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Abstract

Standard procedures for estimating the item parameters in IRT

models make no use of auxiliary information about test items, such

as their format or content, or the skills they require for

solution. This paper describes a framew,rk for exploiting this

information, thereby enhancing the precision and stability of item

parameter estimates and providing diagnostic information about

items' operating characteristics. The principles are illustrated

in a context for which a relatively simple approximation is

available: empirical Bayes estimation of Rasch item difficulty

parameters.

Keywords: Empirical Bayes
Collateral information
Hierarchical models
Exchangeability
Item response theory
Linear logistic test model
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Exploiting Auxiliary Information about Items in the

Estimation of Rasch Item Difficulty Parameters

Two active lines of research item in response theory (IRT)

incorporate additional information into the process of parameter

estimation, augmenting that conveyed by item responses alone. One

line, motivated by statistical considerations, uses Bayesian

procedures to obtain more accurate estimates of item and examinee

parameters. Enhanced stability and lower mean squared errors can

be achieved by assuming exchangeability over item parameters of a

given type (e.g., difficulty parameters), effectively shrinking

estimates toward their mean in inverse proportion to the degree of

information available directly about them (Mislevy, 1986;

Swaminathan & Gifford, 1982, 1985). A second line, motivated by

psychological considerations, incorporates theories about specific

skills or subtasks required to answer an item correctly.

Scheiblechner (1972) and Fischer's (1973) Linear Logistic Test

Model (LLTM) is a prime example; Rasch-m del item difficulty

parameters are cast as linear combinations of more basic

parameters that reflect the contributions of psychologically

salient features of each item.

The purpose of this paper is to bring out a confluence of

these two lines of research. The idea is to embed the LLTM in a
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Bayesian framework, maintaining the notion that item features may

indeed tell us something about item parameters, but admitting they

may not tell us everything. Final item parameter estimates are a

compromise between LLTM estimates, where items with identi:al

features would have identical estimates, and unrestricted maximum

likelihood estimates.

In order to focus on concepts rather than numerical

procedures, we concentrate on a context for which a relatively

simple approximation is available. The Rasch IRT model for

dichotomous items is assumed; a linear regression model with

normal, homoscedastic residuals is posited for item parameters

given their salient features; and, with what is commonly called an

empirico.1 Bayes approximation, final item parameter estimates are

calculated with maximum likelihood estimates of the regression

model treated as known. The result is a simplified version of

Smith's (1973) linear model with response-surface prior

distributions.

The procedures are illustrated with data from a fractions

test for junior high school students. Precision gains and

diagnostic uses of the approach are discussed.
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Background

This section briefly reviews the three components of an IRT

model that incorporates auxiliary information about items. First

is the item response model--specifically, in this presentation,

the Rasch model. Following that are overviews of Bayesian

estimation of item parameters and of the linear logistic test

model.

The Rasch Model

Let x
ij

denote the response of examinee i to item j, taking

the value 1 if correct and 0 if not. The Rasch model (Rasch,

1960/1980) gives the probability of a correct response as

P
i
(0

i
) - P(xij - 110i,fii)

- exp(0.
1

fl.i )/[1 + exp(0.
1

- fl.i )] , (1)

where . characterizes the difficulty of item j and 0
i

characterizes the ability of examinee i. Under the usual

assumption of local independence, the probability of a

vector pattern xi - (xii,...,xin)' of responses to n items is

9
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x
ij

1-x
ij

P(x 10 /3) - II P.(0.) Q.J (0 )

1

(2)

where Qi(0) - 1 - Pj(0) and /3 - (/31,...09n)'. Assuming the

independence of responses over examinees, the probability of the

data matrix X - )' of N examinees is the product of

expressions like Equation 2:

P(X1009) - H P(x,10i43) . (3)
i

Once X has been observed, Equation 3 is interpreted as a

likelihood function, and provides a basis for estimating

parameters. The literature offers a number of alternative

procedures for doing so, including

o joint maximum likelihood (JML), which finds values of /3

and each 0 that, taken together, maximize Equation 3 (Wright

& Eanchapakesan, 1969);

o conditional maximum likelihood (CML), which finds the

maximizing value of )9 given examinees' total scores

(Andersen, ?973); and

10
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o marginal maximum likelihood (MML), which finds the maximizing

value of /3 after integrating over a distribution of

examinee parameters (Bock & Aitkin, 1981; Thissen, 1982).

These solutions provide similar estimates of /3 when neither the

number of items or examinees is small; under appropriate

assumptions they are asymptotically equivalent, consistent, and

multivariate normal (for details see Ha'lerman, 1977, on CML and

JML, and De Leeuw & Verhelst, 1986, on CML and MML.)

