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MISSION STATEMENT

The mission of the Wisconsin Center for Education Research is to improve
the quality of American education for all students. Our goal is that
future generations achieve the knowledge, tolerance, and complex thinking
skills necessary to ensure a productive and enlightened democratic
society. We are willing to explore solutions to major educational
problems, recognizing that radical change may be necessary to solve these
problems.

Our approach is interdisciplinary because the problems of education go
far beyond pedagogy. We therefore draw on the knowledge of scholars in
psychology, sociology, history, economics, philosophy, and law as well as
experts in teacher education, curriculum, and administration to arrive at
a deeper understanding of schooling.

Work of the Center clusters in four broad areas:

* Learning and Development focuses on individuals, in particular
on their variability in basic learning and development processes.

Classroom Processes seeks to adapt psychological constructs to
the improvement of classroom learning and instruction.

o School Processes focuses on schoolwide issues and variables,
seeking to identify administrative and organizational practices
that are particularly effective.

Social Policy is directed toward delineating the conditions
affecting the success of social policy, the ends it can most
readily achieve, and the constraints it faces.

The Wisconsin Center for Education Research is a noninstructional unit
of the University of Wisconsin-Madison School of Education. The Center
is supported primarily with funds from the Office of Educational Research
and Improvement/Department of Education, the National Science Foundation,
and other governmental and nongovernmental sources in the U.S.
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PREFACE

This set of papers, published in three volumes as a monograph
of the School Mathematics Monitoring Center, presents the
rationale, background, and framework for a comprehensive monitoring
system being developed for the National Science Foundation. The
system is being designed to gather information about the effects of
national, state, and local policy actions designed to change the
teaching and learning of mathematics in the schools of America.

To build the monitoring system three assumptions were made.
First, as a society we are involved in a major economic revolution.
This revolution, addressed in Chapter 2, directly affects
mathematics, its use, and what is deemed fundamental. As a
consequence we believe "that most students need to learn more, and
often different, mathematics" (Romberg, 1984, p. xi). Second, in
spite of the changes in school mathematics inherent in the first
assumption, we believe that there is general concensus about the
goals for school mathematics and about the kinds of changes needed
to achieve those goals. Thus, to develop the framework for the
system one must begin with an understanding of those goals and the
ideas on which they are based. Only then can indicators be
developed to see whether the goals are being reached. Third, the
policy actions with respect to the specific goals set for school
mathematics must be consistent with the more general educational
goals for a free and democratic society.

The need to monitor changes in school mathematics was proposed
at two conferences. The first was organized by the Conference
Board of the Mathematical Sciences (the New Goals Conference, CBMS,
1984), and the second by the National Council of Teachers of
Mathematics, the U.S. Department of Education, and the Wisconsin
Center for Education Research (School Mathematics: 0:tions for the
1990s, Romberg, 1984). One conclusion from both conferences was
that information about the nature of proposed changes and their
effects on schooling practices was needed. During the past 25
years the federal government has invested considerable funds to
change the teaching and learning of mathematics in America's
schools, and today it is in the process of funding several new
projects. Unfortunately, evidence of the impact of past dollars on
classroom instruction is lacking. The special evidence that exists
was unsystematically gathered and is incomplete. As new monies are
spent and programs developed, it is crucial that a systematic plan
be adopted to gather information about the effects of these planned
changes.

During the past year the staff of the Monitoring Center
prepared a series of papers, commissioned additional papers,
convinced some authors to allow us to reprint a paper they had
recently prepared, and asked a few nationally recognized experts to



x

review and critique sets of papers. In all we have collected some
30 papers that address the issues of a new world view, what is
fundamental in mathematics, what implications recent research in
psychology or sociology has for school mathematics, etc. The
intent of gathering these papers was to assist the staff of the
project in the design of a monitoring system for school
mathematics. However, since they comprise a review of the current
thinking about schooling by a number of noted educators, we have
chosen to publish them in this three-volume monograph so that
others may have access to this information.

The first volume addresses the need for a monitoring center,
the new world view, and what is now considered a fundamental for
students to know about mathematics. In the second volume the
implications of psychology to the learning of mathematics is
addressed, and the problems of assessing learning based on both the
new mathematical fundamentals and our knowledge of learning is
examined. The final volume is comprised of papers that are based
on current sociological notions about schools and how that
knowledge affects the role of teachers and instruction in
classrooms.
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THE SCHOOL MATHEMATICS MONITORING PROJECT

In this initial section of the monograph the staff of the
Monitoring Center have outlined the issues and concerns which we
believe need to be considered in order to develop a reasonable
monitoring system. Chapter 1 outlines the scope of the project and
the issues that need to be addressed. Chapter 2 examines in some
detail the new world view that is emerging and its importance to
school mathematics. Chapter 3 presents the basic causal model that
we argue needs to be developed. This model includes identification
of the variables for which indicators are to be developed. The
final two chapters in this section were solicited as critical
reviews by two noted educators. George Stanic, a historian of
mathematics education, presents his comments about the first three
chapters in chapter 4. Finally, Richard Shavelson and his
colleagues, who are also involved in the development of indicators,
give their review of the monitoring plan in chapter 5.

.7*



CHAPTER 1

THE MONITORING OF SCHOOL MATHEMATICS

Thomas A. Romberg and Marshall S. Smith

In this paper we outline the initial steps for developing a

system for monitoring the health and progress of school mathematics
in the United States. We have specified a set of conceptual issues
related to the need for the monitoring system, the audience, and
the set of strategies for gathering information. Next, we plan to
prepare specifications for developing some key indicators of the
health and potential change in school mathematics. Finally, we
will conduct a preliminary examination of extant data sets related
to those key indicators. Based on the products of this work, we
will plan and propose the establishment of a monitoring center.

The conceptual issues to be addressed as we plan the
monitoring system are listed below.

1--A new world view and its impact on school mathematics.
2--New fundamentals of mathematics for schools.
3--Policy information and school mathematics.
4--A causal model for school mathematics.

5--The content-conceptual network scheme for assessing
mathematical performance.

6--Reasoning, intuition, and mathematical problems.
7--Attitudes toward mathematics.
8--Attainment in mathematics.
9--Analysis of curricular content in school mathematics.
10--The nature of indicators.

11--Other variables and their indicators.

m-eed for a Monitoring System

The need to monitor the health and progress of school
mathematics is based on-four beliefs. First, in order to
adequately plan, the local school systems, state departments of
education, and the federal government, in particular the National
Science Foundation, need systematic periodic information about the
health of school mathematics and the types and degree of change.
In fact, the National Science Board Commission (1983) recommended
that

the federal government should finance and maintain a national
mechanism to measure student achievement and participation in
a manner that allows national, state and local evaluation and
comparison of educational progress. (pp. 11-12)

3
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Their more specific recommendation was that

the National Science Foundation should lead in evaluating
progress in the applicatior of new technology, supporting
prototype demonstrations, disseminating information. . . .

(1983, p. xii).

The second season for developing a monitoring system derives
from the concern with the nature of the evidence currently
available about mathematics education and also with the nation's
ability to monitor progress. The National Academy of Sciences
(1982) outlined problems and the lack of adequate information
regarding teachers, enrollments, and other important issues. A
]ter Academy report on indicators of mathematics and science
education made a compelling case for more adequate. information.
Furthermore, Stedman and Smith (1983), in their review of rece.tt
reform proposals, implied that the "poor quality of data that are
currently available" (p. 103) led to weak arguments for change anC
may, in fact, mislead policymakers to prepare inefficient or even
counterproductive policy changes. They argued that "a longitudinal
data base Is needed that could be used to check assertions about
the causes of achievement" (p. 103). This plan responds directly
to concern about the quality of data.

The third reason for a monitoring system is based on the
belief that we are in an era of radial social and economic change
that must be reflected in the programs of our schools. Hence,
information about how schools are responding to pressures for
change is critical. For the past century, Western society has been
dominated oy a coherent view of how the world works and of economic
activi-7 as a result of the "industrial revolution." This view
incorpolated such elements as analytic thought, experimental
science, the factory metaphor, the concept o. hierarchical
organization, and the technology of paper. It influenced schooling
with such ideas as detailed curriculum segmentation, behaviorism as
a model of the learning process, nd scientific management.
However, we are now immersed in a "second industrial revolution."
Developments in electronic communications, global transportation,
and increasingly complex organization of economic activity--all
supported by computer technology--require that we reevaluate our
conceptions of the way the world works.

Powerful new metaphors are emerging that challenge both old
ways of thinking about society and traditional economic and
organizational practices. For school mathematics, there are two
new metaphors of importance. The first involves the mind modeled
as a complex communication system (Gardner, 1985), and the second,
that knowledge is seen as an economic commodity (Bates, 1978).
Notions from cognitive psychology are now prevalent: learning
occurs not via absorption but construction; intelligence is not an
unchangeable fixed trait; activity is considered goal directed
rather than being a simple matter of stimulus and response
reinforcement. Similarly, ideas from critical sociology have
become important: the importance of opportunity to learn and the

i2
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differential distribution of knowledge. In addition, the computer
provides a powerful means of organizing and analyzing information,
of visualization in multiple dimensions, and of repeated
revisualizations.

The combined effect of a new technology, a new vision of
learning, and a complementary view of a new social order is
creating a new view of the world. This view is now causing a
reevaluation of the schooling process in America. Schools, as we
know them, are social institutions whose primary purpose is to
transmit specific knowledge and skills to our young and introduce
them to our social system. If the social system is changing, then
both the knowledge and skills our children need and the social
institutions that deliver that knowledge will have to change. This
concern about schools and whether they are consistent with social
expectations is not new; it is simply becoming more urgent as the
educational system becomes increasingly incompatible with the
changes occurring in other areas. Stated simply, the current
educational system and pedagogical ideas are based on old paradigms
that are inconsistent with the emerging new world view. The first
conceptual issue to be addressed is this new world view.

States and schools are now attempting to respond to the
pressures for change based on problems related to the new world
view. Unfortunately, most responses are patched on to the existing
system and its old paradigms. Even with the best of intentions,
this approach to reform is not likely to provide the kind of
response to the current pressures for change that is needed.
However, the new policies and their effects in certain states and
communities can serve as national experiments which will be of
great interest to other local and state agencies. Careful
monitoring of educational progress will itself both increase the
speed of change and provide a basis for coordination of effort, if
needed.

The final reason for monitoring school mathematics is based on
the fact that the mathematical expectations (or goals) for our
students have changed in light of the current social revolution.
Old procedural skills, such as computational algorithms, are no
longer as important because the calculator and computer have not
only freed man from the necessity of performing such tedious
calculations, but have made extremely complex models and other
computations possible. Thus, quantitative reasoning, mathematical
modeling, statistics, and problem-solving are now more important
than ever before. There seems to be general agreement that all
students must have a solid basis of mathematical knowledge and that
a substantial portion of the population must learn more (and
somewhat different) mathematics than ever before to function in the
society of the next century. The second conceptual issue to be
addressed involves what is now considered fundamental in
mathematics based on the new world view of society.

In summary, for each of the above reasons, information is
needed that can be used to evaluate the health and progress of

13
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school mathematics. Beyond addressing the two conceptual issues
noted above, to plan a monitoring system we need to consider both
the audience for which the information is to be gathered and the
general strategy for gathering that information.

Audience

It is one thing to design a monitoring system for educational
specialists. Information from such a system could be interpretable
only by such specialists. For example, it would be possible to
design a system to evaluate the quality of mathematics textbooks
for a committee of mathematicians. It is another thing to design a
way of capturing the quality of a mathematics text in a manner that
is interpretable by a state legislator or school official .pith
little mathematics background. For the :mrposes of the monitoring
system, we propose that the primary audience must be state and
local policymakers responsible for thinking about the quality of
the educational programs in their jurisdictions. For example, we
want the system to be able to be used to address the following
questions:

How much attention is paid to complex problem solving by the
schools in our state? How has this changed over time? Is it more
or less than in other states?

How well have the students in our state learned to solve
complex problems? Are differences in attention to problem solving
reflected in differences in performance? Has performance on
problem solving improved over time?

Dc some kinds of children receive more or different exposure
to content than others? by race? by social class? by sex?

Are differences in exposure related to differences in level of
performance? attitudes? enrollment? use of mathematics?

Do students in our schools receive the same quality of
mathematics curriculum as those in other economically similar
countries?

Do the state curriculum guidelines reflect current thinking
about what should constitute a quality mathematics program?

How well does the actual instruction that goes on in the state
relate to the state curriculum guidelines?

Have the recent state reforms in teacher education changed the
content and na,ure of mathematics education programs in our state
and other states?

This sample of questions is illustrative of both the diversity
and the complexity of the questions that need to be addressed. In
addition, they demonstrate the difficulty of the task of providing

14
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understandable yet valid and reliable information to this audience
of educational policymakers. Thus, the third issue involves an
analysis of the information needed by policymakers related to the
health and change of school mathematics.

Monitoring Strategy

The papers prepared on the first three conceptual issues
should make it clear that information is needed to develop an
effective policy for school mathematics related to its condition.
However, given that there are limitations to the resources that can
be devoted to data collection, a reasonable strategy must be
developed. We propose a monitoring strategy that involves four
components. First, a framework for identifying an efficient set of
indicators must be built; second, key indicators of health and
change must be specified; third, some indicators will need to be
developed; and finally, given that there is a large amount of
relevant data on school mathematics regularly gathered, it should
be used to fill in the framework as far as possible to provide a
baseline and to help suggest what additional data need to be
gathered.

From the products of our work on the first four components we
will then propose the establishment of a ronitoring center that
would regularly gather information about current projects and
relate that to the key indicators; supplement existing data bases
with a representative sample of data gathered via a combined
crosssectional/longitudinal design, and conduct a series of case
studies.

Developing a Framework

The base of the monitoring system must rest on notions of what
components of schooling are important for examining the health and
change in school mathematics, how those components are related to
each other, and how reasonable indicators can be developed for
those components. Such a framework should be considered as a
preliminary causal model for the health of school mathematics.
Thus, the fourth conceptual issue involves building a causal model.

Although it is premature to specify and to discuss all the
components of such a causal model, two necessary components are
briefly presented for illustrative purposes.

Outcomes. The dependent variables in any causal model of
school mathematics should involve the expected outcomes of
mathematics instruction. Examples of such outcomes are as follows:
Students will acquire knowledge of mathematical concepts and
proficiency with mathematical skills. Students will be able to use
that knowledge and processes in problem situations. Students will
develop favorable attitudes toward mathematics and its social
utility. Students will continue to enroll in mathematically
related courses or programs.

i5
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Achievement tests in the past have been used as the key
indicators of mathematical instruction. However, commonly used
tests rarely measure proficiency on more than a few concepts and
skills. For the near future we will have to rely on existing
measures such as the NAEP, SMS, standardized achievement, and SAT
tests. In the long run, we believe this is an inadequate approach
to assessing outcomes. Although achievement must be considered a
primary indicator of outcomes of instruction in mathematics, the
measures of achievement must be altered to be more useful.

One change must be in the content of the measures. New
measures must tap with more precision interrelationships between
the concepts and skills within a domain. The approach we will use
is an extension of the notion of a "conceptual network" for
specific content domains. A conceptual network is a set of
situations related to a content domain, the mastering of which
requires a variety of concepts, procedures, and symbolic
representations tightly connected with one another (Vergnaud,
1983). This approach is being used in part because of its
successful use in recent research (Romberg & Carpenter, 1985) and
in part because of the inadequacy of content-by-behavior matrices
that have been used in standard testing programs (such as NLSMA,
NAEP, or SIMS). Those matrices have specified content topics,
subtopics, and even items as if they are independent of each other.
Emphasis in such matrices is not on the structure or
interrelationships of concepts and procedures within the content

domain. Also, the behavioral dimension of matrices are based on
levels of behavior (such as those in Bloom's Taxonomy, 1956). This

taxonomy simply does not reflect current knowledge from psychology
about how information is processed.

To overcome limitations of standard testing we will develop
the new item framework to address three problems: curricular

relevance, item aggregation, and item responses. Curricular
relevance is important since one aspect of the monitoring scheme is
to identify changes in achievement due to changes in the

curriculum. A content-conceptual network scheme will be developed
for the topics that are judged to be curricularly relevant. Items

from any source can then be matched to the content topics. It will

serve as the basic guide for the examination of existing data and
the construction of new tests. This would allow us to cross-
validate time trends using different data sources.

This content-conceptual network scheme for assessing outcomes
must include both topics currently taught as well as those proposed
to be taught. For example, items on probability, statistics, and
discrete mathematics would be categorized, and prototypic items
will be constructed if necessary. The content-conceptual network
scheme also can be used as a basis for item aggregation and
creation of a set of indicators. Finally, frequency of correct
response, errors, and strategy used are to be coded for analyses of
responses. The fifth critical issue that needs to be described and
illustrated is the content-conceptual network scheme we propose to
use to measure achievement.

16
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Application of mathematics is the second category of outcomes
we expect to use. Students should be able to use the knowledge
they acquire. Simple word problems requiring students to apply
learned concepts and skills are typically used as indicators of
these outcomes. Their utility has been well documented in the NAEP
data where students demonstrated they knew basic arithmetic skills
but had difficulty using them to solve problems (Carpenter,
Corbitt, Kepner, Lindquist, & Reyes, 1981). However, the use of
mathematics with more complex problems (both in applications
outside mathematics and in other mathematics situations) requiring
quantitative or spatial reasoning can only be assessed with any
validity via interviews or complex response schemes. This is of
particular concern since it is assumed that a major emphasis of new
mathematics programs will be toward the use of such reasoning in
problem solving. Also, one special aspect of reasoning, intuition,
needs to be examined since persons with this ability have been
shown to be the creators of new knowledge.

Thus, the sixth conceptual issue addresses how to assess the
kind of reasoning students use when using mathematics.

Mathematical attitudes is a third outcome often stated as a
goal of mathematics education. The term "attitudes" is being used
here to encompass the feelings, attributions, beliefs, perceptions,
etc. that students have when confronted with mathematical tasks.
At a superficial level items on student attitudes toward
mathematical topics, mathematics teachers, mathematics or science
careers, and the usefulness of mathematics are often given. These
can be used as rough indicators of attitudes. For example, a
recent Canadian study on grade 7 to grade 10 students' views on
mathematics, calculators, and computers indicated that most
students do not particularly like mathematics, but considered it
important and indicated they would take more (McLean, 1982).
Similarly, many students believe mathematics is hard, or something
they cannot do, or only boys are good at, etc. One would hope that
contemplated program changes would change such beliefs and
feelings.

The seventh conceptual issue is on attitudes and how they can
be assessed.

Although favorable attitudes are considered a desired end
product of schooling in and of themselves, they may also be used as
a predictor for other desirable outcomes such as increased
involvement with mathematics or increased achievement. However, in
this latter case, answers to attitude items may not be adequate.
For example, to study whether attitudes influence the growing
gender gap in computer use (Miura & Hess, 1983), a more indepth
examination of attitudes, perceptions, or attributions would be
needed.

Attainment in mathematics is the final outcome of school
mathematics we expect to consider. This includes continued
enrollment in and completion of mathematically related courses,

17
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choice of college majors, choice of careers, and later career paths
including life income and job satisfaction. Each is important to
individual and societal goals and to the development of human
resources. Each, however, is mediated by many variables other than
those associated with schooling. Course completion and attendance
data will be gathered. Increased enrollments in higher mathematics
courses, particularly by minority students and women, is an
anticipated outcome of some of the prospected changes. The eighth

conceptual issue is attainment in mathematics.

In summary the key indicators of outcomes should include
information about achievement on several mathematical topics, use
of mathematics on applied word problems, attitudes toward
mathematics, and attainment in mathematics courses. Papers on the

issues related to each of these outcomes, how they can be assessed,
and how indicators can be developed will be the primary product of
this project in its first year.

Curriculum content. To illustrate the need to develop other
indicators about both the health of school mathematics and change
let us examine another component in the causal model to be
developed--curricular content.

Educational practice assumes that what occurs in schools when
students are taught mathematics leads to their acquisition of
knowledge and skills. One thing that occurs is that teachers
follow a curriculum. Note that a curriculum can be examined at

four levels: an ideal level that describes the content that
society would like students to learn, an intended level that
specifies the content in terms of a curricular plan by a policy
agency, an available level as indicated by the text and other
materials used in instruction, and an actual level of teacher
decisions about wl'at to emphasize, how much time to allocate, and
what problems to assign.

It is important to study the curriculum at each level because
the choices that are made involve providing students an
"opportunity to learn." That is, whether and for how long students
are exposed to mathematical topics is an important variable in
schooling. Opportunity to learn consists of the content of
instruction (the mathematical topics included in the planned school
curriculum), the time allotted to each topic in the total
curriculum, and the conditions for enrollment. To a considerable

extent, content is determined by the textbooks being used. Both

time and enrollment are controlled by teachers, although in
secondary school students themselves decide at least in part how
many units of a subject to study.

The choice of what mathematical topics are included in a
mathematics program and how much emphasis each receives is
critical. Both Husen (1967), summarizing the first IEA mathematics
assessments, and Crosswhite, Dassey, Swafford, McKnight, and Cooney
(1984), in the second, found student test scores in all
participating countries to be correlated with the teachers' ratings

18
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of instructional coverage of the topics on the tests. To make such
comparisons the method of analysis for the content of mathematics,
texts should be based on the content-conceptual network scheme
developed for assessing mathematical performance.

Although the identification of a key indicator for the actual
curriculum content of mathematics instruction in each classroom is
not feasible at present, this does not alter the importance of this
component. Surveys will be made of mathematics textbooks used at
each grade level in elementary school and for all mathematics
courses in secondary school. Then a content analysis of the more
commonly used texts will be done. Thus, the ninth conceptual issue
is analysis of curricular content in school mathematics.

Indicators

Let us consider what we mean by an indicator. The fundamental
purpose of a statistical indicator is to provide information about
the health of the mathematics education system. A statistic
becomes an indicator when it is useful in a policy context. For
example, it is not particularly useful to know that there are 2.5
million teachers in the U.S. or that there are 45 million students.
These numbers describe the size of the system rather than its
health. It might be more useful to put these numbers together to
form a pupil/staff ratio--in this instance about 19:1. This
statistic would qualify as an indicator when two conditions are
met.

First, the statistic should measure something that relates to
the health of the educational system. Another way of stating this
is that the indicators should be related to the variables in the
causal model to be developed. To make things simple we can divide
indicators into two categories--actions and consequences. Thus,
like an index of smoking (action) which relates to human longevity
(consequence), the pupil/staff indicator (action) should be
demonstrably related to an agreed upon consequence of schooling
such as achievement. In general, the action variables should be
considered as potential influences of consequence variables.
Furthermore, each action statistic should be related to a variable
in the causal model which could be changed as a result of policy.
Descriptive social information about the number of students in a
school who are from single-parent families, or the average income
of fathers, or other conditions that vary from school to school
would not qualify as indicators. On the other hand, pupil/staff
ratio is a variable that could be changed. Obviously, the
selection of consequence indicators is critical, for they are used
as a test of whether an action statistic qualifies as an indicator.
These are important variables which must be taken into account but
cannot be changed by policy makers. In fact, the primary
problematic task for this project is to reconceptualize consequence
indicators for school mathematics.
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Second, an indicator such as pupil/staff ratio that assesses
some component of the health of a system does not have any policy
meaning until it is placed into a particular context. There are
four basic ways of doing this.

a. An indicator can be contrasted with a standard or
criterion level. Thus, if we know that educational achievement is
particularly enhanced in the type of system being monitored if the
pupil/staff ratio goes below 16:1, then a ratio of 19:1 could
indicate to us that the health of the system could be improved by
lowering the pupil/staff ratio. "Knowledge" of a standard may be
based on theory, consensus, experience from past practice, or
possibly empirical findings.

b. An indicator can be contrasted with itself over time. It

then takes on meaning through a combination of its relationships to
the health of the system and its own direction of change: a

decrease in the pupil/staff ratio from 19:1 to 18:1 may indicate an
increase in the health of the system. The validity of this
inference will rest in part on the degree to which other parts of
the system have changed over the same time period, or more
importantly, but less probable, from empirical evidence about
change in outcomes.

c. An indicator assessed in two different places (systems) at
the same time can be contrasted with itself. States or countries,
for example, might be contrasted on the pupil/staff ratio
indicator. This is a more difficult comparison for developing
valid information fog it requires a detailed understanding of the
overall differences between the two systems. Contrasting the
Japanese and U.S. systems of education on an indicator such as
pupil/staff ratio makes little sense unless we know a great deal
more about differences in other variables such as curricula, and
teacher training.

d. A final way of obtaining meaning from an indicator is to
contrast it to another indicator. This may seem odd at first, for
how could we contrast pupil/staff ratio with a measure of
curriculum quality? The trick is to use the relationship of each
to the health of the system and then to calculate the utility of
changes in each indicator in a common metric such as dollars. This
particular approach is known as cost-effectiveness analysis. The
comparison would then be something of the following sort: a

reduction in the national pupil/staff ratio by one unit would cost
$xx and would increase achievement by yy% while an increase of
equal cost in amount of inservice training would raise achievement
by zz%. This mode of comparison requires a strong causal model of
the educational process to drive the selection of indicators.

Although we expect to construct indicators that have meaning
because they are compared to a standard or to another country or
are assessing cost effectiveness, our primary initial concern is to
develop a system of indicators that are sensitive, reliable, and
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valid indicators of change in the mathematics education system of
this country.

The tenth conceptual issue we face involves both the nature of
key indicators and how they can be constructed. The eleventh issue
is closely related, specifying and developing indicators for the
other variables in the causal model. If this can be done then the
indicators could become critical benchmarks for NSF and others
about the effects of their reform efforts and the health of the
system.

In summary, the initial tasks of this project are related to
those eleven conceptual issues. Assuming they can be dealt with
then a series of next steps will be followed.

Next Steps

The next steps to be taken involve an examination of existing
data. It will be followed by the preparation of an outline of what
new data need to be gathered.

The Use of Existing Data. There is a large amount of
statistical data regularly gathered on education in general and on
school mathematics in particular. We propose to incorporate some
of these existing data sets into the indicators for three reasons.
First, there is no need to replicate the gathering of data when
satisfactory data already exist. Second, by examining existing
data sets we will know what important information about health and
change is missing in those collections. Third, and most important,
we will be able to situate new data we propose to gather with
respect to the other important data sets so that we can develop a

more complete picture about the status of school mathematics.

At the national level, the National Center for Educational
Statistics (NCES) publishes two major compilations annually: the
Digest of Education Statistics, which provides an abstract of basic
statistical information on American education, and The Condition of
Education, which translates the statistical information into charts
accompanied by discussion. Much of the data in these publications
come from NCES-funded efforts such as the "common core" of data in
elementary/secondary schools and various longitudinal studies.
Although the data in these reports are not specific to school
mathematics, they and other data from NCES sources provide us with
excellent baseline data on the social context of schools. It
should be clear that any additional data gathered from a sample of
schools should be related to these data to assure that findings are
generalizable to the population of schools in the U.S.

Another major body of data is the National Assessment of
Educational Progress (NAEP) which has provided data on scholastic
achievement and student attitudes since 1979. This is one of the
few sources that involve nationally representative samples. For
mathematics, data have been gathered three times during the past 15

21.
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years and are to be gathered every three years. This information
provides an excellent base about achievement on current
mathematical topics. For a more complete picture about change,
this date set needs to be augmented with items on new topics,
responses coded in different ways, and studies that examine in more
depth such outcomes as the understanding of mathematical concepts
and skills. Ove-: the next few years ETS, the contractor for this
project, will be working to build a better data base. We would
intend to work w..i.th ETS in whatever way we could to help them
toward this goal.

The NCES stud "High School and Beyond" was a longitudinal
study of 1980 high school graduates that has been extended to 1982
and 1984 graduates and to their experience in college and work
after high school. This data set provides valuable information on
student enrollment and achievement, although information specific
to mathematics education is limited. This data set also is highly
compatible with a Class of '72 National Longitudinal Survey. Taken
together, these two major surveys offer comparisons over a decade.

Another often quoted source of information is the
International Association for the Evaluation of Educational
Achievement (IEA). Data on mathematics achievement in 24 countries
were collected in 1981-1982 (called the SIMS battery) and an
initial analysis has been reported (Crosswhite et al., 1984). This
data set, like the NAEP data on mathematics, is limited in its
scope (see Romberg, 1985). However, it does provide us with an
excellent comparative base from which change in mathematics
instruction can be more fully explored.

Three important studies were carried out in 1977-1978 with NSF
support: a review of the literature on science and mathematics
improvement efforts between 1955 and 1975 (Helgeson, 1977), a
survey in 1977 of the current status of education in these fields
(Weiss, 1978), and a series of case studies of schools (Stake &
Easley, 1978). Some of the information from these NSF-supported
studies and data from other sources have been compiled in a data
book (also covering higher educaticn and employment in science and
engineering), which was first issued in 1980 and was revised in
1982 (NSF, 1980, 1982). Data from these studies should provide us
a base on which changes in school mathematics can be portrayed.

Still other important data sets on mathematics are those
collected by college entrance examinations. Although the data are
not intended to be representative of any well-defined population,
scores on the SAT, ACT, and other college level tests are used
extensively for college admissions and ?lacement. The degree to
which they measure achievement (not aptitude) and are useful for
examining change in school mathematics can be examined.

Finally, each state has its own data collection system as
well, much of it devoted to fiscal, demographic, and managerial
information, but generally including data on enrollments,
personnel, and student assessment. There is, however, considerable
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variation in the types of data collected by states and in the
manner of collection, matching the organizational diversity among
the states (and within each state) with respect to educational
systems and institutions. We propose to relate the data
(particularly achievement data in mathematics) from several states
to our monitoring framework. For example, the state assessment
data gathered in California and Illinois provide a broad, large
sample base of important information about current performance and
enrollments. Again, we should be able to relate such data to the

, other data sets to portray the status and changes in school
4

mathematics more clearly.

These examples of extant data sets reflect the vast amount and
diversity of data that exist. Some are cross sectional (like NAEP)
and others longitudinal (like "High School and Beyond"); some are
drawn from welldefined populations (like state assessments) and
others not (like SAT); some reflect minimal competencies (like
NAEP), others aptitudes (like ACT).

In summary, this collection and analyses of extant data will
have four outcomes. First, a basic picture of student performance
in mathematics should be apparent; the picture will not be
complete, but the gaps in available information should be
identified. Second, we expect to find that extensive information
is available about background variables so that key indices can be
readily constructed. Third, we anticipate that very little useful
data exist for schooling variables. And finally, from this
analysis the needs for additional data, instrument development, and
so on should be obvious.

New Data Collection. It would be naive to assume that the
existing data sets examined above would contain adequate
information on all of the key indicators for change that would be
needed to document the health of mathematics education in America.
While some data undoubtedly exist on each of the key indicators for
our causal model, it can be assumed that for some indicators either
the data are incomplete or the sample is not representative. It

will be necessary to gather additional data to be related to the
existing data on school mathematics. We will propose a
longitudinal survey designed to gather specific information on the
key indicators of change from a small purposive sample of schools.

Documentation of Current Reform Efforts

Another task that will be proposed is related to the overall
health of school mathematics in America. This analogy to health is
used to portray the assumption that school mathematics today is in
poor health. However, we expect that national commissions soon
will describe what it means to be healthy by stating goals,
preparing curriculum guidelines, and proposing standards.
Furthermore, different groups are prescribing treatments to improve
the health of school mathematics.

23
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One need is to document the characteristics of the primary
efforts funded by the federal and state governments and private
foundations to share information about these programs. It is clear
that everyone is aware of current problems and that efforts have
been mounted in every state to respond to the perceived crisis. A
survey by the Education Commission of the States (1983) found that
since 1982 several states had initiated task forces or commissions
to study and make recommendations about school mathematics, many
had changed graduation requirements, other.; were preparing new
curriculum guides and performance standards. However, it was clear
that educators in most states were unaware of what others were
doing. Although some duplication of effort is expected--and even
necessary if one believes in local problem solving--it would seem
evident that increasing the flow of information about projects and
progress would reduce duplication of effort and speed the process
of change. We will propose to gather data about initiatives in
school mathematics on a regular basis from these agencies and
relate these activities to the model end key indicators.

A second need to document the characteristics of current
reform efforts is so NSF and others can be in a position to argue
that, if change does occur over time, it may be due to those
efforts. Note that it is not the intent of the monitoring project
to evaluate the effects of specific initiatives. However, if there
are grounds to suspect that detected change is duc to some project,
this would call for an indepth study of that relationship.

A Teter addition to the prop-sal activities will be to conduct
two types of case studies. The f.-st type of study would
investigate the concurrent validity of key indicators in order to
update or to develop better indicators. The second would identify
and characterize demonstrable features of successful efforts to
change school mathematics.

It is premature to discuss the details of these studies.
However, Ole studies on key indicators are important since the
notion of indicators is critical to the overall monitoring design.
In these studies, we intend not only to establish the concurrent
validity of indices but also to examine the possibility of
developing new or better indicators.

The second kind of case study would be with respect to
exemplary programs. There should be significant changes in key
indicators and in pupil achievement .L.n some sites. Such exemplary
sites should be examined in depth to document the activities and
events that are probable causes for those significant changes.
Ethnographic field studies would be carried out in such exemplary
situations. Information about how change was brought about in
these schools must be documented for use by other schools.

In summary, the proposed set of case studies is an important
component of the overall design of a monitoring system. They
should add validity and understanding to the means of data
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collection and to the implications of the monitoring effort for
change in school mathematics.

Concluding Remarks

The problem that is addressed here is to design a system to
document the health of school mathematics in America. By
monitoring the type and degree of change in mathematics in light of
the recent general recommendations for change, the National Science
Foundation will have information that was not gathered during the
last major set of reforms in mathematics education--the modern
curricula era of the 1960s. The Comptroller General's Report
(1976), in which the NSF-supported science education projects of
the previous decade were discussed, strongly condemned the low
priority and insufficient number and quality of evaluations carried
out to gather information about the effectiveness of reforms. That
message was echoed by the Science Board's report, the National
Academy study, and numerous reports and recent articles.

A more systematic attempt must be made to gather information
and to assess the impact of contemporary recommendations for change
in school mathematics. Knowing the type and degree of changes
should assist the Foundation in forming plans so that the intended
reform of mathematics teaching and learning in American schools is
realized. Thus, we believe a systematic plan for gathering,
synthesizing, and reporting on the progress schools are making in
implementing recommendations for change should be of high priority.
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CHAPTPR 2

A NEW WORLD VIEW AND ITS IMPACT ON SCHOOL MATHEMATICS

E. Anne Zarinnia and Thomas A. Romberg

The Information Age

Popular Perception

There is a growing consensus that Western society is moving
into The Information Age (Bell, 1973; Naisbitt, 1982; Toffler,
1980). The pervasiveness of this view is reflected by the accepted
use of the term in the popular media. Discussion centers on
problems involved in changing from the Industrial Age to the
Information Age (Marquand, 1986; American Association for the
Advancement of Science, 1985) rather than on the origins of the new
age or its fundamental concepts. Popular perception holds that
computers are the root cause of the Information Age; many claim
that everyone either is or soon will be involved with them.

At the saws time, huge upheavals in industry and the economy,
emphasized by industrial closure and relocation, have forced public
awareness of massive change. The media focuses attention on
constant developments in science and technology. Highly publicized
investigations into the state of education, such as A Nation at
Risk (National Commission on Excellence in Education, 1983) or
Educating Americans for the 21st Century (National Science Board
Commission, 1983), have ensured public consciousness of their own
and their children's skills, especially in language, mathematics,
and science. For many, this new social view has been accompanied
by disruption, upheaval, insecurity and confusion. While chaos in
science is seen as a natural part of the process of change
(Prigogine & Stengers, 1984), the urge in public affairs is to
restore order to chaos through immediate action. This tendency is
likely to obscure clear thinking about the direction that any
response should take and the means by which it is most likely to be
accomplished.

Background and Attributes

Characterization of the new age as The Information Age
ascribes to it a rather lofty, intellectual, cerebral image,
especially when compared with the muscular, grinding, "dark,
satanic mill" (Jerusalem, nd.) connotations of the Industrial Age.
Early designations, such as The Post-Industrial Age (Bell, 1973) or
The Super-Industrial Age (roffle-,-, 1980), simply recognized that
the industrial economy had changed so drastically that a new
description was needed. Caused by a revolution in communications
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started by the telegraph, it could as easily have been described as
The Communications Age. However, the integration of telephone,
television, and computer permits instant transfer of information
between people anywhere. This, in combination with the geometric
growth of knowledge, makes the Information Age a more apt label.

Information is the new capital and the new raw material. The
ability to communicate is the new means of production; the
communications network provides the relations of production.
Industrial raw materials are valuable only if they can be combined
to form a desirable product; the same is true of information. Like
urbanization, which is said to have occurred when more than 50% of
the population came to live in urban areas, identification of a
predominantly information-based economy is usually linked to the
time at which more than 50% of the population began to earn their
living through the sensible linking and exchange of information.
Thus, the very definition of the Information Age rests on a
mathematical concert. The validity of the statistical definition is
open to question; the concept is not (Naisbitt, 1982).

The works of several authors (Naisbitt, 1982; Shane and
Tabler, 1981; Toffler, 1980; Yevennes, 1985) point towards some of
the attributes of the new age. Naisbitt's (1982) key points
characterize the shift from an industrial society to an information
society:

1. It is an economic reality, not merely an intellectual
abstraction.

2. The pace of change will be accelerated by continued innovation
in communications and computer technology.

3. New technologies will be applied to old industrial tasks first,
but will then generate new processes and products.

4. Basic communication skills are more important than ever before,
necessitating a literacy-intensive society. Information has
value only if it can be controlled and organized for a purpose.
To tap the power of computers, it is obligatory to first be
able to communicate efficiently and effectively, to be both
literate and numerate. In addition, in an environment of
accelerating change, the old approach of training for a
lifetime occupation must be replaced by learning power, which
also depends on the abilities to understand and to communicate.

5. Concurrent with the move from an industrial society to a
society based on information is awareness of the change from a
national economy to a global economy. This change is

accompanied by the perception that the United States and other
advanced societies of the West are losing their industrial
supremacy. Mass production is more cheaply accomplished in the
less developed parts of the world. Toffler (1980) envisioned
the change as a series of wiwes, in much the same framework as
Frederick Jackson Turner characterized the westward movement of
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the frontier in North America. Thus, just as industrial
society replaced agrarian society and then began to push out,
so the new post-industrial age will replace industrial society
in the West and then gradually expand.

Economic Change

Manuel Yevennes (1985), a labor economist, has offered a more
specific interpretation of the trends in the world political
economy, spelling out their significance for the economies of the
advanced, industrialized core. He distinguished between the U.S.
as leader of the core nations of the international capitalist
economy, the newly industrialized countries, and the periphery of
less-developed countries. The concept of a national economy has
been dismissed as a myth, because developments in communications
and transportation and the maturity of economies of scale have
resulted in an interdependent world unit. The world, viewed as a
single system, contains large prosperous cities, slums, industrial
regions, and agricultural areas, with large areas of hunger and
desolation. Yevennes envisioned continued development of industrial
production in the newly industrialized and less developed
countries, while the U.S. specialized in administration of the
world capitalist system, communication, science and technology,
leisure and education, and maintenance of peace.

The last is essential because relocation of industry to newly
industrialized and less developed countries and the organization of
production according to an international division of labor is
contingent on controlling world conflict. Thus, the importance of
maintaining a military defense force and changes in national and
global economic structure are likely to dominate the U.S. labor
market for decades to come (Yevennes, 1985).

This concept needs modifying in two ways. First, limiting
conflict is not simply a matter of controlling war, but of
controlling any violence that inhibits trade. Second, one may
infer from Yevennes' (1985) statement on defense that a large,
powerful, and probably conventional, rather than nuclear, military
will he needed to maintain peace. An alternative viewpoint is that
military spending is crippling the Western economies and that
Japan's prominence as a trading nation may be directly related to
the percentage of its GNP not spent on defense (Brown, 1986b). In

either case, defense-related considerations will be influential in
restructuring the labor market.

A clear but complex picture of economic evolution emerges.
The trend started with the advanced countries building an
infrastructure of transportation in the less developed countries
for the export of raw materials, and subsequently building steel
mills and factories near the source of raw materials. It continues
with the transfer of more and more industry to the location of
inexpensive labor. Mass production has been made sufficiently
foolproof to be conducted anywhere. The future of the advanced
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industrial countries, in the lead, is to serve as financial
headquarters and research and development centers for a global
economy. Such international specialization requires sophisticated
communications and the capability of maintaining peace, whether for
the free flow of goods through the world's waterways or for the
safe conduct of business. It is a potentially precarious position
since it depends on scientific, technological, and fiscal
supremacy.

In the time frame of economic competition, millennia,
centuries, even years are inadequate measures; minutes may be more
appropriate. Any society wishing to stay minutes ahead of its
competitors needs to be constantly at the leading edge of
scientific and technological developments and to be innovative.
The British have shown that it is possible to be at the leading
edge technologically while failing to reap that position's full
benefits (e.g., rotary engines, VTOL, the Rolls-Royce Nene engine
used in MIG 15's); the Japanese have demonstrated that a country
may reap the benefits without being at the forefront of knowledge
(e.g., shipbuilding, cameras, television, automobiles, Mitsubishi
business jets). Thus, both the pursuit of knowledge and
innovation, "the generation, acceptance, and implementation
[emphasis added] of new ideas, processes, products, or services,"
(Kanter, 1983, p.20) are crucial to leadership of the world
economy.

Constant creativity and innovation is costly. The social
benefits of spin-off research are the basis of an argument used
repeatedly to justify the high costs of defense-related research.
However, the cost effectiveness of military research for economic
advantage is doubtful, and those countries allocating a large
percentage of their GNP to military spending are at a crippling
disadvantage. Consequently, China has almost halved the percentage
of its GNP spent on the military since 1967; it is now around 7 %,
comparable to the U.S. By comparison, Japan spends only 1 % of its

GNP on defense (Brown, 1986b). Thus, even the maintenance of peace
requires innovative thinking, if the effect is not to generate a
self-defeating burden.

Finally, beyond the pursuit of competitive advantage is the
most compelling reason of all for creativity and innovation,

survival. To illustrate with but a few of the myriad of
interrelated problems to be resolved in order to attain a
sustainable society:

1. Groundwater in the United States is being steadily depleted;
one-fifth of the amount pumped each year is nonrenewable
(Postel, 1986).

2. There is a growing consensus regarding an irreversible warming
trend brought about by pollution, which will have a visible
impact within the next 50 years (Osterlund, 1985; Cowen, 1985).

3. Soil, water, vegetation, and Fisheries, the bases for life, are
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being mined globally, although the economic and human
consequences are most visible in Africa and India (Brown,
1986a).

4. Nuclear reactors are aging, yet there is no viable
decommissioning policy (Pollock, 1986).

It is already apparent that independent subject disciplines
working in isolation are incapable of providing solutions. In the
case of global warming, for example, meteorologists are joining
forces with biologists, geologists, and other scientists because
the problems are too broad to fit within the auspices of
atmospheric science or even ecology (Cowen, 1986). A sense of
linkage is needed that ties, for example, preventive health
measures to population control and water supply, international debt
to almost everything (Brown, 1986a).

The view of the future outlined here points to some immediate
necessities for the schools (Shane & Tabler, 1981):

1. Students must be educated for survival in an atmosphere of
change and encouraged to contemplate alternative views of the
future.

2. In a global system with glaring inequities, the quest for
economic advantage may trigger turbulence. Students need to
face the complex relationships that exist in a closed system
between the environment, social justice, and survival.

3. The content and structure of the curriculum should not
indoctrinate students with past values and rigidity but should
be derived from images of the future.

4. Most of all, students need a sense of consequence.

Innovation and Integrative Thinking

The most important single attribute of the Information Age
economy is that it represents a profound switch from physical
energy to brain power as its driving force, and from concrete
products to abstractions as its primary products. Instead of
training all but a few citizens so that they will be able to
function smoothly in the mechanical systems of factories, adults
must be able to think. While creative intelligence is the driving
force, innovation depends on communal intellectual effort rather
than on the activity of a small cadre of elite thinkers.

Whereas short-torm productivity can be affected by
purely mechanical systems, innovation requires
intellectual effort. And that in turn means people.
All people. On all fronts. (Kanter, 1983, p. 23)

32



26

This is significantly different from the concept of an intellectual
elite having responsibility for innovation while workers take care
of production.

Kanter (1983) identified, among other important conditions for
innovation:

1. Fluid communication and network-forming devices. This refers to
the development of lateral communication across groups, the
development of relations with people in other geographic areas,
the formation of project teams.

2. A culture in which the individual is not told what to do but
given the authority to do it. Respect for the individual is
not a simply a matter of human dignity but essential to the
leap of faith required for innovation.

3. Complexity as an essential ingredient of an innovative
environment.

Kanter's keys to innovation which also stress the intellectual
approach most likely to encourage innovation include:

1. An "integrative" approach to problems, including the
willingness to move beyond received wisdom, to combine ideas
from unconnected sources, to embrace change as an opportunity
to test limits. To view problems integratively is to see them
as wholes related to larger wholes, rather than as isolated
experiences; this challenges established practice.

2. The habit of operating at the edge of competence, focusing more
resources and attention on what is not yet known than on
controlling what is already known.

3. The measurement of accomplishment not by the standards of the
past but by visions of the future.

"Segmentalism," the contrasting approach from the past
industrial age, is oriented against change and prevents innovation.
It is concerned with compartmentalizing actions, events, and
problems and keeping each piece isolated from the others.
Segmentalist approaches define problems as narrowly as possible,
independent of their context and isolated from connections to any
other problems. Segmentalism applied to problem solving holds that
any problem is best factored into subproblems. In the integrative
mode, people do just the opposite; they aggregate problems into
larger problems to recreate a unity that provides more insight into
required action. This helps make possible the creative leap of
insight that redefines a problem so that new solutions can emerge
(Kanter, 1983).

The holistic, or integrative, approach to innovation and
problem solving reflects general-systems theory. It is also
consistent with the growing body of knowledge about the differences
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between expert and novice thinkers (Chi, Glaser, & Rees, 1982;
Resnick & Gelman, 1985). While the novice plunges in, the expert
dances around the problem, considering it from different
viewpoints. This difference in approach suggests that experts not
only have more complete mental models based on greater knowledge,
but are also more apt to construct alternative models from
different perspectives. Identification of the common attributes of
several different models permits the development of a new concept.
Cooperative sharing and testing of those new concepts and the
building of shared schemas result in the formation of new knowledge
(Skemp, 1979).

Fischbein's argument (1975) that human cognition is
fundamentally unitary is also consistent with the holistic
approach. He argues that intuition and intelligence address the
same reality, and that intuition is analogous to a cognitive map,
either accompanied by spatial representation or consisting of a
global synthesis in which visualization is secondary. Its
essential quality is direct articulation, which serves action
better than explicit reasoning; it gears knowledge into action.
Integrative, intuitive, expert thinking is a vital ingredient of
the required pace of innovation.

In summary, innovation depends on the cooperative application
of creative intelligence. It is stimulated by dense communication,
complexity, and integrative rather than segmentalist thinking.
This suggests some priorities for schooling:

1. Environments that promote cooperation and respect for the
individual and that support risk taking are also likely to
promote and support innovation. The implication is that
cognitive and affective aspects of schooling are inextricably
interrelated.

2. Interdisciplinary approaches that encourage children to
anticipate, comprehend, and cope with complex relationships are
also likely to promote fluid, cross-group communication.

3. Learning situations that require the creative application of
intelligence through both critical and creative, constructive,
and generative thinking (de Bono, 1986; Sternberg, 1985); these
are also more likely to promote the spontaneous transfer of
relevant information to new problems (Bransford, Franks, Vye &
Sherwood, 1986).

