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PREFACE

After observing secondary school students having grecat
difficulty learning geometry in their classes, Dutch educators
Pierre van Hiele and his wife, Dina van Hiele-Geldof developed a
theoretical model involving five levels of thought development in
geometry. Their work, which focused on the 1o0le of instruction in
teaching geometry and the role of instruction in helping students
move from one level to the next, was first reported in companion
dissertations at the University of Utrecht in 1957. For titles of
the dissertations, see Bibliography, pages 255-256. According to
the van Hiele model, the learner, assisted by appropriate
instructional experiences, passes through these levels beginning
with recognition of shapes as a whole (level 0), progressing to
discovery of properties of figures and informal reasoning about
these figures and their properties (levels 1 and 2), and
culminating in a rigorous study of axiomatic geometry (levels 3 and
4).

Since the van Hieley dissertations and early articles were in
Dutch, their findings were not widely disseminated outside The
Netherlands., However, a paper, "La Pensée de L'Enfant et La
Géométrie," presented in 1957 by Pierre van Hiele to the
mathematics education conference - "Pilot Course on the Teaching of
Mathematics" - at Sévres, France and later published, brought the
model to the attention of the mathematics education communitv. The
paper was of particular interest to Soviet educators and
psychologists who undertook major revisions of their geometry
cerriculum based on the van Hiele model. 1In recent years interest
in the van Hiele model has been growing in the United States.
However research efforts to study the van Hiele model have been
hampered since little original source material in English has been
available to English-speaking researchers.

It is the purpose of this monograph to present English
translations of some significant works of the van liieles. These
translations were done as part of a research project entitled: An
Investigation of the van Hiele Model of Thinking in Geometry Among
Adolescents, supported under a grant (1980-1983) from the Research
in Science Education Program of the National Science Foundation.
In particular, the following selections have been included:

From Dutch into English:
- "The Didactics of Geometry in the Lowest Class of
Seconday School," Dissertation by Dina ven Hiele-Geldof.
- "Didactics of Geometry as Learning Process for Adults" by
Dina van Hiele-Geldof.

From French into English:
- "The Child's Thought and Geometry" by Pierre van Hiele.

ii4
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A brief overview of each of these selections is given below.

Dina van Hiele-Geldof's dissertation, which is presented as
Part I of this monograph, is a major source of material on the van
Hiele levels. It describes a year-long "didactic experiment"
involring two of her own classes of 12 year-olds. The dissertation,
consisting of 15 chapters, includes a discussion of some
theoretical issues and a detailed description of her teaching
experiment. Chapter I contains a discussion of the question, what
is a didactic experiment, and research questions are posed. The
three main questions investigated in the study are:

1. Is it possible to follow a didactic as a way of presenting
material so that the :thinking of the child is developed
from the lowest level to higher levels in a continuous
process?

2. Do twelve year-olds in the firs. class of secondary
school have the potential to reason logically about
geometric problems and to what extent can this potential
be developed?

3. To what extent is language operative in the transition
from one level to the next?

A comparison of other researchers' views of didactics and her
own is presented in Chapter II. The Dutch school year consisted of
three trimesters., A description of the geometry content and how
the students approached some of the problems during the first
trimester is given in Chapters III and IV. An account of the
teaching method adopted is set forth in Chapter V with the author
noting particularly effective activities tfor developing students'
knowledge of space.

In Chapter VI, the author describes how she applies the laws
of apperception theory from Gestalt psychology to develop the topic
of "Tiles" for the second trimester. A phenomenological analysis
of the teaching-learning procedure is given in "hapters VII and
VIIT along with a discussion of how the author reached her position
on didactics. A careful examination of the fundamentals of
didactics appears im Chapter IX.

In order to analyze constructive moments (moments of imnsight
and intuition) in the process of learning, the author presents in
Chapter X a protocol - a detailed account of class conversations on
the topic of "Tiles". This record of her lessons for the teaching
experiment and the students' responses are fascinating and provide
much insight into the van Hiele model. In Chapters XI and XII, the
author analyzes the protocol in terms of the stuients' transition
from undifferentiated thought (level 0) to the formation of visual
geometric structures (level 1) and to the development of logical
thought (level 2).

Chapter XIII consists of an introspective observation of the

author's own process of learning. She describes how her ideas on
didactics developed and how one can operate on levels 0, 1 and 2

iv 7




with respect to "didactics." The author presents in Chapter XIV a
synthesis of the didactics resulting from her analyses of the
students' process of learning as shown in the protocol. Chapter XV
contains a description of the subject matter (congruence of
triangles) for the third trimester and procedures for developing
the concepts for this unit.

As part of the dissertation requirements at the University of
Utrecht, doctoral candidates had to present a summary of their
dissertations in a language other than their native language. Dina
van Hiele-Geldof chose to write her Summary in English. This
Summary appears at the end of Part I along with a set of Tenets she
prepared following the defense of her dissertation.