We will have use for the normal approximation to MML in a

subsequent section. The MML likelihood function is obtained from

Equation 3 by marginalizing over the examinee distribution:

Lm(filX) n f P(xi1043) p(0) dO (4)

where p(0), tae density function for examinee parameters, may be

specified niori (as in Bock and Aitkin, 1981, and Thissen,

1982) or estimated from the data (as in Cressie and Holland,

1983). When both the numbers of items and examinees are large,

the likelihood function is approximately a product over items of

independent normal distributions:

1
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A 0

Lm(filX) & II exp[ -(0 - /3

10 72A

(7']

i i

A A

(5)

where /3 are MML estimates and of are their estimated standard

errors. (Large N is sufficient for multivariate normality, but

large n is also necessary for independence.)

Bayesian Estimation

The simultaneous estimation of many parameters can often be

improved when it is reasonable to consider subsets of parameters

as exchangeable members of corresponding populations (Efron &

Morris, 1975; Lindley & Smith, 1972). The subjective notion that

parameters are "in some sense similar" implies a correlational

structure on prior beliefs, which can be formalized by modeling

the parameters as if they were a random sample from a population

whose parameters are themselves imperfectly known. Data related

directly to each individual parameter also conveys information

about the higher-level population parameters; the population

structure in turn provides information about the individual

parameters.

In typical applications, resulting estimates of individual

parameters are drawn toward the center of their distribution in

inverse proportion to the amount of information available about

12

8
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them directly. An intuitive justification of shrinkage is that

unrestricted ML estimates contain sampling errors, so we would

expect that the more extreme estimates reflect in part large

sampling errors in that direction. This reasoning is consistent

with the fact that the expected variance of ML estimates in such

cases generplly exceeds the variance of the true parameters.

Swamine.tan and Gifford (1982) applied this idea to the Rasch

model by assuming exchangeability over examinees and over items.

In a Bayesian extension of JML, they provide estimation equations

for the joint mode of /3 and 0 in the posterior distribution

p(0,/31X) a P(XI0,p) P(0) P(P) , (6)

where p(0) and p(P) are marginalizations over respfctive normal

distributions, the parameters of which are estimated in part from

the data. As expected, Swaminathan and Gifford's simulations

showed the Bayesian est.i.lates to be closer to their overall mean

than unrestricted maximum likelihood estimates, and to have

smaller mean squared error.

A similar extension of MML is described in Mislevy (1986).

Marginalizing over 0 but not over the mean p and standard

1 3
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deviation 0 of identical normal priors for the fl's, he gives

estimation equations for the joint mode of fl, A, and 0
2

in the

posterior distribution

P(fl,A,0
2
) a 11,1(filX) X n p(fl

j
1A,0

2
) X P(A,0

2
) (7)

j

As with Swaminathan and Gifford's procedure, this approach also

yields estimates of fl's that a loser to their estimated mean

than those of the corresponding ...iximum likelihood procedure.

The Linear Logistic Test Model

In addition to positing a Rasch model for item responses, as

in Equations 1 through 3, the LLTM assumes a lillear model for the

item parameters:

- z
k-1

clkjqk

or, in matrix notation,

14

(8)
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13 Q'n

The basic parameters of the LLTM are nk, k 1,...,K. They

reflect the additive nontributions to item difficulty of selected

item features. The vector qj contains coefficients relating item

j to basic parameters. In Fischer's (1073) calculus example, q

indicated the number and the type of operations a pupil must carry

out in order to solve a differentiation item. In Mitchell's

(1983) analysis of Paragraph Comprehension subtests from the Armed

Services Vocational Aptitude Battery, q conveyed semantic and

lexicographic features of a question and an associated reading

passage. The reader is refired to Fischer and Formann (1982) for

additional applications of the LTTM.

Estimates of LLTM basic parameters can be obtained by

suitable modification of JML, CML, and M"L algorithms for the

unconstrained Rasch model. Differences in 2 log likelihood

between the two models can be compared with the chi-square

distribution on n - K degrees of freedom, to test the significance

of the constraints of the LLTM under the assumption that the

unrestricted Rasch model is true.

Fischer and Formann (1982) note that the initial hope of

explaining all reliable variation of item difficulties in terms of
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basic parameters has not been fulfilled; rigorous tests of fit

almost always reject the LLTM. This finding is consistent with

what test developers have known for decades: two items written to

test the same skill will aiffer in difficulty as a function of

idiosyncratic features such as visual format and word choice.

