them.

Mathematical entities do not have an external, independent
existence as do the objects of empirical sciences. Mathematics
involves entities whose properties are fixed by axioms and
definitions; dealing with such entities requires a mental attitude
that is fundamentally different from that required by empirical,
materially existing realities. When one defines a category of
concrete objects, one knows that the defir.ttion only approximates
the knowledge of the respective rxegory. New properties, not
deducible from the definition, may be discovered,. Mathematical
entities owe their very existence and all of their properties to
that which has been imposed by definition. This creates a new
didactical situation: the student must learn to understand and to
use mathematical concepts in absolute conformity with the
corresponding axioms and definitions, no less and no more. This is
an important and very difficult task.

Consequently, special exercises should be devised to train
students to analyze concepts and definitions in order to
distinguish clearly between the properties imposed by definitions
and those suggested by intuitive components. Is a square a
parallelogram? Certainly it is, because it corresponds to the
definition of the parallelogram. May a tangent have more than one
point of contact with the curve? Why not? The unicity of the
point of ontact is not included in the definition of the tangent
(expressing the slope of the curve in a given point). Are the set
of points of a line segment and the set of points of a square
equivalent? If a point is identified as a small spot, the two sets
are certainly not equivalent. If the point is considered
zero-dimensional, there is no intuitive answer to this question;
the answer is purely abstract, based on a formal proof.

One cannot eliminate the usual intuitive representations
associated with mathematical concepts. We cannot eliminate these
analogies, behavioral meanings, images, and paradigms because this
is the way we think. Our thinking activity remains profoundly
rooted in our adaptive, practical behavior, which implies
spatiality, structurality, and fluent continuity. The main problem
is to learn to live with the intuitive loading of

concepts--necessary to the dynan.Lcs of reasoning- -and,

simultaneously, to control conceptually the impact of these
intuitive influences.
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Wittmann put it clearly:

The students should gradually learn to analyze concepts,
constructions, theorems and proofs. Such analyses are based
on a written piece of mathematics, e.g., a proof, a small
context of concepts and theorems. They aim at deeper
understanding of the assumptions of a proof, of the form of
inferences, of logical relationships and at the formulation of
more systematic versions of the text at hand. (1981, p. 395)

What we would like to emphasize is that such analyses should
habituate the student to become aware of the exact formal meaning
and implications of mathematical concepts, as distinct from the
implications of the underlying intuitions. Without its engine and
wheels, a car could not move--but the steering wheel controls its
direction.

Secondly, students should also learn to analyze and formalize
their primary intuitive acquisitions. The student must learn to
abstract formal structures from practical realities, to define
them, to render explicit the properties of a class of entities, to
produce proofs after anticipatory intuition has suggested a certain
statement.

A third aspect refers to the role of heuristic attitudes in
mathematical reasoning. A creative mathematical activity is a
constructive process not reducible to mere deduction. In a
constructive process, one must anticipate, and this implies a
certain amount of guessing. Guessing in a problem-solving endeavor
is not a blind trial-and-error process. Some general heuristics
have been described, including the means-end strategy, intuitions
based on analogy or induction, and reference to a known or more
simple problem.

When one guesses, one usually does so in accordance with the
lines of force determined by intuitive tendencies and not
necessarily in conformity with formal constraints. The first basic
recommendation for developing anticipatory intuitions is to improve
the capacity to discern the formal mathematical properties beyond
the intuitive representations.

Analogies seem to play a fundamental role in generating new
ideas as Poincare (1913) and Polya (1954) have emphasized. Much
greater attention should be given, in our opinion, to instilling in
students a sensibility for similarities, an ability to identify
isomorphisms and to describe common structures. Our assumption Is
that if the student is consciously accustomed to proceeding this
way he will develop similar capacities at a subconscious level.
During his problem-solving efforts, apparently spontaneous,
produ tive analogies will emerge automatically and will become a
source of anticipatory intuitions.

We propose that the capacity to evaluate preliminary solutions
and the plausibility of intuitive leaps can also be trained. This
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probably does not involve teaching formal problem-solving
strategies. It is rather a problem of practical training in which
systematic classroom discussions and evaluation of competing
hypothesis may play an important role.
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Chapter 15

MATHEMATICS CURRICULUM ENGINEERING: SOME SUGGESTIONS FROM
COGNITIVE SCIENCE

Thomas A. Romberg and Fredric W. Tufte

The purpose of this paper is to present some of the
implications that recent research in cognitive science has for the
engineering of mathematics curricula. To build a curriculum one
must make several decisions about the content that is to be
included, how that content is to be segmented, how the segments are
to be sequenced, approximately how much time is to be spent on each
segment, and what is to be considered acceptable work. These are
all curriculum engineering decisions. In this paper we propose a
set of principles on which such decisions should be made. The
principles have been derived from recent psychological research.
Since this research is not about curriculum engineering but about
how people process and retain information, the principles must be
considered as suggestions based on this research rather than as
findings. To build a list of principles, we first describe the
curriculum engineering problem being addressed; second, we briefly
outline what it means to draw inference from research; third, we
give a summary of cognitive science research related to how
information is stored in longterm memory; and finally, from this
research we draw curriculum engineering principles.

The rationale for preparing this paper is that, if significant
gains are to be made in the mathematical accomplishments of school
children, then as Romberg and Carpenter (1985) have argued,
"researchers and curriculum developers must be attuned to a changed
perception of what it means to know mathematics and to what the
rapidly expanding literature from cognitive science has to say
about how children, adolescents and young adults store and process
information" (p. 852). In this chapter findings from cognitive
psychology that appear to have application in an educational
setting are presented.

Furthermore, it is a premise of t!'is paper that, as expressed
by Romberg (1983), to know mathematics is to do mathematics, and
that among the essential activities involved in doing mathematics
are abstracting, inventing, proving, and applying. Mathematics is
not, as it is often taught, a static collection of bits and pieces,
leading nowhere except to achievement on a test measuring knowledge
of terminology and algorithmic procedures. The fragmentary nature
of many existing mathematics programs leaves the student with an
almost total inability to apply mathematics in any but routine
situations and, in fact, with very little experience with
mathematical thought itself. The future emphases of instruction
must be on the powerful idea: of mathematics, their
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interrelatedness, and the development of quantitative reasoning
(Romberg, 1984). To accomplish mathematics programs with these
emphases new curricula will have to be developed. This paper was
prepared to give direction to that work.

CURRICULUM ENGINEERING

A curriculum is an operational plan detailing what content is
to be taught to students, how students are to acquire and use that
content, and what teachers are to do in carrying out that
curriculum (Romberg, 1970). The key to this definition is the
notion of planning and that human beings are involved in the
planning effort. Romberg and Price (1983) have pointed out that
such a plan is viewed differently at different levels. There will
be general specifications and needs at a "board of directors"
level, a package of materials at a publishers level, guidelines to
teachers at a local level, and daily lesson plans at the teacher
level.

Curricula also can be viewed from different content
conceptualizations: an ideal curriculum as envisioned by curriculum
theorists; an available curriculum as reflected in the current
textbooks, curriculum frameworks, etc.; the actual curriculum that
is implemented in a particular classroom; and the learned
curriculum (Romberg, 1985). Because of these differing
perspectives it should be clear that building an operational plan
for a curriculum is a complex task. Curriculum engineering is the
iterative process by which parts for the operational plan are
invented and then put together into the final plan to be
implemented. The process is iterative in that no product is ever
viewed as a final "best" plan. Rather, changes are always
anticipated, and each new model is to be an improvement over the
old. In this section the traditional concerns in building a
curriculum are first described, then a rationale for challenging
that tradition is presented.

Traditional Curriculum Engineering

The steps of traditional curriculum engineering have been
common practice for decades. They were formalized in the 1930s by
Ralph Tyler (1931). The process begins with an epistemological
assumption that knowledge is external to the knower. For example,
mathematics is viewed as a body of knowledge (concepts, skills,
procedures) that is well defined and agreed on in the society. The
goal for schools is to expose student_ to this body of extant
knowledge. The engineering task then involves four steps:

1) The content of mathematics is organized into several
agreed on categories. Typical content categ' es
for school mathematics include arithmetic, algebra,
geometry, statistics, measurement, trigonometry.
These are sometimes referred to as strands (California
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Statewide Mathematics Advisory Committee, 1972) or
learning hierarchies (Harvey, McLeod, & Romberg, 1970).

2) The content categories are then segmented (organized
into topics or chapters). Each topic is to take from two
to four weeks to teach.

3) The topics or chapters are then sequenced for instruc-
tion.

4) Finally, specific activities or lessons are developed
within each topic.

This approach to curriculum development puts its emphasis
on the content to be covered. Only in the last step when
activities are developed is any consideration given to either
what learners know and are capable of doing or the work teachers
are to do.

A Challenge to Tradition

We believe there are four problems with the traditional
approach to curriculum development. Based on these problems, a new
approach seems warranted.

1) Student's conception of mathematics. To most students
mathematics is a static collection of concepts and skills to be
mastered one by one. Furthermore, each student's task is to get
correct answers to well-defined problems or exercises. Most recent
curricula in mathematics has been over fragmented. The use of
behavioral objectives and learning hierarchies, such as advocated
by Gagne (1965) and operationalized in many individualized
programs, such as IPI (Lindvall & Bolven, 1967), has separated
mathematics into literally thousands of pieces, each taught
independent of the others. The difficulty with this approach is
the., while an individual objective might be reasonable, it is only
part of a larger network. It is the network (the connections
between objectives) that is important. Students get as a view of
mathematics isolated pieces rather than relationships.

The fragmentation and resulting emphasis on low level
objectives is reinforced by the testing procedures often associated
with such curricula. Multiple-choice questions on concepts and
skills emphasize the independence rather than the interdependence
of ideas and reward correct answers rather than reasonable
procedures.

Students' conceptions of mathematics are greatly influenced by
their teachers, and in the United States most teachers do not have
a broad view of mathematics. Few of our teachers are familiar with
the history or philosophy of mathematics or have ever worked as
mathematicians. The large majority of teachers' knowledge of
mathematics is what is done in schools. Therefore, it is not
surprising that they see little reason either to view or to teacher
mathematics in a different way. They have little sense of
mathematics as a craft, as a language, and as a set of erocedurcs
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to solve problems. Mathematics does not simply deal with
procedures to get answers. It involves such activities as
assigning numbers (measurement), building mathematical models to
represent situations, and examining patterns (Romberg, 1983).

The segmenting and sequencing of mathematics has led to an
assumption that therr is a strict, partial ordering to mathematics.
In American schools, this assumption translates into guidelines
such as "you can't study geometry unless you can do arithmetic; you
can't study algebra unless you cal. lo decimals; you can't study
calculus unless you h, a had trigonometry." A student who is
having difficulty adding fractions with unlike denominators should
not be denied the opportunity to study geometric relationships.

In summary, the most serious problem faced by curriculum
developers is to realize that, while daily lessons (pieces of
mathematics) must be taught, the interconnectedness of ideas must
somehow become the focus of instruction.

2) Learning as absorption. Traditional mathematics programs
have conceived of the learner as being a passive absorber of
information, storing it in memory in little pieces that are easily
retrievable. Note that this view of learning is consistent with
the fragmentEtion of mathematical content.

Probably the most dramatic research findings of the past
quarter century show that learning is not like that at all.
Instead, individuals approach each new task with prior knowledge.
They assimilate new information and construct their own meanings.
These research findings are the basis of the recommendations made
in this paper.

3) Deskilling of teachers. Because of concerns about trying
tc get teachers to adopt and use new programs, there has been a
tendency to overspecify instructions for teachers. A detailed
syllabus takes important teaching skills away from the teacher.
Often there are no decisions left to make about what activities to
use or how much time to spend. Taken to an extreme, the teacher
becomes only a conduit in a system, covering the pages of a book
without thinking or consideration; the emphasis in teaching is
shifted from curricular content E-d individual learning to
management; the teacher becomes a manager of resources and
personnel (Berliner, 1982). As one teacher put it, "I am teaching
your mathematics to my students" (Stephens, 1982/2".983).

Teachers are not encouraged to adapt or change to meet local
needs or conditions. The are not encouraged to relatl ideas of
one lesson to another. For students,mathematics becomes
completing pages or doing sets of exercises with little
relationship between ideas, and teachers reinforce this
perspective.

Stephens (1984) has discussed this problem in more detail. He
pointed out the distinctions between teacher work associated with a

82



centrally developed curriculum, curriculum guidelines, and locally
developed curricula. Unfortunately, the assumption made by many
developers ii teat teachers are not competent to develop their own
curricula; therefore, development decisions are made for them.
Teachers are then unaware of the reasons for such decisions, of the
values associated with various activities, and of the importance of
various actions. As a result they are likely to become more
technical adopters of the curriculum. This was certainly the fate
of most of the modern mathematics programs in the 1960s.

4) Text as technology. Most curriculum development work has
emphasized the development of textbooks. The result has been that
the curriculum has been defined by the textbook. The curriculum
package includes the text, which is a repository of problem lists,
a set of paper-and-pencil worksheets, and a chalkboard. Children
are to work independently with little opportunity to discuss,
argue, build models, or try out ideas collabo- tively. However,
mathematics is not simply working paper-and-p_acil exercises.
Although many of the new bGoks include things to read, there is
very little that is interesting to read. Thus, textbook
mathematics gives students little reason to connect ideas in
"today's" lesson with those of past lessons.

These four difficulties, we believe, stem from a narrow
mechani-al concept of education. This is true of all education,
but it is especially true for mathematics. Too often the
acquisition of a prescribed amount of knowledge under competitive
conditions and time pressures constitutes mathematics instruction.
If we are going to do anything different, now is the time to
consider a new approach.

We believe that information about how individuals personally
construct knowledge and store it in memory should be the basis of
curriculum engineering. This is a different epistemological basis
for knowledge than traditional engineering. In this view all
knowiLg is personal and idiosyncratic. Nevertheless, consensual
meanings can be arrived at via negotiation. It is this perspective
and the research on which it is based that have led us to the set
of recommendations in this chapter.

Research and Implications for Practice

This brief section has been included in this paper for two
reasons. First, wt. believe that all educational decisions
(including those about curricula) should be based on valid,
reliable information. A primary source for such information is
research. Second, because most of the research referenced in this
paper was not carried out to inform the topic of this paper,
curriculum engineering, the inferential procedures must be
justified.

The primary purpose of any research program is to try to make
sense out of a complex phenomenon. The first step such a
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program is to develop some model (framework, metaphor, etc.)
designed to capture what are believed to be important features of
the phenomenon. All such models are of necessity incomplete.
Nevertheless, they are fundamental to the investigations that
follow, for it is from the model that conjectures are derived.
Second, a research program is established to systematically gather
and report evidence to substantiate or refute those conjectures.
In this sense all research results are descriptive since the
findings are about the model. Finally, it is hoped that such
research eventually can provide us with an understanding of the
phenomenon.

Alan Bishop (1982) has argued that there are two things one
can learn from research: the researcher's view of the phenomenon
(the model) and the way evidence is collected about conjectures.
It is this view of research we want to stress in this paper. In
particular, because the research that is summarized in this chapter
clearly refutes the sAmplistic "learning a:, absorption" notions of
traditional curriculum engineering, new principles based on this
research seem warranted.

COGNITIVE SCIENCE

As anyone familiar with human psychology can attest, there has
been a major revolution in the field during the past decade. The
variety of current models of human processing of information and
learning have been labeled "cognitive science." Although there are
many variants, they all are based on the metaphor of the computer,
in that information is assumed to be received, stored, and
processed by humans in ways that are analogous to how a computer
performs those same actions. This is not the place for a review of
those models. Fir the reader unfamiliar with this work the brief
book by Phillips and Soltis (1985) is a good introduction. Howard
Gardner's book The Mind's New Science (1985) is a thorough
discussion of the history of this revolution. Richard Anderson's
treatise The Architecture of Cognition (1983) is an excellent
example of current theorizing in the field.

What is important for this paper is the research from
cognitive science which suggests that learning occurs when
information entering the senses is actively processed and related
to previously learned information stored in permanent semantic
and factual knowledge base. New information is fitted or
assimilated into existing cognitive structures in such a way as to
provide a meaning, an explanation, an order, or a logic for the
experiences being witnessed or reflected on by the learner. For
example, the typical American seeing the word pectopah for the
first time when in Moscow is unable to suggest any meaning for the
term. However, if this word in cyrillic were transliterated to the
Roman alphabet as restoran, one would probably guess that it was
the Russian word for restaurant. All kinds of images would then be
available to give it meaning.
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A consequence of this assimilation process is that each
individual's knowledge is uniquely personal. Different individuals
process and link new information in unique ways and, hence, develop
cognitive structures that reflect different perspectives of the
same reality. Hewson (1982, 1984) hypothesized three conditions
necessary for the assimilation of new information. First, the
learner must understand the new information; second, the new
information must be reconcilable with existing conceptions; and
third, the resulting accommodated structure must be useful. If
these conditions are satisfied, the potential for learning exists.

Green (1980) and Greeno and Bjork (1973) have presented an
information processing model of memory that is representative of
those used by cognitive psychologists. In the Greeno and Bjork
model, sensory information enters short-term sensory storage (STSS)
where it is held momentarily. Information selected from this
system is held by working memory (WM). Working memory has a small
capacity to hold information; it is generally assumed to hold from
five to nine "chunks" of knowledge (Miller, 1956). The information
in WM is hypothesized to have a short life span, on the order of a
few seconds. If the information selected for WM can be organized
in some way, it is stored in short-term memory (STM) for minutes or
hours. From STM the information may become integrated with the
individual's existing knowledge to become a part of the semantic
and factual knowledge base which is stored in long-term memory
(LTM). Also, there iu posited an eNecutive control mechanism,
consisting of a set of metacognitive processes, whose purpose is to
enhance the exchange, storage, rehearsal, and retrieval of
information, between and within memory systems. When an individual
processes information, it is common to view WM not so much as a
holder of information itself, but as a system of pointers which are
associated with or point toward chunks of information from
short-term memory and the semantic and factual knowledge system in
long-term memory.

Semantic nd factual knowledge are stored in LTM in procedural
and declarative schemata. It is these schemata that are often
referred to as knowledge structures. A schema or knowledge
structure can be envisioned as a hierarchical network consisting of
nodes connected by lines representing some type of relationship.
The relationship might be superset, subset, attribute, similarity,
proximity, operation, antecedent, consequent, etc. For example,
seeing the word restaurant triggers a "restaurant schema" from LTM
which is based on an individual's past experiences of dining at
restaurants. Figure 1 represents a possible schema for "quadratic
equation." The concepts are nodes in the semantic network; each
node may be a supernode which is itself a network of nodes.

It is the relationships that carry inference that form the
basis for organizing semantic information, and it is these
relationships that make it possible for people to know more than
they learn (Shavelson, 1974). For example, if entity A is similar
to entity B and B is similar to entity C, then it may be possible
to infer that A is similar to C, at least if similarity is
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transitive. Checking the transitivity schema may be "controlled"
by the executive control mechanism.

Many researchers view schemata as a psychologically rational
organization of information and procedures that are used to
understand the world. The components or entities which comprise
the schema are similar in nature to variables, in that similar
situations or experiences can be interpreted through the use of the
same schema. The particulars of the situation become instances of
the variables. Usually there are default values which the
variables may assume if particular values are not explicit to the
situation or experience. To a mathematician, for example, the
mental construct of a quadratic function is quite similar to what a
football play construct would be to a coach. Very possibly, the
mathematician views a quadratic function as a type of polynomial
function. When reference is made to a quadratic, a specialized
form comes to mind, associated with more specific values of
variables comprising the polynomial schema. And, if no value is
specifically mentdored, the mathematician might initially assume
the coefficient of the linear term to be nonzero, just as a coach
might assume a specific alignment or placement of players for
execution of a particular football play. These default values,
built up by exposure to numerous similar experiences, help to
provide a coherent view of the situation or experience.

Studies conducted using nonspecific general knowledge provide
conclusive evidence that appropriate well-developed schemata
facilitate learning and recall. For example, Anderson, Spiro, and
Anderson (1978) showed that subjects were able to recall a list of
18 food items better when it was embedded in a story about dining
at a restaurant than when given alone. The greater structure
provided opportunities to associate food items with various
experiences in the dining episode.

In another experiment (Spilich, Vosonder, Chiesi, & Voss,
1979), subjects were given a description of a half-inning in a
fictitious baseball game. Knowledgeable baseball fans were able to
recall more information about the game than were low-knowledge
subjects. ::;eneric features of the game, known by knowledgeable
fans, were useful in recalling information. These features
provided a structure into which the specific details of the
fictitious game could be incorporated, and recall of a few key
details or events could then trigger a natural or logical
progression of the story.

Both of these studies make use of schemata that were developed
over long periods of time, by frequent exposure during everyday
experiences. Such schemata can be well developed and probably
explain the superior performance obtained on the aumiLy tasks
employing them. More specific schemata, developed in school for
the purpose of performing school tasks, may be a different matter.
Such schemata must often be developed over much shorter time
periods and with a more limited set of experiences, which are often
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contrived, and with features considered uninteresting or of dubious
value to the student.

The major premise of this paper is that the mathematics
curriculum Should reflect the way knowledge is optimally organized
in the semantic and factual knowledge base. Elaboration of this
premise necessitates an understanding of the way knowledge is
organized in memory and, more specifically, the type of
organization that promotes both the encoding and retrieval of
information.

To this end we now examine three areas of investigation that
have provided knowledge about effective cognitive functioning and
the organization of knowledge in the permanent memory base. First,
we consider formal modeling of problem-solving protocols; second,
we look at qualitative differences between the problem
representations of novicL and expert problem solvers in

content-rich domains; and last, we discuss the results of research
on the recall of lists, stories, and prose. We then relate several
recent curricular innovations that have attempted to incorporate
these results from cognitive science.

Formal Models

The analysis of formal models of problem solving is fueled by
the hope that these models and corresponding computer simulations
of problem-solving behavior will shed light on cognitive
functioning. Design of the models, reflecting problem-solving
capabilities of human problem solvers, may in itself provide
insight into the nature of thinking and effective and efficient
problem-solving activity.

Production Systems. Growing out of the problem-solving
protocols of puzzle, chess, ..11d scientific problems are descriptive
models employing the use of productions. A production is a process
containing two components, a condition component and an action
component (Simon, 1978). The condition component of a production
is a set of tests to determine whether elements satisfy ceztain
conditions. The action component specifies the action or actions
to be performed on the elements if they meet the tests prescribed
by the condition component of the production. A set of productions
is called a production system.

By examining think-aloud problem-solving protocols of subjects
solving simple l inematics problems, for example, it is possible to
design a production system reflecting their problem- solving
behavior. Both strategy and sequencing considerations can be built
into the system. Suppose a production system is to model the
performance of a novice solving a simple kinematics problem using
means-end analysis. The condition parts of each production would
test to see whether the independent variables of each equation are
known and whether the dependent variable is wanted. I,' both of
these conditions are met, the action part--solving the equation for
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the dependent variable--will be executed. If the dependent
variable is wanted but not all independent variables are known, the
action part of the production would not be executed, but the first
independent variable that was not known would be put on a list of
wanted variables. This latter action would be accomplished by a
separate production.

Testing of production systems, to substantiate the degree to
which the system reflects performance, can be done by comparing the
protocols of the subjects with those of the production system on a
wide variety of problems within the capabilities of the system.
Researchers have been able to obtain remarkable similarities
between the protocols of individuals and their corresponding
production systems (Simon & Simon, 1978; Anderson, Greeno, Kline, &
Reyes, 1981). These good matches suggest the adequacy of the
production system to model at least some of the cognitive behaviors
of the subject. Furthermore, by making slight modifications or
additions to the production system of a novice, it is often
possible to model the problem-solving behavior of experts.
Differences in the cognitive structures of experts and novices can
then be studied by examining the changes that were made in the
production system.

Computer Models. Probably the easiest and most reliable way
of testing a production system is to use a computer program
incorporating the productions of the system. A program becomes the
model of cognition involved in problem solving. The computer is
able to keep track of all its executions (procedural knowledge),
components (factual knowledge), and the interactions between them.
It pro'ides a powerful tool for testing, developing, and refining
models of problem solving. Its untiring ability at repeated
execution enables the researcher to test the completeness,
reliability, and consistency of proposed theories. The use of a
few parameters enables a single program to exhibit problem-solving
behaviors of both experts and novices as well as all stages of
developtuent in between.

For example, Anzai and Simon (1979) studied the think-aloud
problem-solving protocols of a student solving and refining a
solution to the Tower of Hanoi puzzle. In each of four trials, the
subject used a strategy which was both a transformation of and more
efficient than the strategy used on the preceding trial. Each of
these strategies was first programmed as a production system.
Analysis of the differences among these systems led to an
understanding of the transformations made by the subject from one
trial to another. This information was then used in the design of
an adaptive production system with the ability to create each new
strategy from the preceding one. That is, the system acquired
"knowledge" about the effectiveness of its moves, depending on
whether the move had favorable or unfavorable consequences, and
used this knowledge to modify itself. The corresponding computer
program served as a model for the "learning by doing" that was
exhibited by the subject on the Tower of Hanoi puzzle.
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Successes documented by researchers in artificial intelligence
lend support to the notion that condition-action mechanisms play an
important role 'n human thinking. The mathematical and logical
structures normally built into computer hardware and software do
not, however, reflect the informal and primitive structures used by
human problem solvers.

From both a practical and theoretical perspective, it is
imposs.LUe to clearly separate conceptual and procedural knowledge.
We may operate procedurally and conceptually simultaneously, and in
fact individuals may operate differently when confronted with the
same mathematical problem. For example, when novices solve the
equation x(x - 3) = 6 by writing x = 6 or x - 3 1 6, they are
operating at a procedural level, albeit an incorrect one. The
action component of a production is being triggered without a check
on the conditions that make the action appropriate. Many buggy
algorithms appear to be of this type. Incorrect application of the
distributive property often results ia student errors of the form
f(a + b) = f(a) + f(b). It is surprising, after exercising
considerable care in introducing both the trigonometric functions
and the addition formulas, that many students insist on writing
sin(a + b) = sin(a) + sin(b). It seems that the distributive
property and other mathematical formulations such as the definition
of function addition set students up for committing these errors.
Too many students make generalizations at a symbolic-manipulative
level ruther than attend to a conceptual understanding of the
principles involved. As much care must be exercised in teaching
the conditions under which mathematical properties and theorems can
be applied as in the actual applications of these properties and
theorems. And although automaticity may eventually be desired, the
use of conceptual knowledge should initially guide students'
activities.

Just as formal systems of logic provide powerful methods of
manipulating and processing data, the idiosyncratic informal
knowledge structures developed by individuals, built up as they are
by exposure to numerous similar and related experiences, have
dominating effects on reasoning and problem-solving abilities.
Whereas formal systems are complete and consistent, the function of
education is, in large me$. re, the process of molding or changing
the informal structures of novices to more closely resemble those
of the more formal systems of expert problem solvers.

Qualitative Differencsa

Several lines of investigation have shed light on the informal
modes of reasoning employed by human subjects. One particularly
fruitful area of research has dealt with the qualitative
differences between novice and expert problem solvers in
context-rich domains. A primary goal of this line of research has
been to make more explicit the r2lationship between conceptual
knowledge and problem-solving strategies.
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One basic difference found in novice-expert information
processing of elementary physics problems is the type of strategy
employed (Chi, Glaser, & Rees, 1982; Larkin, 1979; Larkin,
McDermott, Simon, & Simon, 1980; Simon & Simon, 1978). Novices
tend to use a means-end or "working backwards" strategy while
experts use a "forward looking" strategy. For example, if the
problem requires z, given u, v and x, the novice first searches
emory for an equation containing z as the dependent variable.

Suppose z = f(x,1). Because x is given, the novice must next find
an equation containing preferably containing u and v as
independent variables. Suppose y.= .eu,v). Now the novice can
calculate and use the function f to calculate the original
unknown z. So the novice works backward from the quantity that
must be found. The expert, on the other hand, concentrates on the
given quantities x, v, and u. Search is made for an equation
containing the given quantities along with one unknown. Hence, the
expert might first pick Y = 2.(u,v), solve for y, and then use
z = f(x,y) to solve the unknown z. Initial attention of the novice
is directed at the unknown whereas the expert concentrates on the
variables whose values are given. To the novice, the goal is the
overriding feature of the problem, and attention is directed at
that factor. As a result, it may be that insufficient attention is
directed at other essential features of the problem structure.
Larkin (cited in Woods & Crowe, 1984) has found that persons
successful in completing a problem spend considerably Lore time
reading the problem statement before beginning to write equations.

The two modes of processing that have been chais-terized by
working forward and working backward were observed by Atowski
(1975) in an early study involving the use of heuristic strategies
in geometry problems. Kantowski noted that students who were
unsuccessful in proving geometry theorems often attempted to work
backward from the conclusions. Successful subjects worked forward
from the hypotheses. In fact, when the conclusions of the theorem
were withheld and students were asked to obtain as many results as
possible from the given hypotheses, previously unsuccessful

students were often able to generate the correct conclusions.

In a related experiment, Sweller (in press) has confirmed that
reducing the goal specificity in trigonometry problems enhances
problem-solving skills. When Sweller's students were requested to
find all unknown parts of a triangle, they were more successful
than when asked for a particular part of the triangle. Solving for
a particular part of a triangle is characterized by a greater
processing load. The student must sort through the trigonometric
functions, selecting those involving the correct variables. With
objectives of less specificity, selection of an appropriate
function is less critical, and the subject is free to devote
processing capacity to other concerns. For example, given the
right triangle ABC, it is easier to select a trigonometric function
involving the ?air (a,c) than it is to find one involving the
triple (a,c,B). The triple involves a greater processing capacity.
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It is interesting that the working forward strategy of the
expert is not invarient across problem types. When problems become
more difficult, experts usually revert to the same means-end
analysis employe,' by novices. Only when experience indicates that
the problem spaca falls within richly developed cognitive
structures does the expert concentrate attention on the independent
variables. As experience and confidence diminish, it appears goals
and subgoals are required to direct the searches of the knowledge
structures (Larkin et al., 1980). As noted previously, this
attention to goal-states may place an additional burden on
short-term memory. For instructional purposes, it may be that the
forward working strategy is a problem-solving heuristic that should
be continually emphasized.

Although difficult to define operationally, another difference
between expert and novice problem solvers is the qualitative
analysis applied to the problem prior to the actual retrieval of
equations (Larkin, 1979; Larkin & Rainard, 1984; Simon, 1978). The
greater degree of qualitative analysis used by experts aplears to
restructure the problem in terms of the physical principles
involved. Restructuring may occur in an effort to obtain a fit
between the problem and a particular knowledge structure. This
suggests that knowledge structures of experts, or those components
of knowledge structures which form the problem space, may in fact
be structured or organized different from those of novices. Paige
and Simon (1966) noted that good problem solvers were able to
identify the inconsistencies in algebra word problems that
contained no solutions. Less skilled problem solvers could not
conceptualize the discrepancies until well into the problem
solution. This suggests an additional qualitative analysis of the
problem situation on the part of more skilled individuals.

Clement ( )79), using clinical techniques, has documented
differences in the way students interpret and view physics
equations. More advanced students have much broader conceptions of
the equations and corresponding variables. Richer meanings in
terms of real world representations and in terms of the
interactions and relationships among variables are exhibited by
more advanced students.

Very possibly, formation of isomorphic real-world referents of
the problem statement on the part of expert problem solvers is an
attempt to obtain a match between the real-world and psychological
interpretations of the variables involved. That is, when the
problem representation becomes meaningful in terms of the external
world, the physical forces and corresponding variables involved in
the problem become more apparent. These forces and variables are
thus matched with the associated representations of variables and
equations from the individual's knowledge structures. Novices, on
the other hand, lack these richer interpretations of the equations
and variables and are more dependent on forme propositional
calculus. This more deductive mechanistic solution does not
require qualitative analysis of the problem.
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Chi, Glaser, and Rees (1982) asked several novices and experts
to classify physics problems. Results indicate that experts
classify on the basis of physical principles while novices employ
concepts and structural features. Words like rotation, velocity,
spring, and inclined plane tend to influence categorization by
novices, while conservation principles and Newton's laws determine
the classifications used by experts. Hence, the knowledge
structures of experts appear to be different from those of novices.
Supporting this contention is the fact that experts tend to start
their problem-solving protocols with such statements as "all fcrces
sum to zero" or "F = ma," while novices initiate protocols with
equations of more limited applicability (Chi, Glaser, & Rees,
1982). In fact, experts are often unable to recall many of the
formulas used by novices (Simon & Simon, 1978). It appears
experts' knowledge structures, or at least the problem
representation which they develop, are organized around fundamental
generic principles of wide applicability. These structures are
also semantically rich in comparison to those of novices. For
example, Simon and Simon (1978) presented the following to a novice
and to an expert: A bullet leaves the muzzle of a gun at a speed of
400 meters per second. The length of the gun barTel is half a
meter. Assuming that the bullet is uniformly accelerated, how long
was the bullet in the gun after it was fired? The novice evoked
the formula s = vt, solve4 for t, t = s/v = (1/2)/200 - 1/400
(although not nearly this efficiently). The expert, on the other
hand, used a more general proportionality schema arguing something
like the following: 200 feet. in one second so 1/2 foot in how many
seconds? Clearly 1/400 second. The expert used a much more
general principle, applicable to the situation (using, as did both
expert and novice, the average velocity). Notice also the
computational efficiency of the expert protocol.

The novice-expert investigations seem to indicate that problem
representations developed by novices are organized around the
specific obje.ts given in the problem, whereas the representations
formulated by experts are organized around general principles and
abstractions of which the objects of the problem are mere instances
or exemplars. One feature that clearly differentiates novice from
expert is the experience each has had within the content domain.
In fact, Glaser (1984) believes that the problem-solving
difficulties of novices are due primarily to inadequacies in their
knowledge base as opposed to any :nherent limitation in processing
c pacity, reasoning ability, or we of general problem-solving
heuristics.

Lists and Stories

Investigations concerning how people encode, understand, and
recall lists, simple stories: and expository text provide clues
about how knowledge structures might be organized to promote
comprehension and retrieval of information.
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Mandlal: (1984) reported an experiment in which subjects at
three different age levels were presented a list of pictures of
common objects. The list consisted of five categories of six items
each. Subjects were told to either memorize the list or not, and
within each of these conditions they were informed or not informed
about the categorical structure of the list.

For both seven- and ten-year-olds, categorical information
aided recall of the list, and performance was significantly better
when the children were given the categorical information and told
to memorize the list. Adults, however, performed equally well when
told to memorize, whether or not they were provided the categorical
information. Only when both conditions were lacking did recall
significantly suffer. Adults were evidently able to invoke an
organizational schema tc aid recall, something that the younger
children were unable to do. Categorical information aided the
recall among the seven- and ten-year-olds more than did
instructions to memorize. It is apparent that structure aids
recall and that the ability to impose structure, even in common
experiences, is age related.

Earlier in this paper we cited examples supporting the
contention that incorporation of lists and stories into familiar
schemata aided recall. Because both taxonomic and schematic
organization improve retrieval of information, which structure is
to be preferred? In an attempt to answer this question, Rabinowitz
and Mandler (1983) presented college students a set of 25 phrases,
each consisting of a noun and a verb. The phrases were organized
into five taxonomic categories and also into five schema-related
organizations. For example, one of the taxonomic categories
consisted of "going places," and the places were "mountains,"
"Hawaii," the "theater," a "party," and the "stadium." In
contrast, one of the chematic organizations involved an episode of
"going skiing" and consisted of phrases dealing with experiences
common to this situation. The authors found markedly superior
recall for students presented the schematic organization. In
addition, when other students were iTsked to sort the phrases into
categorical or schematic groups, most students chose a schematic
organization. Believing that the preferred schematic organization
may have been responsible for greater recall, Rabinowitz and
Mandler reconstructed their list of phrases and their taxonomic and
schematic organizations. This time, even though students preferred
a taxonomic classification as much as a schematic one in their own
groupings, recal.: was enhanced when students were presented the
phrases it schematically blocked groups.

An interesting aspect of the Rabinowitz and Mandler experiment
was that, when students were asked to construct their own event
schemata from the list of phrases, they differed in almost every
case from the ones presented by the experimenters. Because no
single schema was used to aid encoding and recall of particular
phrases, the results cannot be attributed to a more obvious
relationship of the phrases to any particular schematic or
taxonomic organization. The advantage exhibited by schematic
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organization in the recall of phrases may be due to the larger
number of, or more easily created, relational links among the
objects of the schematic organization (handler, 1984).

Another line of r. arch that substantiates the powerful
effect that schemata have on encoding, retention, and retrieval of
information concerns investigatioas about how people understand and
recall simple stories and text. One particular effort has dealt
with the structural features of stories, the associated cognitive
structures, and the relationships between them.

Two central notions appear to guide much of the research on
stories and narratives. First, stories consist of episodes that
are themselves sequences of events or states that are causally
related. That is, significant events or states in a story are
causally related to subsequent events or states. Furthermore, the
episodes are hierarchically arranged. For example, the protagonist
of the story may break a main goal into a series of subgoals, each
of which must be attained for successful completion of the main
goal. Also, two or more subgoals may '-)e linked conjunctively
rather than causally. In addition to the episodes, there is
usually a setting that serves to introduce the protagonist and
convey information about the social, physical, or temporal context
in which the episodes take place. Some research suggests that
settings are among those story components that are most frequently
and most accurately remembered (Stein & Trabasso, 1982). The
episodes include (a) an initiating event which introduces the story
line and seeks a ,espouse or formulation of a goal by the
protagonist, (b) an action or series of actions by the protagonist
in an attempt to attain the goal, (c) a consequence marking the
concluding action of the protagonist relative to the goal, and
(d) reflections or reactions by the protagonist about those actions
resulting in the attainment or nonattainment of the goal.

Rumelhart (1977) has argued that readers of complex stories
construct different levels of organization for story episodes. The
superordinate goal, and the protagonist's attempt at attaining that
goal, is at the highest level of the hierarchy. At lower levels of
the hierarchy are episodes consisting of subgoals and associated
attempts at their attainment, with the relationship to the
superordinate goal the primary factor regula'ing the level of the
episode within the hierarchy. Rumelhart proposed a close
relationship between the level of an episode :,nd the subsequent
aLility of a reader to summarize and recall the story.

Black and Bower (1:80) have proposed a story memory theory
that takes a problem-solving approach to story recall. Black and
Bower suggest that the cognitive representation of a story is
similar to the representation that is formed when an individual
solves a problem. That is, the reader views the protagonist as
faced with a problem, and the story changes from one state to
another as the protagonist executes a series of subgoals in an
effort to achieve a solution to the problem. The reader forms a
cognitive structure of the story that employs causality, linking
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the critical events that lead from the initial state to the desired
cr outcome state. For a complex story, each of the story episodes
forms a "path," and these are hierarchically arranged corresponding
to Rumelhart's story structure. Black and Bower view tha
problem-solving process as traversing a series of states, with each
of the states identified by subgoals. The states that &list be
traversed in moving from the initial state or problem state to the
goal state or problem solution is called the critical path. The
actions or series of actions that must be accomplished to attain
each of the subgoals can be described at several levels of detail.
Black and Borer provided evidence that the best remembered part of
a story is the critical path; detailed events within an episode
were recalled batter when the episode caused a major state change,
and more general, less detailed event statements were best
recalled.

Meyer, Brandt, and Bluth (1980) have studied the effect of
text structure on the recsil of expository text. Using a
structural analysis system that identifies logical connections
among ideas and also hierarchical arrangements of the ideas, the
authors compared the top-level structures of text with that of
ninth-grade students' written recalls of the text. It was found
that students who used the text's top-level structure recalled

significantly more information than students who did not; however,
only 22 percent of the students consistently utilized the top-level
structure. Meyer, Brandt, and Bluth elm. found strong correlations
between comprehension skills and the use of the top-level structure
in text. Evidently those students using the top-level structural
and organizational features of the text were able to develoi. a rich
retrieval network which facilitated the recall of delails that
could be linked to the organizational structure. It was also found
that the use of top-level structure was directly related to recall
of the main points of the text after one week.

Because many students are unable to use die. structure of text
to guide encoding and retrieval of expository text, 'arnett (1984)
and Slater, Graves, and Piche (1985) have studiod the effects of
structural organizers on the recall of expository text. These
studies have verified beneficial results when the organization And
structure of text is pointed out to students prior to the reading
of text. Structural organizers appear to aid both comprehension
and recall of expository text.

Examples

Each of the following examples illustrates the use of one or
more of the results from cognitive science that have been discussed
above. The first examples are related to the work of Papert (1980)
and Tall (1985) and portray their attempt to develop schemata at
the highest level of abstraction--schemas that could be co: idrxed
generic within mathematics. Finally, a line c, research by
Carpenter and Moser (1982) attempted to delve into the cognitive
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structure of young children and suggests curricular revisions that
build on existing cognitive structures.

Schemas are neither specific nor universal. Each of us
interprets the world through our own highly personalized and
idiosyncratic mental structures. What we learn, and in fact what
we are capable of learning, depends on the mental models each of us
has developed. Many of these models are built up over long periods
of time, as was illustrated bympur previous examples of the
restaurant schema and baseball game schema. Papert (1980) provided
a classic personal example involving his fascination with gears and
how he would mentally "rotate circular objects against one another
in gear-like motions," and how this resulted in "chains of cause
and effect" (p. vi). The experiences with gears described by
Papert produced a collection of models (cognitive schemata) that
he could use to give meaning and interpretation to many of the
mathematical problems he encountered later in life.

Papert also attributed a personal satisfaction to his thinking
about gears and their motions and effects under varying conditions
and configurations. His experience indicates that certain
affective variables may play an important role in the development
of useful cognitive models.

Although gears represented the physical manifestation of the
rlatal structures developed by Papert, the computer with
appropriate computer software is now a vehicle that he advocates
for use in creating powerful mental schema. Using the LOGO
language, children can actively interact with a turtle graphic and
can experience those same sequences of cause and effect that Papert
experienced by mentally manipulating the gears. Because the LOGO
language makes use of such psychologically appealing entities as
motion, user control, and immediate feedback, its use is
intrinsically interesting for most students. Extensive interaction
with the LOGO "microworlds" may result in the development of
powerful mental schema that children can use to interpret and
understand their developing world.

The Graphic Calculus used by Tall (1985) attempts to provide
microworlds for the interpretation of concepts in calculus. These
microworlds, which Tall calls generic organizers, are computer
programs developed for the purpose of teaching concepts through the
use of a wealth of specific examples. They rely on mental
involvement on the part of the student and therefore differ from
Papert's microworlds, which require both a physical and mental
activity.

In one of Tall's programs, students enter a function and watch
as the computer displays a tangent line moving along the curve and
simultaneously generates the associated derived function. By
analyzing the behavior of several functions the students develop a
concept image that can aid in the further development and use of
the derivative concept. Preliminary evidence suggests that, given
the graph of some function, students who have used this program are
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better able to identify and construct the graph of the derived
function. As a consequence, these students have developed a
superior qualitative conception of the derivative concept.

Both Papert and Tall envision the development of schemata that
will be particularly useful in interpreting and understanding
knowledge and concepts which students will confront as they
progress through life. In a sense, these generic mental structures
are akin to the setting of a story; they attempt to provide the
background through which the specific learning or story episodes
can be interpreted.

To illustrate this point in a mathematical setting, consider
for example the area schema which we wish to develop in all school
children. Although the area schema overlaps other schemata such as
the measurement schema, it is in itself an extremely important
concept and used throughout mathematics in varying degrees of
abstraction. The area concept subsumes in whole or in part many
more particular schemata such as triangulation, decomposition,
transformation, and limiting procedures. For example, a common
technique in determining surface areas is to partition the object
into constituent parts. A right circular cylindrical can, for
instance, might be viewed as two circles and a rectangle. These
area and partitioning schemata form a hierarchy, at the bottom of
which may exist particular formulas which the student might apply.
The general area schema at the top of this hierarchy is
representative of the type of schema Papert and Tall are trying to
develop.

Carpenter and Moser (1982) have described the rich collection
of problem-solving and counting strategies used by primary school
children to solve addition and subtraction word problems prior to
receiving any formal instruction. At this state in their
development, children analyze word problems in terms of the
semantic structure of the problem and tend to model the action
suggested by that structure. It is disturbing that evidence from
the national assessments indicates that many children lose these
natural tendencies (Carpenter, Corbitt, Kepner, Linguist & Reys,
1981; National Assessment of Education Progress, 1983). Carpenter
and Moser (1982) suggest that this regression in problem-solving
skill may somehow be embedded in the transition from the informal
modeling and counting strategies that children initially use to the
more formal use of number facts and algorithms taught in school.
The mathematics curriculum iF *lot making use of the cognitive
structures or schemata possed by children when they enter
school. The mathematics they are taught is divorced from the
meanings children have already developed about arithmetic
operations. Methods must be found to build on the schemata
students already possess.

Young children often have difficulty writing number sentences
to represent word problems because the formal strategies taught in
school do not reflect the informal methods of solution used by the
children. For example, consider the following "join" problem.
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Jane had 3 candies. Her grandmother bought
her some more. Now she has 8 candies. How many
car.dies did Jane's grandmother buy her?

Young children normally solve this problem with a "counting
on" strategy, modeling the action in the problem rather than with a
"removing" strategy. Hence the solution strategy of the children
more closely reflects the noncanonical number sentence 3 + x = 8
than the canonical form 8 - 3 = x that is usually taught in the
early grades. Students are required to make mental transformations
in an effort to represent story problems that are wore
appropriately modeled using noncanonical forms. Carpenter, Bebout,
and Moser (1985) have demonstrated that first-grade children can
use noncanonical forms to represent and solve associated story
problems, and they suggest that early instruction in writing
noncanonical number sentences may be a viable approach for building
on the problem-solving schemata children have previously developed.
Studies investigating the early use of noncanonical forms and their
effects on subsequent learning may have curricular implications if
such instruction provides for the development of more powerful
cognitive structures.