4. Devices that break down the artificial barriers between school
learning and learning in life should be stressed, because true
cross-group endeavour would not preclude the real world.
Furthermore, to anybody seriously involved in the pursuit of
anything, formal hours can be an unreasonable constraint.

5. Resolution of "the Japanese dilemma" is essential. Through
intense discipline, Japanese students have outperformeu Western
students in some key academic areas of schooling. However, the
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Japanese are equally conscious of the need for innovation and
creativity. The Japanese dilemma is to change from a
uniformist to an individualistic education in order to promote
creativity, but to do it without losing the lead attained
through intense discipline (Sneider, 1986). A possible answer
may lie in the relationship between self-discipline and
creativity. The problem is one that all the advanced
countries must address.

Unfortunately, existing architectures--present habits of
schooling, traditional divisions of knowledge, established
approaches to curricula and assessment--are all designed to
eliminate as much risk as possible. They echo the Scientific
Management approach of industrialism, breaking age groups,
knowledge, instruction, and learning into tiny controllable parts.
They reflect conformity to meticulous specification rather than
innovation, and they place more emphasis on the cognitive than on
the affective. Such practices are deeply entrenched and represent
a profound barrier to change.

Learning: The Key to Adaptation

The analogy of biological evolution and the selection of the
fittest has pervaded many perceptions of economics and sociology.
However, learning rather than evolution is the fastest way of
adapting to change (Skemp, 1979). Some hard, sociological facts
underscore the need for rapid adaptation through proficiency in
learning:

1. With rapid economic change, people must anticipate multicareer
lives in which they may experience structural unemployment and
require reeducation (Virgo, 1984). This highlights the
education/training interface (Smith & Sage, 1983), education
for adaptability and continued learning, on-the-job training
for the specific task.

2. The application of robotics suggests a steady decline in the
number of jobs available. People may be expected to create
their own jobs through entrepreneurial activity, whether inside
or outside a corporate framework. This kind of activity
requires, in addition to innovation, a level of self-assessment
and social confidence that encourages productive risk taking.

3. Over 20% of the nation's children live in poverty, a condition
that seriously stunts their education. This childhood poverty
is in large part attributable to the changed structure of the
family and the significantly lower income of women (Sitomer,
1985).

Constant reeducation for all raises the question of cost,
especially for those who are not in the work force. Efficient,
effective learning is most inexpensively accomplished by those who
enjoy learning and who see learning as a recreation (Yevennes,
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1985). These people are confident in their ability to learn and
have had pleasurable and productive learning experiences in which
they directed, tested, and evaluated their own learning (Skemp,
1979) in a congenial and supportive environment.

The implications for schooling of constant reeducation are
profound:

1. Reeducation further emphasizes the affective aspects of
learning. Such aspects may be not only an indicator of the
probability of taking further coursework, but crucial to the
whole process of intrinsically motivated, self-directed,
lifelong learning.

2. Reeducation suggests student involvement in directing the
curriculum and assessing their own progress, since this is
precisely what they must do for themselves throughout life.

3. It suggests the need for learning systems and technology to
support the process of personalized, cost-effective, lifelong
learning (Shane and Tabler, 1981).

4. Reeducation suggests that students should experience the
pleasure and satisfaction of completing an extended, major
learning project of their own, and a similar endeavour in which
they have been part of a team.

5. It suggests that equity of outcomes is crucial, not as a
charitable matter but for the well-being of society (Reich,
1983).

The notion that the ability to learn is central to adaptation
and survival increases the urgency to more fully understand the
processes of learning and the nature of intelligence. It is no
accident that there is a growing sense that intelligence is complex
and multifaceted, goal-directed, and susceptible to improvement.

Complex and multifaceted. Walters and Gardner (1985) proposed
seven basic intelligences, each with a biological foundation, an
identifiable core of operations, and a symbol system for encoding.
Intelligences possessing these characteristics are musical,
bodily-kinesthetic, logical-mathematical, linguistic, spatial,
interpersonal, and intrapersonal. Each is to a significant extent
independent of the others. Each begins as a raw patterning ability
and is glimpsed through different lenses at different points in
development. Symbol systems, such as tonal or verbal expression,
are in later phases enhanced by the acquisition of notational
systems and exhibited in vocational or avocational pursuits in
adulthood. Traditional views of intelligence have largely ignored
all but the logical-mathematical and linguistic intelligences.

In both cognition (Sternberg, 1982) and artificial
intelligence (Schenk, 1980), the ability to cope with novelty and
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to extract from new situations generalizations that are likely to
be useful for future needs has been perceived as intrinsic to the
development of intelligence. In any new task, it is necessary to
recognize the problem, decide on cognitive strategies, and monitor
progress. Thus, Sternberg's (19E2) triarchic view of the
mechanisms for intellectual development drew attention to the
crucial role of metacognitive processes.

Goal-directed. In addition to the multifaceted aspect of
intelligence, there is a growing sense of the importance of
purpose, both as establishing an end and as a force in the
attainment of that end. Contemplating the intuitive process, Skemp
(1979) speculated that strong desire and a continued preoccupation
with a problem gradually, or suddenly, forges a pathway between
related concepts within the reach of reflective thought for the
development of mental models. In this sense, intelligence is
creative and self-creative, and goal-driven. Creativity results
from pursuit of a goal, and the resultant increase in complexity of
conceptual connections provides a broader foundation for further
development. The role of emotions is to provide information about
progress toward or away from the goal state.

In a more global approach to intelligence, Jaques' (1985)
quintave theory on the m.,turation of cognitive power viewed the
development of intellectual capability as reflected by the time
frame of an individual's goals. Essentially, the goal's time frame
is regarded as indicative of cognitive power; thz greater the
cognitive power, the more extended the planning time frame. This
approach drastically revised the higher end of the Piagetian
framework, already revised upward by Perry's (1970) "period of
responsibility" and by the SOLO taxonomy (Biggs & Collis, 1982).
Thus, the concept of purpose is integral to the way intelligence is
acquired, exercised, and exhibited.

Susceptible to improvement. Thinking and the development of
the intellect increasingly are viewed as integral to the concept of
intelligence and, moreover, teachable (de Bono, 1986; Sternberg,
1985). Concern over measurement has given way to contemplation of
the characteristics of intelligent behavior and experimentation
with curricula intended to improve the intellect (Sternberg, 1985).

A slightly different approach has resulted from investigation
of the differences between expert and novice problem solvers.
This, spurred by efforts in artificial intelligence, has shed some
light on the nature of intelligent behavior. Experts are not
necessarily intrinsically better, faster thinkers than novices.
However, they do have a superior, better-structured knowledge base.
This permits more successful pattern recognition and a more
sophisticated approach to the problem (Chi, Glaser, & Rees, 1982;
Larkin, 1985).

In Larkin's (1985) experience with physics problems, a

superior understanding enabled by the expert's data base was
central to the difference in performance between novices and
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experts. Novices worked backward from the desired answer; they
proceeded from a naive understanding derived from parsing the
problem statement directly to a means/end selection of seemingly
appropriate mathematical equations. Their understanding was based
on an analysis of form. Experts, by contrast, used their knowledge
of major principles from the discipline and were, therefore, more
likely to address function and to generate a scientific
understanding, after which the mathematical calculations were
relatively straightforward. In other words, experts worked
inductively with the benefit of jell founded mental modeling;
novices, deductively from naive perceptions.

Thus, the recent work on intelligent behavior and cognition
underscores the need for children:

1. To have a firmly founded understanding of content as a
foundation on which to build.

2. To be literate in the appropriate notational systems.

3. To be involved in the planning, direction, monitoring, and
evaluation of their own activities.

4. To be conscious of their own goals and involved in setting them
for projects with increasingly longer time frames.

5. To improve their intellect.

In addition, recent work draws attention to the importance for
understanding of the interplay between the internalized structure
of knowledge and the generation of mental models:

Good teaching requires that the goal of learning is a
schema. . . . Excellent teaching requires . . . an ability
to compare the merits of alternative schemes, both for
present use as a source of plans . . . and also as a tool
for future learning by the assimilation or new concepts.
(Skemp, 1979, p. 253)

Computers: Amplifiers, Catalysts--and Mirrors

Popular perception of the importance of computers is
appropriate, for computers and their applications are inextricably
intertwined in the development of the Information Age. They are
part of both the solution and the problem, handling large amounts
of data but generating drastic change through that very capability.
Computers were created in response to the deluge of data in a
society which became vastly more complex with World War 1I
(Toffler, 1980). They have made it possible to perform tasks
faster and often more reliably; and to do things that could not be
done before (Joseph, 1984). Their use in factories disposes of the
problem of "Monday" or "Friday" cars, while the implantation of
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identification devices in the necks of cows makes possible
individually tailored diets.

Through mathematical modeling and simulation, the computer has
made it possible to replace scientific experimentation with
numerical analysis and simulation, a cheaper, safer and more easily
modifiable method of investigation. Consequently, it is possible
to do much more in the way exploration and testing (Cross &
Moscardini, 1985). While the most obvious use of the computer has
been to test ideas and develop conjectures based on numerical
evidence, Jaffe (1984) suggests that the computer may do more than
simply serve as an experimental laboratory or modeling tool. As in
the proof of the four-color theorem, a computer can check that a
finite number of cases holds for a combinatoric statement. IR

addition, he suggests that, although computers may not outline the
architecture of a proof, they will assist by establishing a large
number of identities or inequalities.

However, changes precipitated by computers stem from several
different facets of their capabilities. First, programs for the
early generations of computers were linear and algorithmic, causing
users to think about or structure their field in ways that made
problems amenable to computer solution. This forced development of
models and algorithms, assignment of numerical values, and the use
of mathematics in areas to which it had not previously been
applied. This process was responsible not only for the development
of expert systems, which threaten to replace professionals, but for
speculations about the improvement of knowledge through "knowledge
refineries" (Michie, 1984). Hofstadter (1982), for example,
considers the question of whether inspiration can be mechanized.
Such questions prompt consideration of the ways in which
mathematics may be applied to the process of inspiration and also
about the process of mathematical conjecture and concept formation.

The graphic display of information i.s ancient. However, the
use of abstract, rather than representational, images is recent,
requiring a diversity of artistic and mathematical skills. It

conveys powerful advantages (Tufte, 1983):

Of all methods for analyzing and communicating
statistical information, well-designed data
graphics are usually the simplest and at the same
time the most powerful . . . . Modern data graphics
can do much more than simply substitute for small
statistical tables. At their best, graphics are
instruments for reasoning about quantitative
information. Often the most effective way to
describe, explore, and summarize a set of
numbers--even a very large set--is to look at
pictures of those numbers. (p. 9)

Computer graphics offer obvious benefits in the conveyance of
complex information; that much is evident to all who watch
television weather reports. Perhaps this very benefit allows
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another possibility, that of promoting more rapid concept
formation. Three-dimensional graphics have obvious applications in
computer-aided design. However, the end prod'ct of science is
communication, and there is a growing sense that interactive,
three-dimensional graphics significantly enhance the communication
process.

Davie and Hersh (1981) argue that kinestactic activities and
hands-on experience encourage development of the kind of preverbal
conceptualiztion that is fundamental to mathematical intuition:

We have intuition because we have mental representa-
tions of mathematical objects. We acquire these
representations, not by memorizing verbal formulas,
but by repeated experiences (on the elementary level,
experience of manipulating physical objects; on the
advanced level, experience of doing problems and
discovering thins5 for ourselves). (Davis & Hersh,
1981, p. 398)

Description of their experience with software designed to generate
a hypercube suggests that experience 'with three-dimensional
graphics software could help develop mathematical intuition.

What is to be sought in designs for the displcy of
information is the clear portrayal of complexity.
Not the complication of the simple; rather the task
of the designer is to give visual access to the subtle
and the difficult--that is, the revelation of the complex.
(Tufte, 1983, p. 191)

Intuition is fundamental to the creation of mathematical
concepts (Wilder, 1967). Computers make it more feasible to test
intiitive concepts Lhrough visualization empowered by numerical
anaLysis. Digital image - processing illustrates the possibilities:
Quantification in geography, for example, moved away from the kind
of intuitively perceived coherence exemplified by Vidal de la
Blache (1979) as the basis for identifying regions; and yet even a
first grader looking at atlases of satedite imagery (Images of the
world, 1983) intuitively recognizes regional boundaries that may be
less obvious on the ground or on the map.

Although initially stand-alone tools, computers har
progressively been connected with each other and with a ide range
of other communications devices. This networking of computers into
integrated communications systems increases contact between people
and provides another powerful model for thinking. ARPANET, one of
the earliest resource-sharing networks, originally connected only
four institutions. The concept has since expanded so that
worldwide networks linking millions are underway. Hiltz and Turoff
(1978) observed of the Electronic Information Exchange System
(EIES) that the network increased communication between people at
least ten-fold. Considering means of engineering serendipity,
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Charles Hitt (personal communications, October 1985) speculated
that it is most likely to occur when supposedly incompatible people
are connected on a compatible system. Such conditions are created
when there is multidisciplinary participation in computer
conferences.

The intellectual models offered by computer networking and new
computer development offer a powerful source of analogy in many
areas. For example, both business and cognitive science have
adopted the model and the metaphors of networking, much of the
language of which is derived from mathematics and anthropology.
Toffler's (1985) recommendation in 1975 to AT&T (then Bell
Telephone) for organizational restructuring is similar to the
notion that networks are created to serve a purpose and rapidly
atrophy when that purpose no longer exists (Hiltz & Turoff, 1978).
At the same time, the vocabulary of cognitive science describing
networks in the brain is often identical to that used in computer
networking to describe common concepts and comparable problems,
such as information overload. In other words, in the practical
application of computers, mathematical concepts interweave with
scientific principles from academic disciplines. The result serves
as a new model in a reciprocal relationship.

Computers perform work through logical analysis. That analysis
is critically dependent on mathematical ideas, insights, and
methods, be it binary arithmetic, boolean logic, fuzzy set theory,
randomness, or network theory. Computers currently follow
sequential algorithms, but future computers will emulate the more
complex parallel processing of the brain (Jaffe, 1984). Thus,
efforts to improve computer functioning are closely tied to efforts
to understand the nature of human information processing.
Intelligence (whether in man, machine, or animal) consists of the
capabilities of data capture and storage, processing speed, and the
flexibility, efficiency, and range of software. In the development
of ultra-intelligent machines, there are only two limits: the

speed of light and the internal consistency of mathematics (Evans,
1979). If Evans' argument is correct: that the computer is
increasingly capable of outpacing the human brain in many of the
basic capabilities of intelligence, several propositions follow:

1. There is a need to understand the mathematical relationships in
the structure of knowledge, the way knowledge is stored, and
the way it is put together and used (Brookes, 1980), between
content and process.

2. From these understandings should flow more efficient and
effective computing, a greater development of machine
intelligence, and perhaps more effective strategies for
improving human intellect.

Computer capabilities for logical analysis may be viewed
another way. Expert systems consist of a knowledge base of
assertions and at inference machine that reasons purely on form,
not content. Thus, the only errors are those that result from
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omitted knowledge or incorrect assertions (Robinson, 1984). It is
possible, therefore, to leave repetitive reasoning to computers in
much the same way they perform the drudgery of calculation.
Telemetry suggests that even some parts of the assertion process
can be handled by computer, leaving to humans those things beyond
the reach of systematization. If statements in the knowledge base
consist of assertions that are open to falsification, expert
systems can be applied to any content area. While complete
mechanization is impossible, vastly increased productivity in
reasoning is attainable (Sheperdson, 1984), raising the prospect of
a surge in the production of new knowledge.

Computers serve a further purpose: their use in modeling
essentially caricatures our rational processes, thereby exposing
the strengths and weaknesses of rationality and the limits of human
knowledge.

In other words, the computer enables the development of new
concepts--intuitive and verbal, global and microscopic--through the
powers of calculation, comparison, visual representation and
logical analysis. Unfortunately, education is not yet past the
stage of applying computers to old problems; the most serious
implication of this is that the computer is the instrument that
enables the final domination of the educational system by
scientific management (Baker, 1978). However, the implications for
schools are much more profound:

1. If computers amplify, it behooves education to be deliberate.

2. If computers are capable of calculation and repetitive
reasoning, children need to acquire through experience a sense
of what computers can do and when it is appropriate to use
them. As technology changes in size, cost, power, and ease of
use, these perceptions must also change.

3. If computers can assist in the intuition of concepts, children
need to make full use of them in the learning process and to
use them consciously as a tool in making their own inferences.

4. If, in the process of learning to make computers behave
intelligently, a new consciousness of means for improving human
intelligence emerges, every effort should be made to make that
available to all.

5. If computers can effectively increase the experience of
children through simulation, and can broaden their contact with
other people both globally and locally, advantage should be
taken.

6. Finally, children deserve to e.tperience the sense of power
derived from creating their own expert systems from a
combination of assertions known to be true and valid inferences
from that base--and this acr...ies both on and off the computer.
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Summary

Accelerating change in the rezoning of world economic activity
has drastically changed educational expectations. Instead of a
standardized, punctual product that would mesh smoothly into the
industrial machine, society now needs people who are creative and
innovative. While creativity is inevitably individual, innovation
is cooperative. Among the results of these new educational
expectations are:

1. A stress on integrative, intuitive, expert thinking.

2. The notion that evaluation should be measured against a goal
rather than against past performance.

3. A stress on an educated populace, rather than on selecting an
elite for educating, and training the remainder.

Stress on the importance of learning, and systems for
learning, stems from the prospect of multicareer lives and the
demands of social welfare. Consequently, intelligence recently has
been perceived as multifaceted, complex, and goal directed. The

role of the emotions in goal direction suggests that the affective
strongly influences the cognitive. In addition, intelligence is
viewed as modifiable rather than fixed. Efforts to increase
intelligence have, in part, focused on the differences between
novice and expert thinking. Understanding based on a
well-developed internal structure of knowledge seems central to the
difference.

Computers are both a solution to old problems and a source of
new ones. They are a crucial tool for testing models and intuiting
concepts. In addition, they enhance communisation and provide a
rich source of metaphor. For mathematics, they have elucidated and
expanded the discipline's role in the scientific process and, more
tantalizingly, in the understanding ana improvement of
intelligence. Most of all, they are a catalyst, forcing
reexamination of whatever area to which they are applied, and that
includes the way children learn, what they learn, and why they
should learn.

The Impact on Mathematical Education

Demand for Change

Popular perception holds that citizens need a better
understanding of science and technology if society is to prosper.
As a consequence, mathematical education has been the focus of
public demand for action through changes in the curriculum. In

addition, application of computers in areas ranging from
linguistics to business has increased the demand for mathematics in
all fields.
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Awareness of the need to increase mathematical education,
usually stared simply as "children. Aced more mathematics"
(Curriculum change in secondary school mathematics, 1983; National
Commission on Excellence in Education, 1983; National Council of
Teachers of Mathematics [NCTM], 1980), is not new. For at least
the last 25 years (e.g., College Entrance Examination Board, 1959;
Fehr & Bunt, 1961; Goals for School Mathematics, 1963), those
responsible for mathematical education have attempted to reshape
and improve the school mathematics curriculum. Activities in
Western nations intended to improve mathematics education have
ranged from international conferences and assessments to curricular
experiments (Howson, Keitel, & Kilpatrick, 1981) and national
investigations (e.g., Committee of Inquiry into the Teaching of
Mathematics in the Schools [CITMS], 1982; National Advisory
Committee on Mathematical Education [NACOME], 1975).

Two reports important for school mathematics are A Nation at
Risk (National Commission on Excellence in Education, 1983) and
Educating Americans for the 21st Century (National Science Board
Commission, 1983). Reactions to these reports by mathematical
sciences professionals are presented in New Goals for Mathematical
Sciences Education (Conference Board of the Mathematical Sciences,
1984) and School Mathematics: Options for the 1990s (Romberg,
1984a).

Widespread public concern has resulted in responses that vary
from increasing the credit hours in mathematics required for
graduation to writing new curriculum guidelines (e.g., Chambers,

1986). Nevertheless, general mathematical understanding remains for
many both inadequate and traumatic: a physical education teacher
ordered a 6-foot medicine ball and then could not see the class
because it was 6 feet in diameter rather than circumference; and a
reading teacher burst into tears when she could not translate a
recipe for a 9-inch pan to an 8-inch pan, (Anonymous personal
communications, October 1985; CITMS, 1982). Despite enormous
efforts, society's mathematical understanding does not match its
needs.

The Curriculum as an Instrument of Change

A traditional assumption in education is that changing
curricula is the easiest way to change school practices. However,
curriculum development is more than a change in method or content;
it is an effort to change the culture of schools and may involve
different levels of restructuring. Ameliorative change simply
substitutes one tiny part of the system, such as the current
textbook, but does not challenge values or traditions. Typically,
response to change which does challenge those values and traditions
is nominal. If there is actual change, it is more frequently
mechanical or illusory than real. Patterns of adoption range from
labels and procedures to complete surface trappings, but the change
can only be considered real if the values and principles also are
adopted. Actual, substantive change disrupts old habits and
beliefs, usually invoking resistance. Therefore, the first step
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toward increasing the likelihood of constructive curricular change
is identification of the traditions and values being challenged
(Romberg & Price, 1983).

The Power of Metaphor and Model

The most deep-seated traditions and values are personal in
that they are rooted in each individual's beliefs about the world.
In any effort, people are goal directed; they work best toward new
goals if those goals are personal. They may appreciate the need
for change but formulate inappropriate goals, unless their own
model of the world matches reality. Cogn:Itive science suggests
that people constantly construct theories to make sense of things
(Resnick & Gelman, 1985). Men ha-:e habitually relied on the
metaphors and models offered by familiar objects and experiences to
make sense of complex situations. Thus, their theories about the
way the world works have been consistent with the way they work to
make a living, for that is the model constantly before them. This
model has, in turn, dominated the way they think about most other
things. As a result, prevailing views in most fields mirror the
means of production and the relations of production in the dominant
economy, because that model presents a convenient source of analogy
and a framework for thinking.

For the past hundred years, Western society has been dominated
by the machine, the factory, rationalism, analytic thought,
experimental science, and the technology of paper. These, standing
as metaphcr and model in their turn, prompted the development of
scientific management, behaviorism, and the matrix as an
organizational tool (Kilpatrick, 1979). This sequence led directly
to what Howson, Keitel and Kilpatrick (1981) refer to as the
"taylorization" of -chool mathematics, the most pressing problem of
mathematical education. As long as the sequence remains
unrecognized, unchallenged, and unchanged, it will continue as a
source et intellectual incoherence, impeding progress towards new
goals; thinking and action will be constrained by old models and
metaphors. Tradition ensures that people's belief structures and
work habits are not easily changed. Even when there is intent to
change, if mental models remain the same, real change may not be
effected, despite the illusion of change created by the trappings.
Old beliefs and habits will persist and nominal, rather than real,
change in the curriculum probably will continue (Romberg & Price,
1983).

Briefly, the disparity between what is desired, what is
attempted, and what is accomplished rests on intellectual conflict
between traditional values and practices and the need for
creativity, coherence, and a sense of consequence. One alternative
is to simply wait for the world of work to change and to expect the
evolving environment to exert its own influence in changing current
models, thus removing the intellectual conflict. However,
acceleration of the pace of change makes this problematic, because
early inadequate models remain entrenched (Resnick & Gelman, 1985).
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Particular models are rooted in the dominant cultural metaphor in
which children are raised and educated, leaving the prospect of
several generations of chaos and trauma before intellectual and
societal institutionalization of the old models gives way to the
new.

Consequently, mathematical education for a new age requires a
proactive, rather than reactive, approach (Romberg, 1984b). As
long as those involved adopt a policy of adapting mathematical
education to cope with current problems, time lag alone ensures
perpetual inadequacy. Mathematics education today demands
recognition and removal of structural and intellectual impediments
through careful consideration of the possible, probable, and
desirable attributes of the new age, the self-conscious formulation
of new models through abstraction rather than experience. The
knowledge imparted, the work of students and teachers, and the
professionalism of teachers are all imbued with structures,
traditions, and values that are challenged by new models (Romberg &
Price, 1983). Anything less will continue an already prolonged
period of painful maladjustment in which efforts to improve
mathematical education meet with little real success.

Knowledge, Work, and Professionalism: Traditional Beliefs and New
Models

To isolate segments of educational practice and to discuss
knowledge as though it were separate from the way we work, or
teachers' profe,lsionalism as though it were separate from the work
expected of children, is contrary to reality. All of these things
are enmeshed with one another. One can only discuss the tangle
from one viewpoint and then from another, recognizing that one is
looking not at separate things but at a model of a single reality
in which every part and process is inextricably and often
reciprocally tied to all other parts and processes. Despite that
reservation, different perspectives on school practices are useful
in considering the direction of desirable change in mathematics
education. These varying perspectives also are helpful in examining
the entrenched beliefs, values and traditions that must be
addressed if innovation is to occur: knowledge, the work of
students and teachers; and the professional nature of teachers
(Romberg & Price, 1983).

Knowledge. One of the intentions of mathematical education is
to ensure students' acquisition of mathematical knowledge,
preferably as a communally accepted structure. This has typically
meant a careful structuring for instruction of mathematical skills
and concepts. However, a crucial distinction between knowledge and
the record of knowledge, knowing and knowing about (Romberg,
1983a), is at the root of several dilemmas of mathematical
education.

As a record of knowledge, mathematics has a vast content
(Romberg, 1983a). Furthermore, the accepted content of mathematics
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changes. Davis and Hersh (1981), observing that the world is in a
golden age of mathematical production, raised the possibility of
internal saturation and exhaustion and suggested that there is a
limit to the amount of mathematics that humanity can sustain at any
one time. In other words, human beings can manage only a limited
amount of information, and the field's subdivision means that some
parts must inevitably be abandoned as new parts ire added. For the
world of mathematics as a whole, this may not be true. Experience
with information overload in computer conferencing systems, for
example, suggests that users should be pr vided with filtering
devices and left to do their own filtering (Hiltz & Turoff, 1985)
because overload may be crucial redundancy. What is junk to one
may be information to another.

However, the content of mathematical education is necessarily
restricted. This is at the root of the controversy between
mathematics as a science and mathematics as a school subject, which
arises when emphasis is on the record of knowledge rather than on
knowing. The inevitable consequence is an attempt to identify
those parts of the curriculum that are no longer appropriate, such
as logarithms. Unfortunately, the obvious desirability of adding,
for example, mathematical modelins, discrete mathematics,
probability, and statistics needs more time than can be made
available, prompting demands for an increase in the amount of time
students spend studying mathematics (e.g. NCTM, 1980) to fit
everything in. Reaction of the National Advisory Committee on
Mathematical Education (1975) differed:

Curriculum content, subject to the flux of .ccelerating
change in all areas of our society, cannot be viewed as
a set of fixed goals or ideas; it must be allowed to
emerge, ever changing, responsive to the human and
technological lessons of the past, concerns of the present,
and hopes for the future. With this in mind, no definitive
curriculum can ever be recommended. (p. 138)

In either approach, it becomes essential to reconsider carefully
the purposes of mathematical education of children to eliminate
redundancy and ensure the crucial.

Reconsideration of the intent for students to acquire a
structured knowledge of mathematics is enlightening. Scientific
management of the record of knowledge resulted in hierarchical
classification and taxonomies of knowledge. This approach mean:-

that mathematics to most students was, and still is, the sequential
mastery of concepts and skills. For many, it is not even an
aggregation. It was hoped that "modern mate," with its emphasis on
such organizing constructs as sets and functions, would bring
coherence to the curriculum. Unfortunately, it became simply a more
abstract collection of routines. The process of segmenting and
sequencing mathematical ideas for instruction in models such as
Gagne's (1965) leaning hierarchy and in individualized programs
such as IPI (Lindvall & Boivin, 1976) and IGE (e.g., Harvey, Green
& McLeod, 1972; Harvey, McLeod & Romberg, 1970) separated
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mathematics into thousands of independent pieces (Romberg, 1984b).
While the planners and teachers had ;.ieticulously coded networks
linking concepts, the resultant view for students was of isolated
pieces rather than a functioning whole.

Eriwanger (1978) illustrated the problems of individualized
mathematics. In a study of IPI mathematics, he interviewed several
students on their notions of mathematics. One student's overall
conception of mathematics was of a large collection of distinct and
unrelated skills to be mastered.

Thus, the coherence of mathematical concepts and the concept
of structure so essential to expert thinking remains absent. A
focus on isolated parts essentially trains students in a series of
routines without educating them to grasp the overall picture--a
skill that would ensure their selection of appropriate tools for a
given purpose. The segmenting and sequencing of mathematics has
also led to the notion that there is an incontestable partial
ordering of mathematics (Romberg, 1984b), usually reflected in the
declaration of "prerequisites" in the curriculum, chapters in the
text, and so on. Although those devising the curriculum may think
of the parts as functional entities (decimals, fractions,
equations), children, who view them in isolation without any real
perception of the complementary relationships among them, are very
likely to perceive the parts morphologically rather than
functionally. This may well be a major barrier to the development
of expert thinking, which usually focuses on function rather than
form; naive perceptius persist (Resnick & Gelman, 1985).

Although learning inevitably occurs sequentially, all
knowledge must be treated integratively. Mathematics as a
discipline has not only internal structure but integral and
reciprocal relationships with other disciplines, especially
science, and increasingly with the social sciences and humanities.
The complexities of these relationships are likely to challenge the
traditional hierarchical taxonomies of content. Theories are
needed to provide mental models of the relationships between
concepts and topics (e.g., Jackson, 1984). Students must see ana
experience mathematics as a language (CITMS, 1982) and a science
which orders the universe (Jaffe, 1984), as a tool for representing
situations, defining relationships, solving problems, and thinking.
They need to experience the powers of its language and notational
system in solving problems in a wide variety of domains. The
connectedness of ideas is critical, and so is the connectedness of
process and concept (Vergnaud, 1982). Students must experience
mathematics as part of both larger content and larger process.
They need to see it as a process of abstracting quantitative
relations and spatial forms from the real world of practical
problems, and inventing through the process of conjecture and
demonstration of logical validity. The emphasis in instruction
must now be on experiences that help students to know mathematics
(Romberg, 1983a).
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The emphasis of the new world view stresses creativity,
innovation, problem solving, and a general high level of
"at-homenessr (CITMS, 1982, p.11) with mathematics. Integrative,
intuitive thinking is seen as essential to the process (Kanter,
1983). In turn, creativity and innovation are integral to both the
creation of new knowledge and to solving problems, which could be
described as applied knowledge creation. Thus, the emphasis of the
new world view suggests a kind of school mathematics that would be
very close to the approaches of applied mathematics and the
informal mathematics of Lakatos (1976). Whether Lakatua' or
another's, all mathematical pedagogy rests on a philosophy of
mathematics (Thom, 1973) that amounts to a model of mathematicians
doing mathematics. Hence, explicitly (e.g., Romberg, 1983a) or
implicitly as in problem solving, for example (e.g., Chambers,
1986; CITMS, 1982; NCTM, 1980), knowing and doing mathematics, as
opposed to knowing about mathematics, is an important part of major
current statements of purpose.

When mathematical knowledge means knowing and doing
mathematics rather than knowing about mathematics, other things
follow. Knowledge is personal and communal in that, while it may
originate in an individual, it is validated by the community.
Thus, the process of adding to mathematical knowledge through
communication is an integral part of knowing mathematics.
Furthermore, the criterion for knowledge is not necessarily that it
be tru' but that it be incorporated into the general system of
knowledge (Rescher, 1979). In a sense, adding to the structure of
mathematical knowledge is mathematics. This view means that
mathematics is, by definition, dynamic and constantly changing; it
is not, as has been the case in schools, a static, bound
cumulation. The implications of these views for school culture are
extensive, suggr_sting radical change in the work of students ant.
teachers and in the professional character of all educators.

The work of students. The roles, and therefore work, of
teachers and students are complementary (Skemp, 1979); one teaches,
the others learn. However, schools ostensibly are places where
students gather to learn; thus, the role of the teacher should
complement that of the student, rather than vice versa.
Unfortunately, when knowledge is regarded as knowing about rather
than knowing, the vocabulary reflects a reversal of emphasis: the

work of the teacher is to "transmit" knowledge. Logically, this
meals that the student's job is to receive knowledge and to
regurgitate it on demand. In fact, the real work of the student is
often a matter of negative goals, meeting expectations sufficiently
to pass through the system (Skemp, 1979). Welch's (1978)
description of a student's work in a mathematics classroom is
similar to that of Clarke (cited in Stephens & Romberg, 1985):

She tells us what we're gonna do. And she'll probably
write up a few examples and notes on the board. Than
we'll either get sheets handed out or she'll write up
questions on the board. Not very often. We mainly get a
textbook. We'll get pages. She'll write up what work to

49



43

do, page number and exercise. And if you finish quick you
may get an activity sheet. And that's about what happens.
(p. 22)

The traditional situation described is organized, routine,
controlled, and predictable--an unlikely environment for the
creation of knowledge.

Some sense of'the necessity for students to create knowledge
rather than simply memorize somebody else's is reflected in current
documents. The NCTM (1980), for example, recommended that problem
solving be the focus of school mathematics for the 1980s, and that
"mathematics curricula and teachers should set as objectives the
development of logical processes, concepts, and language" (p. 8).
Unfortunately, the very format of its presentation presented a
checklist of discrete basic skills with no sense of coherent
activity. A clearer and more focused sense was conveyed by the
Department of Education and Science (1985), which stressed that

making, testing and modifying hypotheses are parts
of the thinking processes of everyone at different
levels within mathematics, within the whole curriculum
and in everyday life. (p. 22)

The aim should be to show mathematics as a process, as
a creative activity . . . and not as an imposed body of
knowledge immune to any change or development. (p. 5)

However, if students are to create mathematical knowledge,
both the kinds of new knowledge z:nd the work involved in its
creatior must be more clearly defined. Knowledge may be new to the
individual student, or it ma? be new to the global community. For
mathematical educatlon, '..he most exciting new knowledge is that
cr ted by the student which is also new to the mathematical
community, such as Stringer's Conjecture (Kidder, 1985b). Another
type is the new "knowledge" generated by the successful application
of mathematics to problems, each instance of which either
revalidates existing knowledge or prompts efforts to eNpand the
domain (Jaffe, i984). This suggests for students a process of
continually expLnding and applying the system of personal knowledge
and validating it againat the domain as a whole.

The process of knowing is complex, involving both conscious
and unconscious thought. Russell (1978) posits a cognitive
unconscious that mirrors the processes of conscious thought but,
without the constraint of reflexivity, works much faster: "All
knowledge begins with 'intuition" (p. 30). While this is not
knowledge, it is the starting point for the conscious, logical
processes of creating mathematical knowledge. The conscious work
of mathematics is that of logically reconstructing, representing,
and validating intuited abstraction, while recurrently drawing on
the unconscious.
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Briefly then, students' work consists of extending the
structure of the mathematics that they know by making, testing, and
validating conjectures which may originate as postulates of
conscious thought or be derived intuitively. As long as students
are making the conjectures, their mathematical knowledge will be
structured, consciously or unconsciously, because conjectures
cannot be created from nothing. Those conjectures may be abstract
or applied; the modeling involved in the latter both tests a
conjecture and develops a sense of consequence. This amounts to
the process of reflective intelligence in which the structure of
knowledge is constantly revised by reflecting on events, seeking
ways to fit them into the existing structure, and testing the
structure's predictive powers (Skemp, 1979).

Verbal (Adler, 1986) and written communication is a crucial
part of the process for several reasons. First, logical argument
is central to mathematical proof. Second, communication of that
proof is the means by which personal knowledge is submitted for
systematizing into the domain and thus accepted as new knowledge
(Rescher, 1979). Third, developing competence in the categories
and structures of the language system structures the child's
understanding and advances it toward a public mode of consciousness
(Russell, 1978). Fourth, there are indications that the process of
repeating something aloud (Berk, 1986) or verbally explaining
(Hart, 1981) assists children's understanding.

For the child, this conception of work suggests making and
testing conjectures, building supporting arguments which are tested
on peers. Whatever is new knowledge for the group is checked
against the record of mathematical knowledge, interweaving the
structure of personal knowledge with the structure of the domain.
This personally built structure and the conscious linking of it to
the domain is intrinsic to the vital notion of "at-homeness" with
mathematics (CITMS, 1982). This view of work also implies that
practical applications, which inevitably require cross-disciplinary
activity, are essential. Obviously, it is radically different from
absorption of the record of knowledge.

The work of children is not a matter of memorization, nor of
following algorithms, even though these play a part. The creation
of knowledge, whether at the personal or global level, involves a
constant process of deliberately moving beyond what is known into
the realm of disorganization, repeatedly guessing at connections
and mental models until new and definable structures, objects,
relationships, and processes emerge (cf. Skemp, 1979). It is
important to note that this is not the same as the kind of
discovery learning that plans for the acquisition of particular
knowledge through discovery rather than exposition. It requires
creativity, fluent verbal and written communication, and
constructive, critical thinking (in the epistemological sense).

One consequence, for example, is the imperative that students
be fluent correspondents in their native tongue and in a level of
mathematical notation commensurate with the ideas they wish to
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express. Another is the integral nature of evaluation and
reevaluation by students of their own efforts and, as the creation
of knowledge is eventually a communal matter, cooperative
assessment of the arguments of peers. Clearly, the work of
students is no longer a matter of acting within somebody else's
structures, answering somebody else's questions, and waiting for
the teacher to check the response. Nor is it a matter of
evaluating knowledge according to right or wrong answers. In the
creation of knowledge, there is only that which fits the structure
of mathematical knowledge already created by the student and that
which does not, and therefore should prompt conjecture.

The work of teachers.

The "median" classroom is self-contained. The mathematics
period is about 44 minutes long, and about half this time
is written work. A single text is used in whole class
instruction. The text is followed fairly closely, but
students are likely to read at most one or two pages out
of five pages of textual materials other than problems.
It seems likely that the text, at least as far as the
students are concerned[,] is primarily a source of problem
lists. Teachers are essentially teaching the same way tley
were taught in school. Almost none of the concepts, methods,
or big ideas of modern mathematics programs have appeared in
this median classroom. ( NACOME, 1975, p. 77)

The NACOME description of work in a composite classroom is
supported by other researchers (Welch, 1978; Stephens & Romberg,
1985) and is echoed by the observations of Romberg (1983b):

Teachers modified the program, selecting parts to be
taught and how much time was to be spent on each part.
Furthermore the dominant pattern was not to select activities
that encourage discovery and exploration, but to emphasize
skill development and practice via worksheets. (pp. 21, 28)

Attempts to prevent emasculation of curricula include a focus
on textbook selection and conscious efforts to bypass teachers by
relegating them to the role of manager (Berliner, 1982). The
single greatest consequence of this was to invalidate the teacher's
sktlls (Apple, 1979). Another is that the textbook rather than the
teacher is the classroom authority on knowledge (Stake & Easley,
1978).

However, the persistent neutering of curricula arises because
the primary work of teachers is to maintain order and control
(Romberg & Carpenter, 1985; Wisconsin Education Association
Council, Curriculum and Instruction Committee, 1986). An
inexorably logical sequence occurs when the acknowledged work of
teachers is to transmit the record of knowledge. The most
cost-effective way to transmit the record of knowledge is through
exposition to a captive audience. Theoretically, the child could
read and cover the same material, but that would require a
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voluntary act which is unlikely as long as children are not setting
their own goals. Consequently, that exposition cannot occur unless
there is control, which is easier if children talk as little as
possible and stay in one place. It is essentially a system for
"delivering" knowledge to the group by controlling the individual.
This simple sequence has dictated work, furniture arrangement,
architecture, etc., for the last hundred years, and it is the
tradition most challenged by any attempt at change. The result is

that

the traditional classroom focuses on conpetition,
management, and group aptitudes, the mathematics
taught is assumed to be a fixed body of knowledge,
and it is taught under the assumption that learners
absorb what has been covered. (Romberg & Carpenter,

1985, p. 868)

If one regards the roles and work of students and teacher as
complementary, and if the emphasis is on creating knowledge rather
than absorbing the history of other people's knowledge, then the
teacher's work is to support, promote, encourage, and facilitate
the creation of knowledge by students. In order to know, students

must educate themselves. In flight training, for example, where
knowing can make the difference between living and dying, the
intrinsic motivation that ensures that the student takes
responsibility for his own learning is crucial (unless one regards
death as an extrinsic motivation). Thus, according to Dawson
(1983), "The teacher and the content are not paramount: THE

LEARNER IS" (p. 592).

One way in which knowledge is acquired is through imitation
and play (Russell, 1978). Imitation and invention are parts of the

same process. That which children imitate, they invariably adapt,
perhaps creating new combinations. An implication of imitation as
a source of knowledge is that teachers display for imitation
intuitive and logical ways of extending their own knowledge and
encourage children to imitate others as a means of acquiring

knowledge. Unfortunately, many patterns of children learning from
peers through imitation are regarded as cheating or as failure to

learn for themselves and are actively discouraged.

The importance of "the higher-order mental processes of
logical reasoning, information processing, and decision making"
(NCTM, 1980, p. 8) is considered basic to mathematics and is thus
accepted as part of the work of teachers. However, "human
cognition is fundamentally unitary" (Fischbein, 1975, p. 6); these
higher order cognitive processes are but the second, conscious pa7c
of creating knowledge (Russell, 1978) and are, moreover, typically
taught as a series of skills. If teachers are to support the
total, integrated process of knowledge creation, they must provide
an environment in which those skills are part of a continuous and
coherent cycle of intuition, logical argument, and evaluation. In

addition, because the network of knowledge built by the child is
more important than those portions of the formal domain acquired by
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the child, the organizing principle is the cohesion of the child's
knowledge, and not that of the domain.

Because the work of the student is to create knowledge, which
begins with intuition (Russell, 1978), and the role of the teacher
is to complement the child, teachers must support the unconscious,
cognitive processes of intuition in children. Long considered
important to mathematics (e.g., Fischbeln, 1975; Freudenthal, 1983;
Hadamard, 1945), intuition is poorly understood. Although
automatic, ballistic, and autonomous, it is not random (Russell,
1978). The groundwork is intense effort over a long period,
although flashes of intuition usually occur in a period of alert
nonarousal after relaxation (Goldberg, 1983). Such insight is
promoted by diversity of experience, T-hich encourages analogies and
the productive pairing of polarized concepts. It is inhibited by
reliance on acquired routines (Freudenthal, 1983) and by anxiety
(Goldberg, 1983). Tactile and kinesthetic experience, abstraction,
and communication all encourage its develevment (Wittman, 1983;
Henkin, 1983; Davis & Hersh, 1981).

The second part of the cycle is consciously cognitive and
involves conjecture, modeling, logical reasoning, and
communication. In this respect, Adler (1986) argued:

1. That the work of students is to read and discuss,,
integrating the private experience with the public;

2. That this should be so from kindergarten to college;

3. That the worst thing you can do is "cover the ground."

Although inherently pragmatic and practical in _ts approach to
curricular change, the Department of Education and Science (1985)
drew similar conclusions regarding the importance of discussion:
"The quality of pupils' mathematical thinking as well as their
ability to express themselves are considerably enhanced
discussion" (p. 39). If this is so, Adler (1986) reasoned, the
teacher's role is to provide a seminar framework, backed by
tutorials and an occasional lecture.

The third part of the essentially iterative process is
evaluative. The role of the teacher is two-fold: to ensure that
assessment, both individual and cooperative, is a part of the
process of knowing; and to diagnose children's difficulties.

Briefly, this suggests that the essential work of teachers
includes:

1. Ensuring successful experience for children;

2. Providing for extended and cooperative project work, whose
final product is a report;

3. Bringing an informal and interdisciplinary approach to



4. Encouraging verbal and written eloquence in arguing
intuitions;

5. Encouraging self-evaluation and providing for group
evaluation of new knowledge and reference to the formal
domain;

6. Demonstrably exercising intuition and adding to their own
personal knowledge;

7. Providing an emotional and physical environment supportive
of student work. This includes, for example, rec6gnition
of the need for cessation of conscious effort or a change
of activity, or of an urgency to immediately capture a
thought on paper. It also includes providing for student
experience with both physical and intellectual modeling;

8. Changing from structural authority based on negative
or extrinsic goals of students to sapiental authority
(Skemp, 1979) founded on intrinsic goals. This may be an
answer to the problem, characterized earlier as the
Japanese dilemma, of moving from regimented uniformity
to individual and collaborative creativity;

9. Monitoring the structure of knowledge being created by the
child;

10. Using technology appropriately in the processes of
intuition, play, acquisition and manipulation of
information, logical argument and communication,
evaluating new knowledge against the domain, and tracing
the development of the student's network of knowledge.

In snort, it is essential that the teacher provide the
environment, act as a mentor, and get out of the way.

The professionalism of teachers. The legitimacy of schooling
is derived from the professional status of teachers (Popkewitz,
Tabachnick, & Wehlage, 1982), which vests them with the authority
to mold children and bestow a "social identity" which frequently
channels their entire adult life (Romberg & Price, 1983). A
profession is recognized because it has specialized knowledge, a
corporate bond which supports the development of collective wisdom,
and sovereignty in its field (Otte, 1979). Competency testing of
teachers by school districts suggests that, for at least the first
and last categories, teaching is not respected as a profession.
This is a significant impediment to the changes in knowledge and
work argued above, for they rely heavily on the professional
ability of teachers.

Hall (1968) identified five attributes necessary to
professionalism:
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1. Collegiality: Belief in the formal organization and
informal exchange with colleagues as the major source of
ideas, judgment, and identity;

2. Public service: A belief that the profession performs an
indispensible public service;

3. Self-regulation: A belief that only colleagues are
qualified to judge performance;

4. Vocation: An inner compulsion to the profession;

5. Autonomy: The freedom to make professional decisions
without pressure from other professions, nonprofessionals,
or employing institutions.

On every count, teachers are under pressure--sometimes fairly,
sometimes not. Their professional organizations have diluted their
own professional power by acting as collective bargaining units.
They bargained not only for teachers but for other professions,
such as librarians, who had a professional association but no
bargaining organization. Furthermore, whereas teachers may believe
that only other teachers are competent to judge their performance,
competency-based testing of teachers makes it patently obvious that
the community at large, having made its own assessment of student
performance, is judging and finding teachers lacking.

The lack of control over the judging of teachers arises
largely because the profession is not self-regulating. Teachers
participate in establishing state certification requirements, for
example, but those standards are administered by state bureaucrats
and not by the profession. Although teachers say it is impossible
to conceive of teaching unless one has a sense of vocation, the
aphorism that "those who can, do; those who can't, teach" evinces a
high level of general scepticism about the avocation of many
teachers. Teachers have, in one sense, a high degree of autonomy
inside their own classrooms, but as a group, they are in danger of
losing whatever professional autonomy they once enjoyed.

In all fairness, the proLlems of the profession are external
as well as internal. Teachers are part of society. They were
educated by the system, and they function within the system. The
perceived inadequacies of students are relative to the expectations
of society, which have changed. Teacers' levels of expertise and
subject knowledge are directly attrib:table to the system that
educated them. If they retain order, control, scientific
management, and student ranking as their conception of work
(Romberg, 1985), the entire system is at fault, including their
preservice experience.

The working environment must allow teachers to implement
change. In this regard, superintendents are pivotal in that they
serve as intermediaries among board, community, parent, child, and
teacher. It is, for example, absurd for a district administrator
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to espouse educational excellence, curriculum development by
teachers, and the concept of the Information Age and then to ask
teachers presenting ideas if they have gone through channels (cf.
Kanter, 1983). However, superintendents, in their turn, usually
are products of the system that produces administrators. Hence,
some of the blame for the working environment of teachers is
directly attributable to the graduate schools of education.