Typically, however, a meaningful amount of variation can be

explained. The proportion of variance of unconstrained estimates

accounted for was 76 percent in Fischer's calculus test, and

ranged from 66 to 96 percent in Mitchell's Paragraph

A

Comprehension tests. Even though LLTM estimates 4 Cry) are not

wholly acceptable as estimates of fi, then, their ability to

relate item performance to cognitive theory has proven useful in

applications such as assessing treatment effects and modeling item

bias. To the extent that LLTM does fit, it aids an understanding

of just what makes items difficult. To the extent that it does

not fit, departures indicate items that are unexpectedly hard or

easy given the features that usually determine difficulty. Poor

item construction or alternative response strategies can be

detected in this way.

16
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A Combined Model

Rationale

The assumption of exchangeability in the Bayesian estimation

procedures described in a preceding section typically leads to

item parameter estimates that are more stable and have lower mean

squared errors. Strictly spea'ing, however, assuming

exchangeability over all parameters of a given type, and

r lsequently shrinking them all to the same center, is justified

only if we have no prior information to distinguish among them.

This is rarely the case in item parameter estimation. In

vocabulary tests, for example, we know which words are frequently

used and which ones are not; we expect the familiar words to be

easier. In Fischer's calculus test, we would expect an item

demanding several differentiation rules to be more difficult than

one demanding only a subset of the same rules.

As Fischer and Formann (1982) point out, we cannot generally

expect a few salient features to explain item parameters in toto.

We can, however, express many of our prior beliefs in terms of

such features. In particular, a model combining key aspects of

the LLTM and the exchangeability concept of Bayesian estimation

might consider as exchangeable only parameters of items with the

same pedagogically or psychologically relevant features.

17
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Shrinkage would then be observed toward the center of the subset

to which an item belongs--as estimated from items of that type and

possibly frcm other items as wall, if they shared some features

with it. This shrinkage could quite possibly be in the opposite

direction from the center of the item set as a whole.

The General Form of the Model

Let the known (possibly vector-valued) quantity qj represent

auxiliary information about item j; let p(Plq) be the density

function representing the distribution of p parameters for items

with the same (generic) value of q. (The possibility that p(Plq)

may depend on unknown parameters is introduced below.) The

posterior distribution of p, given the data X and the auxiliary

information Q (q1,...,3n), is obtained as

p(Plx,Q) a L(PIX) P(HN)

II f P(x,10,p) p(9) dO x II p(fijlqj) . (9)

i j

An implementation of Equation 9 inspired by the LTTM is to assume

a linear regression model for p(plq)--a response-surface prior, as

introduced by Smith (1973) in the context of linear models. With

18
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Q and i defined exactly as in the LLTM, we can approximate prior

beliefs about item parameters as MVN(Q'n,0
2
I). Considering

i and 0
2
as additional unknown parameters, the marginal

posterior is obtained as

P(flo7,0
2
1X,Q) cc LK x

-m
exp[-5. - n)

2
/20

2
] p(n,0

2
) (10)II

j

As in the LLTM, a linear model based on salient features gives the

central tendency of items with the same features qj, namely

)7.3 q'n. Unlike the LLTM, however, variation of true parameters

around these central values is anticipated.

Computational procedures for computing the posterior mode of

)5, or of )5, p, and 02 jointly, are readily obtained by

generalizing the algorithms given in Mislevy (1986). The

resulting solutions can be applied in the 2- and 3-parameter

logistic models as well as for the Rasch model. The technical

details of this solution are not central to the present paper,

however; in order to focus upon concepts and applications, we now

turn to a relatively simple computing approximation for the Rasch

model.

19
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A Computing Approximation for the Rasch Model

This section describes empirical Bayes (EB) estimation of

Rasch item parameters, assuming normal linear regression on

salient item features. Two simplifications are applied to the

exact posterior distribution given in Equation 10. First, the

marginal likelihood function of fl is replaced by the normal

approximation given in Equation 5. Second, MLE's of the

pcpulation parameters +7 and 0
2

are treated as known, after they
A A

have been estimated from MLE's pi with their standard errors aj

treated as known. (It is this use of point estimates of

population parameters that is commonly associated with the term

"empirical Bayes.") The resulting approximation takes the

following form:

POIX,Q) m Lm(PIX) x P(PIQ)

a ypix) x If n p(fl
J
lq ,n,o

2
)p(q,0

2
) dr? d0

2

-(P )

2
-(fl. -

2

n exp[
"2

x II exp(
"2
3 ) .

j 2a. j 20
.3

20
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From this combination of a likelihood and prior that are both

proportional to independent normal densities, independent normal

posteriors follow (Box & Tiao, 1973, p. 74):

-(fii 4i)2
POiX,Q) (3' II exp[ ' _2 i

i 2a.
J

where the means and variances are given by well-known formulas:

and

2. A

- (a fi + 0- 2 + 0 )

i i J

a-
A-2 A-2 -1

- (aj + 0 ) (12)

Computation thus proceeds in three steps:

1. Unrestricted maximum likelihood estimates of item parameters

2. Point estimates of the regression parameters

3. Final estimates of item parameters

21.
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parameters

A

18

Rasch item parameter estimates fli and corresponding standard

errors of can be obtained with any of a number of widely-available

computer programs. Numerical values and small-sample properties

of JML, CML, and MML estimates certainly differ, but any suffice

for our illustrative purposes. For long tests and many exam iees,

all support the approximation of the marginal likelihood as a

product of independent normal distributions, with means given by

maximum likelihood estimates and standard deviations given by the

associated standard errors.