Pierre van Hiele reviewed the Project's first draft of the
English translation of Dina van Hiele-Geldof's dissertation. Aside
from a few minor suggestions for word changes, he indicated that it
was '""a very fine translation." Dina van Hiele-Geldof died about a
year after completing her dissertation. Dr. van Hiele recommended
his wife's last article, written in 1958, in which she gives
further clarification of the levels as related to a student's
behavior, as an important resource document for researchers. The
translation of this article, entitled "Didactics of Geometry as
Learning Process for Adults," is presented a3 Part II of this
monograph,

Pierre van Hiele's two major books, Begrip en Inzicht (1973)
and Struktuur (1981), focus on the role of insight, intuition,
levels of thinking, and structure as they relate to learning. A
new compilation of these ideas, soon to be avatilable in English, is
currently in press with Academic Press. In order to give some
insight intn the dissertation of Pierre van Hiele, the English
summary which he prepared in 1957 for his thesis, entitled "The
Problem of Insight in Connection with School Children's Insight
into the Subject Matter of Geometry,”" is included at the beginning
of Part III of this monograph. It is followed by the Project's
translation of his article, "La Pensée de L'Enfant et La
Géométrie." It was this article which captured the attention of
Soviet researchers who, in turn, developed ways of using the van
Hiele principles to revise their school geometry curriculum. In
the article, Pierre van Hiele describes in detail the levels and
phases within levels of his theoretical model for thought
development in geometry.

The Project's translation work from Dutch into English was
done by Dr. Margriet Verdonck, a native of The Netherlands, living
in Brooklyn, New York. Dr. Verdonck translated Dina van
Hiele-Geldof's doctoral dissertation in its entirety, the Tenets
(see Part I) and her last article (see Part II). The translation
from French into English of Pierre van Hiele's article, The Child's
Thought and Geometry (see Part III) was done by Rosamond W.
Tischler, a member of the Project staff.

A bibliography of the writings of the van Hieles is included

- 8 o
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at the end of the monograph.

The Project staff hopes that this monograph, containing
translations of significant works of the van Hieles, will provide
the English-speaking research community with a resource that will
shed more light on the van Hiele model. Also available is a
companion monograph which reports the Project's research efforts in
five areas: (1) clarificatior and documentation of the van Hiele
model in terms of specific student behaviors; (2) development of
fnstructional/assessment materials for students in grades six and
nine on properties of shapes, angle sums for polygons_  and area of
quadrilaterals and triangles; (3) results of a clinical interview
study of sixth and ninth grade students using these materials; (4)
results of a clinical interview 3tudy with preservice and ingervice
teachers also using the Project-constructed materials; (5) a
critica’ analysis of the geometry content in three texttook series
(grades K-8), currently used in the United States, with respect to
the van Hiele levels.

vi
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PART 1

DISSERTATION OF DINA VAN HIELE-GELDOF

entitled:

THE DIDACTICS OF GEOMETRY IN THE LOWEST
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Chapter 1

WHAT IS A DIDACTIC EXPERIMENT?

The first question I asked in order to orient myself is: What
is an experiment?

If we look at physical, chemical and biological experiments,
and at experiments in the natural sciences in general, we can
distinguish two categories: the qualitative description of natural
phenomena and the quantitative measurements of them. The customary
approach is that one isolates the factors that are thought to
influence the phenomenon, i.e. that one keeps all but one constant.
In an experiment in the domain of learning processes, the situation
is somewhat different. As an educator one has the responsibility
to make sure that the activities one wants the children to carry
out are pedagogically justified.

In "Geistesformung" of Castiello (I), I found a description on
pages 54 and 55 of an experiment by Watson on an 1l-month old
child. This experiment shows that the feelings of fear of a
certain object, that one has intentionally instilled in a child,
are carried over to similar objects by the child., I would not call
this experiment pedagogically justified, because experience has
taught us that such feelings of fear can have far reaching
consequences. In this respect, there is a limit to the experiment.

Furthermore, it is difficult to obtain reliable results about
the subject (i.e. the twelve-year-old pupil) that is being
investigated. VYhen pupils found tasks in the investigation
uninteresting, or more importantly, when they have had an aversion
to them, one cannot come to & correct conclusion about normal
children. Therefore one should take into account that the
experiment can bring about abnormal states of mind in the children.
This could lead to results that cannot be compared with other
results.

A second point of difference between this kind of experiment
and those that are carried out in the natural sciences, is that in
the natural sciences factors can be isolated - undesirable factors
can be eliminated - but this is much more difficult here.

The essential di{fference however resides in the subjectivity
of the observer. In the natural sciences, this subjectivity is
expressed in the choices of the measuring instruments that register
the phenomena. The phenomens are not observed directly: one makes
use of indirect methods. Because a didactic experiment involves
the observation of psychological phenomena, the subjective attitude
of the observer is a factor that igs almost impossible to eliminate.

The central problem in didactics is the educational value of
the disciplines. It is the opinion of many, that especially for

, ERIC 13
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Page 6

the B-pupils, mathematics is a subject that has an impocrtant
edicational value. The work of Castiello: Geistesformung:
Beitrage zur Experimentellen Erforschung der Formalen Bilduug
(Mind building: Contributions to Experimental Kesearch on Formal
Education) is especially significant in the investigation of this
educational value. He describes iu his book a number of
experiments ebout intellectual development. For the most part
these are quick impressions where the subjects did not work under
normal circumstances (p. 68). trom the answers to a dozen
questions (in which it was insisted that all questions be answered
in one way or another), Castiello claims to be able to make
statements about the logical thinking, the mathematical thinking,
the thinking in the matural sciences, etc. of his subjects. I have
already pointed to a difference between such an experiment and an
experiment in the natural sciences and that the elimination of
undesirable factors is much more difficult. This smplies that the
number of experiments one has to carry out has to be much larger
than those Castiello did in order to arrive at reliable
conclusions.