The community at large must comprehend that the methods for
judging children, and therefore teachers, need revision (Adler,
1986). If society expects to mandate standards for teachers and
children through objective testing and vetted texts, it is
unrealistic to simultaneously expect creativity and innovation from
children and a high level of professionalism from teachers.

On the other hand, if the role of teachers is to support the
creation of mathematical knowledge by students, the professionalism
of teachers should support and enhance their role. In fact, if
belonging to a profession fosters specialized kn pledge,
collegiality, collective wisdom, and sovereignty in the field,
membership endows teachers with sapiental authority. This suggests
that if teachers do not have the attributes of professionals, they
either are not members or the profession itself is lacking.

Approached from a different view, the professional backing
needed by teachers is that which would:

1. Ensure excellent preservice and inservice education,
congruent in style with the quality of teaching expected;

2. Provide for teachers to constantly expand their own
knowledge of the domain through such things as
sabbaticals, summer scholarships for foreign study,
inservice, and computer conferencing with experts, placing
no restrictions on the directions of investigation;

3. Provide for constant electronic collegiality;

4. Educate the entire system of education to support the
efforts of the teacher, including superintendents, boards,
professional bodies, and parents;

5. Provide a framework for rigorous self-regulation;

6. Abolish the intolerable constraints under which they now
operate; namely, standardized testing, standardized texts,
and the cover-the-ground philosophy.

Implications for Monitoring

Information on the System, Not Just Parts

It is patently obvious that society bears on education and all
parts of the educational subsystem bear on one another. One part



51

cannot be considered and monitored ii. isolation. The system's
values affect architecture, curriculum, materials, etc.; materials
and architecture affect curriculum; and so on. Consequently, the
whole is not simply the sum of the parts. This means, for example,
that placing computers in the classroom, or incidasing time spent
learning, cannot be averaged into the system as a proxy for
improved understanding. Much depends on such aspects of the system
as philosophical context, the materials used, the diagnostic
approach of the teacher. Some parts of the system may have a
stronger impact than others. Values, for example, are very powerful
and could act as catalysts throughout the system. Thus to monitor
changes in values without considering other system factors may
provide an erroneous view of the system as a whole.

that:
What is needed is a sense of holistic functioning, a sense

1. The performance of a whole is affected by every one of its
parts;

2. No part has an effect on the whole that is independent of
the other parts;

3. Any subgroups that are formed are also subject to the
first two constraints.

Thus, for example, it is not possible to make recommendations about
the way teachers teach without considering how they were taught,
the materials to be used, the educational philosophy of the school
district, etc. . . . Therefore, to monitor curricular change
meaningfully, the educational system must be monitored as an
entity. For example, it is relatively meaningless to assess
teachers for minimum competency, thus conveying a value, if the
purpose of mathematical education is more than minimum competency.

Causal Model

One problem with monitoring curricular change is that to
monitor parts of the educational system in isolation is inadequate.
The purpose for monitoring frames the questions asked nd the means
of assessment. Consequently, it is important to develop ( causal
model of mathematical education (and education in general) which in
essence says: The challenge of mathematical education is for
children to create mathematical knowledge and to use mathematics in
the process of creativity and innovation.

Information is already gathered on some of the variables of
mathematical education. However, some elements not regarded by
policymakers as essential to the purpose for monitoring, such as
attitudes, may share relationships with others, such as knowledge.
Consequently, any effort to monitor elements independently will
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provide an incomplete and misleading picture. Thus, the first task
of monitoring is to create a purposeful and causal model of the
educational system which identifies the contributing elements and
specifies their relationships. Such a model would provide a number
of immediate benefits:

1. It would focus attention on the purpose for change;

2. It would force the clarification of contributary elements
and their relationships;

3. Comparison of sImulation with the results of monitoring
would further clarify conceptual relationships;

4. It would be congruent with other facets of he Information
Age and therefore help lessen intellectual conflict;

5. It would help clarify the extent and validity of
information about the system;

6. It would expose through its own inadequacies those parts
of the system about which more information is needed.

New Vision of Outcomes

One major benefit of the causal modeling approach is that the
monitoring process would inevitably focus attention of all parts of
the system on the new vision of outcomes, communicating and
clarifying the purpose for remanding change in mathematical
education. Clarity of vision will help states and local boards
decide what it is they want of teachers, and teachers what they
want to inculcate in children. A new vision of outcomes, when
combined with a modeling approach, is likely to clarify the
relationships, or lack thereof, between, for example, a stress on
drilling minimum competency in skills and the need for creativity.
When mathematical modeling was applied to economics, it led to the
wisecrack that economics is a little bit better than astrology, but
not quite as good as meteorology. The point is not that economists
are incompetent, but that their conceptual models are inadequate.
This led to a greater appreciation of the importance of some
relatively neglected human factors. Thus, the mathematical
modeling and monitoring of outcomes, if treated as a means and not
an end, will assist progress toward those outcomes. Its sine qua
non is clarity of purpose, and that derives from clarity of vision.

Conclusion

This paper is essentially an argument for lucid thought and
coherence of purpose, tools, action and knowledge. It outlines
recent views on the world and their significance for the
mathematical education of children. It argues for a service
concept of education, with children as the recipients. Time is
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important as one measure of effort. It is, more fundamentally, a
measure of a person's lifespan. If, through failure to take
necessary steps to improve the mathematical education of children,
we waste their time, we also waste a part of their lives.
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CHAPTER 3

A CAUSAL MODEL TO MONITOR CHANCES IN SCHOOL MATHEMATICS

Thomas A. Romberg

This paper describes the causal model proposed to document
changes in school mathematics. The model has been designed to be a
basic framework in a system developed to monitor the changes in
school mathematics in the U.S. and the impact of those changes on
the health of the system (see chapter 1). We have assumed that the
development of a valid monitoring system must rest on notions of
which schooling components are important for examining the health
and change in school mathematics and how those components are
related to one another. In particular, the model and the
monitoring system have been designed to reflect the proposed (or
anticipated) changes in the mathematical content, sequencing and
segmenting of lessons, the job of teaching, and methods of
-instruction. Furthermore, it has been assumed that, if key
components of school mathematics can be identified, it may be
possible to construct reasonable measures for those components. If

measures can be constructed, perhaps indicators of system health
can be developed. However, we believe that constructing measures
and indicators without such a framework would be futile.

Expected Changes in School Mathematics

This paper is based on

a belief that today, in most classrooms at all school levels,
mathematics instruction is neither suitable nor sufficient to
adequately equip our children with the mathematical concepts
and skills needed for the 21st century. Furthermore, unless
something is done to alter current schooling trends,
conditions are likely to get worse in the coming decade.
(Romberg, 1984a, p. 1)

Assuming that the schools of America will respond to the current
perceived crisis in school mathematics, the nature of those
anticipated changes needs to be identified.

Changes in school mathematics during tne next decade should
reflect the new and different goals currently being proposed for
our students. At present, school mathematics has been geared to
preparing a minority of students to take calculus. Topics were
included (or excluded) based on assumptions about their relevance
to that goal. For collegebound students who were disinclined
toward calculus, or deemed incapable of achieving competence, some
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basic knowledge of algebra and geometry has been considered
sufficient. For noncollege-bound students, only arithmetic
competence has been deemed essential.

Today, these goals are being challenged. Calculus, while
still of major importance in most fields, no longer holds its
preeminent position in mathematics (Ralston & Young, 1983). The
calculator and, in particular, the computer have expanded the
utility of other mathematical ideas, such as mathematical modeling,
algorithmic analysi3, discrete mathematics, matrix algebra,
coordinate geometry, statistics, and applications in various
fields. In particular, the new technology has freed us from the
cumbersome calculation routines of arithmetic, algebra, statistics,
and calculus and, in so doing, has expanded our ability to carry
out even more complex computations.

A variety of recommendations have recently been made
(Conference Board of the Mathematical Sciences, 1982; Conference
Board of the Mathematical Sciences, 1984; Romberg, 1984a).
Anticipated changes include:

1) changes in course content and structure,
2) changes in course requirements,

3) changes in the sequencing and segmenting of mathematical
topics,

4) changes in the use of technology,
5) changes in methods of assessment,
6) changes in the knowledge and professional responsibility

of teachers,

7) changes in the aay mathematics is taught, and
8) changes i.i the policy environment within communities.

The assumption underlying these prospective changes is that their
implementation will cause GLuceats to know more mathematics, to be
able to use mathematics more effectively, and to be productive
citizens of tomorrow's world.

This is not the place for a detailed discussion of the basis
and the nature of each category of possible change (see Romberg,
1984a). The papers comprising this three-volume monograph will
document and summarize the rationale behind each of these
anticipated changes.

For monitoring purposes, three questions must be raised: Have
these anticipated changes actually occurred, and, if so, to what
degree? What is the effect of these changes on students? Do these
changes improve the health of school mathematics? To approach the
design of a monitoring system that would gather appropriate

information to answer these questions, a causal model has been
developed.
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Causal ModAling

To bring conceptual order into the char.tic world in which we
live, man has invented myths, developed cultural traditions, and
proposed rational frameworks, models and theories. During the past
decade, an important development in the social sciences has been
the development of causal models. A model is not a completely
accurate representation of a real situation; it is only an attempt
to capture some key components and their interrelationships with
respect to some phenomena. The utility and status of a model
depends on social agreement and the empirical evidence that
validates the model.

Figure 1 illustrates the basic elements in model building. It
implies that model building involves several stages. The
development of a model starts in some empirical situatio _hat
presents a "problem" for which an "answer" can be very misleading.

so° am%

410°

oft%100

N

Problem
formulated

Validation

Model

Self-

consistency

Figure 1. The basic elements in model building.

Prediction

Real situations are rarely well defined and are often embedded in
an environment that makes a clear statement of the situation hard
to obtain. Formulating the problem involves specifying the
assumptions, concepts, and principles one believes are operating in
the real situation. Such specification must, of course, be
selective in its bias. Simplification or idealization is a crucial
stage, since the general problem is usually exceedingly complex and
involves many processes. Some features will ap,Jear significant,
many irrelevant. In fact, identification of situational features
should be done by a group knowledgeable about the real situation.
Once the significant features have been identified, they are
translated into a causal model. The model itself c'ntains a list
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of variables, and a list of relationships (or equations) specifying
the links of any type that are hypothesized to exist between the
variables. Obviously, a model is mathematical if the relationships
are expressed using the language of mathematics. However, the real
power of causal modeling lies not in the representation process,
but in what one can do with those representations. The statements
can be viewed as a set of premises from which other sets of
consequences can be deduced (predictions can be made). When a
model is constructed, it needs to be validated. Indeed, some form
of validation is usually carried out throughout the formulation.
In 1-7rticular, a model's validity rests on its ability to represent
the situation initially described. Although a model may have to
represent reality, it is not itself reality. Situations are
modeled for various purposes, foremost among which is the need to
predict new results or new features. Since the conditions to be
predicted are likely to exist at some future date, the predictions
themselves can be empirically validated.

A model is called causal if there are reasons to believe there
is a causal order which relates the variables in the model. In
particular, if for two variable X and Y, one can logically argue
that X might influence Y but Y does not influenc? X (conventionally
represented as X-4Y), then one can assert that "X is a possible
cause of Y," but not that "X is the cause of Y." A suggested
relationship alone does not prove causation. Causal claims must
rest on other, persuasive evidence about X and Y or on
appropriately controlled experiments. However, when experiments
are impossible, such as in a study of schools' response to
pressures for change, causal modeling allows researchers to develop
causal propositions supported by data and logic.

Finally, the variables in a causal model are typically
referred to in blocks as prior, independent, intervening,
dependent, and consequent. Those variables within a block are
called parallel. Thus for X--->Y, X is the independent variable and
Y is the dependent variable. Usually, if X is an independent
variable, it can be changed or manipulated. For example, in
mathematics classes, textbook content (X) can be changed to include
statistics. Y then would refer to the outcome one would expect
from such a change, such as student performance on a statistics
test. Prior variables occur before X; intervening between X and Y
and consequent, after Y. For example, the teacher's knowledge of
statistics would be a prior variable, the time allocated to
teaching statistics an intervening variable, and enrollment in a
later statistics course a consequent variable.

In the following sections of this paper, a causal model has
b_en developed for the "real situation"- -the anticipated changes in
the teaching and learning of mathematics in schools.
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Variables for a Model

Given the anticipated changes described earlier in this paper,
key variables which reflect those changes and their effects need to
be specified.

Dependent Variables

The typical expected outcomes of mathematics instruction are
that students will acquire some knowledge of mathematical concepts

and some proficiency with mathematical skills, will be able to use
that knowledge in problem situations, will develop favorable
attitudes toward mathematics and its social utility, and will
continue to enroll in mathematically related courses (or programs)
if appropriate and if options are available. These should be
considered as three dependent variables (knowledge, attitude and
application) and one consequent variable (further enrollment).
(See Figure 2.) However, simply specifying these four variables
for the causal model does not reflect the changed meaning of those
variables.

i

1

Dependent Variables Consequent Variable

Figure 2. Outcome variables for school mathematics.

In the past, paper-and-pencil tests (usually multiple choice),
where frequency of correct responses was calculated, have been used
to judge acquisition of knowledge. Note also that neither
attitudes, applications nor further enrollment have usually been
assessed and used as dependent variables.
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Knowledge. Different goals obviously imply different specific
outcomes; hence, there are different expectations of knowledge in a
causal model. Increasingly important are quantitative and spatial
reasoning; strategies used on problems; knowledge of the
relationships between concepts, or between concepts and procedures;
means of representing situations; and means of transforming
expressions. Unfortunately, many of these outcomes cannot be
assessed sirlply by counting the number of correct answers on a
multiple-choice test.

As a start to overcoming limitations of standard testing
procedures, an item framework is being developed to address three
problems: curricular relevance, item aggregation, and item
responses. Curricular relevance is important since the monitoring
scheme is to identify changes in achievement due to changes in the
curriculum. A content conceptual network scheme will be developed
where the content is judged to be curricularly relevant. Items
;from any source can then be matched to the scheme. This would
allow us to cross-val4date time trends using different data
sources. It will a' ,o serve as a useful guide for incorporating
new items and assessment techniques (e.g., from other NSF projects,
NAEP, and OERI research centers) into the monitoring scheme.

For analyses of items, not only correct response but also use
of strategies and errors must be coded. Item-level data are very
useful for dissemination purposes, so the public can have a
concrete sense of students' level of knowledge. The content
network scheme also can be used as a basis for item aggregation and
creation of scores for comparison purposes. item responses can be
aggregated by content category, strategies, errors and other
dimensions.

Attitudes Toward Mathematics. A second dependent variable
often stated as a goal of mathematics education is the development
of favorable student attitudes toward the subject and its utility.
At a superficial level, items on student attitudes toward
mathematical topics, mathematics teachers, mathematics or science
careers, and the usefulness of mathematics are often given. These
can be used as rough indicators of attitudes. For example, a
recent Canadian study on views of students in grade 7-10 on
mathematics, calculators, and computers indicated that most
students do not particularly like mathematics but consider it
important, and indicate they would take more mathematics courses
(McLean, 1982). One would hope that contemplated program change
would influence responses to such questions.

Application to Problems. The third category of outcome vari-
ables relates to the expectation that students will be able to use
the knowledge they acquire. It is assumed that the greater the
familiarity students have with the concepts and procedures of
mathematics, and cte richer the relevant relationships between and
among those concepts and procedures they have experienced, the more
readily they will be able to solve problems. However, knowledge
alone is not sufficient. One ulccelds in solving problems to the
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extent that one can construct mental models that represent the
relevant information in an appropriate fashion and use these mental
models with flexibility.

Simple word problems requiring students to use learned
concepts and skills are typically used to assess these outcomes.
Their utility has been well documented in the NAEP data, where
students demonstrated that they knew* basic arithmetic skills but
had difficulty using them to solve problems (Carpenter, Corbitt,
Kepner, Lindquist, & Reyes, 1981). However, the use of mathematics
with more complex problems (both in applications outside
mathematics and to other mathematics situations) requiring higher
order reasoning can only be assessed with any validity via
interviews or complexresponse schemes. This is of particular
concern, since it is assumed that a major emphasis of new
mathematics programs will be toward problem solving.

Specifying these dependent variables for the causal model
actually pose two problems for monitoring. The first is the need
to develop procedures to validly assess these outcomes, and the
second is to document the degree to which other commonly used

assessment procedures (standardized tests, NAEP, state assessments,
classroom tests, etc.) reflect the changes in goals. Content of
other assessments becomes one of the independent variables in the
causal model.

Consequent Variables

The final outcomes of school mathematics generally considered
include continued enrollment and completion of mathematically
related courses: choice of college majors; choice of careers; and
later career paths, including life income and job satisfaction.
Each is important to individual and societal goals and to the
development of human resources. Each, however, is mediated by many
variables other than those associated with schooling.

For purposes of the causal model, only course completion and
continued enrollment data are included. Increased enrollment in
higher mathematics courses, particularly oy minority students and
women, is an anticipated outcome of the proposed changes.

Independent Variables

Educational practice assumes that what occurs in schools when
students are taught mathematics leads to their acquisition of
knowledge and the development of favorable attitudes. Some
schooling activities can be deliberately varied (manipulated) by
actions of educational policymakers. These must be the independent
variables in the causal model.

Content. The changes in goals for school mathematics as
described earlier in this paper primarily involve changes in the
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mathematical content of school programs. These changes should be
reflected in changes in the curriculum. The curriculum can be
viewed at four levels: the ideal curriculum (what mathematics
educators would like to see taught); the intended curriculum (what
is recommended in state and local guidelines); the available
curriculum (what exists in texts); and the actual curriculum (what
is covered and emphasized in classrooms). In particular, new
programs (the available airriculum) should be more congruent with
the new goals (the ideal curriculum). For this causal model, five
variables will be used to reflect the anticipated changes in
content goals described earlier. These are guidelines, technology,
course requirements, texts, and tests (see Figure 3). Because of
the interdependence of these five variables, it is not clear
whether they should be considered separate variables or as a
composite variable.

Technology

Figure 3. Independent variables for changes in content goals
in school mathematics.

These five related variables should reflect the changes in
content goals in the following manner. First, state and local
guidelines (frameworks) which outline the general mathematical
content to be included in the total school curriculum (the intended
curriculum) should reflect the anticipated changes in the content
of Fchool mathematics and the time allocated to each topic in the
curriculum (the ideal curriculum). For example, in such
guidelines, one would expect less emphasis on procedural skills and
more on corceptual development; less on algorithmic drill and
practice and more on application and use of mathematics in open
situations; less arithmetic and more statistics and probability,
mathematical modeling, estimations and approximations.
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Second, changes in the use of technology in instruction will
involve a decrease in paper-and-pencil routines and an increase in
the use of calculators and computers as tools for simulation and
problem solving.

Third, both the new guidelines and technology should influence
the requirements and structure of courses for all students. While
one or two years of mathematics have been required of all students
for high school graduation, three years soon will :)e common.
Furthermore, the course structure will no longer involve eight
years of arithmetic followed by an algebra-geometry-advanced
algebra sequence. Instead, it is expected that most courses from
at least grade 4 will integrate several mathematical strands.

In turn, the changes in goals should be reflected in new tests
or assessment procedures, as discussed above. Finally, to a
considerable extent, many of the proposed changes in goals,
technology and courses will be reflected in the textbooks and other
instructional materials (e.g. manipulatives, software, etc.) being
used in the available curriculum. These materials should reflect
changes in mathematical strands and the segmenting and sequencing
of topics within strands. The strands will focus on conceptual
domains such as assigning numbers to objects and sets, additive
structures, multiplicative structures, representing problems
algebraically, exploring data sets, geometric transformations, etc.
These conceptual domains probably will be segmented into
instructional units to be taught in two or three weeks, the
units will be spirally sequenced. Furthermore, the dependence on a
printed book with each child having an identical copy for
instruction undoubtedly will change.

Teaching. Two variables have been chosen to reflect changes
in teaching in this causal model: increased teacher knowledge and
teacher professionalism (see Figure 4). Many teachers at both the
elementary and secondary levels undoubtedly have an inadequate or
somewhat outdated knowledge of mathematics. It is unreasonable to
expect that r.?achers who have little knowledge or preparation in
mathematics, or in the teaching and learning of mathematics will
perform adequately in classrooms. Yet we have little direct
information on the actual mathematics k-owledge base of most teach-
ers. Nevertheless, new pre-service training programs and
particularly inservice courses are being funded and developed and
soon will be implemented.

Increased Teacher
Knowledge

Teacher Professionalism

Figure 4. Independent variables for changes in teachers.
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One problem addressed in most commission reports is the
professional status of teachers. At present, teachers tend to be
isolated in their own classrooms, They have little opportunity to
share information with other staff members and little access to new
knowledge (Tye & Tye, 1984). Thus, the role of teachers in the
traditional classroom often is managerial or procedural in that
"their job is to assign lessons to their classes of students, start
and stop the lessons according to some schedule, explain the rules
and procedures of each lesson, judge the actions of the students
during the lesson, and maintain order and control throughout"
(Romberg, 1984b, p. 13).

In such situations, mathematics is too often taught without
care or reflection. The job of teaching is perceived to be
procedural or managerial, and not adaptive. Too many teachers feel
obligated to cover the book. They may adapt instruction so they
can better manage the diverse group of students in their class, or
so their students will earn higher test scores. Too few teachers
see student learning of mathematical methods and their use in
solving problems as the primary goal of instruction.

To meet these and related problems of providing adequate
instruction in schools where the teaching force is inadequately
prepared, a variety of proposals have been developed. One
recommendation is that elementary schools adopt a differential
staffing pattern so that mathematics instruction is carried out or
directed by adequately prepared, capable teachers. This involves
creating new specialist teachers of mathematics, who would teach or
supervise all mathematics instruction (see Romberg, 1984a).
Another proposal is to organize support networks (as suggested by
Conference Board of the Mathematical Sciences, 1984) which would
link teachers with their colleagues at every level and provide
ready access to information about all aspects of school
mathematics.

Policy environment. To complete our examination of
independent variables, it is necessary to add another. From the
information gathered about initiatives, one should be able to keep
track of changes in the policy environment. For example, changes
in state requirements for licensing of teachers, level of
proficiency in mathematics required to teach in schools, standards
for graduation, and so on should be tracked to provide insight
about this impact. In fact, even the notions about what is
fundamental for all (or some) students will vary with communities.

Finally, one category of recommended change, methods of
instruction, will not be treated as an independent variable in this
model. This separates those actions that actually occur in
classrooms from those that persons other than teachers can
initiate. Variables associated with these changes will be included
as intervening variables.
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Intervening Variables

Conceptually, this category of variables is very important.
Intervening variables occur between the independent variables and
the dependent variables. They are not directly manipulable by
policymakers, but they significantly affect outcomes. For purposes
of this causal model three variables (pedagogical decisions,
classroom events and pupil pursuits) have been identified (see
Figure 5).

Figure 5. Intervening variables for school mathematics.

Pedagogical Decisions. This variable refers to the decisions
teachers make in order to carry out instruction. Such desicions
include: time allocated to mathematical activities, the adaptation
of intended activities, and the emphasis given to any lesson. This
variable should be considered either as the last step in defining
this intended curriculum for it reflects the teacher's
instructional intent, or the first step in describing the actual
curriculum. For example, the average amount of time spent at the
elementary level on mathematical topics each week can be reliably
estimated from time logs filled out by teachers. This measure
could serve as an indicator of length of exposure to pertinent
content. Values can be compared for different years. gence, if
proposed curricular changes actually occur, we would expect a
steady decrease in time allocated to computational skills and an
increase in time allocated to statistics. However, the variable of
allocated time by itself is not sufficient. It has been shown that
teachers frequently adapt or change lessons. Sometimes such
changes are made to increase learning or to provide for individual
differences. Hout.:/er, too frequently adaptations are made for
managerial reasons, or because teachers fail to see the
si,nificance of an activity (Stephens, 1983). Such adaptations
reflect a teacher's intent. On the other hand, several researchers
(Bishop, 1985; Brousseau, 1984; Donovan, 1983) have found that
teachers vary in the ways they demonstrate the importance of
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various lessons through explicit or implicit actions. Such actions
-reflect the actual curriculum as experienced by students.

Classroom events. Teacher behaviors during instruction and
other aspects of the classroom environment undoubtedly influence
student achievement. Such discrete variables as the structuring of
lessons, asking questions, and grouping are important (Waxman &
Walberg, 1982). Unfortunately, they can only be documented with
certainty in small studies through extensive observations. It may
be possible to document more general instructional strategies such
as "active or direct imstruction." Finally, teachers may take a
number of actions, such as structuring lessons, which have been
shown to substantially improve achievement (Good, Grouws, &
Ebmeier, 1983).

Punil pursuits. As with classroom events, there are several
things students do in classrooms that have been shown 1-^ be related
to achievement. For example, time students are engaged in
learning, time spent on homework, strategies used in working
assignments, perception of the importance of an assignment or
lesson, and degree of peer interaction on assignments have all been
shown to be important.

In summary, these classroom variables--pedagogical decisions,
classroom events, and pupil pursuits--seem reasonable for this
model.

Prior Variables

The teaching and learning of mathematics does not occur in a
vacuum. The background and prior knowledge of students and
teachers influence instruction. The social context or culture in
that the school operates and which supports or hinders change is
critical. For this model, we have identified three prior variables
that influence the independent variables in the causal model:
pupil background, teacher background, and social context.

Pupil background. Survey techniques can be used to gather
data on fixed characteristics to classify students in terms of
gender, age, socioeconomic status, ethnic heritage, etc. Such
classification is important to determine whether, for example, more
girls are enrolling in mathematics classes or Hispanic children's
performance is improving. For pupils' prior knowledge, previous
outcome data can be used as a base for the study of growth. In
particular, given the detailed inforw:tion about outcomes in this
monitoring scheme, we -an examine the actual effects of prior
knowledge on new learning in mathematics.

Teacher background. As for pupils, data on several fixed
characteristics can be readily gatherer from surveys. In
?articular, such additional data as mathematics preparation, years
of teaching experience, or familiarity with computers can be
gathered.
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Social context. Schools operate within a cultural or social
context. Features such as the demographic location of the school,
average socioeconomic status of the students, and the percentage of
limited-English-speaking students can be easily determined. The
average wealth of districts, and the tradition and contribution of
the states to schooling can also be assessed.

In summary, the prior background variables of pupils,
teachers, and community can be used to classify the population in
order to contrast degree and types of change in mathematics
instruction.

A Model for Monitoring

The complete causal model proposed for this School Mathematics
Monitoring Project is shown in Figure 6. It contains the variables
identified in the past sections and the hypothesized causal
relationships between variables.

This model provides the basis for gathering and interpreting
information about mathematics instruction and anticipated changes
in school mathematics during the next decade. It demonstrates the
belief that mathematics teaching is complex and that changes cannot
be simplistically studied. If appropriate indices can be developed
to capture the variability associated with each variable, then
useful information should be available for policymakers, school
personnel, and researchers.

Indices, Indicators, and Implications

The causal model illustrated in Figure 6 is proposed as the
basic framework for the monitoring system being developed.
However, it should be made clear that, as pictured, it is a static
model. It can only be used to investigate the relationships
between variables at a particular point in time, with a sample from
partirular populations. Furthermore, the unit of analysis must be
class (or, more likely, school), and the causal links between
variables refer to "averages" or "tendencies," since exceptions are
to be expected. In fact, some of the exceptions (schools where
relationships differ) are likely to be of interest, for it is
possibly in thcse schools that real change is taking place.

Since the purpose of monitoring is to capture the dynamic
aspect of change in school mathematics, it will be particularly

important to investigate the relationships indicated in the model
at several points in time. Thus, changes in independent or
intervening variables over time should be related to the changes in
dependent measures. From the analyses of such changes, a dynamic
causal model based on the static model should be possible.

Indices. To use the causal model shown in Figure 6 for
analytic purposes, one or more indices (measures) must be created
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Figure 6. A causal model for the monitoring of school mathematics.
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for each variable. The purpose of each index would be to capture
the variability across classes (or schools) with respect to the
variable. For example, to measure content, several indices (such
as an index of content relevance, an index of content, coverage, and

an index of correspondence with assessment of knowledge) need to be
developed. Content relevance includes balance between the learning
of concepts, skills, and applications; emphasis given to specific
topics; adherence to the logic of the discipline; incorporation of
research-based knowledge about learning and teaching; and
relationship to proposed content changes. Such an index would be

important development, since the ,Trent practice of accepting
similar text titles as representing exposure to similar material is
totally inadequate. Anotl.er example could involve using teacher
logs to determine which aspects of the available curriculum are
actually taught and emphasized. Another index should be created to
assess the degree of correspondence between the instructional
content of a text and the test items used to mea,,ure knowledge.
From such indices, an overall content index should be possible.

We see as the major task of the next few years the development
and validation of indices for the variables in the model.

Indicators. As described, an index is only a measure of a
variable. As a thermometer only gives a measure of body
temperature, a comparison of that measure with a standard (e.g.,
98.6°F for normal body temperature), a prior measure, or a
different measure, is needed to determine health. Indicators are
new indices created from a prior index by making such ratios or
comparisons.

Implications. This monitoring project is designed to evaluate
the progress of school mathematics. This assumes that:

1. The schools of America will respond to the crisis in
school mathematics.

2. New courses, new instructional materials (texts. tests,
computer software, etc.), new instructional strategies,
and new training programs for teachers are being or soon
will be developed and implemented.

3. New course requirements; new entrance and exit
requirements for special courses, high school graduation,
and college; and new requirements for teachers of
mathematics are being initiated by local and state
agencies throughout the nation.

If these assumptions are correct, this causal model can be used as
a basic framework to gather information about national, state, and
local efforts to change school mathematics. 7urnermore, it is
assumed that data either are available or can be collected over
time. Having sucn data would be useful to the Foundation, other
federal government agencies, state education agencies, local school
districts, and researchers to evaluate efforts to improve practice,
to formulate plans, and to identify effective school programs.
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CHAPTER 4

COMMENTS ON A PLAN TO MONITOR SCHOOL MATHEMATICS:
REACTIONS TO CHAPTERS 1-3

George M. A. Stanic

'omberg and Smith's idea of developing "a system for
monitoring the health and progress of school mathematics in the
United States" (p. 3) is excellent. In the first three chapters of
this monograph, the authors have presented a plan for the
monitoring system that matches the quality of the idea. In a time
of simple solutions to complex questions, Romberg, Smith, and
Zarinnia confront and deal with the complexity of trying to monitor
school mathematics in the United States. This analysis of the
chapters is based on the hope that the monitoring system will be
fully implemented and will fulfill its great potential.

A Persuasive and Problematic View of the World

The new world view presented by Zarinnia and Romberg in
chapter 2 is comprehensive and convincing. The broad conception of
the social, economic, and educational contexts for change makes
this work stand out from the many recent commentaries on AmerLen
and its system education. The previous reports of this decade
have certainly included discussions of what the future might hold,
but the future they present is in no way as clear as that described
by Zarinnia and Romberg. Moreover, the authors of previous reports
seem to have based many of their recommendations for school
mathematics as much on a romantic view of the past as on a view of
the future (Stanic, 1984a). Zarinnia and Romberg express no such
romantic view of the past; indeed, they see the need to break away
from past ways of looking at the world and school mathematics as
the main problem to be overcome. By linking discussions on the
Information Age with research on learning and intelligence, the
authors make their suggestions for change in school mathematics
seem not only reasonable but essential. And by recognizing that
computers represent both a solution to and a source of problems,
Zarinnia and Romberg highlight the need to clearly understand why
we arc doing what we are doing during the change process. They
vu-ride us with a helpful way to t' ink about necessary change in
mathematics programs through the distinction made between knowledge
and the record of knowledge, between knowing and kuowing about
(Romberg, 1983). The purpose of mathematics instruction should be,
according to Zarinnia and Romberg, to have children come to know
mathematics by doing mathematics, by c7eating their own
mathematical know edge. Based on this view of the learner as the
central actor in the processes of schooli 3 and education, Zarinnia
and ..omberg reconstruct the roles of student and teache,: and point
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to the causal model described more fully by Romberg in Chapter 3 of
the monograph.

Although the work by Zarinnia and Romberg is clearly different
in many important ways from other recent reports on American
education, it is like these reports in that schooling'and education
are tied directly to the needs of the economy. At a general level,
apart from the difficulty of predicting our economic future, this
focus on the economy is a concern because we may not want to limit
our justification for what is done in schools to the needs of the
economy. Fortunately, Zarinnia and Romberg do not entirely limit
their argument in this way, although our economic future is a
significant aspect of their new world view. At a more specific
level, there are elements of their analysis that should be looked
at more closely. For example, referring to Naisbitt (1982), they
claim that "the United States and other advanced societies of the
West are losing their industrial supremacy. Mass production is
more cheaply accomplished in the less developed par'...s of the world"
(Zarinnia & Romberg, 1986, p. 22). Because industrialists in
so-called advanced societies are taking advantage of cheap labor in
less-developed parts of the world, we need to clarify what this
shift means in terms of industrial supremacy.

The language of supremacy used to describe the economic future
is itself a bit troubling. Consider the following passage from
Zarimlia and Romberg:

The future of the advanced industrial countries, in the lead,
is to serve as financial headquarters and research and
development centers for a global economy. Such international
specialization requires sophisticated communications and the
capability ca. maintaining peace, whether for the free flow of
goods through the world's waterways or for the safe conduct of
business. It is a potentially precarious position since it
depends on scientific, technological, and fiscal supremacy.
(pp. 23-24)

As a result, say Zarinnia and Romberg, "both the pursuit of
knowledge and innovation . . . are crucial to leadership of the
world economy" (p. 24). Although the importance of the pursuit of
knowledge and innovation cannot be disputed, if we really are
becoming a global community, with a global economy, we need to ask
whether the concept of community is compatible with the concept of
scientific, technological, and fiscal supremacy for the United
States. To the extent that Zarinnia and Romberg advocate this view
of the United States as supreme, they would appear to fit into the
mainstream view in our country. And to the extent that they base
their recommendations for schools on the need for America to
maintain supremacy, they clearly fit into the mainstream of reports
on education in this decade.

In part because chapter 2 is so persuasive, it is also
problematic. It makes a future that human beings must struggle for
and create sound like an inevitable future which must be accepted
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and to which we must respond. The value positions embedded in
Zarinnia and Romberg's new world view are almost masked by the
overpowering argument that the Information Age is here and that
future tlends dictate the necessary directions for school
mathematics. The authors do reveal their values in the discussion;
however, because the changes in our society and the concomitant
changes in school mathematics are presented as though there were no
reasonable alternatives, the values which underlie the changes are
not really open to question.

In the end,. what we are presented with is much more than a
monitoring system. Despite the fa-t that Romberg eta' Smith claim
in chapter 1 that national commissions will describe what it means
to have a healthy school mathematics program, the authors of the
first three chapters have, in effect, defined what it means to be
in good health, and the system they have proposed provides a
mechanism to guide the progress of school mathematics rather than
simply to monitor such progress.

In chapter 1, Romberg and Smith claim that "we are in an era
of radical social and economic change that must be reflected in the
programs of our schools" (p. 4). Romberg makes it clear in chapter
3 that he believes present school mathematics programs are not
adequately nreparing students for the 21st century. Now, there is
nothing wrong with trying to determine what the future will look
like and suggesting that changes in our society call for changes in
its schools. Putting aside for a moment the rich tradition which
suggests that we may not want to view schooling and education as
preparation for adulthood (see, e.g., Kiiebard, 1975), let us
assume that it is reasonable to ask schools to prepare people for
the future. The problem that remains is that we may not all agree
on what the future will look like or, more importantly, what we
want the future to look like. Furthermore, it is not clear that a
particular future dictates the need for a particular and unique
school program.

A Link with Goals of the Past

The basic goals for school mathematics espoused by the authors
of the first three chapters are not r2w. In chapter 2, referring
to the work of Shane and Tabler (1981), Zarinnia and Romberg
present "immediate necessities for the schools" (p. 25). Among the
necessities are that "students must be educated for survival in an
atmosphere of change," that "the content and structure of the
curriculum should not indoctrinate students with pest values and
rigidity," and That "most of all, students need a sense of
consequence" (p. z5). There is a strong tradition in the history
of education which is based on such goals. For example, early in
the 20th century, John Dewey, among others, argued articulately for
goals much like these. In additicn, although we would not want to
claim that what Zarinnia and Rombe,g are suggesting is simply
discovery learning revisited--and, indeed, they tell us that "this
is not the same as the kind of discovery learning that plans for
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the acquisition of particular knowledge through discovery rather
than exposition" (p. 44)--there is clearly a link between their
suggestions for how children should learn mathematics and the
discoverylearning tradition.

Zarinnia and Romberg succinctly state the essence of their
view when they claim that "society now needs people who are
creative and innovative" (p. 36). Although they express a clear
view of the future, it is not clear that their fundamental goals
for education are new or that society has a greater need for
creative and innovative people today than it has had in the past.
We have always needed children and adults who can think creatively
and solve important problems. The 21st century will present new
and difficult problems, but only an ahistcrical position could be
used to justify the claim that our present and future problems will
be so difficult and so unique that there is now and will be a
greater need for creative problem solvers.

Many of the reasons given for this increasing need for
creative and innovative pecple focus on the impact of the computer
on peoples' lives and jobs. Many claim, say Zarinnia and Romberg,
"that everyone either is or soon will be involved with them" (p.
21). They agree that "popular perception of the importance of
computers is appropriate, for computers and their applications are
inextricably intertwined in the development of the Information Age"
(p. 31). Although Zarinnia and Romberg discuss much more about the
computer than simply its impact on the economy, the work of Levin
and Rumberger (1983) on the implicatio, 'f high technology should
make us think further about this issue, especially as it relates to
the need for more creative and innovative people.

Levin and Rumberger (1983) discussed the assumptions that, in
the future, opportunities for the unskilled will be reduced or even
eliminated and that skill requirements of existing jobs will
increase. Based on Department of Labor projections, Levin and
Rumberger argued convincingly that "the expansion of the lowest
skill jobs in the American economy will vastly outstrip the grcwth
of high technology ones" and that "the proliferation of high
technology industries and their products is more likely to reduce
the skill requirements for jobs in the U.S. economy than to upgrade
them" (p. 2). Unlike Zarinnia and Romberg, whose discussion takes
us into the needs of the 21st century, Levin and Rumberger's
discussion focuses on the relatively near future in this century.
Certainly, we would expect things to change in the 21st century.
But at least for the near future, it is not clear that the economy
dictates a greater need for creative and innovative neop].e than we
have had in the past.

The point is not that the goals espoused in the first three
chapters of this monograph are inappropriate. The point is that
what the future will be is not a given and that a particular future
does not necessarily dictate the need for a particular school
program. In a sense, the authors could have argued for their goals
as worthwhile in any era and for any future. That is, we may want
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people to be creative and innovative regardless of their jobs and
their possible futures. The content of the mathematics curriculum
may be relevant to a particular future, and Romberg argues
ariculately in chapter 3 for what that content might be. However,
tie overall goal of developing creative and innovative people is
not dependent on a particular view of the future. The question is
why, if there has been a persistent tradition based on goals much
like those espoused by the authors of these chapters, there has
been an equally persistent perception that the goals have not been
accomplished.

The Need to Deal with the Lack of Consensus

Zarinnia and Romberg (1986) claim that "for at least the last
25 years . . . , those responsible for mathematical education have
attempted to reshape and improve the school mathematics curriculum"
(p. 37). In fact, the attempt to reshape and improve the school
mathematics curriculum is a continuing process, going at least as
far back as the turn of the 20th century, when the work of David
Eugene Smith at Teachers College, Columbia University, and Jacob
William Albert Young at the University of Chicago helped establish
the field of mathematics education as a legitimate professional
field of study at colleges and universities (Jones, 1970; Stanic,
1984b, 1986). Mathematics educators have never completely agreed
on what the form and content of the mathematics curriculum should
look like. Furthermore, the mathematics curriculum has never fully
embodied the views of mathematics educators because their views
have at times been in conflict with the views of people outside of
mathematics education (Stanic, 19861), 1986). There is no reason to
assume that a consensus that we have never had before on goals for
mathematics education should appear now.

This claim of lack of consensus does not depend exclusively on
the evidence we have received in almost every recent issue of The
Mathematics Teacher as John Saxon advertises his textbooks and his
feud with the National Council of Teachers of Mathematics. The
authors of the recent general reports on the state of education in
our -ountry also do not agree with each other or with mathematics
educators on what needs to be done (Stanic, 1984a). Just one
example of this lack of agreement in the reports can be seen in
what the authors of A Nation at Risk (USDE, 1983) and Action for
Excellence (ECS, 1983) have to say abcut minimum competency
testing. In A Nation at Risk, we are told that "'minimum
competency' examinations (now required in 37 states) fall short of
what is needed, as the 'minimum' tends to become the 'maximum,'
thus lowering educational standards for all" (USDE, 1983, p. 20).
On the other hand, the authors of Action for Excellence tell us
that the fact that 'thirty-seven states now have some form of
competency testing or assessment of student achievement to measure
educational effectiveness" (ECS, 1983, p. 46) is a "hopeful sign."

Another example of the fact that even though many people
be.Aeve there is something wrong with our schools, not everyone
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agrees about what to do, can be seen in the race Zor state
supc:intendent of schools in Georgia. One of the candidates is
running on the platform of getting "modern math" out of schools and
making all children memorize the "multiplication tables." The
candidate is not favored to win the election, but he has served as
a local school system superintendent in Georgia, has collected
campaign contributions, and reflects the sorts of obstacles
standing in the way of implementing the goals called for in this
monograph. We need to recognize that there is no consensus on
goals for schooling in general or for school mathematics in
particular.

This lack of consensus is not something we should be dismayed
about because, unlike what the future might bring, a lack of
consensus about the purposes of schooling and the form and content
of the school curriculum is inevitable. Even though it would be
hard to find someone who does not believe that society needs people
who are creative and innovative, there is not agreement on how that
view should be translated into a school program. Most mathematics
educators, including teachers, would probably agree that we should
develop the problem solving ability of students, but not all would
agree about the extent to which "technology has freed us from the
cumbersome calculation routines of arithmetic, algebra, statistics,
and calcultis" (p. 64) or about what prc,blem solving means. For
some, whatever problem solving is, it should be taught after
children learn how to add, subtract, multiply, and divide whole
numbers, fractions, and decimals. For others, including Romberg,
Smith, and Zarinnia, finding solutions to nonroutine problems
should be a central element in mathematics i.tstruction from the
beginning.

At a broader level, this inevitable lack of consensus can be
seen in the existence of conflicting curriculum interest groups
during the 20th century (Kliebard, 1981, 1986; Stanic, 1984b,
1986). According to Kliebard (1981, 1986), the American school
curriculum represents an untidy compromise among competing interest
groups with different visions of what knowledge is of most worth
and of the purposes of schooling. Zarinnia and Romberg recognize
the powerful influence of one of the interest groups in their
discussion of the production metaphor. They convincingly argue
that this metaphor has had problematic consequences for school
mathematics. Ale..ough Zarinnia and Romberg present their new world
view as a response to this limited way of looking at the world and
mathematics education, the metaphor is so powerful that even they
do not entirely escape it. Consider the following description they
provide ui the Information Age:

Information is the new capita] and the new raw material. The
abil_ty to communicate is the new means of production; the
communications network provides the relations of production.
Industrial raw materials are valuable only if they can be
combined-to form a desirable product; the same is true of
information. (p. 22)
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Even speaking, as Zarinnia and Romberg do, of what teachers and
students do as work (as opposed to, say, play or artistic endeavor)
is related to the production metaphor, through which schools are
viewed as places where work goes on.

Despite the fact that Zarinnia and Romberg do not entirely
escape the production metaphor, they do clearly point us in a
different direction when they speak of schools as places where
children should create knowledge. Yet even here there is some
contradiction when we compare this position with what Romberg and
Smith say in chapter 1 about the purpose of schools. According to
them,

schools, as we know them, are social institutions whose
primary purpose is to transmit specific knowledge and skills
to our young and introduce them to our social system. If the
social system is changing, then both the knowledge and skills
our children need and the social institutions that deliver
that knowledge will have to change. (p. 5)

Apart from pointing to issues such as the extent to which schools
do or should mirror society and whether the social system is ever
in a period when it is not changing, this passage highlights the
contradiction between viewing schools as places where knowledge is
transmitted and delivered and viewing them as places there
knowledge is created. In the end, however, even though there are
contradictions and inconsistencies, the main message across all
three chapters is that the tradition based on the production
metaphor must be challenged.

As the earlier discussion on goals from the past indicates,
Zarinnia and Romberg's challenge of the production metaphor does
not rep .esent a break with previous tradition as much as it
represents the advocacy of a different, competing tradition which
has not had as much influence on school mathematics as has the
tradition based on the production metaphor. The lack of consensus
about the goals for school mathematics is embodied in the competing
metaphors, or competing interest groups, that exist. Zarinnia and
Romberg, relying on the work of Romberg and Price (1983), recognize
the difficulty of changing the views people have come to accept:

Even when there is intent to change, if mental models remain
the same, real change may not be effected, despite the
illusion of change created by the trappings. Old beliefs and
habits will persist and nominal, rather than real, change in
the curriculum probably will continue. (p. 38)

Their answer to the problem is the "recognition Lnd removal of
structural and intellectual impediments [to change] through careful
consideration of the possible, probable, and desirable attributes
of the new age, the self-conscious formulation of new models
through abstraction rather than experience" (p. 39). In effect,
the answer lies, for Zarinnia and Romberg, in the careful
presentation and application of their new world view.
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Beyond the New World View

Zarinnia and Romberg have approached the problem they identify
in a reasonable and well reasoned way. Their basic assumption is
that the world is changing, and our schools are not adequately
reflecting the change. The problem they identify is a tradition
which looks at the world and schools through the eyes of the
production metaphor. Their resolution of the problem is to present
a new world view so compelling that people will reject the
production metaphor, accept the new world view, and implement a new
and very different school mathematics program.

Zarinnia and Romberg's efforts must be judged as successful in
many respects. Although it is problematic to do so, they had no
choice but to portray their new world view as though it represented
an inevitable future. In effect, it was their purpose to present
the future in this way. They reasoned that, if people are going to
give up and change their beliefs, need such a powerful new
view. Yet it is exactly for thiq eason that problems remain. In
short, a new world view is not enough. The teacher who still
thinks long division with three -digit divisors is important for
children to perform needs more than a description of what the 21st
century might be like to change this view of mathematics education.
The problem is that we still do not know enough about what the
alternative program should look like. "Freedom from cumbersome
calculations" is a slogan in danger of becoming a cliche.

To their credit, Zarinnia and Romberg focus half of chapter 2
on the impact of their new world view on school mathematics. To
say that the new world view is not enough is not to claim that
Zarinnia and Romberg should have given us more in chapter 2. It

is, in effect, the ongoing task of all mathematics educators who
believe in the goals for school mathematics argued for in this
monograph to design school programs .nat reflect these goals.
Furthermore, it is our crucial responsibility to involve classroom
teachers in this process. Even though Zarinnia and Romberg have
outlined new roles for teachers and students, classroom teachers
rightfully ask for more explanation of what the goal that students
be creative and innovative people says about day-to-day life in
classrooms. The first three cl-apters of this monograph may have
defined what it means for schoo' mathematics to be in good health,
but we do not yet know enough about how to get healthy.

At least part of our problem in the field of mathematics
education is not thinking enough about why we should teach
mathematic: to anyone. The assumption in this monograph (and the
assumption held by most people) is that we teach it because it is
useful. People look to schools to prepare their children for the
"real world," for the future, for satisfying careers. Mathematics
obviously is useful for these purposes, but we need to clarify what
is meant by useful. Do we mean that the content itself is useful?
Do we mean that the creativity and problem solving abilities we
hope to develop are useful apart from the content? Is mathematics
useful regardless of what a person's job might be in the 21st
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century? How are we to decide who should learn how much
mathematics?