Recurrent forces ofte discourage curricular revisions. In
the United States at least, the view persists at many levels that
arithmetic, geometry, and algebra are separate and distinct
subjects, and the content of these subjects must be taught in
certain self-contained units to students of certain ages. Another
viewpoint mitigating against curricular change in mathematics
concerns the insistence on certain formal algorithmic procedures
and the use of such procedures in problem-solving situations. For
example, solution of the noncanonical number sentence a + x = b may
require both a rethinking of the mathematics taught in the early
grades and a willingness to accept solutions obtained by informal
counting strategies. That is, teachers must be willing to accept a
solution based on a "counting on" strategy in lieu of a
transfoLnation to a corresponding canonical form.

The /ct that first-grade students can be successfully taught
the use of -lcanonical number sentences to represent addition and
subtraction woLu. -,-oblems suggests the extension of their action
oriented problem -st. ',IR schemata to include some quite abstract
mathematical concept., is building on existing schemata in this
manner that may result 1.. the development of rich and powerful
mental structures.

Implications to Curriculum Engineering

During the past decade several authors have written about
developing curriculum units based on notions from cognitive science
(Carpenter, Fennema & Peterson, 1985; Case, 1978; Wittmann, 1984).
Two proposals which have or are being tried out are story-shell
curriculum units (Romberg, 1983) and constructivist curriculum
units (Driver & Oldham, 1985).
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Story-shell Curriculum Units. Romberg (1.983) suggested that
the mathematics curriculum be redesigned around a sequence of
curriculum units with the activities of each unit related to a
"story shell." The story shell is analogous to the critical path
that Black and Bower (1980) have found useful in describing those
aspects of stories which are best remembered. The structure of a
unit should be similar to the chapters in a Dickens' novel. His
novels were written serially with a new chapter being published
periodically. Thus, in each chapter characters had to be
reintroduced and yet each chapter had to be complete in that a
problem was introduced, and a crisis developed and was later
resolved. In a similar manner story-shell curriculum units should
reintroduce ideas (bring to mind current conceptions), create a
crisis or conceptual conflict, and then resolve it. Thus, the unit
should tell a story. It should have a beginning and an end and
culminate in some knowledge deemed beneficial to the student. The
important ideas, key concepts, and procedures within the unit
correspond to the states along the critical path of a story. The
story shell might be introduced to the students at the beginning of
the unit and serve as one level of abstraction and as a structural
organizer, with the students working through more detailed levels
of the critical path as they proceed through the unit. The
students should play a role similar to the protagonist in a story,
with the student's investigations proceding from one subgoal to
another. The rationale for story-shell curriculum units is as much
mathematical as it is psychological (Romberg, 1983). If to know
mathematics is to do mathematics, then the essential activities
involved in doing mathematics consist of abstracting, inventing
(discovering), proving, and applying. Mathematics is not a "static
collection of concepts and skills to be mastered one by one"
(Romberg, 1984, p. 7).

In the final analysis, the importance of mathematics
arises from the fact that its abstractions and theorems, for
all their abstractness, originate in the actual world and
find widely varied applications in the other sciences, in
engineering, and in all the practical affairs of daily life;
to realize this is a most important prerequisite for
understanding mathematics. (Romberg, 1983, p. 127)

The story shell is intended to provide students a purpose for
studying the curriculum unit and to contribute unifying constructs
around which they can organize their knowledge. Traditional
mathematics irstruction, fragmented into a topic by topic sequence,
makes it difficult for students to organize their knowledge. The
curriculum often lacks unifying notions to give purpose to the
topics being studied.

The student cannot possibly appreciate the role of unification
if he has no comprehension of what is being unified. More
than that, because of the fact that the student does not yet
know the need for, or importance of, unification, he is in
effect being asked to accept the teacher's word for the fact
that this is an important idea to study, one that will most

100



93

assuredly be needed later. Thus the teaching of mathematics
is carried out with the need for learning clear in the mind of
the teacher, but a mystery to the student. (Fremont, 1967, p.
716)

The story shell imparts a meaning to the material being
developed within the curriculum unit that the student might
otherwise not have. Students often put meanings and
interpretations on experiences which are nut intended by the
teacher (Phillips & Soltis, 1985). As a result, the cognitive
structures that students develop maynot be able to deal
effectively with later experiences. The disaster studies are a
case in point (Clement, 1979). Students often devise shortcuts,
alternative methods, and ways of dealing with problems that may
provide acceptable results for the problems at hand; however, these
structures can be conceptually erroneous and lead to difficulty as
the curriculum requires a more generalized interpretation of
previously learned knowledge. The story shell can provide a
framework in which students can meaningfully interpret material
presented within the curriculum unit.

To conclude this section we summarize two recent curricular
projects by Hewson and Posner (1984) and Cures (1985) which make
very direct use of story shells of the type envisioned by Romberg
(1983).

Hewson and Posner (1984) used schema theory to design
instructional materials for an introductory noncalculus college
physics course. The major concepts of the course were identified
and found to involve the notion of "change." That is, most of the
physical phenomena studied in the course involved a change from one
state to another; examples included a change in position, a change
in temperature, a change in magnitude, and a change in direction.
The entities undergoing change, called objects of change, normally
have one or more causal factors, often involving forces of one type
or another. In addition, objects of change are generally functions
or correlates of other associated changes. In kinematics, for
instance, a change in position is associated with a change in time.

Hewson and Posner constructed change networks that involved
diagrams consisting of the objects of change, the initial and final
stages, the causes of change, and linkages to correlated objects of
change. This network was initially presented to students using
objects from the student's real-life experiences, like the color of
blue jeans, the weight of a person on a diet, and the amount of
money in a bank account. Those examples were intended to serve as
a link, bridging the gap between the student's existing knowledge
and the subsequent instruction in physics. Students were told that
many of the major ideas of physics could best be understood in
terms of this basic "change" model and that they should try to
relate the components of the model to arch of the objects of change
they would study in their physics course.
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It is apparent that the change networks developed by Hewson
and Posner formed a framework around which students could organize
their knowledge of physics. The basic network emphasized
qualitative entities and relationships and was general enough to
incorporate many of the major ideas of physics. It was hoped that
as the basic model was assimilated, it could provide the format
into which subsequent information could be organized and also could
aid problem solving by serving as a set of expectations that could
guide and direct the students in their investigation and selection
of appropriate data. Hewson and Posner indicated that some
students benefitted from their instructional materials in the
intended manner, while others found it difficult to relate the
change networks to the .lurse content. The authors speculated that
some students may require a model that provides more explicit
associations between physics concepts and their use in problem
solving.

Curts (1985) developed an introductory statistics course for
beginning college level biology students that used concepts from
exploratory data analysis (Tukey, 1977) to examine and model
biological data sets. Curriculum units were introduced by
considering data sets appearing in biological and medical journals.
Students were required to read the journal articles and then were
assigned several questions pertaining to both the article and the
included data set. In a typical article, students were asked to
(a) clearly identify the problem the researchers were investigating
or attempting to answer, (b) describe the independent and dependent
variables, (c) discuss the manner used to obtain the data, and (d)
point out the author's conclusions.

After students had developed a qualitative understanding of
the problem being addressed in the article, they were presented
with data analysis techniques appropriate for the examination of
the corresponding data set. Students then used those techniques to
examine the relationships between variables and to construct
mathematical models to summarize the behavior of the data.
Students were asked to support, reject, or qualify conclusions
reached by the authors of the articles and to defend their own
conclusion. Particular attention was paid to the effects of
outliers and to possible empirical explanations for the outliers.
In short, a collection of activities was organized around the
problem situation presented in the journal article.

Particular care was exercised in the selection of journal
articles that were used to introduce each curriculum unit. In

addition to having appeared in biological or medical journals,
articles were selected because of (a) simplicity and brevity,
(b) inclusion of the data base, (c) ease at which the data could be
manipulated or organized in accordance with the exploratory data
techniques to be taught, (d) the use of concepts mastered in prior
units, and (e) ability of the articles to prepare students for
future units.
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The journal articles and their use by Curts clearly
incorporated features of a story shell. The article provided L
realistic problem situation to be investigated by the student,
closely approximating a real professional situation. Students were
to attack the analysis of data like a detective, searching for
patterns that might provide meaningful relationships between the
variables. The problem-solving atmosphere and detective work led
to discussion and arguments among the students about possible
solutions and their validity. The emphasis was on model building
and interpretations and not on the application of standard
formulas.

In addition to providing a realistic empirical situation for
investigation, the journal article and associated data set made the
introduction of data analysis techniques psychologically
meaningful. The problem provided a microworld or schema to which
new information could be adjoined, integrated, and interpreted.

The instructor of a course has a wealth of experiences with
which to interpret and provide meaning to new concepts. Students
are just beginning to accumulate these schema-building experiences.
The story shell as used by Curts provided a common experience or
medium to which both student and teacher could relate. This
undoubtedly enhanced meaningful communication about the concepts
and ideas that were being developed.

Constructive Teaching Units

Rosalind Driver az,d her associates at the Centre for Studies
in Science and Mathematics Education at the University of Leeds in
England have embarked on an ambitious curriculum development
project in science based on constructivist notions of learning.
Their view of curriculum "is not a body of knowledge or skills but
a programme of activities from which knowledge or skills can
possibly be acquired or constructed" (Driver & Oldham, 1985, p.
10). The units now being developed and tested are probably similar
to story-shell units; however, their emphasis is more on the role
of the teacher with respect both to the development of units and to
subsequent instruction. Implicit in their position is the view
that, if teachers have a coherent grasp of the subject, content
will be transmitted in an effective way to students. Also implicit
is that all curriculum units are problematic.

When we accept the notion that the curriculum defines the
program of activities from which knowledge or skills can possibly
be constructed and acknowledge that what is consA;ructed by any
individual depends to some extent on what is brought to the
situation, we make the suitability and effectiveness of selected
learning activities an empirical problem. Teaaers must determine
whether students are effectively assimilating the experiences they
are given. For this reason curriculum development has to be an
empirical reflexive approach.
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The general model being used by Driver and Oldham (1985) for
the development of new curriculum materials is given in Figure 2.
This figure indicates four components that influence the
development and design of curriculum. The first and most
conventional one is the decision on content. Here, experts specify
experiences to which students should be exposed and suggest what
ideas students may construct from those experiences.

Second, curriculum design is influenced by ideas that students
bring to the learning situation. Driver and Oldham identified
students' prior knowledge by analyzing data from a national sample
of students' responses to open-ended written questions in the topic
area.

Third, Driver and Oldham argued that knowing where students
are starting from is not, by itself, enough to plan curricular
activities. Curriculum development must make use of constructivist
notions of learning. Conceptual change occurs as the result of
active processing of information and attempts by the learner to
impart a meaning to thip information.

The last information comes from practical knowledge of
students in school and classroom settings: how to organize a group
of approximately 30 people to do something in about one hour; how
to present a problem in an interesting way to a group of
14-year-olds; how to deal with the usual constraints of time,
resources, furniture, and space. If these types of issues are not
addressed in the curriculum design it is believed that long term
implementation is not probable.

In addition, Driver and Oldham have found it both necessary
and useful to have a model for a constructivist teaching sequence.
This model is illustrated in Figure 3.

The sequence comprises five phases: orientation, elicitation,
restructuring, application, and review.

The orientation phase is designed to give students the
opportunity to develop a sense of purpose and motivation for
learning the topic. Then instruction moves to the elicitation
phase in which pupils make their ideas explicit.

This is followed by a restructuring phase which includes a
number of different aspects. Once the students' ideas are "out in
the open,' clarification and exchange occurs through discussion
(Gall and Gall, 1976; Hornsey and Horsfield, 1982). In this way,
the meanings students construct and the language they use may be
"sharpened up" in comparison with different, and possibly
conflicting, views of others (Nussbaum & Novick, 1982; Rowell &
Dawson, 1983; Stavy & Berkovitz, 1980), and inadequacies may be
pointed out (Strike & Posner, 1982). The exchange of views and
perspectives may lead to spontaneous challenge and disagreement
among students. Alternatively, both subtle and explicit attempts
may be made by the teacher to promote conceptual conflict through
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the use of a disconfirming or surprise demonstration. This type of
discourse gives students an opportunity to develop an appreciation
and tolerance for different notions used to explain or describe the
same phenomenon.

From here pupils move into the evaluation of alternative

ideas, possibly including the scientific one if they have suggested
it. These ideas may be tested against experience, either
experimentally or by thinking through their implications. Often,
students can be given the chance to be imaginative in devising ways
of testing these ideas (Nussbaum & Novick, 1982; Osborne, 1981).
Different groups of students may test different ideas and report
their findings to the whole class. As a result of this dialog and
discussion, students may feel dissatisfied with their existing
conceptions and, hence, receptive to change (Posner, Strike,
Hewson, & Gertzog, 1982).

Some students may have constructed a reasonable scientific
view from prior experiences; thus, the scientific view may have
been presented and tested along with a range of alternative
conceptions. Whether or not this has happened, the teacher must
present and explain that particular view at some point and provide
opportunities for pupils to construct meanings by empirical tests
and language activities. The appearance or the discovery of a
scientific view and the chance for students to begin to make sense
of it occur at various points in the restructuring phase.

In the application phase students are given the opportunity to
use their developed ideas in a variety of familiar and novel
situations. In this manner new conceptions are consolidated and
reinforced by extending the contexts within which they are seen to
be useful.

In the final review phase of the sequence, students are
invited to reflect on how their ideas have changed by comparing
their thinking now with that at the start of the unit.

In summary, these two examples--story shell and constructivist
teaching units--reflect the current attempts to rethink the
curriculum engineering problem in light of current research from
cognitive science.

CONCLUSIONS AND PRINCIPLES FOR CURRICULUM ENGINEERING

The research results that have been discussed in this pap-r
tend to support the following conclusions:

1. The use of generic schema, developed over long periods of
time and by continual exposure to related events and exemplars,
promotes both problem-solving skill and recall of textual material.
These schema appear to guide, organize, and direct both the search
for a problem solution and the retrieval of expository of story
details.
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2. The encoding, comprehension, and retrieval of information
is aided when material is presented in a form that: has structure
and when the student is cognizant of that structure. In
particular, these processes are facilitated when the information
can be assimilated into an existing schema of the learner.

3. When information is presented in a story or expository
text, the transitions and states leading directly to the goal or
objective are remembered best. Tnis critical path is probably
related to a generic story schema which directs encoding. This
story schema appears to be a part of a more general problem-solving
schema, having as a primary component the cause and effect
relation.

4. Although students appear to make use of cause and effect
relations in encoding stories and text, and in solving problems not
requiring specific content knowledge, they have difficulty with
conditions regulatiag the use of specific mathematical properties.
Failure to recognize these conditions often results in the
development of buggy algorithms and the inappropriate application
of mathematical theoems.

5. Problem-solving ability and encoding of information are
enhanced when schemata are interrelated and form a hierarchical
arrangement analogous to the way knowledge is used.

More specifically, just what do these conjectures have to say
about the design of curriculum? We believe the following
principles to be direct consequences of the research that has been
summarized in this paper:

Principle 1 Conceptual strands should be specified.

The main generic schemata (i.e., measurement, mappings,
proportionality) that we wish to develop in school children must be
identified, and a spiral curriculum built around those conceptual
strands (Vergnaud, 1983, calls these conceptual fields). These
strands should be selected because of their generality and ability
to subsume more specialized components of the curriculum deemed
desirable for the development of problem-solving ability and
quantxtative reasoning.

Principle 2. The strands should be segmented into curriculum
units that take two to four weeks to teach.

Students should be expected to construct meanings, interrelate
concepts and skills, and use those meanings in a variety of problem
situations. One cannot learn interrelationships by studying
concepts, skills, and problems in isolation.
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Principle 3. Students should be exposed to the major
conceptual strands as they arise naturally in problem
situations.

Ideas are best introduced when students see a need or a reason
for their use. Promoting the development of integrated schemata
requires an integrated curriculum. There can be little
justification in maintaining a curriculum separated into, for
example, arithmetic, algebra, geometry, and trigonometry. Also, a
new look must be taken at what mathematics young children and
adolescents can learn at various ages.

Principle 4. Each curriculum unit should tell a story.

Each curriculum unit should have a beginning and an end and
culminate in some knowledge deemed beneficial by the student. The
story setting should (a) review the background material necessary
to comprehend the unit, (b) make clear to the student the goals of
the unit, and (c) describe why the goals are important and
worthwhile. The transition from the initial state to the goal
state should be clear to the students, and the students should be
actively involved in achieving the goal. Students should feel the
excitement of investigation and the thrill of obtaining their own
solutions. Ideally, the goal state should suggest further
development of related conceptual strands.

Principle 5. The activities within each unit should be
related to how students process information.

Each unit should provide review of prior concepts and skills
and lay foundations for concepts and skills to be learned later.
Activities used to teach algorithms should differ from those used
to teach problem solving, and activities requiring assimilation
should differ from'those requiring accommodation. For example,
students might be addressed as a large group when being exposed to
information and work in small groups when inventing, proving, or
applying. Assimilation may require exercises requiring little
prior knowledge, while accommodation may demand a dissimilar array
of problem situations involving varying cognitive structures. A
higher degree of teacher-imposed structure and control may be
desirable for lower-level cognitive outcomes, while a greater
degree of group autonomy may aid higher-level cognitive outcomes.

Principle 6. Every unit should have students involved in
inventing, abstracting, proving, culd applying mathematics.

It is doing mathematics, analogous to a "hands-on" experience
in the natural and physical sciences, that contributes to the
formation of rich knowledge structures.

Principle 7. Students should be given ample opportunities
to work with open-ended problems.

Situations requiring an action or a change in state might be
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presented students with the view toward soliciting varied student
reaction. Evidence from the expert-novice investigations suggests
that many students are more comfortable working with this bottom-up
mode of processing. After all, most problems in the real-world are
of this type.

Principle 8. Self-regulatory or metacognitive mechanisms
should be continually stressed.

Good problem solvers appear to use such general heuristics as
planning ahead, looking for qualitative or alternative
representations, and monitoring problem-solving efforts.
Development of a general problem-solving schema incorporating these
and other general thinking skills should be of tremendous benefit
in many fields of knowledge and in every day life.

If operations within knowledge structures resemble those
within production systems, it is difficult to imagine learning not
accompanied by active cognitive activity on the part of the
learner. Learners construct their own cognitive structures. Only
through a great deal of practice and reflection does organization
of schemata become proficient. When a student generates a bit of
knowledge on the way to a problem solution, the action taken and
the conditions that made the action possible form an "indelible
print" or production in memory, serving to expand, integrate or
relate the associated schemata. If these same or similar
conditions arise in the future, the action component of the
production may bring to mind the associated bit of knowledge. And
problem solving becomes more efficient.

Principle 9. Curriculum units should always be considered
as problematic.

All curriculum sequences need to be adopted and modified in
light of what knowledge the students bring to the unit and the
context in which instruction takes place.

Principle 10. The teacher's role is not as a dispenser of
information but as an instructional guide.

The role of the teacher and the nature of instruction differ
radically as a result of these considerations. The implications of
this principle are explored in more depth in the next chapter.
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Chapter 16

PSYCHOLOGY IN THE MATH CLASS:
COMMENTS ON CHAPTERS 12-15

Gary Glen Price

This is a reaction to the preceding four chapters, which all
consider implications for school mathematics that can be drawn from
psychology--particularly, cognitive science. Following a summary
of the few differences and several similarities among the chapters,
I provide an interpretation of each. I conclude with my own
reflections.

The chapters differ in several distinct ways. The chapters by
Greeno and by Hatano and Inagaki are primarily psychological and
secondarily mathematical. Greeno's knowledge structure program and
Hatano and Inagaki's cognitive lierlynean theory are psychological
perspectives that are applied to, but not tied to, mathematics
education. Fischbein's chapter is obviously well tied to recent
developments in cognitive psychology, but its overall emphasis is
squarely in the tradition of introspective psychologizing by
mathematicians--the tradition of Jules Henri Poincare (1913),
George Polya (1954a, 1954b), and Seymour Papert (1980). Romberg
and Tufte's chapter is similarly well tied to recent developments
in cognitive psychology, but its overall emphasis is on curriculum
development in mathematics education.

SIMILARITIES

Despite the differences among these chapters, there are also
several striking similarities.

Criticism of current pedagogy. The authors are nearly
unanimous in their criticism of current pedagogy and in their
optimism about the feasibility of improvement. Greeno surmised
that children's lack of understanding may result from "a perverse
method of instruction." Hatano and Inagaki wrote, "Teachers'
conventional methods of motivating students, such as grading or
reward . . . may prevent learners from understanding things
deeply." Romberg and Tufte wrote, "The fragmentary nature of many
existing mathematics programs leaves the student with an almost
total inability to apply mathematics in any but routine situations
and, in fact, with very little experience with mathematical thought
itself." Fischbein is the exception: He did not criticize
teaching; nor, however, did he mention teachers.

Positive appraisal of children's capabilities. These authors
share optimism that most children can do considerably more
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mathematics than they presently achieve. Clearly, they emphasize
what children can do, not what they cannot do. Gone is a former
truism of the psychometric tradition--that greater-than-average
intellectual ability is required to do tasks such as those that
mathematicians do (McNemar, 1964; Osler & Fivel, 1961; Osler &
Trautman, 1961). Gone also are claims that children's failure to
attain a particular number concept (Piaget, 1952) or stage of
cognitive development (Piaget, 1966) prevents them from "doing
mathematics."

Prior knowledge affects acquisition of new knowledge. All
four chapters pay heed to the enabling influence of well-conceived,
well-organized prior knowledge and the disabling influence of
misconceived, badly organized prior knowledge. Students' mental
representations are very important. This perspective is a
departure from the recent past, which treated lack of knowledge as
a problem but underestimated the inertial impediment of
misconceptions. One of Romberg and Tufte's central theses is that
"new information is fitted or, assimilated into existing cognitive
structures." As they put it, "What we learn, and in fact what we
are capable of learning, depends on the mental models each of us
has developed." This new truism about the inertia of prior
knowledge offers new insight into John Locke's (1699/1964) frequent
reference to the tutor's task as being one of "laying foundations."

Changes in students' representations. A corollary of Romberg
and Tufte's thesis is that a central purpose of educators is to
induce changes in students' mental representations. Clearly Greeno
(1976, chapter 12) has long been involved in the knowledge
structure program, in which cognitive models have been treated as
instructional objectives. The comprehension activity that Hatano
and Inagaki seek to encourage is a process by which students "build
an enriched and coherent representation." Fischbein describes
analogic, intuitive representations as "the way we think," a set of
processes that needs to be coordinated with, but not stifled by,
formal meanings and formal implications. Romberg and Tufte take as
their "major thesis . . . that the mathematics curriculum should
reflect the way knowledge is optimally organized in the semantic
and factual knowledge base." In support of that view, Greeno
considered recent research to suggest strongly that "general
principles and concepts play a significant role in organizing
information and procedures that the child acquires."

The expert as a point of reference. One coulu accept that
mental representations are important, and that educators should
seek to provoke changes in them, but still not know which
representations should be fostered. The authors of these chapters
regard experts as a normative source: It is desirable to replace
novices' representations with experts' representations. This could
fairly be called the think-as-experts-think curriculum. When
Greeno adapted Smith's (1983) framework to characterize procedures
that are learned by students in mathematics instruction, he
demonstrated the utility of the framework by using it to describe
differences among children, expert mathematicians, and unschooled
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domain experts. The initial assumption of Hatano and Inagaki is
that "one of the major goals of education is the acquisition of a
well-organized body of knowledge." This heightened interest in the
organization of knowledge stems from its identification as a
distinguishing attribute of experts in a domain. Fischbein
participates in the granddaddy of think-as-experts-think

curricula--the previously mentioned tradition of introspective
psychologizing by mathematicians. Romberg and Tufte justify the
stressing of such general heuristics as planning ahead on the
grounds that good problem solvers appear to use them.

Getting beliefs out into the open. Consonant with the purpose
of changing students' mental representations, the authors have
emphasized the desirability of eliciting explicit, representation-
revealing statements from students. Greeno argues that Fe need to
create environments in which students learn to ask meaningful
questions and compose arguments. Hatano and Inagaki believe that
situations in which a student must "make explicit what he/she knows
only implicitly," are likely to induce discoordination, a type of
cognitive incongruity, a precondition of comprehension activity.
'Fischbein claims that "special [presumably discursive] exercises
should be devised to train students to analyze concepts and
definitions in order to distinguish clearly the properties imposed
by definitions and those suggested by intuitive components."
Romberg and Tufte cite the elicitation phase used by Driver and
Oldham (1985), in which students' ideas are "out in the open."

JAMES GREENO

Greeno serves in the first part of his chapter as an
intellectual historian of the knowledge structure program. Greeno
is both an analyst of what the program has accomplished and a

visionary who identifies paths by which the program can realize new
promises. As one of the principal architects of the program, he is
eminently well qualified to be both.

Essence of the "Knowledge Structure Program"

The distinguishing feature of the knowledge structure program
has been the way in which it frames instructional objectives. Like
the behavioral objectives of other programs, the instructional
objectives of the knowledge structure program concern individuals--
multiple individuals, perhaps, but individuals nonetheless. Unlike
behavioral objectives, its instructional objectives are models of
cognition built from the theoretical constructs of cognitive
psychology--constructs like production systems, schemata, and
semantic networks. Greeno gives a brief history of these
constructs, as well as some of the methods that have been
associated with them (e.g., protocol analysis, simulation
modeling). When models of cognition are used as instructional
objectives, a double meaning is given to the term model, because
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exemplary structures and processes singled out as instructional
objectives are model models.

This endeavor requires not only apt characterization of
cognition, but judicious selection of exemplary cognition. As
Greeno remarked, the dominant role of this research has been to
understand knowledge that is required for successful performance of
school tasks. A program centered on success in schools as they
presently are may seem an unlikely means of sparking educational
change. Greeno clearly understands that, because he devoted the
concluding section of his chapter to the inculcation of "abilities
to think mathematically and cognitive resources fol reasoning in
situations other than classrooms."

Accomplishments of the "Knowledge Structure Program"

The first examples that Greeno cites to illustrate the
accomplishments of the Knowledge Structure Program (Brown & Burton,
1980; Sleeman, 1984) fit a category that he previously termed
models of knowledge (Greeno, 1978). They are models of knowledge
because they detail knowledge that underlies performance. It is
possible but not certain that such explications of important
knowledge will make it available to some students who might not
otherwise have discovered or constructed it. However, models of
knowledge fail to fit another category that Greeno identified in
1978--models of learning. Models of learning detail the
transitions through which novices pass en route to expertise.
Thus, models of learning have more direct implications for
educational practice than do models of knowledge. Considering that
a decade has passed since Greeno discussed the need for models of
learning, it is significant that he is now able to cite two
examples ( Anderson, 1983; Anderson, Boyle, Farrell, & Reiser,
1984).

An important development to which Greeno refers obliquely is
the shift from general knowledge structures and strategies, such as
those represented in Newell and Simon's 1972 work, to a
concentration on domain-specific aspects, such as work concerning
school mathematics. The knowledge structure program has
contributed to a profound change in educational folklore--a change
from the relative neglect of domain-specific knowledge to intense
interest in it. Not so long ago, phenomena thought to be domain-
general (e.g., Piagetian concepts) held center stage in mathematics
education. In studies of experts, however, the weight of evidence
has forced educators to reckon with the importance of domain-
specific knowledge, Some of the recent research has shown that,
even within a domain, some knowledge, like the low-level
mathematics of unschooled experts, is context-bound (e.g., Acioly &
Schliemann, 1986).

Greeno surveys evidence of children's ability to reason
intelligently with mathematical ideas. He concludes that children
are capable of much, and he is led thereby to blame current
educational practice for children's failure to use school
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to blame current educational practice for children's failure to use
school mathematics outside of school. Greeno is clearly
optimistic, however, that more ambitious goals are feasible for
mathematics education.

New Dire.tions for the Knowledge Structure Program

Greeno's chapter ends with a visionary call for the inclusion
of two new quests in the knowledge structure program. The first is
to better understand why mathematics learned in school so seldom
transfers to individuals' reasoning and problem solving in
practical, everyday situations. Clearly, for a fortunate few,
mathematical knowledge is a valuable resource used in everyday
reasoning. Why are there so few of these beneficiaries of
mathematical resources? This is an important question whose
answers should be rich with educational implications. In posing
the question this way, Greeno has set aside the conventional
question Gc whether students learn the mathematics that schools
teach. Greeno initiates this quest with several conjectures that
are both plausible and amenable to study, so we should know more
after they have been tested.

The second new quest is to develop concepts of schooling and
of mathematics education that are congenial to the kind of deep
conceptual growth needed to transfer school mathematics to
nonschool settings. This involves rethinking the goals of
mathematics education. Referring to Kitcher's (1984) five
components of a mathematical practice, Greeno shows that current
instruction targets only the last two components. He acknowledges
that going beyond this point will "take cognitive research into
territory that is almost entirely uncharted."

Greeno concludes by identifying promising, innovative
approaches. The features that guided Greeno's selection (placement
of students into active, knowledge-constructing situations and

collaborative mathematical work) are also prized by Hatano and
Inagaki.

GIY00 HATANO & KAYOKO INAGAKI

Hatano and Inagaki have addressed themselves to the question
of why thoroughgoing comprehension (nattoku) is so rare. The
Japanese word nattoku is translated as the achievement of having
found satisfactory explanations of why a given rule is valid or why
a given procedure works. Hatano and Inagaki attribute the rareness
of nattoku to the rareness of comprehension activity. The question
then shifts to the reasons why comprehension activity is so rare.
To answer this question, Hatano and Inagaki have developed a theory
of motivation for comprehension, which is rich with educational
implications.
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The basis for nattoku is "an enriched and coherent
representation." To build this basis, children must engage in
directed, persistent (time-consuming) comprehension activity, which
includes activities like generating inferences, checking the
plausibility of inferences, and coordinating pieces of old and new
information. Unfortunately, these activities require effort that
children are not commonly motivated to expend. If educators wish
to increase students' engagement in comprehension activity, they
should understand more about what motivates such activity when it
does occur. They should also understand why certain circumstances
--too often school circumstances--fail to motivate comprehension
activity. One reason for lack of such motivation is that lack of
nattoku is seldom a serious deficit. As Hatano and Inagaki note,
"Lack of 'nattoku' becomes a serious deficit only when unusual,
novel problems are posed." It thus seems to be the lot of the
educator to devise situations in which the motivation for
comprehension exceeds that which exists in everyday contexts.

Hatano and Inagaki advise against manipulating motivation for
comprehension directly. Instead, they would have educators design
sltuations in which intrinsic motivation for comprehension will
come into play. To make this feasible, more needs to be known
about motivation for comprehension, which, they argue, is different
from achievement motivation. Neither the research literature on
motivation nor the research literature on cognition has examined
motivation for comprehension, and they seek to end that neglect.

Hatano and Inagaki's Cognitive Berlynean Theory

Hatano and Inagaki have developed a theory of motivation for
comprehension, which they describe as an elaboration and extension
of Berlyne's (1960, 1965) theory of epistemic behavior. Their
theory retains Berlyne's focus on intrinsic motivation for knowing,
his description of the conditions under which motivation for
knowing is aroused, and his prescriptive suggestions about how to
motivate students.

Hatano and Inagaki have borrowed from Berlyne's construct of
epistemic curiosity, which functions to motivate comprehension
activity. To Berlyne, epistemic curiosity was an uncomfortable
state from which one was driven to seek relief. Hatano and Inagaki
eschew Berlyne's "discomfort drive state," but they do not
elaborate on the reasons why epistemic curiosity produces sustained
comprehension activity.

Cognitive incongruity is a state of awareness that provokes
epistemic curiosity. It is akin to Berlyne's notion of conceptual
conflict, but without his view that it is an uncomfortable state.
Cognitive incongruity usually occurs when a person becomes aware
that his or her comprehension is inadequate. Hatano and Inagaki
identify three types of experience in which persons become aware of
inadequacies in their comprehension--surprise, perplexity, and
discoordination.

122



115

Students must monitor their own comprehension before they can
recognize inadequacies in it. Therefore, comprehension monitoring
activity is a prerequisite of cognitive incongruity. Recent
research has shown comprehension monitoring activity to be a
limited resource that educators cannot take for granted (e.g.,
Glenberg & Epstein, 1985; Markman, 1979). Drawing implications
from that research, Hatano and inagaki provide suggestions for
fostering comprehension monitoring.

According to the taeory, cognitive incongruity does not
inevitably provoke epistemic curiosity. Whether it does so depends
on two fundamental beliefs. First, a person must believe in his or
her own capability to comprehend; comprehension activity appears
futile to a person who lacks confidence. Second, a person must
believe that the knowledge domain containing the cognitive
incongruity is important enough to merit the effort of
comprehension activity. Herein lies an educational problem
identified by the theory, but not solved by it. Hatano and Inagaki
do claim that some social milieus, such as that provided by
dialogical interaction (Miyake, 1986), can raise students'
interest. The theory fails to explain why this is so, but it does
explain why some conventional methods of motivating students can be
counterproductive.

Strategies for Inducing Cognitive Incongruity

The theory's clearest educational implications derive from its
elucidation of experiences that produce cognitive incongruity- -
surprise, perplexity, and discoordination. Teachers can induce
surprise by having students make a prediction, then giving
disconfirming evidence. Teachers may also induce surprise by
having students encounter plausible predictions that differ from
their own. Effective use of surprise requires that students
already have acquired fairly rich and well-structured knowledge in
a domain--knowledge that nonethelcbs includes misconceptions, false
mental models, "bugs," etc. The surprise of having one's
prediction disconfirmed may be strengthened by requiring that the
predictions be expressed publicly. Teachers can induce perplexity
by juxtaposing rival ideas. The presence of proponents of the
rival ideas among peers amplifies the perplexity. Teachers can
induce discoordination by having students explain or defend their
ideas to others. To convince or teach, one must make explicit what
was previously implicit. Persuasion requires orderly presentation,
hence better internal organization. It also requires one to
coordinate different points of view, and "one feels strong
discoordination only when he or she struggles to coordinate."

Hatano and Inagaki have conducted a series of studies of the
effectiveness of Kasetsu-Jikken-Jugyo (Hypothesis-Experiment-
Instruction), a science education method developed in Japan
(Itakura, 1962). They conclude their chapter with a description of
the method and their findings. Although the method was not spawned
by Hatano and Inagaki's theory, it is consonant with the theory.
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Consequently, their example does demonstrate the plausibility and
educational richness of the Hatano-Inagaki theory of motivation for
comprehension. Another congenial example not cited by Hatano and
Inagaki is the work of Hewson and Hewson (1984) on the role of
conceptual conflict in helping to bring about conceptual change in
science education.

EFRAIM FISCHBEIN

Fischbein's chapter is squarely in the tradition of
introspective psychologizing by mathematicians. He cites
introspective accounts of several mathematicians (Hilbert, cited in
Reid, 1970; Papert, 1980; Poincare, 1913; Polya, 1954a, 1954b; and
Tall, 1980).

Fischbein's chapter is concerned with the intuitive aspect of
mathematical activity, which he distinguishes from formal and
algorithmic aspects. The formal aspect of mathematical activity
involves the deductive, logical structure of mathematics--axioms,
definitions, theorems, and proofs. The algorithmic aspect involves
standardized procedures--mathematical operations, formulas, and
solution strategies. The intuitive aspect, with which Fischbein's
chapter is concerned, involves subjective interpretations and
connotations that individuela attach to mathematical truths as they
make sense of them, assimilate them, and "integrate them in the
fundamental schema of . . . mental behavior." This intuitive
aspect, according to Fischbein, is often overlooked in mathematics
instruction. He contrasts "cognitive components, deeply rooted in
our adaptive behavior, like images, models and beliefs" with
"propositional networks governed by logical rules." Intuition
concerns constructs that synthesize these various aspects into
unitary cognitive structures.

The Influence of the Intuitive

Figural, intuitive representations, which most persons attach
to abstract mathematical entities like point, line, and surface,
"may influence the ways of reasoning even if the person is aware of
the purely abstract nature of the respective entities." This
influence of the intuitive on mathematical thinking--sometimes
intrusion, sometimes inspiration--expresses itself in two ways
during the problem-solving process. These are anticipatory
intuition and affirmatory intuition. Anticipatory intuitions and
affirmatory intuitions are intimately related, because they are
both rooted in the intuitive meanings that persons attach to
mathematical concepts. Also, a person's confidence in them exceeds
what the evidence at hand merits.

Fischbein blends cognitive psychological constructs and
mathematicians' introspections to describe what it is that
effective mathematical problem solvers do. The particular
attention Fischbein gives to thc: role of intuitions and analogies
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clearly distinguishes his chapter from those of Greeno and Hatano
and Inagaki. The phenomena with which Fischbein is concerned--
impingements of subconscious associations on conscious thought--are
receiving newfound appreciation in cognitive science, as reported
in Kihlatrom's (1987) recent article on the cognitive unconscious.

For both its benefits and its detriments, Fischbein argues
that intuition will always be an important aspect of mathematical
activity. Anticipatory intuitions may inspire a new direction for
solution attempts. Affirmatory intuitions may help the student to
construct a deeper, more personal, and more productive
understanding of a concept. Both types of intuition provide the
individual with the appearance of firm and reliable grounds, which
is beneficial because confidence in one's mathematical grounds
sustains mathematical effort--even if the confidence is
unwarranted. This last benefit is paradoxical when placed into
Hatano and Inagaki's theoretical framework: Illusory confidence is
said to sustain comprehension activity, yet illusory confidence
seems incompatible with comprehension monitoring activity, a
prerequisite for n-mprehension activity.

In addition to its benefits, intuition also bedevils
mathematical activity in ways that Fischbein seeks to illuminate
cognitively. Fischbein provides an analysis of "the intervention
of an intuitive meaning." The original, genuine meaning of a
concept can be distorted by one's intuitive loading of that
concept. And this initial, intuitive meaning can continue to color
one's way of reasoning. Conflicts between intuitive meaning and
formal constraints can escape the notice of both student and
teacher. This analysis, which Fischbein has done in the context of
mathematics, is consonant with recent findings on naive concepts in
science education (Hewson & Posner, 1984; Posner, Strike, Hewson, &
Gertzcg, 1984).

Several of Fischbein's examples include frequently occurring
mathematical problems in which students' intuitive interpretations
of arithmetic operations affect their choice of solution and
interfere with later understanding (e.g., multiplication as
repeated addition). Other examples illustrate how the subjective
certainty felt by students leads them to doubt the necessity of a
proof and consequently to be suspicious of mathematics educators
who insist on the importance of proofs. Fischbein's pedagogical
recommendation in this case is that educators replace self-evident
statements with counter-intuitive ones or that they frame
statements in situations where they will lack intuitive meaning.

Didactical Suggestions

Fischbein concludes his chapter by listing suggestions about
how educators can foster fruitful coordination between intuition
and other aspects of mathematical activity. The fact that his
discussion of the role of intuition could lead to concrete
suggestions deserves notice. His discussion of the role of
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intuition belongs to the literature on expert-novice differences in
that it elucidates differences between novices and experts. In

contrasting experts and novices, Fischbein has focused on a single

dimension of difference, i.e., intuition. Also, an asymmetry

should be noted in these novice-expert contrasts. Information

about experts comes primarily from their own introspective
accounts, whereas information about novices apparently comes from

Fischbein's observations.

In elucidating what experts do well, Fischbein says little

about the processes of acquisition and development through which

the experts once passed. In Greeno's (1978) terms, Fischbein

presents a model of knowledge, not a model of learning.
Nonetheless, Fischbein suffers no shortage of recommendations about

how educators should be able to affect processes of acquisition and

development. This leap of logic assumes that effective pedagogical
techniques are self-evident once one has a clear understanding of
one's pedagogical goal, which in this case is the expert's ability
to benefit from intuitions without falling victim to them.

Although I have labeled this as an assumption, I do not criticize

it. As I argue later, teachers' models of learning may suffice
once teachers are given apt descriptions of novice-expert

differences.

THOMAS A. ROMBERG & FREDRIC W. TUFTE

Romberg and Tufte have sought to apply recent cognitive
science research to curriculum engineering in mathematics

education. They describe curriculum engineering as an iterative

process by which one invents and implements a curriculum, which is

"an operational plan detailing what content is to be taught to
students, how students are to acquire and use that content, and
what teachers are to do in carrying out that curriculum." Romberg

and Tufte's applications of cognitive science take the form of

implied suggestions; they are practices suggested theoretically by

the research, but they are not practices that have been tested in

curriculum research.

Romberg and Tufte propose a constructivist approach to
curriculum engineering in mathematics education. Their conception

of constructivist epistemology is distinctly psychological: "We

believe that information about how individuals personally construct
knowledge and store it in memory should be the basis of curricula

engineering." They have contrasted this approach to curriculum
engineering with Ralph Tyler's (1931) approach, which they refer to

as traditional curriculum engineering.

In their overview of cognitive science, Romberg and Tufte have
emphasized the thesis that important forms of learning involve
active processing in which the learner fits new information into

his or her existing cognitive structures. This thesis, which is

shared by other authors in this work, implies that prior knowledge
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makes the meaning of any new experience peculiar in some respects
to each student.

Romberg and Tufte reviewed three areas of cognitive science:
formal models of problem-solving protocols; qualitative differences
between novices and experts; and recall of lists, stories, and
prose. I would like to call particular attention to two ideas they
emphasized in their review of problem-solving models. The first
idea involves condition-action mechanisms and their educational
importance. In the words of Romberg and Tufte, "As much care must
be exercised in teaching the conditions under which mathematical
properties and theorems can be applied as in the actual
applications of these properties and theorems." This perspective,
which is justified by the findings to date in cognitive science,
can be regarded as direct instruction in transfer. It is based on
the notion that failures of transfer often arise from a failure of
pattern recognition. This notion has strong connections with the
literature on activating schemas, and a review that coordinates
these seldom-mingled literatures would be useful.

Second, I would like to call attention to Romberg and Tufte's
characterization of the tension between formal systems of logic and
idiosyncratic, informal knowledge structures developed by
individuals. Romberg and Tufte, like Fischbein, regard informal
knowledge structures as (1) powerfully affecting mathematical
reasoning; (2) having an effect that is often, but not inevitably,
detrimental; and (3) being omnipresently characteristic of human
problem solving. The first two premises have been used heretofore
as grounds for seeking to eradicate informal knowledge structures.
Fischbein and Romberg and Tufte, heeding the third premise, believe
that such efforts to eradicate are futile. Rapproachement between
formal and informal thinking is advocated in both chapters, but the
models of rapproachement are different. Fischbein's model of
rapproachement is analogous to Freud's (1933/1965) model of
sublimation, by which energy (libido) is channeled into
constructive, creative activity. Informal intuition, the
underlying engine, is not changed in Fischbein's model, but its
force is kept within bounds and directed towards consciously
pursued, formal purposes. Romberg and Tufte's model of
rapproachement involves "molding or changing the informal
structures of novices." This is a model of metaphor supplantation:
Holistic metaphors are acknowledged to be necessary in
mathematical problem solving, but old metaphors can be supplanted
by new ones. Consequently, mathematics educators should seek to
supplant students' old detrimental metaphors with new ones that are
more harmonious with formal mathematical systems.

Romberg and Tufte emphasize two qualitative differences that
have been found between novices' and experts' approaches to
problems. First, novices tend to use a means-end or working-

'What I have termed holistic metaphors are comparable to the
organized wholes of Gestalt psychology (Kohler, 1929, pp. 187-223).
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backward strategy, whereas experts tend to use a forward-looking

strategy. Second, experts spend more time reading a problem and
encoding it in an effort to make it conform better to an existing

knowledge structure. Romberg and Tufte did not explicitly develop
the pedagogical pertinence of these novice-expert contrasts.

Romberg and Tufte provide an overview of research on the
recall of lists, stories, and prose. This research is the basis
for some of the illustrative applications of cognitive science to
curriculum engineering, which Romberg and Tufte describe at the end

of their chapter. It is especially pertinent to Romberg's (1983)

story-shell curriculum units.

In the final section of their chapter, Romberg and Tufte
present ten principles of curriculum engineering that they believe
to be "direct consequences of the research that has been summarized
in this paper." The connection of some of these principles to the

research reviewed is tenuous. But Romberg and Tufte would argue

that it is overly constraining to draw from research literature
only the causal, if-then assertions that have been tested directly.
Instead, like Cronbach (1975) and Bishop (1982), they consider the
shifts in perspective generated by researchers to be as important
as specific causal assertions arising from research.

REFLECTIONS

An emphasis on knowledge and its organization clearly
distinguishes all of these "psychology in the math class" chapters
from many of their counterparts of a few years ago. In the

process-product studies of a recent era, instructional correlates
of desirable mathematical performances were sought; if causal
ambiguities in correlation could be nullified by experimental

design, so much the better. But little attempt was made to peer

into the black boxes of the cognitive processes underlying
desirable mathematical performance. An expected dividend of the

process-product research was practical knowledge of which
instructional processes to use. Educators were hoping to

capitalize on some practically useful empirical connections,
whether or not the reasons for the existence of the connections

were understood.

The process-product quest in education was analogous to the
pragmatic procedure followed when aspirin was adopted as a drug.
Appreciation for the analgesic benefits of aspirin long preceded
any pharmacological understanding et the mechanisms by which it

produces its benefits. The procedure sought to accumulate
replicable practical lore, and it deferred questions about why
things that worked did so. Now that advances have been made in
understanding the physiological mechanisms by which aspirin acts,
it is easy to appreciate the cliche that "nothing is as practical

as a good theory." The authors of the foregoing chapters believe
(and hope) that recent theoretical developments in understanding
the cognitive processes of doing mathematics is analogous to recent

.
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theoretical developments in understanding the action of aspirin.
To wit, they believe that cognitive theory is good enough to
generate practically useful assertions not previously suggested by
observation.