Castiello also describes another type of experiment: A number
of groups are given different pre-treatments before they are
tested. In addition, the groups are compared with another group
that did not undergo pre-treatment, i.e. a control group. In this
manner, experiments were carried out in the areas of attentiveness,
judgment formation, algorithms. The objective was to find out to
what extent transfer evolves through practice.

This method of experimenting is also found in the thesis of
Mooy (I, p. 60 ff). The objective was to investigate the
improvement of learning performance in geometry in children of the
first class of the gymnasium (secondary school for those preparing
to enter the university) by means of so-called learning
conversations. The protocols of the classroom lessons and those of
the learning conversations are completely missing. Therefore it is
difficult to evaluate whether the classroom lessons that were given
to the different groups were indeed the same. Castiello (p. 140)
points ouv. in this connection that the way in which the subject
matter is transferred is strongly dependent on the teacher (the
person in front of the class). In the second place, it was not
determined whether the two groups were set up to be as equivalent
as possible in so far as their individual aptitudes were concerned.
it I have understood it correctly, three classes in one gymnasium
were used. Those classes were put together randomly as is
customary. A fourth class belonged to another gymnasium. In
addition, all those classes were taught by different teachers.
Thirdly, there was no fixed control group here, so that the
practice factor was not properly taken into account.

Prins (1) carried out investigations in a similar way. He
studied the improvement of learning performance in geography in
elementary school children., He did take into account the
difference in intelligence between his groups. His reports on the
learning essays of the children, the learning conversations and the

14
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accompanying analyses are extremely informative. However, because
this involved the subject of geography and because the test was
done on elementary school children I will not dwell on it.

Boermeester (I,p. 58 ff) describes in greater detail an
experiment in the area of geuvmetry. The starting point for him was
the question: "Would it be possible to improve the results of
geometric thinking by means of learning ccnversations, in such a
way that one could talk not of apparent success, but of effective
use of the difference between the metastable and stable level
within a given maturation period?"” His best experiment involves
two parallel classes of the second year of a Mulo (advanced
elementary school). 1In order to make the learning conversations as
effective as possible, he first analyzes the geometric thinking of
pupils in their 1st, 2nd and 3rd years at the Mulo. They were
given a difficult problem that ° ’ no relationship with the test
questions they were to receive later. Not only were they asked to
write down the solution, but also to write down all their thoughts.

The next task of the experimenters consisted of thoroughly
reviewing the theorems and definitions the pupils had learned up to
that time. 1In order to compare the results from different classes,
there should be the same theoretical base,

Then came the first test. Thic consisted of two geometry
problems for the classes 2A and 2B. Then a complete analysis of
the mistakes in the work of class 2A was made in order to make the
learning conversation as effective as possible. A few days after
the first test had been completed, ¢ earaing conversation was held
in class 2A and a traditional lesson vas given to class 2B.
Boermeester gives a protocol of the learning conversation. The
second test took place one week after the first test. This again
consisted of two problems. Here again there was an analysis of the
mistakes o7 class 2A, a learning conversation in that class and a
traditional lesson in 2B.

Test III was done during the third week. Again the same
treatment for 2A and 2B respectively. Next came test IV in which
the first problem differed significantly from the preceding ones.

In Boermeester's work there is a control group. He therefore
can arrive at well-organized conclusions.

Even though I value the experiment very highly, I want to make
one remark. Boermeester wants to investigate whether geometric
thinking can be improved by learning conversations. Therefore, it
would have been better if he had first carried >ut an analysis of
the assigned problems starting from the 14 points he gives in
Chapter VIII about geometric thinking. He then should have based
his jvdgment of the completed work on this analysis. It is not
sufficiently clear from his assessment which functions of
mathematical thinking he wanted to test and which problems or parts
thereof were to achieve this.
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This brings me to the end of my prelimiaary discussion, The
didactic experiments I have discussed so far always had the
objective: to investigate the improvement of learning performance
by a change in the learning method. The manner of the presentation
of the subject matter did not come into question even though Mooy
and Boermeester specifically mention psychological objections to it
in their introductions. They take particular exception to the
abstract way in which the subject matter of geometry is presented
in the first¢ year of the secondary school.

This helped to determine the questions for my own didactic
experiment. Namely:

1. Is it possible to use didactics as a way of presenting
material, so that the visual thinking of a child is
developed into abstract thinking in a continuous process?
This abstract thinking is requisite for logical thinking in
geometry.

2. Is there a need for a child in the first class of the
secondary school to reason logically about geometric
problems and to what extent can this need be met?

3. What role does language play in the transition from visual
to logical thinking?

Each mathematics teacher can repeat the experiment: the
protocol (see Chapter X) clearly shows the procedure. 1In schools
where the standards of selection of the pupils are more stringent,
the result will be better. 1In scinools where the standards of
selection are less stringent, the result will not be as good. Both
groups of pupils I worked with were composed randomly: the division
took place on the bLasis of the name roster. From the fact that the
class conversations of these groups were practically identical, I
think I am able to say that these groups are random samples of
twelve-year-olds from the secondary school.