We also need to consider the extent to which the justification
fcr teaching mathematics is related to the reasons for including
other areas in the school curriculum. What, for instance, does the
new world view say about the teaching of literature, art, or
history? Do the reasons for including mathematics in the school
curriculum relate at all to the reasons for including these other
areas? It is only as we carefully consider our justification for
teaching mathematics to students that we can begin to construct an
alternative program that is rich enough to lead people, especially
t-,achers, to give up the tradition they have come to accept.

Conclusion

The firat three chapters of this monograph deserve more than
the limited response preserved here. In particular, the causal
model, which is described uy Romberg in chapter 3, calls for
continuing analysis. The model is excellent in terms of both what
it represents and what it suggests. Although no model can capture
the full complexity of the world (Lave & March, 1975), through the
variables and relationships identified, Romberg has captured a
great dal of the complexity that characterizes school mathematics.
Not only does the model fairly represent the various factors
involved in school mathematics; it extends our understanding, by
suggesting areas for further analysis and research. Because w. can
make interesting predictions based on the modr.7, Lave and March
(1975) would refer to it as being fertile. From Lomberg's
description of his model, we learn not only about school
mathematics; we also learn about the purposes of causal modeling
itself, as he describes the prior, independent, intervening,

dependent, and consequent variables in his model and the
relationships among them.

One example of the need for continuing analysis comes frtm
Romberg's discussion of intervening variables in the model. He
includes, as intervening variables, planning, cic.sroom events, and
pupil pursuits. Classroom events encompass "teacher behaviors
during instruction and other aspects of the classroom environment
[which] undoubtedly influence student achievement' (p. '4). As an
example of what is being referred to here, Romberg mentions the
work of Good, Grouws, and Ebmeier (1983) on active mathematics
teaching and claims that this work shows how lessons may be
structured to substantially improve achievement. Although it is
clear that the excellent r search done by Good, Grouws, and Ebmeier
provides us with a way to think about structilring mathematics
lessons, we need to ask whether this manner of structuring lessons
will develop the creative problem solvers Romberg wants mathematics
students to become. That is, the achievement that was
substantially improved during th. experiments described by Good,
Grouws, and Ebmeier did not reflect the kinds of ne. outcomes
Romberg seems to be calling for; instead, their research focused
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only on outcomes of mathematics programs that are measured by
standardized achievement tests. Grouws and Good are now in the
process of trying to identify teaching behavior that enhances the
ability of secondary students to solve problems (NCTM, 1986) It

may be that the results of this work will be more helpful in
achieving the goals described in this monograph than the results of
the earlier research. It may also be true that the results of the
earlier research will be quite compatible with what Grouws and Good
find in their research on problem solving.

Although it challenges our common sense to suggest that the
way we learn certain skills may be incompatible with the goal of
helping students become creative problem solvers, there is some
reason for concern. Based on his evaluations of the Follow Through
program, Richard Snow (1984) concluded that a limited focus on
skills through direct instruction "may improve skills in reading
and math at the expense of other skill developments that may be
crucial for later reasoning and problem-solving ability" (p. 13).
The powerful active mathematics teaching model developed by Good,
Grouws, and Ebmeier is not a simple example of the direct
instruction described by Snow. However, Snow's conclusion should
make us ask how the means and ends cf mathematics instruction are
linked with each other.

The purpose of bringing up this example is twofold. First, it

point.: to the need to consider whether the measures of health and
progress included in the monitoring system are compatible with the
new goals for school mathematics described in this monograph.
Second, by describing how his goals for school mathematics fit with
the sorts of activities that took place in the classrooms studied
by Good, Grouws, and Ebmeier, Romberg has an opportunity to further
clarify his goals, how we are to achieve them, and the extent to
which they are compatible with the present goals of mathematics
instruction.

This sort of ongoing analysis of individual variables could
also be extended to the relationships posited in the causal model.
Although the figure summarizing the entire model includes only
one-way relationships, there are at least some points where the
relationship between variables, in addition to knowledge and
attitudes, would appear to be reciprocal. A reciprocal
relationship makes sense especially in the connection between
knowledge and attitudes (Reyes & Stanic, in press); for similar
reasons, one would expect a reciprocal relationship between
application and attitudes, which is posited as being one-way from
attitudes to application in the model. The relationship between
pupil pursuits and attitudes also would appear to be a reciprocal
one. According to the model, pupil pursuits have a direct effect
on student attitudes, but it is hard to imagine that the attitudes
of students do not also have a direct effect on their pursuits in
the classroom. Another reciprocal relationship would seem tc exist
between knowledge and application. In the model, the arrow goes
from knowledge to application; yet in the process of using or
applying the knowledge they create, student:, could and would create
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still more knowledge, implying a reciprocal relationship. The
point is that, since causal modeling can take into account
reciprocal relationships (Duncan, 1975), it would be beneficial to
give further consideration to the relationships posited in this
model. It is a clear strength of the model that it makes us think
about relationships between and among important variables in school
mathematics.

Beyond the need for the ongoing analysis of the causal model,
it will be important, as the monitoring system is implemented, to
look for unintended consequences of implementing such a system.
For example, although no mention is made of the possibility in
these three chapters, such a powerful system for monitoring and
guiding school mathematics across the United States might have the
unintended consequence of standardizing the American mathematics
curriculum. Of course, for some people, this consequence may not
be a concern, especially if the curriculum really can be
standardized in the directions suggested by Romberg, Smith, and
Zarinnia. If, however, we view the development of school
mathematics as an ongoing process, if we view innovation and
experimentation as good things, if we want future teachers to have
more responsibility over fundamental aspects of their work such as
making reasoned decisions about what and how to teach, then
standardization will be a problematic consequence of implementing
the monitoring system. Regardless of how one feels about the
possibility of standardization, looking for unintended consequences
of implementing the monitoring system is a crucial task.

It is a credit to Zarinnia and Romberg that the evidence
presented in chapter 2 is so convincing that it makes the possible
seem inevitable. They do not hide their value positions as much as
they overwhelm us with the idea that we have little choice about
the directions in which school mathematics must move if we are to
survive and thrive in the future. If we agree that school
mathematics programs should move in the directions so clearly
outlined by the authors of the first three chapters, it is easy to
be swept away by the vision Tor the future presented. But if,
especially in terms of school mathematics, we want the possible
future to become the actual future, we need to recognize that the
active creation, construction, and reconstruction of knowledge we
expect of our students must be matched by our own active creation,
construction, and reconstruction of school mathematics prcgrams.
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CHAPTER 5

A CONCEPTUAL INDICATOR MODEL OF CHANGES IN SCHOOL MATHEMATICS

Richard J. Shavelson, Jeannie Oakes, and Neil Carey

In chapter 3, Romberg argues that the development of a valid
indicator system for monitoring changes in mathematics education
rests on some notion of what the important components of schooling
are and their interrelations. The paper goes on to assert that
such a model should be a causal model, one that demonstrates "a
causal order that relates the variables in the model."

We agree that an indicator system for monitoring mathematics
education should be firmly grounded in a model of the education
system (Hall, Jaeger, Kearney, & Wiley, 1985; Raizen & Jones, 1985;
Shavelson, Oakes, & Carey, 1986; Shavelson, forthccming). The
major contributions of the Romberg paper lie in its enumeration of
the directions for change to be monitored in mathematics education
and in its definition of some of the components that should be
included in a monitoring system. The requirement that the model
specify causal relations, however, is misleading on methodological,
historical, and policy grounds.

The purposes of this paper are first, to show why the notion
of a causal indicator model of change in mathematics education is
misleading and, second, to evaluate the specification of model
components against alternative specifications for national
indicator systems for monitoring the "health of education." We
conclude that (a) if the notion of a causal model is replaced by
the notion of a conceptual or logical model of change, we are no
longer in disagreement; (b) an important criterion for including
components has been omitted in Romberg's analysis that, if
included, would lead to a more complete specification of his model;
and (c) by comparing Romberg's proposed indicator model with
others, a more complete specification of the mathematics indicator
model can be attained.

Causal Models and Education Systems

To infer causality from nonexperimentai data requires a very
strong theory of the causal relations among components of the
nation's education system, a theory we do not now possess and one
we are unlikely to achieve because of the heterogeneous nature of
American education that results from our philosophy of local
control of schools. Indeed, one of the most important lessons
learned from past attempts to develop social indicator systems
underscores the difficulty in arriving at causal inferences from an
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indicator system of the breadth of coverage required to monitor the
"health of society" (Shavelson, forthcoming). Consequently, causal
claims for a national indicator system grossly mislead the policy
community about what it is possible to achieve with a monitoring
system and about the strength of the information on which their
policy deliberations will be based.

Methodological Considerations

Causal claims from nonexperimental research must, of
necessity, rest on strong theoretical grounds to rule out plausible
counterinterpretations to the proposed causal interpretation. A
strong theory, one that is logically consistent and empirically
justifiable, specifies the components of a causal system and their
causal ordering, as Romberg points out. In the absence of strong
theory, we run the risk of inaccurately specifying the causal model
by omitting components that are required to rule out
counterinterpretations or by incorrectly specifying the existence
and/or direction of causality. The consequence of weak theory is
that we may erroneously infer causal relations where they do not
exist or where the causal flow is in the opposite direction.

To be sure, by the careful design of correlational studies,
especially by including longitudinal data and admitting to
reciprocal causal relations, some of the plausible
counterinterpretations can be ruled out (but see Ellett & Ericsson,
1986, on backward causality). Romberg stated that "one can assert
that 'X is a possible cause of Y' but not that 'X is the cause of
Y.' A suggested relationship alone does not prove causation [sic.;
causality cannot be proved inferentially]. Causal claims must rest
on other, persuasive evidence about X and Y or on appropriately
controlled experiments. However, when experiments are impossible,
such as in a study of schools' response to pressures for change,
causal modeling allows researchers to develop causal propositions
supported by data and logic" (p. 66).

However, we do not have an adequate theory of the nation's
education system on which to base causal interpretations.
Moreover, a national monitoring system, of necessity, must cast
such a wide net to reflect the "health" of mathematics education
that it cannot possibly include in its specification the level of
detail that would permit causal inferences (Hauser, 1975; Sheldon &
Freeman, 1970; Sheldon & Parke, 1975).

The inadequacy of our knowledge about causal relations in an
education system is reflected in Romberg's discussion of the
relations among components of a mathematics education monitoring
system. For example, are we to believe that curricular guidelines
cause changes in course requirements, tests, and textbooks as
indicated by Romberg's figure 3? On what grounds is this causal
assertion made? The literature on implementation (e.g., Berman &
McLaughlin, 1975-1979; Crandall and others, 1982-1983; Fullan,
1982, Goodlad, 1975; Sarason, 1982) certainly leads us to question
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this causal ordering; it is simply too linear to account for what
happens in schools and classrooms. Or, are we to believe that b3
increasing teachers' subject-matter or pedagogical knowledge, we
will cause a change in teachers' professional responsibilities,
Romberg's figure 4? Or are we to believe that changes :;.n attitudes
toward mathematics will cause changes in students' ability to apply
their mathematical knowledge to problems? Might not an equally
strong argument be made that by improving students' mathematical
problem solving ability, we may change their attitudes toward
mathematics? On what theoretical and empirical grounds are we to
rule out the latter interpretation in favor of the former (cf.
Sirotnik & Oakes, 1986)?

The problem of specifying causal relationships in a model of
the nation's education system is complicated by the fact that
states, local education agencies, schools, and teachers
simultaneously--but not in consert--introduce changes into
education, any one or any combination of which might "cause"
changes in outcomes. To collect sufficient information to rule out
counterinterpretations due to multiple possible causes would be
prohibitively expensive, in both dollar and respondent burden
terms, if it were not virtually impossible to do so.

We conclude that an adequate specification of the nation's
education system is beyond our means for both conceptual and cost
reasons. Indeed, to portray a national indicator system for
mathematics education as a causal model oversimplifies the
complexity of arriving at causal interpretations from such a system
and misleads the policy community.

Lessons from History

Over the past 100 years, educational and social indicators
have, repeatedly, been heralded as instruments of reform. As the
first three chapters show, Romberg shares this optimism with his
predecessors. But, the excitement and promise quickly gave way to
realism (Shavelson, forthcoming). Promises of policy applications
were overly optimistic. Indicator systems wire, for example,
unable to provide sufficiently detailed and accurate information
for evaluating government programs. Moreover, indicator data
bases, often lacking essential theoretical prerequisites, fell
short of expectation for research applications (Sheldon & Parke,
1975; Warrcn, 1974). These events gave rise to realistic
assessments of what indicators can and cannot do.

The literature on social indicators appears to have reached
consensus on what indicators cannot do (e.g., Hauser, 1975; Sheldon
& Freeman, 1970; Sheldon & Parke, 1975) and provides a reality test
for what we can expect to do with education indicators:

1. Set goals and priorities. The very process of developing
social indicators is value laden. Those indicators that
show startling changes if lodged in one system of
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measurement might be regarded as of modest interest if
placed in a different system. Decisions about priorities
are based on more than just data. Indicators are inputs
to the policymaking mosaic.

2. Evaluate programs. Social indicators cannot substitute
for carefully crafted evaluation of social programs. They
do not permit the necessary level of control or detail.

3. Develop a balance sheet. Social indicators cannot match
economic indicators. Evoking an economic analogy and
proposing a parallel development of social indicators is
misleading, because education cannot put each of its
constructs on a common dollar metric as can be done to
obtain GNP.

The expectations for social indicators have become more
modest: to describe, state problems more clearly, identify new
problems more quickly, obtain clues about promising educational
programs, and the like. In the end, we should not expect causal
ascriptions to guide educators and policymakers in mathematics
education reform. Rather, realistically, history suggests that the
fundamental role of a mathematics monitoring system may be to
describe the conditions of mathematics education, ask better
questions, find clues to success, and contribute to and perhaps
change policymakers' "cognition," their ways of thinking about
education reform (cf. Sheldon & Parke, 1975; Kaa3an & Smith, 1985;
James & Tyack, 1983).

We conclude that to aspire to a national indicator system that
provides causal information about the relationships among the
components of the nation's education system flies in the face of
past experience with social and educational indicators. The
educational system is simply too complex and the goals of
monitoring too broad to realize causal interpretations.

Policy Considerations

One of :he major reasons that the mammoth social indicator
movement of the late 19606 slowly ground to a halt was that the
needs of the policy community, the community most needed for
financial support, were not adequately dealt with. Rather, some
policymakers perceived the social indicator movement as a movement
of, by, and for social science research.

The causal model of mathematics education may be open to
similar criticism. The monitoring system has been grounded on an
analysis cf expected changes in the goals of school mathematics,
primarily from the mathematics-education community's perspective
with the consequence that: "For monitoring purposes, three
questions must be raised: Have these anticipated changes actually
occurred, and, if so, to what degree? What is the effect of these
changes on students? Do these changes improve the health of school
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mathematics?" (p. 64). What is monitored, then, may not jibe with
what federal, state, and local policymakers are most interested in
during the current period of reforc.

Moreover, the discussion of the components of the monitoring
system and their "causal" relations suggests that, even with its
relatively narrow focus on particular changes in mathematics
education, the level of detail required by the monitoring system
comes with a very sizeable budget.

We conclude that, by focusing on a causal model of mathematics
education, the monitoring system might better serve the needs of
the mathematics education and education policy research communities
than that of policymakers. We are not convinced by the
unsubstantiated assertion that "having such data would be useful to
the [National Science] Foundation, other federal government
agencies, state education agencies, local school districts . . . to
evaluate efforts to improve practice, to formulate plans, and to
identify effective school programs" (p. 77).

Conclusions

Many of the issues raised here would vanish if the model of
mathematics education were conceived as conceptual, or logical, or
functional in the sense of indexing relations (associations) among
its components. Causal claims would be avoided, and a more
realistic tone set for what is reasonable to expect from a national
indicator system for mathematics education.

The analysis of change in society and mathematics and the
implications drawn for mathematics education are important
contributions of a strategic nature. Such a model would be likely
to push mathematics education in the direction of much needed
reform. However, we believe that greater weight should be given to
ascertaining the tactical needs of the policymaking community in
the identification of central components of the educational system,
indicators, and their relations. This modest shift in emphasis
might help insure that the information provided by the monitoring
system would reflect both anticipated and unanticipated changes in
mathematics education and provide data about concomitant changes in
other components. A model so grounded would meet policymakers'
more general need for information about changes of all types, while
still keeping the long-term reform agenda in front of them.

Specification of the Components of a National
Indicator System for Mathematics Education

Of paramount concern in designing a monitoring system is that
the conceptual model on which it is grounded (a) does not omit
important components, and (b) contains the best (reliable, valid)
indicators of its components. Romberg is clearly aware of this and
addresses these two concerns carefully. But there remains the
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possibility that something has been omitted from Romberg's model,
or something has been included that could be improved. Because of
the particular focus of the causal model, it is useful to bring the
perspectives of other indicator models to bear in the attempt to
uncover possible omissions and detect possible "commissions." In
that spirit, we, first, examine his criteria for including
components and indicators into the mathematics education model and,
second, compare his model with those of the National Academy of
Science, the Rand indicator project, and one proposed for the
Office of Educational Research and Improvement, U.S. Department of
Education. A detailed analysis is beyond the scope of this paper
(and probably the reader's interest and patience). Rather, our
goal is to point up potential shortcomings to be considered in
possible modifications of the current model.

Criteria for Selecting Indicators

The major criterion used by Romberg for selecting indicators
is that they reflect a particular set of goals for mathematics
education and the changes expected in the reform in mathematics
education toward those goals: (1) content and structure of
courses; (2) course requirements; (3) sequencing and segmenting of
mathematical topics; (4) use of technolrgy; (5) methods of
assessment; (6) knowledge and professional responsibility of
teachers; (7) the way mathematics is taught; and (8) the policy
environment within communities (p. 64). A second criterion is the
inclusion of variables that intervene between policy and outcomes.
"They are not directly manipulable by policymakers, but they
significantly affect outcomes" (p. 73). And a third criterion is
the inclusion of "prior variables" because "the teaching and
learning of mar hematics does not occur in a vacuum" (p. 74).

As a heuristic for testing the adequacy of these criteria, we
enumerate without discussion the criteria used by Rand in
developing alternative versions of a national indicator system for
monitoring mathematics and science education (Shavelson,
forthcoming; Shavelson, Oakes, & Carey, 1986):

1. Predicts- important outcomes such as student achievement,
participation in mathematics and science courses, or
dropouts, or is itself an important outcome.

2. Mediates the relation between an input and/or process
indicator, and an outcome indicator.

3. Reflects important policies or policy changes in
education.

4. Might reflect potential problems or point toward possible
actions to solve them.

5. Can be readily interpreted by policymakers.
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6. Includes information to describe central features of the
system that are essential to understanding how the system
works.

There is considerable overlap in the two lists, both in
content and philosophy. The major difference is that Romberg's
criteria are motivated strongly by his notion of the direction of
change mathematics education should take. This is a strategic
position; it admits to a reformist perspective. The Rand criteria
are broader and tactical in nature, admitting to a more pragmatic
policy perspective.

Both types of criteria are needed in developing a monitoring
system. Strategic criteria are needed to provide indicators that
will reflect anticipated changes in policies and their effects.
One possible problem with this approach, however, is that, if
change is not in the direction anticipated by the model, the
monitoring system may be unable to adapt quickly enough to reflect
that change.

Tactical criteria are likely to create a monitoring system
that is responsive to policy needs, since it tracks central
features of schooling that are likely to be sensitive to policy
changes, whatever their type or direction. One possible benefit of
this approach is that the monitoring system keeps tabs on changes
in federal, state, and local policy arenas and adapts to reflect
those changes. The limitation of the tactical approach is the
strength of the strategic approach; it fails to anticipate or
foster longterm change.

The Wisconsin model of mathematics education may benefit from
an application of the Rand criteria. This would serve to add an
immediate policy relevance to the model, thereby enabling it to
serve the needs of and not just reflect changes in the various
policy communities it serves.

Comparisons of Monitoring System Models

By comparing alternative monitoring systems withithe Wisconsin
model, we attempt to expose weaknesses in the latter.
Specifically, the Wisconsin model is compared with the National
Academy of Sciences' preliminary model (Raizen & Jones, 1985),
Rand's model, and a model proposed by Hall et al. (1985) for the
U.S. Department of Education. The last three, compared to the
Wisconsin model, include more curricular areas and are vague about

1. This is not to say that the other projects do not share these
particular blindspots, or do not have their own difficulties. In
fact, our approach emphasizes the somewhat unique strengths of
each, without suggesting that the Wisconsin model is the only one
that might consider including new components.
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the specific purposes they intend to serve. That all four models
might have been developed at cross purposes need not concern us
here, because we can use them to learn what might be ended to or
omitted from the Wisconsin model with consequent improvement in the
monitoring of mathematics education in the U.S. We first compare
the Wisconsin model with the NAS model because, historically, it
preceded the others and because it is the least complex. We t.en
present the comparison with the Rand model, followed by a
comparison with the Hall et al. model.

The NAS Preliminary Model

The National Academy of Sciences' preliminary model (Raizen &
Jones, 1985; Figure 1) focused on mathematics and science

INPUTS

Teachers
quantity
quality

Education System

PROCESS OUTCOME

Instructional
time/course

Curriculum enrollment

content

Student
achievement

Fig. 1 -- Are's of science and mathematics education
to monitored.

education. The model divides the educational L./stem into
bare-bones sets of schooling inputs, processes, and outcomes and
includes only four components: teachers, curriculum content,
instructional time /course enrollment, and student achievement.

2. The NAS committee responsible for developing this system
understood that a more elaborate model wan required for developing
indicators when it stated, "Even at their best, these indicators
are not sufficient to provide an adequate portrayal of the state of
science and mathematics education in the nation's schools. There
is a need to search for more imaginative and less conventional
indicators to guide educational policy, including new indicators
that have the potential to take account of likely changes in the
function and structure of education" (Raizen & Jones, 1985, pp.
11-12). Thus, the NAS is continuing to develop indicators, and
their newer, unreleased models might be considerably more complex
than the simple one first proposed.
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The NAS model pinpoints one component that is deemphasized in
the Wisconsin model: instructional time. Although instructional
time could be considered part of the Wisconsin model's "course
-:equirements," the Wisconsin model apparently downplays

instructional time because overemphasizing this component could
result in a conception of the teacher's role as purely managerial
or procedural. We agree that the teacher's role is much more than
managerial, but we still consider the omission of instructional
time as a shortcoming of the Wisconsin model. [Ed. rote: It is
considered under pedagogical decisions variable.] The impressive
evidence that instructional time is a major factor in student
learning, especially in elementary grades (e.g., Berliner, 1979;
Brophy & Good, 1986), suggests that this factor should be
considered in any full picture of the education system.

Furthermore, it is likely to take even more instructional time to
be able to teach in the professional, thoughtful manner the
Wisconsin model sees as desirable. Ignoring the issues of whether
teachers have adequate instructional time to teach in this manner,
or whether they use time wisely, would be to overlook an important
feature of the education system. Lastly, instructional time must
to considered as a model component because it is both manipulable
by policymakers and capable of being squandered or enhanced at the
classroom level.

The Rand Model

The Rand model, like the NAS model, is simpler than the
Wisconsin model in the division of the educational system into only
three domains: inputs, processes, and outcomes (Figure 2). Unlike
the Wisconsin (or NAS) model, the Rand model places these domains
within the policy context that in*eracts with and influences each
of them.

The Rand model includes two components that were omitted from
the Wisconsin model. Specifically, it (1) considers the school as
a component and (2) depicts the policy context as a multiplelevel,
pervasive factor underlying the entire education system.

The Wisconsin model's neglect of the school as a component of
mathematics education constitutes a serious omission. Schoollevel
decisions transform state and district resources and policies into
specific programs for children. They set the conditions under
which mathematics teaching and learning occur. School decisions
can influence the access students have to higherlevel mathematics
courses, and the school "culture" can influence the degree to which
students are pressed to take challenging courses. Variables at the
school level such as course offerings, curriculum differentiation
practices, the extent to which school resources are directed toward
mathematics, and staff and student attitudes toward mathematics
achievement should be explicitly considered in the Wisconsin model.
Although each of these variables is somewhat influenced by external
(district, state) policy, analyzing them at the school level can
provide information about how principals' school policies and

108



"Inputs"

Community
"capacity"
and "will"

Community
"significant

others"

I

I1

Facilities
fiscal and
resource

allocations

Student
background

Teacher
quality

"Processes" "Outputs"

V

Curriculum
quality

]
Dropouts'-'450'

A

Instructional MathematicsSchool
quality quality

1* and science
achievement

A

To
processes

and Teaching
quality

Participation
outcomes

Policy context

Federal

State

Local

"Comprehensive model"

Fig. 2 -- The RAND Model 100



105

teachers' individual initiatives may mediate their effects and make
a significant difference in educational quality. Including
school-level data may also permit analyses of whether principals
and teachers perceive the 5esults of policy initiatives to be what
policymakers had intended.

Comparison with the Rand model shows that the Wisconsin
model's depiction of policy environment is too simple to fully
illustrate the variety of ways that policy influences the
educational system. The Wisconsin model emphasizes state
regulations, but alternative policy levers such as provision of
resources, offers of incentives, and use of assessment systems
should also be included. A further complication ignored in the
model is that policymaking occurs at multiple levels--the policy
environment includes mutually interacting federal, state, and local
levels. Each level tends to influence somewhat different aspects
of schooling. The Wisconsin model's omission of these intricacies
of the policymaking environment makes causal modeling seem more
appropriate than it actually is, by ignoring the difficulty of
disentangling the many, sometimes conflicting, pressures caused by
the initiatives of different parts of government.

The Hall, Jaeger, Kearney, and Wiley Model

The Hall, Jaeger, Kearney, and Wiley (1985) mode_ (Figure 3)
was developed to help guide the U.S. Department of Education's
Center for Statistics' assessments of alternatives for a national
data system on all of elementary and secondary education, so their
model is not specific to mathematics and science. Similar to the
NAS and Rand models, the Hall et al. model uses a simpler,
tripartite division among "background," "schooling," and
"outcomes." Despite its simplicity, their model illustrates three
aspects that might be usefully incorporated into the Wisconsin
model: (1) a fuller depiction of the multiple, complex
relationships among model components; (2) specific attention to
students' educative difficulties; and (3) inclusion of the
influence of the environment, society, and culture on goals and
resources of schools.

In contrast to Wisconsin's one-way causal flow, one major
contribution of the Hall et al. model is to graphically illustrate
interactive, mutual influerces among educational components. For
example, the background variables "educative difficulties" are
shown to influence and be influenced by the environment; resources

3. By including "intervening" variables, which are not directly
manipulable by policymakers but which significantly affect
outcomes, the Wisconsin model acknowledges that individual
initiatives can be important. However, we are arguing that the
model as it stands (emphasizing planning, classroom events, and
pupil pursuits) neglects many school level variables that should
also be considered.
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A Conceptual Frame for the Schooling Process
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and environment are also shown as mutually interactive. This more
complex scheme captures more of what occurs in schools (e.g., pupil
difficulties do influence parent expectations which in turn
influence pupil motivation) and presents a more complete picture of
environmental influences (on pupils, and resources) than any of the
other models considered in this paper.

A second contribution of the Hall et .l. model is to suggest
that educative difficulties of students should be specifically
considered. The Wisconsin model presently makes no provision for
the fact some students and schools could face quite different types
of obstacles in meeting educational goals and successfully
implementing policy initiatives, many of which have been geared
toward raising requirements for the mainstream. Given the evidence
that students' sometimes idiosyncratic misunderstandings of
mathematics pose serious challenges to teachers (e.g., Erlwanger,
1975), these difficulties might be more fully explored in the
Wisconsin model.

Lastly, the Hall et el. model sketches the environment's
effect on both the goals and resources of the school. By doing
this, Hall et al.'s model suggests an important implicit, but not
fully realized, possibility for the Wisconsin model: Consideration
of whether improvements in student outcomes are due to policy
initiatives at all, or whether they are the result of cultural and
societal influences. For example, higher mathematics achievement
could be the result of changes in family structure (Zajonc, 1986),
student perceptions of the job market, or parental expectations,
rather than changes in course requirements and content.

Strengths of the Wisconsin Model

Despite the weaknesses exposed by comparing the Wisconsin
model with the others, this comparison also demonstrates several
areas where the Wisconsin model has contributed unique insights
worthy of consideration by other indicator projects. First, the
Wisconsin model's distinction among independent and intervening
variables appears useful in underlining the fact that policymakers
cannot reasonably expect to manipulate all factors relevant to
schooling--classrooms are to some extent "black box's" to which
policymakers can merely supply certain inputs, such as quality
materials, content requirements, and quality instructors.

A second important contribution of the Wisconsin model is its
subject-matter based approach, focusing on an ideal toward which
mathematics education should strive, rather than what is presently
implemented in classrooms. Systems based on present-day knowledge
(such as the comparatively recent appreciation of the role of
academic learning time) to the exclusion of alternative visions
(such as the need for more teaching of "higher-order" thinking
skills) could miss much of what we should monitor.
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Third, the Wisconsin system's distinction between dependent
and consequent variables is useful in illustrating that outcomes of
schooling might be quite different, depending on whether they are
measured proximally (at the end of a given school year) or distally
(months or even years after the course has ended).

Summary and Recommendations

Despite our recogaition of the contributions of the Wisconsin
model, we have argued both on methodological and practical grounds
that a causal model of education can be misleading. We do not have
an adequate theory of the nation's education system on which to
base causal interpretations, nor do policy changes occur in the
controlled manner necessary to infer cause in the absence of
adequate theory. Furthermore, attempts to collect enough
information to support causal conclusions could result in such a
massive amount of data that policymakers would find it unusable and
confusing.

Instead of a causal model, we recommend a conceptual or
logical model which indexes relations among components. Our
comparisons of the Wisconsin model with the National Academy of
Science's preliminary model, Rand's model, and a model proposed by
Hall et al. (1985) reveal several components that should be
considered for inclusion into the Wisconsin model. Specifically,
we recommend that the Wisconsin model should more fully consider
the following:

o Instructional time
o The school as a separate level of analysis
o The multiple levels of policymakers influencing educational
practice

o The multiple directions of causal, conceptual, or logical
relationships among components of the educational system

o Student educative difficulties
o Cultural and environmental influences on schooling
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POSTSCRIPT

It is essential to the development of new ideas that they be
put into perspective by constructive contrast; Stanic's commentary
and the reactions of Shavelson, Oakes, and Carey did precisely
that. Both papers considered implications of a new world view and
the possibility of school reform.

Stanic raised pivotal questions about the low-skill future
possible in a high tech world and the compatibility of Western
scientific, technical, and fiscal supremacy with global community.
However, it is precisely because of the likely consequences of a
low-skill future of a high tech society that a new world view is
essential. The claim was not a high-skill future for all but the
need for adaptability and innovation. One approach to innovation
and creativity is to continue the elitist, dichotomous, high
literacy/low literacy tradition common in Western countries
(Resnick & Resnick, 1977). This would relegate the majority of the
population to low-skill jobs while a super-educated elite took care
of innovation; computers would perform many of the functions now
employing middle-level management and professional groups. There
are already indications that the middle class is shrinking.
However, societies characterized by wealthy educated elites, weak
or absent middle classes, and a majority of poor are typically
oligarchic, communistic, or theocratic dictatorships. Our choice
is a matter of values. Democracy evolved through hundreds of years
of striving and is intimately associated with the capitalistic
system and the rise of the middle class. To sustain democracy,
upward social progress must be possible, and that requires
commitment to continuity in the social spectrum supported by high
general levels of literacy.

Shavelson, Oakes, and Carey simultaneously characterized the

notion of organizing monitoring around a new world view as a
strategic contribution yet downplayed it by claiming it exclusive
to the mathematics-educaticl community. They argued that, with
organization around a specific viewpoint, what is monitored "may
not jibe with what federal, state, and local administrators are
most interested in during the current period of reform." The truth
is that a strong consensus about the direction of change and its
implications for education has emerged in most of the advanced
industrial nations, including the Soviet Union and Japan. It is
best articulated in this country by such calls for change as those
of the Carnegie Forum on Education and the report of the Holmes
Group.

More serious is the implication that current approaches to
data collection will suffice. Our position is that policymakers
will not be well served by atheoretical data about features of
schooling, which are likely to be insensitive to the effects of the

ill
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reforms,. In fact, this monitoring project is part of a deliberate
reform movement. as purpose is to collect information which will
support policymakers' decisions about the reform. This requires a
framework for data collePtIon which supports present and future
purposes and not those o2 the past.

Shavelson, Oakes, and Carey also addres6ed the vexed and
crucially important question of causality. They argued that
simultaneous, but unconcerted, actions introduce changes, any one
of which might cause a change in outcomes. Therefore, because the
cause cannot be isolated, a conceptual nomenclature is more
appropriate. The point is well taken, especially with regard to
time. For example, while there is an association between homework
and achievement, it is unclear whether homework causes achievement,
achievement causes homework, or whether there is no causal
relationship but each is "caused" b, a combination of socioeconomic
and motivational factors.

In essence, the question of causality rests on the sequence of
correlation; does a higher achievement pattern result in taking
more time on homework, or does spending more time on homework
result in higher achievement. If achievement precedes homework,
does familial pressure (with socioeconomic undertones) contribute,
or does motivation? If homework precedes achievement, perhaps
motivation, rather than mandate, causes children to spend more
time. On the other hand, irrationality would suggest denial of all
notions of causality.

While we know a lot, we simply do not know enough.
Nevertheless, an analytic scheme for policymakers

must . . . strive to bring philosophical clarity and
system to subject matter, define criteria for the
deployment of basic descriptive terms, and explain what
sorts of evidence or argument bear on the justification
of relevant claims. In working towards these goals, a
scheme in progress will, typically, not only incorporate
results as given but will criticize, redefine, and
reformulate such results from a systematic point of view.
[Furthermore,] an analytical scheme will be judged as of
higher merit to the degree it does not merely reflect
past investigations but points out new directions for
inquiry and suggest new questions for reflection.
(Scheffler, 1985, pp. 68-69)

We conclude that a pragmatically causal model will provide the
policy community with the best information for making judgements
about schooling in general and school mathematics in particular.

References

Resnick, D. P., & Resnick, L. B. (1977). The nature of literacy:

117



113

An historical exploration. Harvard Educational Review, 47,
370-385.

Scheffler, I. (1985). Of human potential: An essay in the
philosophy of education. Boston: Routledge and Kegan Paul.



WHAT MATHEMATICS SHOULD BE IN THE SCHOOL CURRICULUM?

Considering possible answers to this question is central to
the current reform movement. The argument is that all students
should learn "more and somewhat different mathematics" than is in
the current curriculum. This claim is based on a variety of
concerns, four of which are particularly important.

The principal concern is related to the new world view as
described in chapter 2. Today's students will be working in the
Information Age of tomorrow. Although the real demands of that era
are unknown, it would be safe to guess that mathematics--in
particular mathematical modeling, higher order thinking, and
creativity--will be highly valued. The other concerns are
derivatives from this perspective. The second concern is about how
mathematics is perceived. Even young children should not view
mathematics as a static collection of concepts and skills to be
mastered. A major theme in the following chapters is that students
should have a different perception of the discipline. Mathematics
is dynamic, growing and changing. In the past it was considered
sufficient for students to master a few concepts and become
proficient at basic computational skills. That is no longer
adequate.

The third reason for changing what is taught is based on the
technology of calculators and computers that makes paper and pencil
calculation less important. As others have noted, wc should not be
trying to teach students to compete with the $4.95 calculator.
While the calculator and computer have made proficiency in
calculation less important, they have made understanding of
calculation procedures even more important.

The fourth reason for change in content is the expanded use of
mathematics. Mathematics has always been a primary tool in the
sciences and engineering, but in the past quarter century its
application to economics, the social sciences, medicine, law, and
other fields has made it an even more important part of the
background and training of all students. One consequence is that
we should not refer to mathematics as a single discipline. We
should refer to the mathematical sciences, indicating that

schooling should include areas such as statistics, computer
science, econometrics, and biometrics.

It should be apparent that we need answers to the question,
What mathematics should be in the school curriculum? The answers,
however, are not obvious. The five chapters that follow reflect
the positions now taken by a number of persons and groups.

In chapter 6 the summary statement prepared by Henry Pollak
for the Conference Board of the Mathematical Sciences is reprinted.
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The view presented is a mathematician's view of both what is now
considered fundamental and what is not. In chapter 7 the Brazilian
mathematician Ubiratan D'Ambrosio, founder of ethnomathematics,
presents the argument for change from a sociological perspective.
In chapters 8 and 9 two other recent papers, also written by
mathematicians on this topic, are reprinted. Peter Hilton presents
a cogent argument about what mathematics is likely to be important
in the decades ahead. Stephen Maurer outlines activities at the
collegiate level which should affect secondary mathematics. Then
in chapter 10 an earlier paper by Thomas Romberg is reprinted.
This paper presents a mathematics education perspective about what
should be included in the curriculum. This section concludes with
an invited commentary from the noted mathematician Herbert
Greenberg.

Other answers to the question of what mathematics should be
taught in schools will soon be forthcoming from a variety of
projects including the 2061 project of American Association for the
Advancement of 7^ience, the curriculum goals project of the Council
of Chief State Scnool Officers, and the standards project of the
National Council of Teachers of Mathematics. In addition, several
new curricular materials are being developed such as the Transition
Mathematics materials from the University of Chicago School of
Mathematics Project, the Quantitative Literacy materials produced
by the American Statistical Association, and a variety of
curriculum development projects recently funded by the National
Science Foundation.

There needs to be continued discussion about school
mathematics. Given the dynamic nature of the discipline,
curriculum content will never be set for all time. However, it is
clear that many aspects of current mathematics programs need to be
changed.



CHAPTER 6

THE MATHEMATICAL SCIENCES CURRICULUM K -12:
WHAT IS STILL FUNDAMENTAL AND WHAT IS NOT

Report from The Conference Board of the Mathematical Sciences
Prepared by Henry 0. Pollak

Executive Summary

Our charge from the NSB Commies7,n was to identify what parts of
mathematics must be considered fundamental for education in the
primary and secondary schools. We concluded that the widespread
availability of calculators and computers and the increasing reliancc
of our economy on information processing and transfer are
significantly changing the ways in which mathematics is used in our
society. To meet these changes we must alter the K-12 curriculum by
increasing emphases on topics that are fundamental for these new modes
of thought.

This report contains our recommendations on needed
changes--additions, deletions, and increased or decreased emphases--in
the elementary and middle school mathematics curricula and a statement
of more general concerns about the secondary school mathematics
curriculum.

With regard to elementary and middle school mathematics, in
summary, we recommend:

o That calculators and computers be introduced into the
mathematics classroom at the earliest grade practicable.
Calculators and computers should be used to enhance the
understanding of arithmetic and geometry as well as the
learning of problem-solving.

o That substantially more emphasis be placed on the development
of skills in mental arithmetic, estimation, and approximation
and that substantially less be placed on paper and pencil
execution of the arithmetic operations.

o That direct experience with the collection and analysis of
data be provided for in the curriculum to insure that every
student becomes familiar with these important processes.

I. This chapter originally appeared as a report from The Conference
Board of the Mathematical Sciences (Washington, DC: National Science
Foundation, 1983) and is reprinted with permission.
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We urge widespread public discussion of the implications of the
changing roles of mathematics in society, support of efforts to
develop new materials for students and teachers which reflect these
changes, and continued and expanded experimentation within the
schools.

With regard to the secondary school curriculum, in summary, we
recommend:

o That the traditional component of the secondary school
curriculum be streamlined to make room for important new
topics. The conteat, emphases, and approaches of courses in
algebra, geometry, precalculus, and trigonometry need to be
reexamined in light of new computer technologies.

o That discrete mathematics, statistics and probability, and
computer science now be regarded as "fundamental" and that
appropriate topics and techniques from these subjects be
introduced into the curriculum. Computer programming should
be included, at least for college-bound students.

Modern computer technology clearly has vast potential for enriching
and enlivening the secondary school curriculum. However, we are not
now in a position to make firm recommendations. There is need for
research on the effects of incorporating technology into the
traditional secondary school curriculum. We urge federal support for
investigations into this question, including development of
experimental materials and prototypes of actual school curricula.

Although we are generally optimistic about the future role of
computers, we feel we must highlight one point that worries us even
though it is not directly within our charge. The disparity of access
between children who have a computer at home and children who do not
threatens to widen the educational gap that already exists between
different economic strata. It is urgent that programs be designed to
address this problem.

We clearly recognize that the most immediate problem is not the
mathematics curriculum, but the need for more, and better qualified,
mathematics teachers. One section of this report is devoted to
recommendations on attracting and training prospective teachers,
better using the talents of inservice teachers, and retraining
teachers who are inadequately prepared for teaching mathematics. We
feel that the coming changes in subject matter and emphasis not only
will bring a new sense of vitality to K-12 mathematics, but also will
encourage teachers actively to seek and participate in programs of
professional development.

The Conference Board of the Mathematical Sciences stands ready to
assist efforts to develop immediate strategies for addressing the
teacher shortage and to develop long-term strategies for bringing
about the curricular changes envisioned in this report.
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I. THE NSF/CBMS Meeting

In response to suggestions made at the July 1982 meeting of the
NSB Commission on Precollege Education in Mathematics, Science and
Technology and, specifically, to a request made by the Educators Panel
of the Commission, The Conference Board of the Mathematical Sciences
(CBMS) held a special leeting to address the topic of this paper. The
meeting was held on September 25-26, 1982, at the headquarters of the
Mathematical Association of America in Washington, DC.

Participants in the meeting included the presidents of the
American Mathematical Society, National Council of Teachers of
Mathematics, Mathematical Association of America, American
Mathematical Association of Two-Year Colleges, and Society for
Industrial and Applied Mathematics. Two members of the Commission,
Frederick Mosteller and Katherine Layton, and two members of the
Commission staff, Ray Hannapel and Mary Kohlerman, also participated
in the meeting. The other participants were representatives of the
CBMS constituent organizations and the CBMS officers.

The initial portion of the meeting was devoted to discussion of
six position papers on the fundamentals in the mathematics curriculum
written expressly for this conference. Following this, participants
joined working groups to address the question of what is still
fundamental and what is not in r -8 and in secondary school
mathematics. A general discussion of the written reports of the
working groups was held during the last hours of the Saturday session.

On Sunday, new working group assignments were made to discuss the
implications of changes in the K-12 -Iathematics curriculum. The
reports from these groups were discussed in the closing session of the
conference.

II. Recommendations to the Commission

Introduction

In the limited time available during the conference, it was not
possible to establish full consensus on every detail of the working
group reports. However, there clearly was broad consensus on the need
to incorporate calculators and computers, as well as additional data
analysis, into the K-12 curriculum and to make the necessary
adjustments in the mathematical topics and modes of thought
traditionally taught at these grade levels.

Some detailed recommendations on the fundamentals in the K-8
curriculum, what should be emphasized more and what should be
emphasized less, are given in the working group report on elementary
and middle school mathematics. The corresponding adjustments needed
in the secondary school curriculum, where the impact of technology is
even greater, are described in more general terms in the two reports
on traditional and nontraditional secondary school mathematics. In
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this area much more investigation and experimentation are required
before a firm consensus can be reached.

Recommendations on the challenge of providing children with
access to, and understanding of, computers and calculators pervade
this report. They are dealt with specifically in the report on the
role of technology." A statement of the relationship between the
mathematics curriculum and what is, or can now be, taught in other
disciplines is included in the report on relations to other
disciplines. The report on teacher supply, education, and
re-education, contains a variety of recommendations on attracting and
retaining well-qualified mathematics teachers.

The question of time in the school curriculum which should be
devoted to the study of the mathematical sciences was not addressed in
any detail at the meetings. The general feeling was that, at the
primary level, there appears to be an approximate balance between
topics needing more emphasis and those needing less. At the secondary
level, it is not yet clear how much time, in addition to the time that
can be gained by strer-lining the traditional mathematics curriculum,
will be needed for discrete mathematics, probability and statistics,
and computer science. This can only become clear after detailed
examination of model mathematical sciences curricula and careful
consideration of the many competing demands for time in the overall
school curriculum.

There was general agreement at the conference that the most
pressing immediate problem is the need for more, and better qualified,
teachers. No curriculum, no matter how well-founded, can possibly
succeed without dedicated and competent teachers to teach it.
However, many participants felt that appropriate changes in the
curriculum could bring a new sense of vitality to K-12 mathematics and
could serve to encourage teachers to actively seek and participate in
programs of professional development.

Participants in the conference also were in agreement that their
suggestions, even if influential in full, cannot be expected to
constitute a "cure-all" for all the shortcomings of K-12 mathematics.
In fact, a fundamental improvement in K-12 mathematics can be hoped
for only within the framework of a general improvement of the total
school environment. Remedies for the difficulties facing the teaching
community (low teachers' salaries, low prestige, lack of support by
society, lack of classroom discipline, irregular attendance, etc.) are
societal in nature and fall outside both the mandate and the
competence of this group.

Some Additional Recommendations

In addition to the concerns and recommendations in the working
group reports, a few points were emphasized in the general discussions
that are of vital importance in the implementation of any curricular
changes.
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Textbooks. Textbooks play a key role in the mathematical sciences
curriculum at all levels. Any major changes in the curricula at the
elementary, middle, or high school levels must be accompanied by
corresponding changes in textbooks. For this to happen, the groups
rezponsible for preparing textbook series and for adopting textbooks
must have substantial subject matter competence and have available to
them direct evidence of textbook effectiveness.

Testing. To a large extent, all teachers are under strong pressure to
train their pupils to maximize their chances of doing well on
standardized tests. As long as these tests stress computations, the
pupils are bound to be drilled in computations, regardless of any
other guidelines the teachers may have received, and even contrary to
the sounder convictions the teachers themselves may have.

We call the attention of the Commission to the power and
influence of standardized tests. Properly modified, these can have
considerable effect in hastening the hoped-for improvements in the
teaching of mathematics in grades K-12.

Articulation. The entrance requirements and course prerequisites of
the nation's colleges and universities are major factors in
determining the topics in the secondary school curriculum, as well as
the amount of time devoted to them. Efforts to change the curriculum
at the secondary level must be carried out in a cooperative effort
with the colleges and universities.

Equal Access. The disparity of access to computers between children
who have a computer at home and children who do not threatens to widen
the educational gap that already exists between different economic
strata. This disparity is exacerbated by the differences in resources
available to different school systems. It is urgent to design
programs to address this problem.

Women and Minorities. The conference noted with satisfaction the
improvement during recent years in the participation of women in upper
secondary mathematics. The many efforts that have led to this
improvement must continue to be supported. We look forward to
corresponding success with minority and handicapped students and
continued improvement in the preparation of women.

Working Group Report: Elementary and Middle
School Mathematics

Arithmetic and, more generally, quantitative thought and
understanding continue to become more important for more people, but
the importance of various aspects of arithmetic has changed and will
continue to change as computers and calculators become pervasive in
society. The suggestions below are designed to better equip students
for life and effective functioning in the developing age of
technology. We believe implementing these suggestions into the K-8
curriculum will make students more adaptive to future change, better
equipped to use modern technology, better grounded in the mathematical
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bases for other sciences, and better grounded for further school
mathematics.

A principal theme of K-8 mathematics should be the development of
number sense, including the effective use and understanding of numbers
in applications as well as in other mathematical contexts.

The changes we propose are fairly substantial, but are primarily
in emphasis rather than in overall content. We believe they are
consistent with, and are natural outgrowths of, recommendations
relative to K-8 education of the earlier valuable documents, Basic
Mathematical Skills by NCSM and An Agenda for Action by NCTM.