The Novice-to-Expert Transition

Two hazards must be considered in using experts as a normative
source of representations to be fostered in students. First, an
inherent conservatism is implied by the acceptance of the notion
that present experts have all the answers. Second, the transition
from novice to expert is a gradual one that could involve many
alternative routes. The end points--novice at one end, expert at
the other--do not by themselves reveal the best path of transition.
There remains, then, a new kind of information that is meager to
date. As Lesgold, Pellegrino, Fokkema, and Glaser (1978) wrote a
decade ago, "Work in modern cognitive psychology has focused
primarily on the processes that underlie perceptual, memorial, and
problem-solving performance and has only indirectly investigated
how these process skills are learned and how broader competences
and knowledge are acquired" (p. 1). What was lacking is what
Greeno (1978) referred to as a theory of learning.

In the intervening decade, cognitive psychology has made
headway on this problem, a noteworthy part of it in the domain of
mathematics. A primary form of advance has been the illumination
of the ways in which novices and experts differ, in some cases
including the illumination of intervening, transitional states. We
know more today about what cognitive changes to watch for, but
there is still more conjecture than understanding when we seek to
explain the mechanisms that create those changes. There is much
more to know, but I share the authors' optimism that new insights
are accumulating rapidly. In addition to recognition of the
importance of students' mental representations, experiments have
been conducted to change them. Hewson's work in physics education
illustrates the feasibility and importance of metaphor
supplantation. We know the importance of being explicit,
committed, public, and involved. We know that some common
practices can disrupt motivation for understanding. The cognitive
Berlynean theory of Hatano and Inagaki is to be applauded, because
it seeks to illuminate the black box in which cognitive transitions
occur.

Thanks to assorted studies of experts, we certainly know more
about the goal state of being an expert. However, our strategy of
working backward from the goal state reveals that we are still
novices at the problem of moving a student from the initial state
of novice to the goal state of expert

12.9
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Should Curriculum be Organized Ahistorically?

Romberg and Tufte's concern with the way in which the
mathematics curriculum organizes mathematical knowledge is
obviously merited. However, their goal that the knowledge be
"optimally organized" assumes an optimum. Clearly, some ways of
organizing mathematical knowledge are better than some other ways.
But no single organization is, for all purposes, superior. Romberg
and Tufte surely know that, so, in some respects, this criticism
may seem to be semantic nitpicking. However, I believe the problem
runs deeper than that, and it extends beyond Romberg and Tufte --
certainly as far as Greeno, and possibly to the knowledge structure
program in general. The problem is that a description of a
desirable end state, no matter how apt it is as a description, is
ahistorical; more precisely, it is abiographical. Consequently, it
yields limited suggestions about the specific activities and
sequences that will be effective in fostering the novice-to-expert
transition.

In defense of the contributions of cognitive science, problem
solving is not even possible if one does not know what the problem

is. We now better understand what the problems are. Light shed on
experts' cognition has brought problem statements within the ken of
educators. There is now genuinely better insight than the obtuse
recognition of success in performance with which we were previously
saddled. Not so long ago, we were in the unenviable position of
describing experts as those who could succeed at a task, and
novices as those who could not. Clearly, cognitive science has
cast some light into those black boxes, allowing us to know more
about the thought processes--lacking in novices--that enable
experts to succeed. Knowledge of experts' thought processes does
help educators to clarify their goals.

Perhaps the ahistorical aspect is not so great a problem as my
discussion thus far has suggested. Teachers may not need specific
guidance on the relative efficacy of different ways to spur novice-
to-expert movement. Perhaps cognitive science is already beginning
to remedy its most glaring deficiency, the lack of a good problem
statement. Apt descriptions of experts may constitute just the
refinement of problem statement that teachers most need. Indeed,

there is evidence that, once, they understand a problem, teachers
can invent effective solutions to it (Fennema, Carpenter, &
Peterson, 1986).

Motivation

Motivation, especially intrinsic motivation, often has been
assigned a circular definition: Intrinsic motivation is what
motivated persons have. Extrinsic motivation escaped this
circularity, because the motivating conditions could be defined
independently of the motivated state. Intrinsic motivation took
the leftovers: Intrinsic motivation is what motivates persons when
there is no extrinsic motivation. Recent advances, and I would
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number the Hatano and Inagaki work among them, improve this
situation in that they illuminate the conditions that can disrupt
intrinsic motivation.

Distinguishing Expertise from Intelligence

As they plumb the contributions of knowledge structures,
cognitive psychologists risk taking unnecessary blind alleys if
they choose not to assimilate findings of earlier eras in
psychology. Some practices now being identified as "expert
practices" suspiciously resemble what for many years were called
"intelligent practices." For example, Romberg and Tufte refer to
Larkin's work (cited in Woods & Crowe, 1984) as evidence that
experts who are successful in solving a problem "spend considerably
more time than novices reading the problem statement before
beginning to write equations." Was Larkin witnessing domain
knowledge or something more general? Sternberg (1977), in his
studies of intelligence, noticed a similar apportionment to
"encoding" analogy problems. Labeling a practice as expert
emphasizes its domain-specificity and its accessibility through
sustained study. Labeling it as intelligent emphasizes its domain-
generality and its relative recalcitrance to educators' efforts.
It would seem important to distinguish the relatively plastic and
relatively implastic ingredients of expert performance. To
illustrate this point, consider the following problem.

I have two coins.

Together they make 55 cents.
One of them is not a nickel.
What are they?

This problem was used by David R. Olson (1986, p. 340) to
illustrate sensitivity to subtleties of language. Olson attributed
the item to Milton Rokeach, who reportedly used it to measure open-
mindedness. I recently gave this problem to a class of 45
undergraduate students. After a wait of 30 seconds, only one hand
signifying confidence in an answer was raised. On another
occasion, when Alana, a five-year-old, heard the question posed to
others, she quickly showed signs of insight. However, she was too
unfamiliar with 50Q pieces to solve It In her case, lack of
domain-specific knowledge prevented expert performance. When I
refrained the problem by replacing "55 cents" with "15 cents,"
others present were still stumped. Alana replied, "You have a
nickel and a dime. You said one of them is not a nickel, but the
other one could be!" All problems require knowledge, and persons
who lack essential knowledge will be unable to solve them.
However, examples like this suggest that some kinds of problem
solving involve knowledge that has already been acquired by some
five-year-olds and has not been acquired by many collegians.
Success on "nonentrenched" (Sternberg, 1981) tasks like this one
probably involves knowledge structures that are relatively less
plastic. The knowledge structure program would be more useful to
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educators if the relatively plastic, accessible structures could be
distinguished from those that are relatively implastic.

As Greeno noted, unschooled domain experts link concrete
objects of a particular domain to quantities, and they manipulate
those quantities. They do not link these manipulations
(operations) well with mathematical symbols. Greeno conjectures
that the structures of unschooled domain experts, although they are
abstract, are not as general as the structures used by experts in
mathematics. Perhaps both the accomplishments and the weaknesses
of unschooled domain experts should be interpreted in light of
Olson's (1986) discussion of the linkage between intelligence and
literacy. Mathematics would then be approached as one form of
literate intelligence.

Purposes of Mathematics Education

Which do we need, then--the stuff of mathematicians or the
stuff of mathematics? Fields in which the application of
mathematics is useful have long existed. For persons entering
those fields, the desirability of extensive mathematics education
was evident. But what about persons entering other fields?
Defenses of mathematics education have, in general, followed one of
two rhetorical tacks. The first tack emphasizes the "stuff of
mathematicians"--habits of mind, disciplined inventiveness,
perseverance, and the like. An illustration of this tack is quoted
below.

Would you have a man reason well, you must use him to it
betimes, exercise his mind in observing the connexion of
ideas and following them in train. Nothing does this
better than mathematics which therefore I think should be
taught all those who have the time and opportunity, not
so much to make them mathematicians as to make them
reasonable creatures. (Locke, 1699/1964, pp. 165-166)

The second tack for defending mathematics education emphasizes
the stuff of mathematics--its concepts, symbols, and procedures.
When this tack is taken, it is usually coupled with arguments about
why the general public needs more of the stuff of mathematics. The
authors of the foregoing chapters did not say so, but they have
been spared the need to provide those arguments. Those arguments
are not needed today because there is a spreading appreciation for
the extent to which information-age societies have been suffused
with mathematical concepts. The need to understand the stuff of
mathematics is, at present, a truism.

Just as Resnick (1985) and others have argued that high
literacy is both a necessary and a feasible goal for most students,
so these authors are aspiring to a future for mathematics education
in which all students do more of what mathematicians do. This is
an estimably democratic idea, although some will say that it is a
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subtle way of legitimizing as the proper focus of schools those
things in which the rich and powerful already excel.
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OUTCOMES OF SCHOOL AND THEIR ASSESSMENT

In this fourth set of background papers we begin to address
the most critical problem in designing a monitoring system:
namely, what is a reasonable approach to assessing the outcomes of
instruction in,kathematics given the shifts in emphasis due to the
reforms. In-chapters ,l7 and 18 members' of the staff have
-SuMmarize&the past aPprbaches to student assessment in light of
:the reform:movement and found that there is a need to develop more
valid -procedures.. In. chapter 19 Kevin Collis preSents an approach
that-reiates:-methodS.of assessment to levels of reasoning. In
chapter -20Brian. Donovan aneTom ROmbergsuMMarize the relationship
between IhOwledge-structures and assessment of understanding in
mathematic's; ',Norther Webb, in chapter 21, critically examines the
arguments presented ih chapters 17 to 20. ,The final two chapters
examine a different aspect of instructional outcomes: namely,
attitudes. In ,chapter 21 Gilah Leder summarizes the varied work on
attitude assessment in matheMatics. Doug McLeod provides a
critique of that chapter in chapter 22 as well as an examination of
recent approacheS to attitude research.
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Chapter 17

MEASURES OF MATHEMATICAL ACHIEVEMENT1

Thomas A. Romberg

Information from students about their mathematical achievement
is important. This is particularly true for the study of the
effects of changes in what is being taught or how instruction is
carried out. Only by repeatedly gathering achievement data over
time can one reliably argue about actual effects.

In this chapter, I first briefly describe what is meant by the
term achievement as it is applied to school mathematics. Then I
give a short history of testing. In the third section a
description of the three contemporary types of tests (standardized
norm-referenced tests, profile achievement tests, and
objective-referenced tests) is given with a discussion of the
strengths and weaknesses of each. The chapter concludes with a
rationale for the development of new tests that would be more valid
indicators of mathematics achievement.

MATHEMATICS ACHIEVEMENT

Achievement can be considered as reasonable pupil outcomes
following a set of instructional experiences in school courses.
Detailing those outcomes is, of necessity, quite complex.
Minimally, however, the acquisition and maintenance of concepts and
skills, preparation for new concepts and skills, acquisition of a
positive attitude toward mathematics, and the use of concepts and
skills to solve problems should be included. Although these
outcomes are essential, they do not exhaust the list of pupil
outcomes one might usefully observe in assessing the effect of the
manner in which a particular content unit or course has been
taught. In fact, in this period of change, mathematical concepts
and skills have become more important, and emphasis has shifted
from acquiring a large number of concepts and calculation routines
to estimating, conjecturing, and developing strategies for solving
problems.

Academic achievement is a subset of achievement associated
with academic courses (as contrasted with vocational, technical,

Sections of this paper are from a presentation given at The
National Conference on the Influence of Testing on Mathematics
Education, June 27-28, 1986, University of California at Los
Angeles.
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and physical education courses, for example). The concepts
and skills of academic courses are associated with subject-matter
disciplines (language arts, mathematics, physics). The goals of
such courses not only emphasize acquisition and maintenance of
concepts and skills, but, in particular, stress preparation for
continued study in the subject area and subsequent use of that
knowledge in various occupations.

In addition to the complex question of what outcomes should be
examined, we must ask how to elicit the information needed. At
least four aspects should be considered. First, the decisions
about effects must be specified. Second, the implications of each
decision to be made must be examined. This involves consideration
of both the kind of statistical errors (Type I and II) one is
willing to live with, and whether the decision is irrevocable.
Next, the "unit" about which the decision is to be made must be
determined (individuals, groups, classes, school, materials, etc.).

Finally, the question of measurement procedures and decision
rules must be answered. This involves specifying the source, the
scaling procedure, the reliability, and the validity of the
measurement process.

The most common method of gathering information about
mathematics achievement is paper-and-pencil tests given to groups
of students. Although other procedures (for example, interviews,
observations, and judgments about work samples) could be used, the
ease of development, the convenience, and the low cost of such
group testing has made it common in American schools. To
understand how this has occurred, let us first examine how such
tests have become so dominant.

TESTING IN THE U.S.

The history of the measurement of human behavior, with primary
reference to the capacities and educational attainments of school
children, may be divided roughly into three periods. During the
first period, from the beginning of historical records to about the
19th century, measurement in education was quite crude. During the
second period, embracing approximately the 19th century,
educational measurement began to assimilate from various sources
the ideas and the scientific and statistical techniques which were
later to result in the psychometric testing movement. The third
period, dating from about 1900 to the present, can be characterized
as the psychometric period.

Early Examinations

The riitiation ceremonies by which primitive tribes tested the
knowledge of tribal customs, endurance, and bravery of young men
prior to admission to the ranks of adult males may be among
earliest examinations employed by human beings. Use of a crude
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oral test was reported in the Old Testament, and Socrates is known
to have employed searching types of oral quizzing. Elaborate and
exhaustive written examinations were used by the Chinese as early
as 2200 B.C. in the selection of their public officials. These
illustrations may be classified as historical antecedents of
performance tests, oral examinations, and essay tests.

Educational Testing in the 19th Century

Three persons made outstanding contributions to 19th-century
developments. The ideas of these men--Horace Mann, George Fisher,
and J. M. Rice--appear to be forerunners of developments during the
present century.

The first school examinations of note eppear to be those
instituted in the Boston schools of 1845 as substitutes for oral
tests when enrollments became so large that the school committee
could no longer examine all pupils orally. These written
examinations, in arithmetic, astronomy, geography, grammar,
history, and natural philosophy, impressed Horace Mann, then
secretary of the Massachusetts Board of Education. As editor of
the Common School Journal, he published extracts from them and
concluded that the new written examination was superior to the old
oral test in these respects.

1. It is impartial
2. It is just to the pupils.
3. It is more thorough than older forms of examination.
4. It prevents the "officious interference" of the teacher.
5. It "determines, beyond appeal or gainsaying, whether the

pupils have been faithfully and competently taught."
5. It takes away "all possibility of favoritism."
7. It makes the information obtained available to all.
8. It enables all to appraise the ease or difficulty of the

questions.

(Greene, Jorgenson, & Gerberich, 1953)

Although these ideas were apparently those represented by
modern tests, the instruments themselves were inadequate. However,
in successive issues of the Common School Journal, Mann suggested
most of the elements in examinations that are found in the
contemporary measurement.

To Reverend George Fisher, an English schoolmaster, goes the
credit for devising and using what were probably the first
objective measures of achievement. His "scale books," used in the
Greenwich Hospital School as early as 1864, provided means for
evaluating accomplishments in handwriting, spelling, mathematics,
grammar and composition, and several other school subjects.
Specimens of pupil work were compared with "standard specimens" to
determine numerical ratings that, at least for spelling and a few
other subjects, depended on errors in performance (Greene,
Jorgenson, & Gerberich, 1953).
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The inventor of the comparative test in America was J. M.
Rice. In 1894, he developed a battery spelling test. Having
administered a list of spelling words to pupils in many school
systems and analyzed the results, Rice found that pupils who had
studied spelling 30 minutes a day for eight years were not better
spellers than children who had studied the subject 15 minutes a day
for eight years. Rice was attacked and reviled for this "heresy,"
and som educators .even attacked the use of a measure of how well
pupils could spell for evaluating the efficiency of spelling
instruction. They intended that spelling was taught to develop the
pupils' minds and not to teach them to spell. It was more than ten
years later that Rice's pioneering resulted in significant
attention to objective models in educational testing (Ayres, 1918).

The Psychometric Period

This era began shortly after the turn of the century.
Although the historical antecedents sketched in the preceding
paragraphs were essential prerequisites, developments first in
mental testing and shortly after in achievement testing are at the
roots of this era.

General intelligence tests. Attempts to measure general
intelligence, or ability to learn or ability to adapt oneself to
new situations, had been made both in America and in France. The
first individual test was developed in France, and the first group
test was developed some years later in America.

Individual intelligence scales were originated in 1905 by
Binet and Simon. Their first scale was devised primarily for the
purpose of selecting mentally retarded pupils who required special
instruction. This pioneer individual-intelligence scale was based
on interpreting the relative intelligence of different children at
any given chronological age by the number of questions of varied
types and increasing levels of difficulty they could answer. These
characteristics were all re-embodied in the 1908 and 1911 revisions
of the Binet-Simon Scale and remain basic to most individual
intelligence scales today. The 1908 revision introduced the
fundamentally important concept of mental age (MA) and provided
means for obtaining it (Freeman, 1939). Several American
adaptations of these pioneer scales appeared between 1911 and 1916.
All make use of the intelligence quotient (IQ), based on the

relationship between the subject's mental age and chronological age
(Freeman, 1939).

The first group intelligence test was Army Alpha, used for the
measurement and placement of army recruits and draftees during
World War I. It was the product of the collaboration of various
psychologists working on group intelligence tests when the United
States entered the war. This test, widely used to test men who
could read and understand English, was accompanied by Army Beta, a
nonlanguage test for use with illiterates and men who, although
perhaps literate in a foreign language, could not read English
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(Freeman, 1939). Other group intelligence tests began to appear
almost immediately following World War I, and the period from 1918
to the middle 1920s was marked both by the publication of many such
tests and by an upsurge of interest in intelligence testing.

Aptitude Tests. The measurement of aptitudes, or those
potentialities for success in an area of performance that exist
prior to direct acquaintance trith that area, was closely related to
intelligence testing. Early attempts to measure general
intelligence tested many specific traits and aptitudes, but that
approach was abandoned after Binet showed that tests of more
complex forms of behavior were superior. It was soon apparent,
however, that general intelligence tests were not highly predictive
of certain types of nerformance, especially in the trades and
industries. MUnsterberg's aptitude tests for telephone girls and
streetcar motormen were followed by tests of mechanical aptitude,
musical aptitude, art aptitude, clerical aptitude, and aptitude for
various subjects of the high school and college curricula prior to
1930 (Watson, 1938). Spearman's (1904) splitting of total mental
ability into a general factor and many specific factors had its
influence on this movement.

Achievement Tests. Modern achievement testing was stimulated
by Thorndike's 1904 book on mental, social, and educational
measurements. Through his book and his influence on his students,
Thorndike was predominantly responsible for the early development
of standardized tests. Stone, a student of Thorndike's, published
the first arithmetic reasoning test in 1908. Between 1909 and
1915, a series of arithmetic tests and five scales for measuring
abilities in English composition, spelling, drawing, and
handwriting were published (Odell, 1930). Literally thousands of
standardized achievement tests have been published during the last
half-century.

Summary

The reasons for presenting this brief history are threefold.
First, what is referred to as the modern testing movement began
with a selection problem (Binet & Simon) and a placement problem
(Army Alpha). It was assumed that a single measure (e.g., MA) or
index (e.g., IQ) could be developed to compare individuals on what
was assumed to be a general fixed unidimensional trait. In turn,
the procedures that evolved in developing and administering these
tests were used in aptitude and achievement tests. Second, the
testing procedures we now consider typical were developed for group
administration of early intelligence tests. An example from the
Lorge-Thorndike Test (1954) is shown in Figure 1. Such tests are
comprised of a set of questions (items), each having one
unambiguous answer. In this sense, such tests are "objective"
since subjective inferences are not necessary. All subjects are
administered the same items under standard (nearly identical)
situations with the same instructions, time, constraints, etc.
Furthermore, subjects' answers (usually chosen from a set of
alternatives as in Figure 1) could be easily scored as correct or
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Ono word has been left out Of aids sentence on thou eve Cates. Chaos
the word that will make nse best, the truest, and the mow sensible complete
sentence. Look of :cassis sentence 0.

" 0. Hot weather comes in the
A fall B night C summer D winter E snow

The best answer Is summer. The letter before summer b C, to you should
maks a heavy block pencil mark in the C answer space for sentence 0.

Now look at senterce 00.

00. bark at eats.
F Cows G Mice 11 Cats J Hens K Doge VA I.

The best tamer b Dc s, to you should snake a heavy block pencil mark kt
the K answer space for sentence 00.

A C 0 A
ti

Do all the mamas on Wm boo pasts in de lame am/. Try awry sentence.

I. Boyswillbecome .
A infante, Ellittle C intelligent D stupid E men

A

17 ?,I ri i

2. WO tie only st night.
F children G plants H Stars 3 houses IC trees II H lau

3. PM Irsa six years old. There were six co his birthday cake.
L candles M boys N girls P parties Q children Huaaa

4. Not every cloud gives
R weather S shade T sky U climate

a or a v
V rain II u J ti ;I

Figure 1. Excerpt from Lorge-Thorndike Intelligence Tests
(Lorge h Thorndike, 1954).

not, the total number of correct answers tallied, tallies
transformed, and transformed scores compared. Psychometr.as
involving the application of statistical procedures to such tests
developed as a field of study in the 1920s.

Most importantly; it should be understood that the testing
movement was a product of a historical era. It grew out of the
machine-age thinking of the industrial revolution of the past
century. The intellectual contents of the machine age rested on
three fundamental ideas. The first was reductionism. For several

centuries, our world view argued that everything we experience,
perceive, touch, feel, or handle is comprised of parts. The

machine age, preoccupied with taking things apart, was founded on
the idea that, in order to deal with anything, you had to take it
apart until you reached ultimate parts.

The second fundamental idea was that the most powerful mode in
thinking was a process called analysis. Analysis is based in
reductionism. It argues that, if you have something you want to
explain or a problem you .ant to solve, you start by taking it
apart. You break it into its components, you get down to simple
components, then you build up again.

The third basic idea of the machine age has been called
mechanism. Mechanism is baced on the theory that all natural
phenomena can be explained by cause-and-effect relationships. The

primary effort of science was to break the world into parts that
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could be studied to determine cause-and-effect relationships. The
world was conceived of as a machine operating in accordance with
unchanging laws.

These ideas gave rise to what we now call the first industrial
revolution. In this era, work was defined in physical terms;
mechanization involved the use of machines to perform physical
work. Man as an energy source was supplemented by machines.
Man-machine systems were developed to do physical work in such a
way that mechanization was facilitated.

This process is clearly reflected in what has happened in
school mathematics during the last half-century. Mathematics was
segmented into subjects and topics, and eventually reduced to its
smallest parts: behavioral objectives. At this point, a network
diagram was created (a hierarchy) to show how these components were
related to produce a finished product.

Next, the steps through that hierarchy were mechanized via
textbooks, vorksheets, and tests. Teaching was dehumanized to the
point that the teacher need do little but.manage the production
line.

Business, industry, and, in particular, schools have been
conceived, modified, and operated based on this mechanical view of
the world since before the turn of the century. Today, however, a
new world view has emerged. It is a view we should use in our
considerations of school mathematics and its assessment.

ACHIEVEMENT TESTS

During the past three-quarters of a century, a variety of
different achievement tests have been developed. In this section,
the three most widely used types of tests are described, and their
appropriateness for monitoring changes in school mathematics
assessed.

Standardized Tests

Norm-referenced standardized tests have become part of the
yearly ritual in most schools. The purpise of such tests is to
rank respondents with respect to a particular type of mental
ability or achievement or to indicate a respondent's position in a
population. A standardized test is comprised of a set of
independent multiple-choice questions. The items have necessarily
been subjected to a preliminary tryout with a representative pupil
group, so that it is possible to arrange the items in a desired
manner with respect to difficulty and the degree to which they
discriminate among students. Also, each test is accompanied by an
appropriate table for transforming resulting scores into meaningful
characterizations of pupil mental ability or achievement
(grade-equivalent scores, percentiles, stanines, etc.)
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For example, millions of students each year take one of the
major college admissions tests, the Scholastic Aptitude Test (SAT)
or the American College Test (ACT). Both are standardized tests.
Scores derived from these tests are used to make selection and
placement decisions.

Four features of such tests require comment. First, although
each test is designed to order individuals on a single
(unidimensional) trait, such as quantitative aptitude, the derived
score is not a direct measure of that trait. It is, for example,
as if one were measuring Houston Rocket basketball star Ralph
Sampson's height but not reporting that he is 7' 4"; rather, what
is reported is that he is at the 99th percentile for American men.
Furthermore, for mathematics achievement, there is no theoretically
single trait (like height) that is being assessed.

Second, because individual scores are compared with those of a
norm population, there will always be some high and some low
scores. This is true even if the range of scores is small. Thus,
high and low scores can not be judged as "good" or "bad" with
respect to the underlying trait.

Third, test items are assumed to be equivalent to each other.
They are selected on the basis of general level of difficulty
(.a value) and some index of discrimination (e.g., nonspurious
biserial correlation). Furthermore, there is no claim that the
items are representative of any well-defined domain. For example,
in many subtraction computation standardized tests, items such as
that shown in Figure 2 are common. Such an item, because of a zero

304

- 176

A) 272
B) 138
C) 238
D) 128
E) 232

Figure 2. A Typical Three-Digit Subtraction Test Item.

in the tens' place, requires successive regroupings and
discriminates between good and average subtractors. However, if
one were to randomly generate three-digit subtraction problems, few
like this would ever appear.

Finally, such tests have only predictive validity. Scores on
the SATs are useful only because they are reasonable predictors of
how well students will do in college.

145



139

The strength of standardized tests is that they do what they
were designed to do reasonably well. (Note that the SAT is an
aptitude test, not an achievement test.) They are relatively easy
to develop, inexpensive, convenient to administer, and provide
comprehensible results. Their primary weakness is that they are
often used as the basis of decisions they were not designed to
address. For example, aggregating standardized scores for students
in a class (school, district, etc.) to get a class profile of
achievement (class mean) is a very inefficient method of profiling
a class; standardized tests provide too little information for the
cost involved. They are of little value for evaluation or
research, since test items are not selected to be representative of
the curriculum. Unfortunately, their common use appears to be more
strongly related to political, rather than educational, issues.
For example, it is claimed that elected officials and educational
administrators increasingly use test scores comparatively to
indicate which schools, school districts, and even individual
teachers appear to be achieving better results (National Coalition
of Advocates for Students, 1985). Such comparisons are misleading.
One can only conclude that standardized tests are unwisely
overused, and their derived scores are of little value as
indicators of achievement which could be used in monitoring the
health of the system.

Profile Achievement Tests. In contrast to standardized tests,
profile achievement tests are designed to yield a variety of scores
for groups of students. As cl;ly as 1931, Ralph Tyler outlined a
procedure for test construction and validc..tion which clearly
pointed out the essential dependence of a program of achievement
testing on the objectives of instruction and the recognition of
forms of pupil behavior indicating attainment of the desired
instructional outcomes. Tyler, more than any other single test
specialist, r.'as responsiKe for the extension of achievement
testing to tae outcomes of instruction. His contributions in the
1930s doubtless did much to replace the narrow concept of
standardized testing with a broad, modern conception of evaluation.

The current approach to profile testing is to specify a
content-by-behavior math. For example, the matrix used for
profiling 8th-grade performance in the Second International
Mathematics Study is shown in Table 1 (Crosswhite et al., 1986, pp.
80-81). Content topics are crossed with hypothesized cognitive
levels. The content topics are Judged to be appropriate for that
grade, and the cognitive levels are usually based on some
adaptation of those in Bloom's Taxonomy (1956). Items, similar to
those in standardized tests, are prepared for each cell in the
matrix. Item data then can be reported in several ways. First,
data can be reported in terms of item means. Second, cell means
can be calculated. For example, in Figure 3, the means are
presented for six items on a topic (each given in a different
instrument) for different students at different grades in Ontario
(McLean, 1982b). Third, item scores can be aggregated by columns
to yield cognitive level scores or by rows to yield topic scores
(see Figure 4).
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Source: Crosswhite, F. J., et al., 1986, pp. 80-81.

Table 1

Population A: Importance For Instrument Construction
Of Content Topics And Behavioral Categories

Content Topics

Behavioral Categories'
Computation

Comprehension
Application

Analysis

000 Arithmetic
001 Natural numbers and whole numbers .

002 Common tractions
003 Decimal fractions
004 Ratio, proportion, percentage
CO5 Number theory'
004 Powers and on:parents
007 Other numeration systems
008 Square roots
009 Dimensional analysis

I

I

I

I

100 Algebra
101 Integers
102 Rationale
103 Integer exponents
104 Formulas and algebraic expressions..
105 Polynomials and rational expressions.
106 Equations and inequations (linear only)
107 Relations and functions
108 Systems of linear equations
109 Finite systems
.110 Finite sets
111 Flosehers and progressing
112 Real numbers

I I I

200 Geometry
Z01 Classification of plane figures
202 Properties of plane figures
203 Congroenco of plane figures
204 Similarity of plans figures
205 Geometric constmuctions
206 Pythegoesan triangles
207 Coordinates

I V I IsIVII
I I I Is
I I I Is
Is Is Is -
Is Is Is -
I I I Is

Content Topics

Behavioral Categories'
Computation

Comprehension
Application

Analysis

208 Simple deductions
209 Informal transformations in geometry. .

210 Relationships between lines and planes in
space

211 Solids (symmetry properties)
212 Spatial visualization and representation
213 Orientation (spatial)
214 Decomposition of figures
215 Transformational geometry

Is I I I

I I I

Is

Is

Is Is
Is Is
Is

Is Is

300 Descriptive Statistics
301 Data collection Is
302 Organisation of data
303 Representation of data
304 Interpretation of data (seen, median, mode)I
305 Combinatorics
306 Outcomes, sample spaces and events. . Is
307 Counting of sets, (P(A 13), P(A A),

independent events
308 Mutually exclusive events
309 Complementary events

400 Measurement
401 Standard units of measure V V V
402 Rettmation
403 Approileetion

I I

I

404 Determination of measures: areas, volumes,
etc. VIII

Thi following ratite scale has been aid:I-Wary isportant;
I = important; Is important for some countries. A dash (-)
indicates that the topic was not considered important enough to
warrant trial items being found or constructed.
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Grade
Level

0

Percent Correct

50
I 1

T-Mean
%Cor.

100

T-Mean
%Omits

f" 1 81

8 8 66114---44

SG 7 S3ot.....+do

11 3 24 4 1loG'0 16 411--'""-1

9A
g 3 j.L....41!

34 30

3 1 0 I 4
10A SO 19

- this topic is not part of the Gr. 7 or Gr. 8 program.
-. a surprisingly large number of Grade 10 Advanced students omitted

these items.

results indicate that where this skill is needed in Grade 11 and
12 it should b2 reviewed and practised then.

Figure 3. Algebra--Equations and Inequalities.
Range of Correct Responses to the Six Instruments, by Grade

(from McLean, 1982b, p. 207)

Grade

Percent Correct
0 15 30 45 4- 60 75 90

Statistical Summary

Grade No. of Grade Grade
Level Classes Mean St. Clew.

7 97 18.6 11.
8 98 26.8 12.9
9 122 25.6 15.4
10 103 30.4 13.8

Figure 4. Percentages.
Range of Correct Responses to Topic Group, by Grade

(from McLean, 1982b, p. 138)
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Profile tests have become popular alternatives to standardized
tests. They have been developed for several major studies of
mathematical performance, such as the National Longitudinal Study
of Mathematical Abilities (NLSMA), National Assessment of
Educational Progress (NAEP), First International Mathematics Study
(FIMS), Second International Mathematics Study (SIMS), and several
different state assessments.

There are four features of profile assessments that make them
quite different from standardized tests. First, there is no
assumption of an underlying single trait. Instead, instruction at
any grade in mathematics is assumed to focus on several topics; the
tests are designed to reflect the multidimensional nature of
mathematical content. It must be noted that *here is often a
temptation to aggregate and derive a single total score, which
would be very misleading. Second, the unit of investigation is a
group, not an individual. Matrix sampling is usually used so that
a wider variety of items can be given. Third, as in Figures 3
and 4, comparisons between groups are done graphically on actual
scores. No transformations are needed. Finally, validity is
determined in terms of content and/or curricula validity.
Mathematicians and teachers are asked to judge whether individual
items reflect a content behavior cell in the matrix and sometimes
to judge whether or not the item represents something that was
taught in the curriculum. The strength of profile achievement
:asts is that they provide useful information about groups. They
are particularly useful for general evaluations of changed
educational policy that directly affects classroom instruction.
Thus, profile tests are very useful for monitoring purposes.

However, there are four weaknesses of these tests. First,
because they are designed to reflect group performance, they are
not useful for individual ranking or diagnosis. An individual
student answers only a sample of items. Second, they are somewhat
more costly to develop than are standardized tests, and they are
harder to administer and score. Third, because they yield a
profile of scores, they arc difficult to interpret. In particular,
comparisons between groups with different profiles often do not
yield simple results.

However, their primary weakness is in the outdated assumptions
underlying the two dimensions of content-by-behavior matrices. The
content dimension (see Table 1) involves a classification of
mathematical topics into "informational" categories. As Romberg
(1983) has argued:

"Informational knowledge" is material that can be fallen
back upon as given, settled, established, assured in a
doubtful situation. Clearly, the concepts and processes
from some branches of mathematics should be known by all
students. The emphasis of instruction, however, should be
"knowing how" rather than "knowing what." (p. 122)
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the items in a-ty content category are independent of
For profiles, ws should use content domains that
that material is learned. Also, the items should
interdependence (rather than independence) of ideas in
Gerard Vergnaud (1982) referred to such domains as

fields."

The behavior dimension of matrices has always posed problems.
All agree Bloom's Taxonomy (1956) has proven useful for low-level
behaviors (knowledge, comprehension and application) but difficult
for the higher levels (analysis, synthesis, and evaluation).

Single-answer, multiple-choice items are not reasonable for those
levels. One problem is that this taxonomy suggests that the
"lower" skills should be taught before the "higher" skills. As
Resnick (1987) argued:

This assumption--that there is a sequence from lower
level activities that do not require much independent
thinking or judgment to higher level ones that docolors
much educational theory and practice. Implicitly at
least, it justifies long years of drill on the "basics"
before thinking and problem solving are attended to or
demanded. Cognitive research on the nature of basic
skills such as reading and mathematics provides a

fundamental challenge to this assumption. (p. 8)

The real problem is that Bloom's Taxonomy fails to reflect current
psychological thinking. It is based on the naive psychological
principle that simple individual behaviors become integrated to
form a more complex behavior. In the past 30 years, our knowledge
about learning and how information is processed has changed and
expanded. Today, we should discard Bloom's Taxonomy and use a
contemporary alternative that reflects current ideas from cognitive
psychology.

Objective-referenced tests. These tests (often called
criterion-referenced tests) are a product of the behavioral
objectives movement in the U.S. during the 1960s. Statements of
the following form are behavioral objectives: "the subject when
exposed to the conditions described in the antecedent displays the
action specified ±n the verb in the situation specified by the
consequent to some specified criterion" (Romberg, 1976, p. 23).
Items randomly selected from a pool designed to represent the
antecedent conditions and the same action verb are given to
students. From their responses, diagnosis of problems or judgments
of mastery of objectives can be made.

Four features of these tests should be mentioned. First, they
are usually designed as part of a curriculum and are to be
administered to individuals at the end of some instructional topic.
They often are administered individually and judgments are made
quickly by teachers. For example, they are a part of such
elementary mathematics programs as Individually Prescribed
Instruction (Lipson, Koburt, & Thomas, 1967) and Developing
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Mathematical Processes (Romberg, Harvey, Moser, & Montgomery, 1974,
1975, 1976). Second, they have occasionally been used in group
settings. For example, the comprehensive achievement monitoring
scheme (Gorth, Schriber, & O'Reilly, 1974) assesses student
performance periodically on a set of objectives. Also, in 1974
Wisconsin used objective referencing for the construction of a
state test (Wisconsin Mathematics Assessment Committee, 1974).
Third, decisions on performance are made with respect to some a
priori criterion. Often, a 75Z -80Z correct threshold has been
used. For example, in Wisconsin's 1974 state test, variable
criteria were used. First, objectives were defined by three
priorities:

Priority I:

Objectives that deal with skills, concep.,4 and
applications which are essential for all students and/or
are minimum prerequisites for continued study of
mathematics.

Priority II:

Objectives that deal with skills, concepts and applications
which are essential, but in-depth mastery is not expected at
this level.

Priority III:

Objectives that expose students to new topics or challenging
problems, provide motivation or create interest. (WMAC,
1974, p. 6)

Then, performance on the items in the priority level were
evaluated using the scheme depicted in Figure 5.

Evaluation

Acceptable Unacceptable Understandable

Priority I 75% or more
of the students
responded cor-
rectly to the
item.

Less 'hen ac-
cepable stu-
dent perform-
ance.

Unacceptable
performance
resulting from
test item con-
struction.

Priority II 50% or more
of the students
responded cor-
rectly to the
item.

Less than ac-
ceptable sty-
dent perform.
ance.

Unacceptable
performance
but difficult
test item.

Priority III None were
Assessed ----

Figure 5. Interpretive Analysis Used in First Wisconsin
State Mathematics Assessment (from WMAC, 1974, p. 7)
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Finally, in some programs there have been a few attempts to
aggregate performance across objectives. For example, the "80/80"
criterion was used to describe whether a student had succeeded on a
topic ("80/80" meaning that, for at least 80% of the objectives,
the student had gotten at least 80% of the items correct).

The strength of objective-referenced tests lies in their
instructional usefulness. As long as instruction on some topic
focuses on the acquisition of some concept or skill, such tests can
be used to indicate whether the concept has been learned or the
skill mastered. Furthermore, such tests are scored easily and are
readily interpretable.

Three weaknesses should be mentioned. First, such tests are
costly to construct because there are often hundreds of objectives
in any .structional program. Second, aggregation across
objectives is not very reasonable. Third, and most importantly,
these tests share some of the same conceptual problems that trouble
profile tests. Objectives are assumed to be independent n c
interdependent; items for higher level or complex problem-solving
processes are hard to construct; and only correct answers (not
strategies or processes) are scored.

Other Tests. In this brief review, other tests often used in
mathematics education research have not been mentioned. For
example, personality tests, ability tests (e.g., spatial ability),
or even diagnostic tests are often administered. They simply do
not fit the conception of assessment of mathematical achievement
needed for the monitoring of school mathematics.

Summary. The purpose of this section was to reflect on
current practice and to outline what tests now in common use can
and cannot do. The main point is that, while these tests have been
useful for some purposes and undoubtedly will continue to be used,
they axe products of an earlier era in educational thought. Like
the Model T Ford assembly line, objective tests were considered as
an example of the application of modern scientific techniques in
the 1920s. Today, we ought to be able to develop better indices of
achievement.

NEED FOR ALTERNATIVES

Sometimes educational reform is directed toward making
schooling more efficient. Under those conditions, expected
outcomes do not change, and assessment procedures may remain the
same if they reflect those expectations. However, if expectations
change, new assessment procedures must be developed. This can only
be done by comparing and contrasting the old and new expectations,
using the assessment tools designed for both, discarding those no
longer appropriate, and developing new procedures when needed.
Today, schools should be planning to change the emphasis from drill
on basic mathematical concepts and skills to explorations that
teach students to think critically, to reason, to solve problems,
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to interpret, to refine their ideas, and to apply them in creative
ways.

I base the need for new assessment procedures which reflect
those changes on four assumptions.

Assumption 1. We are now in a new economic age--The Information
Age--which will significantly alter the character of American
schooling.

Zarinnia and Romberg in chapter 2 of this monograph argued:

The most important single attribute of the Information Age
economy is that it represents a profound switch from
physical energy to brain power as its driving force, and
from concrete products to abstractions as its primary
products. Instead of training all but a few citizens so that
they will be able to function smoothly in the mechanical
systems of factories, adults must be able to think. . . . This
is significantly different from the concept of an intellectual
elite having responsibility for innovation while workers take
care of production. (pp. 23-24)

Assumption 2. Thinking skills must he the focus of instruction in
mathematics.

Lauren Resnick (1987) has argued:

Thinking skills resist the precise forms of definition
we have come to associate with the setting of specified
objectives for schooling. Nevertheless, it is relatively
easy to list some key features of higher order thinking.
When we do this, we become aware that, although we cannot
define it exactly, we can recognize higher order thinking
when it occurs. Consider the following:

. Higher order thinking is nonalgorithmic. That is, the
path of action is not fully specified in advance.

. Higher order thinking tends to be complex. The total
path is not "visible" (mentally speaking) from any single
vantage point.

. Higher order thinking often yields multiple solutions, each
with costs and benefits, rather than unique solutions.

. Higher order thinking involves nuanced judgment and inter-
pretation.

. Higher order thinking involves the application of multiple
criteria, which sometimes conflict with one another.
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. Higher order thinking often involves uncertainty. Not
everything that bears on the task at hand is known.

. Higher order thinking involves self-regulation of the
thinking process. We do not recognize higher order
thinking in an individual when someone else "calls the
plays" at every step.

. Higher order thinking involves imposing meaning, finding
structure in apparent disorder.

. Higher order thinking is affortful. There is considerable
mental work involved in the kinds of elaborations and
judgments required.

This broad characterization of higher order thinking points to
a historical fact that is often overlooked when considering
the school curriculum, a fact that helps to resolve the
question of what is new about our current concerns. American
schools, like public schools in other industrialized
countries, have inherited two quite distinct educational
traditions--one concerned with elite education, the other
concerned with mass education. These traditions conceived
of schooling differently, had different clienteles, and held
different goals for their students. Only in the last sixty
years or so have the two traditions merged, at least to the
extent that most students now attend comprehensive schools
in which several educational programs and student groups
coexist. Yet a case can be made that the continuing and as
yet unr'solved tension between the goals and methods of
elite and mass education produces our current concern
regarding the teaching of higher order skills. (pp. 2-3)

Assumption 3. Higher order skills are not to be learned after
other skills.

Again, Resnick (1987) has stated:

The most important single message of modern research on the
nature of thinking is that the kinds of activities
traditionally associated with thinking are not limited to
advanced levels of development. Instead, these activities
are an intimate part of even elementary levels of reading,
mathematics, and other branches of learning--when learning
is proceeding well. In fart, the term "higher order" skills
is probably itself fundamentally misleading, for it suggests
another set of skills, presumably called "lower order," needs
to come first. (p. 8)

Assumption 4. The three contemporary approaches to achievement
testing (standardized tests, profile achievement tests and
objective referenced tests) are conservative inhibitors to needed
reform.
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Les McLean (1982a) has stated that "achievement tests as we
have known them are obsolete and teachers should discontinue their
use as soon as possible" (p. 1). Peter Hilton (1981) argued even
more strongly:

What should we do to improve the situation? The answer is
simple and obvious: avoid these glaring blemishes in the
standard pedagogy! But it is not so easy in practice.
We have given many reasons for the inertia in the system,
for the remarkable so-ability of those practices which
militate against effective mathematics education. Lit us
be explicit about one further potent factor in the pres-
ervation of the status quo--the standardized tests.
These tests, beloved of (some) educational psychologists
and (many) educational administrators, superimpose a
further degree of artificiality on that which is already
present in the curriculum. They force students to answer
artificial questions under artificial circumstances;
they impose severe and artificial time constraints; they
encourage the false view that mathematics can be separated
out into tiny water-tight compartments; they teach the
perverted doctrine that mathematical problems have a
single right answer and that all other answers are equally
wrong; they fail completely to take account of
mathematical process, concentrating exclusively on the
"answer." Particularly perverse and absurd is the
multiple-choice format. I have been doing mathematics now
as a professional for nearly 40 years and have never met a
situation (outside finite group theory!) in which I was
faced with a mathematical problem and knew that the answer
was one of five possibilities. Moreover if faced,
artificially, by such a situation, my approach would, and
sh-uld, be quite different from that in which I simply had
to solve the problem.

Tests tyrannize us--they tyrannize teachers and children.
They loom so large that they distort the teaching
curriculum and the teacher's natural style; they occur so
frequently, and with such dire consequences, that they
appear to the child (and, perhaps, to the teacher) to be
the very reason for learning mathematics. (p. 79)

Lauren Resnick (1987) stated the case against standardized
tests differently:

Many of the higher order training programs aspire to
types and levels of cognitive functioning to which
standardized reading tests are not likely to be adequately
sensitive. . . .

Clearly, a most important challenge facing the movement for
increasing higher order skill learning in the schools is
the development of appropriate evaluation strategies.
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Part of the problem is our penchant for testing. American
pressures for standardized testing, especially at the
elementary and secondary school levels, make it difficult
for curriculum reforms that do not produce test score
gains to survive. But most current tests favor students
who have acquired lots of factual knowledge and do little
to assess either the coherence and utility of that
knowledge or students' ability to use it to reason, solve
problems, and the like. (pp. 33-34)

CONCLUSIONS

To conclude this chapter, I emphasize four points.

First, the educational system as a whole and the teaching and
learning of mathematics in particular need to be changed. Current
reform efforts must encompass more than simple reactions to ccrrent
weaknesses. To remedy weaknesses, we cannot return to the same
methods of curriculum development, teacher training, and pupil
assessment used in the past. Unless these, too, are changed, the
same difficulties of sterile lessons, further deskilling of
teachers, and so on will have been created.

Second, information on student performance is important for
educational decisionmaking and the monitoring of the effects of
change. It is not clear how influential test data and other data
on students actually are in educational decisionmaking. Most
educators certainly believe that test data has a strong influence.
Waether this is myth or reality is not clear. However, there is no
question that valid data could and should influence decisions.
Clearly, if the content of courses and methods of instruction
change, the monitoring of student achievement is necessary if the
effects of these changes are to be determined.

Third, current testing procedures are unlikely to provide
valid information for decisions about the current reform movement.
Current tests reflect the ideas and technology of a different era
and world view. They can not assess how students think or reflect
on tasks, nor can they measure interrelationships of ideas.

Finally, work needs to be started on new assessment
procedures. Only by having new assessment tools can we provide
educators with appropriate information about how students are
performing with respect to the goals of the reform movement.