One could imagine the experiment to be as follows: one of the
two classes of the first year at the Amersfoort Lyceum would be
taught according tc the traditional approach and the other class
would be taught according to a method where materials are very
important. This would be followed by a comparison of the results
of both methods. This approach would not be possible for two
reasons. First, I no longer feel able Lo teach according to the
traditional methods in the first class. The group which would be
taught in the traditional way by me would then not work under

. normal conditions. Second, the results of the two methods are not
really comparabie. The groups should be judged according to a
standard. This standard is set in relation to one method or the
other. Hhence, the results seem to be predetermined.

Therefore, the experiment is a protocol of what I am
accustomed to doing with the first classes in the geometry course.
The report deals with the subject matter covered during the months

ERIC 16
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of January, February and March. The great advantage is that the
pupils are tested under practically normal circumstances.

What is new in the experiment is the way in vhiclk the subject
matter was presented. One may ask oneself whether the experiment
remains within the limits I have set in the beginning: "Is this
experiment psychologically justified?" Mooy reports in his thesis
that it is to be deplored that psychology has not yet established
what twelve-year-olds are able to assimilate. Should the
didactician then not wait until the psychologist has established
how he should organize his didactics?

Langeveld (I, p.11 ff) discusses the following question in
great detail:

We must develop a psychology which is an organic part of
and a direct outcome of pedagogy.

He declares:

In order tfor psychology to have any significance to an
educator, it must be tied to the real-life experiences of
the classroom and to the analysis of such real-life
situations. Up to now, it is only accidental that an
experienced educator could find anything practical in
pshchology: it has been too biologically oriented rather
than rooted in real-life experiences. It has followed a
logical and progressive development - in both the
Wurzburger school of psychology and the Wallon and
Piagetian school of developmental psychology - which
emphasize biological principles. But in fact, for a full
understanding of psychology the personal experiences of at
least two people are essential.

So it behooves the psychologist who is interested in
developing something practical to first adopt methods which
would enable him to observe and treat humans in a real-life
situation. Secondly, he should be less interested in the
scientific application of principles than he is in the
understanding of human behavior. Finally, he should
formulate his observations and understandings from the
people he has worked with and then set out to validate or
disprove his impressions - inductively.

If there were a developmental psychology that would satisfy
the above-mentioned conditions, the mathematics didactician could
possibly find in it the badly needed data on the development of
mathematical thinking. Such a psychology would have to derive its
data from an analysis of those teaching processes in which this
thinking is being developed, because it is there that the
psychologist encounters the child in his learning process. The
framing of the learning situations, however, is the work of the
didactician. Psychologist and didacti:ian will have to deal with
the same thing here.

17
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In order to be able toc provide child-centered instruction; the
didactician will have to have a background in psychology for
setting up the learning situation. Conversely, if a developmental
psyckologist wants to set up a theory that has some value for the
teacher, he will have to operate against a background of didactics.
Only very close cooperation between didactician, developmental
psychologist and teacher will allow for advances in didactics as
well as developmental psychology in this area. In this way only
will didactics become more than & science merely describing
subject-matter and will psychology become a support fcr the teacher
in his daily tasks.

Kohnstamm (I, p.85 ff) cites two circumstances that could be
the reason why the work of scholars studying "thinking in children”
can possess such serious gaps.

The first is an incorrect view - incorrect because it is
based on a faulty theory of knowledge - a view that one
should delineate as clearly as possible the boundaries of
the disciplines, even though they deal with the same
object. Psychology is not logical. The child psychologist
is not responsible for the content of logic: he
uncritically accepts its data. He therefore also does not
have to investigate what "logical thinking" is, but ne
keeps to the traditional views in that respect.

A second reason is:

ce....the view that "learning to think" is a biological
maturation process, instead of the transfer of historical
forms of culture. It is accepted, without closer
examination, that "adult-thinking is a uniformly fixed
entity to which child-like thinking moves by way of a
spontaneous maturation process. As child psychologists we
then really have nothing else to do but to investigate what
the stages of this maturation process are and to determine
at what age those stages are reached. The value of the
intentional training, therefore that of the school and
teaching, is hereby considered negligible.

That thie viewpoint has not become clear for many is frequently
apparent from discussions. The saying: "It would be best to have
this assessed by a psychologist" has almost become proverbial in
teachers' circles.

This shows the necessity for a schooling and training for the
teachers in the sense described by A.J.S. van Dam (I):

The assistant-teacher learns the literature that is
important to him in courses - in pedagogy and general
didactics, in psychology (general, special and
developmental psychology) and he learns didactics of the
subject from the subject-didactician.

18
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In this manner, the teach«:.-to-be becomes acquainted with the
relation of these disciplines to each other. This protocol,
including analysis, is also intended to be a contribution to the
documentation of didactics of initial geometry instruction. It
would b. a great advancement for the work of the subject-
didactician if many experienced teachers were to write down a
protocol of their method of procedure.