When implemented, the desired changes at the K-3 level lead to
even more significant improvements at the 4-6 and 7-8 grade levels.
They essentially replace excess drill in formal paper-and-pencil
computations with various procedures to develop better number sense on
the part of the student.

Special Concerns

1) Thorough understanding of and facility with one-digit number
facts are as important as ever.

2) The selective use by students of calculators and computers
should be encouraged, both to help develop concepts and to do many of
the tedious computations that previously had to be done using paper
and pencil.

3) Informal mental arithmetic should be emphasized at all
levels, first aimed at exact answers and later at approximate ones.
Such activity is necessary if students are to be able to decide
whether computer or calculator printouts or displays are reasonable
and/or make sense. Informal mental arithmetic involves finding easy,
not formal algorithmic, ways of looking at number relationships.

4) There should be heavy and continuing emphasis on estimation
and approximation, not only in formal round-off procedures, but in
developing a feel for numbers. Students need experience in estimating
real world quantities as well as in estimating numerical quantities
which appear in complicated form. Methods requiring explicit (right
or wrong) answers should be used where possible to help develop
estimating procedures. For example, many exercises on comparing
complicated fractions with easy ones (e.g., 12/25 with 1/2, and
103/299 with 1/3) can be used to get students to think of complicated
fractions as close to, but less than (or more than), easy fractions.

5) There should be a heavy and continuing emphasis on
problem-solving, including the use of calculators or computers. Trial
and error methods, guessing, and guestimating in solving word problems
should be actively encouraged at all levels to help students
understand both the problems and the use of numbers. Naturally,
examples and illustrations should be appropriate to the students' age,
interest, and experience.
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6) Elementary data analysis, statistics, and probability should
be introduced, or expanded in use, including histograms, pie-charts,
and scatter diagrams. The understanding and use of data analysis is
becoming a vital component of modern life. The collection and
analysis of data should include personal data of meaning to students,
e.g., number of siblings; students' ages, heights and weights; data
culled from newspapers, almanacs, and magazines; random data such as
that produced by urn schemes; and data from experiments in other
school subjects.

7) Place value, decimals, percent, and scientific notation become
more important. Intuitive understanding of the relative sizes of
numbers that arise in the everyday world of applications becomes even
more vital.

8) More emphasis on the relationship of numbers to geometry
including, for example, number lines and plotting, should lead to
better understanding of the concepts of arithmetic and of geometry.

9) Understanding of fractions as numbers, comparison of
fractions, and conversions to decimals should have more emphasis while
drill on addition, subtraction, and division of numerical fractions
with large denominators should have less.

10) Drill on the arithmetic operations on three-digit (and larger)
numbers should be de-emphasized. Such computations can and should be
done by calculators and computers.

11) Intuitive geometric understanding and use of the mensuration
formulas for standard two- and three-dimensional figures should be
emphasized. More stress is needed on why the formulas make sense.

12) Function concepts, including dynamic models of increasing or
decreasing phenomena, should be taught. (For more details, see 4 in
"Traditional Secondary School Mathematics.")

13) The concept of sets and some of the language of sets are
naturally useful in various mathematical settings and should be used
where appropriate. However, sets and set language are useful tools,
not end goals, and it is inappropriate to start every year's program
with a chapter on sets.

14) Based on motivation from arithmetic, algebraic symbolism and
techniques should be encouraged, particularly in grades 7 and 8.

15) More extensive use of mathematics and computers in many other
subjects--including business, languages, social science, and science
courses--should be actively pursued. We encourage the consideration
of this matter by experts in these fields and welcome opportunities to
collaborate on further work in this area.

A discussion of possible computer programming or computer
literacy courses is left to other groups for further study.
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We call the Commission's attention to the fuller discussions and
comments related to the K-8 curriculum in various position papers
prepared for the conference.

Implementation Concerns

1) We hope the Commission will encourage widespread public
discussion of the implications for K-8 mathematics of the changing
roles of arithmetic in society. As an early step, we suggest
discussions and conferences between teachers, supervisors, mathematics
educators, mathematicians, and editors of textbook series concerning
this report and others on the same general topic. Such conferences
could be quite inexpensive if most participants are local.

2) We hope the Commission will seek ways to encourage the
development and use of textbooks and of teacher-training materials in
the spirit of the suggestions made above.

3) We hope the Commission will seek ways to encourage changes in
standardized tests toward number sense and problem-solving and away
from single-operation computational skills.

4) We hope the Commission will encourage school systems to
reassign interested teachers at the 4-6 grade level to become
specialists at teaching mathematics or other disciplines. One mode
might be a simple trade of classes between teachers, with each teacher
concentrating in areas of particular interest and competence. The
needed changes in subject-matter emphasis will be much easier to
effect if those actually teaching any subject are selected for their
special interests and aptitudes. Special inservice training programs
should be developed for all such semispecialized teachers, whatever
their subject.

5) We hope the Commission will seek ways to improve the status of
teachers and the conditions under which teachers attempt to do the
important and difficult job of educating future citizens.

6) We believe that the needed changes can be brought about
somewhat gradually and with general support of those concerned. There
already is discussion in teacher and supervisor groups concerning many
of the ideas put forth here. The proposed changes generally involve
modifications in the way mathematics is introduced and used in schools
rather than addition of new subject matter. The changes should
permeate texts and not just be add-ons that can be ignored. There
appears to be an approximate balance in time between topics needing
more emphasis and those needing less. With the exception of computer
use and the possible exception of parts of data analysis, the topics
needing added emphasis have been taught and learned in American
schools at various times and places in the past. The diminished role
of paper-and-pencil computation is perhaps the topic which will
provoke most concern and disagreement.
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Working Group Report: Traditional Secondary
School Mathematics

Current aecondary school mathematics curricula are organized into
s.parate year-long courses covering algebra, geometry, and precalculus
topics. There are proposals that challenge this traditional division
of school mathematics and the position of calculus as the primary goal
for able college-bound students. Thus, the following analysis used
conventional course headings for discussion of proposed changes in
traditional topics, not as endorsement of the status quo.

1) Overall Recommendation. The traditional component in the
secondary curriculum can be streamlined, leaving room for important
new topics. However, since breakthroughs in technology which allow
this streamlining are so recent and the conceivable implications so
revolutionary, it is not yet entirely clear what specific changes are
appropriate.

2) Algebra. The basic thrust in Algebra I and II has been to
give students moderate technical facility. When given a problem
situation, they should recognize what basic algebraic forms they have
and know how to transform them into other forms which might yield more
information. In the future, students (and adults) may not have to do
much algebraic manipulation--software like mu-Math will do it for
them--but they still will need to recognize which forms they have and
which they want. They also will need to understand something about
why algebraic manipulation works, the logic behind it. In the past,
such recognition skills and conceptual understanding have been learned
as a by-product of manipulative drill, if learned at all. The
challenge now is to teach skills and understanding even better while
using the power of machines to avoid large time allotments to tedious
drill. Some blocks of traditional drill can surely be curtailed,
e.g., numerical calculations using look-up and interpolation from
logarithm and trigonometry tables.

3) Geometry. A primary goal of the traditional Euclidean
geometry course is to develop logical thinking abilities. But not
every fact need be given a rigorous proof to pursue this goal. Nor
need this be the only goal of geometry, nor geometry the only means
towards this goal.

We recommend that classes work through short sequences of
rigorously developed material, playing down column proofs, which
mathematicians do not use. These proof sequences should be preceded
by some study of logic itself. Important theorems not proved can
still be explained and given plausibility arguments, and problems
involving them can be assigned. The time which becomes available
because proofs are de-emphasized can be devoted to study of algebraic
methods in geometry, analytic geometry and vector algebra, especially
in three dimensions. Work in three dimensions is essential if one is
to develop any pictorial sense of relations between many variables,
and handling many variables is essential if one is to model phenomena
realistically.
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There is much room for computer use in geometry. The power of
graphics packages makes it much easier for students to get a visual
sense of geometric concepts and transformations. The need to use
algebraic descriptions of geometric objects when writing graphics
programs reinforces analytic geometry. Finally, the algorithmic
thinking needed to write programs bears much resemblance to the
thinking required to devise proofs.

4) Precalculus. What often happens in this course is that
students see the same topics yet another time, with more drill but
with little new perspective. For better students there may not be a
need for a precalculus course if drill is no longer so important and
if algebra and geometry are done "right," with the concepts made
clear. For instance, one justification for the precalculus course is
the perceived need to develop the idea of functions; functions appear
in Algebra I and earlier, but current teaching may give too static an
understanding. With computers, the concept of function can be made
central earlier and more clearly. The computer supports qualitative
analysis of the graphs of functions in a dynamic mode of display and
also allows detailed analysis of zeros, rates of change, maxima
minima, etc.

5) Algorithmics. Computers and programming have made the
creative human talents and skills involved in developing and analyzing
algorithms extremely important. These talents and skills, emphasized
by the group on nontraditional topics, can be exercised quite
naturally through traditional topics as well. Much of high school
algebra consists of systematic methods for handling certain problems,
e.g., factoring polynomials. Such methods are algorithms. Instead of
making the student carry out such methods with paper and pencil a
boring number of times, have the student do it just a few times and
then program a computer to do it. The understanding gained should be
at least as great.

6) The Average Student. For the many students in secondary
school who are not specially talented in mathematics and not headed
for careers in science or technology, current programs are a source of
discouragement, anxiety and repetition in a dull "basic skills"
program which serves them poorly. We cannot ignore the needs of this
large and important group. Computers, as mathematical tools and media
of instruction, offer a fresh window into mathematics for them.

7) Cautions. We have suggested that technology provides an
opportunity to devote less time to traditional techniques while
boosting understanding and allowing more time for more complex,
realistic problemsolving. However, there are several cautions.
First, there are widespread and deep reservations about how much
traditional goals should give way to technology. Second, there is
little research data on the feasibility of such changes, and there are
almost no prototype school curricula embodying the new priorities.
Experimental programs, and research on the results, must be given
major support. Third, changes in secondary programs must be carefully
articulated with the expectations of colleges and employers, who often
have conservative views about curricula. Finally, the syllabi of an
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extensive range of standardized tests play a very influential role in
setting curricula and the actual classroom emphases of teachers. If
curricula are to change, the tests must be changed. Clearly, strong
national leadership and cooperation are necessary, from teachers,
mathematicians and public policymakers, to meet these challenges and
implement significant change.

Working Group Report: Nontraditional Secondary
School Mathematics

On two basic principles the panel was unanimous:

o There is need for substantial change in both the subject
of and the approach to teaching in secondary school
mathematics.

o If changE3 are to be made in secondary school mathematics, we
must make haste slowly, taking care at all times to insure
full consultation with and support from the secondary school
mathematics teaching community.

We have five specific recommendations in the areas of subject
matter, approach to teaching, the use of new technology, and teacher
training and implementation.

1) Subject Matter. Careful study is needed of what is and what
is not fundamental in the current curriculum. Our belief is that a
number of topics should be introduced into the secondary school
curriculum and that all of these are more important than, say, what is
now taught in trigonometry beyond the definition of the trigonometric
functions themselves. These topics include discrete mathematics
(e.g., basic combinatorics, graph theory, and discrete probability),
elementary statistics (e.g., data analysis, interpretation of tables,
graphs, surveys, sampling) and computer science (e.g., programming,
introduction to algorithms, iteration).

2) Approach to Subject Matter. The development of computer
science as well as computer technology suggests new approaches to the
teaching of all mathematics which should emphasize:

o algorithmic thinking as an essential part of problem solving,
and

o student data gathering and the investigation of mathematical
ideas to facilitate learning mathematics by discovery.

3) Technology. New computer technology allows not only the
introduction of pertinent new material into the curriculum and new
ways to teach traditional mathematics, but it also casts doubt on the
importance of some of the traditional curriculum, just as the hand
calculator casts similar doubts about instruction in arithmetic.
Particularly noteworthy in this context at the secondary level are:
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Symbolic manipulation systems which even now, but certainly
far more in the near future, will allow students to do symbolic
algebra (and calculus) at a far more sophisticated level than
they can be expected to do with pencil and paper.

Computer graphics and the coming videodisc systems which will
enable the presentation and manipulation of geometric and
numerical objects in ways which should be usable to enhance the
presentation of much secondary school mathematical material.

One caveat which we would stress is that this technology and
related software packages must be used not to enable students to avoid
understanding of the essential mathematics but rather to enhance such
understanding and to allow creative experimentation and discovery by
students as well as to reduce the need for tedious computation and
manipulation.

4) Teacher Training. There are two aspects of this, both dealing
with secondary school mathematics, on which we wish to comment:

a) Retraining of current teachers in the new topics, approaches,
and technology.
One possible new approach to this might be the use of college
students to aid and instruct secondary school personnel as
part-time employees, perhaps using such incentives as
forgiveness of student loans.

b) Education of new teachers.
Crucial to long-term solution of the secondary school
mathematics education problem is that the requirements for
degrees in mathematics education be, as necessary, changed to
incorporate modern content and approaches. In particular, we
believe that all prospective teachers of secondary school
mathematics should be required to take at least one year of
discrete mathematics in addition to traditional calculus
requirements, one semester or one year of statistics (with
focus on statistical methods rather than mathematical
statistics), and one year of computer science.

5) Implementation. We recognize that the kinds of changes
proposed here not only require much more study than has been possible
by our panel but that also they will never be implemented unless there
is dedicated cooperation among concerned people and groups: secondary

school teachers of mathematics and their professional organizations;
college curriculum people in schools of education and in mathematics
departments, including their organizations; and state and local
education authorities and their organizations.

A conference bringing together these groups to discuss the
relevant problems and to plan future action might be the most fruitful
next step to provide some momentum for the changes we believe are
necessary.
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Working Group Report: The Role of Technology

Computers and related electronic technology are now fundamental
features of all learning and working environments. Students should be
exposed to and use this technology in all aspects of school experience
where these devices can play a significant role. More specific
recommendations follow.

1) The potential of technology for enhancing the teaching of
mathematics and many other subjects is vast. Development of such
resources should be supported at a national level. Specific examples
include computer-generated graphics, simulations, and video-disc
courseware materials. There should be efforts to create a network
providing easy access to such banks of material.

2) While computing technology promises to enhance learning,
differential access to the benefits of that technology could widen the
gaps in educational opportunity that already separate groups in our
society. It is imperative that every effort be made to provide access
to computers and their educational potential to all sectors of
society.

3) As a general principle, each mathematics classroom should have
computers and other related electronic technological devices available
to facilitate the computing and instruction required for mathematics
learning and competency. Such availability of computers and other
electronic technological devices in the mathematics classroom is as
important as the availability of laboratory equipment for science
instruction.

4) Hand calculators should be available in mathematics classrooms
(both in elementary and secondary schools) for students on the same
basis that textbooks are now provided.

5) Support should be given for broad developments in software
that may be useful in the schools. School districts shoul., encourage
their teachers and students to engage in cooperative development
activities and to find ways to recognize and disseminate the products
of those efforts.

6) Computer literacy involves not only the use of computers to
accomplish a great spectrum of tasks but also a general understanding
of the capabilities and limitations of computers and their
significance for the structure of our society. Development and
implementation of appropriate programs to teach these more general
concepts should be supported.

7) Possible curricular changes emanating from technological
changes will require careful study and deliberation over a long period
of time. This activity must be encouraged and supported from a
national level. The exploratory projects should bring together
teachers, curriculum developers, mathematicians, and affected
interested parties from business and industry. The new programs
developed should be tested extensively in a variety of settings to
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insure that they work with real students and schools before extensive
implementation is attempted.

8) The interplay between word-processing, computers, data bases,
and data analysis methods assists in breaking down barriers between
disciplines, thus offering an opportunity for schools to provide a
range of holistic problem-solving experiences not typical in school
today. Using the technology as an aid, students can plan and conduct
data collection, analysis, and report writing that is realistic,
attractive, and far beyond normal expectations in today's schools.

9) The availability of well-trained, highly qualified teachers of
mathematics is a must in a technological society. Support should be
given to organizing programs for inservice training and retraining of
current teachers of mathematics (elementary and secondary) who are
inadequately prepared to teach a technologically oriented curriculum,
but have the capacity to profit from such programs to strengthen their
mathematical preparation and teaching skills.

10) While technology provides opportunities, it also makes
demands. The world becomes a more complex place in which to live. If

we are to insure that a broad spectrum of society can function and
participate actively in the business/industrial community and decision
making of the country, it is imperative that students become adept in
the precise, systematic, logical thinking that mathematics requires.

Working Group Report: Relations to Other
Disciplines

Along with the effects of computational technology on the
mathematics curriculum, it is also necessary to consider how this
technolom and the proposed curricular changes affect the
relationships between the curricula in othcz disciplines and the
curriculum in mathematics. We have iaterpreted the phrase "other
disciplines" rather broadly.

First, using a narrow view, we must look at the effects these
curricular changes will have on science education. There has always
been a necessary interaction and coordination between the science and
mathematics curricula, particularly with the physical sciences. At a
minimum, this revised curriculum, which encourages student use of
calculators and computers and emphasizes a good sense of estimation,
provides an opportunity for elementary and high school education to be
more realistic and eliminates the use of specialized problems with
"easy numbers." If we raise our sights a bit, there is an opportunity
for a better coordinated and integrated total science education.
Furthermore, the introduction of statistical ideas, data handling
procedures, and discrete mathematics provides an opportunity for a
more mathematical discussion of social science problems at the
elementary and high school levels. Similarly, changes in currently
available tools will undoubtedly affect courses in business and
commercial programs.
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Related questions arise on the other side. What do the seaool
programs and the college programs in natural sciences, social
sciences, and business require in the mathematical preparatioh of
entering students? We believe the suggested curriculum can only be an
improvement, but discussions with leaders of those disciplines is
required.

Taking the broad view, we also believe that this modified
curriculum, which provides students with the same (or greater) ability
to use mathematics as well as an ability to use and appreciate the
technology, will provide for a wiser citizenry. The graduates of such
a program should be better equipped to deal with "poll results" and
statistical data references to the economy and sociological problems.

We believe there is one serious area in which the nation needs
more data for the development of an appropriate mathematics
curriculum. Namely, what are the needs, in terms of mathematical
skills, of the students who seek technical vocational employment
without going on to further schooling? Furthermore, what are the
mathematical needs of students going on to technical or vocational
schools? Although we do not know the answer, we believe the new
curriculum will do at least as good a job as the existing one. A
conference or meeting to explore this area would be an excellent idea
and would complement our work.

Working Group Report: Teacher Supply, Education,
and Re-education

Efforts to improve and update the mathematics curriculum and to
increase the mathematics, science, and technology literacy of all
citizens require the support of qualified mathematics teachers at all
levels. At present there is a serious and well-documehted shortage of
qualified teachers of mathematics at the elementary and secondary
school levels in most areas of the country. Economic, employment, and
social conditions forecast that the current short supply may indeed be
a long-term problem. Furthermore, even in geographic locations where
adequate supplies exist, the frequent turnover of mathrmatics teachers
tends to impede learning.

The following rolommendations address the need to increase the
supply of mathematics teachers as well as to improve the
qualifications of the teacher and, thereby, the learning of
mathematics:

1) While state and local efforts by industry, business, and
academe to deal with the teacher shortage are laudable and should
continue, the magnitude of the problem is national in scope. An
articulated national commitment with federal leadership and support is
needed for its resolution. The public should be made aware of the
problem through more effective publicity.

2) Incentives of all types need to be studied to attract and
retain qualified teachers of mathematics. Financial incentives should
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be given special attention with priority assigned to those which do
not create undue inequities and tensions among colleagues, in order to
avoid being counterproductive.

Examples of possible incentives and support systems include the
following:

a) Forgiveness of student loans and/or interest on loans for
those who enter the teaching field.

b) High antry-level salaries for special expertise (e.g.,
computer training).

c) Reduced teaching loads to allow teachers to pursue graduate
study or other advanced training in the mathematical sciences
and applied areas.

d) Financial support of graduate study or other advanced training
in the mathematical sciences and applied areas.

e) Salary differentials by discipline.

f) Summer positions and other cooperative arrangements with
business and industry to supplement a teacher's income (with
the obvious caveat that the short supply of teachers is
largely due to the fact that higher industrial salaries lure
teachers away; industry would have to be discouraged from
using this arrangement for recruitment purposes).

3) In an era when content and technology are changing so rapidly,
incentives are needed to keep qualified teachers in the field abreast
of current trends in the mathematical sciences. Inservice workshops,
NSF-type institutes, retraining courses, industrial experiences, and
other forms of continuing education can serve to refresh the faculty
and renew its commitment to teaching.

4) In some parts of the country, teachers from other disciplines
are being assigned to teach mathematics classes. These teachers need
considerable subject-matter training and assistance in developing
appropriate teaching strategies to reach a level of preparation close
to that of regular mathematics teachers and to succeed in their new
assignments.

5) Encouraging colleges and universities to loan their faculty,
and business and industry to loan their mathematically oriented
employees to teach courses in the secondary schools could be mutually
beneficial. Qualified retirees or near-retirees also might be
recruited to enter the teaching field. (Of course, the issues of
appropriate teacher training and certification need to be addressed.)

6) In states where this is not the norm, it is recommended that
teacher certification requirements be stated in terms of the specific
topics to be covered in the subject area rather than in terms of just
total number of credits.
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7) Recommendations regarding the mathematical fundamentals to be
covered in edugating qualified teachers of mathematics include the
following:

Elementary Level. It is strongly suggested that mathematics at
the elementary school level be taught by teachers who specialize
in mathematics. Whether the teacher specializing in mathematics
should be assigned to all grades or just to grades 4-6 (or 4-8)
requires further study. An alternative approach would be to
identify those teachers in a given school who most enjoy teaching
mathematics. Those teachers could be assigned to teach all
mathematics courses across a grade level, while other teachers do
similarly in reading and writing.

The following recommendations pertain to both the regular
elementary school teacher and the teacher specializing in
mathematics:

For entry into the mathematics education program for elementary
school teachers, at least three years of college-track
mathematics in high school is recommended. College mathematics
courses should provide a sufficient background to understand the
relationships between algebra and geometry, functions, elementary
probability and statistics, instruction in the use of the
hand-held calculator, and some exposure to computers. Creative
approaches to problem-solving should also be included in the
curriculum. Training should be at least one level above what is
being taught. This background is particularly important in light
of children's awareness of the world around them through
television, other media, computers, and so on.

Secondary Level. Secondary school mathematics teachers should
have course work in mathematics equivalent to a major in
mathematics. Requirements for those who will teach mathematics
should include the equivalent of a two-year calculus and linear
algebra sequence, discrete mathematics, probability and
statistics, and appropriate computer training. These courses
should develop in the student a sense of "mathematical maturity"
in the approach to problem-solving.

Note that college and university curricula for educating
mathematics teachers should be re-examined and revised in accordance
with the above guidelines and goals. Contingency plans should be
developed in case separate departments of mathematics and computer
science are established at the secondary level in the future.

Conclusion

The recommendations cited here require cal:eful planning and
implementation. With high technology a mainstay of our present and
future society, it is imperative that we recognize and promote
mathematics as a powerful, useful, and enjoyable component of our
lives.

1.x'7



CHAPTER 7

NEW FUNDAMENTALS OF MATHEMATICS FOR SCHOOLS

Ubiratan D'Ambrosio

If we look at the educational system as a whole, mathematics
is a dominating subject in schools. Together with reading and
writing, it constitutes the spine of a system aimed at providing
equal opportunity for all. At the same time, it helps to prepare
our young for the future advancement and betterment of the
socioeconomic and political framework of society. The three R's
have dominated school scenery for decades. Is this to be
maintained?

The emergence of computers surely will affect the scenery and,
in predicting education of the 1990s, an important role should be
reserved for information-processing equipment. Although
influential in teaching all the three R's, the use of computers
will, by its very nature, directly affect mathematics education.
Indeed, it must prompt new investigations of the nature of
mathematics itself. In addition, pedagogical action, as
conceptualized by D'Ambrosio (1981, 1985a), will be deeply
affected, and the curriculum, seen as the strategy for pedagogical
action, will call for new components.

Although the computer issue is relevant to this paper, the
essential concern here is to identify a few indicators of
mathematics' contribution to societal goals and thus to set up the
appropriate framework for establishing a monitoring system for
mathematics education. Obviously, I am thinking about long-range
effects and broad, global, societal goals. As has been stressed in
earlier works (D'Ambrosio, 1979), mathematics appears to be a
strategy to attain overall societal goals. It is not easy to
define such long-range goals, as they are immersed in the concepts
of progress and development. But a few values are permanent in any
model of global policy. The American model is dominated by the
democratic ethos within a welfare state. A growing, equally
prevailing force is the ecological ethos, which is closely related
to concerns about the primacy of our species and "the

internalization of holistic thinking in science and culture" (Falk,
1986, p. 68). This ecological ethos calls for imaginative new
models of social, political and economic organization as described
in the Declaration of Venice; "The challenge of our time--the risk
of destruction of our species, the impact of data processing, the
implications of genetics, etc.--throw new light into the social
responsibilities of the scientific community, both in the
initiation and application of research" (UNESCO, 1986).
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Our responsibilities as educators in a democracy go beyond
reproducing past and current models. We are driven to create a
future that shall be, in many ways, better than the present. It is
here that one must ask the question, how much does mathematics
education have to do with it? The answer is unequivocal:
everything!

A CRITICAL APPROACH TO MATHEMATICS EDUCATION

Mathematics is deeply rooted in our cultural systems and thus,
is loaded with values. Although not sufficiently studied as yet,
the analysis of ideological components in mathematical thought
reveals a strong connection with a certain socioeconomic model.
These mathematical ideologies parallel the ideological components
of education in general, as stressed by Apple (1979), Giroux (1981)
and the proponents of critical theory. Together with some
eminently conservative practices, such as medicine when dealing
with normality and law for hierarchy, mathematics promotes a model
of power through knowledge. I could paraphrase Duncan Kennedy
(1983) by saying that mathematics teachers indoctrinate students to
believe that people and institutions arrange themselves in
hierarchies of power according to their mathematical ability. The
"superiority" of high achievers in mathematics is recognized by
all; mathematics ability is the mark of the genius. Taken
together, critical approaches to cognition, to social structure,
and to states' interdependencies, i.e., to the global world
arrangement, urge us to examine the role of mathematics in our
educational system from a fresh perspective. Issues such as
environmental decay, individual privacy and security, widespread
hunger and disease, and the threat of nuclear war are new to the
exercise of thinking about the future.

Undeniably, the future is impregnated by science and
technology--for-good or evil--and mathematics is at their root. A
few years ago, "The Economist," a London weekly, published a
lengthy article entitled "You cannot be a 20th century man without
maths" (1979). The responsibility of mathematics educators toward
the future is a focal one, and we need to understand our role in
this very complex net of shared responsibilities. This is the
framework from which we should discuss a system to monitor the
health and progress of mathematics education, which is the
objective of this paper.

We cannot avoid reflecting briefly upon the way policymakers
will use information provided by a monitoring system. In this
respect, we clearly need to educate policymakers. As expressed by
Israel Scheffler (1984), we will need to design a curriculum for
policymakers rather than to merely provide them data. Such an
approach recognizes that policymakers must understand the learning
process and become aware of the position of mathematics in everyday
life, with its complexity of human activities, experiences,
purposes and needs, and its consequential tensions and creativity.
This calls for a broader understanding of the nature of our
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discipline and its position in the full range of human knowledge.
As Scheffler (1984) puts it, "The policymaker needs to be
multilingual, to learn to speak and learn various disciplines'
dialects, and to employ them conjointly in understanding the
problems" (p. 154). Is this less true for the mathematics
educator?

THE AUDIENCE FOR A MONITORING SYSTEM

Several issues are to be considered in planning a monitoring
system. The most fundamental is its audience. Here I prefer to
expand the issue to the more general question of school system
accountability. Of course, a monitoring system will be used by
state and local policymakers responsible for man "tging the
educational system. In addition, however, the fact that these
policymakers respond to public demand is the foundation of a
representative democracy. This is clearly evidenced by the tax
system which prevails in financing American education. Hence,
although primarily designed to be available to state and local
policymakers, the monitoring system must be accessible to the
entire population and must address the issues which are day-to-day
concerns of parents and pupils as well. In discussing the
improvement of science teaching in a special 1983 issue of Daedalus
devoted to scientific literacy, J. Myron Atkin wrote that "most
people want L-mething practical, or at the very least,
recognizable" (p. 178). Hence, we must insure the accessibility of
our data to a very broad audience. These data must be available to
all of those responsible for decisions, i.e., policymakers and
their constituents. In addition, they must carry a pedagogical
component in the sense that they must be somewhat instructionally
designed. Explanation, interpretation, and a critique of the
results must accompany the informarton provided by the monitoring
system. While this is sure to be biased by the monitoring system's
set of values, there is no way to avoid this. After all,
mathematics education is impregnated with values, as discussed in
earlier works (D'Ambrosio, 1985a).

Also, I cannot disregard thL internal composition of the
school itself, i.e., the relationships among teachers, teachers and
principals, principals and supervisors, and so on. Summing up, one
must consider all the forces playing a role in the school system, a
highly complex net of influences that shapes mathematics education.
This was discussed by Paulus M. Gerdes at ICME-5, as it pertains to
the highly traditional society of Mozambique, and it has been
evidenced in classical literature. Examples include the judiciary
process, which moved against Gustave Flaubert following the
publication of "Madame Bovary", and, more recently, Giovanni Lada's
"Padre Padrone." An interesting approach to the expectations
surrounding education can be found in the work of Teresa Amabile
(1983). These expectations, and the interrelationships among the
various actors on the educational stage, are fundamental components
which must be considered when monitoring the entire play.
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Thus, an efficient monitoring system must take into account
the expectations of all those involved. These expectations range
from effectiveness and the enhancement of creativity to pure
utilitarism and promotion of skills. Of course, these are not
dichotomous; both respond to a particular view of society as a
whole, This kind of dichotomy is discussed clearly by Plato in
Book VII of The Republic. Also, Marrou's comments (1982) are
rewarding (p. 73). It is undeniable that more or less emphasis on
one aspect or the other is a political decision, closely related to
overall societal goals. Is The Paideia Proposal (Adler, 1984) more
akin to American ideals than the "back to basics" movement? Or do
both aim at the same model of society?

If The Paideia Proposal is deemed more representative of
social goals, the attitude toward mathematics education will
reflect the remark that "all students study mathematics until the
twelve years of basic schooling. . . . Mathematics is central to
the manipulation and the innovation of information. Mathematics
illiterates will be left behind. In addition, reasoning is one of
the most human things that human beings do" (Adler, 1984, p. 84).
How well can one monitor such a Comenian approach, as compared with
the "answer-oriented" mathematics education which prevails
nowadays, and which Garth Boomer (1986), with evidence drawn from
Romberg (1984), has properly called "catechistic" teaching?

A CREATIVITY-ORIENTED PROGRAM

Let me discuss the basic issue, which remains open. Should
mathematics education move into a creativity-oriented, hence
basically open, curriculum, which is very difficult to evaluate in
the short term? Or should mathematics education stick to the
performance-oriented traditional model? Several examples of open,
creativity-oriented programs have been proposed throughout history,
but short-term assessment of them is practically impossible.
Impact evaluation, as it sometimes has been called, is in an
unsatisfactory stage as yet. Affective components may be the only
indicators upon which one can rely. Monitoring must then be
directed to small group behavior, using qualitative rather than
quantitative instruments. This will have immediate implications
for the curriculum. Clearly, monitoring systems act in a
dual-target mode. Although aimed at policymakers, the-1r reflection
on curriculum and classroom management is unavoidable. Every
teacher who is aware of the evaluation scheme will be deeply
affected by it in his or her practice. There is no way, and no
reason, to keep the monitoring system "secret." As a result, the
entire educational system is affected by the theoretical framework
on which the monitoring system rests, and the monitoring system
itself deeply affects the behavior of teachers and influences the
educational system.
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WHY TEACH MATHEMATICS?

Let me concentrate on the central questions I want to address
concerning the monitoring system. These questions, which will
indicate the health of the educational system, can be grouped
according to what may be looked on as reasons to teach mathematics
with such intensity in the school system.

Several reasons to teach mathematics have been identified
throughout the history of mathematics. I consider fot : to be
essential:

1. Utilitarian
2. Formative
3. Cultural
4. Aesthetic

I do not hesitate to say that all four reasons are equally
valid, but there has been a growing imbalance in the last 100 years
resulting in a utilitarian overemphasis. This has been a mistake,
and the mistaken character of strongly utilitarian-oriented
mathematics education is reinforced by the widespread use of
calculators and computers. The traditional, slalls-oriented
mathematics curriculum is obsolete and inefficient. On the other
hand, utilitarianism pays only lip service to a new emphasis on
applications to real world problems; an authentic approach must go
in a different direction. There is no authenticity in the
so-called "problem-solving situations" stressed in the beginning of
this decade. Even in its broader conception, as described in
NCTM's Agenda for Action (1980), specific problems are emphas_zed
and presented in a formulated, already codified, mode. "Real
situations" were indeed simulated situations, and although there
has been and continues to be an appeal to deal with "really real"
situations, they cannot get into the classroom unless the attitudes
towards mathematics changes.

This is, more than anything else, the result of an
epistemological barrier. Curricular systems are not present in the
classroom. Instead, mathematics curriculum is designed
conservatively, relying on topics in their final forms, or, in
Kuhnian terminology, theories that have attained the stage of
"normality." This is superbly described by Philip Kitcher (1983)
in the context of his argument against mathematical apriorism:

"experts demonstrate their expertise by producing verifiable
solutions to problems which baffle us, that they produce plausible
arguments against our contentions (arguments whose plans are too
well hidden for us to detect), and that they offer convincing
psychological explanations of our mistake" (p. 54). The
underlying .vistemology in mathematics education practices is
aprioristic, while a Bachelardian approach has been absolutely
ignored in education overall, and particularly in mathematics
education. Clearly, when Bachelard (1981) says that "L'etat
logique est un etat simple et meme simpliste" (p. 27), and that
this state can not serve as proof in the case of a psychological
reality, he opens a new direction for an approach centered in the
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psychoemotional complexity of the student, rather than in the
transmissable techniques that a teacher tries to convey to his
pupil. Indeed, he refers to William James; regrettably, James
became marginal in math education--as did Bachelard's epistemology.
The current and dominant approaches to the philosophy of
mathematics tend to mask the fact that mathematics is closely
related to reality and to the individual's perception of it.
Reality informs the individual through a mechanism which we have
insisted upon calling sensual rather than sensorial (D'Ambrosio,
1981), precisely to stress the importance of the psycho-emotional
component. The key issue in problem solving--which appears basic
when one addresses a question such as, How well have the students
in our state learned to solve complex problems?--may, indeed, be
the result of a misleading question. Consequently, in order to
monitor it, we may have to distort the entire attitude in the
classroom. Complex problems are related to a new consciousness
state, as William James recognized in his observation that the
state of consciousness in which we recognize an object is a new one
as compared with the state of consciousness in which we have known
the object. This may be the reason we insist on calling the impact
of reality upon the individual sensual rather than sensorial.
Research being conducted by Regina L. De Buriasco in Rio Claro,
Brozil, attempts to identify the emotional aspects of children's
perception of such mathematical notions as "half" and "more or
less." Regrettably, mathematics education has tended to suppress
the emotional aspects of the individual perception of reality.

ON EVALUATION

The alternative approach to problem solving calls for the
effective immersion of children in global practices. Evaluation
and the concept of examination take on new dimensions. Problem
solving is viewed in a much broader way, which combines modeling
processes and creativity-enhancing programs. Evaluation becomes a
qualitative rather than a quantitative issue, an affective-oriented
search rather than a performance-oriented one. Thus, the
monitoring system must take into account some new indicators.

The issue of which indicators may be used in a qualitative,
affective-oriented evaluation system is a fundamental one when we
shift from traditional problem solving to a modeling approach. A
very imaginative proposal is implicit in an analysis of detectives'
behavior by Umberto Eco and Thomas A. Sebeok (1983) when they add
abductive reasoning to general considerations of reasoning
processes. While discussions about problem solving focus on
inductive-deductive modes of thinking, abduction, which may be
conceptualized as a conjecture about reality which needs to be
validated through testing, seems to be a basic component of an
effort to deal with a real situation. According to Charles S.
Pierce, abduction, together with induction and deduction, is an
essential mode of the cognitive process. Although much progress
has been made in our understanding of the human mind since the
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times of James and Pierce, their approach to reasoning seems to be
quite suitable to our understanding of the mind-body processes.

Particularly appealing for renewed mathematical education is
evidence gathered by sociologists, who propose a new vision of the
cultural phenomenon. Charles J. Lumsden and Edward O. Wilson
(1981) try to understand culture through a sequence of components
they call learning, imitation, teaching, and reification. All but
reification appear in several species. Reification, i.e., "the
mental activity in which hazily perceived and relatively intangible
phenomena, such as complex arrays of objects or activities, are
given a fictitiously concrete form, simplified, and labeled with
words or other symbols" (p. 381) is solely characteristic of human
beings.

Putting this together, we see that Lumsden and Wilson, and
before them Pierce, recognized codification processes acquired
through psychological mechanisms that run contrary to the linear
structure which characterizes and underlies mathematics education.
The codes are acquired through a reificative process and then
"stored" for further use in different situations. Among these
codes is mathematics. In fact, both suggest that it would be best
to immerse children in an environment where mathematical challenge
comes naturally. Similarly, the work of Amabile (1983), the
psycho-pedagogical framework implicit in the LOGO proposal (Papert,
1980), the message cf The Education of Henry Adams, and the roots
of Dewey's pedagogical thought agree with this approach.

In bringing these considerations to bear on the practice of
mathematics in schools, emphasis should be shifted to "really real"
situations. Projects of a global nature, such as building a cabin,
mapping a town or assessing the water consumption of a community,
provide situations which will require modeling and problem posing.
Problem solving occurs as a consequence; it acquires meaning, and
its solution makes sense. A methodology which can be traced back
to Eliot Wigginton's experiment, as particularly seen in Foxfire 6,
takes into account the child's own environment and starts with
"fact finding," which is gathering information about a situation.
The method proceeds through modeling and finally ends with
"realization," the transformation of the result into action or
objects. This is based on a cycle of reality - individual - action
- reality, discussed in earlier works (D'Ambrosio, 1985a).

This is unmistakeniy an open, activities-oriented approach to
mathematics education, which draws on the environment, thus relying
on previous knowledge. This leads to what I have labeled
ethnomathematics, which restores mathematics as a natural, somewhat
spontaneous, practice. Although research on the influence of
previous ideas on the experimental approach to science education is
frequently cited, mainly by the Piagetian achool (see for example,
Marmeche, Meheut, Sere & Weil-Barais, 1985), efforts in mathematics
education to identify ethnomathematicai practices and to recognize
them as valuable background are relatively recent. The advantages
of building up on the transition from an ethnomathamatica] practice
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to a formal approach is as yet unexplored and remains largely
ignored.

From these considerations, I pass to another set of issues
that refers to differences in exposure to mathematics by race, by
social class, and by sex, and investigates how these differences
are reflected in the level of performance, attitudes, enrollment,
and use of mathematics.

DIFFERENTIATED CURRICULA

These issues have been the subject of much emphasis during the
last two decades. Indeed, evidence has been gathered on the
relatively low mathematics achievement of girls, of blacks, of
Native Americans and other groups. Some explanations have hinted
at a gender or racial inability to perform well mathematically;
such a conclusion has been rejected by all sectors involved. Other
explanations point to a social structure intentionally aimed at
depriving women and certain ethnic and cultural groups of a full
mathematics education. Of course, this theory fits into a social
model of male domination in a culture in which power through
knowledge limits social leadership to those with a better
mathematical background. This is the prevailing position in every
school system, and as a consequence schools aim to provide the same
mathematics education to all students, assuming first that all
students will be able to absorb equally well this form of
knowledge, which seems to be correct to the Lest of our
understanding of learning and teaching dynamics, Second, this
approach assumes that mathematics fits lilt° the mind structure of
the human species, which has mathematics 7aueprinted in it. This

is Kantian apriorism, which has prevailed in the philosophy of
math-natics any %as its reflection in the totality of mathematics
education.

New approaches to the: nature of mathematical knowledge, as,
for example, in Kitcher (1983), and the growing attention being
given to ethnomathematics open a new and broad area of research in
the anthropological approach to mathematics, which is loaded with
constructions deriving from psycho-emotional and cultural issues.
Consequently, some topics of mathematics which draw upon psycho-
emotional and cultural motivation will naturally be met with
differing levels of enthusicsm by woman, blacks, and the poor
independently of the level of exposure. For example, certain
mathematics chapters have more appeal to women than do others; some
are more attractive to the middle class than are others; some
appeal to white, Protestant teenage boys, and so on. What is
undesirable, and should be avoided, is the valuation in the school
systems of one kind of mathematics over others. Of course, this is
a very touchy issue, %ut research such as that carried. on by
Ethington and Wolfe (1986) cannot oe disregarded. The new
scholarship on women very clearly leads to a more creative
approach, which does not ignore differences in interest or in
psychological development. As Maher and Rathbone (1986) put it,
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"The essential error has not been in seeing female behavior as
different but in judging them as inferior" (p. 222).

This is how ethnomathematics comes into the picture. In this
context, the problem implicit when I ask about some children
receiving more or different exposure to content than others as a
consequence of race, of social class, of gender is a false problem.
The issue instead resides in valuing one kind of mathematics over
others. Explicitly, by bringing into the classroom mathematics
that is closely related to activities more appealing to young
girls, the performance of these girls should improve relative to
their performance on problems related to typical boys' activities.
The same happens when drawing on cultural issues, as with some
aspects of mathematics which touch on the racial or religious
backgrounds of some children, for example. Much research is needed
in understanding different reactions of children to these issues.
Research is scarce because of the mistaken trend towards a single
mathematics program for all students that has prevailed in the last
decades. Most probably, the observed differences in performance by
girls or blacks are due to sociocultural background, although
research has not eliminated the issue of a genotypical influence or
differentiated neuronal assemblies. As "taboo" as this subject may
be, research such as that carried on by Benbow and Stanley (1983),
or reported in the Dahlem conference (Conference, 1985), must be
critically examined.

In any case, the key issue is to provide a multiplicity of
directions and diversified curricula to best suit the different
psycho-emotional and cultural patterns of children. Very much in
line with Howard Gardner's theory of multiple intelligences (1983),
the multiplicity and diversity of mathematical experiences lead to
curricula based on situations; this agrees with the general
approach implicit in the work of Amabile (1983) and in
creativity-enhancing projects. Again, I return to the modeling of
real situations as the most adequate method to deal with such
diversities.

OTHER THAN UTILITARIAN VALUES IN MATH EDUCATION

Naturally, the discussion in the previous section implies the
recognition of values in mathematics education that are on equal
standing with its utilitarian value. Indeed, in many cases, the
cultural and esthetic values, which imply how mathematical ideas
are formed, are even more important. The utilitarian value, which
has become prevalent in the last hundred years, had been left
throughout history to other domains of education. As I have
discussed (D'Ambrosio 1979, 1980), utilitarian views of mathematics
existed simultaneously with academic mathematics, until the epoch
of the big changes which resulted from the great social and
political new directions of the last century. It is clear that the
imbalance between utilitarianism and other values that has occurred
in the last hundred years has caused a dehumanization of science,
technology, and society as a whole. It is time we restore the
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humanistic focus to general education, to education for all, and
hence to mathematics for all.

Consequently, the quality of the mathematics curriculum,
considered with respect to sex, race, social class or in any
international comparison with the curriculum in other countries,
must be confronted in a different way. Quality is assessed not
merely by performance, attitudes, or enrollment--and even less by
analysis of the content of curriculum on the three levels usually
considered: intended, implemented, attained. Not only does
curriculum analysis lead to false evaluation of the system, but it
masks components of social injustice and discrimination by sex, by
race, and by social class.

In advocating recognition of the ethnomathematical focus on
the curriculum, I am implicitly recognizing mathematics as a system
of codification that allows describing, dealing, understanding, and
managing reality. This is attached to a broad concept of the
definition of knowledge vis-a-vis reality (D'Ambrosio 1985b,
1986). These codes go through two distinct processes: one derived
from family and peer groups, and one whose institutionalization is
loose and as yet not clearly understood. Both belong to the domain
of anthropologists and have recently entered into the consideration
of school systems. As yet there has been a resistance to look into
these issues in American school systems. These ethnomathematics
considerations--of course there are numerous ethnomathematics--are
close to what Basil Bernstein (1971) calls the "restricted code,"
as contrasting with the "elaborated code," when dealing with
language, or what Ivan Illich (1982) calls "vernacular" language or
universe.

A few characteristics of ethnomathematics should be stressed:

1. It is limited in technique since it draws on narrow
resources. On the other hand, its creative component
is strong, since it is not bound to formal rules
obeying criteria unrelated to the situation.

2. Although it is broader than ad hoc knowledge, it is
context bound, and therefore particularistic contrary
to the universalistic character of mathematics, which
claims, and ideally aims, to be context-free.

3. It operates through metaphors and systems symbols which
are psycho-emotionally related, while mathematics operates
with symbols that are condensed in a rational way.

Of course, this leads to a hierarchization of transmission of
knowledge and to the fundamental issue of legitimation knowledge.
While ethnomathematics draws much of its validity from how it works
in a given situation or whether it fits an individual's overall
view of the world, mathematics draws its authority from a
sequential hierarchization, starting with authority of the teacher,
reaching finally the authority of rational thought through the
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authority of the written and printed word. This rationalistic goal
leaves in its wake values that are rooted in the cultural context
to which ethnomathematics is a natural codification. To face
mathematics education in such a way that it embodies the child's
value and culture, i.e., his/her ethnomathematics, seems to be a
desirable road to a more humanistic version of rationalism.

The step from ethnomathematics to mathematics can be seen as
similar to the step from oral to written language. Written
language (reading and writing) builds on the knowledge of oral
expression already possessed by the child, and the introdu.:tion of
written language does not suppress oral language.

To understand and respect ethnomathematical practices opens up
a vast potential for a sense of inquiring, a recognition of
specific parameters, and a feeling for the global equilibriur of
nature. Yet, in the school system, in all levels of scholarly and
professional life, ethnomathematical practices are devalued, and in
most cases considered irrelevant to mathematical knowledge.

I have referred to scholarly and professional life. Let me
clarify this by extending the concept of ethnomathematics to higher
levels of knowledge such as phys-Lzs, engineering, biology, and so
on. People like Paul Dirac, in introducing the "delta function,"
can be identified as an ethnomathematician, and the calculus
practiced by most engineers, physicists and biologists fits into
what we might call ethnocalculus. Sylvanus Thompson, when writing
his Calculus Made Easy in 1919, was indeed putting ethnomathematics
into print. The examples at this level could be multiplied.
Regretably, at the children's level this form of knowledge does not
have enough strength to be noticeable to the point of publication.
The school systems, which are essentially centered in curriculum
and in performance to achieve it, eliminate ethnomathematics.
Besiles the published works of Lacey (1983), Lave (1981), and
Saxe , recent work being conducted in several countries is
beginning to appear in print.

CONCLUSION

Let me finally address the difficulty of establishing a
monitoring system which will be able to measure the health of the
mathematics education system in its cultural, esthetical and
formative values, and for which the utilitarian value is defined as
the ability to deal with "really real" situations. Cultural,
esthetic and formative aspects of education need special tools for
assessment. A respectful and dignifying vision of one's own being

1
Reference in Newsletter of the International Study Group on

Ethnomathematics, Patrick J. Scott, Editor, University of New
Mexico, College of Education, Albuquerque, New Mexico.
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(a major issue in cultural aspects) cannot be measured directly,
and formative or esthetic values are hardly weighed. But surely
instruments to assess the effectiveness of such values and cultural
aspects during the educational experience must be developed.