Step 2: Point estimates of the regression parameters

The regression structure for item parameters and the normal

approximation for the marginal likelihood lead to the following

system of regression equations:

A

+ e.
J J

where (e ...,e
n

) MVNr0 diag(a ...,a
n
2
)1, and

22
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where (fl'" .,f
n
) MVN(0,0

2
I). Taken together, they imply

A

q'n + h.
-J- J

2
where (111,...,hn) MVN(0,diag(al + 0 ,...,an

2
+ 02)1.

MLE's for r and 0
2
can be obtained simultaneously by

applying Dempster, Laird, and Rubin's (1977) EM algorithm. A

special case of Braun and Jones' (1985) implementation was

employed for the examples that appear in the following section.
A A

Using provisional estimates n and 0
2

, the E-step computes

conditional expectations of the unknown item parameters:

A A A A2
. E(/3.1/3.J ,a.,n,0 )

J

J J

2A

(0 fl. + a. /3 )/(0 + a. )

where )-9.
J

q'n _s the (provisional) modeled mean for all items

with same features as item j. The M-step uses these results to

produce improved estimates:
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and

A

n (Q'Q)-1Q' lji

A A A

2
n95 - P:13. n'QQ'n

3-3

A A

Cycles of this type are repeated until convergence is attained.

Because the distribution of the hypothetical "complete data"
A

(fl,fl), with parameters 02 and n, belongs to the exponential

family if a is assumed known, convergence to a unique maximum

is assured (Dempster, Laird, & Rubin, 1977).

Step 3: Final estimates of item parameters

The posterior means and variances for the P's that follow

from our simplifying assumptions can be calcula,ad as in Pouations

11 and 12. The EB estimate . is thus a weighted average of the-3
A

ML estimated pi and the regression estimate Si. The relative

weights are the precisions of the two estimates being combined,

implying that ...

A

1. poorly-estimated fi's shrink toward their predicted means
A

more strongly then well-estimated P's;
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2. if all fi's are well-estimated in comparison with the estimated

variation around their modeled means, little shrinkage occurs
A

and -4 approaches fi; and

3. if all /Ps are poorly-estimated in comparison with the

expected variation around their modeled means, much

shrinkage occurs and /1 approaches 41.

-- -2
-2Posteriorprecision,ora.2 a + 0 , is the sum of

precision about fij conveyed directly through the likelihood

function and that conveyed indirectly through knowledge about item

features. By exploiting auxiliary information, then, the

precision of item parameter estimates can be increased without to

testing additional examinees.

Empirical Bayes estimates are distinguished most

significantly from "true" Bayes estimates by their failure to

account for uncertainty associated with q and 0
2

. The nature

of the consequent differences is to overstate the apparent

precision of the final EB item parameter estimates, Neale

affecting their values only minimally. The posterior variances

tend to be too small, and the distributions should be more

platykurtic, like a t-distribution rather than the normal. The

magnitude of these effects diminishes as q and 0
2
are better

determined by the data. Larger N generally leads to greater

25
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precision, but test length n and the matrix of cross-products

Q'Q are also important. These influences affect the precision of

regression parameters and residual variance in much the same

manner as in standard regression analyses.

A Numerical Example

This section applies EB estimation procedures to the 20-item

Fractions subtest of the California Achievement Test (CAT), Level

3, Form A (Tiegs & Clark, 1970). The data are Rasch item

difficulty estimates and standard errors, estimated frr'm the

responses of 150 sixth-grade students with the JML routine in

Wright, Mead, and Bell's (1980) BICAL computer program. These

values appear in Table 1, along with a specification of salient

features of each item. These features, based on the CAT table of

item specifications, are as follows:

1. Addition (ADD). The student must solve an addition problem

involving one or more fractions and/or mixed numbers.

2. Subtraction (SUB). The student must solve a multiplication

problem involving one or more fractions and/or mixed numbers.

3. Multiplication (MUL). The student must solve a multiplication

problem involving ono- or more fractions and/or mixed numbers.