The psychologists studying thinking make principal use of the
mental patterns of behavior of gifted children in order to try to
transfer these to less gifted children through mutual contact.
Prins and Boermeester tried to promote this mutual contact in their
learning conversations in order to arrive at better learning
performances among the children. The adoption of good work methods
need not be limited to the children however. Perhaps it would also
be possible for teachers to learn from each others' work methods.
However, in order to get a clear picture of these, protocols of
lessons, class conversations, learning conversations and so on, are
indispensable. I have been convinced for a long time that we
teachers influence each other by talking to each other. This is
the most important reason why I attend meetings, as much as
possible, of the mathematics work-group of the W.V.0. (Work group
on renewal education). I consider this a not-to-be-underestimated
contribution to my own development in didactics.

P
it’d
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Chapter II

CONSIDERATIONS ABOUT A NEW APPROACH TO
GEOMETRY INSTRUCTION

Nieuwenhuis (I) writes the following about "Practical
consequences of child-centered instruction:"

I start again by noting that a large majority of those in
teaching circles think that more attention should be paid
to the individual child in the course of the learning
process. Developments in child psychology have made us
especially aware of the shortcomings of our teaching in
that respect. This insight gained from child psychology
has led many to modify the way in which the subject matter
should be presented. This has also led to consideration of
the question of what subject matter should be offered at a
certain period of time. It can hardly be estimated how
many teachers are putting this insight into practice with
considerable diligence and energy. All kinds of methods
are modified or are replaced by new ones and even outside
the methodology, there is much reform taking place in the
area of didactics.

However, I cannot help but feel that while doing so it is
extremely difficult to withdraw from all kinds of deeply
rooted traditions, so that one can hardly talk of a real
drastic change. The result is that the often proclaimed
and applied renewal of teaching is severely restrained in
its course, but even more so in its impact.

Nieuwenhuis further points to:

the primitive attitude of the didactics that is now being
used and which operates according to a certaiu system of
explanations, but which hardly takes into account an
analysis of the difficulties that certain pupils encounter.
This same didactics has little else to recommend as a
solution to these problems except to repeat the same
explanation. This is similar to the case of a physician
who, in dealing with a patient who does not tolerate a
certain diet, does not search for a more appropriate diet,
but rather advises the patient to continue as before with
the hope that he will get over it.

I totally agree with Nieuwenhuis. I know from my own
experience how difficult it is to part with certain habits and
tradition. First of all, ic is difficult to give up the customary
scheme according to which one organizes one's lessons: first to
hear the lessons on theorems with their proofs, then to cover the
next theorems and finally in the time remaining to give new
assignments or to let the pupils do their homework.
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Second, it is difficult to abandon the customary subject
watter as it is given in the textbooks. This is evidenced, among
other things, by the fact that WIMECOS (Union c¢f teachars of
mathematics, mechanics and astronomy), even though it creates the
opportunity for an informal course of gecmetry in its new
mathematics program, nonetheless refers to extracts of the
customary subject-matter, taken from the textbooks, as material for
the course.

The above-mentioned teeching method promotes the formation of
a large group of "lesson-learners" (see Morrison I, p.57). Those
are the pupils who prefer to assimilate the subject matter in the
form of recipes, In order to let fewez children develop into this
type, I organize my lessons in a totally different way. In the
first year there certainly is no fixed pattern of teaching. The
instruction i, dependent on the objective that has to be met
through the "learning unit" which I have established (see Morrison
I, p. 42).

Thus I chose plane coverings as the object of study during the
months of January , February and March for the school year of
1955-56. They form a clear unit for the children. The teachers at
the Montessori Lycea especially try to present the subject matter
in a different way as far as form and content are concerned.
Through close collaboration one fiands the same subject, "Tiles," in
varying forms in different schoolis. I suspect that it had been
discusscd years ago in the home of Mrs. Ehrenfest.

Given the way I organized this subject, and in view of the
objective of my teaching, the class conversation is an
indispensable part of the class hour. This is discussed in Chapter
VI. The class conversation is precisely directed towards
stimulating the children to as lively a thinking activity as
possible. The latter is a condition for the pupils to be able to
belong to the "transfer-type". (See Morrison I, p.57).

In what way can we activate the thinking? According to A, D,
De Groot, the experienced thinker can "switch on" his
thinking-energy by a decision of his own will. The beginner,
however, here encounters a difficult problem - the problem of
motivation (De Groot, I). Whether or not I succeeded with
motivation for this subject, I cannot objectively assess. I took
care to provide variety. First, a drawing is made according to
specific instructions. Next, the children solve a few puzzles
which lead to the construction of figures. The children learn to
perceive special features in the drawings. They find relations
through exploration and finally we try to derive other relations
from those relations through a logical process. (See Chapter X).

One can ask oneself why so little has been published by
teachers of experimental schools about their experiments. The
reason has to be found in the fact that even though certain schools
have been designated as experimental schools, adequate staff was
not provided in those schools.
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Nieuwenhuis writes in the above-mentioned article.

We absolutely need a staff of people who can devnte
themselves completely to research and experiment in the
area of teaching, who can ccllaborate with the teachers in
the school, who can test, compare and perhaps reconcile
different attempts at reforming. Besides those persons, we
need staff personnel who can not only take care of diverse
special problems, but who can also provide counseling and
guidance and who in tura can closely collaborate with the
pedagogical and didactic specialists at universities and
pedagogical centers.