Parameters that relate to enrollment figures and possibly to
classroom affective attitude will easily be developed in the
monitoring system. With respect to the utilitarian values, which
see best achieved through global projects, new schemes assessing
participation, involvement, and reporting must be devised.
Reporting, participation and involvement seem to provide a good
strategy; again, we see Foxfire (Wigginton, 1980) as a model.

The description in this paper of the desirable components of a
monitoring system departs substantially from current evaluation
practices and reflects an inclination toward the elimination of
traditional exams, tests, and similar practices in the school
systems. These forms of assessment should be replaced )y others
focused on individual, less competitive, growth.
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CHAPTER 8

CURRENT TRENDS IN MATHEMATICS AND FUTURE TRENDS
IN MATHEMATICS EDUCATION

Peter Hilton

My intention in this talk is to study, grosso modo, the
dominant trends in present-day mathematics, and to draw from this
study principles that should govern the choice of content and style
in the teaching of mathematics at the secondary and elementary
levels. Sr . of these principles will be time-independent, in the
sense that they should always have been applied to the teaching of
mathematics; others will be of special application to the needs of
today's and tomorrow's students and will be, in that sense, n' i.
The principles will be illustrated by examples in order to avoid
the sort of frustrating vagueness that often accompanies even the
most respectable recommendations (thus, "problem solving must be
the focus of school mathematics in the 1980s," NCTM, 1980, p. 2).

However, before embarking on a talk intended as a contribution
to the discussion of how to achieve a successful mathematical
education, it would be as well to make plain what are our criteria
of success. Indeed, it would be as well to be clear what we
understand by successful education, since we would then be able to
derive the indicated criteria by specialization.

Let us begin by agreeing that a successful education is one
that conduces to a successful life. However, there is a popular,
persistent and paltry view of the successful life which we must
immediately repudiate. This is the view that success in life is
measured by affluence and is manifested by power and influence over
others. It is very relevant to my theme to recall that, when Queen
Elizabeth was recently the guest of President and Mrs. Reagan in
California, the "successes" who were gathered together to greet her
were not Nobel prizewinners, of which California may boast
remarkably many, but stars of screen and television. As the London
Times described the occasion, "Queen dines with celluloid royalty."
It was apparently assumed that the company of Frank Sinatra,
embodying the concept of success against which I am inveighing,
would be obviously preferable to that of, say, Linus Pauling.

1. The text of a talk to the Canadian Mathematics Education Study
Group at the University of British Columbia in June 1983.
Reprinted from For the Learning of Mathematics 4, 1 (February
1984), pp. 2-8. FLM Publishing Association, Montreal, Quebec,
Canada.
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The Reaganist-Sinatrist view of success contributes a real
threat to the integrity of education; for education should
certainly never be expected to conduce to that kind of success. At

worst, this view leads to a complete distortion of the educational
process; at the very least, it allies education far too closely to
specific career objectives, an alliance which unfortunately uas the
support of many parents naturally anxious for their children's
success.

We would replace the view we are rejecting by one that
emphasizes the kind of activity in which an individual indulges,
and the motivation for su indulging, rather than his, or her,
accomplishment in that activity. The realization of the
individual's potential is surely a mark of success in life.
Contrasting our view with that which we are attacking, we should
seek power over ourselves, not over other people; we should seek
the knowledge and understanding to give us power and control over
things, not people. We should want to be rich but in spiritual
rather than material resources. We should want to influence
people, but by the persuasive force of our argument and example,
and not by the pressure we can exert by our control of their lives
and, even more sinisterly, of their thoughts.

It is absolutely obvious that education can, and should, lead
to a successful life, so defined. Moreover, mathematical education
is a particularly significant component of such an education. This

is true for two reasons. On the one hand, I would state
dogmatically that mathematics is one of the human activities, like
art, literature, music, or the making of good shoes, which is
intrinsically worthwhile. On the other hand, mathematics is a key
element in science and technology and thus vital to the
understanding, control, and development of the resources of the
world around us. These two aspects of mathematics, often referred
to as pure mathematics and applied mathematics, should both be
present in a well-balanced, successful mathematics education.

Let me end these introductory remarks by referring to a
particular aspect of the understanding and control to which
mathematics can contribute so much. Through our education we hope

to gain knowledge. We can only be said to really know something if

we know that we know it. A sound education should enable us to
distinguish between what we know and what we do not know; and it i

a deplorable fact that so many people today, including large
numbers of pseudosuccesses but also, let us admit, many members of
our own academic community, seem not to be able to make the
distinction. It is of the essence of genuine mathematical
education that it leads to understanding and skill; short cuts to
the acquisition of skill, without understanding, are often favored
by self-confident pundits of mathematical education, and the
results of taking such short cuts are singularly unfortunate for
the young traveller. The victims, even if "successful," are left
precisely in the position of not knowing mathematics and not
knowing they know no mathematics. For most, however, the skill
evaporates or, if it does not, it Lecomes outdated. No real
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ability to apply quantitative reasoning to a changing world has
been learned, and the most frequent and natural result is the
behavior pattern known as "mathematics avoidance." Thus does it
transpire that so many prominent citizens exhibit both mathematics
avoidance and unawareness of ignorance.

This then is my case for the vital role of a sound
mathematical education, and from these speculations I derive my
criteria of success.

Trends in Mathematics Today

The three principal broad trends in mathematics today I would
characterize as (i) variety of applications, (ii) a new unity in
the mathematical sciences, and (iii) the ubiquitous presence of the
computer. Of course, these are not independent phenomena, indeed
they are strongly interrelated, but it is easiest to discuss them
individually.

The increased variety of application shows itself in two ways.
On the one hand, areas of science, hitherto remote from or even
immune to mathematics, have become "infected." This is
conspicuously true of the social sciences, but is also a feature of
present-day theoretical Liology. It is noteworthy that it is not
only statistics and probability which are now applied to the social
sciences and biology; we are seeing the application of fairly
sophisticated areas of real analysis, linear algebra and
combinatorics, to name but three parts of mathematics involved in
this process.

But another contributing factor to the increased variety of
applications is the conspicuous fact that areas of mathematics,
hitherto regarded as impregnably pure, are now being applied.
Algebraic geometry is being applied to control theory and the study
of large-scale systems; combinatorics and graph theory are applied
to economics; the theory of fibre bundles is applied to physics;
algebraic invariant theory is applied to the study of
error-correcting codes. Thus the distinction between pure and
applied mathematics is seen now not to be based on content but on
the attitude and motivation of the mathematician. No longer can it
be argued that certain mathematical topics can safely be neglected
by the student contemplating a career applying mathematics. I

would go further and argue that there should not be a sharp
distinction between the methods of pure and applied mathematics.
Certainly such a distinction should not consist of a greater
attention to rigor in the pure community, for the applied
mathematician needs to understand very well the domain of validity
of the methods being employed, and to be able to analyze how stable
the results are and the extent to which he methods may be modified
to suit new situations.

These last points gain further significance if one looks more
carefully at what one means by "applying mathematics." Nobody
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would seriously suggest that a piece of mathematics be stigmatized
as inapplicable just because it happens not yet to have been
applied. Thus a fairer distinction than that between "pure" and
"applied" mathematics would seem to be one between "inapplicable"
and "applicable" mathematics, and our earlier remarks suggest we
should take the experimental view that the intersection of
inapplicable mathematics and good mathematics is probably empty.
However, this view comes close to being a subjective certainty if
one understands that applying mathematics is very often not a
singlestage process. We wish to study a "real world" problem; we
form a scientific model of the problem and then construct a
mathematical model to reason about the scientific or conceptual
model (Hilton & Young, 1982). However, to reason within the
mathematical model, we may well feel compelled to construct a new
mathematical model which embeds our original model in a more
abstract conceptual context; for example, we may study a particular
partial differential equation by bringing to bear a general theory
of elliptic differential operators. Now the process of modeling a
mathematical situation is a "purely" mathematical process, but it
is apparently not confined to pure mathematics! Indeed, it may
well be empirically true that it is more often found in the study
of applied problems than in research in pure mathematics. Thus we
see, first, that the concept of applicable mathematics needs to be
broad enough to include parts of mathematics applicable to some
area of mathematics which has already been applied; and, second,
that the methods of pure and applied mathematics have much more in
common than would be supposed by anyone listening to some of their
more vociferous advocates. For our purposes now, the lessons for
mathematics education to be drawn from looking at this trend in
mathematics are twofold: first, the distinction between pure and
applied mathematics should not be emphasized in the teaching of
mathematics, and second, opportunities to present applications
should be taken wherever appropriate within the mathematics
curriculum.

The second trend we have identified is that of a new
unification of mathematics. This is discussed at some length by
the National Research Council (1970), so we will not go into detail
here. We would only wish to add to the discussion by the NRC the
remark that this new unification is clearly discernible within
mathematical research itself. Up to ten years ago the most
characteristic feature of this research was the "vertical"
development of autonomous disciplines, some of which were of very
recent origin. Thus the community of mathematicians was
partitioned into subcommunities united by a ccmmon and rather
exclusive interest in a fairly narrow area of mathematics
(algebraic geometry, algebraic topology, homological algebra,
category theory, commutative ring theory, real analysis, complex
analysis, summability theory, set theory, etc., etc.). Indeed,
some would argue that no real community of mathematicians existed,
since specialists in distinct fields were barely able to
communicate with each other. I do not impute any fault to the
system which prevailed in this period of remarkably vigorous
mathematical growth--indeed, I believe it was historically
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inevitable and thus "correct"--but it does appear that these
autonomous disciplines are now being linked together in such a way
that mathematics is being reunified. We may think of this
development as "horizontal," as opposed to "vertical" growth.
Examples are the use of commutative ring theory in combinatorics,
the use of cohomology theory in abstract algebra, algebraic
geometry, functional analysis and partial differential equations,
and the use of Lie group theory in many mathematical disciplines,
in relativity theory and in invariant gauge theory.

I believe that the appropriate education of a contemporary
mathematician must be broad as well as deep, and that the lesson to
be drawn from the trend toward a new unification of mathematics
must involve a similar principle. We may so formulate it: we must
break down artificial barriers between mathematical topics
throughout the student's mathematical education.

The third trend to which I have drawn attention is that of the
general availability of the computer and its role in actually
changing the face of mathematics. The computer may eventually take
over our lives; this would be a disaster. Let us assume this
disaster can be avoided; in fact, let us assume further, for the
purposes of this discussion at anv rate, that the computer plays an
entirely constructive role in our lives and in the evolution of our
mathematics. What will then be the effects?

The computer is changing mathematics by bringing certain
topics into greater prominence--it is even causing mathematicians
to create new areas of mathematics (the theory of computational
complexity, the theory of automata, mathematical cryptology). At
the same time it is relieving us of certain tedious aspects of
traditional mathematical activity which it executes faster and more
accurately than we can. It makes it possible rapidly and
painlessly to carry out numerical work, so that we may accompany
our analysis of a given problem with the actual calculation of
numerical examples. However, when we use the computer, we must be
aware of certain risks to the validity of the solution obtained due
to such features as structural instability and round-off error.
The computer is especially adept at solving problems involving
iterated procedures, so that the method of successive
approximations (iteration theory) takes on a new prominence. On
the other hand, the computer renders obsolete certain mathematical
techniques which have hitherto been prominent in the curriculum--a
sufficient example is furnished by the study of techniques of
integration.

There is a great debate raging about the impact which the
computer should have on the curriculum (Ralston & Young, 1983).
Although I do not take sides in this debate, it is plain that there
should be a noticeable impact, and that every topic must be
examined to determine its likely usefulness in a computer age. It
is also pleb. that no curriculum today can be regarded as complete
unless it prepares the student to use the computer and to
understand its mode of operation. We should include in this
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understanding a realization of its scope and its limitations; and
we should abandon the fatuous idea, today so prevalent in
educational theory and practice, that the principal purpose of
mathematical education is to enable the child to become an
effective computer even if deprived of all mechanical aids!

Let me elaborate this point with the following table of
comparisons. On the left I list human attributes and on the right
I list the contrasting attributes of a computer when used as a
calculating engine. I stress this point because I must emphasize
that I am not here thinking of the computer as a research tool in
the study of artificial intelligence. I should also add that I am
talking of contemporary human beings and contemporary computers.
Computers evolve very much faster than human beings so that their
characteristics may well undergo dramatic change in the span of a
human lifetime. With these caveats, let me display the table.

HUMANS

Compute slowly and inaccurately.

Get distracted.

Are interested in many things at
the same time.

Sometimes give up.

Are often intelligent and
understanding.

Have ideas and imagination,
make inspired guesses, think.

COMPUTERS

Computer fast and accurately.

Are remorseless, relentless and
dedicated.

Always concentrate and cannot
be diverted.

Are incurably stubborn.

Are usually pedar.-ic and rather
stupid.

Can execute "IF...ELSE"
instructions.

It is an irony that we seem to teach mathematics as if our
objective were to replace each human attribute in the child by the
corresponding computer attribute--and this is a society nominally
dedicated to the development of each human being's individual
capacities. Let us agree to leave to the computer what the
computer does best and to design the teaching of mathematics as a
generally human activity. This apparently obvious principle has
remarkably significant consequences for the design of the
curriculum, the topic to which we now turn.

The Secondary School Curriculum

Let us organize this discussion around the "In and Out"
principle. That is, we will list the topics which should be "In"
or strongly emphasized, and the topics which should be "Out" or
very much underplayed. We will also be concerned to recommend or
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castigate, as the case may be, certain teaching strategies and
styles. We do not claim that all our recommendations are strictly
contemporary, in the sense that they are responses to the curre-'.
prevailing changes in mathematics and its uses; some, in parti,
those devoted to questions of teaching practice, are of a lasting
nature and should, in my judgment, have been adopted long since.

We will present a list of "In" and "Out" items, followed by
commentary. We begin with the "Out" category, since this is more
likely to claim general attention; and within the "Out" category we
first consider pedagogical techniques.

OUT (Secondary Level)

1. Teaching Strategies
Authoritarianism
Orthodoxy

Pointlessness
Pie-in-the-sky motivation

2. Topics

Tedious hand calculations
Complicated trigonometry
Learning geometrical proofs
Artificial "simplifications"
Logarithms as calculating devices.

Commentary

There should be no need to say anything further about the
evils of authoritarianism and pointlessness in presenting
mathematics. They disfigure so many teaching situations and are
responsible for the common negative attitudes towards mathematics
which regard it as unpleasant and useless. By orthodoxy we intend
the magisterial attitude which regards one "answer" as correct and
all others as (equally) wrong. Such an attitude has been
particularly harmful in the teaching of geometry. Instead of being
a wonderful source of ideas and of questions, geometry must appear
to the student required to set down a proof according to rigid and
immutable rules as a strange sort of theology, with prescribed
responses to virtually meaningless propositions.

Pointlessness means unmotivated mathematical process. By
"pie-in-the sky" motivation we refer to a form of pseudomotivation
in which the student is assured that, at some unspecified future
date, it will become clear why the current piece of mathematics
warrants learning. Thus we find much algebra done because it will
be useful in the future in studying the differential and integral
calculus - -Just as much strange arithmetic done at the elementary

level can only be justified by the student's subsequent exposure to
algebra. One might perhaps also include here the habit of
presenting to the student applications of the mathematics being
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learned which could only interest the student at a later level of
maturity; obviously, if an application is to motivate a student's
study of a mathematical topic, the application must be interesting.

With regard to the expendable topics, tedious hand
calculations have obviously been rendered obsolete by the
availability of calculators and minicomputers. To retain these
appalling travesties of mathematics in the curriculum can be
explained only by inertia or sadism on the part of the teacher and
curriculum planner. It is important to retain the trigonometric
functions (especially as functions of real variables) and their
basic identities, but complicated identities should be eliminated
and tedious calculations reduced to a minimum. Understanding
geometric proofs is very important; inventing one's own is a
splendid experience for the student; but memorizing proofs is a
suitable occupation only for one contemplating a monastic life of
extreme asceticism. Much ti :e is currently taken up with the
student processing a mathematical expression which came from
nowhere, involving a combination of parentheses, negatives, and
fractions, and reducing the expression to one more socially
acceptable. This is absurd; but, of course, the student must learn
how to substitute numerical values for the variables appearing in a
natural mathematical expression.

Let us now turn to the positive side. Since, as our first
recommendation below indicates, we are proposing an integrated
approach to the curriculum, the topics we list are rather of the
form of modules than full-blown courses.

IN (Secondary Level)

1. Teaching Strategies
An integrated approach to the curriculum, stressing
the interdependence of the various parts of
mathematics
Simple application
Historical references
Flexibility
Exploitation of computing availability

2. Topics
Geometry and algebra (e.g., linear and quadratic
functions, equations inequalities)
Probability and statistics
Approximation and estimation, scientific notation
Iterative procedures, successive approximation
Rational numbers, ratios and rates
Arithmetic mean and geometric mean (ani harmonic
mean)

Elementary number theory
Paradoxes
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Commentary

With respect to teaching strategies, our most significant
recommendation is the first. (I do not say it is the most
important, but it is the most characteristic of the whole tenor of
this article.) Mathematics is a unity, albeit a remarkably subtle
one, and we must teach mathematics to stress this. It is not true,
as some claim, that all good mathematics--or even all applicable
mathematics--has arisen in response to the stimulus of problems
coming from outside mathematics; but it is true that all good
mathematics has arisen from the then existing mathematics,
frequently, of course, under the impulse of a "real world" problem.
Thus mathematics is an interrelated and highly articulated
discipline, and we do violence to its true nature by separating
it--for teaching or research purposes--into artificial watertight
compartments. In particular, geometry plays a special role in the
history of human thought. It represents man's (and woman's!)
primary attempt to reduce the complexity of our three-dimensional
ambience to one-dimensional language. It thus reflects our natural
interest in the world around us, and its very existence testifies
to our curiosity and our search for patterns and order in apparent
chaos. We conclude that geometry is a natural conceptual framework
for the formulation of questions and the presentation of results.
It is not, however, in itself a method of answering questions and
achieving results. This role is preeminently played by algebra.
If geometry is a source of questions and algebra a means of
answering them, it is plainly ridiculous to separate them. How
many students have suffered through algebra courses, learning
methods of solution of problems coming from nowhere? The result of
such compartmentalized instruction is, frequently and reasonably, a
sense of futility and of the pointlessness of mathematics itself.

The good sense of including applications and, where
appropriate, references to the history of mathematics is surely
self-evident. Both these recommendations could be included in a
broader interpretation of the thrust toward an integrated
curriculum. The qualification that the applications should be
simple is intended to convey both that the applications should not
involve sophisticated scientific ideas not available to the
students--this is a frequent defect of traditional "applied
mathematics"--and that the applications should be of actual
interest to the student, and not merely important. The notion of
flexibility with regard co the curriculum is inherent in an
integrated approach; it is obviously inherent in the concept of
good teaching. Let us admit:, however, that it can only be achieved
if the teacher is confident in his, or her, mastery of the
mathematical content. Finally, we stress as a teaching strategy
the use of the calculator, the minicomputer and, where appropriate,
the computer, not only to avoid tedious calculations but also in
very positive ways. Certainly we include the opportunity thus
provided for doing actual numerical examples with real-life data,
and the need to re-examine the emphasis we give to various topics
in the light of computing availability. We mention here the matter
of computer-aided instruction, but we believe that the advantages
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of this use of the computer depend very much on local
circumstances, and are more likely to arise at the elementary
level.

With regard to topics, we have already spoken about the link
between geometry and algebra, a topic quite large enough to merit a
separate article. The next two items must be in the curriculum
simply because no member of a modern industrialized society can
afford to be ignorant of these subjects, which constitute o...r
principal day-to-day means of bringing quantitative reasoning to
bear on the world around us. We point outs in addition, that
approximation and estimation techniques are essential for checking
and interpreting machine calculations.

It is my belief that much less attention should be paid to
general results on the convergence of sequences and series, and
much more on euestions related to the rapidity of convergence and
the stability of the limit. This applies even more to the tertiary
level. However, at the secondary level, we should be emphasizing
iterative procedures since these are so well adapted to computer
programming. Perhaps the most important result--full of
interesting applications--is that a sequence {x }, satisfying x
= ax

n
+ b, converges to b/(1 - a) if 'al< 1 andndiverges if t

(For one application, see Hilton & Pedersen, 1983a.) It is
probable that the whole notion of proof and definition by induction
should be recast in "machine" language for today's student.

The next recommendation is integrative in nature, yet it
refers to a change which is long overdue. Fractions start life as
parts of wholes and, at a certain stage, come to represent amounts
or measurements and therefore However, they are not
themselves numbers: the numbers they represent are rational
numbers. Of course, one comes to speak of them as numbers, but
this should only happen when one has earned the right to be sloppy
by understanding the precise nature of fractions (Hilton, 1983).
If rational numbers are explicitly introduced, then it becomes
unnecessary to treat ratios as new and distinct quantities. Rates
also may then be understood in the context of ratios and
dimensional analysis. However, there is a further aspect of the
notion of rate which it is important to include at the secondary
level. I refer to average rate of change and, in particular,
average speed. The principles of grammatical construction suggest
that, in order to understand the composite term "average speed" one
must understand the constituent terms "average" and "speed". This
is quite false; the term "average speed" is much more elementary
than either of the terms "average" or "speed" and is not, in fact,
their composite. A discussion of the abstractions "average" and
"speed" at the secondary level would be valuable in itself and an
excellent preparation for the differential and integral calculus.

Related to the notion of average is, of course, that of
arithmetic mean. I strongly urge that there be, at the secondary
level, a very full discussion of the arithmetic, geometric and
harmonic means and of the relations between them. The fact that
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the arithmetic mean of the non-negative quantities a
1

, a
2
,..., a

nis never less than their geometric mean and that equality occurs
precisely when al = a2 = = an, may be used to obtain many
maximum or minimum results which are traditionally treated as
applications of the differential calculus of several variables.

Traditionally, Euclidean geometry has been held to justify its
place in the secondary curriculum on the grounds that it teaches
the student logical reasoning. This may have been true in some
Platonic academy. What we can observe empirically today is that it
survives in our curriculum in virtually total isolation from the
rest of mathematics; that it is not pursued at the university; and
that it instills, in all but the very few, not a flair for logical
reasoning but distaste for geometry, a feeling of pointlessness,
and a familiarity with failure. Again, it would take a separate
article (at the very least) to do justice to the intricate question
of the role of synthetic geometry in the curriculum. Here, I wish
to propose that its hypothetical role can be assumed by a study of
elementary number theory, where the axiomatic system is so much
less complex than that of plane Euclidean geometry. Moreover, the
integers are very "real" to the student and, potentially,
fascinating. Results can be obtained by disciplined thought, in a
few lines, that no high-speed computer could obtain, without the
benefit of human analysis, in the student's lifetime.

6
e.g., (7

10) 12
= 1 mod 13

Of course, logical reasoning should also enter into other parts of
the curriculum; of course, too, synthetic proofs of geometrical
propositions should continue to play a part in the teaching of
geometry, but not at the expense of the principal role of geometry
as a source of intuition and inspiration and as a means of
interpreting and understanding algebraic expressions.

My final recommendation is also directed to the need for
providing stimulus for thought. Here I understand, by a paradox, a
result which conflicts with conventional thinking, not a result
which is self-contradictory. A consequence of an effective
mathematical education should be the inculcation of a healthy
scepticism which protects the individual against the blandishments
of self-serving propagandists, be they purveyors of perfumes,
toothpastes, or politics. In this sense a consideration of
paradoxes fully deserves to be classified as applicable
mathematics! An example of a paradox would be the following:
Students A and B must submit to twenty tests during the school
term. Up to half term, student A had submitted to twelve tests and
passed three, while student B had submitted to six tests and passed
one. Thus, for the first half of the term, A's average was
superior to B's. In the second half of the term, A passed all the
remaining eight tests, while B passed twelve of the remaining
fourteen. Thus, for the second half of the term, A's average was
also superior to B's. Over the whole term, A passed eleven tests
out of twenty, while B passed thirteen tests out of twenty, giving

a substantially better average than A.
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The Elementary School Curriculum

This article (like the talk itself!) is already inordinately
long. Thus I will permit myself to be much briefer with my
commentary than in the discussion of the secondary curriculum,
believing that the rationale for my recommendations will be clear
in the light of the preceding discussion and the reader's own
experience. I will again organize the discussion on the basis of
the "In" and "Out" format, beginning with the "Out" list.

OUT (Elementary Level)

1. Teaching Strategies
Just as for the secondary level
Emphasis on accuracy

2. Topics
Emphasis on hand algorithms

Emphasis on addition, subtractiun, division and
the order relation with fractions
Improper work with decimals

Commentary

The remarks about teaching strategies are, if anything, even
more important a' the elementary level than the secondary level.
For the damage done by the adoption of objectionable teaching
strategies at the elementary level is usually ineradicable, and
creates the mass phenomenon of "math avoidance" so conspicuous in
present-day society. On the other hand, one might optimistLcally
hope that the student who has received an enlightened elementary
mathematical education and has an understanding and an experience
of what mathematics can and should be like may be better able to
survive the rigors of a traditional secondary instruction if
unfortunate enough to be called upon to do so, and realize that it
is not the bizarre nature of mathematics itself which is

responsible for his, or 'Aer, alienation from the subject as taught.

With regard to the topics, I draw attention to the pririacy of
multiplication as the fundamental arithmetical operation with
fractions. For the notion of fractions is embedded in our language
and thus leads naturally to that of a fraction of a fraction. The
arithmetical operation which we perform to calculate, say, 3/5 if
1/4 we define to be the product of the fractions concerned. Some
work should be done with the addition of elementary fractions, but
only with the beginning of a fairly systematic study of elementary
probability theory should addition be given much prominence.
Incidentally, it ie worth remarking that in the latter context, we
generally have to add fractions which have the same
denominator--unless we have been conditioned by prior training
mindlessly to reduce any fraction which comes into our hands.
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Improper work with decimals is of two kinds. First, I deplore
problems of the kind 13.7 + 6.83, which invite error by
misalignment. Decimals represent measurements: if two
measurements are to be added, they must be in the same units, and
the two measurements would have been made to the same degree of
accuracy. Thus the proper problem would have been 13.70 + 6.83,
and no difficulty would have been encountered. Second, I deplore
problems of the kind 16.1 x 3.7, where the intended answer is
59.57. In no reasonable circumstances can an answer to two places
of decimals be justified; indeed all one can say is that the answer
should be between 58.58 and 60.56. Such spurious accuracy is
misleading and counterproductive. It is probably encouraged by the
usual algorithm given for multiplying decimals (in particular, for
locating the decimal point by counting digits to the right of the
decimal point); it would be far better to place the decimal point
by estimation.

Again, we turn to the positive side.

IN (Elementary Level)

1. Teaching Strategies
As for the secondary level

Employment of confident, capable and enthusiastic
teachers

2. Topics

Numbers for counting and measurement--the two
arithmetics

Division as a mathematical model in various contexts.
Approximation and estimation
Averages and statistics
Practical, informal geometry
Geometry and mensuration; geometry and probability
(Monte Carlo method)

Geometry and simple equations and inequalities
Negative numbers in measurement, vector addition
Fractions and elementary probability theory
Notion of finite algorithm atd ive definitiGn
(informal)

Commentary

Scme may object to ouz. irclusir:n uf Leacner requir;,ment
among the "teaching stretegi oeheas nty pezbaps object to its
omission at the secondary 'tfk kind i, appropriate, indeed
necessary, to include than cmly to stress how
absolutely essential the pod tea,:her. :0 to success at the
elementary level, but air° to 1n4icate our disagreement with the
proposition, often propounded today, that it is possible, e.g. with
computer-aided instruction to design a "teacher-proof" curriculum.
The good, capable teac:-r can never be replaced; unfortunately,
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certain certification procedures in the United States do not
reflect the prime importance of mathematical competence in the
armory of the good elementary teacher.

We close with a few brief remarks on the topics listed. It is

an extraordinary triumph of human thought that the same system can
be used for counting and measurement--but the two arithmetics
diverge in essential respects--of course, in many problems both

arithmetics are involved. Measurements are inherently imprecise,
so that the arithmetic of measurement is the arithmetic of
approximation. Yes, 2 + 2 = 4 in counting arithmetic; but 2 + =

4 with a probability of 3/4 if we are dealing with measurement.

The separation of division from its context is an appalling
feature of traditional drill arithmetic. This topic has been
discussed elsewhere (Hilton & Pedersen, 1983b); here let it suffice
that the solution to the division problem 1000 I- 12 should depend
on the context of the problem and not the grade of the student.

Geometry should be a thread running through the student's
entire mathematical education--we have stressed this at the
secondary level. Here we show how geometry and graphing can and
should be linked with key parts of elementary mathematics. We

recommend plenty of experience with actual materials (e.g., folding
strips of paper to make regular polygons and polyhedra), but very
little in the way of geometric proof. Hence we recommend
practical, informal geometry, within an integrated curriculum.

We claim it is easy and natural to introduce negative numbers,
and to teach the addition and subtraction of integers--motivation
abounds. The multiplication of negative numbers (like the addition
'f fractions) can and shculd be postponed.

As we have said, multiplication is the primary arithmetical
operation on fractions. The other operations should be dealt with
in context--and probability theory provides an excellent context

for the addition of fractions. It is however, not legitimate to

drag a context in to give apparent justification for the inclusion,
already decided on, of a given topic.

The idea of a finite algorithm, and that of a recursive
definition, are central to computer programming. Such ideas will

need to be clarified in the mathematics classroom, since nowhere
else in the school will responsibility be taken. However, it is
reasonable to hope that today's students will have become familiar
with the conceptual aspects of the computer in their daily
lives--unless commercial interests succeed in presenting the
microcomputer as primarily the source of arcade games.

2. If AB = 2 ins., and BC = 2 ins., each to the nearest inch, then
AC = 4 ins. to the nearest inch with a probability of 3/4.
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But this is just one aspect of the general malaise of our
contemporary society, and deserves a much more thorough treatment
than we can give it here. It is time to rest my case.
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CHAPTER 9

THE EFFECTS OF A NEW COLLEGE MATHEMATICS
CURRICULUM ON HIGH SCHOOL MATHEMATICS

Stephen B. Maurer

The title is too narrow by half. It suggests the influence
goes all one way, with changes at the college level filtering down
to the secondary school. Perhaps, in the long run, that will be
true, but in the short run, to the extent that the interface
between the two levels is now carefully synchronized, what is
presently taught at one level constrains what changes can be made
at the other. Even in the long run, if changes at the college
level demand major changes for which secondary teachers are not
ready because of training and philosophy, then changes at the
secondary level will be very slow.

To summarize the arguments below: High schools are now
teaching very little of the discrete mathematics material this
conference proposes students should learn. In that sense, colleges
have a free hand to teach this material in the first two
undergraduate years and need not worry about what is done with this
material in high schools. Every college professor has at some time
thought, "I wish the high schools didn't teach calculus; the little
bit the students learn just messes them up." Whether or not such
thoughts are fair, there will be no cause for similar thoughts
about discrete mathematics, at least in the short run. Professors
can--indeed will have to--start teaching discrete mathematics from
scratch. On the other hand, if the current calculus sequence is
replaced by an integrated calculus and discrete sequence, the whole
current advanced placement program will be thrown into disarray,
and both high school students and high school teachers will be very
unhappy. If calculus were replaced entirely as a subject in the
first two undergraduate years, the cons,..ernation and disarray would
be all the greater--but this is very unlikely.

1. This chapter originally appeared in The Future of College
Mathematics: Proceedings of a Conference/Workshop on the First Two
Years of College Mathematics, edited by Anthony Ralston and Gail S.
Young (New York: Springer-Verlag, L983), pp. 153-175, and is
reprinted with 'emission.

I would like to thank the following people for helpful
conversations and valuable written comments on an earlier draft:
David Glatzer, Chancey Jones, David Levine, Dick Pieters, Tony
Ralston, Cindy Schmalzreid, Irene Williams, and Martha Zelinka.
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However, secondary teachers are aware that new sorts of
mathematics and new applications have become important, and they
are already hoping to include some of this in their curricula in
the 1980s. In particular, computing and simple applications of
elementary mathematics to social and management sciences are
already widespread. This provides an opportunity for discrete
mathematics to come into the secondary curriculum. To some extent,
what is needed to lay the groundwork in high school for the later
study of discrete mathematics (so that professors need not start
entirely from scratch) is for schools to do a better job with
precalculus topics; students and teachers often rush through this
material to get to calculus. However, it is also vital that these
topics be taught with an algorithmic viewpoint and with somewhat
revised emphasis; the need for this change--even the nature of this
change--is barely perceived at the secondary school level.

In the short run, then, we must be very careful about how we
introduce a new college curriculum, lest we rend asunder the ties
between high school and college mathematics. In the long run,
however, there are excellent opportunities for making the two
levels fit together at least as they do now, if changes are
carefully thought out and energetically pursued.

The Short Run: How the High School Curriculum Constrains
Collegiate Mathematics Change

What mathematics is taught in the high schools now? Pretty
much the same things as were taught 20 years ago, when I went to
high school, and 10 years ago, when I taught high school. To be
sure, there have been many innovations since, but most have fallen
by the wayside. The standard program today (but hardly universal)
for students who continue mathematics in college is:

9th grade - algebra I, which go'- through quadratic
equations.

10th grade - geometry, a fairly traditional Euclidean version,
mostly in two dimensions and mostly with
two-column proofs.

11th grade - algebra II.
12th grade - precalculus.

What is in this precalculus course? It varies a lot, but
according to Martha Zelinka of the Weston, Massachusetts, schools,
it contains "everything the students should have learned before but
didn't, and everything the teachers should have taught before but
didn't." In addition to a lot of review, the course covers
coordinate geometry, especially of conics, functions and relations;
exponential, logarithmic and circular functions; perhaps vector
geometry; permutations, combinations and elementary probability;
sequences and series; and elementary theory of equations.

Able student3 generally take these courses during their first
three years of high school, and take a calculus course in the
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senior year, usually equivalent to half a year of college calculus,
but sometimes equivalent to a full year.

It is important to point out what is not included above.
Algebra still consists mainly of learning certain methods of
simplification which solve certain traditional problems. Little is
taught about proof in algebra. In particular, the viewpoint is not
emphasized enough that algebra is the means of manipulating
expressions into whatever form (simpler or more complex) is needed
for the desired conclusion. There is little taught about algebraic
structures or mathematical induction--and if it is taught, it is
taught with the same narrow set of examples used in the past.
Students continue to think that induction is a special method for
proving summation formulas. They are not taught that it is the
fundamental method for proving just about everything in discrete
mathematics.

When combinatorics is taught, it consists of traditional
counting problems solvable with permutations and combinations;
recursive methods, e.g., differencp equations and algebraic method
of generating functions, are not taught. Not surprisingly, even
the notation needed to talk about general combinatorial problems
easily--set notation, Sigma and Pi notation (especially indexed
over sets), iterated Sigma notation, etc.--is also not taught.
This may seem like a small point; indeed, most discrete mathematics
textbooks seem to assume, when they start using such notation, that
students can pick it up immediately or have always known it! In my
experience, this is emphatically not the case. In fact, one of the
greatest stumbling blocks students encounter is the inability to
read and write useful notation easily; these are skills that many
students do not pick up quickly. In addition probability problems
are still those which can be solved by dividing one counting
problem by another. Even simple stochastic models are generally
not discussed in high schools. Matrix algebra is not discussed.
Nor are such useful and easily begun subjects as graph theory.

To be sure, there is an alternate course to calculus which is
sometimes offered in 12th grade and which includes some of the
things listed above. At one time, there were high hopes for this
course in terms of how it would affect the interface between high
school and college, and in terms of what a mathematically educated
person would know, but today it is usually billed as a course for
weaker accelerated students. Consequently, it doesn't have much
depth or mach of the hoped-for effect.

The one thing I have left out, and which is very different
from 20 years ago, is computers. Most schools have some equipment,
if only a single microcomputer or a single time-sharing terminal.
Many have much much more. Most able students have had time with
the computer (at home if not at school) and have written, no doubt,
some nice programs. At many sche. .s, there is some effort to
integrate the computer into mathematics courses, using it to
compute areas under curves (in grade 9 as well as in calculus), to
approximate roots of equations, and to do statistical analyses of
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actual, and perhaps simulated, data More often, however,
computers are used simp-4 to provide graphics and play games, only
some of which are educational. At any rate, as far as programming
is concerned, computers are used mostly for numerical algorithms;
they are regarded simply as big calculators. (The latter have
appeared in the schools, too, but with some debate.) The more
general concept of computers as universal symbol manipulation
machines, and all the interesting mathematical questions arising
from this viewpoint, are not touched on. This fact is abetted by
the language most often used in schools, BASIC. This is a
wonderful language for learning how to run your first simple
program without much fuss, and for doing small to medium numerical
computations, but it's poor for fostering good, structured,
algorithmic thinking, or for giving ore access to the most powerful
programming techniques and data structures. (Note: The latest
version of BASIC, BASIC 7, is a structured, recursive language, and
thus overcomes most of these objections. However, BASIC 7 is
currently available only at the home base, Dartmouth, and it is not
clear whether it ever will spread broadly. Even if it were
instantly available in the schools, it is not clear that teachers
would or could avail themselves of the new features and change the
way they teach programming.) In short, computers in the schools
provide a teaching tool but not a mode of thought and not an object
of mathematical study.

As indicated before, both students and teachers see
college-preparatory high school mathematics as heading toward, and
for able students culminating in, calculus. Indeed, the main
source of pride in many high school mathematics departments is the
number of students who yearly take and succeed in calculus. There

is a standard measure of this success: performance on the College
Board's Calculus Advanced Placement examinations. There are two
well-defined courses, Calculus AB and Calculus BC, and
corresponding three-hour AB and BC examinations, given each May.
The former course is usually considered the equivalent of one
college semester, the latter two. These calculus examinations,
first offered in the late 1950s, were taken in 1981 by about 33,000
students, which is estimated to be gr^ater than 60% of all high
school students taking an AP (i.e., college level) calculus course,
but perhaps only 30% of all those taking some sort of calculus
course at the secondary level. High schools take AP courses and
examinations very seriously. Most high schools with adequately
trained staff pattern their calculus offering(s) after the AP
curriculum. (More students might take the AP examinations except
for the cost and the fact that many colleges give credit on the
basis of their own placement exams during orientation, or simply on
the basis of high school transcripts; also, students who don't plan
to take more mathematics in college often don't participate.)

That calculus should be the culmination of high school
mathematics was a fine idea when the AP prugram began; the
mathematical world at large thought so, too. This conference is
premised on the idea that calculus is no longer the sole keystone
of advanced mathematics. This premise has gained wide support at
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colleges and universities, and there is growing enthusiasm there
for curricular change. However, at the high school level, the old
idea still holds sway and is reinforced by the current Advanced
Placement program. This is going to make the transition to a
pluralistic view much more difficult for both the colleges a-d the
schools.

It is not necessarily high school teachers who will balk at
removing calculus from its pedestal. Students--having heard from
their parents or older siblings that calculus is the "real
math"--may be even more conservative. Here at Swarthmore, when we
introduced an experimental freshman one-semester discrete
mathematics course, we first offered it in the fall. But we could
lure hardly any freshmen away from calculus; mostly upperclassmen
signed up. The second year, we offered the course in the spring,
giving students a semester to get "tired" of calculus and giving us
more time to advertise. The enrollment doubled--from 9 to
18--still not much of a draw when 250 students take calculus
yearly.

We can conclude that high school calculus is not going to go
away over night. Even if the Advanced Placement examinations in
calculus were terminated suddenly, this would only raise a big
howl. Besides, they aren't going to be terminated, and shouldn't
be. After all in the physical sciences, calculus is still the
keystone.

Therefore, even if discrete mathematics is introduced at the
freshman-sophomore college level, even as part of an integrated
sequence, in the short run many of the best students will continue
to enter college having taken calculus in high school. These
students will require at least second and third semester courses of
regular calculus at college. If these courses are not available,
we penalize our best students by making them repeat. And if these
students finish calculus separately from discrete mathematics, then
they must take discrete mathematics separately from calculus.
Finally, if a sequence of parallel continuous and discrete courses
must be given for these students, why also offer an integrated
sequence, except rerhaps as an experiment in a few schools to
measure possible value for the long run?

The Long Run

One can hope that, in the long run, secondary education will
respond to changes at the collegiate level rather than constraining
such changes. Is this a reasonable hope in the case of discrete
mathematics? I think so. First of all, secondary schools are
always sensitive to what colleges want, or at least to what they
require. Second, there is already the realization at the secondary
level that changes of the sort this conference has in mind may be
in order. There have been strong calls for action by secondary
mathematics leaders. On the other hand, none of these calls speaks
precisely to the philosophy of the current conference.
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Specifically, the study of algorithms is not seen as the central
glue of the called-for changes. Disseminating this philosophy of
algorithmic centrality to the secondary level is the major
additional step which must take place if the secondary curriculum
and the proposed new collegiate curriculum are to dovetail well.

Current Proposals for Secondary Change. First, the National
Council of Teachers of Mathematics has issued An Agenda for Action
(1989), a report announcing recommendations for the 1980s. Of its
eight summary recommendations, three bear on the goals of this
conference.

1. "Problem solving be the focus of school mathematics in the
1980s."

Here, problem solving refers to much more than the traditional
textbook problems. in particular, more realistic applications,
involving a broader variety of methods, and applying to additional
fields such as social sciences and business, are intended. So are
problems which require computing devices as aids for solutions.

3. "Mathematics programs take full advantage of the power of
calculators and computers at all grade levels."

The sort of uses the report mentions specifically are analysis of
data, simulations, and use as an interactive aid in the exploration
for patterns. It is also suggested that all students become
computer-literate citizens and that computer-aided instruction can
be helpful but cannot replace student-teacher and student-student
interactions.

6. "More mathematics study be required for all students and a
flexible curriculum A.th a greater range of options be
designed to accommodate the diverse needs of the student
population."

One of the subrecommendations to this is 6.3: "Mathematics
educators and college mathematicians should reevaluate the role of
calculus in the differentiated mathematics program." Specifically,
the report refers to the similar line of thinking stated in the
MAA's PRIME 80 conference report (1978). Recommendation II.1 of
the MAA report says: "The MAA should undertake to describe and
make recommendations on an alternative to the tradi,ional
algebra-calculus sequence as the starting point for college
mathematics."

It should be noted that NCTM has also done a survey of
mathematics teachers and educational administrators, the PRISM
Project (1981), to see what current and proposed mathematical
activities are supported by these groups. In general, there is
very strong support for the recommendations listed above. That is,
it is not simply that leaders wish these changes; teachers and
local school systems seem recept /e. (On the other hand, declining
enrollment will make number 6 above, at least, hard to implement.)

Second, the College Board, through its in-progress Project
EQuality (1982), is attempting to bring about in college
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preparatory secondary education a rededication to high standards in
six central areas, mathematics being one. Both E and Q are
capitalized to emphasize that both equality of opportunity and
quality of offerings are project goals. For mathematics
specifically, an internal College Board report (currently
undergoing extensive review) calls for an increase in both the
minimum and the desired amount of mathematics students learn in
high school. Students should learn about "applications and problem
solving," the "language, notation and logical structure" of
mathematics, and "computers and statistics," as well as most of the
traditional "algebra, geometry and functi(As." Under logical
structure is listed "appropriate experiences in pattern
recognition, algorithm development, and inductive reasoning."
Under computers are listed both computer literacy and computer
programming ability.

Third, the College Board (n.d.) started a new Advanced
Placement Examination in Computer Science given for the first time
in May 1984. This decision was made after several years of
discussion about what sort of new mathematics-related AP, if any,
to give. The proposed syllabus for the associated course is quite
ambitious. It will cover an "honest" full-year introductory course
in computer science, as presently given at many universities,
rather than the courses or experiences in computing which most high
schools now make available to their students, and which used to be
what students learned in introductory university computer courses.
The course will include nonnumeric as well as numeric subject
matter and will emphasize ways to think and write well
algorithmically, using block-structured programs and appropriate
data structures. Also, the course will require Pascal, a
sufficiently sophisticated language.

These are the relevant current recommendations with which I am
familiar. It should be noted that some high school teachers have
very strong objections to Project EQuality and to the proposed AP
Computer Science course. Many question how they are to fit in all
the old material and all the new material. (The report does
suggest that mathematics is important enough that perhaps students
should be asked to take more than one mathematics course at a time
at certain points. But what will teachers of other subjects say to
that? A more plausible way to make time, though perhaps one no
m; -e likely to happen, is for the earlier topics in high school
mathematics to be taught in grades 5-8, where currently not much at
all is happening mathematically.) As for the new AP, practically
no high school gives such a course now. In fact, few teach Pascal,
and many will have difficulty making it available with their
existing equipment. Moreover, most high school teachers do not
know Pascal, and they certainly do not know much about the
difference between a computing and a computer science course, and
why the change has been made at the collegiate level,

The high school reactions to the new AP course should be
monitored closely. Although the teachers I have spoken to are
somewhat taken aback by the proposed curriculum for the new course,
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they are taking it seriously because it is an AP program and are
eager for their schools to prepare themselves to give such a
course. (The College Board intends to provide assistance in
establishing summer teacher training institutes to help prepare
high school faculty to teach the course.) It will be several years
before we know much about how things turn out, but a possible moral
for the advocates of the discrete is: If you want to bring about a
major change in what schools teach, arrange for a new AP on the
material you want!

Let me summarize what I think will happen at the high school
level, relative to discrete mathematics, on the basis of the broad
support for the recommendations above. That is, I think these
things will happen even if there are no further changes toward
discrete mathematic:, at the college level.

At least some additional topics from discrete
mathematics--including statistics, finite probability, and the
language and use of computer algorithms--will slowly filter into
the high school curriculum or get additional attention there. As

algorithms are used more often, mathematical issues related to
algorithms will seem increasingly natural. That is, the
infiltration of further topics from discrete mathematics will
become easier.

Wkat Else is Needed. As stated earlier, there is a caveat to

this optimism. For all the planned changes at the high school
level, none are quite what this conference has in mind. What is

missing is an emphasis, let alone elevation to status of central
theme, on the "algorithmic way of life." While the envisioned
revised secondary curriculum involves algorithms, it does not
involve consciously applying an algorithmic viewpoint to one's
entire mathematical training, or applying mathematical analysis to

the study of algorithms. For example, I have not seen suggestions

that teachers

1. describe traditional mathematics topics in algorithmic
language;

2. present algorithms as a proof method, e.g., if you come up
with an algorithm which stops only if it finds what you
want, and you can prove it stops, then you have
simultaneously proved the existence of the object and
shown how to construct it;

3. discuss the correctness and efficiency of algorithms,
i.e., show how to apply logic, induction and counting
methods to verify algorithms and determine their
complexity; or

4. present the modern precise idea of an algorithm, and some
of its particular techniques such as recursion, as among
the great ideas in human intellectual history.

In short, algorithmics is not seen as a major mode of thought
around which to tie much of the mathematics one will teach or

174



173

learn. Rather, it is seen merely as a powerful but ancillary
computational tool.

If the collegiate curriculum does change to give algorithmics
this central role, even the changes which will inevitably occur at
the secondary level will result in a rather large gap between
secondary school and college mathematics, unless the spirit of this
change reaches the high schools, too. Right now, I see no signs
that this spirit is even beginning to reach the schools; an
awareness of such a spirit at the college level does not exist at
the secondary level.

It is important to understand why there is such a gap in
perceptions. The centrality of algorithmics to mathematics is
still quite a new and minority viewpoint at the college and
university levels. After all, most mathematicians alive today
(including this writer) were brought up to believe that the
quintessence of mathematical method and beauty is the existential
proof. Now it is suggested we should change our esthetics: proofs
involving algorithms are equally, if not more, beautiful and
central. One can reject this suggestion by insisting that the
aesthetic of mathematics should not: or by definition cannot,
change; that is, this difference in attitude towards proof is
precisely the difference in philosophy that separates
mathematicians from computer scientists. I don't hold this view--I
think it confines mathematics ratter than liberating it--but even
if one does hold it, it is irrelevant at the high school level.
High schools, like most small colleges, do not have computer
science departments. It is mathematics teachers who will teach
computer science, statistics, operations research, etc., to
whatever extent it is decided these subjects are appropriate at the
secondary level. Therefore, high school teachers must be imbued
with this algorithmic viewpoint, regardless of whatever regrettable
steps university mathematicians may take to shield themselves from
it.