4. Division (DIV). The student must solve a division problem

involving one ore more fractions and/or mixed number.

26
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5. Common denominators (CD). The student must find a common

denominator for two fractions with unlike denominators.

6. Reduction (RED). The student must reduce a fraction or mixed

number to lowest terms.

A sequence of three model3 was fit to these data:

Model ' EB item parameter estimates were obtained under an

assumption of global exchangeability. That is, all items

were shrunk toward their common mean. The resulting

estimates approximate the results of Swaminathan and

Gifford's (1982) procedures.

Model 2: EB estimates were obtained under the assumption of

exchangeability &mg items with the same features, based on

Table 1.

Model 3: EB estimates were again obtained, after modifying the

model along lims suggested by an examination of the

estimates and residuals from Model 2.

...;ert Table 1 about here

Model 1: Twenty items, global exchangeability

Most applications of EB estimation involve shrinkage to the

common center of the parameter set. This is accomplished in our
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framework by using a vector of ones for Q. The results of such an

analysis for the CAT Fractions test are presented in Table 2 and

Figure 1. The grand mean toward which all estimates are shrunk is

0.00 (the result of the scaling convention used in BICAL); the
A A

estimated standard deviation 0 of the P's with a treated as a, is

1.71. This comperes with a standard deviation of 1.74 for the

P's, reflecting the expectation that a set of maximum likelihood

estimates will be more dispersed than the set of parameters they

estimate. Accordingly, under the assumption of exchangeability

over all items, the EB estimates shrink toward their common mean.

Insert Table 1 and Figure 1 about here

They do not shrink very much, though. If we define shrinkage
A A

for item j as (pi - 7-3j)/(pi - qin), then it is only about 2-

percent on the average. The reason is that the estimated variance

of p, about 2.92, is very large compared to the estimation error

variance of the individual item parameters, about .06 on the

average. Inc:ormation from the likelihood function from a sample

size of 150 is sufficient to overwhelm the information about

interitem similarities, when the items are as dissimilar in

difficulty as those in the Fractions test.
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Model 2: Twenty items, exchangeability given salient features

A second model posits exchangeability for items with the same

CAT specifications. The Q matrix in this case consisted of the

columns of feature indicators given in Table 1. Estimates of q

and 0 are given in Table 3; item-level results are listed in Table

4 and illustrated in Figure 2.

Insert Tables 3 and 4 and Figure 2 about here

The values of tne regression parameters 17 shown in Table 3

are reasonably consistent with expectations. The values for

addition, subtraction, multiplication, and addition can be

interpreted as values to which items exhibiting that feature only

will be shrunk. Addition and subtraction, show lower (easier)

values than multiplication and division. The values for common

denominators and fraction reduction are both positive, indicating

additional difficulty for an item if this subskill is demanded in

order to carry out the basic operation. The modeled mean for

straight addition items, for example, is -2.75; the mean for

addition items that also require reduction is -2.75 + 1.90, or

-.85. Such addi-ion items are nearly as hard as straight division

items.
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A

The residual standard deviation 0 under Model 2 is .58, much

lower than the comparable value of 1.71 in Model 1 and closer to

the typical standard error of about .3. EB item parameter

estimates in Table 4 thus exhibit greater shrinkage--9 to 30

percent. Now that items within the smaller subsets over which

exchangeability is assumed are in fact more similar, the structure

contributes more information with which to improve item parameter

estimates. Average posterior precision increases by roughly 25

percent, a' amount equivalent to that attainable to testing about

40 mare examinees.

Note that estimates now shrink toward the appropriate one of

several predicted means rather than to a single overall mean. One

iten whose EE estimate moves away from the overall mean is item 8,

the hardest of three straight subtraction items. Even though it

was easier than average to begin with, the imposed exchangeability

structure indicates that we would expect it be easy based on

the tasks it presents; in this particular data see, it may have

been a bit harder than we might expect.

The last column in Table 4, labeled "standardized

difference," gives the distance of an ML estimate from its

predicted center, in standard deviation units:
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A_
/3 4 /3 4
J Jstandardized difference A

2 2 1/2
(0 + c)

By highlighting items that are unexpectedly far from their

predicted means, these values can be useful for model

modification. In conjunction with plots like Figure 2, they can

reveal systematic departures from our expectations, which, upon

reflection, lead us to modify the model.

Consider as an example the three straight subtraction items,

6, 7, and 8. As mentioned above, Item 8 is more difficult than

modeled, to an extent that ranks it among the largest residuals in

absolute value. The largest absolute residual, and in

opposite direction, is the item in the same subset, namely item 7.