I have the pleasure of being well-acquainted with a number of
these experimental schools. I can hereby corroborate the
statement:

Your work was useful, good - but you have neglected to
provide adequate publicity for it and so you left too much
room not only for critics, but also especially for persons
who criticize in a negative way because they cannot do
otherwise. (Biele I)

I would like to add the following however: It is not negligence on
the part of teachers at experimental schools. Teachers find it
almost impossible to find time to write publications in addition to
their particularly difficult daily tasks at school. As far as
geometry is concerned, teachers at experimental schools can
confirm, from their own experience, what De Groot (I) has stated:

Geometric comprehension requires a very high level of
abstract thinking - all things considered much too high for

the average school child of 12 years of age.
The statement of Langeveld (II, p.153) follows the same line:

A bounded figure is psychologically much more elementary
than points and lines.

(and angles - I would like to add). This is in complete agreement
with "the law of closure”" from Gestalt psychology. If one closely
examines the material that is being used in experimental schools,
one notices that this is distinctly taken into account.

One only needs to look at the figures in a geometry book in
order to know whether or not initial geometry instruction has
acquired an elementary character. The omission of axioms 1is not
essential for the transition to the elementary, nor is the
elimination of the proofs of a couple of evident (rather 'too
difficult to prove") theorems. Notwithstanding the reassurances of
a few teachers that the teacher does not follow the textbook at
all, I kepp doubting. The only protocol I have been able to find
about geometry lessons for beginners, points in the other
direction. Stellwasy (I, p. 356 ff) gives a description of two
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lessons to a test class. A short description of the lessons
followus.

First the subject matter covered previously is heard.
"Which figures are considered in plane geometry?" - one
pupil says: "The points." The teacher: "In general: which
figures? Where are those figures located?” - Joop: "On the
board, on paper, ca a sheet, in a notebook." - The teacher
repeats his question. When Joop remains silent, another
pupil has his turn.

A girl says : "The angles. The angles of a ruler." The
ruler had been discussed but in another context. Other
pupils now give the correct answer: "in the plane."

The next question is: "How do we picture the plane to
ourselves?" The girl whose turn it is says: "Something

that has no space nor width." The teacher: "You then have
to show me a plane like that!" Another pupil does
understand what is meant: a notebook or a ruler. "Do you

have such a plane close at hand? Correct, the place where
you are resting your elbow! Beautiful."

From the question, with what figures do we start?, we
arrive at the point - which has no dimensions. Now the
girl can show her knowledge. She gives the answer: "No
dimensions."

Geometry is now being constructed in a systematic way:"If
we put a few points right next to each other on a piece of
paper, what do we get?" The line that thus evolves has a
length, but not a width. "Do these lines exist in

reality?" "Louise?" - "Yes, they do, Sir," Louise answers.

The difference between a line in the notebook and a line in
plane geometry is extensively discussed. Ria tells that
such a line "goes from infinity to infinity." The
fundamental concepts: point, straight line, plane, have now
all gradually become clear. In order to know what is meant
by those we introduce definitions in geometry. The teacher
now gives an example of such a definition, namely one of a
solid that is in space, and therefore is bounded by space
on ali sides.

Then follows discussion of the boundaries of a solid, etc. Next,
line segments, half lines and broken lines are covered and a
definition is found for "angle."

The teacher then proceeds with the statement given in the
preceding lesson: "A line, and especially a straight line,
goes io infinity. As soon as we mark a point on omne side,
which means an end-point of the line, we call it.... Well,
we naturally do not write things down without thinking, so
Ida can tell me... or do we write without thinking? You
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should not do that child, are we going toc fast?" Kitty,
Jan, Kees: "Two half lines." '"No, not two helf lines -
then we call {t: half line. New sentence: If we mark two
end-points on that line, we call the segment between the
end points....Fokko?"...."line segment." '"New sentence:
For the build up of geometry, we need a number of basic
concepts. Two of those basic concepts are...Kasrel?"
"Square." "Paul?" "Point and line." "Yes."

In order to define what we mean by certaia concepts we make
use of... I would like to know - I just told you - that
defining or describing of certain concepts, what do you
call that, Ingrid?" "Wim?" "Definitive". "Fokko?" -
"Definition." "Another word for definition?" - "Condition."
"Correct." Here are a few of these definitions: 1. A solid
is a ... I would like Jan to complete this since I have not
heard from him very much." "Well, a solid is & thing
surrounded by..." - "I will ask someone else.” "Something
that is surrounded.”" ..." Yes, not only surrounded, but
surrounded on all sides - write down: A solid is a part of
space that is bounded on all sides."

The next lesson proceeds in the same way. "Does anybody
know which beginning concepts we know?" "The point, the
plane." "Yes, but the point is not immediately followed by
the plane." - "The line, the straight line." "What is a
proposition?" "Does anybody know another word for it?" - "A
solid that is surrounded by air on all sides.”