In addition, topics covered in traditional secondary
mathematics are not, at least on first analysis, very suitable for
illustrating the algorithmic point of view. Too many questions can
be answered by formulas. For instance, If secondary mathematics
were less concerned with solving quadratic equations, for which
there is a formula, and more concerned with finding shortest paths
through networks, for which there is not, then it would be natural
to introduce th2 idea that a problem is solved when it has a
provably correct algorithm, and well solved when it has a correct
algorithm of low computational complexity, and go on to study the
mathematics of algorithm verification and analysis. But the
shortest-path problem is not as central as the quadratic equation.
Neither is any of the many other examples I can think of with
algorithmic but not formulaic solutions. One still has to become
facile at elementary algebra before one can do much e2 e, and for
most students absorbing even elementary algebra takes lots of time.
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The reasons for this gap make it clear that the retraining
problem for high school teachers is of paramount importance. If

this were a period when a flood of new, young teachers were
entering the profession, already versed in algorithmics from their
just-completed college or university training, the problem might
not be severe. But, of course, exactly the opposite is the case.
Fortunately for me, this thorny issue of retraining is the topic of
another paper for this conference.

The comment above that students need time to absorb algebra
illustrates another thorny issue already mentioned earlier: there
isn't much slack time to play with in the secondary curriculum. If

calculus were removed as the finale of high school mathematics,
that would still leave open only the senior year, and only for the
honors students. If teaching were somehow improved (and students
also improved!) so that all precalculus material was learned in the
two years of algebra and one of geometry (recall the quote early in
the paper), that would leave another year, but I see little hope of
such an "improvement." Consequently, the only way to get the
algorithmic view into the high school curriculum is by very careful
planning to interlace this new viewpoint with the old material.

Answers to questions schools haven't yet asked. (1) What
might a new advanced placement mathematf.cs course include whether
it is offered instead of, or in addition to, calculus? (2) Given
that algorithmic mathematics seems rather foreign to current
secondary mathematics, but that planned changes may lead to a
change of perception, in what ways might parts of discrete
mathematics and "prediscrete" mathematics be put into the earlier
years of school mathematics?

I regard the second question as more important, because if
collegiate mathematics changes, schools will derive their own
ansTiers to the first question in any event. But interweaving
preparatory discrete material into the earlier years is harder, and
no significant changes along these lines will occur unless strong
guidance is given.

As for the second question, the most important point is that
the viewpoint expressed earlier, i.e., algorithms aren't needed for
secondary mathematics because questions on this level are solved by
formulas, is misleading. An explicit algorithmic approach has not
been used at that level, but it could be. Take that quadratic
formula. If you want a computer to evaluate it for you, you've got
to write a program with a few branches, at least if you want to
distinguish between single and multiple root cases, and if you have
a machine which balks (like most) on being asked to take square
roots of negative numbers. Granted, the complexity of this program
is not such as to make computer scientists salivate, but we are
talking about ninth graders without much computer experience. More
important, even if you don't have your computer solve the quadratic
for you, but prefer to use your hand calculator or even hand
calculations, you can still think about the formula as a summary
for an algorithm. Indeed, the same can be said of many procedures
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in secondary mathematics: solving triangles, graphing equations,
solving simultaneous linear equations in two or three variables.

Again, an explicitly algorithmic approach to such topics in
vacuo is unnecessary and maybe unnatural, but an algorithmic
approach is necessary later on, in problems where formulas are not
available. Why not start looking at problems this way sooner? At
present, the change in approach a student confronts when he first
reaches problems without formulas is more of a shock than it need
be.

Here are a few more examples of topics which could easily be
approached algorithmically. The best is Horner's method for
evaluating polynomials; it is still taught in some places, if only
in its equivalent form of synthetic division. There isn't any
general formula for this in ordinary mathematical language (without
using dot-dot-dot in a confusing way); all the books explain it by
example. But it has a very simple formulation as an algorithm.
Also, it's clear that it works faster than "direct" evaluation, but
it is not immediately obvious why its output is the value of the
functiol. In short, this is one place in secondary mathematics
where the issue of verification and analysis of complexity seem
natural and simple. Indeed, the whole subject of polynomials cries
out for an algorithmic approach--to division, factoring, graphing,
finding rational roots, approximating real roots, even
approximating complex roots (an active research subject, but some
basic algorithms could be studied by bright high school students).

Of course, in one sense, all of high school algebra is the
study of solution "algorithms." I use quotes because the methods
we use to solve harder algebra problems are not all that well
understood. We are just now getting "smart" symbolic manipulation
software packages which seem to have taken algebra II and gotten at
least a B. Getting students to formalize their algorithms for more
than simple parts of algebra is too hard. But formalizing easier
parts is well worth doing. It might even be worthwhile to go back
and program the arithmetic algorithms of elementary school, e.g.,
multiplication and division of numbers in base 10 representation.
The fact that such algorithms are taken for granted makes them
less brilliant or illustrative.

Another good topic for an algorithmic approach is sequences
and series, which at present means arithmetic and geometric series.
Viewed algorithmically with recursive definitions, it is obvious
that these are but special cases of linear recursions, and one
might get much farther in the study of sequences ..:11 high school if
one takes this recursive L proach.

Of course, to the extent that computing is made an adjunct to
the regular mathematics courses, there are lots of activities new
to high school mathematics classes which cat: be introduced and
which use algorithmic thinking. For instance, one can attack
previously too difficult probability problems by number crunching
or simulation, or look for patterns in elementary number theory, or
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give consumer math some content at last by doing realistically
complicated financial programs. But I am concentrating here on how
standard topics can be viewed differently, not on how new
applications can be added. Besides, examples of new applications
with computers have been discussed for some time; see for instance
CBMS (1972).

To the extent that the training in computer use in schools
becomes substantial, both in terms of methodological sophistication
and size of problems handled, the mathematics of algorithms will
become more natural. For instance, if recursive programming is
introduced, it will not be obvious how many steps the programs
take. Difference equations can come to the rescue and,
incidentally, show that a recursive program is often longer to run
than a corresponding longer-to-write iterative program. Another
example: If students are told to alphabetize a long list of names
using the computer, they may discover as thF wait for their output
that the usual first method, bubble sort, is not such a good idea;
after that wait they may well be eager to see a mathematical
analysis of the running time. Finally, if one learns algorithms
for which it is unclear whether they work at all, verification
becomes an issue. Fairly simple algorithms which come to mind in
this category are: Euclid's algorithm; certain base change
algorithms, especially for numbers with decimal parts; algorithms
for c( tain solitaire games; the GaleShapley marriage algorithm;
various graph-search algorithms; and algorithms for finding random
combinatorial objects, say a permutation. But these rather quickly
go far afield from concerns in school mathematics.

Finally, there are topics already taught in high school, but
in light of their increased importance in algorithmics, they are
not taught enough. Induction and counting stand out. They could
be given increased emphasis, with examples drawn from algorithmic
problems.

If the sorts of changes described above were made in school
mathematics, then a college level course in discrete mathematics
could proceed much more quickly than at present. My personal
experience in teaching an algorithmic discrete course at the
freshman-sophomore level is that I must spend a lot of time
introducing induction, counting methods and algorithmic thinking,
not to mention basic notation.

Now for the first question about advanced placement. If

discrete mathematics at the introductory undergraduate level is
introduced and maintained as a separate course from calculus,
schools could offer both as AP courses. Given the NCTM
recommendation that the school curriculum become broader and more
flexible, schools would probably wan to offer both. But if their
resources are limited and they must choose one, as many will, which
should we recommend?

Until recently, I would have said discrete mathematics. Like
most mathematicians, I have felt intuitively that the discrete is
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intrinsically simpler than the continuous. Such a view, carried to
its logical conclusion, underlies the ambitious Cambridge Report
proposals of 1963 (Educational Services Incorporated) on changing
secondary mathematics. It was proposed therein, for example, that
students should be introduced to difference equations in junior
high school, and that by the end of high school they should have
covered more or less a complete course in difference equations
paralleling in structure and sophistication the standard college
course in differential equations. Such sophistication would be
attainable, presumably, because the subject matter is finite.

But if discrete mathematics is simpler, then why did the kind
of .algorithmic discrete material we are talking about develop so
much later than calculus in mathematical history? And why do
discrete mathematics students find the subject more difficult than
calculus?

The answer, I think, is this: Because algorithmic discrete
mathematics does not have many formulas, or even many systematic
methods for solving problems, students have no choice but to resort
to "pure" mathematical reasoning. In short, the mathematics of
algorithms requires considerable ingenuity and mathematical
maturity. (If this is true, we have conversely that tackling such
mathematics may be a good, if somewhat trying, way to develop such
maturity.)

It is not that doing algorithms is especially hard. Indeed,
high school students seem to enjoy this a lot, and many are very
good at it. But the mathematics of algorithms is in parts quite
difficult. This should not be surprising. The "mathematics of
calculus," i.e., the theory of functions of a real variable, is a
lot harder than "calculus itself," i.e., learning the sorts of
problems calculus can solve, learning to solve them, and developing
an informal sense of why the methods are valid. We don't try to
teach the mathematics of calculus in calculus courses anymore, but
leave it to the upperclass years. This is probably wise. The
mathematics of algorithms is easier than the mathematics of
calculus, but it may still be too hard for high school. Yet, if
that mathematics is left out of a discrete mathematics curse, it
seems we are left merely with computing exercises and the jymble of
watered-down topics in the old finite mathematics course.

In short, if a school is to give just one AP mathematics
course, i recommend calculus. This circumvents a lot of technical
problems, too, such as how high school teachers are to be retrained
to teach a complete discrete mathematics course (perhaps an even
more difficult retraining issue than how to prepare them to ceacn
the algorithmic viewpoint throughout their courses).

What if the integrated two-year college st-qt-,enc: :ores into
being? Should we develop a new AP course that Li half
half discrete mathematics? If the collces can agree on a fixed
order In which to cover topics d-t the two-year course, en that
schools could give a course covering the V.rst semt.st, r, and an
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honors course covering the first year, then schools should do so;
anything which allows able students to gain time at college,
without skipping some things they need and covering other things
twice, is to be applauded. Whether such a fixed order can be
determined remains to be seen, especially since there doesn't seem
to be any natural order in which to sequence things. This seems to
me yet another reason to keep the continuous and the discrete in
separate courses, at both the secondary and undergraduate levels.

Additions After the Conference

I saw no need to delete anything trom this article on the
basis of the conference discussions, but I felt that a few
additions were in order.

The algorithmic way of life. Although many other papers
referred to more or less the same list of discrete mathematics
topics as necessary additions to the curriculum, there was, with
the exception of Wilf's (1983) paper, very little written support
for the assumption I made that an algorithmic frame of mind should
become pervasive. There was very little mention that just doing
algorithms isn't enough, but that thinking mathematically in terms
of algorithms should be the glue. Also, there should be a new
esthetic in which algorithmic proofs are better than existential
proofs, and the general circle of ideas surrounding induction and
recursion are among the great ideas an educated person should know.

However, my viewpoint was very definitely supported verbally
at the conference. It is also stated explictly in the reports of
the curriculum workshops which took place on the last day. These

reports speak not only of topics but of overall themes, and framing
one's mathematical thinking algorithmically is one of these themes.

Retrainir-I. As emphasized before, taking such a pervasive
algorithmic 1,..ewpoint in a new curriculum will make the retraining
issue much thornier--even at the collegiate level. To be sure,
mathematics professors already know the discrete mathematics topics
proposed for inclusion, or could easily learn them, but to learn a
new attitude is much harder. ...ad for almost all mathematicians it

will be a new attitude.

Moreover, if the retraining is going to be hard at the
collegiate levsl, imagine the difficulty at the secondary level!
This was brought home to me clearly when several of the very fine
secondary teachers to whom i sent this paper told me that, 'hen I

got to talking about the algorithmic point of view, they really
didn't know what I was talking about. In fact (as Dick Anderson
pointed out at the conference), to many teachers the phrase
"emphasizing algorithms" means "back to basics"--drilling in the
classical numerical and algebraic manipulative skills so that
students can do them without thinking, which usually results in
students doing them mechanically rather than with understanding.
Also not clear to my high school readers was the difference between
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a computing and a computer science course. For instance, they were
shocked to hear that computer scientists find something lacking in
BASIC. Also, some of them asked me what Bubble Sort is; since
sorting is an archtype problem for computer science issues, lack of
familiarity with the Bubble algorithm (at least by that name)
suggests lack of familiarity with these issues.

To be sure, I was writing for college and university
mathematicians rather than secondary teachers, and I was aware that
more detail would be necessary for the latter group. For instance,
I didn't include any specific examples of what I mean by using
algorithms to prove theorems, figuring my audience could supply
several. (Here are the bare bones of one example. Consider the
Euler circuit theorem, that a connected graph with an even number
of edges incident at each vertex can have all its edges traversed
in one continuous circuit. Avoid the standard proof by
contradiction, which assumes the conclusion f.s false and considers
a minimum counterexample G, and in which one shows that G would
contain a cycle C and that G-C would be a smaller counterexample.
Rather, give a precise statement of the "follow your nose"
algorithm which finds a cycle in any graph G meeting the
hypothesis, prove that it finds a cycle, and prove that after
repeating this algorithm several times, the set of edges left in G
must be empty. Finally, state an algorithm for merging these
cycles, and show that the merger is a continuous circuit, as
desired.) Even if I had stated several of my examples in detail,
they are not about theorems well known to high school teachers.
Obviously even to introduce the issues of this new curriculum
clearly to high school teachers will require a very different
article than this one.

I had though that the issue of retraining high school teachers
would be discussed in the Weissglass (1983) paper, but all I knew
then about the paper was the title, and 1 misinterpreted it. His
paper was about how a new curriculum would be a boon in perspective
to future teachers, whatever specific topics they ended up
teaching, not about how to retrain current teachers to teach a new
perspective. So let me say a little about this issue now.

First, it really is a retraining issue. We can't expect there
will be many new secondary teachers in the next several years.
Second, there 3s an optimistic viewpoint that suggests current
teachers will revise their perspectives anyway, but I don't believe
it. This optimistic viewpoint argues that because computers are
already in the schools and will contihue to play a larger and
larger role there, the algorithmic point of view will naturally
insinuate itself in time. Doing a lot of algorithms eventually
will cause teachers to think about, and then to teach, the
mathematics of algorithms. I don't believe it. If this were a
natural and easy development, why hasn't it happened already,
pervasively, on the university level, where computers and
large-scale problems which must be solved algorithmically have been
around longer and where faculty, in order to do research, keep
abreast of changes? No, I am a pessimist oa this: A lot of
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retraining of teachers will be necessary, and some of professors,
too.

How will this retraining be funded, in light of the current
retrenchment? Fortunately, school systems and even teachers
themselves sometimes are willing to pay part of the cost of, say,
summer institutes. The teachers are willing to pay because their
salaries increase if they take further courses or get advanced
degrees. Usually the college or university running the institute
is responsible for part of the costs, but such institutions can
only meet such costs from outside grants. There has been a lot of
discussion lately, at educators' conferences and in the press,
about the dire state of math and science education in the United
States. We can only hope that through concerted efforts such
discussions will be translated into action at the highest levels,
i.e., new government and foundation funding.

Is there room in the high school curriculum for changes? In
the body of this per I cautioned about thinking there was much
room. I argued that a changed perspective on mathematics could be
taught by carefully changing examples, but I warned against
thinking lots of new topics could be added. Yet it has been
suggested at this conference and elsewhere (see the Lucas, 1983,
paper) that there can't really be significant change in mathematics
education until room is made for lots more material at the high
school and junior high school levels.

Wilf (1983) argues that the $19.95 symbolic manipulation hand
calculator now available will allow us to eliminate most of the
drill from calculus, and thus considerably condense that course.
In my paper, I do mention in the high school context the currently
available, moderately powerful microcomputers which can do similar
manipulations, but I don't discuss whether the calculator-to-come
could have a similar condensing role at that lgvel. Much of high
school mathematics deals with mastering symb9lic manipulation;
surely the ratio of skills to concepts is higher in high school
algebra than in calculus. With that $19.95 machine, couldn't we
condense high school mathematics drastically? What about with the
$139.95 machine!

While I do eink that the advent of such calculators will
brighten the time-squeeze picture, I still caution against
expecting too much. First of all, while there was considc.:41,1e

agreement that we should already do away with most arithmetic drill
and allow students to use today's calculators instead (see
Anderson's, 1983, paper). in contrast there was considerable worry
about where eliminating algebraic drill would lead. Few think that
skill in arithmetic is closely tied to general mathematical
ability, but the relation between algebraic skill and mathematics
is less clear. It may just be that skill and training in symbolic
manipulation are closely tied to success as a mathematician, or
scientist, or engineer, or even to being an astutely analytic
businessman; if we don't "screen" students for other subjects by
continuing to test whether they have become skilled at traditional
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algebraic manipulation, we may not pick out those who are good at
other sorts of symbolic manipulation, either. Clearly,
participants agreed that much more needs to be known about this
issue.

Conference participants agreed that we know what arithmetic
skills we still want people to have in the computer age. They
should know at least how to estimate effectively. That is, they
still need good number sense. But what is the equivalent "good
algebraic sense"? We don't know. Possible partial answers which
were tendered include the ability to sense how many solutions a
system of equation should have, and the ability to know what form
an algebraic expression would best be worked into in order to draw
from it easily whatever information is needed. But until we have a
better idea of what algebraic sense people should have, we should
be careful about throwing out the algebraic training we 6ive now.

Let me say a bit more about this matter of converting
algebraic expressions from one form to another. In the body of my
pape::, I say that schools spend too much time solving equations and
not enough in more general manipulations from one form to another.
It is the former skill, not the latter, which we can expect the
Wilf calculators to perform. True, there is no reason to suppose
that calculators won't eventually be al-le to do most of the
algebraic rewriting that people have ever found useful, but it
seems to me this is a lot farther off. Furthermore, the user still
will have to tell the calculator what sort of rewriting he or she
wants--at least if the calcul-tor has not produced an appropriate
rewrite on its own. In short, truly effective algebraic
manipulation with calculators will have to be interactive.

This conclusion emphasizes for me the importance of continuing
to give students thorough algebraic training. Without having had
Lach training in arithmetic calculation, one can still know what
sort of beast one wants when one has an arithmetic problem. But
one can't know what sort of algebraic beast one wants without
considerable training in algebraic calculation. Furthermore, as I
point out in the paper, learning any mathematical skill well takes
most students, even bright ones, a long time.

The advent of the Wilf calculator dces, I think present a
wonderful opportunity nonetheless. It will naturally guide schools
to spending more time on algebraic manipulation between forms,
rather than in just getting the form x = some number.

One more point related to this issue of a] abraic
manipulation. It has been suggested to me that in this paper I
continue the outworn tradition of giving the quadratic equation too
much prominence. But I was quite careful. I did not say the
quadratic equation was of crucial importance. I only said it was
more important than the shortest path problem--a mcv'est claim, I
think. Put let me be more specific about how I think the quadratic
equation continues to be important.
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I agree that it is wrong today to make students spend lots of
time solving the canonical quadratic over and over again--by
factoring, by completing the square, and by the formula. But in
fact, most teachers I know of don't make their students do a lot of
this. The students spend much more time reducing some equation or
equations in other forms to canonical quadratics, or taking a word
problem and finding it is a quadratic, or maybe even doing some
more amorphous modeling problems which lead to quadratics. Now, of
these three activities, the Wilf calculator may well do most of the
first (in addition, of course, to solving the quadratic), but it
will not do the last two. Yet they are important, especially the
modeling with quadratics (which admittedly, like modeling in
general, is not done enough in the schools). Unless secondary
students get experience with linear and quadratic modeling, the
only modeling experience they will get in school is modeling by
computer simulation. One might argue that this is good, that
almost all sufficiently accurate models are too complicated to
handle analytically, and so the sooner students switch to computer
modeling, the better; in particular, one might claim that linear
and quadratic models are almost always too crude to be useful.

Even if Newtonian physics didn't exist, I would reject this
argument. Witt: computer modeling only, one is apt to miss the
forest for the trees. Because one is not forced to think through
to conclusions with computer models, one is likely to miss patterns
even when they are there.

This was recently brought home to me in the course of work I
am doing with an economist colleague. He brought me a certain
model of economic dynamics. He had already successfully translated
it from concepts into a set of differential equations. However, he
had been unable to solve these analytically, either explicitly or
qualitatively, and so he had already run many computer simulations.
In particular, he waned to know if a certain variable always
changed monotonically. He believed it would, and it did in all his
simulations, but he wanted to know if I could prove it.

After thinking about it for some time, it seemed to me
(without yet a rigorous argument) that his belief was wrong, that
if the initial values were related in a certain way, the variable
of concern would not behave monotonically. I told my colleague
this. He doubted me but was willing to run his program again with
the initial conditions I proposed. The next day he phoned me to
say that, upon looking at his previous reams of data again, he
found he already hal a case with that sort of initial conditions,
and sure enough, the variable already had been non-monotonic--he
had just not noticed it previously!

the story has a happy ending for my colleague. I went on to
prove analytically that monotonicity wouldn't always occur, but in
so doing I determined when it would occur, and this happened to
include all the situations in which he was really interested. But
it's what happened in the middle that is important here. One
cannot live by computer modeling alone--at least not without living
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dangerously! And if we don't teach some analytic modeling in high
schools, most srdents will never get this message. Analytic
modeling at that level will necessarily involve linear and
quadratic models. Key properties of such models often hinge on the
roots of a quadratic. Ergo, the quadratic equation is still
needed!
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CHAPTER 10

A COMMON CURRICULUM FOR MATHEMATICS

Thomas A. Romberg

Deliberate teaching requires choices as to what to teach.
Herbert Kliebard
Curriculum Inquiry 6 (1977)

Some mathematics should be taught to students, but an adequate
presentation of a "common curriculum" for mathematics cannot
consist of a list of topics to be covered, however extensive and
carefully prepared. I use the word "curriculum" as a course of
study, its contents, and its organization, and my task in this
chapter is to consider four questions which shape an outline for a
common curriculum for mathematics. The questions to be examined
are:

1. What does it mean to know mathematics?
2. Who decides on the mathematical tasks for students and for

what reasons?
3. What should be the principles from which a cnmmon

curriculum can be built?

WHAT DOES IT MEAN TO KNOW MATHEMATICS?

This question is not easily answered. When nonmathematicians,
such as sociologists, psychologists, and even curriculur developers
look at mathematics, what they often see is a static and bounded
discipline. This is perhaps a reflection of the mathematics they
studied in school or college rather than a sure insight into the
discipline itself. John Dewey's (1916) distinction between
"knowledge" and "the record of knowledge" may clarify this point.
For many, "to know" means to identify the artifacts of a discipline

i. This chapter originally appeared in Individual dlfferences and
the common curriculum: Eighty-second yearbook of the National
Society for the Study of 'Education (Chicago: University of Chicago
Press, 1983), pp. 121-159, and is reprinted with nermission.

Jeremy Kilpatrick served as the editorial consultant for this
chapter.
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policy, or endorsement of the National Institute of Education.
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(its record). For me and many others, "to know" mathematics is "to
do" mathematics.

Mathematics viewed as a "record of knowledge" has grown to be
a stupendous amount of subject matter. The largest branch builds
on what collectively is called the real number system, which
includes the ordinary whole numbers, fractions, and the irrational
numbers. Arithmetic, algebra, elementary functions, the calculus,
differential equations, and other subjects that follow the calculus
are all developments of the real number system. Similarly,
projective geometry and the several non-Euclidean geometries are
branches of mathematics, as are various other arithmetics and their
algebras. Unfortuately, this massive "record of knowledge,
independent of its place as an outcome of inquiry and a resource in
further inquiry, is taken to be knowledge" (Dewey, 1916, pp.
186-187).

The distinction between knowledge and the record of knowledge
is crucial. A person gathers, discovers, or creates knowledge in
the course of some activity having a purpose: this active process
is not the same as the absorption of the record of knowledge--the
fruits of past activities. When the record of knowledge is
mistakenly taken to be knowledge, the acquisition of information
becomes an end in itself, and the student spends his time absorbing
what other people have done, rather than having experiences of his
own. The student is treated as a "piece of registering apparatus,"
which stores up information isolated from action and purpose
;Dewey, 1916, p. 147). I do not assert that informational
knowledge has no value. Information has value indeed to the extent
that it is needed in the course of some activity having a purpose,
and to the extent that it furthers the course of the activity.
"Informational k pwledge" is material that can be fallen back on as
given, settled, i.stablished, assured in a doubtful situation.
Clearly, the concepts and processes from some branches of
mathematics should be known by all students. The emphasis of
instruction, however, should be on "knowing how" rather than
"knowing what," even though in my description of a common
curriculum for mathematics I shall refer to some of the concepts
and proCedures (the "what") of mathematics.

To appreciate what it means "to do" mathematics. one must
recognize that mathematicians argue among themselves about what
mathematics is acceptable, what methods of proof are to be
countenanced, and so forth. Doing mathematics cannot be viewed as
a mechanical performance, or an activity that individuals engage in
by solely following predetermined rules. In this light,
mathematical activity can be seen more as embodying the elements of
an art or craft than as a purely technical discipline. This is not
to say that mathematicians are free to do anything that comes to
mind. As in all crafts, there will be agreement, in a broad sense,
about what procedures are to be followed and ::hat is to be
countenanced as acceptable work. These agreements arise from the
day-to-day intercourse among mathematicians. Thus, a mathematician
engages in mathematics as a member of a learned community that
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creates the context in which the individual mathemattian works.
The members of thkxt community have a shared way of "seeing"
mathematical activity. Their mutual discourse will reinforce
preferred forms and a sense of appropriateness, of elegance, of
acceptable conceptual structures (King & Brownell, 1966).
Furthermore, the community promotes and reinforces its own
standards of acceptable work, and, as Hagstrom (1965) suggests, a
major characteristic of a mathematical/scientific community is the
continued evolution of its standards. Not only does the range of
acceptable methods vary, but in mathematics especially the
standards of rigor have themselves been subject to continued
modification and refinement, a point well illustrated by Bell:

How did the master analysts of the eighteenth century--the
Bernoullies, Euler, Lagrange, Laplace--contrive to get
consistently right results in by far the greater part of their
work in both pure and applied mathematics? What these great
mathematicians mistook for valid reasoning at the very
beginning of the calculus is now universally regarded as
unsound. (1945, p. 153)

Nor did Bell have the last word, for during the 1970s, mathematical
logicians such as Robinson (197") and Keisler (1971) found a way to
make rigorous the intuitively attractive infinitesimal calculus
that was developed by Newton and Leibiiiz and extended by those
master analysts to whom Bell refers.

Given this perspective-to know mathematics is to do
mathematics within a craft--what are its essential activities?
Even with a superficial knowledge about mathematics, it is easy to
recognize four related activities common to all of mathematics:
abstracting, inventing, proving, and applying.

Abstracting

The abstractness of mathematics is easy to see. We operate
with abstract numbers without worrying about how to relate them in
each case to concrete objects. In school, we study the abstract
multiplication table--a table for multiplying one abstract number
by another, not a number of boys by the number of apples each has,
or a number of apples by the price of an apple. Similarly, in
.;eometry we consider, for example, straight lines and not stretched
threads--the concept of a geometric line being obtained by
abstraction from all the properties of actual objects except their
spatial form and dimensions. Thus, the basic concepts of the
elementary branches of mathematics are abstractions from
experience. Whole numbers and fractions were certainly suggested
originally by obvious physical counterparts. But maiy concepts
have been invented that are not closely tied to experience.
Irrational numbers such as the square root of 2 were invented to
represent lengths occurring in Euclidean geometry--for example, the
length of the hypotenuse of a right triangle whose arms are both
one unit long. The notion of a negative number, though perhaps
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suggested by the need to distinguish debits from credits, was
nevertheless not wholly derived from experience. Mathematicians
had to create an entirely new type of number to which operations
such as addition, multiplication, and the like could be applied.
The notion of a variable to represent the quantitative values of
some changing physical phenomenon, such as temperature or time,
goes beyond the mere observation of change. The farther one
proceeds with the mathematics, the more remote from experience are
the concepts introduced and the larger is the creative role played
by mathematicians.

This process of abstracting is characteristic of each branch
of mathematics. The concept of a whole number and of a geometric
figure are only two of the earliest and most elementary concepts of
mathematics. They have been followed by a mass of others, too
numerous to describe, extending to such abstractions as complex
numbers, functions, integrals, differentials, functionals,
n-dimensional spaces, infinite-dimensional spaces, and so forth.
These abstractions, piled as it were on one another, have reached
such a degree of generalization that they have apparently lost all
connection with daily life, and the "ordinary mortal" understands
nothing about them beyond the mere fact that "all this is
incomprehensible." In reality, of course, such is not at all the
case. Although the concept of n-dimensional space is no doubt
extremely abstract, it does have a completely real content, which
is not difficult to understand.

Some mathematical abstractions have become so important that
their absorption by students is taken as evidence of knowing
mathematics. To illustrate, consider two types of abstractions:
procedures and concepts. Procedural knowledge involves acquiring
solution routines for a series of problems in a specific domain
(for example, adding waole numbers, solving linear equations).
Conceptual knowledge involves learning the labels used to name
objects, relationships, procedures, and so forth (for example,
"six" for the numerosity of a particular set, "parallel" for
certain lines or planes). Some procedures and concepts from the
record of mathematical knowledge should be learned by all students.
However, they should acquire the knowledge through activities that
give it meaning. The concepts and procedures should be formed
under conditions where thought is necessary, rather than simply by
means of routine and repetition.

But e traction is not the exclusive property of mathematics;
it is characteristic of every science, even of all mental activity
in general. Consequently, the abstractness of mathematical
concepts does not in itself give a complete description of the
peculiar character of mathematics. The abstractions of mathematics
are distinguished by three features. In the first place, they deal
above all else with quantitative relations and spatial forms,
abstracting them from all other properties of objects. Second,
they occur in a sequence of increasing degrees of abstraction,
going very much further in this direction than the abstractions of
other sciences. In fact, it is common for branches of mathematics
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to feed on each other, yielding ever more abstract notions.

Finally, mathematics as such moves almost wholly in the field of
abstract concepts and their interrelations. While the natural
scientist turns constar.~1- to experiment for proof of his
assertions, the mathema ,ian employs only argument.

Inventing

I have chosen "inventing" rather than "discovering" to
describe this aspect of what mathematicians do even though for this
chapter the distinction between the terms is not important.
Discovery involves a law or relationship that already exists, but
has no been perceived. Inventing involves creating a law or
relationship. There are two aspects to all mathematical
inventions: the conjecture (or guess) about a relationship,
followed by the demonstration of the logical validity of that
assertion. All mathematical ideas--even new abstractions- -are
inventions (like irrational numbers). Also, tJ assist them in the
invention of their abstractions, mathematicians make constant use
of theorems, mathematical models, methods, and physical analogues,
and they have recourse to various ccm;letely concrete examples.
These examples often serve as the actual source of the invention.

However, for students who are learning mathematics,
"discovering" relationships which lead to abstractions, theorems,
models, and so forth, known to the mathematical community but not
to the student, can serve the same rurpose. In this regard,
instructional activities that require "problem solving" can give
students an opportunity to experience inventing. I am hesitant to
use the term "problem solving" since it has become a popular
catchword in mathematics education with many meanings (Kilpatrick,
1981, p. 2). I use it here to describe instructional activities
that have three implied parts: (a) a complex task is to be solved
whose solution is not intended to be obvious; (b) the concepts and
procedures needed to solve the task are known by the student; and
(c) the "problem" is to find a strategy (or heuristic) that can be
used to connect the known ideas with the unknown. Such
problem-solving activities are important, for only by this means
can the variety of strategies (heuristics) commrn to the craft of
mathematics be learned.

Proving

No proposition is considered as a mathematical product until
it has been rigorously proved by a logical argument. If a

2. Learning to invent or to discover is not simply explaining a set
of rules to be followed. It truly is an art. Readers interested
in this topic should see Hadamard (1954), Polya (1957), or
Wicl-elgren (1974).
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geometer, reporting a newly invented theorem, were to demonstrate
it by means of models and to confine himself to such a
demonstration, no mathematician would admit that the theorem had
been proved. T,e demand for a proof of a theorem is well known in
high school geometry, but it pervades the whole of mathematics. We
could measure the angles at the base of a thousand isosceles
triangles with extreme accuracy, but such a procedure would never
provide us with a mathematical proof of the theorem that the base
angles of an isosceles triangle are congruent. Mathematics demands
that this result be deduced from the fundamental concepts of
geometry, which are precisely formulated in the axioms. And so it
is in every cas,..t. To prove a theorem means for the mathematician
to deduce it by a logical argument from the fundamental properties
of the concepts related to that theorem. In this way, not only the
concepts but also the methods of mathematics are abstract and
theoretical.

The results of mathematics are distinguished by a high degree
of logical rigor, and a mathematical ar&Jment is conducted with
such scrupulousness as to make it incontestable and completely
convincing to anyone who understands it. Mathematical truths are,
in fact, the prototype of the completely incontestable. Not for
nothing do people say "as clear as two and two are four." Here the
relation "two and twr are four" is introduced as the very image of
the irrefutable and incontestable. But the rigor of mathematics is
not absolute; it is in a process of continual development. The
principles of mathematics have not congealed once and for all, but
have a life of their own and may even be the subject of scicmtific
quarrels. Furthermore, proving should rot be seen as being
independent of invention. As Lakatos (1976, p. 5) has argued:

Mathematics does not grow through a monotonous increase of the
number of indubitably established theorems but through the
incessant improvement of guesses by speculation and criticism,
by the logic of proofs and refutations.

For example, non-Euclidean geometries were invented as a result of
attempting to prove faclid's fifth postulate.

Unfortunately, there is one problem associated with proofs in
mathematics. The writings of mathematicians (recorded mathematics)
often give a misleading view of their work. The process of
invention is ignored in most published articles since only the
proof of an assertion is usually presented.

Applying

In the final analysis, the importance of mathematics arises
from the fact that its abstractions and theorems, for all 'beir
abstractness, originate in the actual world a 2, find widely varied
applications in the other sciences, in engineering, and in all tte
practical affairs of daily life; to realize this is a most
important prerequisite for understanding mathematics. The
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exceptional breadth of its applications is another characteristic
feature of mathematics. In the first place, we make constant use,
almost every hour, in industry and in private and social life, of
the most varied concepts and results of mathematics, without
thinking about them at all. For example, we use arithmetic to
compute our expenses or geometry to describe the floor plan of an
apartment. Of course, the procedures or concepts here are very
simple, but we should remember that in some period of antiquity,
they represented the most advanced mathematical achievements of the
age. Second, modern technology would be impossible without
mathematics. Scarcely any technical process could be carried
through without building an abstract mathematical model as a basis
for carrying uut a sequence of more or less complicated
calculations; and mathematics plays a very important role in the
development of new branches of technology. Finally, it is true
that every science, to a greater or lesser degree, makes essential
use of mathematics. The "exact sciences"--mechanics, astronomy,
physics, and to a greater extent chemistry--express their laws by

means of abstract mathematical formulations and make extensive use
of mathematical apparatus in developing their theories. The
progress of these sciences would have been completely impossible
without mathematics. For this reason, the requirements of
mechanics, astronomy, and physics have always exercised a direct
and decisive influence on the development of mathematics. In other
sciences, mathematics plays a smaller role, but here too, it finds
important applications. Of course, in the study of such
complicated phenomena as occur in biology and sociology, the
mathematical method cannot play the same role as, let us say, in
physics. In all cases, but especially where the phenomena are most
complicated, one must bear in mind, if one is not to lose the way
in meaningless play with symbols, that the application of
mathematics is significant only if the concrete phenomena have
already been made the subject of a profound theory. In one way or
another, abstract mathematics is applied in almost every science,
from mechanics to political economy.

An Example: Distance

To illustrate these four aspects of "doing" mathematics, let
us examine the idea of distance (Shreider, 1974). By considering
different examples of distance, it is possible to formulate
concepts and procedures to solve various problems concerning the
"shortest" path between two points on a surface, the geometric
properties of multidimensional spaces, methods of "noise" reduction
in the coding of information, and so forth.

Every child is familiar with problems of "how far" apart two
or more sites happen to be. For instance, how far it is from home
to school, or from home to a grandparent's house? Answers to such
"how far apart?" questions inevitably vary--three blocks, two hours
by car, and so forth, depending on the context. Also, there may be
more than one answer to any one problem. For example, the distance
by car between two points (home and grandmother's) may differ from
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the distance by train. Despite the differences, it is evident that
all meanings taken on by the word distance have something in
common. The first task for the mathematician is to abstract from
the spatialtemporal facts about the world the fundamental
properties of each of the different meanings for distance. There
are three basic properties: (a) there exist two (or more) fixed
points in space; (b) there is at least one "path" joining two
points that is interesting (such as: shortest, requires the least
effort); and (c) a measure of "how far apart" the two points are
can be found.

The next problem for tht. mathematician is to invent a
measuring procedure for some of the more interesting paths. One
usually begins such investigations with the easiest cases ana then
goes to more complex cases. The simplest case for distance is.
between two points (say, M and N) on a plane surface. The simplest
interesting path is the shortest path, which can be represented by
a straight line, and the simplest measure is length. In fact, in
practice then one uses an instrument (for example, a ruler) to
estimate the length. However, in many situations, using a ruler is
impractical, as in finding the height of a tall tree or the
distance across a lake. Also, since different lengths require
different instruments, which have varying degrees of precision but

always involve some error), a more general procedure is needed.

The next step for mathematicians is to define distance
operationally in terms of a rule for the set of all points on a
plane. If we characterize each point by an ordered pair of
coordinates, say M = (m

1
,m

2
) and N = (n

1
,n

2
) then from the

Pythagorean theorem we can develop the closed algebraic formula for
the shortest distance (d) between M and N:

d(M,N) = [(m1 n1)
2

+ (m2 n2)
2

]

This formula then can be used as a definition of distance between
any two points on a plane.

In the same manner, we can characterize the distance between
two points P and Q in three dimensions in terms of an ordered
triple of coordinates, P = (pl,p2,p3) and Q = (ql,q2,q3), so that:

d(P'Q) [(p1 ql)

2

(p2 c12)

2

(p3
q3)2]

3. For these cases, properties of similar triangles and angles
(trigonometry) can be used to find the distances.

4. This is one distinguishing characteristic between mathematics
and its applications, particularly engineering. Mathematicians are
not concerned with the instruments for making the estimates;
engineers are.
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Although one can readily understand the properties of two or
three dimensional distance, mathematicians do not hesitate to
abstract beyond our temporal space to consider by analogy the
distance between two points in an n-dimensional space. Thus, two
points, R and S, in n-dimensions can each be represented by an
ordered n-tuple of coordinates, R = (rl,r2,...,r

n
) and S =

(s
1
,s

2
,...s

n
) so that

d(R,S) = [r
1
- s

1
)
2
+ (r

2
- s

2
)
2

+ + (r
n

sn)2]1/2

Finally, let us examine distance on a different surface; for
example, the shortest distance on the earth's surface between two
points, such as from Chicago to London. If we consider the earth
to be a sphere of radius r, then we can define the distance between
two points M and N on the surface of the sphere to be the length of
the smaller arc of the great circle passing through the points M
and N.

Although one could continue to examine different notions of
distance, at some point, mathematicians attempt to build a more
abstract definition that preserves the general properties of each
of the cases. Clearly, abstracting the key features from several
exemplars of an idea is an important aspect of doing mathematics.
For distance, a more general definition is that of a metric space.

I have tried to illustrate in this example how mathematicians
build abstract systems on common notions in the real world. They
develop ne:1 concepts (such as metric space), utilize other ideas
(the Pythagorean theorem or the great circle of a sphere), and
define new operational procedures in terms of quantitative and
spatial concepts and procedures.

Inventing is illustrated in this example by the Euclidean
n-space formulation of distance by analogy to the two- and
three-space formulations. But mathematicians are more creative
than this. For example, many interesting metric spaces on the
plane arise out of a consideration of differently defined
distances. One interesting class of metric spaces is obtained when
one defines a metric d on the plane by the formula:

dp(M,N) = [Ix -
Y 11 13114

The spaces so obtained are called Minkowski spaces. What is
interesting is to change the value of p in the defining equation.
For example, if p = 1, the set of points N for which d (M,N) = r is
a square with center M and diagonals of length 2r paralilel to the
coordinate axis. Also, if p approaches infinity, the set of points
is also a square, but with sides of length 2r parallel to the axes
(see figure 1).
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Figure 1. Minkowski spaces for different values of p.
(Source: Reprinted from What is Distance, p. 23, by Yu. A. Shreider
by permission of The University of Chicago Press, 0 1974 The
University of Chicago.)

These are only a few of the many examples of metric spaces
mathematicians have invented. Yet no invention is accepted without
also demonstrating the truth of its properties via a deductive
argument. In the above examples, I have not proved that each
metric space described fulfills the four basic properties.
However, mathematicians would not accept that these spaces are
metric spaces without proof. Finally, the applications of the
mathematical ideas about distance should be apparent, for using
different definitions, scientists and engineers have developed
means of measuring distance between subatomic particles and between
galaxies (whether they are conceived to exist in a Euclidean space
or some other). Applications of the idea range from space
technology to plotting air traffic routes to save fuel.

In summary, I believe that to know mathematics is to do
mathematics: abstracting, inventing, proving, and applying are its
basic activities. The challenge to teachers is to organize a
course of study which provides students the opportunity to
experience these activities and thus "to know" mathematics and not
just to "know the record" of past mathematical activities.

WHO DECIDES ON THE MATHEMATICAL TASKS FOR STUDENTS
AND FOR WHAT REASONS?

I raise this question because what is taught in schools
requires deliberate choice. In the last section, I argued that the
instructional activities chosen should give students experiences in
abstracting, inventing, proving, and applying. But what is now
taught in schools (or was taught when I was in school) bears little
resemblance: to this view of mathematics.

The decisions about mathematical activities in school have not
been made by mathematicians. Thus, who makes the decisions? In
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American schools, one could ague that which tasks are assigned to
students, how much time is spent with what emphasis, what is to be
judged and rewarded (or punished), and so forth, are -urricular
decisions individual teachers make. But, it would be naive to
conclude that teachers alone make the decisions about what
mathematics is taught. The fact that mathematics is taught by a
teacher to a group of students leads one to expect that a teacher's
pedagogical principles and practices, soundly based or not, and the
constraints of a particular learning situation will shape the kind
of mathematics children learn and how. Thus, while teachers may be
in a position to make content choices, real or imagined constraints
limit such decisions. For example, Stephens (1982) has shown that
elementary teachers see themselves making decisions about "my
children" and not about "your mathematics." Furthermore, one
should not assume that mathematical inquiry will fit comfortably
into the time slots of the conventional classroom, or that it will
escape distortion altogether when adapted to fit the exigencies of
a subject-based curriculum. The school has a wider social mandate
than simply to teach mathematics, or any other subject: through
what it teaches, the school helps to define and to legitimate what
is to count as work by teachers and students, and what kinds of
knowledge are to be valued above others. For many teachers, making
content decisions is not seen as part of their job.

The actual decisions about what mathematics is taught and how
it is interpreted are influenced by curriculum developers, school
boards and administrators, publishers, and others interested in
what is taught in schools. Given that there are over 16,000
separate school districts, each with a board of administration,
over 500 publishers of educational materials, and so forth, there
is no real answer to who influences curriculum decision making.
However, the combined influences of these and other interest groups
tend to perpetuate existing traditions about schooling, which in
turn act to limit the choicls available to teachers. As Popper
(1949) has argued, the role of tradition in society is twofold:
first, traditions create a certain social structures and second,
traditions are something which we can criticize and change.
Curricular traditions, such as teaching a year of geometry to
fifteen-year-old students, provide regularities in the social
structure of schools. The mere existence of these regularities is
more important than their merits or demerits. They bring order and
rational predictability into the social world of schools. To

illustrate curricular traditions, I will discuss three
perspectives.

The Discipline Perspective

Attention in schools is fixed on subject matter. Mathematics
is separated from science, grammar, and other subjects. Within
each subject, ideas are selected, separated, and reformulated into
a rational order. For mathematics, this selection and organization
has not been made by mathematicians. Seldom do they have a voice
in school mathematics. Curriculum development starts by
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subdividing each subject into topics, each topic into studies, each
study into lessons, and each lesson into specific facts. This
curricular tradition is so ingrained that most educators simply
take it for granted. In fact, the modern mathematics movement of
the past twenty-five years really challenged only the content aims
and how content was subdivided--not the discipline tradition per
se--and this chapter still reflects that tradition. Mathematics is
so universally accepted as a part of school curricula that it is
quite easy to see why little thought is given to its overall
justification.

Howeve:, assuming the place of mathematics in school programs
is justified, there are no serious problems within this discipline
perspective. First, as was argued earlier, mathematics is too
often viewed as "a record of knowledge." Second, many parents
expect their children to have the same curricular experiences they
had. Since they had to master a set of computational skills, they
expect schools to teach their children the same things in the same
way. However, as satirically narrated by Peddiwell (1939) in his
classic The Saber-Tooth Curriculum, traditional courses such as
one on "saber-tooth-tiger-scaring-with-fire" sometimes outlive
their usefulness (that is, "scaring-with-fire" continues to be
taught even after saber-tooth tigers have become extinct). Today's
typical mathematics program is crowded with lots of
"scaring- with - fire" topics. Usiskin (1980) recently did the
profession a service by listing five traditional topics in algebra
and geometry that should be omitted. Many other topics should also
be considered for omission. There is no question that the computer
(and the calculator) have made obsolete the slide rule, logarithmic
approximations, statistical approximation procedures, and so forth.

The adherence to curricular stability--teaching this
generation of students the concepts, procedures, and values taught
to previous generations--is clearly reflected in the
"back-to-basics" movement, the banning of calculators from
classrooms by school administrators and teachers, and so forth.
However, such a position fails to appreciate that today's students
will not be working in today's world but in the twenty-first
century. Some of the skills needed by productive citizens then
will be quite different from those emphasized in today's school.
In particular, the current technological revolution brought on by
the "chip" has created a whole new set of skills all should learn.

The need to challenge instructional traditions based on this
technological revolution is evident with respect to the teaching of
the arithmetic of whole numbers, algebraic routines, right triangle
trigonometry, and even many procedures in calculus. For example,
while the concepts and procedures of arithmetic are and will
continue to be central to the learning of all mathematics, the
tradition has been to emphasize getting students to become
proficient at a set of procedural skills--finding sums of long
columns of figures, doing long division with large numbers, finding
square roots, and so forth. There is no question that these skills
were essential in the post-Renaissance growth of business and
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industry. One can almost see behind the child doing sums in
today's classroom a Victorian clerk, poring over a ledger, complete
with flickering candle and quill pen. Today, small machines
available to anyone can do all the calculations expected of any
clerk faster and more accurately (and do a lot more as well). We
need to teach students how to tell tomorrow's machines what to do.
This does not mean that we no longer need to teach computational
skills. Understanding the concepts and procedural skills is still
needed, since computers only do what they are told to do, but
extensive drill on computational skills is obsolete. In summary,
the discipline tradition and how mathematics has been characterized
in school mathematics need to be challenged.