References

Ayres, L. P. (1918). History and present status of educational
measu.ements. In S. C. Parker (Ed.), The measurement of
educational products: Seventeenth yearbook of the National
Society for the Study of Education (Part II). Bloomington,
IL: Public School Publishing Co.

'157



150

Bloom, B. S. (Ed.) (1956). Taxonomy of educational objectives:
The classification of educational goals. Handbook 1.
Cognitive Domain. New York: Longmans.

Crosswhite, F. J., et al. (1986). Second international
mathematics study detailed report for the United States.
Champaign: Stipes.

Freeman, F. N. (1939). Mental tests: Their history, principles
and applications (rev. ed.). Boston: Houghton Mifflin.

Garth, W. P., Schriber, P. E., & O'Reilly, R. P. (1974).

Comprehensive achievement monitoring: A criterion-referenced
evaluation system. New York: Educational Technology
Publishers.

Greene, H. A., Jorgensen, A. N., & Gerberich, J. R. (1953).

Measurement and evaluation in the elementary school (2nd ed.).
New York: Longmans,

Hilton, P. Avoiding math avoidance (1981). In L. A. Steen (Ed.),
Mathematics tomorrow (pp. 73-82). New York: Springer-Verlag.

Lipson, J. I., Koburt, E., & Thomas B. (1967). Individually
prescribed instruction (IPI) mathematics. Pittsburg:
Learning Research and Development Center.

Lorge, I., & Thorndike, R. (1954). The Lorge-Thorndike
Intelligence Tests, Verbal Battery (Level 3, Form A). Boston:

Houghton Mifflin.

McLean, L. D. (1982a). Achievement testing -- 1,,s! Achievement
tests -- No. E+M Newsletter, 39, 1-2.

McLean, L. D. (1982b). Report of the 1981 field trials in English
and mathematics -- Intermediate Division. Toronto, Ontario:
The Minister of Education.

National Coalition of Advocates for Students. (1985). Barriers to

excellence: Our children at risk. Washington, DC: Author,

Odell, C. W. (1930), Educational measurements in high school.
New York: Century.

Resnick, L. B. (1987). Education and learning to think.
Washington, DC: National Academy Press.

Romberg, T.A. (1976). Individually guided mathematics. Reading,
MA: Addison-Wesley.

Romberg, T. A. (1983). A common curriculum for mathematics. In
G. D. Fenstermacher & J. J. Goodlad (Eds.), Individual
differences and the common curriculum: Eighty-second yearbook
of the National Societ for the Stud of Education (Part I).
Chicago: University of Chicago Press.

158



151

Romberg, T. A., Harvey, J. G., Moser, J. M., & Montgomery, M. E.
(1974, 1975, 1976). Developla_mathematical processes.
Chicago: Rand McNally.

Spearman, C. (1904). 'General intelligence' objectively
determined and measured. American Journal of Psychology, 15,
201-293.

Thorndike, E. L. (1904). An introduction to the theory of mental
and social measurements. New York: Teachers College,
Columbia University.

Tyler, R. W. (1931). A generalized technique for constructing
achievement tests. Educational Research Bulletin, 8, 199-208.

Vergnaud, G. (1982). Cognitive and developmental psychology and
research in mathematics education: Some theoretical and
methodologinal issues. For the Learning of Mathematics, 3(2),
31-41.

Watson, G. (1938). The specific techniques of investigation:
Testing intelligence. aptitudes, and personality. In G. M.
Whipple (Ed.), The scientific movement in education: Thirty-
seventh yearbook of the National Society for the Study of
Education (Part II, pp. 365-366). Bloomington, IL: Public
School Publishing.

Wisconsin Mathematics Assessment Committee (1974). Interpretive
report on Wisconsin state mathematics assessment. Madison,
WI: Department of Public Instruction.

Zarinnia, E. A., & Romberg, T. A. A new world view and its
impact on school mathematics. In T. A. Romberg & D. M.
Stewart (Eds.), The monitoring of school mathematics:
Background Papers. Vol. 1: The monitoring project and
mathematics curriculum (pp. 21-61). Madison: Wisconsin
Center for Education Research.



Chapter 18

CONSEQUENCES OF THE NEW WORLD VIEW TO ASSESSMENT OF
STUDENTS' KNOWLEDGE OF MATHEMATICS

Thomas A. Romberg and Anne Zarinnia

In this paper we consider the consequences of the emerging
world view on assessment of students' knowledge of mathematics and
their ability to use that knowledge both creatively and routinely
in solving the variety of problems encountered in the course of
life. In chapter 2, we argued that metaphor and model cause the
prevailing world view to exert enormously powerful forces over
people's thoughts and activities. We pointed out the emerging
characteristics of the new view of the world, including the fact
that intellectual conflict between the old and the new is impeding
any serious progress toward curricular improvement. The crucial
point was that the world is changing so rapidly that, unless those
involved in mathematics education adopt a proactive view and
develop a new model for the twenty-first century, the mathematical
understanding of children will remain permanently inadequate and a
source of trauma.

An implicit premise of this project is that assessment, which
has usually involved some testing procedure, has an impact on
curriculum and instruction, if only by demanding and providing
information. It is openly acknowledged that the content emphasis
of assessment has a direct impact both on what is taught and how it
is taught. The school outcomes sought determine curricular
elements to be assessed and monitored, and that which is monitored
is almost inevitably emphasized. Thus, the selection of indicators
cannot be regarded as neutral (Oakes, 1986), and monitoring is an
instrument of reform (National Science Board Commission on
Precollege Education in Mathematics, Science, and Technology,
1983).

This chapter argues that the nature, forms, purposes and
design of major models of assessment are dominated by the
prevailing, old world view, helping to perpetuate it, and that
there is an iterative relationship which inhibits change. In
particular, as Romberg argues in cnapter 17, this is true for
Profile Achievement Tests, which are the type of assessment
procedure most applicable for monitoring purposes. If assessment
of progress toward a new curriculum is dominated by the forms and
functions of the old-world view, progress toward a new curriculum
will be impeded by the process of assessment itself. Consequently,
it is essential to lay bare the ways in which contemporary
assessment procedures, particularly group-profile testing
procedures, are redolent of the old world view and to point to
alternatives.
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To develop this argument, let us begin by examining the
current framework for the profile assessment of knowledge --
content by behavior matrices. This will be followed by our
argument as to why this approach is no longer appropriate in the
light of the new world view. In turn, we then summarize new
directions and new partial models before drawing conclusions for
this monitoring project.

CONTENT-BY-BEHAVIOR MATRICES

Introduction

As argued by Romberg in chapter 17, Profile Achievement tests
are comprised of items that reflect the combination of two
classifications. One is related to the content of the items, the
other to the behavioral outcomes response. Classification is a
fundamental intellectual activity that underlies most practical and
theoretical activities. The role of classification in practical
activities, such as sorting the laundry, is self-evident; objects,
both concrete and intellectual, are sorted into convenient
groupings. However, efforts to formulate laws of nature also
involve stating the relationships between members of different
classes. To pursue the laundry analogy, reds are washed separately
from whites to avoid the anathema of pink undershirts. In other
words, "a taxonomy not only classifies phenomena; it also orders
them, and it must be a satisfactory enough tool to reveal
significant relationships between the phenomena" (Romberg &
Kilpatrick, 1969, p. 282). In science,

formulation of laws presupposes classification. . . .

While every theory presupposes a classificatory
scheme, this scheme is in turn influenced by the
content of the theory. . . . The investigator will
frequently have to develop his own classificatory
scheme rather than take over from a developed
explicit theory. The place of the theory is taken
by a provisional model or scheme of the whole
situation in which the inquiry has taken place.
Use of such a model suggests that a classificatory
scheme is required that, when modified as a result
of inquiry, will in turn suggest modifications of
the model. (Korner, 1976, pp. 5-6)

Succinctly, a particular classification is a schematic model
of its underlying theory; taxonomy reflects theory. Nomenclature,
in turn, depends on taxonomy. Thus, an established nomenclature
tends to preserve the principles of the taxonomy which it
describes, and both combine to indirectly perpetuate the theory on
which the taxonomy was based (Korner, 1976).

Classification as a logical process is essentially a matter of
partitioning a domain into sets and subsets, culminating in a class
containing a single, unique member. The process typically relies
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on the assumption that each set is extensionally definite, although
in practice this causes problems. Division into subsets is
appropriate only if no two subsets have anything in common, and all
of the subsets together contain all the members of the partitioned
set. In other words, the subsets are mutually exclusive and
jointly exhaustive (Korner, 1976).

Prototype theory (Cohen & Murphy, 1984) highlights one of the
problems with deterministic classification of concepts. Some
examples of a concept are less typical than others. A thistle head
is less obviously a flower than is a rose. Both have a delightful
fragrance, form, and cPlor; both have uncomfortable prickles for
the unwary (a nonflower concept). One is cultivated, the other
killed. In other words, any concept involving more than one case
almost inevitably becomes a system of concepts and consequently a
fuzzy set. Wohlwill (1973) pointed out, for example, that the
behavioral classifications of the stage theory of cognitive
development (Piaget, 1973) rely on the underlying assumption that
there is synchronous passage from one stage to the next in the
various facets of behavior. Temporary lags in one aspect or
another suggest that (a) the model should be modified to encompass
timelagged relationships, or (b) the theory is based on
unwarranted assumptions, or (c) basing the theory on the notion of
extensionally definite sets is inappropriate.

In summary, classification of objects in a domain starts with
the broadest, most inclusive categories and progressively
subdivides. At any given level in the resultant subsets of subject
matter, categories are theoretically mutually exclusive. Each
subset may be subdivided according to some principle of internal
coherence until a set containing only one object is reached.
Equally, subsets may be recombined to reform the initial set. This
process of ordered set division, the larger set being an
aggregation of its own subsets, is the organizing principle of all
hierarchies. It is a method of analysis that has been used on
everything from land forms to library collections. In the process
of outlining the work of students and teachers, the principles of
classification have also been applied to both the organization and
the sequencing of the content to be taught and learned (e.g.,
Thorndike, 1904; Tyler, 1931) and, with the behavioral objective
movement, to the behaviors exhibiting orders of understanding
(e.g., Bloom, 1956).

For example, precisely such a comprehensive coverage of the
mathematics curriculum was a stated goal of the first IEA (Buser',
1967), the aim being not to pass judgment on an individual student
but to survey cognitive achievement without using a predetermined
standard. Therefore, in planning the battery of tests, the field
of school mathematics was viewed as a whole, and traditional
classifications of mathematics were used to ensure inclusion of all
subfields.
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As an organizing tool, classification of both content and
behavior is well illustrated in the major mathematical evaluations
around which the following discussion will be focused. These are:

1. Hus4n, T. (Ed.). (1967). International Project
for the Evaluation of Educational Achievement (IEA).
Phase I. International study of achievement in
mathematics: A comparison of twelve countries. (Volumes

2. Weinzweig, A. I., & Wilson, J. W. (1977, January).
Second IEA mathematics study. Suggested tables of
specifications for the IEA mathematics tests. Working
paper 1.

3. Romberg, T. A. & Wilson, J. W. (Eds.). (1969). The
development of tests. NLSMA reports No. 7.

4. National Assessment of Educational Progress. (1981).
Mathematics objectives: 1981-82 assessment.

5. Carpenter, T. P., Coburn, T. G., Reys, R. E. & Wilson,
J. W. (1978). Results from the First Mathematics
Assessment of the National Assessment of Educational
Progress.

6. Carpenter, T. P, Corbitt, M. K., Kepner, H. S., Lindquist,
M. M. & Reys, R. E. (1981). Results from the Second
Mathematics Assessment of the National Assessment of
Educational Progress.

Content

Classification of mathematical content typically depends on
the identification of mathematical objects and their attributes.
At the broadest level, categories of mathematical content are a
convenient way of dividing knowledge into such large chunks as
semester courses, textbooks, and major examinations. At an
intermediate level, the categories may be used to organize chapters
in the textbook or weeks in the course. At an even more specific
level, small independent categories of content are the organizing
principle for parts of the daily lesson plan, a unit in the text,
or a homework assignment. Such categories are advantageous it that
they break work into manageable chunks and restrict teaching to the
presentation of a clearly defined segment of the content. By
structuring content into a hierarchy, it is possible to ensure
comprehensive coverage of the subject, whether in teaching,
testing, or learning.

Unfortunately, the classifications on which the sequencing of
instruction and consequent assessment have been based are largely
spurious, a means toward the linear ordering of work. Note that
most instructional sequences have been constructed for purely
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practical reasons and are not true hierarchies. Often strands, and
subjects within strands, are specified, but no conceptual or
psychological dependence is apparent or assumed. If a strict
partial ordering of the segments could be found, a content
hierarchy might be constructed. However, if the structure of
instruction and assessment is to have a positive influence,
mathematical content must be arranged, where appropriate, in true
hierarchies based on the interdependence of skills and concepts.
Two approaches to this problem have emerged, facility hierarchies
(Hart, 1980) and conceptual fields (Vergnaud, 1982, 1983a, 1983b).

Behaviors

The power of classification as a logical organizer also
appealed to college examiners looking for a theoretical framework
to facilitate communication. Thus, at the 1948 American
Psychological Association Convention in Boston, after considerable
discussion, there was agreement that sutil a theoretical framework
might best be obtained by classifying the objectives of the
educational process. The resultr-it taxonomy and nomenclature were
intended to improve communication in the community because the
objectives provided the basis around which curricula ...Lid tests
could be built (Bloom, 1956). The proposal rested on the premise
that educational objectives stated in behavioral forms have their
counterparts in the behavior of individuals, which can be observed,
described --d, therefore, classified. However, fear was expressed
that:

It might lead to fragmentation and atomization of
educational purposes such that the parts and pie..:es
finally placed into the classification might he very
different from the more coiplete objective with which
one started. (Bloom, 1956, pp. 5-6)

Nevertheless, it was felt that the structure of the hierarchy would
enable users to understand clearly the place of objectives in
relation to each other. Consequently, the taxonomy ..as formally
presented at the Chicago meeting of the American Psychological
Association (APA) in 1951. It was subsequently published (Bloom,
1956) and incorporated into the plan for a large-scale
cross-national study of mathematics presented by Bloom at EltYam
and Hamburg in 1958 (Husen, 1967). The taxonomy of behaviors
complemented the classification of content as an organizi1 tool.
As a result, the principles of taxonomy formed the basis for a
matrix model of assessment which ensured comprehensive coverage of
both behavior and content in the first IEA.

Bloom's (1956) taxonomy first divided educational objectives
into three domains: the cognitive, the affective, and the
psychomotor. Only the first two were incorporated into the IEA
(Husen, 1967), and those with somewhat different strategies because
they were the responsibility of different committees. The
committee charged with the affective domain distr:buted
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questionnaires covering both attitudes and descriptions of the
learning environment. That responsible for content viewed
instructional objectives as having three dimensions: the behavior
to be demonstrated (cognitive, affective, and psychomotor); the
content; and a field of application. Because another committee was
responsible for the affective aspects, the content committee
eventually agreed on a primarily cognitive list.

1. Lower mental processes (use or repetition of learned
intellectual activity)

a. Knowledge and information: recall of definitions,
notation, concepts

b. Techniques and skills: solutions

2. Transitional processes (higher or lower, depending on the
novelty of the context)

c. Translation of data into symbols or schema and vice
versa

3. Higher mental processes (demanding lius of thought not
previously used)

d. Comprehension: capacity to analyze problems, follow
reasoning

e. Inventiveness: reasoning creatively in mathematics

The committee's content-by-behavior matrix showing the number
of test items for each category of content and each kind of
behavior does not follow a breakdown identical to its short list of
objectives. Despite this, it is clear that, while over 40% of
items tested the lowest level in the taxonomy, fewer than 3% tested
inventiveness.

Even more clear is that, as a theoretical framework for
ensuring a comprehensive approach to both content coverage and
range of behavioral objectives, the content-by-behavior matrix is a
powerful organizing structure. It enables a rapid overview of the
entire structure and of the relative emphases on one part or
another. Consequently, despite modification of the specifics on
each axis, the matrix approach persisted in subsequent evaluations.
It was integral to the Dldel of mathematics achievement in the
Naf.ional Longitudinal Study of Mathematical Abilities (NLSMA)
(Romberg & Wilson, 1969, pp. 29-44) and the National Assessments of
Educational Progress (NAEP, 1981).

NLSMA, for example, originally considered "an eleven-by-seven
content-behavior matrix" (Romberg & Wilson, 1969, p. 35). However,
content was combined and reduced to three categories: number
systems, geometry, and algebra. The behavioral axis was
consolidated from seven categories to four: computation,
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comprehension, application, and analysis. In the second IEA,
Weinzweig and Wilson (1977) recommended a matrix identical to the
NLSMA on the behavioral axis but subdivided into nine categories on
the content axis. By comparison, the second NAEP, using a
content-by-process matrix, divided the behavioral axis (process)
into knowledge, skill, understanding, and application. The third
assessment expanded application to include problem solving and
added an attitude category (NAEP, 1981; Romberg, 1986).
Nevertheless, specific modifications of the content or behavioral
axes and change in nomenclatu_e from "behavior" to "process"
(Romberg & Wilson, 1969, p. 38) are not important. Persistence of
the matrix as a tool for organizing activity is important and
probably reflects:

1. its power as an organizing tool;

2. its visual facility;

3. the strong continuity between assessment projects created
by relying on those with the most relevant experience in
the field when planning the next project.

Items

A practical problem of testing is that any test attempting to
be comprehensive in approach takes a long time for children to
complete and a long time for teachers to grade. Consequently,
those designing the first IEA (Husen, 1967) had to resolve the
conflict between time and practiLdlity. The European countries
almost all used complex items with an open response format, while
the United States typically used a collection of short tasks.
Responses to the tasks were controlled by a multiple-choice
technique. It was not claimed that the two approaches measured the
same thing. However, the controlled, multiple-choice response
offered advantages:

1. It made possible much more extensive and representative
sampling of the content topics because it tested more
topics less deeply.

2. It was easy to score.

3. It was cheaper and faster than scoring open-ended
responses.

4. Questions could be designed to stand alone and test a
specific objective.

5. Because the items were classified according to location in
the matrix, a more detailed profile of groups of students
became possible.

6. Item design was philosophically congruent with the

166



160

theoretical model for evaluation; they were both
constructed around a matrix.

The matrix model is now so widespread that it is accepted
virtually without question and is the framework within which
itembanks of questions are compiled to test the concepts in a
given cell of a matrix (Wisconsin Department of Public Instruction,
1986).

Psychometrics

Items for assessment not only had to be judged appropriate for
a particular cell of the matrix, they also had to have certain
psychometric properties. Ideally, each was to be of moderate
difficulty (2. values between .4 and .8) and related to other items
in that cell (positive, nonspurious biserial correlation greater
than .30). These criteria were adopted from those used to select
items for standardized tests. They ensure variability and
discriminability of scales derived from those sets of items
(Romberg & Wilson, 1969). Unfortunately, the items which meet
these criteria contribute to the questionable validity of profile
achievement tests.

Summary

The deep structure of the theoretical model implicit in major
evaluations of mathematical education is based on a matrix of
taxonomies of content and behaviors. The convenience and power of
the model is reflected in its persistent use in the face of
changing circumstances.

DISCONTENT

Introduction

Noting the failure of the mathematics reform efforts of the
1960s and early 1970s, Westbury (1980) argued that change involves
the abandonment of practices, as well as their adoption. The deep
structures of formal and informal institutional apparatus,
procedures, forms, and rituals tend to preserve the status quo,
frustrating efforts at curricular reform. However, just as
students have difficulty in learning because they fail to modify
old conceptions, so ingrained theoretical structures carry an
intellectual baggage that impedes change.

A new cohesion between the goals of education, its practices,
and the methods of assessment, which would promote educational
change rather than stifle it, therefore depends on divestiture of
old styles of thinking. For that to happen, there must first be a
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recognition of the ways in which the concepts of the old world view
dominate the deep structure of present evaluation. Despite
longstanding and growing concern, the values and forces that
dominated mathematical education twenty years ago are embedded in
the theoretical structures of prevailing methods of assessment.

Behaviorism

Behaviorism reflects the application of the engineering
approach of scientific management to the problems of education.
Scientific management rested on three basic principles:
specialization of work through the simplification of individual
tasks, predetermined rules for coordinating the tasks, and detailed
monitoring of performance (Reich, 1983). These microprinciples
pervaded American education with the same thoroughness with which
they were applied in the economy. They dominated the breakdown of
knowledge, the roles of teacher and students, instructional awl
administrative processes, the buildingblock approach of Carnegie
units, the content and structure of textbooks, belief in the
textbook as an effective tool for transmi_ing content, the
structure of university education, and monitoring and, evaluation.
Hence emerged the notion of progress through the mastery of simple
steps, the development of learning hierarchies, explicit

directions, daily lesson plans, frequent quizzes, objective testing
of the smallest steps, scope and sequence curricula.

Unfortunately, these are only the more obvious aspects. One
consequence of such meticulous planning is that it renders the
unplanned unlikely. A second is that a system designed to
eliminate human error and the element of risk also eliminates
innovation. A third is that, like factory work, it is crashingly
dull, uninspiring, and unmemorable except for its boredom, for
personal involvement and the mnemonics of the unexpected are
nonexistent.

Bloom's taxonomy of educational objectives epitomizes the
domination of American education by scientific management, for it
completed the process by which not only the content of learning but
the proxies for its intelligent application were classified,
organized in a linear sequence and, by definition, broken into a
hierarchy of mutually exclusive cells. The consequences in the
classroom were far reaching. Scope and sequence charts prescribed
which parts of a subject were to be covered in what order; each
cellular part of each subject was put into a matrix (e.g. Romberg &
Kilpatrick, 1969, p. 285); behaviors suggesting desirable
intellectual activity were also sequenced. However, given the
multiplicity of subject cells to be covered, the easiest way to
finish the prescribed course of study was to simply cover content
without worrying too much about thought. Furthermore, matrices are
difficult to construct effective.,y on paper in more than two
dimensions. Consequently, few scope and sequence charts addressed
both levels of thinking and specific aspects of content within an
overall discipline in a very coherent manner. Thus, a focus of
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concern in documents addressing the quality of education has been
the failure of students co reach the "higher order intellectual
skills" (National Commission on Excellence in Education, 1983, p.
9).

Recognition of this failure is a reflection of the
incorporation of Bloom's taxonomy into the fabric of national and
international evaluation and, by implication, a tacit expression of
the depth of penetration of scientific management. It also
indirectly reflects perceived inadequacy of the stimulus-response
philosophy as a model of human behavior.

The continued dominance of behaviorism and scientific
management over the thinking of leading mathematics educators is
reflected in the persistence of Bloomian content by behavior
analyses in the second lEA and in both NLSMA (Figure 1) and the
activities of NAEP (Figure 2). Continuation of this pattern would
be catastrophic because it would suggest that those responsible for
evaluation have failed to take cognizance of the power of the deep
structures to constrain curriculum development (Westbury, 1980)
through the implicit goals suggested by the form and content of
evaluation.

Attacking behaviorism (e.g., Suppes, 1965) as the bane of
school mathematics, Eisenberg (1975) criticized the dubious merit
of a task-analysis, engineering approach to curricula because it
essentially equates training with education, missing the heart and
essence of mathematics. Expressing concern over the validity of
learning hierarchies, he argued for a reevaluation of the
objectives of school mathematics. The goal of school mathematics
is to teach students to think, to feel comfortable with problem
solving, to help students question and formulate hypotheses,
investigate, and simply tinker with mathematics.

Persistence of Bloom's Intel ctual model is also reflected in
the continued use of associated nomenclature. Use of the term
higher order thinking, for example, directly expresses reliance on
Bloom's taxonomy :or the theoretical model. This is of particular
concern because of its associated intellectual baggage; it implies
that lower order thinking precedes higher thinking processes.
However, activities associated with higher order thinking are not
limited to advanced levels of development. Failure to stress
higher order features of thinking because of the belief that a
lower order must be attended to first is a source of major learning
difficulties. In reading, for example, cognitive science has
suggested that "processes traditionally reserved for advanced
students . . . might be taught to all . . . especially those who
learn with difficulty" (Resnick, 1987). This approach is
subliminally impeded by continued reliance on nomenclatures and
models of assessment that have Bloom's taxonomy as their underlying
construct.
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Figure 1. NLSMA Model for Mathematics Achievement
(from Romberg and Wilson, 1969, p. 44).
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Figure 2, Cbjectives Framework for Third NAEP Assessment
(from NAEP, 1981, p. 10).
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Content

By definition, classifications of knowledge, whether for the
purpose of organizing the curriculum or for monitoring curricula,
make an implicit statement of theory. Statements of curricula that
focus around knowledge broken into subjects for study, such as
mathematics into algebra, geometry, etc., have the immediate impact
of stating that:

1. Knowledge can be broken into clearly defined, independent,
selfsustaining parts;

2. Such an approach is important, more important than any
other approaches which might follow;

3. There is a logical sequence of development in which each
part builds on a preceding foundation;

4. It is important to know about the divisions of knowledge
enumerated.

Such implicit assumptions may be unwarranted if, for example,
knowledge is regarded as unitary and emphasis is on knowing rather
than knowing about. The approach may also be unsuitable If there
is genuine concern with application and problem solving. Stated
simply, purpose should suggest form, and form implies purpose;
incoherence may be inferred from anything less.

For instance, for schools dominated by traditional curriculum
engineering, the IEAs, NLSMA, and the NAEPs are tightly coherent.
However, the model around which they were built is congruent
neither with the efforts of those schools which construed the
purpose of mathematics differently from those designing the
evaluations, nor with the purpose of schools trying to reform the
mathematics curriculum. For example:

Criticisms of the content outline and thus of the
international grid . . . were partly due to the fact
that for some National Committees the order and
grouping of the topics in the outline were thou3ht
to imply an underlying philosophy or instructional
treatment different from that commonly espoused in
their particular country. The proportion of content
which was common to all countries was considerable,
but wording or placement in the content outline
caused some National Committees to express doubts
about the validity of the proposed grid for their
curricula. (Garden, in press)

Thus, discussing the validation of the cognitive instruments in the
second IEA, Garden (in press) made explicitly clear the continued
dominance of the Bloomian model and the difficulties experienced by
the Belgians in relating the study content to their conception of
mathematics as a field of inquiry.

.
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Disagreement over the precise structure and arrangement of
content in a grid is only part of the problem. Westbury (1980)
pinpointed a more fundamental concern: the difference between the
intellectual structure of a discipline and its institutional
structure in schools, where it is an administrative framework for
tasks. The consequence is that administrative stability impedes
intellectual change. For similar reasons, Romberg (1985) described
mathematics in schools as a stereotjped, static discipline, in
which the pieces have become ends in themselves. A similar
response to the impact of scientific management and behaviorism on
mathematics as a school subject is Scheffler's (1975) denunciation

of the traditional, mechanistic approach to basic skills and
concepts:

The oversimplified educational concept of a "subject"
merges with the false public image of mathematics to
form quite a misleading conception for the purposes of
education: Since it is a subject, runs the myth, it
must be homogeneous, and in what way homogeneous?
Exact, mechanical, numerical, and precise--yielding
for every question a decisive and unique answer in
accordance with an effective routine. It is no wonder
that this conception isolates mathematics from other
subjects, since what is here described is not so much
a form of thinking as a substitute for thinking. What
is in point is the process of calculation or computation,
the deployment of a set routine with no room for ingenuity
or flair, no place for guesswork or surprise, no chance for
discovery, no need for the human being, in fact. (p. 184)

Item Independence

The single most severe criticism of objective test questions
designed to assess a specific item of content at a specific level
of behavior is that they trivialize learning and knowledge (Berlak,
1935). This; is almost inherent to such questions for several
reasons. First, they are designed to test a single, specific
objective, clearly defined in the matrix. Thus, elements in the
multiple- choice format are designed so that the candidate can pick
an answer which is sufficiently specific to unequivocally
demonstrate the sought behavior. This tends to eliminate synthesis
between content and behavior. Second, the very nature of objective
tests, which ask the user to choose among alternatives, eliminates
creativity in answering. Even the intent militates against
creativity in answering because it is microanalytical rather than
synthetic or creative.

Frederiksen (1984) observed that a multiple-choice format does
not measure the same cognitive skills as a free-response form, and
that "efficient tests '..end to drive out less efficient tests,
leaving many important abilities untested--and untaught" (p. 201).
One example of a desirable outcome untested and untaught is the
ability to cope with ill-structured problems, which are not found
on standardized achievement tests.
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A less obvi'us idpact was observed by the Assessment of
Performance Unit (Cambridge Institute of Education, 1985). The
multiple-choice format is an interventional mode of questioning
which appears to offer a greater chance .`or success in situations
where the student is unfamiliar with the material. However, in
other situations, students benefited from the opportunity to think,
achieving greater success with the free-form response.

Another aspect of most objective tests is that, even though
some questions may be designed to test lower level thinking and
others are designed to evaluate higher thought processes, they are
usually tested independently of each other, allowing little notion
of a child's approach to a given problem.

In addition to their direct effects, such tests exert powerful
indirect effects on both the style of teaching and the style of
learning. When one studies for an essay exam, one progressively
surveys and synthesizes, putting the parts together and developing
a mental model of the structure of the subject. One also develops
points of view, arguments to advance and support, for those are the
expectations. By contrast, in studying for an objective,
multiple-choice test, one learns to cover the parts and make fine
distinctions between alternative ways of stating the same thing in
order to distinguish a "right" answer from a "wrong" one, the
implication being that there is a single right answer. In other
words, the one requires that students create their own models of
mathematics, the other reinforces the view of mathematics as a
ground to be covered.

Summary and Conclusion

The intent of the content-by-behavior matrix is in every
respect hierarchical. It leads to ranking of those assessed by
standardized tests according to their position on a normal curve,
with the result that

despite the lip service we pay to the myriad ways in
which individuals differ. . . . [i]t is the performance
on these tests--with their narrow and rigie definition
both of when children ahould be able to perform
particular skills and how they should be able to
exhibit their knowledge--that determines whether we
see children as "okay" or not. In the process we
damage all children--we devalue the variety of
strength they bring with them to school. All
differences become handicaps. (National Coalition of
Advocates for Students, 1985, p. 47)

It is easy to be dispaseonate about a theoretical model.
However, the accompanying objective testing invariably results in

poor, minority and handicapped students placing at the low end of
the curve. It stamps with failure the groups most dependent on the
educational system for improvement and acts as a dangerous social
filter.

. .
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Unfortunately, it is incredibly difficult to shrug off old
habits. For example, the architecture of current evaluations, the
two-dimensional content-by-behavior matrix, is a seductively
convenient model for organizing information visually; occasionally
a three-dimensional version expands the possibilities (e.g.,
Carpenter et al., 1978; Foxman, Cresswell, & Badger, 1981) but
increases the conceptual load and so is used less (e.g., Carpenter
et al., 1981). The intellectual consequences of using a
two-dimensional matrix bear thought. It encourages a tendency to
tacitly view successive cells in a row or column as entities having
a sequential and linear relationship to each other. It also causes
visual separation of nonadjacent calls, subliminally interrupting
perception of relationships between them. If such relationships do
exist, the visual patterns of the matrix have a powerful, often
mnemonic, impact. If not, the framework is not inert, it suggests
relationships which are simple, numerically restricted, and linear.
Persistence of the matrix form is likely to continue as long as
information is presented on paper. However, the potential of
electronic data bases and computer-based modeling suggests that
multiple viewpoints may be more revealing and less constraining.

In a stable situation in which there is coherence between
purpose, curriculum, and evaluation, testing what has not been
taught is ludicrous. However, in a situation where there is
dissatisfaction with both what is taught and what is not taught,
where change is sought, it is vital to consider the purpose of
teaching mathematics and to test for what is sought regardless of
whether it is taught. The purpose of teaching mathematics is no
longer computation and routine algorithms; anything that can be
reduced to a routine algorithm can now be done by computers.
However, while purpose has changed, the content and structure of
evaluation remain the same.

As long as segmented structures and segmentalist
attitudes make the very idea of innovation run
against the cultural grain, there is a tension
between the desire for innovation and the continued
blocking of it by the organization itself.
(Kanter, 1983, p. 75)

The key issue is that structures constrain, whether they are
subject structures, behavioral structures, or theoretical
frameworks for testing and assessment. Modifying the detail of a
structure is merely an exercise in fine tuning. Fine tuning the
theoretical structure of the content-by-behavior framework by
modifying content, or by seeking ways of attaining higher levels on
the behavioral axis, can only be ameliorative. Substantive
progress will be accomplished only through a remodeling of the
fundamental theoretical framework.
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NEW PURPOSE: MANAGING COMPLEXITY

Introduction

One of the most notable features of the existing framework for
assessment of mathematics achievement in the United States is its
logical congruence with the world view of science and society that
has existed during this century, and thus with the intellectual
structures and purposes dominating the education it was designed to
assess. That coherence contributed largely to the inherent
intellectual power of the content-by-behavior matrix as a
theoretical model. If alternative frameworks for assessment are to
be equally powerful, they must equally congruent with tl-e forces
requiring their construction, namely the changed views on science
and society.

Traditionally, developments in mathematics and mathematical
education have been coherent with the prevailing philosophy of
science. At the root of scientific management and the matrix model
of assessment were the concepts of classical dynamics. The
classical view emphasized stability, order, uniformity,
equilibrium, linear relationships, results proportional to input
and lawfully predictable from the current state of the system, and
the separation of theory and technology. Hence, the intellectual
foundations of the content-by-behavior matrix were rooted in a view
of processes as linear, stable, un.form, equilibrial, and
proportional. Thus, analysis was acceptable as the dominant
intellectual tool. It was, according to Prigogine and Stengers
(1984), "a world in which the only events which could occur were
those deducible from the instantaneous state of the system" (p.
225). From the classical standpoint, it was perfectly feasible to
analyze, isolate, experiment, and deduce.

This stable, linear, hierarchical approach was also the
dominant social philosophy. That fact was reflected in, for
example, managerial, political, and ecclesiastical organization,
and in the rank-ordering philosophy of assessment practices.
However, these traditional views are now being regarded as too
simple to account for complex reality, whether in science or social
organization. For example, uncertainty and instability are part of
reality but the bane of short-term economic forecasting (e.g.,
Clark, 1986). Alternative and radically different models of khowing
(e.g., Bohm, 1983) and learning (e.g., Kuyk, 1982) have been
proposed which incorporate the most recent views of physics and
mathematics. In areas such as classification (e.g., Farradane,
1980a, 1980b) and truth (e.g., Reacher, 1979) and in practical
problems facing mankind, such as global warming, a more coherent
approach is sought. to cope with complexity. The search for tools
to handle complexity is clsarly reflected in the intellectual
trends of mathematics (National Research Council, 1984):

1. the concern with nonlinearity;

2. the increased role of discrete mathematics, essential to
network node location and the distribrtion of information;
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3. the increased role of probabilistic analysis;

4. the development of large-scale scientific computation.

Even more significant in the effort to handle complexity is a
double movement toward a new coherence in the mathematical research
community: internally, toward unifying ideas, blurring the
boundaries so that diverse mathematicians again participate in a
common enterprise; externally, toward interaction with science and
technology (National Research Council, 1984). Jaffe (1984) pointed
to the reunification of mathematics with theoretical physics and
its revolutionary consequences. This reunification with other
sciences is best illustrated by the concurrent but independent
development by meteorology, genetics, and theoretical physics of
nonlinear mathematical models (Hofstadter, 1986), which thereby
illustrates Jaffe's (1984) view of the iterative relationship
between excellent mathematics and practical application.

In chaos theory, for example, Prigogine and Stengers (1984)
created a synthesis between linear and nonlinear causality;
singular anomalies, normally ignored for the purpose of abstraction
in the classical approach, under conditions far from equilibrium
play a disproportionate role when part of a reactive loop. Under
such conditions, there are no universally valid laws on which
predictions can be based. Random and irreversible events reach a
threshold at which bifurcation takes place and there is,
unpredictably, either new order or further disorder. Thus the new
view of science blends the linear and the circular; it empha.izes
probability and stochastic processes, the importance of chance.
Because apparently minor events can have disproportionate results,
it renews the importance of practice as a source of theory. At a
practical and an intellectual level, the individual is no longer
doomed to insignificance.

Pask's (1984) characterization of an overused concept
illustrates one problem of long-term stability in a theoretical
model. When a concept is first learned and applied, the user can
describe how it was conceived and used. However, as its
application becomes automatic, the concept becomes ingrained and
rigid because there is no longer a conscious transfer of
information to link procedures. For the person who has learned to
ride a bike, for example, only disturbance of the equilibrium,
prompted by the need to learn snmething novel like riding a tandem,
or by the desire to teach somebody else, will renew awareness of
the application of the concept. This is essentially the case with
the content-by-behavior frameworl- of assessment, which persisted in
the face of a changing world view. Even advocates of new
assessment schemes (practical tests, problem solving, etc.) such as
the Assessment of Performance Unit (APU) (Foxman, 1985) have used a

content-by-behavior matrix (Romberg, 1986). Nevertheless, the
real significance of the situation lies in the p _ncipie of
complementarity:
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No single theoretical language articulating the
variables to which a well-defined value can be
attributed can exhaust the physical content of
a system. Various possible languages and points
of view about the system may be complementary.
They all deal with the same reality but it is
impossible to reduce them to one single description.
(Prigogine & Stengers, 1984, p. 225)

In other words, the basic problem is not that the matrix model
was wrong, but merely that it was inadequately simple and
insufficiently flexible to accommodate new theoretical
developments. It makes the assumption that items, cells, columns,
and rows are independent.

In any model, cohesion comes from purpose. The tight cohesion
of the content-by-behavior framework came from the: intent to assess
and, implicitly, sort children according to their knowledge about
mathematics and, secondarily, by their ability to think. It was,
and is, a quantitative, linear model of content, process, and
people. The content-by-behavior matrix of evaluation does not
question the purpose for teaching mathematics, it reflects purpose.
It also derives from congruence between purpose and intellectual
tools. The purpose was to sort pesple into linear rankings of
extensionally definite sets, which is precisely what a matrix does.

Evaluation and assessment in a stable paradigm may take for
granted the purpose for teaching and the philosophical foundations
of the subject under evaluation, but in a period of major societal
change, such nonchalance is unwise. Not only has stability been a
relative matter in this century, but the new world view
specifically rejects the consequences of old cohesion, of which the
content-by-behavior matrix is a microcosm. Because the stated
purpose is no longer to rank-order, but to cooperate in the
creation of knowledge, that concept should become the cohesive
force of any new theoretical model. It is, furthermore, a
qualitative, rather than quantitative, concept.

As argued in chapter 2, the new world view is, above all,
integrative; it sees everything as part of a larger whole, with
each part sharing reciprocal relationships with other parts. It
seeks a rational balance between education and training, between
cooperation and individual effort, between the development of
intelligence and its measurement, between the integration of
intuitive and analytical thinking and an exclusive stress on the
analytical, and between constant learning for the purpose of
innovation and adaptability as opposed to one-time schooling for
life. The new world view stresses the acquisition of understanding
by all, including the traditionally underprivileged, to the highest
extent of their capability, rather than the selection and promotion
of an elite. It is a philosophy that simultaneously stresses
erudition and common sense, integration through application, and
innovation through creativity. Most importantly, it stresses the
creation of knowledge. It is as tightly coherent as the old world
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view; to espouse the intent but retain the old model of assessment
is to lose the integrity of the old without gaining that of the
new.

To recap, the process of assessment affects the educational
process it is designed to evaluate, and the power of the old model
derived in large part from its congruence with the underlying and
coherent philosophies of science and society. Cohesion is a matter
of purpose. Logically, if it is to be a powerful tool for
intervention, any new model should be as closely congruent with the
purposes, philc iphy, and methods of the new world view as the
matrix model was with the old.

Recent Statements of Purpose

The goal of mathematics as a domain is creation (or discovery)
of new knowledge. Children are inventive (e.g., Moser, 1980).
Thus, the primary objective of mathematical education should be not
to perpetuate existing knowledge, but to foster a contemplative
approach which will support the creation of new knowledge.

The objective is to produce new mathematics, to create nev
t:ieories, to help in the solution of new problems which are
only now being identified and recognized. . . . We n'ed
all the creative power of youth, we need new forms of thought
which we cannot envisage. The primary objective of
mathematics education is not to perpetuate knowledge or to
push existing knowledge a little further . . . but to foster
the creation of new knowledge. (D'Ambrosio, 1979, p. 193)

On a practical level, the aim of mathematics education is to
provide students with the understanding, processes, and language
needed for communication and problem solving in adult life
(Committee cf Inquiry into the Teaching of Mathematics J.& Schools
[CITMS), 1982). This stress on application and problem solving has
engendered a move towards interdisciplinary efforts. In
consequence, the stress on content in school mathematics is giving
way to a stress on the processes of mathematics and learning.
Succinctly, emphasis in mathematical education has changed from
knowing about mathematics .) knowing mathematics (Romberg, 1983).

This concern with the directions of mathematical education is
not a parochial matter restricted to the United States, but a
serious cow:ern internationally. In the United Kingdom, for
example, the aims of mathematics teaching have been described, in
practical terms, aL the use of mathematics in communicating
information and ideas, its use as a powerful problem-solving tool
(especially in analyzing relationships), and its fascination (DES,
1985). Equally important is the learning of attituocs and habits,
the sense of mathematics as a creative process requiring
imagination, initiative, and flexibility, and the habits of working
systematically whether independently or cooperatively. Most of
a21, the learning of mathematics should be an experience from which
students derive enjoyment and -onfidence, (DES, 1985).
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Processing/Strategies

Reaction against the long domination of the survey-the-domain
approach to content has resulted in a strong stress on process in
mathematics education, on the process of mathematics, on the
process of learning mathematics, and, contributing to the learning
process, on the context in which that learning takes place
(D'Ambrosio, 1979; Freudenthal, 1983; Romberg, 1983). Both
innovation and adaptation involve recognition of a problem or an
opportunity, hypothesizing of a solution, and resolution of ensuing
problems. Thus, modeling (Buck, 1965; D'Ambrosio, 1979),
conjecture (Schwartz, 1985), and problem solving (CITMS} 1982;
National Council of Teachers of Mathematics [NCTM], 1980) have been
described as the heart of the mathematical process. More lucidly,
the mathematical process was distilled to abstraction, invention,
proof, and application (Romberg, 1983).

In essence, a new common thread has emerged. The making of
conjectures is essentially the abstraction of concepts into a
mental model, a process whereby certain qualities of actual events
are internalized and others ignored. Similarly, the process of
mathematical modeling is an extension of the process of concept
formation (cf. Skemp, 1979), in that there is an iterative process
of model abstraction, validation through simulation or actuality
tt ting, and further reflection. "To do mathematics is to create
and manipulate structures" (Lesh, 1985, p. 81). Thus, one makes
conjectures and, having extracted a workable model or concept, uses
it. Further problems may require fine tuning of the model, or may
prompt the development of new models. There is, therefore, a
cohesion of thinking between the methods of mathematics and the
processes of the mind based on a commonality of purpose--the
creation of new knowledge.

In many respects, this is similar to the Kuhnian (1962) notion
of science. Hence, mathematics is the science of order, the
identification, description, and understanding of complex
situations (Jaffe, 1984). Mathematics codifies such situations
with ele3ance and simplicity so that it is possible to prove or
disprove abstractions and to evaluate predictions based on the
model; the process then supports further abstraction. There is an
iterative, if unpredictable, relationship between abstraction and
application; abstraction leads to applications and hard problems
lead to the invention of new mathematics (Jaffe, 1984). In other
words, mathematics supports the processes of thinking,
communication, and practical activity.

Freudenthal (1983) stressed that, while problems in
mathematics may be isolated, those in mathematical education may
not. While the history of mathematics has been one of progressive
schematizing and formalization, in learning mathematics the
psychological progression of understanding in more important than a
historically sequenced development of content. Consequently, while
stressing process to the virtual exclusion of content,
Freudenthal's first emphasis was on the processes of learning. For
mathematical education, these include:
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1. paradigms of how children learn mathematics;

2. diagnosis of problems in learning mathematics and
prescriptions for solutions; and

3. identification of levels of mathematical learning,
which would facilitate cooperative activity between
children at different levels.

This emphasis on process draws attention to the most fundamental
distinction between mathematics and mathematical education: the
focus of the first is the discipline; the focus of the second is
the child (Skovsmose, 1985).

The psychological problems of mathematical education are
integral to the process of creating new mathematical knowledge.
For example, children must learn to reflect on and argue their
intuitions in order to develop formalizations. Hence, one danger
of training in algorithms is that it will block the pathways to
intuition (Freudenthal, 1983). In addition, language and a sense
of appropriate precision also are important, both in formalizing
and codifying an argument and in application.

Because the problems and processes of mathematics education
are interwoven, the context in which that education takes place is
crucial to the development of learning processes and of
mathematical attitudes. Mathematical attitudes are not sync-iymous
with attitudes toward mathematics but are a reflection of a
coherence (or lack thereof) between language and notational system,
a feeling for mathematical structure and perspective. Thus, a
major challenge is the creation of situations which will encourage
the process of doing mathematics (Freudenthal, 1983).

The goal is for children to think for themselves (Bell, 1985).
If the context in wIrt.ch children learn mathematics is regarded as a
separate issue from the processes and content of mathematics,
instruction in techniques replaces instruction in content.
Children need to be able to identify and initiate their own
problems, to express their own ideas, to make and test their own
hypotheses, to rationally defend their own ideas, and to

constructively criticize the ideas of others (Bell, 1983). The
process of teaching children mathematics is therefore changing from
exposition and drill in algorithms and skills to a combination of
discovery and diagnosis (Bell, 1985). Exposition and algorithms
are seen as more properly following experience with realistic
problems (DES, 1985). The intuitions and naive source-ideas
derived from basic "paradigmatical experiences" (Davis, 1972) are
crucial to the development of understanding.