From the above conversations it is apparent that geometry has
not yet been made elementary by omitting the axioms. There is also
the question of whether supplying definitions can effect the
formation of concepts in the children. What should the children
think when they are given the words "build-up of geometry." What
meaning can they attach to the words geometry and build-up? The
deductive system of Euclid from which a few things have been
omitted cannot produce an elementary geometry. In order to be
elementary, one will have to start from the world as perceived and
as already partially globally known by the children. The objective
should be to analyze these phenomena and to establish a logical
relationship. Only through an approach modified in that way can a
geometry evolve that may be called eiementary according to
psychological principles. (See Chapter III).

What shoul’d our attitude be, given the fact that we do not
have a team of people who can devote themselves to research and
experiment in the domain of teaching? Should we wait until that
team is provided? 1Is Mooy correct when he states in his
dissertation that there cannot be radlical changes in the next few
years because first a thorough didactic training of future teachers
i1s needed? I most certainly am a proponent of a thorough didactic
training of the future teachers, but I am very skeptical of the
stacement that this reform can and should stem from these young
teachers. De Miranda (at a W.V.0. meeting of the mathematics
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workgroup) has stated "that young teachers look for stability in
their own development; they have not experience - therefore they
have to be conservative.,"

In my view, the renewal of teaching, so strongly desired, will
have to come predominately from experienced teachers. The
necessity of arriving at a totally different approach to geometry
instruction is apparent from the many articles that discuss
teaching in general and from the many meetings that are devoted to
mathematiucs in particular. The alternative approach should, in
the first place, be found in the method of teaching, whereby the
Pupil more adequately experiences the buiid-up of the theory. 1In
order to achieve this, the teacher should partition the subject
matter into units in advance.

The different units can entail totally different work methods.
There are parts that have to be worked through on a more or less
individual basis. However, one should keep the following rules in
mind:

1. Allow cutting and glueing, only where it is necessary for
the build-up of the theory, in order to acquire better
insight into the basic concepts of geometry.

2. leduce to a minimum all computational work. One should
not illustrate generally valid rules with concrete numbers
too often. If the pupil always needs this method to find
the rule, he does not come to an abstraction that rests on
understanding of the relations.

3. The fact that the method followed somehow keeps the
children happily busy should not be a criterion for its
suitability. The saying "the class ought to proceed
smoothly" is misleading for young teachers. It would be
easy for them to conclude, if everything went smoothly,
that the desired self-activity has been achieved and that
they csn go on working in the same way. Mursell (I,p.116)
writes the following about the "principle of
individualization:"

It should be noticed that individualized learning does not
necessarily mean individual segregation or a sort of
private coaching arrangement. Also it means a great deal
more than providing some such device as workbooks that
permit a number of children in a room all to go at their
own pace while the teacher checks up and offers help.

Under such a plan each child may indeed go at his own pace;
but it is equally important, within limits, for each to use
his own methods and to succeed and even temporarily to
fail, each in his own fashion.

The sub-dividing of the subject matter has to be done by the

teacher himself; he should define a principal objective around
which the rest should be grouped. One should bring unity into the
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subject matter, organize the subject matter adequately and only
teach those methods that are general. Furthermore, the teacher
should realize that he is a mathematician, and that his pupils are
not. Therefore, he will have to be conscious of the special
mathematical orientation of his mind. This special orientation of
mind of the mathematician brings with it the following:

1) he wants to build up everything from the bottom;
2) he wants to express himself in symbols and schemes;
3) he aspires to problem-solving.

His pupils, on the contrary, cannot simultaneously have the
orientations of the mathematician, the physicist, the chemist, the
historian, the artist, etc. This is contrary to the opinion of De
Miranda (I, p.59). Therefore, the teacher should be pleased if the
pupils are willing to try and understand the analytical approach of
a mathematician and if he finds a number of pupils willing to
engage themselves in such a process.

The teacher should be careful not to make use of symbols and
schemes too soon. He should first be sure that the pupils have
insight into problems before stimulating them to give automatic
responses. Not all pupils go so far as to aspire to
problem-solving.

During the first year, the converse of theorems should not be
dealt with, nor should the indirect proof be used. There remain
enough problems of a mathematical nature for the children to solve
during their first year.

There is one final remark about "self-directed activity."
This deals with independent thinking activity. Beth (I) states the
following about the principle of this activity:

It is of the utmost importance to lead the pupil to ‘“.e
learning process in an active relationship, and not in a
passive, receptive, so-called sympathetic relationship. It
is only in an active attitude that his mental capecities
will completely unfold and then only will he be able to
benefit most from the teaching. Good teachers have always
tried - unconsciously and therefore perhaps not always
systematically and effectively - to stimulate their pupils
into independent activity, The solving of problems in
teaching was introduced with no other goal in wind;
originally, the teacher has set himself the task of
discussing the theory, and the solving of simple problems
has been given to the pu,ils as an independent exercise.
Difficult problems were included in the sets of exercices
for the sake of the brightest pupils. After a while, the
solving of these difficult problems was required of all
pupils with the result that the teacher started to provide
the solutions. This finally led to the degeneration of our
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teaching where the teacher no longer placed the emphasis on
the theory but instead on methods for solving all kinds of
problems. I give this as an example of the fatal
consequences of an injudicious application of a principle
that itself is excellent and psychologically justified.