This item is considerably easier than modeled. An inspection of

item content offers an explanation: Item 7 asks for the solution

of "1/6 - 1/6," which can be obtained without any knowledge of

fractions at all. Despite its usefulness in ranking examinees,

this item may not be tapping the skills the test is ostensibly

attempting to measure. Further investigation reveals a similar

phenomenon among straight division items, where Item 16 asks for

the solution of "4/5 + 4/5." An atypically large negative

A.,
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residual (easier than expected) for this item is balanced by an

atypically large positive residual for another item (17) with the

same features.

Further examination of items with large residuals reveals two

items that are noticeably easier than expected for the same

reason: while formally fractions items, both Item 1 (straight

add_tion) and 6 (straight subtraction) require only a whole number

operations with a fraction carried along. Failing to distinguish

these items from straight addition or subtraction items that

combine twc actual :tractions, Model 2 overpredicts the difficulty

of Items 1 and 6.

A final anomaly appears in Figure 2, for Item 5. Item 5 is

one of the harder items to begin with, but the regression model

yields a higher-yet prediction, much higher than even the highest

ML estimate observed. This is the only item requiring both the

common denominator and reduction skills, and the higher prediction

follows from the additivity of the model. The unappealing result

suggests an interaction of sorts; while two additional subskills

are required, it appears likely that examinees who possess the CD

skill (the harder of the two) also possess the RED skill. Thus,

incremental difficulty over straight addition when both are
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present is not much over that expected from the common denominator

subskill alone.

Model 3: Eighteen times, exchangeability given salient features

The final model illustrated here modified Model 2 in three

ways:

1. Items 7 and 16, which could be solved by means of properties

of operations alone, are eliminated from further

consideration.

2. A column is added to the Q matrix reflecting a new salient

feature: WN, or whole numbers only, applying to Items 1 and 6

which require just operations on whole numbers while a

fraction is carried along.

3. To reflect the interaction of CD and RED observed for Item 5,

its q value for RED has been changed from a 1 to a zero. That

is, the difficulty parameters of addition items requiring CD

and RED are now considered exchangeable with those of items

requiring CD, the more difficult skill, alone.

The data for Model 3 are shown in Table 5. The results of

the analysis are shown in Table 6 (regression parameter

estimates), Table 7 (item-level results), and Figure 3 (a plot of

ML, EB, and regression estimates). The revisions from model 2

reduced the residual standard deviation substantially, from .58 to
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.23. This is about the same degree of precision as is available

from the likelihood, so that EB estimates are roughly a 50-50

compromise between ML and regression estimates. Taking the

approximate posterior variances at face value--recall that they

are probably underestimated--we would conclude that the use of

auxiliary information about items yields an increase in precision

equivalent to doubling the size of the sample of examinees.

Insert Table 5, 6, and 7 about here

The average magnitude of standardized residuals is about the

same as that from Model 2 because the denominator with which they

are calculated decreased when the estimate of 0
2
decreased.

Neither these residuals nor Figure 3 exhibit readily interpretable

patterns of departures from the model.

Insert Figure 3 about here

As with any model-fitting procedure, the analysis that led to

Model 3 capitalizes to some degree upon idiosyncratic features of

the data at hand. Resulting estimates of precision are overly
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optimistic for this reason in addition to the expedients employed

by the estimation procedure. Any serious attempt to model item

difficulties in the fractions domain would obviously require more

data and more thought than were needed simply to illustrate

computational procedures.

Discussion

The potential benefits of using auxiliary information about

items in item parameter estimation are increased precision and

diagnostic capabilities. In the numerical example in the

preceding section, auxiliary information contributed as much

information about item parameters as the likelihood function did.

Conditional on the veracity of the assumed exchangeability

structure, then, precision was increased by an amount equal to

that attainable by doubling the number of examinees. Diagnostic

checks revealed two items that might not be measuring the skills

intended, by offering items that contained fractions but could be

solved without manipulating them.

The plausibility of the exchangeability structure can also be

verified with diagnostic checks. Two additional safeguards also

mitigate the effects of specification errors at this stage.

First, if the structure is badly in error and items assumed

exchangeable turn out not be very similar, shrinkage will be
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minimal (as in Model 1 of the example). Of course, minimal

riirinkage does not necessarily signal misspecification or lack of

exchangeability; all other things being equal, shrinkage decreases

as N increases. Second, increasing the sample size of examinees

leads to consistent item parameter estimates even if the

exchangeability structure is flawed.

The simplified computing approximation used in this paper

works best for the Rasch model, where it is needed )east; even

fairly small sizes give reasonably good item parameter estimates

there. The same ideas can be applied more profitably to IRT

models with more parameters, each less well-determined by data

(c g., the 3-parameter logistic model, and models for multiple-

category item responses). The computational procedures for the

general model are then required, since it may not be possible to

obtain finite unrestricted ML estimates and their standard errors.