Content

Proposals abound for modification of the content of
mathematics education for children. Some recommendations proceed
from the assumption that there is a curriculum in place that needs
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modification; such recommendations suggest additions and deletions
to existing courses (Usiskin, 1984). Others (e.g., California,
1985; 1985) specify concepts and subjects to be taught.
Project 2061's initial phase, for example, is content
identification. In considering content, an early meeting of the
mathematics panel (American Association for the Advancement of
Science, 1985) brought up graphs, math as a language, attitudes,
algorithmic computation, arithmetic. The NCTM (1980) advocated
problem solving as the focus of school mathematics in the 1980s,
which is less a recommendation of content tlin of process. Perhaps
because of stress on process, more recent recommendations (DES,
1985) have emphasized the objectives of mathematics instruction and
the consequent criteria for conteat. Thus, the widely stated aims
of mathematics teaching ask that children acquire facts, skills,

conceptual structures, general strategies, and personal qualities.
From these aims, the following criteria for content may be eerived.

1. Students are able to cover content successfully at
their own appropriate level;

2. Content is not so extensive that it impose restrictions on
the range of classroom approaches;

3. Content forms a coherent structure;

4. Students are exposed to a broad content;

5. Content meets the mathematical needs of the rest of the
curriculum;

6. Content meets the basic mathematical needs of adult life,
including employment;

7. Content includes elements which are intrinsically
interesting c,ad important;

8. Appropriate weighting is given to the essential and the
desirable;

9. Content takes ac cunt of the potential of electronic
calculators; and

10. Content is increasingly influenced by developments in
microcomputing.

It is significant that the Department of Education and Science
(DES) curriculum guide (1985), while recommending abilities,
attitudes, classroom approaches and assessment strategies,
completely abstained from any recommendation of specific content,
such as algebra, geometry, discrete mathematics. This essentially
follows the argument of the report from the National Advisory
Committee on Mathematical Education (NACOME, 1975) that, in a
rapidly changing world, no specific curriculum could ever be
recommended. One possible reason, of course, is that content is
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changing so rapidly that specification of particular content or
courses is futile. More to the point is a clearer perception of
what it means to do mathematics.

In one respect, it can be argued that mathematics has no
content. Its objects are all imaginary, belonging to the
intellectual world, its content its own epistemology.
Consequently, the traditional content of mathematics--arithmetic,
geometry, algebra, or calculus--never was content but always
process. If emphasis on process and the creation of mathematical
knowledge means that the content of mathematics is its own
epistemology, several things follow:

1. Context, content, and process are inextricably related.
Some sense of this is emerging in, for example, the work
of Vergnaud (1982, 1983a, 1983b, 1984) on conceptual
fields, in which the context, the relational invariants,
and the signifiers are all not merely related but are a
tightly cohesive system. In essence, the move toward a
coherent approach in science is already being reflected in
some parts of the pedagogy of mathematics.

2. Interdisciplinary activity is a natural corollary once
mathematics is seen as a process in search of content and
context. Thus, it makes more sense for children trying to
understand entirely abstract processes to root their
understandings in concrete contexts from the real world,
whether cake baking or stream flow.

3. A clear understanding of the significance of an
epistemological emphasis is essential to the creation of a
framework for assessing the mathematical progress of
children.

An Epistemological Approach

Epistemology is concerned with the origin, nature, methods,
and limits of knowledge. Therefore, emphasis on the creation of
knowledge virtually requires an epistemological perspective.
However, that carries with it a long-standing. controversy over
whether the knower and that which is to be known are separate
entities (von Glaserfeld, 1983). When the Lnower and the known are
seen as separate entities, knowing involves making cognitive

structures match the reality which they are supposed to represent.
However, because experience is the way to knowing, knowledge is
necessarily subjective and constructive and cannot be separate from
the knower. In this context, public knowledge structures ensue
from communal agreement about private cognitive structures. If a
usable coherence is to emerge around which to create a new
framework for assessment, it is important to cone.der some
implications of the two approaches.
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On the one hand is the view that declares that: The
acquisition of a social knowledge like mathematics
is not reducible to a process of spontaneous
construction by children, adolescents and adults,
even if one considers as essential a constructive
approach to learning. (Vergnaud, 1983c, p. 2)

Vergnaud (1983b) has a very distinct view of the
interrelationships between meaning and complexity, which holds that
the meaning of mathematics comes from practical and theoretical
problems to be solved. This view is crucial to his perception of
mathematics as arising from contexts. He emphasized the theory of
didactic situations -- conceptualizations depend on the context in

which they are formulated and are eventually modified in the face
of new situations. In other words, knowledge emerges in situ, and
there is a tight relationship between the context, the conceptual
properties of the context, and the symbolic representation (cf.
Kaput, 1983) which best represents both concept and context. If a
student does nC: have a coherent system of concepts, relationships,
and symbols appropriate to a given situation, the level of
complexity is commensurately higher and obstructs understanding.
Conceptual development is so slow that it is desirable to study the
same field year after year, going deeper, meeting new contexts
through different problems to be solved (Vergnaud, 1982). The
problem of complexity, therefore, is not simply one of memory
overload but of the difficulties inherent in conceptualizing
tightly interrelated structures of concept, procedure, and
representation. This constitutes a serious problem for the
transfer of concepts from one context to another. It is a matter
of cognitive dissonance:

This source of resistance to change lies in the fact
that an element is in relationship with a number of
other elements. To the extent that the element is
consonant with a large number of other elements and
to the extent that changing it would replace these
consonances by dissonances, the element will be
resistant to change. (Festinger, 1957, p. 27)

Hehoe, Vergnaud (1983b) stressed the importance of identifying
and classifyi,..g situations according to their conceptual fields,
apparently emphasizing the inherent properties of the matter to be
known. Good teaching therefore requires that a set of r,21ations be
learned in one context and then in another, so that the relational
invariants and common structure can emerge. A gradual increase in
complexity relies on controlled changes of structure in a fixed
context and deliberate transfers of structure from one context to
another (Bell, 1985). In other words, control over increases in
complexity depends on a moderated introduction of cognitive
dissonance.

By contrast, von Glaserfeld (1983) adopted the constructivist
perspective to epistemology, stressing that knowledge is not
necessarily a picture of reality but provides structure and
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organization to experience. Davis and Hersh ('981) took a similar
position:

The whole object of mathematics is to create order
where previously chaos seemed to reign, to extract
structure and invariance from the midst of disarray
and turmoil. . . . To create order--particularly
intellectual order--is one of the major human
talents, and it has been suggested that mathematics
is the science of total intellectual order. (pp. 172, 173)

The all-important function of such constructed knowledge is to
enable the solution of problems. Knowledge is not a transferable
commodity but a matter of the students' conceptual organization of
their own experience. "Most of our heuristic knowledse of
mathematical enquiry f.3 tacit; built on our experience and our
unconscious systematization of that experience" (Ruthven, 1985, p.
106). Rightness is not a matter for assessment against another's
standards but of the "fit" of the internal order with the external
problem. Understanding consists of fitting a c,,ncept to the
language at hand, analogous tv the process of matching knowledge to
experience.

Thus, there is an apparent polarity of the epistemological
approach, with strong pedagogical implications, which is likely to
make the search for a new cohesion difficult. Vergnaud attends
primarily to the matter known, von Glaserfeld to the knower
(Kilpatrick, 1983); the former is domain-centered, the latter
child-centered. The divergence, emphasized by use of such terms as
"transmission" of knowledge (Vergnaud, 1983c, p. 2), seems to
shatter any hope for a cohesion around whica to build an assessment
framework whose purpose centers around the creation, rather than
acquisition, of knowledge.

It would be easy to misread Vergnaud and regard stress on
conceptual fields as an updated version of the content-oriented,
cover-the-ground philosophy. While it is domain-oriented, it is
also constructivist and child-centered. Knowledge is Lath by
children from problems they have solved and situations they have
mastered; their conceptions, models, and theories are shaped by the
situations they have met (Vergnaud, 1982). This point is crucially
important because it obviates a philosophical conflict. The
strategies-rnd-errors approach of diagnostic teaching (e.g. Bell,
1985; Hart, 1984), which is the essential groundwork for efforts to
establish aril use conceptual fields, is equally essential to the
constructivist, coherentist approach (e.g., Aescher, 1979; Skemp,
1979; von Glaserfeld, 1983) to knowledge and learning.

It was argued in chapter 2 that the goal of mathematical
education should be the ability to produce new knowledge, whether
personally new, new in the sense of a new solution to a problem, or
new to the domain. This cannot occur in a vacuum; i) must be viewed
in reference to the structure of personal knowledge, practical
application and the structure of the domain, for that is the
process by which new knowledge is valiflated.
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The key that links the domain orientation of conceptual fields
with the constructivist viewpoint is diagnostic teaching (e.g.,
Bell, 1982; Bell, Swan, Onslow, Pratt, Purdy, and others, 1986).
This is based on critical tasks, designed to reveal students'
strategies and errors. The tasks should be embedded as closely as
possible in the context in which the student is likely to apply the
principle being learned (Bell, 1985). In other words, practical,
problem-solving activities are part and parcel of the diagnostic
approach.

In one sense, strategies-and-errors research and diagnostic
teaching have, by implication, an iconic model against which the
child's knowledge is compared, with the intent of transforming the
cognitive structure of the novice so that it matches that of the
expert; the analytical framework of conceptual fields contributes
significantly to the process (e.g., Bell, 1985; Bell et al., 1986;
von Glaserfeld, 1983). If that is all it is then both diagnostic
teaching anc: conceptual fields remain a cover-the-ground approach,
albeit of somebody else's cognitive structure rather than somebody
else's factual knowledge of the domain.

From another perspective, diagnostic teaching monitors the
success cf the child's strategies against the problem attempted.
From this view, a strategy is only in error if it fails to
adequately solve the problem, even though more efficient strategies
may exist. Most importantly, if diagnostic teaching regards
anomalies as important and in the process of diagnosis, not only
errors but unique strategies and ways of looking at problems
emerge, that amounts to the documentation of new knowledge
ptaduction. It is, in essence, an approach to the identification
and validation of new knowledge.

Our argument runs as follows:

1. An epistemological approach to mathematical education is
required.

2. An epistemological approach invokes a fundamental conflict
between the views of knowledge originating independently
of the knower or inseparably from the knower.

3. Conflict is resolved for the purpose of mathematical
education by diagnostic teaching and an approach to the
validation of knowledge which relies on cognitive
systematization and applicative adequacy (cf. Rescher,
(1979).

Several common threads run through the conceptual-fields
approach, diagnostic teaching, and the constructive, coherentist,
cognitive systematization of knowledge; these common strands offer
a source of congruence and cohesion.

1. Each regards knowledge structures as emerging from
experience. In diagnostic teaching, it is the problem; in
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conceptual fields, the situation; and in cognitive
sy tematization, the phenomenon.

2. Each assumes a cohesive set of relationships: the
relational invariants and related signifiers of conceptual
fields; the developing concept structures of diagnostic
teaching and cognitive systematization.

3. Each involves checking against a systematized model of
conceptual structure, whether of the domain or of the
picture in the individual's head.

4. Each has the goal of progressively developing conceptual

structures, thereby creating order out of discrder.

5. Eazh relies on disequilibrium precipitate progress in
the development of structures, either deliberately created
for the purpose of causing controlled cognitive conflict,
or occurring spontaneously in the form of incoherent
phenomena.

6. For each, predictive value is applied as a test of the
adequacy of a theoretical model.

7. Each has the process of communication as its cohesive
force.

Pursuit of an epistemological approach to mathematical
education virtually ensures the development of a new coherence
between mathematical education and the trends in science and
society, because it ensures a close coherence between the pedagogy
of mathematics and the science of mathematics. Coherence with the
philosophical trends of mathematics as a science offers the
greatest possibility of coherence with science in general because
mathematics and the development of science are inextricably linked.
Science, in turn, inevitably influences practical activities, the
economy, and the way people think about the world. The resulting
web of connections offers the greatest hope of congruence between
didactics, science, ane ociety.

Alternative Intellectual Structures:
The Theoretical Network Model

It was argued that the content-by-behavior matrix was
originally powerful because it was congruent with the contemporary
philosophies of science and society, losing its value as it became
increasingly inadequate to cope with complexity. The intellectual
structure most congruent with present trends in science and society
is the theoretical model, which is endlessly versatile. Anything
that can be diagramed can be modeled, becaue a diagram is simply a
model of an idea (cf. Albarn & Smith, 1977) Consequently,
theoretical models may be created for anything ranging from the
economics of moving icebergs (Cross & Moscardlni, 1985) to the role
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of intuition in the process of creating knowledge (Kuyk, 1982).
Models may be steady-state or dynamic, continuous or discrete,
statistical or stochastic (Cross & Moscardini, 1985). Mathematical
descriptions of relationships in the model may rely on anything
from network theory to catastrophe theory (e.g., Andrews & McLone,
1976), depending on the relationship that exists and the facility
with which it may be described. The significant point is that
models are far more capable than the matrix of describing complex
relationships and, partly for that reason, are also intellectually
consistent with the new world view.

The construction and use of a theoretical model includes
problem identification, gestation through reflection, model
building, simulation, and payoff (Cross & Moscardini, 1985). In

other words, a model originates in a situation, after which a
systematized and idealized form of knowledge is validated by
testing its predictive power (McLone, 1976). This is remarkably
congruent with the epistemological approach, for only reliance on
disequilibrium as a means of progress is missing, although in one
sense the only way to test a model is to make every effort to
destabilize it. While theoretical models are essentially stable
structures, it is possible to model instability (Chillingworth,
1976)--and, if disequilibrium is seen as essential to the
development of knowledge, that may be important. This reflects the
fact that theoretical models are versatile tools for the handling
of complexity (Prigogine & Stengers, 1984).

Networks are an especially significant va-'ety of theoretical
model. They consist of nodes and arcs, which d..-ct the direction
of relationships between the nodes (Carre, 1976). Any node may be
connected to any other node, regardless of size or other
connections. There is no preordained sequence to the connections
unless a strict partial ordering actually exists in the phenomenon
modeled, in which case one small part of the overall network
reflects the hierarchy.

Consequently, a network is capable of depicting both linear
and iterative relationships and their directionality, the impact of
singular anomalies as well as major subsystems, complex
relationships in addition to linear and numerically restricted
ones, and interrelationships rather than segmentations. It is a
more powerful model than the hierarchy for handling complexity
simply because a hierarchy is only one very limited form of network
and so, by definition, is less versatile. By subsuming
hierarchical modals, the network model also reduces the danger of
overreliance on a single theoretical model.

The power and congruence of the network model is suggested by
its use as an intellectual framework in cognition (e.g., Lesh,
Landau, & Hamilton, 1983), computer-based communications (e.g.,
Glossbrenner, 1985; Hiltz & Turoff, 1978), anthropology (Pelto
Pelto, 1978), ad hoc and formal organizational grouping (e.g.,
Hine, 1977), industrial organization (e.g., Kanter, 1983; Toffler,
1985), mathematics (e.g., Carte, 1976) and epistemology (e.g.,
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Rescher, 1979). Of these, the most pertinent is the application of
the network in mathematics and epistemology. Nevertheless, the
other applications are important because they suggest that the
network model aas enormous potential for congruence and, therefore,
for power.

The cohesive force of networks and other theoretical models is
purpose. For this reason, networks are dynamic; as purpose
changes, parts of the network atrophy and others grow. This
applies to all networks, whether in transportation, electronic
conferencing, or epistemology. A topic, for example, is a system
of concepts which can only be defined by identifying its
construction principle or purpose, usually arising in response to
some problem (Jackson, 1984).

In epistemological networks, conversation theory (Pask, 1984)
suggests that conversations take place between participants, which
are coherent systems of concepts. When the incoming information is
inadequately absorbed or rejected by the cohesive relationships
among a system of concepts, there is the equivalent of Davis and
Hersh's (1981) chaos out of order. Subsequently, a phase of schism
results from the juxtaposition of incoherent or contradictory data.
For structured knowledge to emerge (order out of chaos), a

generalized and relevant analogy is essential to the development of
new cohesion (Pask, 1976). This new order is new knowledge, and
the resulting knowable public topics, together with their
relationships, can be represented by the network of an entailment
mesh (Pask, 1984). Projects based on the computerized application
and testing of these ideas, with programs such as Caste and
Thoughtsticker (e.g., Ferraris, Midoro, & Olimpo, 1984; Gregory,
1984), suggest an epistemological and constructive alternative to
the kind of computer- adaptive testing based on standardized,
objective te:ting methods such k..s Project Adapt (Frechtling, 1986).

In summary, theoretical models are intellectually powerful and
versatile tools with which to replace the content-by-behavior
matrix. This is especially the case with network models, partly
because the network lends itself to representation of the
communication process inherent to the epistemological/diagnostic
approach. The application of network models in epistemolgy (e.g.,
Pask, 1984; Rescher, 1979) means that, if used in the assessment
process, they may be especially useful in promoting an emphasis on
the creation of knowledge. However, a network model appropriate to
the needs of assessment and monitoring needs to be developed.

Alternative Assessment Procedures

It was argued in the discussion about the existing framework
for assessment that there was a strong congruence between the
purpose for assessment, the model of assessment, and the tools for
assessment. In other words, an intense cohesion unites the
hierarchical purpose of ranking, the content-by-behavior matrix,
and standardized, objective, group testing, epitomized by the
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multiple-choice format. For an equally intense cohesion to be
developed alternative methods of assessment must. be designed which
are congruent with the theoretical model and its purpose, which is
to assess the ability and achievement of the educational system in
teaching children to create knowledge. While any number of
indirect proxies may be postulated, the only direct indicator is
the kind of knowledge created by children in the system. Thus,
tools are needed to assess children's progress it, creating
knowledge.

Work in artificial intelligence suggests that there are two
basic facets to creating knowledge: first, a data base of facts and
assertions; and, second, an inference engine. There are,
therefore, several ways of adding to knowledge, whether
individually or cooperatively: increasing the power of the
inference engine; adding to the facts in the data base; and adding
to the network of assertions in the data base. Significantly, power
in knowledge creation is primarily a consequence of the knowledge
base and only secondarily a consequence of the power of the
inference method (Feigenbaum, 1984). Furthermore, the most
important aspect of the knowledge base is the structure of
assertions (Robinson, 1984). These facts reinforce the notion of
knowledge creation as a matter of searching for new structures. It

is essentially slmilar to he conclusions reached by Pask (1976,
1984) on the importance of analogic reasoning (cf. Pimm, 1980;
Pelto & Pelto, 1978) in the creaticn of new knowledge and to the
use of analogy in the mathematical modeling of complex systems
(Cross & Moscardini, 1985, p.15). In summary, for policy purposes,
it is important to have a framework for comparative esTaluation of
parts of the system that is congruent with the intent of the
system. However, knowledge is created by individuals and groups,
so for the purpose of intervention, it is equally important to have
tools that monitor children's strategies, proalems, and
achievements. Theoretical models, especially network models, offer
distirl_. advantages for both aspects of the monitoring process, the
framework and the instruments.

Principles of Construction for Tools of Assessment

Instruments for assessment should embody the commonalities
among the epistemological approaches to mathematical education and
diagnostic teaching, the riaracter of theoretical models, and the
insigats of artificial intelligence, namely:

1. All knowledge is rooted in experience.

2. Knowledge entails the
regularities.

3. Cohesion of structure
purpose.

structural modelling of perceived

is integral and derived from

4. Quality is determined by predictive power.

1 R9
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5. Disequilibrium is essential to the process.

To these might be added a sixth:

6. Knowledge is both individual and communal.

Simply stated, there is a need for tools that document the
production of knowledge and not merely the proxies that contribute
to the process, such as time spent learning or the quality of the
teaching staff. A sufficiently detailed view of the process is
essential in order to have some idea of how to construct policies
for intervention. However, if there is any lesson to be learned
from the old paradigm, it is that parts of the process cannot be
analyzed in isolation, and then aggregated, with the result
regarded as an adequate indicator.

Because knowledge is derived from experience, it seems logical
to monitor the quality of the experience in which children learn to
create knowledge and to assess it in a practical and realistic
context. Evidence suggests that this strategy would have a rapid
and significant impact on the teaching and learning process
(Frederiksen, 1984, 1986). At the moment there are only very
indirect proxies for monitoring the quality of experience, such as
the professional qualifications of teachers, quality of textbooks,
and class size.

Although it seems desirable to use practical assessment
techniques, the notion of assessing in a practical and realistic
context is typically restricted to such areas as teacher education,
medical school, flight training, and some of the Advanced Level
General Certificate of Education exams. However, in England, the
APU gave practical tests in topics that included measurement of
mass and area and extended problem-solving situations (Joffe, 1985)
as part of its program to assess secondary mathematics. The more
usual avoidance of practical testing is largely because
conventional, group testing has emphasised cost-efficient,

standardized, objective testing, while practical testing is viewed
as difficult, costly; and time consuming. There is also a more
subtle reason. Standardized, objective, group tests are prepared
by an external authority and merely administered locally, often by
an official proctor. By comparison, practical tests require more
local and internal knowledge and authority, which reduces their
perceived Such local authority is a particularly fraught
quest n when the capabilities of teachers are under fire.

There is an additional consideration. The standardized
objective testing approach lends itself readily to quantification
when items are scored right or wrong, 1 or 0. In the context of
evaluating collaborative effort and the quality, structure, and
predictive power of knowledge, efforts can no longer be scored
right or wrong; the exclusively quantitative nature of group
testing is no longer tenable. The first step of many assessment
procedures will almost inevitably be qualitative, even though means
may be devised for subsequent quantification.

1 9 0



184

Several approaches offer some promise. One instrument that is
a cost-effective tool for group assessment of intellectual
structure in context is the Superitem (Collis, Romberg, & Jurdak,
1986), based on the SOLO taxonomy (Biggs & Collis, 1982). A
second, which pru as to offer the information needed for
diagnostic teaching, is the constellation of innovative approaches
being tried in Britain. These incorporate pencil-and-paper
testing, practical testing, diagnostic interviewing for the
identification of strategies and errors in problem solving, and the
effort to develop graduated assessment in mathematics. A third
approach that examines the cooperative nature of knowledge
production, but is only a proposal, may be termed Coaker's Wild
Idea.

Superitems

A superitem (Collis, Romberg, & Jurdak, 1986; see also Collis,
chapter 19) consists of a paragraph describing a problem situation
(stem) and a series of ensuing items that can be answered by
reference to the information provl.ded in the stem. The inteht
(Romberg, Collis, Donovan, Buchanan, & Romberg, 1982) is for a
series of interdependent questions of increasing complexity to
originate in a common, realistic context. Thus, a superitem
consists of a problem situation containing considerable information
and an accompanying set of open-ended questions carefully graduated
according to the SOLO taxonomy (Biggs & Collis, 1982). This
categorizes the child's response according to its capacity and
structure, relating operation, consistency, and closure. The SOLO
taxonomy addresses the structure of ideas derived from an
experience, and superitems attempt to elicit that structure. One
practical advantage of superitems is that they proffer an
alternative to independent, multiple-choice items but may still be
administered to large groups.

Assessment in Britain

Some of the innovative approaches to assessment in Britain may
prove useful. The Assessment of Performance Unit in Britain,
similar to the National Assessment of Educational Progress in the
United States, was commissioned to prepare a national profile on
the educational achievement of children The work of the APU is
geared toward causing educational change ).y having assessment
procedures precipitate curricular change (A. Clegg, personal
communication, July 1985). The direction of change is essentially
that outlined as desirable by the Cockroft Commission (CITMS, 1982)
which advocated, 'Among other things, links with other curricular
areas, practical work, the importance of language, a diagnostic
approach to testing (cf. Bell, 1985), mathematics for the majority,
a graduated assessment, and records of progress. In the process,
the APU gave completion tests to a large number of students. One
facet consisted of a matrix-sampling approach organized around a
content-by-behavior matrix to which had been added a third
dimension that addressed understanding, practical application,
problem solving, and attitudes. The third dimension, involving the
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more innovative efforts, was assessed separately by sending test
booklets to small samples.

The APU's assessment methods for the practicai and problem
solving parts (Foxman, 1985; Foxman & Mitchell, 1983) are a
combination of pencil-and-paper answers to complex and realistic
situations and practical assessment with manipulatives in a

diagnostic assessment interview (e.g., Denvir & Brown, 1985, 1986;
Joffe, 1985). The situational questions are largely analogous to
the superitem approach (Romberg et al., 1982) in that there is a
problem stem with considerable information, followed by a series of
increasingly complex questions. Answers can range from the simple
to the cor.plex. Diagnostic interviewing of a small sample of
students engaged in a practical test is conducted according to a
script, but with some flexibility for clarification, limited
prompting, or amended answers. Responses are checked against a
precoded list, but unanticipated answers are recorded in detail.
The result is valual:ie insight into students' mathematical thinking
(Burstall, 1986), a conclusion supvzted by other studies (e.g.,
Confrey, 1980).

While one-to-one interviewing in a practical test yields a

wealth of valuable information, a disadvantage is that it is time
consuming and costly to conduct and analyze. One alternative is
content analysis, both global and propositional (Bell, Brook, &
Driver, 1985). It is in some respects analogous to Pask's (1984)
conversation theory. Comparison between responses in a written
exam and answers to essentially similar questions derived in an
interview situation showed that the same range of propt.sitions was
used in each format. However, the response level in interviews was
higher, and students were more likely to suggest alternative
responses and describe their thinking in more detail. While
arguing the stability of concepts between written form and
interview, a curious statement was made: "Over 50% of the students
gave the same type of response in written form and in interview"
(Bell, Brook & Driver, 1985, p. 210). The rec.,rocal inference is
that almost 50% of the students changed their conceptions between
one form and the other. Consequently, substitution of
questionnaire for interview needs closer examination.

In chapter 2, it was argued that intelligence must now be
regarded as multifaceted (Walters & Gardner, 1985) and susceptitle
to improvement. Therefore, methodologies and instruments are
needed that do more than produce a crude terminal score purporting
to summarize years of a child's achievement. A number of
strategies have been tried in Britain which essentially link
internally created portfolios with external assessment. The
General Certificate of Secondary Education (GCSE) (Srruton, 1986)
requires both external assessment by examination and an internal
record of achievement. The internally assessed but externally
moderated record is intended to promote many of the p.actices
attempted is pilot efforts (Wharmby, 19PJ):
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1. a modular approach;

2. practical work;

3. extended project work;

4. written assignments;

5. oral assessment;

6. written assessment;

7. assessment as an integral part of the learning process;

8. greater involvement of the teacher in the assessment
process;

9. a cumulative profiling of students' mathematical
achievement; and

10. an implicit intent to send all students, and not just the
brightest and most mathematically able, into the adult
world with some mathematical understanding and confidence.

Graded Assessment in Mathematics (GAIM) is one such project.
The curriculum is divided into progressive levels (Brown, 1986)
determined by the facility hierarchies identified in the Concepts
in Secondary Mathematics and Science Project (Hart, 1980). A
year's portfolio would contain at least 4 practical problems, 4
investigations and 1 extended project among the minimum of 10
required pieces (Graded Assessment in Mathematics, 1986).

A portfolio record of assessment in artistic learning is also
being tried in the United States in a project jointly administered
by Project Zero and Educational Testing Service (Zessoules, 1986)
However, with respect to teachers' assessment of children becoming
part of a permanent record of achievement, it is important that
(Department of Education and Science, Welsh Office, 1984)

1. the picture be fair, reasonable, and confined to matters
of direct knowledge and evidence;

2. assessment concentrate on the positive qualities;

3. the assessment include concrete examples;

4. the statement be written in sentences and not in the form
of checks, numbers, or letter grades. As with practical
testing, this approach to assessment places heavy reliance
on the professional abilities of teachers.

It was argued in chapter 2 that self-direction and

self-assessment are essential to life-long learning. An element of
self-direction is implicit to extended project work, and thus
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self-assessment is also being considered as an essential element.
The Emrys ap Iwan school in Abergele, North Wales, which takes all
students between the ages of 11 and 18, adopted a scheduling
strategy to encourage investigation and project work. Every
afternoon for nine weeks, children are in the same two-hour block
with the same teacher. Self-assessment, guided by a checksheet and
monitored by the teacher, plays a large part. Experience with
self-assessment by pupils and internal assessment by teachers
showed that it was essential for teachers to monitor student
self- assessment, because children tended to judge their own work
too harshly, and that external monitoring of the entire process was
essential for similar reasons (D. Newman, Principal, Personal
communication, July 1985).

Both the new world view outlined in chapter 2 and the
epistemological approach to mathematics education require
cooperative effort in the creation and validation of new knowledge.
Cooperative learning (e.g., Johnson, Johnson, Holubec, & Roy, 1984)
has not been a matter for traditional assessment. However, the
most recent initiative of the APU is development of an assessment
framework that looks at four aspects of group behavior (Joffe &
Foxman, 1986): social interaction, working on the task,
mathematics used, and communication. Different contexts, sizes
(2-4), and composition (friendship, gender, teacher recommendation)
of groups are being tried. That this approach to mathematics is
unfamiliar to most students participating highlights the proactive
approach of the APU.

In summary, the thrust of the effort in Britain is toward .

much wider variety of teaching and learning strategies, with the
assessment process regarded as a catalyst. It is a multifaceted
strategy that has the potential for providing a more flexible and
much more detailed picture of children's achievement. It is a
strategy we should consider.

Coakeris Wild Ides

The traditional pattern of testing is to isolate the student
from all sources of information and assistance. This is not
realistic if the intent is to evaluate the production of knowledge,
which may be initiated by the individual but is an inherently
cooperative process. Coaker (1985), an industrial mathematician
formerly with British "^troleum, argued that mathematics is a
language, and so the ....ted for communication is intrinsic. It is
also a practical and cooperative activity:

To solve our problems, if we hit a -nag, we "cheat"
as much as possible. We ask our colleagues, we look
up what other people have done before, we search in
libraries, we discuss he problem and work together
as much as possible. This involves communication,
but I suggest that, after primary school, such ideas
are rather alien to most school work. (p. 169)
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Conker argued that whatever mathematics is taught should be
used with confidence, applicable to a wide range of problems,
transferable to other topics and subjects. One failure of the
present system is that students are expected to find the "right"
answer and find it in less than 30 minutes. He argued a need for
employers to link with the schools and provide locations for topic
work, assisting the management in the solution of technical or
other problems. Assessment of such an approach would necessarily
be school designed because practical applications and problem
solving are less easily done in timed examinations. Coaker's wild
idea is that assessment of such work entail a collaborative effort
of teachers, parents, employers and students.

A compulsory part of the final assessment system should
include a special project. In this, pupils will be put
into teams of four, of mixed ability, and given a
cross-curricular task to perform. This would occupy a
week, in which time they would be allowed access to all
forms of information and calculation, workshops and
laboratories, as required. At some stage during the week,
an additional question would be asked, which they should be
able to solve from their work so far, and to which an answer
is required in a short time. Other information would be
provided in a foreign language, not necessarily one they had
met before.

At the end of the week, each team would present its results,
using whatever aids they required. All should take part.
The assessors would be a mix of teachers, parents and local
employers. Each member would also write a report on the
project and their views of the contributions of the other
members of their team. (p. 169)

Obviously, Coaker's wild idea is intended for the terminal
assessment of secondary school children. Nevertheless, the
principles embodied could apply at any level. They include:

1. knowledge grounded in practical, realistic, inter-
disciplinary experience;

2. . -ledge creation as a realistically collaborative
efL individuals of widely ranging ability;

3. the intrinsic and essential role of various kinds of
communication in the process of creating and
communicating knowledge;

4. realistic use of widely ranging information sources;

5. recognition of the inadequacy of traditional assess-
ment tools;

6. recognition of two kinds of problem, the urgent and
the important;
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7. collaboration between school, home, and community in
the process of teaching children to create knowledge and
assessment of that process;

8. experience by students with the reality that, in the
world beyond school, activity is usually collaborative
and assessment involves both peers and superiors.

Coaker's wild idea seems a feasible strategy in the context of
recommended by the Carnegie Foundation for the Advancement of
Teaching (Boyer, 1983). However, the notion assumes that students
have experience in such an approach. A proactive view would
suggest that, whether they have or not, the stated intent of
conducting such an assessment would have an impact.

SUMMARY AND CONCLUSION

Traditional monitoring practices have consistently used a
content-by-behavior matrix as their- theoretical framework and
relied heavily on independent, multiple-choice items. Cost
efficiency almost eradicated other approaches to group testing.
However, the mathematical, psychological, sociological, and
pedagogical theories embedded in the model are, quite simply,
inadequate. Consequently, it is important to replace the matrix
model with one more capable of handling complexity and one that
will stimulate change. Unfortunately, the cohesive power of the
matrix model exerts a powerful influence which subliminally impedes
change.

It is essential that the new model be powerful and have both
tight internal coherence and congruence with the trends in
mathematics, science, and society. It is also important that the
key indicators and instruments for measuring be equally coherent
and congruent, the cohesive force being purpose, namely the
creation of knowledge.

It is argued that theoretical models, especially network
models, are both widely used and consistent in philosophy with
approaches to the creation of knowledge. They are also capable of
modeling complex processes and, in consequence, likely to exert
powerful pressure in stimulating change toward the new world view
in mathematical education.

Because the intent is to assess the creation of knowledge and
the processes involved rather than to measure the extent to which
children have acquired a coverage of the field of mathematics, a
much wider variety of measures, many of them qualitative, are
needed. Relevance, for example, is crucial to the assessment of
knowledge. Yet there is no single system for evaluating relevance,
although there are some common considerations (Saracevic, 1976).
These include knowledge and a knower, selection based on inference,
mapping of structures, dynamic association, and redundancy.
Considerable effort is needed to find instruments adequate for the
purpose. 1 9 6
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Only a few of a wide variety of approaches to assessment have
been discussed. They were selected as representative of the range
of instruments that might form a coherent repertoire. The urgent
need is for a much greater variety of learning and assessment tasks
(Ruthven, 1985), a coherent body of tools that will precipitate
curricular change. No reference has been made to the need for
longitudinal consistency in methodology with previous monitoring
programs, because our purpose is not to see how far the education
of children has progressed since World War I, or even since the
Vietnam War. Our purpose is to ensure that children develop a
mathematical understanding adequate to the twenty-first century and
monitoring to promote that end.

A wild idea (Coaker, 1985) is a conjecture, which is the heart
of the mathematical process (Schwartz, 1985). The intent of the
assessment strategy is to intervene in an unproductively stable
situation, to create awareness of disequilibrium and cognitive
conflict in order to promote progress. More wild ideas need
conceiving and testing, because destabilizing the present situation
is like trying to rock an iceberg--and without destabilization,
significant change is improbable.
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Chapter 19

LEVELS OF REASONING AND THE ASSESSMENT
OF MATHEMATICAL PERFORMANCE

K. F. Collis

Modern methods of assessing achievement in the classroom have
beet. influenced by three very different research traditions. The
first of these is the psychometric approach; the second, Bloom's
Taxonomy; and the third, Piaget's theory of cognitive development.
Each of these will be discussed briefly to indicate their strengths
and limitations and to provide a background against which one might
evaluate current theories and practices, particularly in the
assessment of mathematical performance.

The Psychometric Approach

Modern psychometric testing has its origins in research
conducted at the turn of the century by such pioneers as Galton in
England, Wundt in Germany, and Cattell in America. In 1908 Stone,
a student of Thorndike, published the first standardized arithmetic
achievement test, and by 1917 more than 200 achievement tests were
available for school use, including 11 in arithmetic (Resnick,
1962). Binet, working in France with Simon, in 1905 published the
first individually administered intelligence test. The items were
arranged in order of increasing difficulty and so constituted the
first scale for measuring an individual's level of mental
development.

Since that time, enormous numbers of standardized tests of
intelligence and achievement have been published, and statistical
techniques have become progressively more sophisticated. All
standardized tests share certain characteristics. These include a
fixed set of items carefully designed and pretested to measure a
clearly defined sample of behavior, explicit procedures for
administering and objectively scoring the test, and normative data,
derived from administering the test to carefully selected groups
(often based on age or grade), as an aid to interpreting test
scores.

The psychometric model has also guided recommendations for
measurement in the classroom. Textbooks on educational measurement
and teacher-made tests over the last 40 years t7pically have
required teachers to list instructional objectives in terms of
learning outcomes as the first step in evaluating performance. To
this end, teachers were instructed to subdivide their curriculum
into the separate skills or areas of knowledge they hoped to teach
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and to select objectives from each such area. Both existing
standardized tests and teacher-constructed tests were recommended
for different purposes. Teacher-constructed tests ranged from the
essay or short answer to objective tests including multiple choice,
matching, and true-false items. To improve the quality of the
tests they constructed, teachers were taught concepts of validity
and reliability, methods of assigning grades, and statistical
treatment of the test data.

The extensive use of standardized tests of ability has met
with widespread criticism. A multidisciplinary committee
established in America to examine testing practices (Wigdor &
Garner, 1982) attended primarily to the social and legal
implications of ability testing. However, it also concluded that,
while the strength of modern mental measurement has been its
mathematical and statistical foundations, similar progress has not
been made in understanding what is being measured. That is, test
construction has not been guided by any powerful psychological
theory of the behavior under examination. Rather, there have been
two separate approaches to the study of abilities that have not
tended to draw strength from one another. The first has focused on
internal processes and their ontngenesis, using a variety of
clinical techniques; Binet and Piaget are examples of this type of
research. The second has concentrated on the external correlates
of test scores; pioneers of testing such as Cattell, Galton,
Thorndike, and Thurstone worked in this mode. The latter work has
generated the advanced psychometric methodology under discussion.

The psychometric model has also proved inadequate for guiding
the teaching-learning situation in the classroom. Its lack of
integration with a coherent theory of learning has meant that test
results provide teachers with little insight into what to do next
with their students, or how to overcome problems. Teachers have
tended to ignore their psychometric training and to rely on past
experience and intuition when selecting test items. In

mathematics, especially in the area of elementary applications of
mathematics, the emphasis has been placed on mechanical features,
such as setting items that range from easy to hard by increasing
the number of steps in a problem or making the numbers bigger. The
aim has been to obtain a quantitative measure. that ranks students
and gives an acceptable range and spread of scores, rather than to
provide a qualitative account of the students' understanding of
content.

Bloom's Taxonomy

The Taxonomy of Educational 0bjectives for the cognitive
domain (Bloom, 1956) attempted to rectify a situation in the late
1940s in which the methodology of measurement was becoming
increasingly sophisticated but notions about what was being
measured, particularly in the educational field, remained
disorganized. Bloom and his colleagues gathered a large number of
educational objectives from institutions, from the literature on
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curriculum development and evaluation, and from the unpublished
material of examiners and curriculum specialists to develop a

comprehensive classification system of educational objectives.

In the absence of an existing theoretical base to guide the

structuring of the taxonomy, the committee decided to use the naive
psychological principle that individual simple behaviors become
integrated to form a more complex behavior. Accordingly, the
behaviors specified by the cognitive objectives were organized from
the simplest to the most complex and placed into six major classes:
1.00 Knowledge; 2.00 Comprehension; 3.00 Application; 4.00
Analysis; 5.00 Synthesis; 6.00 Evaluation.

This was a somewhat tentative ordering of classes, and Bloom
(1956) himself expressed some reservations about it:

Our evidence on this is not entirely satisfactory, but there
is an unmistakable trend pointing toward a hierarchy of
classes of behavior which is in accordance with our present
tentative classification of these behaviors. (p. 19)

The taxonomy has subsequently been widely used to generate
techniques for evaluating students' progress toward educational
objectives. The Handbook on Formative and Summative Evaluation of
Student Learning (Bloom et al., 1971) is an example of the sort of
concepts and materials made available to teachers using this
framework. It provides models for the evaluation of particular
areas of schooling, including an evaluation of learning in
secondary school mathematics (Wilson, 1971). Wilson developed a
classification matrix that sets levels of behavior against content
areas in mathematics. The four main levels of behavior- -
computation, comprehension, application and analysis-were a
modification of Bloom's taxonomy.

There are several problems with Bloom's Taxonomy and the
models derived from it which stem from their lack of coherent
theoretical base. The taxonomy was developed in the early 1950s,
before Piaget's theories had revolutionized educational thinking.
Piaget emphasized the qualitatively different nature of the child's
thinking from that of the adult and the way in which "knowledge"
was actively constructed by the child. Bloom's categories, on the
other hand, were established using an entirely different point of
departure. His starting point was not children's behaviors at
different stages of the learning process (as was Piaget's), but
lists of educational objectives, devised by adults who presumably
had already mastered the curriculum material, and who were not
sensitized to the qualitative changes that occur in cognitive
development.

Piaget

Piaget (1929), picking up the Binet and Simon thread in test
construction, developed the clinical interview technique and used
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it throughout his subsequent research. Piaget's clinical technique
was designed to investigate cognitive processes rather than their
end products. It involved careful observation and questioning,
usually in a one-to-one interview. In essence, it consisted of
presenting the same task to children across a range of ages and
allowing the examiner to vary the line of questioning, or modify
the task, with a view to clarifying the nature of the child's
reasoning.

Piaget's methodology has been criticized on several grounds,
but his analysis of children's thought processes nevertheless
provided a major advance in our understanding of children's logical
reasoning at various age levels. He found that there were
qualitative differences in the operational structures available to
children at different ages. This led to his proposal that there
are four main stages of intellectual development from birth to
adolescence, each with its characteristic form of logical
functioning.

The importance of Piaget's theory in this paper is twofold.
First, his theory, when combined with information-processing
concepts as they have been applied to human cognition, leads
directly to present-day, post-Piagetian structuralist notions of
both cognitive development itself and of the learning of specific
intellectual skills such as those involved in learning mathematics.
Second, his clinical method of investigation has opened the way for
significant insights into techniques of evaluation that allow us to
assess the level of understanding a student has of a particular
content area.

Let us examine very briefly four recent post-Piagetian
theories that emphasize structure in the development of
intellectual functioning. The theorists to be considered are
Fischer (1980), Case (1985), Belford (1986), and Biggs and Collis
(1982).

Cognitive Development Theory in the 1980s

Fischer (1980) integrated behavioral and developmental
concepts with a view to providing a method of predicting
developmental sequences and synchronies for various domains of
human functioning.

He listed 10 clearly distinguishable levels that form a
hierarchical sequence and that can be applied inter alia to
cognitive development. These levels are grouped into three tiers
(or stages) according to the level of abstraction of the attributes
ascribed to the objects, events, or people involved in the
processing. Progression through a tier follows a cycle of four
levels represented by specific structures, each of which is defined
in terms of set theory. The highest level of one tier becomes the
lowest level of the next. Movement from one level to the next
occurs according to certain transformation rules and can occur only
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when the individual controls a skill at a particular level and thus
has available a structure that allows for one or more sources of
variation.

Case (-985) put forward a theory that, while heavily mediated
by information-processing constructs, can be traced back to the
original Piagetian formulations. He proposed four major stages of
intellectual development from birth to adulthood and identified a
universal sequence of three substages that occur within each stage;
the highest substage at one level is the lowest substage of the
next. Each stage is associated with a particular type of mental
element, and each substage is associated with the number and
organization of these elements. The latter in turn are related to
the short-term memory space available. Case postulated that
integration of existing structures is a key notion in considering
the acquisition of new processes, both within and between stages.
In the latter case, however, he proposed that the transition occurs
via hierarchical integration of executive structures that were put
together in the earlier stage but whose shape and purpose at that
stage were considerably different than at the higher stage. He
also listed the processes by which transformation to a higher stage
takes place and suggested typical life situations that facilitate
this development.

Halford (1986) described cognitive development as a hierarchy
of increasingly powerful organizations, where higher level
structures combine and integrate lower level ones. His theory
argues that higher level organizations make greater information-
processing demands than do lower levels, that the amount of
information that can be utilized in a single decision increases
with age, and that there are minimum ages below which particular
mental processes cannot be attained. He described four levels of
thought that are hierarchically ordered such that a
representational system at one level is a composition of two or
more systems at the previous level. Halford holds that there are
two kinds of elements involved in thinking: environmental, where
the objects and events are actually in the individual's
environment; and symbolic, where the elements are the individual's
internal representations of objects and events from the
environment.

Halford's sole criterion for assigning tasks to a particular
level of thought is the minimum amount of information, or number of
relationships, required to make a decision. Subjects who operate
successfully at a particular level, therefore, must not only have
the requisite processing capacity but must be well trained in the
individual aspects of the task and operate with maximum efficiency.
Within levels, training will therefore affect performance.
However, transition between levels is dependent on increased
processing capacity, which, according to Halford, is not influenced
by training. Although he saw increased processing capacity as a
necessary condition for transition across levels, he did not regard
it as a sufficient one. Halford (1986) proposed three subsequent
processes that facilitate transition. The first is the composition
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or integration of lower level systems. Once this is achieved, the
second process, the detection of consistency and inconsistency, is
put into action. This determines whether the new system, at the
higher level, i& e valid or consistent representation of the
corresponding environmental system. Once consistency is
established, the third step, the discovery of new rules and
applications, may taken. This allows the new system to be
extended to a variety of problem situations within the new level.

Biggs and Collis (19P2) put forward a set of proposals
compatible with those already described but more thorouglov worked
out in terms of evalli,,ting students' responses. As this is the
main focus of this paper:, their proposal will be described more
fully.

A detailed analysis of children's responses to questions asked
in a variety of school content areas, of observations recorded in a
range of developmental research data, and of observations of skills
development in various contexts suggested that there were two
phenomena involved in determining the level of an individual's
response to an environmental cue. The first was what Biggs and
Collis chose to call the Hypothetical Cognitive Structure (HCS) and
the second the Structure of the Observed Learning Outcome or
Response (SOLO).

The former was closely related to the existing notion of
Piaget's stages of cognitive development--sensorimotor (birth to 2
years), intuitive/preoperation or iconic (2 to 6 years), concrete
symbolic (7 to 15 years), formal operational (16+ years)--in which
each stage has its idiosyncratic mode of functioning and, as far as
intellectual development is concerned, its own set of developmental
tasks. The latter, on the other hand, was concerned with
describing the structure of any given response as a phenomenon in
its own right, that is, without the response necessarily
representing a particular stage of intellectual development.