The Psychological Engineering Tradition

As a result of the vast research on individual differences,
human development, and human learning, educational psychologists
believe that their knowledge should influence how curricula are
developed. Although it cannot be argued that current curricula are
based on sound psychological principles, it is commonly assumed by
many educators that they should be. Many psychologists believe
that the teaching of concepts, meanings, or skills is usually done
by a teacher or textbook writer in intuitive, unanalytic ways;
thus, an improvement would certainly be made if psychological
principles were used as a basis for curriculum development. For
example, whether or not one believes in the details of Piagetian
research, it is now commonly accepted by most educators that young
children think differently from older children and adults and that
learning proceeds from concrete experiences to abstraction; go
beyond such experiences.

Nevertheless, the actual necessary connection between current
psychological knowledge and classroom instruction is not clear for
two reasons. First, most psychologists have related their theories
to a very limited view of mathematics. Too often they have
operationally defined mathematics in terms of performance on a
standardized test, or have addressed a limited set of routine
concepts or skills. Thus, they have focused only on getting right
answers. Second, too often they have assumed that information
derived in laboratory settings generalizes to classrooms.
Unfortunately, learning in a classroom is not simply the sum of
individual learning experiences. Classrooms are social groupings
where the structure of many activities is dictated by a need to
manage or control the group.

In summary, it has become commonplace to justify new programs
in terms of psychological principles (or more likely to use the
name of a noted psychologist--Piaget, Bruner, Gagne, Bloom, and so
forth). The actual connection between the psychological notions
and classroom instruction is in doubt.
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Critical Sociology

This third perspective on curriculum views curricular
knowledge as a mechanism of socioeconomic selection and control.
The question of selection of content is seen as a form of the
larger distribution of goods and services in society. One poses
political questions such as:

Whose knowledge is it? Why is it being taught to this
particular group; in this particular way? What are its real
and latent functions in the complex connections between
cultural power and the control of modes of production and
distribution of goods and services in an advanced industrial
economy like our own? (Apple & Wexler, 1978, p. 35)

As a result, the study of educational knowledge becomes a study in
ideology that seeks to investigate what is considered legitimate
knowledge by specific social groups and classes, in specific
institutions, and at specific historical moments.

Although most people are likely to associate the knowledge
distributed by schools primarily with the knowledge incorporated
into textbooks, the sociologists of school knowledge have
recognized that textbooks constitute but one of the many vehicles
through which information of various kinds is disseminated. In

particular, social and economic control is effectuated in schools
both through the forms of discipline schools have (that is, the
rules and routines that ensure order, the "hidden curriculum" that
reinforces norms of obedience and punctuality, and so forth) and
through the forms of meaning the school distributes. For example,
scheduling arithmetic after recess to quiet the students is clearly
a form of social control.

Many recent studies illustrate the manner in which curriculum
content relates to the interests and ideology of some particular
groups, as opposed to that of others. For example, Anyon (1980)
examined children's work in long division in four types of schools
that were using the same mathematics text series. The schools
differed in terms of social class. In the working-class school,
the children's work was to follow the steps of a mechanical
procedure involving rote behavior and very little decision making
or choice. The teachers rarely explained why the work was being
assigned, how it might connect to other assignments, or what idea
lay behind the procedure to give it coherence and perhaps meaning
or significance. In the middle-Cass school, Anyon found that the
children's work was to get the right answer. If one accumulated
enough right answers, one got a good grade. Tice child had to
follow the directions in order to get the right answers, but the
directions often called for some figuring, some choice, and some
decision making. In the affluent professional school, Anyon found
that the children's work was creative activity carried out
independently. The students were continually asked to express and
apply ideas and concepts. This work involved individual thought
and expressiveness, the expansion and illustration of ideas, and a
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choice of appropriate method and material. Thus, division (finding
averages) became a procedure one uses to solve problems. And
finally, in the executive elite school, work was developing one's
analytical, intellectual powers. The children were continually
asked to reason through a problem to produce intellectual products
that would be both logically sound and of top academic quality.
What is important in this example from the sociology of knowledge
is the importance of establishing the ideological linkages between
a curriculum and the system of meanings and values of the
effective, dominant culture (Williams, 1961). Working schools
train workers, and executive elite schools train executives. In
fact, one of the traditions which needs to be examined and
challenged is how "knowing mathematics" is operationally defined in
the classroom.

In summary, while teachers in fact decide on what is taught,
they are influenced by a set of curricular traditions. Traditions
may be explicit and recognized (like content being organized in
disciplines) and others implicit and unvoiced (like the influence
of social class). Either way, such traditions undoubtedly have
considerable influence on what is actually taught. And, in
proposing a common curriculum in mathematics, I am both aware of
such traditions and challenging some of them directly.

WHAT SHOULD BE THE PRINCIPLES FROM WHICH A COMMON
CURRICULUM CAN BE BUILT?

To consider this question, first recall that the work for
students is defined by the instructional activities given them.
Students are expected to listen, do assignments, complete homework,
work alone (or in groups), take tests, and so forth. Tyler (1959)
has argued that to build an effectively organized group of such
activities, three major criteria should be met: continuity,
sequence, and integration. To these I would add a fourth: content
integrity. By this I mean that the activities given to students
should give them experiences in abstracting, inventing, proving,
and applying mathematics, and at the same time, the concepts and
skills they learn should form the basis for a much wider range of
mathematical activities.

Obviously, no student can recreate all of mathematics. Thus,
only some exemplars from various branches of mathematics should be
selected. Nor should the student be exposed to the multitude of
mathematical concepts and procedures in a willy-nilly fashion.
They should be chosen and organized in an evolutionary manner so
that new concepts and procedures can build on (evolve from) other
concepts and procedures. Thus, to engineer a common curriculum for
mathematics meeting these four criteria, three principles should be
followed.
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Principle 1. Instructional Activities Should
Emphacize Processes

To know mathematics as a craft means that instructional
activities should require students to actively "do" something.
More specifically, at least four basic sets of processes used in
mathematics can be identified: relation, representation,
symbolic-procedure, and validation (Romberg, 1975).

Relation processes. These are used to relate objects
according to common attributes. Some important relation processes
are the following. Describing is the process of characterizing an
object, set, event, or representation in terms of its attributes.
Classifying is the process of sorting objects, sets, or
representations into equivalent classes on the basis of one or more
attributes. Classifying is basic to mathematics, for it requires
the student to look at how things are alike; if common attributes
of things are identified, then generalizations about the class can
be made. Comparing is the process of determining whether two
objects, sets, events, or their representations are the same or
different on specified attributes. When comparing, the student
focuses on an attribute to decide whether two things are the same
or different on that attribute. Ordering is the process of
determining whether one of two objects, sets, events, or their
representations is greater than (>), equal to (=), or less than (<)
the other on a specified attribute. The process of ordering gives
a background for developing the natural order of numbers. Joining
is the process of putting together two objects, sets, or
representations that have an attribute in common to form a single
object, set, or representation with that attribute. In the process
of joining, one begins with at least two objects or sets and puts
them together to make one object or set. This is most often
represented with a sentence such as 5 + 7 .0 , where the unknown

is the sum. However, situations may be posed where one of the two
objects or sets is unknown; these situations are represented by
sentences such as 5 + 0 = 12 and 0 + 7 = 12. Separating is the
process of taking apart an object, set, or representation whose
parts have an attribute in common to make two objects, sets, or
representations each with that attribute. Separating, as well as
joining, enables the children to solve problems that they will
later solve symbolically with addition and subtraction. Grouping
is the process of arranging a set of objects into equal groups of a
specified size with the possibility of one additional group fot any
leftovers. Partitioning is the process of arranging a set of
objects into a specified number of equal groups with the
possibility of one additional group for any leftovers. Grouping
and partitioning are closely related processes. Both allow
students to consider problems that will be solved by multiplication
or division. In grouping, one knows how many objects are in each
group, but does not know how many groups there are. In

partitioning, the student knows the number of groups, so he or she
deals out the objects one by one, giving each group the same
amount, and then counts the number in each group. When the action
has been completed, in either a grouping or partitioning situation,
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it is impossible to t.11 how it was done. Both processes are
represented symbolically the same way. Both grouping and
partitioning are used to convert from one unit to another within a
system of measurement. For example, in changing 4 meters to
centimeters, the student thinks of 4 groups of 100 centimeters or
400 centimeters. Changing 20 quarts to gallons, the students think
of the problem as how many groups of 4 does it take to make 20,
or (4) = 20. Grouping is also the basis of place value.
Students may group a set of objects by tens and represent it,.for
example as 3(10) + 7. This notation is given a special name:
expanded notation. The student goes from this notation to the
usual notation or compact notation, 37. Grouping is also used in
connection with the addition and subtraction algorithms.
Partitioning is often used to build an understanding of fractions.
If a set can be partitioned without any leftovers, then each group
is a fractional part of the whole set. .For example, if 12 cookies
are distributed to 3 people, each receives one-third of the
cookies.

Representation process. These allow the student to progress
from solving problems directly to solving them abstractly.
Students begin by solving problems directly with the objects or
sets involved in the problem. In solving many problems, they
gradually learn to use physical representations, then pictorial
representations, and finally, symbolic representations to help
them. Representing not only includes going from the concrete to
the abstract, but also includes going in the other direction. For
example, students can represent the symbol 6 with six objects.

Symbolic-procedure processes. These are a great deal of what
is commonly considered as mathematics. These are the procedures
one uses to transform symbolic statements into equivalent
statements. An algorithm is a finite sequence of steps one uses to
close an open mathematical sentence. The common algorithms
children learn (addition, subtraction, multiplication, and division
of whole numbers) are examples of such procedural processes. A
sentential transformation is a finite sequence of steps one uses to
change an open mathematical sentence to an equivalent open
sentence. For example: when 314 + = 843 was changed to
843 - 314 = , a sentential transformation was made. Such
transformations are efficient in problem solving since they provide
the student, as in the example above, a way of changing an
unworkable problem to one in *which an algorithm can be used. A
structural transformation is a finite sequence of steps one uses to
change a symbolic phrase to an equivalent phrase. For example, the
phrase 3(5+4) can be changed to 3 x 5 + 3 x 4 because of the
structural characteristic of the distributive property for
multiplication over addition with whole numbers.

Validation processes. These are the processes used to
determine whether a proposed proportion is true. There are three
basic ways of validating: authority, empiricism, and deduction.
Authority validation is the process of determining validity by
relying on some authority. For example, if a child checks his
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answer to a problem by comparing it to an answer book or to the
teacher's answer, he is relying on authority. Empirical validation
involves representing a proposition with objects, pictures, or
other symbols to assist in ,etermining its validity. For example,
suppose for the problem 9 0 6, a student puts > in the box. To
determine if 9 > 6 is a valid sentence, the student should
represent 9 and 6 with cubes and visually show that the 9 cubes are
more than the 6 cubes. Similarly, for the problem 6 + 3 = 10, the
student could represent 6 and 10 with pictures and clearly show
that 3 is au invalid solution. Logical deductive validation is the
process of determining validity by a deductive argument based on
agreed upon common notions, definitions, axioms, and rules of
logic. This process is at the heart of mathematics.

In summary, these four basic sets of processes should be
considered illustrative (certainly not exhaustive) of what. it means
to "do" mathematics. Each specific instructional activity should
expect students to use one or more mathematical processes. I-,

addition to processes or procedural routines such as these, there
is also a set of executive routines or heuristics which should be
learned. Thus, while the semantics of many activities should
direct a student to use a particular process, some activities need
to be provided that require the student to decide on a strategy or
choose between proceeses. For example, to learn the, strategy
suggested by Polya (1957), "If you cannot solve the proposed
problems, try to solve first some related problem" (p. 31),
students must have exposure to problems where that strategy is
appropriate.

P7'nciple 2: Instructional Activities Should Be
Groa ed into Curriculum Units

Tyler's (1959) notion of integration "refers to the horizontal
relationship of curriculum experiences" (p. 55). One
interpretation is that a set ,f activities should be related to
each other to give meaning to the set. Unfortunately, during the
past two decades, with "individualized" programs, this concern was
not heeded. We were able to break mathematical learning into
hundreds of specific behavioral objectives, but the problem was how
to put them back together again so that students had an integrated
knowledge of mathematics.

The problem is not new. Dewey (1902) argued for activities
related to experience in his classic, The Child and the Curriculum,
and Brownell (1947) demonstrated the efficacy of meaningful
instruction nearly half a century ago. It is widely accepted that
meaningful learning is better than rote learning. The difficulty
lies in engineering a "meaningful" mathematics program. It is
deceivingly easy to specify objectives, lay out or create a
hierarchy, and engineer a rote learning program based on that
framework (Gagne, 1965). The danger, as Erlwanger (1975) has
shown, is that mastery of a set of objectives is no guarantee that
the student can do mathematics.

203



203

One answer that is emerging from current work in several areas
is that activities should be grouped into curriculum units that
take two to three weeks to teach. The activities should be related
to a "story shell" which provides a reason for doing each activity
and makes the learning clear and meaningful.

Story shell. This is not the place to go into a lengthy
discussion of the research on "story shell curriculum units." But
let me trace some of the argument, beginning with cognitive
psychologists who have been interested in what people remember from
texts they have read (that is, the relationship between reading
comprehension and memory storage). Several scholars in the 1970s
(Lakoff, 1972; Mandler & Johnson, 1977; Rumelhart, 1975; Stern &
Glenn, 1979; Thorndyke, 1977; van Dijk, 1977) proposed "story
grammars" (sets of rewrite rules) with Lwo objectives: first, they
are grammars for real stories, and second, they are theories about
the representation of stories in memory.

This line of research, although demonstrably inadequate in
representing reel stories, has turned out to be extremely valuable
as a characterization of how to utilize planning knowledge in
reading stories. In particular, Black and Bower (1980) have
proposed a two-part critical path rule that predicts memory
accuracy: (a) the best remembered part of a story is the critical
path that provides the transition from the beginning state to the
ending state of the story; 00 if the story describes the critical
path at various levels of detail, then the higher (that is, the
more general, less detailed) the level of statement, the better
remembered it will be. What is becoming clear is that the
"critical path" (cr "solution episode" or "story shell") is what is
remembered best.

Next, relying in part on this memory research, Sternberg
(1981) is currently studying learning of new vocabulary words in
context (where the new words are included in a familiar story
line). Such learning is clearly more successful and meaningful
than the rote learning of new vocabulary words. Finally,
instructional research by Good and Grouws (1981) lends tangential
evidence to this argument. They asked teachers to spend more time
explaining the content of each mathematics lesson and found that
the students learned considerably more. The implication is that in
explaining content, teachers put the ideas in context. Thus, a
curriculum unit should have a story to tell posed in an episodic,
problem, or "detective" format; and the story should fit into a

larger tale (like a chapter in a good novel).
5

5. There are several examples of Instructional Units that have
story lines, Martin Covington and colleagues studied general
creative thinking and problem solving using mystery problems
following a story line. See Covington, 1968.

Also, several experimental mathematics programs created
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Clear and meaningful activities. From personal experience in
developing an elementary mathematics program, I am convinced that
the creation or selection of activities within the story shell
framework is also critical (Romberg, 1982). One could take an
existing text, add a story line, expect students to read the story,
and still have students answer questions on work sheets. That is
not what is being proposed; instead I suggest that the following
four characteristics be considered:

1. The activities should be related to how children process
information. Most traditional programs fail in this regard for
four reasons. First, the bulk of the developmental literature, as
reviewed by Lovell (1972), suggests that curriculum units be
organized around a set of activities in which (a) "the pupils work
in small groups or individually at tasks which have been provided";
(b) "opportunity is provided for pupils to act on physical
materials or to use games"; and (c) "social intercourse using
verbal language is encouraged since it is an important influence in
the development of concrete operational thought" (p. 176). Most
programs are not organized around activities like these.

Second, if one takes seriously the notions of curricular
spiralling, then one must review prior concepts and skills and get
ready for others to be learned later. Most programs do not both
"review" and "prepare." Third, the activities to teach concepts
should differ from those to teach algorithms, problem-solving
heuristics, and so forth. In most programs, one page looks like
most other pages. Fourth, sequenced activities that require
students to assimilate new information will differ from those that
require accommodation. Again, in most programs, little attention
is paid to students' methods of processing information in creating
activities.

2. The reasons for each activity within the unit should be
clear to each student. Too often the only reason a student sees an
activity is that "it is the next one in the book" or "my teacher
assigned it."

3. Ideally, every unit should include activities that expect
students to abstract, invent, prove, and apply. Again, too much
emphasis is placed on learning abstract concepts and procedures
with the only rationale being "someday you will need this skill."
Each story line should include problem-solving activities.

excellent topics with these characteristics, such as Stretchers and
Shrinkers developed by University of Illinois Committee on School
Mathematics (Hoffman, 1970), Minnemast Units developed by the
Minnesota Mathematics and Science Teaching Project (Werntz, 1968),
or some topics from Developing Mathematical Processes developed at
the Wisconsin Research and Development Center (Romberg, Harvey,
Moser, & Montgomery, 1974, 1975, 1976).
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Students should invent and argue about solutions to problems and
their validity. Furthermore, the problem-solving activities should
not be the word problems often seen in texts (Usiskin, 1980).

4. The curriculum unit should be objective referenced, with
tests (and observations) related to those objectives. Since part
of the job of teaching is to judge the words and actions of
students, the use of some behavioral objectives for evaluation
purposes has proven to be helpful.

In summary, I believe it is possible to create curriculum
units that are a collection of activities integrated around a story
line that can give meaning to the concepts and procedures.

Principle 3. Curriculum Units Should Be Related
Via Conceptual Strands

To develop continuity, curriculum units need to be related to
each other as part of a larger story. For mathematics, one way to
develop the larger story is to let history be our guide. All of
elementary mathematics has been created in response to problems.
Yet, few adults are aware of the story of mathematics. "No
subject, when separated from its history, loses more than
mathematics" (Wolfe, 1945, p. vi). The story of how elementary
mathematics has developed can be told via seven strands: whole
number arithmetic, spatial relations, measurewent, fractions,
coordinate geometry, algebra, and statistics.

By strand, I mean a cognitive subdivision of mathematics that
has a rich history (or story line). I have chosen to emphasize
strands because, although a familiarity with number combinations
and operations can develop from manual and visual experience, this
of itself will take the student little beyond the level of
paleolithic man. Our numeral system is the product of centuries of

6. I suspect few mathematics educators would disagree with these
seven strands; many might have expected some others. Let me
comment on two, problem solving and computer literacy, which I did
not include. Problem solving was not included because
problem-solving activities should be included in most curriculum
units. Dealing with it separately would falsely separate
strategies from concepts and procedures where they can be used.
Problem solving should be learned from problem situations embedded
in the context of the "story shell" of each instructional unit.

Computer literacy poses a more difficult problem. All
students should learn to communicate with and use computers. Such
instruction is the responsibility of schools but should not be
considered as another part of mathematics. On the other hand, the
use of computers in mathematics is important, but it needs to be
considered as a tool to solve problems in many of the units within
the seven strands.
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mathematical exploration and invention. It possesses such
deceptive simplicity that it can be mechanically mastered with no
reference to its history. And therein lies the danger. Because
children are capable of insight and are not disposed to accept
arbitrariness unquestioningly, the deadliness of uninformed
teaching is immediate. Our decimal system, our rules of
calculation, our arithmetical and geometric terminology--all seem
natural and inevitable to anyone who has successfully mastered them
by mechanical methods. To see them for what they are--a blend of
logic, history, and convention--seems not only difficult, but
unnecessary; to show them as such to children, almost impossible.
Yet it is not only possible, but essential if the foundations of
mathematical understanding are to be well and truly laid.

The whole numbers arithmetic strand includes counting,
additive structures, and multiplicative structures. "Counting"
means the assignment of numbers to sets of objects (finding out how
many) and includes learning the terminology of the Hindu-Arabic
numeration system. Learning "additive structures" means learning
to write addition and subtraction sentences to represent certain
concrete numerical situations and learning the procedural rules for
addition and subtraction (Vergnaud, 1981). Similarly, learning
"multiplicative structures" means learning to write multiplication
and division sentences to represent certain concrete situations and
learning the procedural rules for multiplication and division.

The story of how the concepts and procedures of arithmetic
were developed is central to the history of mankind. The concepts
of arithmetic correspond to the quantitative relations of
collections of objects. These concepts arose by way of
abstraction, as a result of the analysis and generalization of an
immense amount of practical experience. They arose gradually.
First came numbers connected with concrete objects, then abstract
numbers, and finally the concept of number in general. Each of
these concepts was made possible by a combination of practical
experience and preceding abstract concepts. Similarly, the
operations on whole numbers and procedural rules for finding sums,
differences, products, and quotients arose as a result of practical
experience with joining, separating, grouping, and partitioning
sets and looking for shortcuts for counting the sets resulting from
those processes.

The importance of this strand cannot be overestimated. The
concepts and procedures of arithmetic, which generalize an enormous
amount of experience, reflect in abstract form relationships in the
actual world that one meets constantly and everywhere. It is
possible to count the objects in a room, stars, people, atoms, and
so forth.

At the same time, every abstract concept--in particular, the
concept of number--is limited in its significance as a result of
its very abstractness. In the first place, when applied to any
concrete object, it reflects only one aspect of the object and
therefore gives only an incomplete picture of it. For example,
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mere numerical facts often say very little about the essence of a
matter. In the second place, abstract concepts cannot be applied
everywhere without certain limiting conditions. It is impossible
to apply arithmetic to a concrete problem without first convincing
ourselves that their application makes some sense in the particular
case. If we speak of addition, for example, and merely unite the
objects in thought, then naturally no progress has been made with
the objects themselves. But suppose we apply addition to the
actual uniting of the objects. We put the objects together, for
example, by throwing them into a pile or setting them on a table.
In this case, not merely abstract addition takes place, but also an
actual process. The process is not arithmetical addition, and it
may even be impossible to carry out. For example, an object thrown
into a pile may break; wild animals, if placed together, may tear
one another apart; and materials put together may enter into a
chemical reaction: a liter of water and a liter of alcohol poured
together produce not two, but 1.9 liters of mixture as a result of
partial solution of the liquids.

The spatial relations strand includes the basic concepts of
geometry. The story here is similar to arithmetic. Early man took
over geometric forms from nature. The circle and the crescent of
the moon, the smooth surface of a lake, the straightness of a ray
of light or of a well-proportioned tree existed long before man
himself and presented themselves constantly to his observation. In
nature, our eyes seldom meet with straight lines, equilateral
triangles, or squares. Clearly, the chief reason men and women
gradually worked out a conception of these figures is that their
observation of nature was an active one, in the sense that, to meet
their practical needs, they manufactured objects that were more and
more regular in shape. They built dwellings, cut stones, enclosed
plots of land, stretched bowstrings in their bows, and modeled
their clay pottery. In bringing these to perfection, they
correspondingly formed the notion that a plot is curved, but a
stretched bowstring is straight. In short, they first gave form to
their material and only then recognized form as that which is
impressed on material and can, therefore, be considered in itself,
as an abstraction from material. By recognizing the form of
bodies, humans were able to improve their handiwork and thereby to
work out still more precisely that abstract notion of form. Thus,
practical activity served as a basis for the abstract concepts of
geometry.

Geometry operates with "geometric bodies" and figures. But a
geometric body is nothing other than an actual body considered
solely from the point of view of its spatial form, in abstraction
from all its other properties such as density, color, and weight.
A geometric figure is a still more general concept, since in this
case, it is possible to abstract from spatial extension also.
Thus, a surface has only two dimensions; a line, only one
dimension; a point, none at all. A point is the abstract concept
of the end of a segment, of a position defined to the limit of
precision so that it no longer has any parts. Thus, geometry has
as its object the spatial forms and relations of actual bodies,
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removed from their other properties and considered from the purely
abstract point of view.

The self-evidence of the basic concepts of geometry, the
methods of reasoning, and the certainty of their conclusions has
the same source as in arithmetic. The properties of geometric
concepts, like the concepts themselves, have been abstracted from
the world around us. It was necessary for people to draw straight
lines before they could take it as an axiom that through every two
points it is possible to draw a straight line. They had to move
various bodies about and apply them to one another on countless
occasions before they could generalize their experience to the
notion of superposition of geometric figures and make use of this
notion for the proof of theorems, as is done in the well-known
theorems about congruence of triangles.

The measurement strand involves learning to assign numbers to
attributes of objects and then using the concepts and procedures
from the numbers strand to solve problems of length, weight, or
other properties involving measurement. This strand relates the
concepts and processes of whole numbers to those of geometry.
Whole number arithmetic begins with the notion that each separate
object is a unit. A collection of discrete objects is a sum of
units, which is, so to speak, the image of pure discreteness,
purified of all other properties. Geometry, on the other hand,
considers properties of a single homogeneous object, which in
itself is not separated into parts, but which may nevertheless be
divided in practice into parts as small as desired. Lengths,
areas, and volumes have the same property. Although they are
continuous in their very essence and are not actually divided into
parts, they nevertheless offer the possibility of being divided
without limit.

Here we encounter two contrasting kinds of objects: on the
one hand, indivisible, separate, discrete objects; and on the
other, objects that are completely divisible, not divided into
parts, but continuous. We therefore have two
properties--discreteness and continuity--and their abstract
mathematical images: the whole number and the geometric extension.
Measurement involves a blending of these ideas: the continuousness
is measured by separate units.

The fractions strand involves learning to name fractional
parts for certain situations (Kieren, 1977), learning the
conventional symbolism for representing fractions (both common and
decimal), and learning the procedural rules for operations on
fractions.

Historically, the need for fractions arose out of measurement
problems. In the process of measurement, the chosen unit is not
ordinarily contained in the measured magnitude an integral number
of times, so a simple calculation of the number of units is not
sufficient. It becomes necessary to divide the unit of measurement
in order to express the magnitude more accurately by parts of the
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unit; that is, no longer by whole numbers, but by fractions. This
was the way fractions actually arose. They arose from the division
and comparison of continuous geometric magnitudes. The first
magnitudes named lengths, areas of land, and volumes of liquids.
In the earliest appearance of fractions, we see the mutual action
of arithmetic and geometry. This interaction led to fractions, as
an extension of the concept of number from whole numbers to
fractional numbers (or as mathematicians say, to rational numbers,
expressing a ratio of whole numbers).

The coordinate geometry strand extends the interaction of
arithmetic and geometry to a higher level of abstraction by
developing a general procedure for the assignment of numbers to
points in any space. Concepts and procedures such as naming points
on a line starting at any point (the number line), going in either
direction on the line (directed numbers), naming coordinates on a
plane, and so forth, are to be learned in this strand.

The Algebra strand incorporates the notions derived from
generalized arithmetic. It deals only with mathematical operations
on numbers considered from a formal point of view, in abstraction
from given concrete numbers. The abstractions find expression in
that magnitudes are denoted by letters on which calculations are
carried out according to well-known formal rules.

Algebra, in contrast to generalized arithmetic, retains this
basis, but widens it extensively. Algebra considers "magnitudes"
of a much more general nature than numbers and studies operations
on these "magnitudes," which are to some extent analogous in their
formal properties to the ordinary operations of arithmetic:
addition, subtraction, multiplication, and division. A simple
example is offered by vectors, which may be added by using a
parallelogram rule. The degree of generalization in contemporary
algebra is such that even the term "magnitude" may lose its
meaning, and one speaks more generally of "elements" on which it is
possible to perform operations similar to the usual algebraic ones.
For example, two motions carried out one after the other are
evidently equivalent to a single motion, which is their sum; two
algebraic transformations of a formula may be equivalent to a
single transformation that produces the same result; and so forth.
It is possible to speak of a characteristic "addition" of motions
or transformations. This and more is studied in a general abstract
form in contemporary algebra.

The statistics strand is a "body of mathematics of obtaining
and analyzing data in order to base decisions upon them" (Wallis &
Roberts, 1956). In this sense, statistical concepts and procedures
are a natural bridge between real problems and mathematics. Data
are often gathered to help decide questions of practical action.
Statistics help decide what kind of information is needed; how to
collect, tabulate and interpret it; and how judgments can be made
on the basis of this information.

210



210

In summary, the fundamental concepts and procedures in these
strands are the building blocks that enable any student to cope
with many relevant problems in later life and work situations.
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CHAPTER 11

MATHEMATICS EDUCATION: A REALLY REAL, REAL WORLD PROBLEM
Reactions to Chapters 6-10

Herbert J. Greenberg

D'Ambrosio, in chapter 7, advocates the study of really real
situations as the way for children to learn mathematics. I propose
to approach the real world problem of mathematics education in the
same way and to confront this problem with the solutions
recommended by the preceding authors (and vice versa).

The problem admirably suits D'Ambrosio's paradigm: it is
undefined, unformulated, and uncodified. Indeed, none of the
authors attempt to define or formulate the problem, but all
recognize its complexity, and between them, touch on most, if not
all, of its aspects: curriculum, pedagogy, teachers, schools,
student motivation, individual differences, discipline, publishers
and tests, as well as broader sociological, economic, and political
questions relating to American society. Moreover, it is not clear
whether our task here is to deal with the problem of mathematics
education, or with the metaproblem of monitoring mathematics
education. However, the presumption seems to be that the two must,
or will, go hand in hand. (Personally, I never metaproblem I
didn't like.)

We have before us five papers that collectively provide both a
general perspective on dominant trends in mathematics and the
mathematics that is important for the schools and the specifics of
content changes recommended for the next decade. Before discussing
these, however, let us reflect on the second of four basic
questions on the shaping of a common curriculum posed by Romberg in
chapter 10, namely, Who decides on the mathematical tasks for
students and for what reasons?

Romberg points out that it is not the teachers who make the
decisions on what is taught, but rather traditions embodied in
curricular perspectives. He enumerates three: the perspective of
the discipline itself, the perspective of educational
psychologists, and the perspective of sociologists. To these
three, I would respectfully add a fourth: the perspective of
mathematics educators.

What we find in Pollak, Hilton, and Maurer--chapters 6, 8, and
9--is the perspective of the discipline; in D'Ambrosio, we find the
perspective of the sociologist; in Romberg, we find the perspective
of the mathematics educator. The perspective of the educational
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psychologists, except incidentally, is absent--I am tempted to say,
mercifully absent.

Turning to the substance of these papers, those by
mathematicians Pollak, Hilton, and Maurer form the basis of
Romberg's dictum that "all students should learn more and somewhat
different mathematics than is in the current curriculum." The key
words here are "all," "more," and "somewhat different," although
the very serious implications of the word "all" are largely
ignored. There is even general agreement on what topics ought to
be added or deleted.

There is no need here to repeat the conclusions and
recommendations contained in the preceding papers. The authors
have done their jobs thoroughly and well, and the reader has
already seen them. However, for purposes of comparison and
criticism, it is necessary to pull together some of the central
themes.

Pollak's paper is, in all respects, the most comprehensive,
reporting as it does on the recommendations contained in six
position papers on the fundamentals in the mathematics curriculum,
that were written for a conference held by the Conference Board of
the Mathematical Sciences. Recommendations made to CBMS for
elementary- and middle-school mathematics emphasize the early
introduction and use of calculators and computers; the development
of skills associated with "number sense" such as mental arithmetic,
estimation, and approximation; and the collection and analysis of
statistical data. At the secondary level, the recommendations,
again in considerable detail, an) aimed at streamlining traditional
curricular components to make room for fundamental new topics in
discrete mathematics, statistics, probability, and computer
science, with special emphasis on algorithmic thinking.

Pollak takes care to convey the caveats and concerns of the
separate reports when he stresses the urgency of the central
noncurricular problems: the need for more and better qualified
mathematics teachers, the need for improvement of the total school
environment, and the lack of support of the schools. In the same
vein, he calls attention to key factors that will affect the
implementation of any curricular changes, namely textbooks,
testing, articulation, and equity considerations, including the new
one of equal access to computers. He reiterates the need to "make
haste slowly," and calls attention to the vast potential provided
by modern computer technology.

Hilton draws from "the dominant trends in present-day
mathematics . . . principles that should govern the choice of
content and style in the teaching of mathematics at the secondary
and elementary levels" (p. 149). From these principles, he is led
to recommendations about which topics should be "in" and which
should be "out" at each level.
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In his choice of basic topics, Hilton's recommendations, nut
surprisingly, are substantially the same a's those in the report:: to
CBMS contained in Pollak's paper. However, he adds a number of
highly interesting topical ideas. For example, he suggests
including elementary number theory, both because, "the integers are
ver7 'real' to the student and, potentially, fascinating' (p. 159),
and i:ecause the study of elementary number theory might be a better
way to teach logical reasoning than the usual theorem proving in
Euclidean geometry.

Other novel, noteworthy, and strongly mathematical
recommendations puu forth by Hilton for the secondary curriculum
are concerned with rates and the rational numbers, averages,
interactive procedures, and paradoxes to stimulate thought.
Clearly, Hilton has in mind both our responsibility to the more
mathematically able students, and our future dependence on them.
To that, I say, "Bravo!"

In addition to his curricular recommendations, Hilton supplies
us with separate recommendations pertaining to teaching styles and
strategies that call for, "an integrated approach to the
curriculum, stressing the interdependence of the various parts of
mathematics" (p. 156).

Hilton, like the others, calls attention to the need for
"confident, capable, and enthusiastic teachers," and believes that
the computer should have a "noticeable impact" on the curriculum.

Maurer directs his attention to the place of discrete
mathematics in the secondary school curriculum. Specifically, he
identifies "algorithms is not seen as a major mode of thought
around which to tie much of the mathematics one will teach or
learn" (pp. 172-173). Maurer deplores the fact that computers in
the schools are "simply regarded as big calculators" and that, "all
the interesting mathematical questions . . . are not touched on," a
situation that he ascribes in part to the teaching and use of
BASIC, a language that is, "... poor for fostering good,
structured, algorithmic thinking" (p. 168).

Recognizing, however, that even very fine secondary teachers
don't know what is meant by algorithmic thinking, let alone how to
introduce it in their classes, Maurer provides a considerable
service by being very explicit about what the algorithmic approach
is, and how it can be introduced and used in the high schools. I

found this discussion very valuable.

Equally valuable are the frank and blunt conclusions Maurer
reaches on the difficulty of discrete mathematics, the
undesirability of integrating discrete and continuous mathematics
into a single course, the value of traditional topics and the
consequent lack of room for change in the high school curriculum,
and the problem of retraining high school teachers. All but the
last of these conclusions, to a large extent, contradict
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conventional wisdom and the usual utterances and are all the more
convincing coming from one who is an advocate of change.

My own observations as an instructor at an institution
attempting an integrated discrete mathematics and calculus freshman
course bear out Maurer's conclusions. Our assumption also was that
"the discrete is inherently simpler than the continuous." But my
classroom experience, and student reactions and evaluations,
clearly contradicted this assumption.

As Maurer puts it, "it is not that doing algorithms is
especially hard. . . . B..,t the mathematics of algorithms is in
parts quite difficult" (p. 177). One is then forced to conclude
that "the mathematics of algorithms is easier than the mathematics
of calculus, but it may still be too hard for high school" (p.
177).

On the prospect of condensing or eliminating topics in high
school algebra to make room for new topics, Maurer suggests that
that which is desirable at the elementary level, vis a vis
arithmetic skills and drill, may not be desirable in the teaching
of algebra: "We know what arithmetic skills we still want people zn
have in the computer age. They should know at least how to
estimate effectively. That is, they still need good number sense.
But what is the equivalent 'good algebraic sense'? We don't know"
(p. 181). Maurer speculates that, "it may just be that skill and
training in symbolic manipulation are closely tied to success as a
mathematician, or scientist, or engineer, or even to being an
astutely analytic businessman" (p. 180). Accordingly, Maurer
stresses, "the importance of continuing to give students thorough
algebraic training" (p. 181), which tells us, when combined with
other mathematical requirements and expectations, that "there isn't
much slack time to play with in the secondary curriculum."

Leaving now the perspective of the mathematicians, I wish to
turn to the perspective of the sociologist in the paper by
D'Ambrosio. The questions he raises are truly vital ones, as
distinct from disciplinary ones, and serve to remind us of the
really real, in our real world problem of mathematics education.

D'Ambrosio says that mathematics education aims to provide
"equal opportunity for all. At the same time, it helps to prepare
our young for the future advancement and betterment of the
socioeconomic and political framework of society" (p. 135).

He states that "mathematics is deeply rooted in our cultural
systems and thus, is loaded with values" (p. 136). It is hard to
deny his assertion that, "mathematics promotes a model of power
through knowledge" and that "mathematics teachers indoctrinat2
students to believe that people and institutions arrange themselves
in hierarchies of power according to their mathematical ability"
(p. 136). Think of our fond classroom claims for the "power" of
mathematics, and think, too, of the hierarchy implicit in the way
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we extoll the mathematical achievements of school children in
certain countries.

D'Ambrosio reminds us that, in addition to the utilitarian
reasons for teaching mathematics, there are formative, cultural,
and aesthetic reasons, and that these latter reasons have been set
aside and largely forgotten for a long, long time. Worse than

that, he points out that the utilitarian has come to mean merely a
traditional skills-oriented mathematics that is obsolete and
inefficient and pays "lip service to a new emphasis on applications

to real world problems" (p. 139).

* D'Ambrosio believes that "an authentic approach must go into a
different direction," and advocates the study of what he calls
"'really real' situations," (p. 139) and the "effective immersion
of children in global practices" (p. 140). To accomplish this,

D'Ambrosio recommends "an open, activities-oriented approach to
mathematics education, which draws on the environment, thus relying

on previous knowledge. This leads to what I have labeled
ethnomathematics, which restores mathematics as a natural, somewhat
spontaneous, practice" (p. 141).

D'Ambrosio raises still another set of issues "that refers to
differences in exposure to mathematics by race, by social class,
and by sex, and investigates how these differences axe reflected in
the level of performance, attitudes, enrollment, and use of
mathematics" (p. 142). He believes these issues, too, can be
addressed by the approach he recommends.

In summary, D'Ambrosio sees immersion in the classroom in
"really real" or global problems, proceeding from the "child's
value and culture, i.e. his/her enthnomathematics" as a "desirable
road to a more humanistic version of rationalism" (p. 145). He

sees the "step from enthnomathematics to mathematics," as similar

to "the step from oral to written language" (p. 145).

The picture provided by D'Ambrosio, while interesting,
stimulating, and in many ways valid, leaves many questions
unanswered; issues having to do with teachers, schools, children,
curriculum, and the ultimate step from ethnomathematics to
mathematics remains unaddressed. D'Ambrosio acknowledges the
"difficulty of establishing a monitoring system which will be able
to tell about the health of a system facing mathematics education
in its cultural, aesthetical, and formative values and for which
the utilitarian value is focused as the capability of dealing with
'really real situations.'" His inclination is "toward the
elimination of traditional exams, tests, and similar practices in
the school systems" (p. 146).

It is hard for me to imagine that the system of mathematics
education advocated by D'Ambrosio, ideal though it might be, could
ever "prepare our young for the future advancement and betterment
of the socio-economic and political framework of society" (p. 135),
a goal he identifies as one of the aims of mathematics education.
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I see the need for these cadres to know a great deal of the
"elaborated code" of mathematics and science, and there is a giant
gap to be filled between that code and the "restricted code" of
ethnomathematics, as D'Ambrosio clearly recognizes in
characterizing ethnomathematics.

Romberg, from the perspective of a mathematics educator and
researcher in mathematics education, places his emphasis on
pedagogy, specifically the doing of mathematics in the classroom,
as contrasted with merely the learning of "the record" of
mathematics. By "doing," he tells us he means abstracting,
inventing, proving, and applying. Romberg's perspective tells
readers and teachers the "how," largely leaving the "what" to the
previous authors.

Romberg speaks to curriculum designers, as well as to
teachers, telling them that "instructional activities should be
grouped into curriculum units," and that "curriculum units should
be related via conceptual strands." He provides specific and
provocative suggestions about how curriculum units can be grouped
and related, making "story shells" the basis of each two- to
three-week group of curriculum units, and the larger story of
mathematics itself the basis for conceptual strands linking the
unit groups.

Romberg's answer to the question of how individual differences
can be considered is that "a new common curriculum for all students
should be developed. . . . The new program should have at its base
a 'core' program and also provide a variety of options."

So much for perspectives and prescriptives. Let us think once

again of the really real, real world problem of mathematics
education. In addition to the use of inductive and deductive modes
of thinking in problem solving, D'Ambrosio calls our attention to
the importance of abduction, "which may be conceptualized as a
conjecture about reality which needs to be validated through
testing [and] seems to be the basic component to deal with a real
situation."

Clearly, each of the papers we have before us represents
abductive thinking. We are presented with model solutions to the
real problem, solutions that remain to be validated. But what are
the chances of success of these models, as yet untested against the
global situation of teachers, students, schools, and the multitude
of other critical factors identified by the authors?

In June, 1984, a meeting of mathematicians and mathematics
educators took place at Carleton College to consider what could be
done to improve the state of mathematics education. In a short
paper, entitled "Only in America," I said, "In all candor we are
forced to ask, at least among ourselves, is anything needed other
than well-prepared competent teachers, good materials (already
available), students who are dedicated to the task, and hard work?
Clearly, these old-fashioned virtues have sufficed in the past, and
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still suffice today throughout those countries of the world with
which we must compete." I called this the "doctrine of common
sense."

The models proposed here, however, claim that more is needed,
the dictum being that "all students should learn 'more and somewhat
different mathematics' than is in the current curriculum," and this
mathematics, according to the authors, should be differently
organized and differently taught.

But how is this to be accomplished? Aren't we talking about
the same teachers, the same students, the same schools and the same
society that are today failing in mathematics? In short, the same
system? If we tinker with the system by moving in the directions
indicated for curriculum and pedagogy, will we contribute to the
solution of the problem, i.e., improve mathematics education, or
are we likely to exacerbate the problem by creating more confusion,
fear and loathing of the subject? Unfortunately, the mathematics
community has done this before.

To me, it is insufficient to say that this time we will work
with the teachers. The reality of the situation as it pertains to
our teachers appears to be this: We do not have the quality in the
quantity needed, ane there is no indication that we ever will. All
of the authors agree on the seriousness of this problem.

Under these circumstances, it may very well be that the
old-fashioned virtues enumerated in the doctrine of common sense,
though necessary, are not sufficient to the task. So where can we
turn? Perhaps we must be more willing to experiment with new modes
of instruction, just because of the uniqueness and difficulty of
our situation, the size and complexity of our population.

The new modes I refer to, recognized in one way or another by
all the authors, arise from "the machine." Not, let us hope, the
"teaching machine," but rather, teaching by machine. Perspectives
on the future of mathematics education in the next decade that do
not take into account powerful, compact, and affordable personal
machines, might, one day soon, appear to be as unrealistic as
perspectives on the future of the movie industry that ignored the
existence of the VCR, TV, and three-dimensional holograms.

I would like to distinguish here between two kinds of
technology-related recommendations. The first are those that
recognize the use of the computer as a computational tool, as a
conceptual visual aid, and as the motivating force behind new
topics for the curriculum (computer science). These are by and
large contained in the preceding papers.

The second kind of recommendations have to do with instruction
by machine, i.e., the use of technology to deliver the curriculum,
or appropriate parts of the curriculum, correctly, consistently,
predictably, efficiently, patiently, tolerantly, individually,

motivationally, and interestingly, drawing on vast and as yet
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uncreated stores of material directed to the eye, the ear, the mind
and the imagination.

It is this latter kind of recommendation, having to do with
teaching by machine, that is at least implied in the "Working Group
Report: The Role of Technology," contained in Pollak's paper.
Their very first recommendation states that

the potential of technology for enhancing the teaching of
mathematics and many other subjects is vast. Development of
such resources should be supported at a national level.
Specific examples include computer-generated graphics,
simulations, and video-disc courseware materials. There
should be efforts to create a network providing easy access to
such banks of material. (p. 129)

This is not the place to present or debate the arguments for
and against the desirability and feasibility of teaching by machine
in the schools. Let two points suffice: first, that the
technological advances of the last few years have greatly improved
the chances of success, and second, that machines are now used
extensively for teaching in the work place and in the military,
both sectors where success is essential to the enterprise.

Can the subject matter of school mathematics be packaged and
delivered by technology? Not all of it, but telecommunications,
personal computers, networking, and videodiscs can replace much
routine and one-way instruction that today occupies class time and,
by and large, can do it better.

Despite the positive arguments and claims, however, it is by
no means certain that teaching by machine will ever prove
successful in the schools. Trials are underway, however, in this
country and abroad, and research on the use of computers in
education has been funded by NSF under its Applications of Advanced
Technologies Program. A significant contribution that the
mathematics community can make, in any event, is to see to it that
machines are properly used, and that proper software is created for
that purpose.

Finally, let me return to the doctrine of common sense. While
I subscribe fully to the recommendations of the previous authors
calling for the teaching of more and different mathematics, I
believe strongly that we as mathematicians and educators must
reaffirm the importance of the old-fashioned virtues as necessary
prerequisites for students to succeed, and for our system of
education to succeed. That is:

(1) Teachers must be competent and well-prepared in their
subject.

(2) Materials of instruction must be rigorous and of high
quality.
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(3) Students must be dedicated to the task, i.e., want to
learn and be willing to work hard at it.

(4) Home and school environments must be conducive to
learning.

(5) Expectations and standards must be high.

Anything less will not get the job done, no matter what or how
we try. To pretend otherwise is to do a great disservice to all.
Indeed, the future health and progress of school mathematics in the
United States will perhaps be most dependent on the extent to which
these common-sense requirements are met.

On this point I am optimistic, for I see encouraging signs,
from such diverse sources as governors' conferences and teachers'
unions, that the need for these requirements is once again
recognized. Common sense has long been a strong point of the
American people--this might be labeled the "public
perspective"--and, in the long run, this is perhaps the most
important perspective of all in a democratic society.



POSTSCRIPT

The debate about what mathematics should be included in the
school curriculum is critical if educators are to properly respond
to the demands for reform. Four issues raised by Herb Greenberg
require further comment.

First, Greenberg noted the absence of implications from
educational psychologists, Their perspective is the topic of
chapters 12-16 in Volume 2. Although they have little to say about
what mathematics should be taught, they have a lot to say about how
it should be taught.

Second, his comments about Maurer's attention to topics such
as discrete mathematics and algorithms and how they might influence
the secondary curriculum reflect a vision of incremental rather
than radical change. The distinction between these change
strategies is important. Most prefer incrementalism because it
minimally disrupts. However, too often it results only in nominal
change (Romberg & Price, 1983). Sometimes change that radically
affects how teaching and learning are done is warranted. We
believe that it is warranted now.

Third, Greenberg was right on target when he identified "all,"
"more," and "somewhat different" as the key terms to be considered
in this section. The importance of "all" was addressed in the
first chapters of this monograph and will not be discussed again.
"More" implies that there are mathematical topics which are not now
taught or emphasized which should be. It seems clear from the
papers in this section that topics such as statistics, mathematical
modeling, and algorithms need such treatment. However, the term
"somewhat different" needs further clarification. It should be
seen more as "different emphasis" than as "omission" or
"replacement." For example, naive readers may conclude that
because of the calculator long division will no longer be taught.
This is not so. What should change is what is being emphasized.
The difference should be that understanding of the process of
division and how it is used should be emphasized rather than speed
and proficiency in carrying out the computational algorithms.
Overall "somewhat different" should reflect the shift from
acquisition of facts and skills to understanding the basis, use,
and interrelationships of those facts and skills.

Finally, Greenberg's "doctrine of common sense" recognizes
that good teachers in some schools have always emphasized
understanding, higher order thinking, and problem solving.
However, that has not been the case in most schools. As Resnick
and Resnick (1977) have documented, the U.S. historically has had a
dual educational system. There are a few "elite" schools and a lot
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of "common" schools. The shift in emphasis described above would
not affect the former but should radically affect the latter.

In conclusion, the belief that "all students should be taught
more and somewhat different mathematics" remains true. It should
be a consequence of the reform effort.
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