No explicit averaging of ML and regression estimates can be

accomplished in those cases, and Bayesian estimates mus-, be

obtained directly from item responses.
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Table 1

Item Data and Salient Features: All Items

Item
A

b
A

a
1

ADD
2

SUB

3

MUL
4

DIV
5

CD
6

RED

1 -3.73 .31 1 0 0 0 0 0
2 -2.02 .20 1 0 0 0 0 0
3 1.45 .28 1 0 0 0 1 0

4 1.16 .26 1 0 0 0 1 0
5 1.63 .31 1 0 0 0 1 1

6 -2.42 .21 0 1 0 0 U 0

7 -3.23 .27 0 1 0 0 0 0

8 -1.05 .18 0 1 0 0 0 0
9 1.28 .27 0 1 0 0 1 0

10 .30 .21 0 1 0 0 0 1

11 -.41 .18 0 0 1 0 0 0
12 -.80 .18 0 0 1 0 0 0

13 2.22 .38 0 0 1 0 0 1

14 1.72 .31 0 0 1 0 0 1

15 1.41 .28 0 0 1 0 0 1

16 -1.35 .18 0 0 0 1 0 0

17 .26 .21 0 0 0 1 0 0
18 1.28 .27 0 0 0 1 0 1

19 1.41 .28 0 0 0 1 0 1
20 1.05 .25 0 0 0 1 0 1
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Table 2

Item-Level Results from Model 1

Items
A

8
A

a b

A

qs 3 a
Shrink-

age

Standard-
ized

differ-
ence

1 -3.73 0.31 0.00 1.71 -3.61 0.31 0.03 -2.14
2 -2.02 0.20 0.00 1.71 -1.99 0.20 0.01 -1.17
3 1.45 0.28 0.00 1.71 1.41 0.28 0.03 0.84
4 1.16 0.26 0.00 1.71 1.13 0.26 0.02 0.67
5 1.63 0.31 0.00 1.71 1.58 0.31 0.03 0.94
6 -2.42 0.21 0.00 1.71 -2.38 0.21 0.01 -1.40
7 -3.23 0.27 0.00 1.71 -3.15 0.27 0.02 -1.86
8 -1.05 0.18 0.00 1.71 -1.04 0.18 0.01 -0.61
9 1.28 0.27 0.00 1.71 1.25 0.27 0.02 0.74

10 0.30 0.21 0.00 1.71 0.30 0.21 0.01 0.17
11 -0.41 0.18 0.00 1.71 -0.41 0.18 0.01 -0.24
12 -0.80 0.18 0.00 1.71 -0.79 0.18 0.01 -0.46
13 2.22 0.38 0.00 1.71 2.12 0.37 0.05 1.27
14 1.72 0.31 0.00 1.71 1.67 0.31 0.03 0.99
15 1.41 0.28 0.00 1.71 1.37 0.28 0.03 0.81
16 -1.35 0.18 0.00 1.71 -1.34 0.18 0.01 -0.78
17 0.26 0.21 0.00 1.71 0.26 0.21 0.01 0.15
18 1.28 0.27 0.00 1.71 1.25 0.27 0.02 0.74
19 1.41 0.28 0.00 1.71 1.37 0.28 0.03 0.81
20 1.05 0.25 0.00 1.71 1.03 0.25 0.02 0.61
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Table 3

Estimates of Regression Parameters under Model 2

Effect (n) Estimate

1. Addition -2.75
2. Subtraction -2.08
3. Multiplication -.34
4. Division -.61
5. Common denominators 3.50
6. Reduction 1.90

Standard devi,ltion (0) .58
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Table 4

Item-Level Results from Model 2

Items
A

8 a B
A

B a
Shrink-

age

Standard-
ized

differ-
ence

1 -3.73 0.31 -2.i5 0.58 -3.61 0.27 0.22 -1.49
2 -2.02 0.20 -2.75 0.58 -2.10 0.19 0.11 1.19
3 1.45 0.28 0.75 0.58 1.32 0.25 0.19 1.09
4 1.16 0.26 0.75 0.58 1.09 0.24 0.17 0.64
5 1.63 0.31 2.65 0.58 1.86 0.27 0.22 -1.55
6 -2.42 0.21 -2.08 0.58 -2.38 0.20 0.12 -0.55
7 -3.23 0.27 -2.08 0.58 -3.02 0.24 0.18 -1.80
8 -1.05 0.18 -2.08 0.58 -1.14 0.17 0.09 1.69
9 1.28 0.27 1.42 0.58 1.30 0.24 0.18 -0.22