The Structure of the Observed Learning Outcome or Response
that occurs within each stage becomes increasingly complex as the
cycle within that stage develops. Prestructural responses
represent no use of relevant aspects of the mode in question;
unistructural responses represent the use of only one relevant
aspect of the mode; multistructural responses represent several
disjoint aspects, usually in a sequence; relational responses
involve several aspects related into an integrated whole; and an
extended abstract response takes the whole process into a new mode
of functioning. These notions may be best summarized by
considering the diagram in Table 1.

The first column indicates the various "stages of development"
or typical modes of functioning at the various age ranges
indicated; the second represents the cycle of learning that recurs
at each stage of development; and the third illustrates the model's
implications for the psychological concept of conservation as it
applies to the extended abstract level of each mode.

21
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Table 1

STAGES OF COGNITIVE DEVELOPMENT AND RESPONSE DESCRIPTION

2 3

Mode Response Structure Example,
(Developmental Stage) , (Learning Cycle) Conservation

Sensorimotor Unistictural
(infancy)

Multistructural

Relational = Prestructural

Intuitive/Preoperational Extended = Unistructural
or Iconic (early
childhood to preschool) Abstract

Multistructural

Prestructural = Relational

Objects

Concrete Symbolic Unistructural = Extended Classes
(childhood to Abstract
adolescence)

Multistructural

Relational = Prestructural

Formal- -1st order

(early adult)
Extended = Unistructural
Abstract

Multistructural

Prestructural = Relational

Systems

Formal--2nd order and Unistructural = Extended Theories
higher order (adult) Abstract (of increasingly

higher order)
Multistructural

etc.
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Perhaps the most outstanding feature of the above model is the
marriage between the cyclical nature of learning and the
hierarchical nature of cognitive development. Each level of
functioning within a cycle has its own integrity, its own
idiosyncratic selection and use of data, and yet each provides the
building blocks for the next higher level. The movement from
relational to extended abstract within a cycle marks the transition
to a new mode of functioning, a new stage of development. The next
higher mode subsumes the earlier one and then proceeds through a
similar structural reorganization until it eventually is itself
subsumed. Such absorption is not entire, however, as the learner
always has the option of operating at a lower level than the one
attained. This last fact is of considerable importance when we
come to assessing student responses.

There is little theoretical difficulty with the question of
learning within modes. Basically, for a given task or skill, this
can be related to general (nonstructuralist) variables, such as
simultaneous and successive processing and working memory capacity
(M-space). The latter concept is of particular importance, as the
M-space available to complete the necessary operations involved in
the task and to monitor the processes involved is directly related
to the complexity of the task that can be handled successfully at

that stage. Indeed, progress through a mode can be seen in terms
of an increasing degree of automaticity and familiarity that the
individual achieves with the task elements and operations involved.
The more familiar the individual becomes with these variables, the
more M-space is cleared for processing the data.

The question of transition across modes, however, is more

intractable. It is possible that there are fundamental endogenous
processes at work that we have not considered to date. Epstein

(1978), for example, pointed out that certain periods of rapid
growth in brain-associated areas coincide fairly well with the
periods of cognitive change noted by the Piagetians. It would be

premature, however, to elaborate on how such physiological growth
phases may affect cognitive functioning.

Instead, let us look more closely at the question of
transition itself. Within each mode of functioning, there is an
increasing development of power to organize and control the
individual's interactions with the environment. Paradoxically,
this increasing power, represented by higher-level responses within
the current mode of functioning, sows the seeds for the individual
to recognize the inadequacies of that mode and thus causes a
striving to raise the level of functioning (Belford, 1970).

For example, the individual responding at the relational level
in the concrete symbolic mode is able to use all the data and their
interrelationships to come to a generalization. This represents a
considerable increase in power over the previous multistructural
response in the same mode, where decisions were reached by a
selection of unrelated data from those given. However, the person
responding at the relational level is likely to make hasty
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overgeneralizations that will cause inconsistent judgments. If the
area of inconsistency is significant to the individual, an attempt
will be made to resolve it (Halford, 1970), because consistency
leads to increasing control over the environment. However,
resolution of inconsistency only comes about by upward movement to
the next level of functioning.

The most remarkable aspect of the four theories outlined ibove
is the common threads running through them despite their different
points of departure and the different methods by which they came to
their conclusions. It is true that there are clearly
distinguishable theoretical differences among them. Case, Halford,
and Biggs and Collis give much more emphasis to the importance of
working memory capacity than Fischer, for example; Halford seems
more wedded to the developmental stage notion than the others; the
Case and Halford views of the point at which formal operations
normally begin differs by some years from the views of Fischer and
of Biggs and Collis; the transformation rules differ somewhat from
theory to theory and indeed are worked out more systematically in
some than in others. Their differences are vitally important to
the science of psychology, but their common elements are highly
significant for planning teaching strategies, curriculum content,
and assessment techniques.

All four theories regard cognitive development as a series of
hierarchical skill structures that can be grouped into sets of
levels (for convenience, a set of levels may be called a stage of
development). These sets of levels incorporate skills of gradually
increasing complexity, with a skill at a higher level developing
directly from specific skills at the preceding level. The
processes of development within each stage are parallel from stage
to stage and involve the capacity to cope with increasingly
abstract concepts.

While all normal human beings appear to attain a form of
logical functioning by adolescence, specific intellectual skills
involving mathematics, for example, are only developed by careful
and lengthy attention to their attainment. That is, the general
level of cognitive skill achieved by average 4- to 6-year-old
children enables them to begin work on the development of the
specific intellectual skills involved in mathematics (or other
academic subjects such as reading and writing), but these skills
will reach a high level only with careful attention to skill
development and practice. Moreover, specific skills seem to feed
into and enhance the individual's general level of cognition. Each
of the theories can handle this specific skill development in a
variety of academic content areas, as well as the development of
more general logical functioning.
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The SOLO Taxonomy

This paper is most concerned with the insights that these
recent theories provide for assessment of school learning. Of the
four theories outlined above, the Biggs aml Collis formulation has
concentrated on the evaluation of the quality c! school learning.
Biggs and Collis took the cycle of learning associated with their
concrete symbolic mode of functioning and applied it to a wide
range of academic content areas from early elementary school to
senior college and university. They found that a student's
response could be analyzed and evaluated according to its structure
and categorized according to the level it reached in the learning
cycle. Independent support for this approach has been supp:ied by
Marton (1981).

Marton's qualitative categories were devised in a way similar
to that described by Biggs and Collis when they set up a Particular
cycle of learning; that is, the structure of a particular eesporise
is regarded as a phenomenon in its own right. Marton, like Biggs
and Collis' SOLO taxonomy approach, is concerned with providing
practitioners, researchers, and teachers the tools to analyze and
react to student responses.

As originally developed by Collis and Biggs (1979), and Biggs
and Collis (1982), the SOLO taxonomy used an open response format
in which student responses were examined for structural
organization by an assessor. A later development (Collis &
Romberg, 1981) enabled the technique to be used in a closed format.
Let us look at some examples of these two formats.

SOLO Taxonomy: Open Format. In this form the student is
either given information and asked a question requiring a
response, or given a task that requires the student to draw on his
or her long-term memory store for suitable data to complete the
task. An example of the first type of task, taken from the history
content area, is presented in Figure 1, with comments indicating
the SOLO analysis of a selection of responses. The comments after
each example of a response at a particular level indicate both the
criteria used for the categorization and the typica2 modus
of students responding at that level.

The study of ancient history in particular often requires an
interpretation of a display when some crucial evidence is missing.
Lodwick (reported in Peel, 1959) presented children aged 7:6 to 15
years with the passage in Figure 1 and a picture of Stonehenge.

The type of task in Figure 2 would apply to creative writing
tasks, where the student is expected to recall the relevant facts
as well as to organize them into an argument. The opeL technique
presents particular difficulty with categorizing responses in
mathematics in that the student's response does not always indicate
how the material was manipulated to obtain the result. Thus, in
the absence of the student's actual "working," the assessor must
interview the student; the examples in Figure 2 were identified by
interview. Of course, having found the responses that represent a
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The Function of Stonehenge

Stonehenge is in the South of England, on the flat plain of Salisbury. There is a ring of
very big stones which the picture shows. Some of the stones have fallen down and some have
disappeared from the place. The people who lived in England in those days we call Bronze Age
Hen. Long before there were any towns, Stonehenge was a temple for worship and sacrifice.
Some of the stones were brought from the nearby hills but others, which we call Blue Stones, we
think came from the mountains of Wales.

Question: Do you think Stonehenge might have been a fort and not a temple? Why do you
think that?

Prestructural

"A temple because people live in it."

"It can't be a fort or a temple because those big stones have fallen over."

Comment: The first response shows a lack of understanding of the material presented and
of the implication of the question. The student is vaguely aware of "temple,"
"people," and "living," and he uses these disconnected data from the story, picture, and
questions to form his response. In the second response, the pupil has focused on an irrelevant
aspect of the picture.

Unistructural

"It looks more like a temple because they are all in circles."

"It could have beer a fort because some of those big stones have been pushed over."

Comment: These students have focused on one aspect of the data and have used it to
support their answer to the question.

Hultistructural

"It might have been a fort because it looks like it would stand up to it. They used
to build castles out of stone in those days. It looks like you could defend it too."

"It is more likely that Stonehenge was a temple because it looks like a kind of
design all in circles and they have gone to a lot of trouble."

Comment: These students have chosen an answer to the question (i.e., they have required a
closed result) by considering a few features that stand out for them in the data, and have
treated those features as independent and unrelated. They have not weighed the pros and cons of
each alternative and come to a balanced conclusion on the probabilities.

Relational

"I think it would be a temple because it has a round formation with an altar at the
top end. I think it was used for worship of the sun god. There was no roof on it so that the
sun shines right into the temple. There is a lot of hard work and labor in it for a god and
the fact they brought the blue stone from Wales. Anyway it's unlikely they'd build a fort in
the middle of a plain."

Comment: This is a more thoughtful response than the previous ones; it incorporates most
of the data, considers the alternatives, and interrelates the facts.

Extended Abstract

"Stonehenge is one of the many monuments from the past about which there are a number
of theories. It may have been a fort but the evidence suggests it was more likely to have been
a temple. Archaeologists think that there were three different periods in its construction so
it seems unlikely to have been a fort. The circular design and the Blue Stones from Wales make
it seem reasonable that Stonehenge was built as a place of worship. It has been suggested that
it was for the worship of the sun god because at a certain time of the year the sun shines
'lions a path to the altar stone. There is a theory that its construction has astroicgical
significance or that the outside ring of pits was used to record time. There are many
explanations about Stonehenge but nobody really knows."

Comment: This response reveals the student's ability to hold the result unclosed while he
considers evidence from both points of view. The student has introduced information from
outside the data and the structure of his response reveals his ability to reaso.t deductively.

Figure 1. Open history item: Constructing a plausible interpretation
from incomplete data. (Biggs & Collis, 1982, pp. 47-49)
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Find the value of A in the following statement:

(72 + 36) x 9 (72 x 9) + (21x 9)

Prestructural responses

"Have not done ones like that before, so I can't do it."

"Don't want to do it."

Comment: Both respondents indicate that they are unwilling to engage in the task.

Unistructural responses

"36 because there is no 36 on the other side."

"2 because 72 + 36 2."

Comment: Both responses take only one part of the data into account. The first response
shows.a low level "pattern completion" strategy. The second response shows one closure and
then an ignoring of the remainder of the item. Both of these strategies give "correct"
responses to certain items; for example, the correct answer to the item 3 + 4 4 + is

readily obtained by the first strategy or a slight variation o2 the second.

Multistructural response

2 x 9 18, and 648 + x 9)

648 + 2 that is. 324 (looking for 18 (2 x 9))

Hence 324

Comment: This response incorporates a series of arithmetical enclosures to reduce the
complexity and to focus on However, the students appear unable to keep the overall
relationship in mind throughout the closure sequences and lost in a "maze" of their own
creation.

Relational response

2 x 9 18, and 648 + (Ax 9)

648 . 9 72, then 72 + 4 18

Hence 4

Comment: This response also involves a sequence of arithmetical closures, but the
students are able to keep the relationships within the statement in mind and thus successfully
solve the problem.

Extended abstract response

First step involves obtaining an overview of the relationships between the
numbers and operations involved, for example:

(72 + 36) x 9 (72 x 9) x 9)

The pattern suggests something akin to the "distributive" property--this
hypothesis is tested out thus:

a x y a ).

b

This immediately solves the problem (without necessity for closure) as
follows:

(72 36) x 9 (72 x 9) + 36 (72 x 9) (4 x 9)

Hence 4

Comment: This response shows the following characteristics:

1. Focusing on the relationships between the operations and the numbers
rather than regarding the operations as instructions to close;

2. a hypothesis suggested by the data;

3. avoiding closures wherever possible as these change the form of the
statement and "hide" the original relationship.

Figure 2. Open mathematics item.
(Biggs & Collis, 1982, pp. 83-84)
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particular category of functioning, assessors could use this
knowledge to set multiple-choice questions so long as they avoid
obvious pitfalls, such as those mentioned in Figure 2 with respect
to the item, "find the value of P, in the following statement, 3
4 = 4 +A ."

SOLO Taxonomy: Closed Format. This form was developed
initially for use in testing mathematical problem solving (Collis,
1982; Collis, Romberg, & Jurdak, in press) by combining the
seperitem technique devised by Cureton (1965) with the cycle of
learning notion from the SOLO taxonomy. It requires the writing of
an item stem that provides data for four questions devised in such
a way that each requires an ability to respond at one of the SOLO
levels: unistructural, multistructural, relational, or extended
abstract. The basic criteria for designing the questions are as
follows:

Unistructural: use of one obvious piece of information coming
directly from the stem;

Multistuctural: use of two or more discrete closures
directly related to separate pieces of information in the
stem;

Relational: use of two or more closures directly related to
an integrated understanding of the information in the
stem;

Extended abstract: use of an abstract general principle or
hypothesis which is derived from (or suggested by) the
information in the stem.

The method of construction and certain psychometric analysis on the
data gathered are in press for both mathematical problem solving
(Collis, Romberg & Jurdak, in press) and school science (Collis &
Davey, in press); work is also in progress on this type of format
for the social science area. Examples from mathematics and
science, with some explanatory comment, are set out in Figures 3
and 4.

SOLO Taxonomy and Psychometric Analysis. The psychometric
analyses carried out so far on the data generated by SOLO items,
both open and closed formats, seem to indicate the usefulness of
the technique. Although the SOLO procedures are of relatively
recent origin, some results are available for both open and closed
versions. There is insufficient space in this paper to develop the
details in full, but a summary of some of the results for both
versions seems appropriate at this point.

Studies (Biggs & Collis, 1982) using the open format have
shown this technique to have good reliability (interjudge
agreement: correlation coefficients between .71 and .95) and
validity (teacher rating of response vs. SOLO level independently
rated: correlation coefficients between .65 and .75).
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This is a machine that changes numbers. It adds the number you put in three times
and then adds 2 more. So, if you put in 4, it puts out 14.

U. If 14 is put out, what number was put in?
Answer

Answer: 4

Comment: Students have to understand the problem well enough to be able to
close on the correct response which is displayed in the stem.

H. If we put in a 5, what number will the machine put out?
Answer

Answer: 17

Comment: Students need to comprehend the set problem sufficiently to be able
to use the given statements as a recipe and thus perform a sequence of closures
which they do not necessarily relate to one another.

R. If we got out a 41, what number was put in?
Answer

Answer: 13

Comment: An integrated understanding of the statements in the problem is
necessary to carry out a successful solution strategy in this case. Correct solutions
may involve working backwards or carrying out a series of approximation trials. It

should be noted that the solution requires only data-constrained reasoning in that no
abstract principles need to be invoked.

E. If "X" is the number that comes out of the machine when the number "Y" is
put in, write down a formula which will give us the value of "Y" whatever the value
of "X."

Answer: Y
X - 2

3

Answer

Comment: A correct response involves extracting the relationships from the
problem and setting them down in an abstract formula. It involves using the information
given in a way quite different from that of the lower levels.

Figure 3. Closed mathematics item.
(Adapted from Collis, Romberg, & Jurdak, in press)

22.2
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A student performed an experiment in which he germinated three oat seeds and treated the

coleoptiles in the following way:

Plant number 1 coleoptile

seed

roots

untreated

Plant number 2 -- --tip cut off

Plant number 3

Plant number
start

Height in cms at
1 week 2 weeks

Plant number 1 1 2 2.5

Plant number 2 1 1.4 1.4

Plant number 3 1 2 2.5

the coleoptile

tip cut off and then

replaced on the coleoptile

U. Which oat seedling had the tip cut off its coleoptile and not replaced?
Answer

Answer: Plant number 2

Comment: Students must understand the problem well enough to select (or close on) the
correct piece of information clearly displayed in the stem.

H. What is the height difference after two weeks between the seedling which had its tip
removed but not replaced and the seedling which had its tip removed then replaced?

Answer

Answer: 1.1 cms

Comment: Students must understand the problem well enough to make a sequence of
appropriate selections from the data displayed in the stem and use them to come to a

conclusion.

R. How does the coleoptile tip affect the growth of a seedling?
Answer

Answer: Growth takes place at the tip; no tip, no growth.

Comment: An integrated understanding of the various data displayed in the stem is
necessary to extract this general principle. It should be noted that the principle is still
data bound.

E. Develop a general theory that could have been tested by the above experiment, and list
three other factors that would need to be controlled.

Answer

Comment: Several responses would be acceptable so long as t1e student showed familiarity
with the bases of scientific experimentation, as well as some knowledge of plant biology. A

response at this level requires the student to go outside the given data to hypothesis
formulation and abstract principles, and to then use the data given as specific information kn
which to test the abstractions. The use of data at this level of response is quite different
from its use at the lower levels.

Figure 4. Closed science item.
(Adapted from Collis & Davey, in press)



218

Factor analysis confirmed that two aspects of achievement were
measured: one relies on a pinpointing ability to identify the
correct answer; the other on a relating ability to take aspects of
a situation and integrate them. In addition, canonical analysis
suggested that SOLO is closely involved with school achievement,
and that high SOLO levels are obtained by highly intrinsically
motivated students who search for meaning and who avoid rote
learning facts and details. The studies indicate that high quality
of learning, as indexed by high SOLO levels, is different from high
quantity learning that involves the reception and retention of
facts.

Results for the closed format data are similarly supportive,
(Collis, Romberg, & Jurdak, 1982; Collis & Davey, in press). Items
were examined for their scaleability in the Guttman (1941) sense.
The indices used for this purpose were the coefficient of
reproducibility (Guttman 1941) supported by the goodness of fit
procedures derived by Proctor (1970). The results were highly
significant and positive. In addition, cluster analysis revealed
that students at various age levels could be assigned to
interpretable groups that reflected the sequence of SOLO levels.
The results indicated the utility of the SOLO responses categories
for evaluation purposes. Finally, Wilson (1985) examined closed
SOLO science items from the perspective of a family of Rasch
measurement models and found that, in general, these analyses
confirmed the hypothesized patterns of the learner's responses.

SOLO Taxonomy in Instructional Design

Although the taxonomy is applicable to a wide range of skills,
the discussion in this paper is focused on academic skills--those
associated with school subjects. Academic subjects are taught with
two main effects in mind: the facts and concepts that constitute
knowledge of the subject, and the cognitive processes that are
induced by a proper understanding and application of the subject,
the way of thinking for that subject. Moreover, it is a reason-ble
hypothesis that development of skills in this latter domain
interact with and enhance the general level of intellectual
functioning. Leaving aside this last speculation, however, it is
clear that learning an academic subject has dimensions of both
content and process. Bruner (1960) emphasized the interaction
between content and process and put forward the notion of "the
spiral curriculum" on the basis that the content/process dimensions
of a content area are assimilated and understood on a cumulative
basis. In his view, understanding increased with appropriate
experience and cognitive maturity. It is in measuring the quality
of assimilation in terms of progressive structural complexity that
the SOLO taxonomy has its main strength. It is concerned with
specifying "how well" (qualitative) something is learned, rather
than "how much" (quantitative). This distinction is important,
especially in school mathematics where the demand in recent times
has begun to place a premium on understanding applications and
developing problem-solving skills.
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With this background, it is clear that there are three basic
areas in which the technique described would be very useful:
curriculum analysis, teaching procedures, and assessment of
performance. Let us take these one at a time and examine them
briefly from the SOLO perspective.

Curriculum Analysis. Two aspects of curriculum analysis are
particularly amenable to explication using the technique under
discussion, namely, task analysis and specifying adequate
performance levels.

Keeping in mind the cycle of learning structure and the
various associated levels, the critical variables in analyzing a
task become clear. It is not possible to go into details in this
paper, but some general principles can be suggested. First, it is
necessary to determine the basic elements involved in the task;
these minimal features must be defined so that achievement of one
would indicate a unistructural response level, and achievement of
several, a multistructural level. The next step would be to
establish a relating concept that would identify the movement to a
relational response. The step up to an extended abstract response
is marked by hypothesis testing and the use of the information in a
new way. Instead of using the elements provided to determine the
response, the individual goes outside the "givens" to formulate a
relevant hypothesis and then examines the hypothesis in relation to
what is given. These steps are clearly discernible in the
mathematics examples given earlier. With respect to the open
example, successful performance of the closure of a simple binary
arithmetical operation is the basic element; the ability to keep
all the relationships in mind while closing a sequence of these
operations is the relating factor. The closed item shows another
example of the same phenomenon.

Specification of adequate performance is a critical issue. In
the past, it has been difficult to make specifications because of
lack of suitable objective criteria. The SOLO technique can be
used to define realistic levels of expected performance and then to
monitor their achievement. For example, analysis of the reading
material bought by the vast majority of the community at large
shows that it would be classified at a multistructural level in the
concrete symbolic mode. It is equally clear that most people, even
those in many professions, do not need to be able to respond to
mathematical tasks at better than relational level, concrete
symbolic mode. In respect to this, the credibility of many
academic subjects, including mathematics, has been damaged over the
years by setting up higher than necessary achievement as a basic
goal for entry to various occupations and professions. It can be
readily demonstrated that many of even the most prestigious
professions have no need for mathematics beyond the relational
level, concrete symbolic mode. Current research indicates that the
move from relational level to extended abstract level functioning
is much bigger than the moves within a level and involves a high
level of commitment from the person concerned. First of all, the
individual must recognize that inconsistcacies in judrent arise as
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a result of relational level, concrete symbolic mode, responding;
the individual must then work hard at resolving them. Working hard
in this context means spending many hours at tasks in which
negative feedback is the norm in the early stages. Motivation must
be extremely high, and eventual success at the task must offer
significant personal reward.

It can be seen that, particularly in school-related
activities, there is an alternative to making the effort required
to raise the level of functioning, and that is to drop out of the
activity involved. This alternative will be familiar to teachers
in the middle ranges of high school. Many students recognize
implicitly that it is possible to cope with the demands of everyday
living, including holding a lower-level but technically skilled job
and raising a family, without responding above the level
represented by a relational structure in the concrete symbolic mode
in many academic activities.

A survey of community achievement levels as they relate to
expectations in various content areas would be of enormous benefit
to curriculum workers setting up course programs. Once these
programs have been set, evaluation and monitoring of individual
student performance can take place with an eye on the achievement
of a particular level of performance appropriate to the student's
interest, ability, and ambitions.

Teaching Procedures. There are several ways in which the SOLO
procedures can assist in thinking about the most effective
instructional methods. Perhaps the most obvious is the assistance
it can afford in adjusting the level of exposition to the level of
the students' current performance. As the SOLO level is a measure
of the complexity of the content, and the teacher can determine the
SOLO level at which students are responding, it is possible to make
a reasoned judgment about the level at which to set instruction.
It may be appropriate to set it so that the levels match, or it may
be appropriate to use the "plus one" strategy (Rest, Turiel, &
Kohlberg, 1969) whereby the instruction is pitched at one level
above the average response level of the class. It would appear to
be nonproductive, for example, to attempt to present content at the
extended abstract level to a group whose responses indicated
unistructural or multistructural levels of functioning.

In the instructional context, the importance of a student's
prior knowledge for likely current performance is highlighted by
the SOLO approach. It is obvious from the examples given earlier
that one of the determinants of higher level responding is how much
and how well the student has grasped the information and concepts
taught previously. If the student has not thoroughly automated the
basic elements, he or she will be unable to use the concepts,
skills, and discriminations necessary .for relational and extended-
abstract responses. All of this is well known, and teachers
usually are careful to design instruction to fit what they believe
the students already know. The particular contribution of SOLO
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here is that component analysis can define the target concepts or
skills that are the key to performing the set task.

Assessment of Performance. In an important sense, this entire
paper has addressed the value of the SOLO technique in evaluation,
but it appears useful at this point to indicate several of its
specific features. The technique would seem to fulfill in a
meaningful way the fundamental requirements of an evaluation
procedure in that it has immediate and direct relevance to
curriculum content and teaching procedures and allows for end-of-
course gradings. Moreover, it can provide both a diagnostic and a
monitoring function in all three contexts. There are several
features that make this possible:

1. It provides a vocabulary for describing the levels of
attainment.

2. Target levels of achievement can be set with easily
understood criteria.

3. Students can be assessed on an individual skill, and
the teacher can know what is required to arrive at the
next level.

4. It is oriented towards finding out the level of
functioning rather than ranking and classifying.

If the more formal terms of measurement theory are evoked, it can
be said (a) SOLO is useful for both formative and summative
evaluation, although its major use would be in the former mode, and
(b) it is suitable for both norm-referenced and
criterion-referenced evaluation, although it has most to contribute
to the latter.

Conclusion

The SOLO taxonomy has been designed within the framework of
cognitive development theory. It has sought to extract and
amalgamate what is most useful from the statistical techniques of
psychometric testing and the clinical procedures of Piaget to
provide a structure that will help the educator make judgments
about the quality of classroom learning. Its use in this context
presupposes that the teachers, curriculum workers, or evaluation
experts have clear-cut definite intentions concerning the amount
and quality of learning that is to take place, and that they can
analyze the skills to be taught into their component parts in terms
of basic elements and relating factors. While the model is ideal
for assessing mastery of academic material and problem solving,
both fundamental aims of education, it is not meant to apply to
other important but open-ended aspects of the child's educational
experience such as learning social skills and attitudes. Nor does
it apply to straight fact learning, which has its place in certain
parts of the curriculum.
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Chapter 20

KNOWLEDGE STRUCTURES AND ASSESSMENT OF
MATHEMATICAL UNDERSTANDING

Brian F. Donovan and Thomas A. Romberg

Introduction

The purpose of this paper
fundamental reappraisal of the
propose an alternative view of
outline an assessment strategy

is to describe the need for a
content of school mathematics, to
how knowledge is structured, and to
related to that alternative.

Toffler (1980) regarded today's social and economic changes as
interdependent and argued that to view them as largely isolated was
to miss their larger significance. Such a view also prevents
design of a coherent and effective response.

So profoundly revolutionary is this new civilization that it
challenges all our old assumptions. Old ways of thinking, old
formulas, dogmas and ideologies, no matter how cherished or
useful in the past, no longer fit the facts. The world that
is fast emerging from the clash of new values and
technologies, new geographical relationships, new lifestyles
and 'modes of communication demands wholly new ideas and
analogies, classifications and concepts (Toffler, 1980,
p. 18).

Toffler (1980) used the clash of waves as a metaphor for
charting the history of civilization. UhtiJ nov, the human race
had experienced two great waves of change, each of which largely
obliterated earlier cultures or civilizations and replaced them
with ways of life inconceivable to those that went before. The
first,, the agricultural revolution, lasted thousands of years
before playing itself out. The second, the rise of industrial
civilization, lasted a few hundred years. Toffler suggested that
the third wave has already arrived and is likely to complete itself
in just tens of years.

First-wave societies drew energy from human and animal power,
or "living batteries," as Toffler (1980) described them, as well as
from sun, wind, and water. In the second wave, the mechanical
engine provided energy. The third wave has substituted some works
of the human brain with the intelligent machine. The second wave
might be characterized as providing artificial arms; the third wave
is providing artificial brains which produce artificial
intelligence.
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Papy (1982) associated particular mathematical knowledge with
each of the three waves. He saw the mathematics o: the first wave
exemplified by the geometry of idealized physical space. The
mathematics of the second wave broke the Euclidean hold and, in
this industrial period, gave rise to calculus, matrices, various
spaces and the structures emphasized by Bourbaki (e.g. 1968). Papy
noted that the need for a well-defined spatial territory was
evident in the regeometrization of "modern mathematics," marked by
the creation of a collection of spaces, including, for example,
vector spaces, topological spaces, Hilbert spaces, and Banach
spaces. Papy described the mathematics of the third wave as being
that of the most conceptual aspects of the great abstract
structures of Bourbaki (1968). Papy (1982) concluded that the
fundamental importance of a conceptual approach surpasses the
possibilities offered by the artificial brains of the third wave:

As all the very important computational aspects of the second
wave can be performed by comput rs, the conceptual aspect
becomes more and more important and fundamental. Because of
the hand-calculators, it is not anymore important to teach a
child to compute long numerical calculations, but the pupil
has to know more than before the rcaning of the operations and
of the other concepts of mathematics. (p. 39)

The meaning and consequences of a conceptual approach for the
third wave, and the critical deficiency of a second wave view, is
more fully analyzed by Romberg (1984), who characterized the
second wave perspective of schooling as a mechanical view growing
out of the machine-age thinking of the industrial revolution. The
intellectual contents of the machine age, according to Romberg,
rest on three fundamental ideas: reductionism, analytical
processes, and mechanism, Reductionism refers to a preoccupation
with taking things apart. Under such a perspective, perceptions
and experiences are viewed as the sum of parts; the fragmenting of
mathematics into pieces is a natural product of this app)coach. The
second idea, analytical processes, is based on reductionism. It
emphasizes that problem solving is most facilitated by a process of
breaking into components, then rebuilding the whole. Mechanism,
the third fundamental idea, is based on t) theory that all
phenomena can be explained in terms of cause-and-effect
relationships.

Manufacturing Versus Revealin

Romberg's (1984) description of the fundamental
characteristics of the second wave have been contrasted w...th

third-wave characteristics taken from Toffler (1980). In this
section, Heidegger's (1977) interrogation of technology is examined
to disclose second wave practices and thinking that are helpful in
considering a third wave alternative for knowing school
mathematics.
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Heidegger (1977) argued that technology cannot be understood
as a means to an end. As such, this apparently value-free view is
correct, but limited. It is an instrumentalist conception,
insufficient to disclose the essence of technology. While it
focuses on a pertinent element in technology, it can only condition
attempts to recognize human agency in its proper relation to
technology. Heidegger insisted that the two ste*;ements,
"Technology is a means to an end," and "Technology is a humar.

activity," reveal the true nature of technology. He opposed a
reductionist approach to the definition of technology; just as he
proposed that the instrumental and anthropological aspects of
technology be considered in their dynamic and mutual relationship,
a similar requirement is necessary for an examination of the
fundamentals of school mathematics appropriate to the third wave.

Instruction and learning in the third wave require a
consolidation of content matter and curricular form and process,
with a view to revealing human interactions with others and with
the environmc:t. In this sense, content does not stand apart. Nor
can it stand as a curriculum object, even when related to aims,
methods and evaluation, as in Tylerian rationalism. This
rationality does not sufficiently disclose the human agency and
interest bases in curriculum, including content. Content is
transformed by teachers and students acting within a complex of
ends and bounds as they develop definitions of mathematics
knowledge within the dynamics of their particular social setting.
This points to knowing mathematics as problematic. It does not
mean that content is of little significance, nor that content
structures are out of place. Rather, it is a recognition that
knowing and doing mathematics surpass manufacturing products to
reveal human possibility. Presently, procedural knowledge, which
is a manufactured product, is dominant it. the content and practices
of school mathematics.

Procedural knowledge, that is, skills development, has a life
of its own. Where it was once a means to an end, it has become the
goal. Popkewitz, Tabachnick and Wehlage (1982) point to
pedagogical, ideological and sociocultural interests that seem to
perpetuate such instrumental approaches. Diagnosed as skills
development, procedural knowledge is associated with the will to
master and manage learning more efficiently and effectively, but it
has perverted what it means to know mathematics. As an
instrumental conception of knowing mathematics, it seems to have
conditioned attempts for people to have a right relation to
knowledge. In formulating aims and objectives, in defining basics,
we must keep in mind that the proposing of ends and means is a
human activity. That which is known is integrally related to the
"knower."

Manufacturing content in school mathematics has as its
industrial wave equivalent mass production on factory assembly
lines. It is evident in the prominence of procedural knowledge, in
the dominance of skill over critical and conceptual development,
and in the fragmentation of content that is consistent with this
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packaging of knowledge. In manufacturing, analysis processes have
been employed to break down the desired production of learned
outcomes into component parts to facilitate production, and to make
it more efficient and effective. Students are to work in such
production but usually lack ownership of its processes. Not
surprisingly, therefore, students demonstrate various forms of
resistance observed by researchers in relation to social class,
gender and race (cf. Anyon, 1981). In manufacturing terms, this
wastes resources. From a perspective of learning as revealing, it
degenerates human possibility and will not stimulate new questions
or disclose new approaches to new problems in a changed and
ever-changing world.

Alternative content should be built upon a recognition that
knowledge is socially constructed. In particular, it should
acknowledge that students construct their own knowledge and that
learning shoulebe directed towards the development of general
principles and critical awareness. The industrial wave
characteristics of fragmentation, analysis, and mechanism disguise
such recognition and limit more creative and critical human
possibility. Indicators of third wave school mathematics will
include context and holism, synthesis, and acknowledgement of the
problematic nature of knowledge. Conceptual fields offer
possibilities for such new fundamentals in school mathematics.

Conceptual Fields

Gerard Vergnaud, of the Centre d'Etude des Processes Cognitifs
et du Langage in Paris, has developed a framework he terms
conceptual fields, which emphasizes contexts, relationships, and
wholes in mathematics education. Where Piaget focused on cognitive
development and the logical structure of tasks, Vergnaud has taken
an epistemological approach (Vergnaud, 1982). He has synthesized
psychogenesis and learning by applying cognitive developmental
theories to the study of specific mathematics content.

Mathematical knowledge is seen to emerge from working with
problems. The word 'emerge' has special significance here; it
indicates that students' concepts, models, and theories are shaped
by situations and problems. Vergnaud envisages students' concepts
as changing only in response to problems they are unable to solve.
In this way, students come to accommodate their views and
procedures to new relationships. Such constructions certainly do
not occur spontaneously but develop over long periods of time. In
this section, conceptual fields are defined, and examples are
discussed to illuminate their third wave character.

Vergnaud (1983a) defined a conceptual field as "a set of
problems and situations for the treatment of which concepts,
procedures and representations of different but narrowly
interconnected types are necessary" (p. 127). Important elements
in conceptual fields include problems and situations, operations of
thought, and symbolic representations (Vergnaud, 1982). A field is
not described solely in terms of content; it is described as the
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interrelationships between problems and situations, and students'
procedures and operations of thought in addressing them. A
student's construction of symbolic representations, such as
diagrams, algebra, graphs, equations and tables, is integrally
related to situations and operations of thought.

Additive structures are one example of a conceptual field.
They incorporate problems, operations of thinking, and symbolic
representations relating to measurement, addition, subtraction,
time transformations, comparison relationships, displacement and
abscissa on an axis, and natural and directed numbers (Vergnaud,
1981). Another conceptual field is multiplicative structures,
involving problems, operations of thought, and symbolic
representations of multiplication, division, fractions, ratio,
proportion, linear function, similarity, vector space, and
dimensional analysis (Vergnaud, 1983a). These two fields are not
mutually exclusive. Developing understanding of multiplicative
structures requires some reliance on relationships within the field
of additive structures. Also, there are other fields that to some
extent intersect additive and multiplicative structures, yet cover
diverse situations and levels of operational thinking. Examples of
these include spatial measures, dynamics, and classes,
classifications and Boolean operations (Vergnaud, 1982).

Conceptual fields are systems that involve integrative ways of
looking at the learning of mathematics. On its own, any given
problem will not involve all the properties of a concept. The
concept of addition, for example, is shown in the following
situations to involve complex operations of thought that vary
between situations, progressive understanding that students build
over a long period of time, and relationships for which the set of
natural numbers is inadequate:

Situation 1 There are four boys and seven girls around the
table. How many children are there?

Situation 2 John just spent $4. He now has $7 in his
pocket. How much did he have before?

Situation 3 Robert played two games of marbles. In the
first game, he lost four marbles. He then
played a second game. In total, he now has
won seven marbles. What happened in the
second game? (Vergnaud, 1981)

The first situation exemplifies a measure-measure-measure
relationship, in which the measure of children is a composite of
the more elementary measures of boys and girls. The second
situation illustrates a different relationship, one involving
measure-transformation-measure. The "spending" transformation
gives a temporal aspect to this situation, which also distinguishes
it from the first, a static relationship. The third situation is
an example of a transformation-transformation-transformation
relationship. Robert's overall winning transformation with seven

is C.
FL.),
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marbles is a composition of two transformations, only one of which
is given. Vergnaud (1981) pointed that Situation 2 is
generally solved by students one or two years older than those in
Situation 1, and Situation 3 is not solved by about 75 percent of
11-year-old students. Furthermore, the transformations in the
second and third situations are inadequately represented by natural
numbers, nor are these situations adequately represented by
equations in N. The use of natural numbers is appropriate in the
first situation for measures of discrete sets. However, in the
second and third situations, transformations should be represented
by directed numbers. But students usually work with situations
similar to the second well before they learn of directed numbers;
these tend to be taught as a separate topic at a later stage and in
a manner that highlights abstract mathematical properties rather
than building from problem bases. It is not surprising, therefore,
that the discrepancies between the structure of problems students
meet and the mathematical concepts theyare taught, mean that much
of the learning of mathematics is carried on at an instrumental
level.

The building of concepts, in Vergnaud's view (1983b), will
most effectively occur in settings in which students confront with
integrity a range of problems over time. Integrity refers to
students working on problems that have not been so condensed in
their different relationships that they provide little opportunity
for building operational knowledge. Such knowledge requires
attention to relationships that remain the same over broad sets of
problems. Vergnaud (1983b) referred to these relationships as
relational invariants and notes that they are the very core of
operational knowledge. He identified broad categories of
relationships within conceptual fields, such as addition and
subtraction problems and situations.

Vergnaud (1981) identified the main categories of
relationships in addition and subtraction problems involving time:
(a) composition of two measures, (b) a static relationship linking
two measures, (c) composition of two transformations, (d) a
transformation linking two static relationships, and
(e) composition of two static relationships. Each category is
described below in structural terms, an example is cited and a
diagram used to represent the relationships. All too frequently in
school mathematics equations derived from procedural knowledge are
accepted as adequate expressions of thought, although they do not
reveal underlying relationships in a situation. This point is
elaborated later in the paper when distinctions are made between
relational and numerical calculus.

Category 1: Composition of two measures.

This refers to situations with a static
relationship in which two measures are combined,
under addition, into a third measure. The
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vertical format of the measures in the diagram is
meant to convey their static relationship.

Problem: Peter has six marbles in his right-hand
pocket and eight marbles in his left-
hand pocket. How many marbles does he
have altogether?

6

8

Category 2: Transformation linking two measures.

This class of situation is identified by a
state-transformation-state arrangement.

Problem: Peter had 17 marbles after playing. He
had lost 4 marbles. How may marbles
did he have to start with?

17

Category 3: A static relationship linking two measures.

This category differs from Category 2 in the form
of the relationship. Where Category 2 refers to
dynamic relationships, this classification is
distinguished by the static nature of the
relationship. In the diagram, the vertical arrow
is meant to symbolize the static relationship.

Problem: Peter has 8 marbles. He has 5 more
than John. How many does John l-ave?

n

171
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Category 4: Composition of two transformations.

In this category, two transformations are viewed
as equivalent to a third transformation.

Problem: Peter won 6 marbles in the morning. He
lost 9 marbles in the afternoon. What
happened overall?

O
Category 5: Transformation linking two static relationships.

This class of problem involves static
relationship-transformation-static relationships
structures.

Problem: Peter owed Henry 6 marbles. He gave
him 4 marbles. How many marbles does
he still owe Henry?

or O
The first diagram might be interpreted as
representing what is owed from Peter's point of
view and the latter Henry's view.

Category 6: Composition of two static relationships.

In this class, two static relationships are
combined to produce a third relationship. Both
of the following situations are examples of this
structure.

228
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Situation A: Peter owes 8 marbles to Henry, but
Henry owes 6 to Peter. So Peter
owes 2 marbles to Henry.

Situation B: Robert has 7 marbles more than Susan. Susan has
3 marbles fewer than Connie. Robert has 4
marbles more than Connie. This situation is
represented by each of the following diagrams.

Robert

Susan

Connie

Robert

>Connie Susan

Robert

)b-Connie

In these categories, the operation of addition and subtraction
remain the same even though the type of relationship changes.
Aspects of such change might involve static or dynamic
relationships, presence of a unary positive or negative operation,
or the presence of a part-whole relationship between the initial
and final states. Knowing addition and subtraction goes beyond the
mechanics of computation to recognition of invariant relationships

2.19
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over very different problems and situations. This recognition is
unlikely to be articulated by students, particularly younger
students, but will be observable as theorems in action over a broad
range of contexts.

Theorems in action are operations which students use to solve
or process problems and situations. For example, the Category 1
problem might involve operations such as counting all, counting on
from the smaller quantity, or counting on from the larger quantity
(cf. Carpenter, Moser, and Romberg, 1981). Where such operations
are recognized as appropriate across a large variety of problems
and situations, they become theorems in action. In particular, the
discovery that the relation * is an additive relationship where
m(a * b) = m(a) + m(b) V a, b in many varied contexts is a
theorem in action. Theorems in action, however, are not taught as
such but are syntheses of operations students have in dealing with
a broad range of contexts. Recognition of relational invariants
and development of theorems in action within particular conceptual
fields require a focca on relationships rather than procedures.

Vergnaud (year) employs the term relational calculus to
describe students' operational knowledge which directs their
theorems in action. He used numerical calculus in reference to the
ordinary operations of addition, subtraction, multiplication and
division. In the Category 2 problem described above, the
relational calculus is the inverse of a negative transformation,
-4, applied to the final state, 17. The numerical calculus is the
addition in 17 + 4 =0 But recognizing the numerical calculus as
leading to the solution, while widely accepted as demonstrating
mathematical knowledge, in fact merely demonstrates the mechanism
for arriving at the product. It misses the process in that it
neither simulates the problem nor the operational thinkig of the
student. The problem would be simulated by either

- 4 = 17 or
4

---->-17

The emphasis in school mathematics on procedural knowledge and
numerical calculus impedes a functional approach to mathematical
symbolism. It separates signifiers or symbolic systems from the
signified, failing to recognize their duality. Signifiers are made
functional, however, when they assist students in the process of
solutions which might otherwise not be found. Also, signifiers are
madc functional by enabling students to discriminate between
situations, relationships and operations they might otherwise
confuse. In this sense, the symbolic representation 17 + 4 =
is a poor signifier of the situation, relationship and operation
involved in the Category 2 problem. It misstates the situation,
since young children associate addition with increase, and 17 + 4
does not convey the meaning of decrease in the context of the
problem. The meaning of the statement 17 + 4 = , if expressed
in terms such as "I started from 17, then I added 4 and I got 0
is a unary, not a binary operation." In the procedure, +4 is an
external operation on 17. Also, the equality sign is interpreted
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as producing the outcome and would therefore not express a
symmetric relationship. It would be meaningless to write 0 . 4 +
17. As noted above, the statements

_ 4 = 17 and
-4

17

are likely to be functional as simulations of the problem, each
representing the negative transformation involved.

Relationships in problems and situations are not equally well
signified by various symbolic systems. A Euler-Venn diagram for
example, is not capable of representing negative transformations,
although this symbolic system is appropriate for representing a
composition of measures as in the following problem:

There are 17 children around the table for Joan's birthday.
Four of them are girls. How may boys are there?

17

A Euler-Venn diagram would not be adequate, however, to represent
problems involving relationships, such as: Tony has 17 marbles.
He has 4 more than Robert. How many marbles does Robert have?
Arrow diagrams adequately represent such relationships; for
example:

17

Symbolic representations, as generally used, are vehicles for
the efficient manipulation of data. Some, however, ar_ unable to
represent problems that imply certain relationships. Some are
unlikely to assist students to distinguish between representations
of problems and representations of solutions. Also, some symbolic
systems carry meanings that fall short of adequately conveying the
mathematical relationships embedded in the situational context.
The importance of symbolic representation to the constriction and
synthesis of different meanings is generally unrealized in school
mathematics of the industrial wave.

Implications for Assessment

One goal of any assessment procedure is to provide evidence
about the level of understanding any student has with respect to a
particular domain. If a conceptual field is a means of describing
the interrelationship of ideas in a domain (what constitutes
knowledge about that domain), then a new assessment perspective is
called for. Specifically the assessment should reveal both the

2 4 1
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aspects of the domain the student has constructed and how the
student reasons about those aspects and their relationships.
Conceptual fields provide one framework for specifying knowledge
structures for mathematics. The task then is to identify an
assessment methodology which can be used to identify the extent of
any student's knowledge about that domain. We believe that the
methodology should be based on the notions about network models as
a means of representing levels of knowledge, within a conceptual
field, and the notions from cognitive psychology about how
information is constructed.

Network Models

A conceptual domain as described by Vergnaud (1981) may be
considered as an example of a network model. In the past in most
educational disciplines the concepts and skills upon which
curricula and instructional procedures were based were considered
as independent aspects to be mastered by students one at a time.
Furthermore, in assessing understanding, student responses to each
test item were considered to be independent of responses to other
items.

Networks describe the interdependence of the aspects of a
domain. Curricula, instruction, and assessment must reflect those
interdependent relationships. Thus, assessment should begin with a
set of exercises to be presented to students that reflect the
important aspects of is conceptual field. Then from responses to
those exercises a map of what the student knows about that domain
would need to be constructed. Hwever, the responses should not
simply be a tally of the number of items that the student answered
correctly. Instead the responses should be coded in terms of how
the student reasons about the relationships.

An Example

To illustrate how a conceptual field could be assessed we
refer to the work of Carpenter and Moser (1983) who studied how
students reason about addition and subtraction problems in a manner
similar to that of Vergnaud (1981).

The domain includes learning to symbolically represent a

variety of problem situations (often via word problems), operate on
the symbols, and interpret the results. For example, to solve a
typical addition stnd subtraction word problem, one first must
understand its implied semantic meaning. Quantifying the element
of the problem comes next (e.g., choosing a unit and counting how
many). Then, the implied semantics of the problem must be
expressed in the syntax of addition and subtraction. Next one must
carry out the procedural (algorithmic) steps of adding and
subtracting. Finally, uhe results of these operations must be
expressed. Children bring to such problems well-developed counting
procedures, some knowledge of numbers, and some understanding of
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physical operations, such as "joining" and "separating," on sets of
objects.

Not all word problems involving addition and subtraction have
the same semantic structure. In fact, most current work uses four
broad classes of addition and subtraction problems: Change,
Combine, Compare, and Equalize (Carpenter & Moser, 1983). There
are two basic types of Change problems, both of which involve
action. In Change-Join problems, there is an initial quantity and
a direct or implied action that causes an increase in that
quantity. For Change-Separate problems, a subset is removed from a
given set. In both classes of problems, the change occurs over
time. Within both the Join and Separate classes, there are three
distinct types of problems depending on which quantity is unknown
(see Table 1). Both Combine and Compare problems involve static
relationships for which there is no action. Combine problems
involve the relationship existing among a particular set and its
two, disjoint subsets. Two problem types exist: the two subsets
are given and one is asked to find the size of their union, or one
of the subsets and the union are given and the solver is asked to
find the size of the other subset. Compare problems involve the
comparison of two distinct, disjoint sets. Because one set is
compared to the other, it is possible to label one set the referent
set and the other the compared set. The third entity in these
problems is the difference, or the amount by which the larger set
exceeds the other. In this class of problems, any one of the three
entities could be the unknown--the difference, the referent set, or
the compared set. The larger set can be either the referent set or
the compared set. Thus, there exist six different types of Compare
problems.

The final class of problems, Equalize problems, are a hybrid
of Compare and Change problems. There is the same sort of action
as found in the Change problems, but it is based on the comparison
of two disjoint sets. The question is posed, "What could be done
to one of the sets to make it equal to the other?" If the action
to be performed is on the smaller of the two sets, then it becomes
an Equalize-Join problem. On the other hand, if the action to be
performed is on the larger set, then an Equalize-Separate problem
results. As with Compare problems, th...1 unknown can be varied to
produce three distinct Equalize problems of each type.

To build the connection between semantic forms and relevant
symbolism, one form is usually used as a model to introduce the
symbolism. Given that there are many semantic forms for which the
same symbolic sentence is appropriate, the pedagogical problem is
how to relate the symbolism to all the semantic problems.
Traditionally, the symbolism has been taught independently of word
problems; that is, the symbolic procedures were taught, and some
word problems were assigned so that students could apply their
symbolic procedures. No serious consideration was given to the
semantic structure of the problems. In fact, it is now clear that
in many texts only a few of the semantic forms are ever included
(see DeCorte, Vcrschaffel, Janssens & Joillet, 1984). It is no

, A
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TABLE 1
Semantic Classification of Word Problems

(Carpenter b Moser, 1983)

Join

1. Connie, had 5 marbles. Jim gave

her 8 more marbles. How many

marbles does Connie have
altogther?

3. Connie has 5 marbles. How many
more marbles does she need to
have 13 marbles altogether?

5. Connie had some marbles. Jim
gave her 5 more marbles. Now
she has 13 marbles. How many
marbles did Connie have to
start with?

7. Connie has 5 red marbles and 8
blue marbles. How many
marbles does- she have?

9. Connie has 13 marbles. Jim
has 5 marbles. How many more
marbles does Connie have than
Jim?

11. Jim has 5 marbles. Connie has

8 more than Jim. How many
marbles does Connie have?

13. Connie has 13 marbles. She

has 5 more marbles than Jim.
How many marbles does Jim
have?

15. Connie has 13 marbles. Jim
has 5 marbles. How many
marbles does Jim have to
win to have as many
marbles as Connie?

17. Jim has 5 marbles. If he
wins 8 marbles, he will
have the same number of
marbles as Connie. How
many aarbles does Connie
have?

19. Connie has 13 marbles.
If Jim wins 5 marbles, he
will have the same number
of marbles as Connie.
How many marbles does Jim
have?

Change
Separate

2. Connie had 13 marbles. She

gave 5 marbles to Jim. How

many marbles does she have
left?

4. Connie had 13 marbles. She

gave some to Jim. Now she
has 8 marbles left. How
many marbles did Connie give
to Jim?

6. Connie had some marbles.
gave 5 to Jim. Now she has
8 marbles left. How many
marbles did Connie have to
start with?

Combine

8. Connie has 13 marbles. Five

are red and the rest are
blue. How many blue marbles

does Connie have?

Compare

10. Connie has 13 marbles. Jim
has 5 marbles. How many
fewer marbles does Jim have
than Connie?

12. Jim has five marbles. He

has 8 fewer marbles than
Connie. Row many marbles
does Connie have?

14. Connie has 13 marbles. Jim
has 5 fewer marbles than
Connie. How many marbles
does Jim have?

Equalize

16. Connie has 13 marbles. Jim
has 5 marbles. How many
marbles does Connie have to
lose to have as many marbles
as Jim?

18. Jim has five marbles. If

Connie loses 8 marbles, she
will have the same number of
marbles as Jim. How many
marbles does Connie have?

20. Connie has 13 marbles. If

she loses 5 marbles she will
have the same number of
marbles as Jim. How many
marbles does Jim have?
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surprise, then, that for different types of problems students have
found little connection between the problems and the symbolic
procedures they had been taught (e.g., Vergnaud, 1982).

To assess a child's understanding of addition and subtraction,
Carpenter & Moser (1983) administered six problem types (tasks)
given under six conditions. The six types included two problems
solvable by addition of the two given numbers and four problems
solvable by subtraction of the two given numbers. The types
differed in terms of their semantic structure. The semantic
characterization for these six problem types is detailed in
Carpenter and Moser (1983).

Table 2 presents representative problems. The six semantic
problem types used were presented under six conditions, although

TABLE 2
Problem Types

Task Sample Problem

1. Change/Join (Addition)

2. Change/Separate

(Subtraction)

3. Combine/Part Unknown
(Subtraction)

4. Combine/Whole Unknown
(Addition)

Pam had 3 shells. Her brother
gave her 6 more shells. How many
shells did Pam have altogether?

Jenny had 7 erasers. She gave 5
erasers to Ben. How many erasers
did Jenny have left?

There are 5 fish in a bowl. 3 are
striped and the rest are spotted.
How many spotted fish are in the
bowl?

Matt has 2 baseball cards. He
also has 4 football cards. How
many cards does Matt have
altogether?

5. Compare (Subtraction) Angie has 4 lady bugs. Her
brother Todd has 7 lady bugs. How
many more lady bugs does Todd have
than Angie?

6. Change/Join, Change set
Unknown (Subtraction)

Gene has 5 marshmallows. How many
more marshmallows does he have to
put with them so he has 8
marshmallows altogether?
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not all children responded to all conditions. Four conditions
resulted from crossing smaller number (SN) problems and larger
number (LN) problems with presence and absence of manipulative
materials. The last two conditions involved two-digit numbers. In
one set no regrouping (borrowing or carrying) was required to
determine a difference or sum when a computational algorithm was
used. In the second subdomain regrouping was required.

Trained interviewers have administered the tasks to children
in several studies. The interviewers coded the responses for each
child. (See Martin & Moser, 1980, for details of interviewer-
training procedures and reliability.)

Children use a variety of strategies to solve the variety of
additional subtraction word problems. For addition and subtraction
three basic levels of operating have been identified: strategtes
based on direct modeling with fingers or physical objects,
strategies based on the use of counting sequences, and strategies
based on recalled number facts. For example, in addition problems,
the .lost basic strategy is "Counting All With Models." Here
physical objects or fingers are used to represent each of the
addends, and then the union of the two sets is counted (see
Carpenter & Moser, 1983).

From such a carefully constructed set of tasks it has been
possible to construct a map 1 what a child knows about a domain at
a point in time. Also, as was done by Carpenter & Moser (1983), by
repeatedly administering the set of tasks one can portray changes
in strategies used over time. Finally, although this example amply
demonstrates the power of this assessment for understanding what a
particular child knows and how he/she reasons, is the same strategy
appropriate for monitoring group performance? The answer to this
important question is yes. For example, Romberg & Collis (1987)
used the tasks and coding procedures in a cross-sectional study to
compare groups of children. Data were aggregated by class and
cognitive level. Thus, both within and between group comparisons
can be provided.

Conclusions

The characteristics of the industrial wave, principally
fragmentation, analysis, and mechanism, continue to permeate
approaches to scool mathematics. They underlie a manufacturing
basis that objectifies school mathematics for supposed efficient
and effective delivery to student consumers of the product.
However, insufficient attention has been directed to mathematics as
a social development, as a human enterprise in which student
construction and creativity are valued. Outcomes of significanc-
in this latter orientation are process rather than product, ptoL'em
posing more than problem solving, questioning as well as
responding, skills built within the context of problem,, and
reflective and operational thinking with less procedural thinking.
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Vergnaud's development of conceptual fields offers
possibilities for students of school mathematics in the
postindustrial wave. It is problem- and situation-based. From
this base, symbolic systems and the contextual meanings they
signify are viewed as a duality. Operational thinking, at the core
of which lies recognition of relational invariants, links problems
and situatIons to symbolic representations and solution paths. As
students distinguish between classes of problems they seem to
employ theorems in action, syntheses of operations they have
constructed and appropriated.

Vergnaud's approach challenges the very fundamentals of school
mathematics that have so characterized it in the industrial wave.
Conceptual fields as an approach makes clear the limitations of
dominant industrial wave thinking and provides possibilities for
working at school mathematics in ways that stress content and
holism, are based on synthesis, and acknowledge the problematic
nature of knowledge.
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Chapter 21

ANOTHER LOOK AT ASSESSMENT:
A REACTION TO CHAPTERS 17-20

Norman L. Webb

Mathematics achievement and its assessment are the central
topics of chapters 17-20. Together, the four chapters argue for
new procedures for assessing mathematics achievement and indicate
what needs to be considered in the development of such tests. The
.../eral argument posed by the four chapters goes like this: A new
.ge is upon us,'resulting in a need for reform in the mathematics

curriculum and, consequently, for reform of the procedures we use
to assess mathematics achievement. The focus of mat,ematics
education and our understanding of the mental structure of
knowledge are changing. Assessment procedures also must change to
better reflect our current understanding about how knowledge is
constructed and the mathematics that students should know. In
addition, continued use of current assessment procedures will
inhibit needed reform in the mathematics curriculum.

Assessment of mathematics achievement generally refers to some
measure of a student's or group's command of mathematics. Three
fundamental factors must be considered in decision making about the
appropriateness of a particular measure. These factors are:

1. What is the purpose for the assessment?

2. Does the assessment procedure measure what it is
intended to measure?

3. Is the assessment procedure reliable?

These three factors are not based on any assumptions related to
historical or economic era, content, or school of psychology but
are fundamental factors that must be considered for deciding the
appropriateness of any measure.

Using a balance scale to measure the weight of a block of wood
would provide very little useful information if the purpose of the
measuring was to determine whether the block would fit into a box.
The appropriateness of a measure and the procedure used to obtain
it can only be judged relative to the purpose for obtaining the
measure. This is true for all measurement procedures, including
testing. As noted by Cronbach (1970), "Tests must be selected for
the purpose and situation for which they are to be used" (p. 115).

A procedure also must provide an appropriate measure of that
which is to be assessed; that is, the procedure must be valid.

201' =
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This is true for any form of measurement for any purpose. A ruler
graduated by inches is a valid measure for estimating the lengths
of several new pencils to the nearest inch, but it is not a valid
measure of the differences in pencils' lengths, which will vary by
only a small fraction of an inch.

The third factor is based on an assumption that all measures
have errors associated with them. The error of measurement must be
small enough so that the measure consistently provides the
information needed. For example, if a ruler used to measure a
pencil were made of string that would stretch when pressure was
applied, the measures would be inconsistent or unreliable.

Other considerations related to most measurement situations
include the unit of measure, the precision of measure, the
frequency of measure, the sampling for measure, and the
generalizability of measure. However, these can all be subsumed
into one or more of the three basic factors--purpose, validity, and
reliability.

These fundamental factors comprise the model used in reviewing
each chapter. The chapter will be discussed individually. Then a
brief summary of content will be followed by a reaction to the
chapter's main issues. I conclude my comments with observations
about the content in the four chapters that is related to
monitoring school mathematics.

Chapter 17 makes the case that new assessment procedures are
needed to monitor educational reform. It can be assumed that such
reform will produce new or different educational results; for
example, the reformed curriculum emphasizes higher order thinking
skills while it deemphasizes mastery of algorithms. If policy
decisions are to be relevant to national reform, assessment
procedures must be sensitive to the goals and purposes of the
reforming curriculum.

Romberg, in chapter 17, comments on current tests. "While
these tests have been useful for some purposes and undoubtedly will
continue to be used, they are products of an earlier era in
educational thought. . . . Today we ought to be able to develop
better indices of achievement." In selecting or developing
assessment procedures, it is important that the purpose be clearly
understood and that a procedure, test, or other instrument be
evaluated on its appropriateness to that purpose. The major reason
to accept or reject the use of standardized tests is not so much
based on the tests' historical roots as it is on the purpose for
which the tests were designed. The knowledge of a test's
historical roots, or the era of which it is a product, is useful in
explaining why the procedure was used and in offering a deeper
understanding of its purpose. A historical analysis also
contributes to an understanding of the context in which a procedure
was used, which is helpful in identifying factors important to test
development.
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A historical analysis reveals that norm-referenced tests were
"based on the psychology of individual differences rather than upon
the psychology of learning" (Tyler & Wolf, 1974) and were the
product of an era in which the prevalent societal view espoused the
survival of the fittest, a view that encouraged the selection of
the nation's best and brightest to be officers in the army, to
attend college, and to work in select professions. This is
interesting, but a judgment about whether a norm-referenced test is
an appropriate tool for assessing educational reform must be based
on considerations of the purpose of the assessment and how well a
norm-referenced test meets that purpose. If there is a need to
order individuals on a single trait, to use items that are assumed
to be equivalent, or to predict future achievement or success, then
norm-referenced tests may be appropriate.

The importance of knowing the purpose for assessment is also
true of other test forms. Profile achievement tests have been
designed to evaluate educational programs or to assess a
population's command of knowledge in a content area, such as
mathematics. For example, the purposes of some of the programs
listed by Romberg to illustrate the use of profile testing follow.

- The National Longitudinal Study of Mathematical Abilities
(NLSMA) was organized by the School Mathematics Study
Group (3MSG) as a long-term study of the effects on
students of various kinds of mathematics programs.
(Romberg & Wilson, 1969, p. vii)

- Three main purposes for the Second International
Mathematics Study can he summarized as follows:

1. to investigate the ways in which mathematics
is taught;

2. to describe student attainment in terms of
both attitude and achievement; and

3. to relate these outcome variables to the
curriculum studied and the way it was taught.

(Crosswhite et al., 1986, p. 3)

- The purpose of the First International Mathematics Study
is ". . . to evaluate uniformly the educational practices
(including 'standards') of different countries" (Husen,
1969, p. 338).

- The purpose of the National Assessment of Educational
Progress is to gather information which will help answer
the question, "How much good is the expenditure [for the
testing] doing, in terms of what young Americans know
and can do?" (Finley, 1974, pp. 95-96)

- The National Assessment has been designed to sample the
tlangs which children and youth are expected to learn in
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school, and to find out what proportion of our people
are learning these things (Tyler, 1974, p. 94).

- The purposes [of the Wisconsin statewide assessment] are
to prov_de:

. measures of student performance in selected academic
areas;

. compar:sons of student performance to a national
average in mathematics, reading, and language;

. descriptions of changes in student performance over
time; and

. technical assistance in the area of testing and
evaluation. (Wisconsin Department of Public
Instruction, 1986, p. 1)

The purpose, then, for using profile tests is to evaluate
achievement or the effects of programs over a large group of
students. In evaluating the programs, some scheme is needed to
ensure that the range in content--both that which is included in
the programs being evaluated and that which students being tested
have taken--is represented. The content-by-behavior scheme was
judged to be al ?propriate for use in NLSMA and the international
studies mentioned above, but it was not appropriate for use in the
Wisconsin State Assessment. In some cases, where the content -by-
behavior matrix is not as appropriate, the results were reported by
curriculum areas or objectives, while in other cases, such as for
the National Assessment, the results were reported by item. "The
results are reported in terms of percent of each population group
tAat was able to perform the exercise. These exercises show the
public both what our children are learning and how many are
learning each thing" (Tyler, 1974, p. 94).

The content-by-behavior matrices have been used to fit the
purpose of the study and to help in providing content and
curriculum validity. Considering the historical context, using
content-by-behavior matrices as a framework for constructing
assessment instruments made sense; curriculum and instruction were
greatly influenced by such matrices, based on the work of Tyler
(1970) and others. Whether the use of the content-by-behavior
matrix would be appropriate to monitor reform depends on how the
reform curriculum will be structured, whether or not concurrent
assessment is needed of svIdents using curriculum materials based

on content-by-behavior matrices, and whether such a model meets the
assessment purpose.

The behavior dimension of the matrix frequently has been based
on Bloom's Taxonomy (1956). As Romberg noted, this taxonomy fails
to reflect current psychological thinking. Nonetheless, the matrix
model may serve a purpose in reform assessment if its behavior
dimension is replaced by a more contemporary notion of psychology
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applied to learning. Problems with the basic structure of the
matrix model for guiding instruction and assessment are that the
dimensions are considered orthonogal and that all of the cells
created should be filled. A decision to use the matrix model
should be based on the assessment's purpose and a judgment about
the model's validity.

Similarly, the use of objective-referenced tests for
assessment must be evaluated on the basis of the purpose for the
assessment. Even though objective-referenced tests are related to
criterion-referenced measurements, objective-referenced
measurements are interpreted by referencing the specific behavioral
objective(s) for which a test item was written (Sanders & Murray,
1976). As Swezey (1981) noted, "These [objective-referenced] test
items are considered to be operational definitions of the
behavioral objectives" (p. 4). Objective-referenced tests can be
used in many different ways, including providing measurement of
individual performance and evaluating an instructional program
given to a group. If an acceptable criterion is associated with
the objective-referenced test, it becomes a criterion-referenced
test.

Romberg discusses in chapter 17 some of the major drawbacks to
objective-referenced tests, such as the meaning of aggregated
results across objectives, the assumption of independence of items,
and the cost. To develop an appropriate objective-referenced test
is both costly and time consuming. However, the appropriateness of
this form of testing for monitoring school mathematics must be
judged on the assessment's purpose and on the validity of the test
in meeting this purpose. If the performance of specific tasks are
part of the reform curriculum and there is a need to establish
absolute measures of performance, then some form or related model
of objective-referenced instrument may be appropriate.

An issue arises here regarding measurement. A measure is a
quantification of some object, entity, or behavior. It is an
abstraction. Any measure will be inadequate to describe the object
in its entirety. When a student responds to a test, task,
exercise, question, situation, or any other stimulus, and his or
her performance, response, answer, description, or writing is
recorded and used as a measure, behaviors are involved. A weakness
in the construction of objective-referenced tests has been that
traditional test items measured one small part of all behaviors
related to the objective. It is assumed that, if items are
randomly chosen from a pool, the aggregated score of the items will
be a measure of the objective. In practice, objectives and items
are articulated very specifically. However, this is not so much
the fault of the procedure as it is a weakness in the manner in
which the procedure has been put into practice. If the reform is
guided in any way by goals, outcomes, and/or objectives--which I
sufiect it will be--then some form of objective-referenced testing
will be appropriate in the assessment of the reform.

25 3



248

In summary, Romberg argues that as reform in mathematics
education takes hold, new indices of achievement will be needed.
New indices will be needed because what students will know and how
students will gain this knowledge will be different from previous
eras. But if the true impact of the reform is to be recorded, some
comparative evidence will be needed between what students know as
the result of reform versus what students know as a resuic of
education from earlier periods. The case for the effectiveness of
a reform is strengthened if the new knowledge students possess is
shown to be the direct result of the reform movement. For example,
there may be a need to show that the reform did, or did not,
depending on the purpose of the reform, produce an elite class of
students who benefit disproportionately from other groups and
achieve much higher than all other students. Some form of
standardized norm-referenced test would be useful in doing this.
There may be a need to judge the impact of the reform material in
comparison to the impact of the more traditional curriculum
materials. If the current materials have been developed using a
content-by-behavior matrix, then a form of a profile achievement
test may have some validity with respect to the older curriculum.
If the reform is guided by mandates that all students are to have
certain knowledge, then some form of criterion-referenced test will
be needed. The forms of assessment needed to measure the impact of
reform must not be discarded simply because they were developed in
a previous era, but must be judged on their own merits and how
appropriate they are to the purpose for assessment and the
expectations for th.: reform.

Now let us consider four assumptions Romberg (in chapter 17)
uses as evidence of the need for new assessment procedures; we will
evaluate each assumption using the general criteria for selecting
an assessment procedure: Is the procedure slid and reliable, and
does it provide the information needed to meet the purpose?

Assumption 1. The character of American schooling will be
significantly altered in the new age. This suggests that the
outcomes of schooling probably will need to be different to meet
the demands of the new age. If we are to achieve outcomes
different from those of the current system, we will need to teach
new content in a different way. If reform is to be monitored
adequately, assessment instruments must be sensitive enough to
denote changes in student outcomes that resylt from a change in
instruction designed to better prepare students for the new age.
If the purpose for assessment is to determine how well students are
learning the new content or have changed in light of new
instruction, then the assessment procedures must include new-age
content validity and some form of content reference. If the
purpose for the assessment is to determine whether students are
prepared for the new age and will perform well in light of its
demands, then the assessment procedures will need to have
predictive validity. If the purpose for the assessment is to
determine whether the students are functioning at some
predetermined level that has been deemed necessary for the new age,
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then the assessment procedures will need to have criterion
validity.

Assumption 2. Mathematics instruction must foo_o on thinking
skills. Thus, if the reform has as one of its goals the learning
of higher order thinking, monitoring the reform will require
assessment of this type of thinking and the ability to detect
changes in the use of higher order thinking by different groups.
Again this issue is one of assessment content and,procedural

validity; the measurement used must be sensitive to higher order
thinking and able to detect changes in its use. If the nature of
higher order thinking prohibits it from being precisely defined, as
alluded to by the quote from Resnick (on pp. 146-147), then some of
the more structured forms of measurement, such as objective-

referenced and profile-achievement testing, may be inappropriate
and may, in fact, discourage higher order thinking. But this is a
question of validity and of the use of procedures that will allow
higher order thinking to be observed and measured.

Assumption 3. Higher order skills are not to be learned after
the mastery of other skills. In short, instruction of higher order
thinking skills needs to be a part of the curriculum and its
assessment at all age levels. This issue relates to the purpose of
monitoring: What age levels are to be included, and how diagnostic
or descriptive is the monitoring to be? Is the purpose to assess
the higher order thinking of students at particular times during
their schooling experience? Or is the purpose to assess how
schools facilitate the development of higher order thinking
throughout a student's school career, assuming this is one of the
goals or possible outcomes of the reform? Assumption 3 implies
that, if development is an issue, then monitoring must be conducted
at all ages. This assumption has implications for defining the
purposes of the monitoring and using procedures that are sensitive
to providing the needed information for the purpose. This
assumption is intrinsically related to instruction. Is the
monitoring to look at outcomes or instruction? Is it reasonable to
assume the existence of a hierarchy so that a student's inability
to do a routine task does not imply his or her inability to do
higher order thinking? This assumption is related to
generaliJability with regard to skills and their relations to each
other; evidence of one form does not deny or confirm another form.
This implies the need for a rethinking of prerequisite knowledge
and skills and the structure of reform curriculum. It also means,
for example, that what is currently considered an eighth-grade
level of thinking may need to be considered a skill for students at
all levels. A corollary issue is the question of how higher order
thinking manifests itself. How do you know when higher order
thinking is being used or has been used? How do higher order
thinking skills relate to mathematics achievement? Is doing more
advanced mathematics doing higher order thinking? Or, is
mathematical higher order thinking an independent educational area
in which students are expected to achieve? Is this related to
creating mathematics and solving problems?

K Ff-: 255
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Assumption 4. Current approaches to achievement testing
inhibit needed reform. This assumption is based on two issues.
One is the issue of validity and that current tests are not aligned
with the existing or reform goals for education. The second is the
issue of the degree of influence that tests have on the curriculum
and the advancement or retardation of any reform. The three
references Romberg quotes in chapter 17 (McLean, 1982; Hilton,
1981; and Resnick, 1987) all raise concerns about current tests not
reflecting what mathematics is being taught or what mathematics
should be taught. They raise a good point and suggest that any
test used should be aligned with the desired outcomes. If higher
order thinking is an intended outcome, then the tests being used to
evaluate students or a program should include some measure of
higher order thinking. If the tests do not, then the validity of
the evaluation procedures is in question. If a test is to measure
reform, then the test needs to be aligned with the intended
outcomes of the reform movement.

To make the assumption that the approach to testing inhibits
reform is mo-e difficult to do than to make the assumption that the
content being tested is what has the real influence. Depending on
what the reform curriculum is, existing approaches to testing can
be valid for measuring reform. What is more important is that any
one approach to testing will be insufficient to measure the depth
and breadth of the reform curriculum. Standardized tests can
measure some levels of cognitive functioning of higher order
training programs but will not, necessarily, be sensitive to all
levels of cognitive functioning. Some form of open ended question
or interview will probably be needed. Rather than discarding tests
outright because of the approach taken, we need to judge tests
individually on how well they are aligned with the intended
outcomes of the curriculum.

The second issue related to Assumption 4 is the degree of
influence tests have on the curriculum and reform. The argument
here is that teachers and school administrators make curriculum
decisions based on the tests being used. That is, the curriculum
is test driven, or, to use the term coined by Popham, Cruse,
Rankin, Sandifer, and Williams (1985), instruction is measurement
driven. Hilton (p. 148, chapter 17) is quoted as saying, "[Tests]
loom so large that they distort the teaching curriculum and the
teacher's natural style." This overstates the case. The influence
of tests on the curriculum will vary according to the payoff placed
on the test results. High -take tests, such as those needed to
graduate from high school, gain admission into college, or receive
a license for a profession, will have more influence on what is
taught than tests used to group students for learning. Tests that
are used to evaluate and rate the effectiveness of teachers w111
have more influence on what is taught than tests used to evaluate
programs.

The test or approach to testing achievement has the potential
of inhibiting reform to the degree that results from the tests are
used to make decisions with high payoffs. Currently, the use of
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high-stake testing i; localized and varies from district to
district and from state to state. There is some question about
exactly how influential tests are on what is taught. Stiggins and
Bridgeford (1985) noted that their findings from administrating an
extensive questionnaire to teachers in a range of grades, subjects,
and school districts showed that only from 8 to 19 percent of the
eighth- and eleventh-grade teachers reported using published tests
for any of the five purposes (diagnosing, grouping, grading,
evaluating, and reporting). The form of assessment used by the
highest percentage was teacher-made objective tests. In another
study, the scores of students whose teachers taught to specific
objectives on standardized tests did not seem to differ greatly
from the scores of students whose teachers did not attend to the
objectives (Mehrens & Phillips, 1986).

Tests are a part of the infrastructure of education and in
that sense interact with the curriculum, instruction, and outcomes.
The assumption that current approaches to achievement testing will
inhibit needed reform, however, needs to be considered in context
of how valid the individual test and its approach is to measuring
the intended outcomes of the curriculum and how much weight is
placed on the test results.

The four conclusions Romberg provides at the end of chapter 17
support reform and recognize the role of testing. His point that
curriculum change must be accompanied by a concurrent change in
evaluation, including assessment procedures, is an astute
oboervation and is well taken. Tests are ingrained in our
educational system, and as that system changes, the mode of testing
needs to change as well.

Chapter 18 by Romberg and Zarinnia offers additional support
for changing assessment means; their historical analysis takes into
consideration the economic, social, and psychological environments.
In a field whose beginnings are founded in this century, this
chapter verges on a philosophical study of mathematics education
which looks at the reasons, explanations, and meanings of certain
happenings based on broader contexts. Such analysis, possible only
if there is some history to a field, is an important factor in
establishing the uniqueness of an area of study. The ability to
draw meaning from a context that provides information about how a
field of study was developed helps in understanding the dynamics of
the field and offers insight to make predictions for the future.
It must be noted, however, that predictions are no more than mere
speculation, and there is no way to know what the world will to
like 20 years from now or, much less, what kinds of mathematics
people will be using. In planning for the future, and in making
decisions about what should be done now, it is important to use all
the information we have available, including considerations about
how the world situation has effected educational trends in general
and mathematics education in particular; about the most reasonable
projections of what the world will be like in the near and extended
future; and, based on this projected world view, about mathematics
education and its assessment.
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Education in this country has two fundamental purposes. It

prepares students for the future by teaching the mathematics they
will need for work and further education in 10 to 20 years; this is
a utilitarian purpose. Education is also designed to transmit our
culture from one generation to the next. For this purpose,
educators must consider what has come before and what it means to
be a part of a culture. In mathematics education, this means
learning about what mathematics is, why it is important, and what
tools it requires. It is important to keep these two purposes in
mind as we review chapter 18.

Romberg and Zarinnia state their purpose as the consideration
of the consequences of the emerging world view, called the
Information Age, on assessment of students' knowledge of
mathematics and their ability to use this knowledge creatively and
routinely to solve a variety of problems encountered in life.
Their argument holds that the nature, forms, purpose, and design of
major models of assessment are dominated by the prevailing Old
World views. They also argue that the "old" forms of assessment
will impede the progress of reform. The discussion rests on their
description of a dominant structure for creating achievement tests,
the content-by-behavior matrices; the authors note that use of this
structure relies on assumptions that a taxonomy exists, that the
matrix is the product of a behaviorism tradition, that items
selected to fit into this framework are frequently multiple choice,
and that the psychometric characteristics of items used along with
the matrix were selected based on assumptions used to select items
for standardized tests. Romberg and Zarinnia express
dissatisfaction with current testing because of the
content-by-behavior matrix structure reflected in most of these
forms. The problem with this structure, according to the authors,
is that it reflects an engineering approach to education, it
inhibits change in the curriculum, and tests developed according to
its tenets misrepresent learning and knowledge. The chapter
concludes with a description of mathematics education as it should
be in view of existing and emerging psychological theories,
epistemologies, and organizations of content; the authors offer
suggestions about some forms of assessment that come close to
reflecting the new view of the curriculum. A network approach is
proposed as an alternative to the content-by-behavior matrix.

This chapter needs to be reviewed in light of its underlying
assumptions and its purpose. It is intended to examine assessment
from a new world view. It does not focus on the issue of
monitoring, except to suggest that procedures used to monitor
reform should reflect, in part, forms of assessment appropriate to
the new world view.

There is no question that society is in the process of change,
as suggested by Zarinnia and Rcmberg in chapter 2, Volume I, of
this work. The level of productivity per individual has increased
in industry and agriculture; fewer people are producing more
goods--one indication of a prospering economy. With the
development of technology and computers, employment in service and
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information jobs is on the rise. Such professions as consulting,
nonexistent 20 years ago, have created new jobs. Change is the
status quo. In fact, Zarinnia and Romberg may be understating the
magnitude of social change in limiting their discussion to the
transformation from an industrial age to an information age. Some
observers have suggested that society is moving from the Modern Age
into a whole new age of human history--a process which has occurred
only three times in the last 2,000 years: the fall of the Roman
Empire marked the first such transition; the Middle Ages was the
second; and the evolution of the Middle Ages into the Modern Age
was the third (Gust, 1986). The period we are in now has been
labeled the post-Modern age.

The issue here, then, is not whether change is occurring; the
real questions involve the ways in which the educational system
will react to change in terms of the curriculum in general and
mathematics in particular. The view expressed by Romberg and
Zarinnia in chapter 18 is based on an underlying assumption that
education prepares students to function in society. They examine
the consequences of the emerging world view as it relates to
students' "ability to use [their knowledge of mathematics] both
creatively and routinely in solving the variety of problems
encountered in the course of life" (p. 1, chapter 18). The authors
take a utilitarian view of the role of education. An alternative
view of the role of education sees it as the transmission of
culture. This view holds that schools are to transmit to students
the accumulation of knowledge to date. Students are prepared for
work and further education only to the extent that work and
education are seen as components of the culture. A response to a
rapidly changing world based on this latter view of educaticn would
be very different from that which would emerge from the former.
This thermostatic view suggests that "in a culture of high
volatility and casual regard for its past such a responsibility
[the conserving function of school] becomes the school's most
essential service. The school stands as the only mass medium
capable of putting forward the case for what is not happening in
the culture" (Postman, 1979, pp. 21-22).

From a thermostatic point of view, curriculum reform in the
face of volatile change would stress the nature of the content
area, its history, its structure, and its place in society. The
curriculum would not be taught as a series of skills in isolation,
but as an integrated body of knowledge inherent to our society.

The thermostatic view of curriculum is presented here to
suggest an alternative view to the utilitarian role of education
that may offer some different directions for reform and,
consequently, assessment. For example, the utilitarian view may
suggest that statistics and probability are important topics for
all students to master because these topics will be increasingly
important in the work force and in describing our world. The
thermostatic view would argue that it is uncertain what mathematics
will be commonly used in 20 years; it is possible to guess, but no
one can be sure. Statistics and probability are important
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mathematical topics which have evolved over time tc describe and
model chance events. The topics have important applications in the
world today and students should know what role these topics play
and how they relate to other mathematical topics. Response to
change from a thermostatic view provides a firm foundation for
students to build on. This approach would emphasize more the
concepts and nature than procedures.

Chapter 18 talks about assessment of students' knowledge of
mathematics as a consequence of the new world view. The prevailing
view of the content-by-behavior matrix used to construct tests is
that it is deficient because of the underlying theory it
represents; because it can be used to separate things into distinct
cells; because the classification of content is spuricas; because
it reflects behaviorism and scientific management, which
misrepresent the thinking process; because its use trivializes
learning and knowledge; and because it encourages the use of
multiple-choice items that, by their very nature, must be
independent.

The content-by-behavior matrix is described as providing the
framework for profile achievement tests. As noted in the
discussion of chapter 17, the appropriateness of easing a

content-by-behavior matrix as a framework for constructing tests is
really a question of whether the matrix is valid for the intended
purpose. If the curriculum was based on such a matrix, it is
appropriate to use the matrix to guide the development of the
assessment. Romberg and Zarinnia have noted that the content-by-
behavior matrix has provided a powerful organization scheme for
many assessment programs. The idea of a matrix, as advanced by
Tyler (1970), was a guide for planning curriculum. In his
rationale, he cautions against being too specific or too general;
effort should be made to include a workable olmIser of objectives,
from 10 to 30. The ordering of categories came later, with the
introduction of the behavior taxonomy. Romberg and Zarinnia's
argument that the "intent of the content-by-behavior matrix is in
every respect hierarchical" (chapter 18, p. 166) refers to a common
use of the matrix but does not reflect the only way it can be used
or how Tyler viewed its applicability in the early stages of its
development.

The critical question is not so much what is wrong with the
content-by-behavior matrix as a framework for designing
assessments, but what is the best framework for the intended
purpose. That the matrix may be associated with an "old world"
view, in which an engineering approach to scientific aanagement
dominated, is not a sufficient reason to dismiss its use. That the
application of the matrix was pushed in some cases to its extreme
to partition objectives into very small cells, resulting in
inattention to educational outcomes that required the combined
applications of skills covered by all the objectives, does not
indicate that the matrix has to be inappropriately used in the
future. It is necessary to identify in some way that which is to
be measured in light of the changing curriculum. Once the purpose
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for the assessment is adequately defined, a framework that will
satisfy the purpose can be specified, selected, or derived.

Creation of knowledge is to be one of the main purposes of
education in the future. In identifying a framework for assessing
mathematics achievement, creation of knowledge serves a function
similar to that which behavior serves for the content-by-behavior
matrix. Another factor is that the "new view of science blends the
linear and the circular; it emphasizes probability and stochastic
processes" (chapter 18, p. 169). In their section "New Purpose:
Managing Complexity," Romberg and Zarinnia have provided a very
thorough conceptualization, well grounded in the literature and
current recommendations, of the direction mathematics education is
likely to take. They argue for an epistemological approach to
mathematical education based on conceptual fields. Current trends
in science and society are most congruent with the theoretical
model, which is depicted by diagramming networks, as compared with
the scientific model, which is depicted by forming matrices.

The appropriateness of a network model for structuring the
assessment of outcomes from mathematics instruction must be
considered in light of the purpose for the assessment and the
validity of the network model in meeting this purpose. The network
model, in theory, appears to have some validity to projected
epistemological approaches to mathematics education. It can depict
relationships among many different factors; it is flexible, so that
factors and links can be added or deleted without affecting others
in the model. This makes the network model mon.. relevant to a
constructive notion of knowledge formation than the matrix model,
which assumes that behaviors cross all content areas and that it is
more difficult to delete just one or two cells. The network model
is very suitable for depicting the relation among situations,
mathematical ideas, and possible representations.

Before the actual validity of the network mockl can be
determined, it must be tested to determine whether it works in
practice. Several questions must be answered before putting the
model into use. First, in creating a network in which nodes are
interlinked, what will the nodes represent and what will the links
represent? Will the nodes be concepts, ideas, processes, or some
combination of the three? Will the links represent the same type
of relationships in the network, such as a subclassification of a
broader category, or will the links represent different kinds of
relationships, depending on which nodes are connected? In
addition, the netwck model does not preclude falling into some of
the same traps that plagued the content-by-behavior matrix. For
example, what is the level of specificity needed to adequately
develop an assessment framework? In using the network model, how
refined do the nodes have to be? It is possible to become very
specific, which could result in the reductionism that has occurred
when very refined behavioral objectives were written on the basis
of a matrix framework. The matrix provided a powerful organization
scheme that depicted a plan for a large-scale assessment in a
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relatively small space. For example, the matrix used for NLSMA
(Romberg & Wilson, 1969) fits on a single page. This matrix guided
the use of a number of testing instruments and a variety of items.
Do levels of networks exist so that one can depict the general
approach to a large assessment? How will different content
divisions, as we currently know them, be depicted? Will
mathematics be divided into general areas or fields such as
multiplicative field, additive field, geometric field, etc.? If

so, will these fields be linked by a network, or will they he
depicted disjointedly, each with its own network? Theoretically,
the network approach is appealing and appears to be more reflective
of current thinking on cognition, but many practical issues must be
resolved before the approach has the functional power of the
content-by-behavior matrix.

In chapter 19, Collis described an approach that is actually
an intermediate model between the content-by-behavior matrix and
the network model. The SOLO Taxonomy, in structure, is a hierarchy
similar to Bloom's Taxonomy (1956). However, the SOLO Taxonomy is
based on recent cognitive development theories and on Piaget's
stages of cognitive development. In this sense, the model takes

into account some of the new notions of knowledge. The taxonomy

has been developed for use in evaluating students' responses. An

added benefit to the system is that the taxonomy has been found to
have validity for developing both an open format and a closed
format of tasks. Because the approach has been tested, it is
possible to specify the steps needed to analyze tasks in preparing
an evaluation instrument. The system also has some applicability

to analyzing the level of mathematics functioning required in
particular professions.

The SOLO Taxonomy seems especially suited to the evaluation of
individuals and to making instructional decisions regarding
individuals. Concurrently, the system could be used to analyze

curriculums and plans for teaching. The system is not as related to
the constructive notion of knowledge, where the meaning of
mathematics is drawn from the situation; it does not model as
closely Resnick's description in chapter 17 of lower and higher
order thinking skills that are not necessarily learned or
experienced in a hierarchy. The superitem technique, which uses
the closed format, may have pcssibilities for applications in other
systems. What is important in developing assessment procedures for
monitoring school mathematics is that the structure of the SOLO
Taxonomy be considered in regard to the purposes of the assessment
and its validity for assessment over groups of students.

Donovan, in chapter 20, described a "fundamental reappraisal"
of the content of school mathematics based on Vergnaud's (1983)
notion of conceptual fields. The approach is described in the
context of the assumption that knowledge is socially constructed.
This is an epistemological approach, different from the cognitive
development theory espoused by Piaget or an approach that focuses
on the logical structure of tasks. Students' concepts, models, and
theories are shaped by situations and problems. The three
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important elements of conceptual fields are problems and
situations, operations of thought, and symbolic representations.
Examples of conceptual fields are additive structures,
multiplicative structures, spatial measures, and dynamics.

Conceptual fields provide a new way of organizing content and
of thinking about the assessment of mathematics, consistent with a
constructive notion of the structure of knowledge that is applied
to mathematics. Network models, as described above, appear to be
directly applicable to this form of thinking about mathematics.
Donovan illustrated the application of a conceptual field to an
assessment of addition and subtraction (Carpenter & Moser, 1983).
Using a carefully constructed set of tasks and interviews with
individual students, it was possible to construct a map of what a
child knows about the additive conceptual field. Donovan noted
that a similar procedure was used by Romberg and Collis to collect
data that were aggregated by class and cognitive level.

Progressing from conceptual fields to a well-developed plan
for monitoring school mathematics is not a trivial matter. Major
conceptual fields would need to be identified and defined; as
Vergnaud (1983) noted, these fields would not be disjoint. Within
each field, three major elements would have to be defined with
enough specificity so that variations in situations as they relate
to the conceptual field could be identified. For audition and
subtraction, Carpenter and Moser defined semantic structure for six
different types of addition and subtraction problems. For other
fields, such as the multiplicative conceptual field, the number of
types that could be identified and are applicable is unknown. The
network model, as described in the discussion of chapter 18, may
have the potential of providing a framework useful for describing
and depicting conceptual fields. As is often the case, the process
of specifying content or conceptual field to the degree necessary
for assessment -an make a real contribution toward advancing the
use of conceptual fields in guiding instruction. The issue of the
validity of assessment procedures based on conceptual fields to
existing curriculum and their future evolutions must be resolved.

The major issue addressed in chapters 17-20 involves the need
for some systet. to monitor school mathematics on a national level.
Such a system is needed because the time is right. Rumblings of
reform in mathematics education are in evidence in the nLAber of
standards being issued by blue ribbon committees and commissions;
in the emergence of technology into everyday use in schools and
work; and in the serious issues facing educators, such as teacher
qualifications and shortages, student dropouts, school financing,
and student achievement. As changes occur in the curriculum, the
effects of these changes should be measured in such a way that
meacurement results could be used by policymakers and, in fact,
could influence the direction or the acceleration of the changes.
Current large-scale assessments are more sensitive to the status
quo and therefore are insensitive to changes that may occur in
reform curriculum. It is clear that a new monitoring system is
needed.
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In conclusion, several issues must be raised. The term
assessment has been used to describe a variety of processes, such
as the assessment of individual abilities, the assessment of
student learning, the assessment of schooling, state assessment,
and nacional assessment. Romberg articulates the need to identify
the unit being assessed; such a specification is very relevant in
judging whether or not a particular procedure is appropriate. In

the historical analysis of testing procedures, the application of a
test has gone beyond its intended purpose, 7articularly regarding
the unit of testing. Standardized tests, which were developed to
sequence individuals on a line based on the scores of a norm group,
are frequently used to group students (Stiggins & Bridgeford,
1985). However, the tests that were developed to make decisions
regarding individuals are generally not appropriate to make
decisions regarding school programs. Variation in group results
can fluctuate considerably depending upon the technique used to
compute the group score (Baglin, 1986). At the same time, results
from NAEP (which is an example of a profile form of assessment)
cannot be used to make decisions regarding individuals because the
sampling technique used requires an individual to take only a small
sample of the exercises; the sam-ing technique does provide
information for the nation. In short, the assessment procedure
must be appropriate for the intended purpose. Mathematics
education reform will be monitored to make decisions regarding
large groups; the form of assessment to be used must be selected
with this in mind.

Another consideration, the precision of measurement, was not
discussed by Romberg but is relevant to determining an appropriate
means for assessment and in evaluating whether an "old" form will
suffice. How precise does the measurement have to be to provide
the needed information to make decisions? This will depend on the
decisions to be made and the costs or results of making a wrong
decision. If the process of monitoring reform and the information
to be derived from the measurement affects the allocation of large
sums of money, the assessment instruments need to be precise. The
importance of the measurement's precision also depends on the
amount of change expected; if the results of reform are to be
grand, affecting a large number of students, the form of assessment
can be more coarse. If the results of the reform are to be subtle
or gradual, the form of assessment must be able to detect minute
changes. For example, if the reform is to require that students
learn a totally different topic than that which is currently being
taught (e.g., probability and statistics in the eighth grade), then
a limited number of tasks can he used to show change. However, if
evidence of the reform is to involve more students performing
better on what is currently being taught, and the change is to be
ve'j gradual, a much larger number of tasks (items) are needed with
a very refined calibration strategy.

Another relevant fctor to be considered involves the
assumptions of how the reform will take place. This issue is
explicitly relevant to the assessment strategy, but also to the
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form of assessment. If it is anticipated that reform will be
evenly distributed across a population and will occur continuously
over time, some form of a standardized test may be appropriate.
More likely, however, the effects of reform will be localized and
will occur in steps and stages. This suggests that the form of
assessment must be adaptable, flexible, and fluid so that local
changes can be observed, while being built on solid conceptual
foundation to measure different forms of a central idea.