10 0.30 0.21 -0.18 0.58 0.24 0.20 0.12 0.77
11 -0.41 0.18 -0.34 0.58 -0.40 0.17 0.09 -0.11
12 -0.80 0.18 -0.34 0.58 -0.76 0.17 0.09 -0.75
13 2.22 0.38 1.56 0.58 2.02 0.32 0.30 0.96
14 1.72 0.31 1.56 0.58 1.68 0.27 0.22 0.25
15 1.41 0.28 1.56 0.58 1.44 0.25 0.19 -0.23
16 -1.35 0.18 -0.61 0.58 -1.29 0.17 0.09 -1.21
17 0.26 0.21 -0.61 0.58 0.16 0.20 0.12 1.42
18 1.28 0.27 1.29 0.58 1.28 0.24 0.18 -0.01
19 1.41 0.28 1.29 0.58 1.39 0.25 0.19 0.19
20 1.05 0.25 1.29 0.58 1.09 0.23 0.16 -0.37
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Table 5

Item Data and Salient- Features: Reduced Set

A A 1 2 3 4 5 6 7

Item b a ADD SUB MUL DIV CD RED WN

1 -3.73 .31 1 0 0 0 0 0 1

2 -2.02 .20 1 0 0 0 0 0 0

3 1.45 .28 1 0 0 0 1 0 0

4 1.16 .26 1 0 0 0 1 0 0

5 1.63 .31 1 0 0 0 1 0 0

6 -2.42 .21 0 1 0 0 0 0 1

(7)

8 -1.05 .18 0 1 0 0 0 0 0

9 1.28 .27 0 1 0 0 1 6 0

10 .30 .21 0 1 0 0 0 1 0

11 -.41 .18 0 0 1 0 0 0 0

12 -.80 .18 0 0 1 0 0 0 0
13 2.22 .38 0 0 1 0 0 1 0

14 1.72 .31 0 0 1 0 0 1 0

15 1.41 .28 0 0 1 0 0 1 0

(16)

17 .26 .21 0 0 0 1 0 0 0

18 1.28 .27 0 0 0 1 0 1 0

19 1.41 .28 0 0 0 1 0 1 0

20 1.05 .25 0 0 0 1 0 1 0
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Table 6

Estimates of Regression Parameters under Model 3

Effect (n) Estimate

1. Addition -1.90
2. Subtraction -1.28
3. Multiplication -.32
4. Division -.25
5. Common denominators 3.10
6. Reduction 1.71
7. Whole numbers only -1.41

Standard deviation (0) .23
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Table. 7

Item-Level Ri.tsults from Model 3

Items
A

B
A

a 3 I) 3
-
a

Shrink-
age

Standard-
ized

Differ-
ence

1 -3.73 0.31 -3.30 0.23 -3.45 0.18 0.65 -1.11
2 -2.02 0.20 -1.89 0.23 -1.96 0.15 0.44 -0.43
3 1.45 0.28 1.21 0.23 1.30 0.18 0.61 0.67
4 1.16 0.26 1.21 0.23 1.19 0.17 0.57 -0.14
5 1.63 0.31 1.21 0.23 1.35 0.13 0.65 1.10
6 -2.42 0.21 -2.70 0.23 -2.55 0.15 0.47 0.89

(7)
8 -1.05 0.18 -1.26 0.23 -1.14 0.14 0.39 0.80
9 1.28 0.27 1.82 0.23 1.60 0.17 0.59 -1.53

10 0.30 0.21 -0.32 0.23 0.36 0.15 0.47 -0.42
11 -0.41 0.18 -0.32 0.23 -0.38 0.14 0.39 -0.30
12 -0.80 0.18 1.39 0.23 -0.61 0.14 0.39 -1.65
13 2.22 0.38 1.39 0.23 1.60 0.19 0.74 1.89
14 1.72 0.31 1.39 0.23 1.50 0.18 0.65 0.87
15 1.41 0.28 1.39 0.23 1.39 0.18 0.61 0.07

(16)

17 0.26 0.21 -0.25 0.23 0.02 0.15 0.47 1.66
18 1.28 0.27 1.46 0.23 1.38 0.17 0.59 -0.50
19 1.41 0.28 1 46 0.23 1.44 0.18 0.61 -0.13
20 1.05 0.25 1.46 0.23 1.27 0.17 0.55 -1.21
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Figure 1: Maximum likelihood, regression, and empirical Bayes item
parameter estimates: Model 1.
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Figure 2: Maximum likelihood, regression, and empirical Bayes item
parameter estimates: Model 2.
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FiguLe 3. Maximum likelihood, regression, and empirical Bayes item
parameter estimates: Model 3.
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