It is difficult to conclude that current forms of assessment
will be inappropriate for monitoring reform without specifying and
researching more about what shape the reform will take. Without a
refined notion of the anticipated changes, one appropriate strategy
may be the shotgun approach where a battery of assessment
instruments are used based on a number of different forms.
Chapters 17-20 offer guidance in the process of developing some
us'ful assessment procedures for monitoring school mathematics.
What is needed now are the details.
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Chapter 22

ATTITUDES TOWARD MATHEMATICS

Gilah C. Leder

In recent years there has been a growing recognition that
understanding the nature of mathematics learning requires
exploration of affective as well as cognitive factors. Large scale
surveys of students' performance in mathematics, such as the
National Assessment of Educational Progress (NAEP, 1983), the
Second International Mathematics Study (SIMS) (Crosswhite, Dossey,
Swaffort, McKnight, & Cooney, 1985), and the National Assessment of
Participation and Achievement of Women in Mathematics (Armstrong,
1985), have in fact included items designed to proiuce a measure of
students' attitudes toward mathematics. The generally
comprehensive Handbook of research on teaching (Wittrook, 1986), on
the other hand, does not explore in any depth the inte:action
between attitudes and school learning. The authors oi one of its
chapters (White & Tiaher, 1986) explain this omissio- as follows!

Research has been handicapped by absence of a mature theory
encompassing the nature of attitudes and their relation to
other constructs. The external boundaries of attitudes with
personality attributes and with abilities are blurred, and so
are the internal ones between interests, feelings, values, and
appreciations. (p. 892)

To help set in context the difficulties that face those concerned
with attitudes toward mathematics, a brief overview of issues
related to the definition and measurement of attitude in a broader
context is essential.

Attitude: The Problem of Definition

Consensus about the central position of attitude research in
social psychology is not mirrored in agreement about the definition
of attitude. Many investigators seem to select for their
definition a measurement procedure that is convenient for the
purpose of their study. Until recently, those concerned with
measurement typically defined attitude as unidimensional, while
those concerned with theory building have tended to use a broad
muitistructural definition.

The difficulty of equating the operational definition of
attitude with its theoretical cons%ruct was highlighted by rishbein
and Ajzen (1975) who identified more than 500 different methods of
measuring attitude in their review of research published between
1968 and 1970. Nevertheless, as can be seen from the sample of
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definitions of attitude summarized in Table 1 that span
approximately five decades, there is much more overlap.

Author(s)

Thurstone

Allport

Table 1

Some Definitions of Attitude

Year Main Features of the Definition

1928 The sum total of the individual's
inclinations and feelings, prejudice or
bias, preconceived notions, ideas, fear,
threats, and convictions about any
specific topic.

1935 A mental and neutral state of readiness,
organized through experience. It exerts
a directive and dynamic influence upon
the individual's response to all objects
and situations with which it is related.

English & 1958 An enduring learned predisposition to
English behave in a consistent way toward a

given class of objects.

Shaw & 1967 A relatively enduring system of Wright
Wright evaluative, affective reactions,

reflective of the beliefs which have
been learned about the characteristics
of a social object (or class of social
objects).

Fishbein & 1975 A learned predisposition to respond in a
Ajzen consistently favorable or unfavorable

manner to a given object.

Several important components emerge from these definitions:
attitude is learned; it predisposes to action that may be either
favorable or unfavorable; and there is response consistency. The
consensus implied by these commonalities is illusory, however.
There is disagreement among theorists about the degree of
interrelationships among the three components and whether or not
they should be examined as separate entities. Furthermore, there
are differences in the ways the key components are interpreted.
For example, the notion of response consistency is interpreted by
some to imply that an individual will perform consistently, given
the same stimulus. Others concentrate on the notion, that different
responses elicited by any one object should be consistent with each
other. Still ethers are more concerned with evaluative
:onsistency, i.e., overall favorability or unfavorability expressed
toward an object by a set of behaviors. Since these different
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interpretations Are reflected in the way attitude is measured,
i.e., inferred from observable behavior, these distinctions are not
merely academic but have considerable practical implications for
attitude research in general, and research on attitude toward
mathematics in particular.

The notion of attitude as a predisposition is equally
ambiguous. Predispositions must be inferred from consistencies in
behavior, a requirement open to at least three different
interpretations, as discussed above, and hence at least three quite
distinct measurement approaches. "These problems are compounded
when the level of dispositional specificity fails to correspond to
the interpretation of response consistency. In a typical example,
an investigator may infer attitude by observing overall evaluative
consistency but assume a predisposition to perform a specific
behavior" (Fishbein & Ajzen, 1975, p. 9).

Exactly how attitude is learned, which of the individual's
previous experiences determine consistently favorable or
unfavorable behavior toward an object, also continues to be an area
of controversy and disagreement over optimal operational
definitions. Some of the relevant nuances are captured well in the
following excerpt:

Attitudes involve what people think about, feel about, and how
they would like to behave toward an attitude object. Behavior
is not only determined by what people would like to do irIf*
also by what they think they should do, that is, social norms,
by what they have usually done, that is, habits, and the
expected crnse uences of the behavior. (Triandis, 1971,
p. 14)

Thus, more specifically, attitude toward mathematics should not be
treated as a unitary concept, nor can a simple link be assumed
between attitudes toward mathematics and student outcome measures
pertaining to mathematics.

The perspective from which attitudes are investigated depends
largely on the theoretical orientation of the investigator. More
prosaically, practical constraints will also affect measurement
techniques. Fishbeiu and Ajzen (1975) discussed a number of
theoretical approaches and indicated consistencies and differences
between these and their own preferred conceptualization of
attitude. Despite the risk of oversimplification, some central
themes and concerns are summarized in Table 2.
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ApproacL

Learning theories
attitudes

Expantancy-value
theories

Balance theory

The congruity
principle

Table 2

Theories of Attitude

Key Concepts

Typically concerned with the ways
in which attitudes are acquired.
Explanations are given in terms of both
clissical and instrumental conditioning.
Relations between attitudes are
explored. Conflicting evaluations are
considered to be resolved according to
the congruity principle, i.e., will a
shift in the differing evaluations
toward equilibrium or congruity.

A causal relationship is postulated
between behavior and the expected value
of the outcome. The individual's
attitudes toward an object depend on
whether it is perceived as being
instrumental in obtaining a positively
valued goal or avoiding a negatively
valued goal. Thus attitudes are
determined by beliefs and associated
evaluations.

Concerned with the qualitative relations
between elements. If there are
inconsistencies in an individual's
perceptions of these relations, then
there will be stress toward change and a
balanced state (through, e.g., a lhange
in attitude, attribution, ur behavior).
Failure to achieve balance results in
tension.

While the balance model and the
congruity principle are both concerned
with the qualitative relations between
elements, the former focuses on
perceived relations, while the latter
treats these relations as assertions,
i.e., as given. A state of congruence
is said to exist when evaluations of two
objects are equally intense and in
consistent directions. When a state of
incongruity exists, the extent to Which
the assertion is believed determines the
degree of attitude change.
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Approach

Cognitive dissonance
theory

Attribution theory

265

Key Concepts

According to Festinger (1957) there are
four main sources that contribute to
cognitive dissonance: the discrepancy
between the cognitive elements, the
importance of these elements, forced
compliance, and the individual's
commitment. Maximum dissonance is
hypothesized to occur when the
discrepancy is large, the elements are
important, the individual has selected a
particular behavior without coercion and
is committed to the outcome of that
behavior. Dissonance reduction can be
achieved through changing one's opinion,
attempting to influence others, or by
devaluing their importance. Fishbein
and Ajzen (1975) point out that at least
some of the conflicting findings
obtained in dissonance theory research
can be attributed to a conceptual
blurring between attitudes and beliefs.

Examines how the effects produced by an
action are attributed. Such
attributions may be internal (i.e.,
ability or motivation) or external
(i.e., difficulty of the task or luck)
and may be shaped by the presence or
absence of a specific factor in the
presence or absence of the effect of
interest. Attributions are hypothesized
to be influenced by consistency (Is the
same behavior exhibited to that object
on different occasions9), by
distinctiveness (Is the behavior shown
to that object different from behavior
shown toward other objects?), and
consensus (Do other individuals behave
in the same way toward that object?).
The degree to which attributim .:heory
helps to explain the formation at
beliefs about one's self is still a
matter of some debate.

While all too brief, the summaries in Table 2 illustrate that a
range of theoretical perspectives, with consequent differences in
the variables selected as central to the various theories, is
brought to attitude research. To foreshadow the later section on
the measurement of attitudes toward mathematics, traces of the
different approaches are embedded, to varying degrees, in the
instruments used to tap attitudes to mathematics. For example, the
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attribution to mathematics scales used by Wolleat, Pedro, Becker,
and Fennema (1980) and Leder (1981, 1984) and the enrollment in
mathematics course data used by ArmstronL (19r7), as well as in
numerous other studies, can be linked to the attribution theory and
the expectancy value theory of attitude respectively. The

different conceptualizations of attitude lead to differences in
operational definitions of attitude and ultimately to differences
in the interpretation of observed outcomes or behavior.

Many of the approaches used to measure attitude in fact rely
on self-report paper-and-pencil instruments. These, as noted by
Kiesler, Collins, and Miller (1969), do not make use of overt
behavior. Other approaches to attitude measurement include drawing
inferences from observing overt behavior in a natural setting, from
considering an individual's reaction to or interpretation of
partially structured stimuli, from an individual's performance on
"objective" tasks, and from the physiological reaction of
respondents to the attitudinal object or representation of it.

Before discussing measurement approaches used to assess
attitude toward mathematics per se, it is useful to consider which
variables are most frequently examined in conjunction with attitude
toward mathematics.

In a then timely review of the literature, Aiken (1970)
summarized the findingL of a large number of journal articles,
doctoral dissertations, and other reports concerned with attitude
toward mathematics. This review included an OVCIVi2W of techniques
used to measure attitude toward arithmetic and mathematics, the
distribution and stability of attitude toward mathematics,
interaction between attitude toward and achievement in mathematics,
and the effects of different mathematics curriculum and practices
on attitude toward mathematics. Also discussed were the effect of

student variables such as anxiety, general ability, and gender, and
the importance for student attitude toward mathematics of parents'
attitude and teachers' attitude as well as selected other teacher

characteristics. Aiken concluded, "Of all the factors affecting
student attitude toward mathematics, teacher attitudes are viewed
of particular importance" (Aiken, 1970, p. 592).

Many of the variables reviewed by Aiken were also examined in
subsequent reviews of research on mathematics by Kulm (1980) and
Bell, Costello, and Kuchemann (1983). All three reviews concluded
that, though the correlation between attitude and achievement in
mathematics was positive, its magnitude was small. "Broadly
speaking, the set of people who like mathematics has only a
relatively small overlap Goth the set of those who are good at it"
(Bell et al., 1983, p. 255). The parallel between this and the
typically weak relationship between an individual's attitude and
behavior is inescapable. Triandis' (1971) warning, quoted earlier
in this paper, that many variables confoun the relationship
bem.een attitude and behavior can he translated to the mathematics
setting. Mathematics related outcomes are influenced by attitudes
which in turn are affected by the individual's thoughts, feelings,
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preferred model of behavior (e.g., level of achievement), habits,
expected consequences (of the level of achievement, say), and the
social norms of the society within which the individual functions.
In recent years particular attention has been paid to the effect of
gender and race on attitudes toward mathematics.

The list of variables linked with attitude toward mathematics
in reviews such as those cited above is reflected in the
multidimensional approach of the more recent measures of attitude
toward mathematics. It is appropriate to turn now to the important
characteristics of distinctly different methods used to tap
attitudes toward mathematics.

Attitude Toward Mathematics: The Problem of Measurement

The techniques selected for discussion and the approach used
in this section rely heavily on an earlier article by Leder (19n).
For maximum clarity, each method discussed is illustrated by
relevant examples, taken from recent large scale testings.

The following techniques are discussed: Thutstone scales,
summated rating scales exemplified by (the most common) Likert-type
scales, semaatic differential scales, interest inventories and
checklists, preference ranking, projective techniques, enrollment
data, other forms of data gathering such as clinical and
anthropological methods, and psychological responses. While the
majority of these techniques are self-report paper-and-pencil
measures, examples of instruments in other categories are also
included.

Thurstone (Equal-Appearing Interval) Scales

Possible item: I will do more mathematics because my mother thinks
that mathematics is really important.

Development of a Thurstone scale requires a number of steps.
In the first instance a pool of items, reflecting a continuum of
attitude to arithmetic, say, is written. A group o! "judges" is
then asked to place these items in one of (typically) 11 piles,
with the items considered most favorable to be put into the first
pile, the least favorable into the last pile, and the other items
in between, as deemed appropriate. A scale value (the mean or
median of the ratings assigned by the judges) can thus be
calculated for each statement. Items to which the judges assign
widely differing ratings are omitted from the final scale.
Respondents to whom the scale is administered are asked to identify
those items with which they agree. The mean or median of the scale
value of the items selected represents each respondent's attitude
score.

Critics of Thurstone's approach have questioned his assumption
that the judges' own biases would not influence their ratings. The



268

alternate scaling procedure suggested by Likert overcomes this
problem.

Recent testings have typically not used a Thurstone scale to
assess student attitude. Yet it is interesting to consider one of
the approaches described by Armstrong (1985) to tap student
attitude toward mathematics. Students were asked to order nine
!actors to indicate the influence of each on their decision to take
further mathematics courses. The mean value for each the items
could be computed. The responses of different groups (boys and
girls, scOents of different ages) could thus be compared by
examining Ghe mean values assigned to each item by the different
groups. This procedure shared some of the features used it the
development of a conventional Thurstone scale:

1. A pool of items is selected (in this example, presumably on
the basis of earlier reasarch findings)

2. "Judges" are asked to rank order the items

3. However, instead of the Thurstone procedure of asking students
to respond to the derived scale, the judgments are examined
for group similarities and differences.

Likert Scale

Typical item: Mathematics is useful in solving everyday problems

SD D 13 A SA

Collecting a large pool of items reflecting either a positive
or a negative attitude toward mathematics is the first step in
constructing a Likert scale. While items indicating a neutral
attitude are appropriate for a Thurstone scale, the are eliminated
from a Likert scale. Subjects to whom the scale is administered
are asked to indicate their response to each item, typically on a
five-point scale ranging from Strongly Agree to Strongly Disagree.
Strong agreement and disagreement with favorable items are scored
as 5 and 1 respectively. Appropriate ratings are given to the
intermediate responses. Scoring is reversed for unfavorable items.
On the assumption of ,nidimensionality, i.e., that all the items
measure the same construct, attitude 1.s defined as the sum of the
item scores. Items that do not correlate significantly with the
overall attitude score are not retained. Afl.er trial, the 20 or so
items with the highest correlations firm the Likert scale.

The Fenn=ma and Sherman (1976) Matherltics Attitudes scales
are a widely used example of Likert scales. These researchers
conceptualized attitude toward mathematics as comprised of a number
of components, most meaningfully reported separately. Their scales
consist of eight distinct clusters of items designed to measure
confidence in learning mathematics, effectance motivation in
mathematics, attitude toward success in mathematics, mathematics
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anxiety, mathematics as a male domain, and father's, mother's and
teacher's perceptions of the student as a learner of mathematics.

There is much overlap in the approach used by Fennema and
Sherman (1976) and that found in the NAEP, SIMS, and the Assessment
of Performance Unit (APU) studies. For example, separate scales
were used to assess attitudes toward mathematics and society,
mathematics and myself, mathematics as a process, mathematics and
gender (SIMS), and mathematics as an emotive subject, mathematics
as a useful subject, confidence in doing mathematics, enjoyment in
doing mathematics, and perceived difficulty of mathematics (APU,
see Joffe & Foxman, 1984).

(Osgood's) Semantic Differential Scale

Possible item: Mather tics
Worthwhile Trivial

The semantic differential technique was originally developed
by Osgood, Suci, and Tannenbaum (1957) to measure meaning. It
consists of a number of stimulus words or concepts; subjects
indicate the position on a line between pairs of bipolar adjectives
(such as good/bad or masculine/feminine) that best reflects their
feeling about that stimulus. A seven-point rating scale is
commonly used. The ratings are combined and analyzed in various
ways to describe the respondent's attitude. Factor analysis
typically reveals that three basic dimEnsions underlie the common
explainable variance: evaluation, potency, and activity.

The value of the technique depends to a large extent on the
suitability of the stimulus words or concepts chosen, as well as on
the relevance to them of the bipolar adjectives selected.

The semantic differential is often regarded as a less
transparent, more indirect measure of attitude than the other
measures discussed so far.

One example of its use is in a study conducted by Nimler
(1976) of attitudes toward mathematics in 24 high school classes in
France. His choice of bipolar adjectives--useful/useless,

repulsive/attractive, easy/difficult, voluntary/compulsory, not
feasible/feasible, unrealistic/realistic--overlaps with the
components selected in studies using Likert scales to assess
attitudes to mathematics. Tapped again are the usefulness,
difficulty and enjoyment to be derived from doing mathematics.
Given the different cultural setting of this study, it is worth
noting that students concentrating on the sciences rated
mathematics as more positive (or closer to the positive pole) than
did students concentrating on the humanities. Furthermore, for
each of the seven adjectives cited, boys' mean ratings were more
favorable than those of the girls.
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Inventories and Checklists

Typical items: A list of occupations
A list of words (adjectives, verbs)

Inventories and checklists are two other examples of
subjective rating scales. The former typically consists of a list
of careers, activities, hobbies, or adjectives. The respondent is
asked to indicate items of particular interest.

Checklists are used to obtain descriptions or
self-descriptions or to elicit stereotypes about groups of people.
Respondents are asked to indicate those words they consider most
applicable to themselves or to the target group, as appropriate.

Asking students to choose, out of a sample of eight careers,
the career they expect to follow (Armstrong, 1985) is an exlmple of
the inventory approach. In Armotrong's study the link to
mathematics was made more explicit by the follow-up question which
required an indication oc the amount of mathematics thought to be
necessary for that career.

A checklist was used by Nimier (1976) as one of his
instruments to gauge students' attitudes toward mathematics.
Students selected three verbs, out of a list of 42, to indicate how
they felt when doing mathematics. The range of verbs used was
varied and included pervert, struggle, destru, worry, discover,
conquer, arrange, and assimilate.

Preference Rankings

Typical item: A list of school subjects, to be ranked in order of
preference; asking students to specify their
favorite school subject.

Preference ranking requires students to list the subjects they
study at school in order of preference. The rank assigned to
mathematics is thus obtained. However, the relative nature of the
measure imposes limitations. A student with a very favorable
attitude to school could put mathematics last a.,d yet hava a more
positive attitude toward mathematics than another student who
ranked 'Mathematics first.

Asking students to indicate their favorite school subject as
well as a selection of questions about that subject was part of eNe
attitude toward mathematics data gathering approach used by the
APU.
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Projectiv.. Technique

Typical item: A request "to write about" a cue figure or to
complete a partially formed sentence.

Projective techniques represent an indirect approach to the
measurement of attitudes. They therefore rely less on the honesty
and cooperation of respondents than do more explicit methods.
Projective techniques may involve sentence completion (A good
mathematics lesson . . . ), a word association test, a picture
pref.7;rence test, or a request to tell L story in response to a
given cue. Because of the difficulty of ensuring satisfactory
validity, reliability, and particularly consistent scoring of
projective measures, they are not used often to tap mathematics
attitude. Nevertheless, responses to partially structured stimuli
can provide powerful insights into respondents' attitudes.

An interesting example of a projective technique is the use of
repertory grids by Walden and Walkerdine (1985) in their study of
students' progress, particularly in mathematics, as they moved from
the primary to the secondary school. Students were asked to write
about people they liked and people they disliked. Various themes
emerged from the analysis of these stories.

When the grids were compared the most interesting data were
concerned with the relationship of the construct clever/not
clever to the subjects which the children did in class. For
boys, cleverness and being good at mathematics were close
together. Girls linked cleverness and being good at
mathematics with being good in English and being popular.
(Walden & Walkerdine, 1985, p. 67)

Interviews conducted with the students typically supported the
repertory grid data.

Enrullments

Typical item: Statistics on enrollment in mathematics courses.

A number of factors, including a positive attitude to
mathematics, are generally assumed to influence students' decision
to continue with mathematics courses once they are no longer
compulsory. Haladyna, Shaughnessy, and Shaughnessy (1983), for
instance, argued that "a positive attitude toward mathematics may
increase one's tendency to elect mathematics courses in high school
and college" (p. 20). Their interpretation rests on a willingness
to accept a decision to continue with a course, say mathematics, as
a measure of attitude to mathematics. A similar interpretation is
prevalent in studieL that consider gender-linked differences in
mathematics learning. However, because of the widely recognized
role of mathematics' prerequisites as a critical filter into other
courses, apprenticeships, and occupations, the importance of other
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variables is likely to confound the attitude to mathematics
component as a determinant of mathematics course taking.

The NAEP, SIMS, and Armstrong (1985) surveys all reported
enrollment in mathematics course data and used these statistics as
one measure of attitudes toward mathematics.

Other Forms of Data Gathering: Clinical and
Anthropological Observations

Typical item: Observation of overt behavior in a natural setting.

In the study referred to earlier, Walden and Walkerdine (1985)
video-taped regular classroom sessions and inferred individuals'
attitudes toward classmates and curriculum areas from an analysis
of the tapes. The difficulty of extracting attitudes to
mathematics from the many other factors that determine behavior has
already been discussed.

Physiological Measures

Possible tem: Measures of heart rate and/or electrical skin
resistance.

Physiological ratings (electrical skin resistance, breath'ng
rate, blood pressure, heart rate) of attitude toward mathematics
have been found in a number of research studies.

Most recently McLeod (1986) and Mandler (1986) haAre talked of
changes such as increased muscle tension and rapid heart beat as
physiological adjuncts to problem solving in mathematics. Because
of the difficulties associated with obtaining such physiological
measures per se, their use as indicators of attitudes toward
mathematics is likely to remain limited. Some the relevant
information could, however, be captured through self-report
measures.

The review of measures of attitudes toward mathematics served
a threefold purpose. It allowed a range of different techniques to
be discussed; it alluded to the findings of consistent differences
in attitudes to mathematics of certain groups, specifically boys
and girls; and it revealed that contemporary large scale surveys
concerned with assessing attitudes to mathematics have used a
multifaceted approach. Thus there is a clear recognition that
attitude should not be represented by a single score,
representative of an overall, general predisposition to the subject
of mathematics. Instead, attitude is best regarued as a complex
construct, influenced by a host of variables that cannot be
measured adequately by a conventional unidimensional scale.

The data in Table 3 show the variety of attitude measures used
in the large scale surveys referred to throughout the review.
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Table 3

Summary of Attitude Measures Used in Selected Large Surveys

Survey

SIMS

Country Main Measures Used

20 different Enrollment data.
countries Likert scales to assess attitudes

about the usefulness of math and
the importance of math to
society, gender stereotyping of
math, mathematics as a process,
and students' views of themselves
as learners of mathematics.

NAEP (1983) USA Enrollment data.

Likert scales (similar to those
used in SIMS)

National
Assessment
of Wcmen in
Mathematics
(Armstrong,
1985)

USA Enrollment data, actual and
intended Likert scales (similar
to SIMS, though not as
comprehensive). Preference
ranking. Interest inventory.

APU (Jaffe & UK Preference ranking.
Foxman, 1984) Likert scales to assess attitude

toward mathematics as an emotive
subject and as a useful subject,
con2idence in doing mathematics,
enjoyment in doing math, and
perceived difficulty of math.

Walden &
Walkerdine
(1985)

UK

hImier (1976) France

Projective measure.

Anthropological observations.
Interview.

Semantic differential.
Likert scales to assess attitude
toward various aspects of
mathematics.
Checklist (verl,$).

Attitude Toward Mathematics: Group Differences

As noted by Leiser (1986) the isst of gender-linked
differences in mathematics is extremely complex. Despite the
inroads made by females into mathematics and related careers,
students and teachers continue to perceive mathematics as a male
domain. Society continues to highlight the difficulties faced by
successful females, the price they need to pay to achieve success
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in traditional male areas. Such stereotyping is reflected in
students' attitudes toward mathematic..., e.g., in their attitudes to
the usefulness of mathematics and themselves as learners of
mathematics.

The conclusions of the APU survey (Joffe & Foxman, 1984) are
illustrative of commonly found gender-related differences.

- When asked to rate statements and indicate the perceived
difficulty and usefulness of mathematical topics and
items, girls tend to make more moderate assessments; they
use extremely positive and extremely negative positions on
the rating scales far less than boys do.

- Girls express greater uncertainty about their mathematical
performance. Boys express a greater expectation of
success.

- Boys overrate their performance in mathematics in relation
to written test results; they do not do as well as they
expect to do. Girls underrate their performance and do
better on tests than they expect. (p. 25)

The NAEP data have also highlighted race-related differences
in achievement in mathematics and participation in mathematics
courses once they are no longer compulsory. These differences are
accompanied by and reinforce race-linked differences in attitudes
toward mathematicp, with differences in the perceived usefulness of
mathematics and in the way students perceive themselves as learners
of mathematics again being two notable areas. Future
investigations should be sensitive to subtle but consistent group
differences in attitudes toward mathematics.

Concluding Comments

The definition and measurement of attitudes are
interdependentboth in the broader context and in the area of
mathematics. There is agreement that attitude toward mathematics
should be conceptualized as a multidimensional construct, with the
varying components most effectively assessed separately using
several quite distinct techniques, if possible. When interpreting
the results obtained, due attention should be paid to the
restrictions imposed by the operational definition selected.

The continuing concern of social psychology with attitude
research serves as testimody to the complexity of the area.
Attitudes involve individuals' thoughts, feelings, and preferred
behavior. They are also affected by the social norms and standards
of behavior prevalent in the society within which the individuals
function. Attitudes toward mathematics are similarly complex and
multifaceted. Instruments used to measure attitudes toward
mathematics should reflect these various dlmensions.
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The summary of attitude toward mathematics measures used in
recent large-scale testings in a number of different countries has
illustrated the heavy reliance placed on readily quantifiable
outcomes such as enrollment data, as well as on self-report
paper-and-pencil measures. Both approaches need to be interpreted
with caution. As pointed out earlier, behavior is determined not
only by the attitude being studied but as well by a host of other
varivbles--both situational and psychosocial. Distortion of overt
responses cannot be ruled out with self-report measures,
particularly those whose purpose is obvious to the respondent.

Practical constraints suggest that self-report
paper-and-pencil techniques will continue to be popular methods for
assessing attitudes toward mathematics. Ways of improving their
efficacy thus seem well worth exploring. Suggestions made in the
general literature include adding items that focus on a different
component from the one being studied or adding other somewhat
irrelevant items, on the assumption that such inclusions would help
mask the purpose of the instrument. Ensuring anonymity of reply is
also believed to lower the distortion rate. Whatever the eventual
approach selected, the aim should be to quantify attitudes rather
than attitude toward mathematics.
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Chapter 23

NEW APPROACHES TO RESEARCH ON ATTITUDE

Douglas B. McLeod

In chapter 22 Gilah Leder presents a state-of-the-art report
on attitudes toward mathematics. Her review of related work
presents the complexities of research on attitud.,G, including both
the strengths and weaknesses of investigations on this topic. For
example, she presents a clear picture of the importance of the
affective domain in the monitoring of school mathematics and
suggests a variety of strategies that are Effective in measuring
attitudes. She also notes the problems involved in defining
attitudes and measuring attitudes, difficulties that plague all
research in this area. For further discussion of the practical
problems of measuring attitudes, see Henerson, Morris, and
Fitz-Gibbon (1978).

In spite of these difficulties in research on attitudes, the
last decade has been a period of substantial progress in our
knowledge of attitudes toward mathematics. Reyes (1984) documented
the progress that has been made in this area, especially in
research on gender differences in mathematics education. Much of
this progress has come about through the extensive use of the
Fennema-Sherman scales (Fennema & Sherman, 1976) and similar
instruments. It is reassuring to find, as Leder did in an earlier
paper (Leder, 1986), that research on gender differences it
mathematics education is producing relatively consistent results in
terms of attitudes. This consistency is found not only among
studies conducted in North America but also in the research
co,sducted in Australia and the United Kingdom. Moreover, these
confirmatory results often come from relatively large assessment
projects (McLean, 1982; Foxman, Martini, & Mitchell, 1982), not
just from small-scale research studies. So we have evidence that
reasonably good data can be obtained on attitudes, even in
large-scale efforts to monitor school mathematics.

Research on attitudes has made progress not only in the
consistency of the results but also in the development of more
sophisticated models to guide the research. This line of research
has expanded to include investigations of gender differences in
attributions of success and failure in mathematics (Reyes, 1984).
The connection between research on attitudes and on attributions
(Weiner, 1979) has been particularly useful in mathematics
education and promises to make further contributions to cur
understanding of the relationships among attitudes, achievement,
and gender (Fennema & Petersen, 1985).
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Although research on attitudes toward mathematics has made
substantial progress, there is general agr..ement that much more
needs to be done. The purpose of this chapter is to argue that a
new approach to the affective domain could yield substantially more
progress, especially in developing better theories for affective
factors, in making connections to contemporary theories of
learning, and in monitoring higher-order thinking and problem
solving in mathematics. To implement this new approach,
conceptioizs of affect need to be broadened to include more than the
usual attitude dimevsions of liking mathematics, suing the
usefulness of mathematics, and feeling confident about mathematics.
This broadened perspective requires a new theoretical framework;
this chapter discusses the relevance of such a framework to the
px)blems involved in measuring attitudes and other affective
factors. Finally, this chapter discusses the implications of these
ideas for the monitoring of school mathematics.

Conceptions of the Affective Domain

Leder presents a thorough discussion of definitions of
attitude as traditionally employed ia both psychological research
and mathematics education. In this section, however, I would like
to expand the discurion to a broader view of affect. Attitudes
are a part of th,..! affective domain, but not all of it. For this
chapter, affect will be used as a general term to represent all the
feelings that seem to be related to mathematics learning and
teaching--the attitudes, beliefs, moods, and emotions that may have
an influence on mathematical performance. Emotion will be used to
signify a more visceral kind of affect, a response that is quite
intense but of relatively short duration. In Simon's (1982) terms,
emotion is used to refer to affect that is sufficiently powerful to
redirect attention. Moods (again from Amon, 1982) provide a
context within which cognitive processes are carried out; moods are
t so intense that they redirect attention. Beliefs (Silver,

1985) fall in the intersection of the sets of student knowledge and
feelings; beliefs about the usefulneJs of mathematics, for example,
are often treated as an attitude variable. Finally, attitudes will
refer to affective responses that are relatively consistent, but
not especially intense; this view is consistent with Leder's
position.

In this chapter the focus is on the two extremes of the
affective domain, emoi.lons and attitudes. Sometimes the
distinction is made between "hot" and "cold" affect, where emotions
like joy, frustration, and fear are considered hot, and attitudes
(liking mathematics, seeing mathematics as useful) are considered
cold. For further clarification of terminology for the affective
domain, see Simon (1982) and Reyes (1987).

This expansion of the affective domain to include more
visceral, emotional responses to mathematics is related to new
views of what it means to learn mathematics. If mathematics
education is viewed as the teacher pouring a set of facts into the
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:Ands of the students, then perhaps student attitudes are the most
important part of the affective domain. But if students are
actively engaged in constructing their knowledge of mathematics,
rather than just absorbing it, their affective responses will be
more intense. If students are active rather than passive learners,
their emotions as well as their attitudes will influence their
learning. This new view of the learner is already having a
substantial impact on paradigms for research on cognitive issues in
mathematics learning and teaching (Romberg & Carpenter, 1986). Now
it is time for this new view to influence how we approach research
on affective issues related to mathematics education.

The need to expand the view of the affective domain is
justified by more than current constructivist views of learning.
It also results in part from a renewed emphasis on higher-order
thinking and problem solving in mathematics. The recommendation
from the National Council of Teachers of Mathematics (1980) to make
problem solving the central goal of the mathematics curriculum also
has implications for affect. Instruction in problem solving
generates more intense reactions from students than instruction on
more traditional topics. Trying to solve nonroutine problems is
often frustrating; drill and practice exercises are generally more
boring than frustrating. Posing problems and making conjectures
(Brown & Walter, 1983) can provide a sense of joy and
accomplishment that is much more intense than what we normally
consider to be an attitude toward mathematics.

Further evidence ',let learning mathematics involves rather
intense emotions comes from a variety of research studies. The
clinical methodology of these studies provides a rich set of data
on student responses to mathematics. These sources suggest that
students' affective responses are often more emotional in tone than
attitudinal.. For example, Buxton (1981) presented a careful
analysis o_ adults' affective responses to mathematics and used the
term panic to describe what occurs in the minds of many. This
panic is manifested both in chaotic reactions to mathematical tasks
and in the tendency of some people to freeze- - -to be immobilized
when asked to solve a problem. Ginsburg and Allardice (1984) noted
similar intense reactions to mathematics among elementary school
children, even when the mathematics appears to be relatively simple
from an adult perspective. At the secondary level, Wagner,
Rachlin, and Jensen (1984) reported further evidence along these
lines in their study of algebra students; some of these students
seemcJ to lose control of their cognitive processes and grope
.7ildly for an answer, whether or not the answer made sense in terms
of the problem they were trying to solve.

It is important to remember that students have positive as
well as negative experiences with mathematics; good teachers of
problem solving work hard to present students with opportunities
for insight and illumination, and students report these experiences
as extremely satisfying and even joyous (McLeod, 1985). Although
research has tended to concentrate more on the negative emerions
(such as frustration end anxiety) rather than the positive,
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teachers of problem solving know the importance of emphasizing the
positive emotions (Mason, Burton, & Stacey, 1982).

in summary, there are at least three reasons to expand our
view of the --' ctive domain to include emotions as well as
attitudes. a s new view of the learner as an active processor of
information suggests that the learner will also have more intense
affective responses. ChazIges in the curriculum that emphasize
higher-order thinking will result in more intense student
reactions. Finally, data from clinical studies suggest that
affective responses are more intense than traditional attitude
instruments would indicate.

The Need for Better Theory

As Leder (chapter 23) indicated, there are a variety of
theoretical positions that have been used as the basis for research
on attitudes. Most of these positions come from a foundation in
behavioral psychology or social psychology. They do nor, in
general, represent positions than are consistent with the dominant
paradigm for current research on learning, generally referred to as
cognitive psychology of iLf?rmation-processing psychology (Mandler,
1985).

Research on attitudes has in fact often seemed to proceed in
rather an atheoretical fashion. Atypical approach would be to
specify certain factors (e.g.,, liking, utility, confidence) that
are hypothesized to be irportant in the affective domain and then
devise a questionnaire that measures those factors. The researcher
would then gather some data, examine the characteristics of the
instrument, and apply the appropriate statistical analysis package.
The results would then he interpreted and implications drawn for
practice, but little thought would be given to the development of a
sound theoretical framework. The driving fcrce in much of this
research seems to be the statistical methodology rather than the
theory.

The researcher in this case seems to assume that the affective
domain can be modeled by a vector space and that the questionnaire
will span the space and produce factors that describe the space
adequately. Current research on cugititive psychology suggests that
an alternate mathematical model might build on the notion of a
topological space, rather than a vec -r space, and that the major
aspects of interest in this space would involve concepts like
connectedness, networks, and other topological properties.

Difficulties with current research on affect have been
discussed by many authors. In psychology, Abelson (1976) noted
that theories about attitudes are confused and contradictory.
Mandler (1972) observed that research on anxiety is generally not
cumulative and that researchers have been preoccupied with
measurement issues to the neglect of theory. In mathematics
education, Kulm (1980) called for better theory to guide research
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on attitudes toward mathematics, and numerous authors (Begle, 1979;
Suydam & Osborne, 1977) have noted the relatively weak relationship
between attitudes and achievement in mathematics.

-n summary, research on affect in mathematics education lacks
a strong theoretical base, and results so far have been relatively
weak. If we are to monitor affective factors in school
mathematics, we need to establish a stronger theoretical framework
that can guide the development of a suitable evaluation system.
For a new approach to research on affect, we turn to the work of
George Handler (1975, 1984).

A New Perspective on Affect

In 1972, after many years of working on both cognitive and
affective issues, Mandler e. pressed his concern with the lack of an
acceptable theory for research on anxiety and went on to write a
book called Mind and Emotion (Mandler, 1975). His position
(refined in Mandler, 1984) is in extension of the theory and
methods of cognitive psychology to the affective domain. Although
it is not possible to do justice to his theory here, let me briefly
describe its essence. Handler's view is that affective responses
result mainly from interruptions of the student's plans or planned
actions. Usting the terminology of cognitive psychology, the plans
come from the activation of schemas, and the schemas induce
actions. If these actions are blocked or interrupted, the
individual's autonomic nervous system responds with some sign of
arousal, such as an increase in heartbeat or a te:cing of the
muscles. The individual then interprets this reactinn of the
autonomic nervous system as frustration, surprise, or some other
emotion.

The notion of blockages or interruptions is also at the center
of what it means to solve a mathematical problem. If there is no
block to a student's first attempt at a pr^blem, then there is
really no problem for that student, only a routine exercise. Thur
it seems that instruction in higher- order thinking and problem
solving will be intrinsically more emotional than moY 2 traditional
kinds of mathematics education.

When a student is interrupted, the interpretatio1 of that
interruption is based on the student's knowledge, beliefs, and
previous experiences. The interpretation may result in either a
positive or a negative emotion. For example, some students
interpret the blockage as a challenge and enjoy the opportunity to
work on a nontrivial problem. Other students interpret the
blockage as a sign that they should get help from the teacher. The
students' interpretations reveal a great deal about what they have
learned to va3ue in mathematics and about what they believe about
their role as mathematics students.

If interruptions generate emotions, then I suggest ,that
repeated interruptions generate attitudes. If a student is
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regularly faced with interruptions in the same context, then the
student's response will become automatic. The role of automaticity
is the same in the affective domain as in the cognitive: Human
information processing allows certain responses to become more and
more automatic, thus freeing the individual's limited processing
capacity for action on unfamiliar problems or situations (Resnick &
Ford, 1981). These automatic responses seem to be a crucial part
of the consistency of attitudes toward mathematics. For a more
extensive discussion of automaticity in affective responses to
mathematical tasks, see McLeod (1986). For a more detailed
exposition of how attitudes develop, see Abelson (1976). Although
he uses the terminology of script processing in his definition of
attitudes, Abelson's idea; carry over into Mandler's theory quite
well.

Now let's move on from attitudes to beliefs. If interruptions
generate emotions, then, just as with attitudes, repeated
interruptions generate affectladen beliefs. The development of
belief systems from a cognitive perspective has recently been
receiving more attention. D'Andrade (1981), for example, discussed
how individuals learn about their culture through what is
essentially guided discovery. In the case of mathematics
education, the responses that the student receives from the
surrounding cultural environment provide the guidance in the
development of the student's belief system about mathematics. For
some concrete examples of how this occurs in mathematics, see
-choenfeld (1985).

This brief discussion suggests that Mandler's (1984) theory
could provide the kind of framework that is needed to guide
research on affect. Mandler's view is comprehensive and could be
used to explain attitudes and beliefs as well as more intense
emotional responses to mathematics.

Implications for Monitoring School Mathematics

If we want to monitor school mathematics, then clearly we need
to monitor the affective domain. Leder (chapter 23) has analyzed
the issues involved in monitoring attitudes toward mathematics. In
this section, I want to suggest some ways to go beyond attitudes
and monitor other affective influences on learning.

Although this section will emphasize the monitoring of
students' affective responses, the health of school mathematics
depends on the affective responses of other groups as well.
Teachers, parents, and administrators will all have an influence on
students' affective responses to mathematics. Development of
indicators for all of these groups seems appropriate.

Although this section will emphasize affective reactions to
problem solving in mathematics, there is no intention of slighting
other areas of the mathematics curriculum such as the teaching of
concepts and procedures. In addition, the inereasing importance of
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the computer in mathematics classrooms suggests that we should pay
special attention to technology issues. For a contemporary
approach to evaluating affective reactions to computers, see Turkle
(1984).

What Do We Monitor?

If we agree that problem solving is a major goal of the
mathematics curriculum, then we should monitor students' affective
responses to nonroutine problems as well as to more routine tasks.
If students are working on a problem, and their progress on the
problem is blocked, what are their reactions? Do they quit? Do
they become frustrated and repeat the same unsuccessful attempt at
a solution many times? Or do they continue to work and develop
more information about the problem, even when frustrated? Can they
even see a challenging problem as a positive experience?

How long will students work on a nonroutine problem before
giving up? Wertime (1979) suggested the notion of courage
span--analogous to attention span--as a way of measuring student
willingness to address nonroutine problems. The courage span is
the time that a student spends trying to find a way to solve a
problem that is unfamiliar to them.

Perhaps more important than the amount of time spent on the
problem is the reason for stopping. Do students quit because they
have gotten in a rut and want to return to the problem later with
fresh ideas? Or do they quit because they assume automatically
that any nonroutine problem will be beyond their ability? Do they
quit because they are feeling so much emotional stress that they
cannot think clearly? Is their limited cognitive capacity totally
absorbed in dealing with their emotional reactions, leaving no room
in their working memory to deal with the problem?

Along with courage ,Pan, one could monitor the "heuristic"
span of a problem solver. Students who are unable to manage their
emotional reaction to the blockages that are involved in problem
solving often use only one heuristic, or one strategy for solving
_he problem. If the students are given a problem where the goal is
clearly specified, and if their strategy is to compute using the
numbers in the problem, they often compute over and over until they
quit in frustration. If their strategy is to draw a picture, they
draw and redraw, waiting for outine solution to appear, but
don't think to try investigating a simple!' version of the problem
or some other strategy. The lack of use of alternate strategies
may also be a measure of emotional overload on students' limited
processing capacity. The relationship of emotio-s to the students'
metacognitive processing should be a parfAcularly interesting
aspect of the monitoring of school mathematics (Garofalo & Lester,
1985).

Another area that requires monitoring is student beliefs. A
substantial amount of work of this type has been done, and national
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assessment data on student beliefs (Carpenter, Corbitt, Kepner,
Lindquist, & Reys, 1981) suggest that many of these beliefs have an
affective component.

In addition to monitoring students, teachers, and other
audiences separately, it would be useful to gather data that
involve the interactions of students and teachers in the classroom
and the school more generally. The availability of a variety of
measures of classroom and school climate, as well as large amounts
of extant data gathered from an ethnographic perspective, as in the
National Science Foundation case studies (Suydam & Osborne, 1977),
should make it possible to assess affective influences in those
arenas.

How Do We Monitor?

Monitoring attitudes has long been a part of school
mathematics evaluation and will continue to be appropriate, as
Leder (chapter 23) has indicated. However, monitoring affective
factors from an information-processing perspective requires a
change of methods from the usual assessment of attitudes. Ericsson
and Simon (1980) gave elaborate justifications for the usefulness
of interview data and for the importance of the density of
observations of individuals. Clearly, simple adaptations of
attitude questionnaires will not be sufficient. Even
transcriptions of verbal data are not enough; students can insist
that they hate mathematical problem solving, even when we have just
observed them work a nonroutine problem with considerable deftness
and obvious enjoyment. So the monitoring should include not only
interviews brt also observational data on student performance in
problem-solving settings that are as realistic as possible.

A variety of researchers have used interviews and observations
to obtain data that go beyond the usual measures of cognitive
perfol-qance. For example, Cobb (1985) reported data related to
affective influences on the development of early number concepts.

, Confrey (1984) reported data on beliefs and affect among
secondal. -chool students. Related data on teachers were reported
by Thompson ,..^R4).

Observations -dents should include not only what they say
and do but also their ,Aysical reactions. Muscle tension and
facial expression can tell a great deal about the emotional state
of the individual. Many teachers are quite adept at assessing the
individual student's emotional condition; it would be interesting
to investigate the basis on which those teachers make their
assessments.

Although interviews and intensive observations are important,
practical considerations suggest that less costly methods be
developed that could provide reasonable data on affect. I suggest
a modification of the superitem format used in assessing
problem-sulving ability (Collis, Romberg, & Jurdak, 1986).
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Superitems include a stem (a paragraph that specifies the problem
situation) and a series of questions about the information in the
stem. These questions would normally range over a set of taxonomic
levels from lower to higher cognitive levels. For our purposes,
the questions should range from cognitive to affective dimensions.
Within the affective domain, the questions could range from simple
responses regarding attitudes and beliefs to more extensive
questioning on the student's emotional states.

If students were assigned a nonroutine problem, their response
could include not only attempts to solve the problem, but also
their emotional reactions at various points in the solution
process. Presumably the assessment of their emotional state could
be accomplished with minimal disruption to their problem-solving
performance. More detailed questions about their emotional
reactions to the problem could be attempted at the conclusion of
the problem-solving episode. Field tests -f this procedure would
indicate how disruptive it might be to ask students about their
emotional state at regular intervals during the solution process.
It seems likely that procedures could be developed for large-group
administration of superitems that would include assessment of a
broad range of affective responses.

We need to develop a variety of ways to assess affective
responses of varying intensity. The development of superitems that
incorporate questions about the affective domain appears to be a
useful strategy. It could be used to assess attitudes and beliefs
as well as more intense emotional reactions to mathematical problem
solving.

Summary

Affect plays an important role in the health of school
mathematics. Any realistic effort to monitor school mathematics
needs to include indicators from the affective domain. The
importance of assessing attitudes toward mathematics is well
established, in spite of what is currently a relatively weak
theoretical foundation for that work. This chapter has suggested
that it is possible to develop a stronger theovatical foundation
for the measurement of attitude, and that such a foundation could
also support measures of the affective domain that go beyond the
usual attitude factors. In particular, the monitoring of school
mathematics should pay substantial attention to the emotions that
are an integral part of solving nonroutine problems.
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