The self-directed activity has to be used towards its intended
goal. The goal of the self-directed activity is to provide an
active reletionship between the pupils and the learning process.
In arder to stimulate twelve-year-old pupils to independent
activity it is desirable to apply different work-methods and to
observe the pupils. It has been my experience that this diversity
has led to more activity. After a period of much individual work,
we now have had a period of many class conversations. Whether a
certain work-method functions well depends on the teacher and on
the group of pupils.

The kind of independent exercises one gives children is very
important. If the teacher's view of the learning process in
geometry is that it is important to be able to solve all kinds of
problems, then he has taken the viewpoint that the children should
acquire technical knowledge. In that case he probably will supply
the children with many methods of solution. He will analyze all
difficulties of thinking that could occur and he will present the
problems in a sequence such that "the solving of problems” occurs
as smoothly as possible.

The pupil then has no need to think, but only to remember what
method to use, which is not difficult because of the sequence of
the problems. The teacher then has thought for the pupils and he
transmits the result of his thinking to his pupils in the shape of
lessons. In this procedure, the method is the same as the one
followed in a veccational school, whereas it is not the objective of
geometry teaching to provide merely technical knowledge.

If one takes anotier viewpoint in didactics, the work-method
becomes completely different. 1In order to be able to establish
connections with childl!ike thinking, one starts from an empirical
basis and one searches for appropriate material in order to examine
and orient this thir“ing. There is a wealth of material to choose
from to practice thinxing. The problems have to be set up so that
the children can compreliend them and in such a way that it will be
p ssible to guide them toward good "patterns of thinking"” from the
very beginning. I have worked this out in the following chapters.
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Chapter III

A REPORT ON THE FIRST INTRODUCTION
OF GROUPS IA AND IB TO GEOMETRY

In order to follow the experiment carefully, it is necessary
to give a summary of the geometry I covered with the children from
September till Christmas vacation. I will also summarize the way I
preserted it to the children. Geometry is a subject that can be
introduced with many variations, but the end results are always the
same,

|
|
|
The first lesson started by showing a cube, made out of
colored cardboard. I asked if the pupils had already seen
something like that in the past and elicited answers such as: the
blocks belonging to a building block set, the tower of
progressively smaller cubes, dice. Only in exceptional cases will
a child from secondary school not know the name cube.
\
Next I showed cubes of different sizes. This included showing
a cubic centimeter and a skeletal model made with en erector set.
They counted how many sticks were needed to construct the cube. In
this connection the word edge was mentioned. Together we observed
that a cube has 8 vertices. It was always pcinted out what was
meant by edges, vertices, etc. They counted how many squares are
require. in order to make a cube out of cardboard. The pupils
found out that the six squares can be drawn contiguous with each
other, and that this can be done in more than one way. Also, that
one could do it in the wrong way. (Excluded was the systematic
picking out of the various ways in which to draw those contiguous
squares,)

The pupils then constructed the cube. Drawing triangles (i.e.
triangles such as those used by a d~vaftsman) were used to draw
right angles, rulers were used to obtain the correct scale, and
compasses were also used, I explained the procedure and
demonstrated slowly while the pupils were drawing along with me.
The term perpendicular, used by carpenters, was given concrete
meaning by folding a piece of paper that had no straight edges.
This folding produced a straight line. A second straight line was
obtained by folding the paper such that the second folding line wo"
perpendicular to the f_rst folding line. The angle between the
folding lines we called a right angle. Right angles appeared to be
present in drawing triangles among other things. With this the
first lesson ended.,

In the next lesson we continued discussing the cube. With the
help of strings we constructed diagonals in the cube made from an
erector set. Just like the edges, these diagonals go from vertex
to vertex, bdut they go through the cube., We discovered two kinds
of diagonals. They have different names so they can be
distinguished from each other: surface diagonals and interinr
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diagonals. They are to be found either on the surface of the cube
or the inside. We drew the surface diagonals on the cube which we
had made ourselves, and we were able to measure them and to count
them. Then we tried to think of ways to measure the interior
diagonals as accurately as possible. We had not taped the cover of
the cube shut. When I opened my cube, the pupils saw a piece of
cardboard that was stuck between opposite edges of the cube. This
piece appeared to have the shape not of a square but of a
rectangle. The children recognized that if they could make a
rectangle that would fit they would have the solution to measuring
the interior diagonals. The squares were called lateral faces of
the cube. The rectangle was called a diagonal plane because it
contains interior diagonals.

The pupils were given instructions on how to draw a rectangle
that would fit in the cube and they were asked to check whether it
fitted. Doing this they discovered that the rectangle fitted in
the cube in several ways. This led us to counting and this
counting was arrived at using a system we invented. Counting
something twice was also mentioned. Other examples were also
discussed.

The difference between the meaning of the words surface
diagonals and diagonal plane was again discussed thoroughly.

The pupils constructed a regular tetrahedron. They thereby
learned how to construct an equilateral triangle with compasses.
This led to the question whether there are still other kinds of
triangles. The answer appeared positive since the drawing
triangles are different. Together we tried to find the name of
such triangles. The characteristic of both drawing triangles is
the right angle. This led us to the name of right triangle.

I provided them with the network of a regular octahedron. The
result had one diagonal plane already present. This could have
been omitted, but then it would be much harder for the students to
draw the diagonal planes in their real size. The pupils already
had 2ifficulty seeing that there are 3 diagonal planes in a regulax
octahedron.

As an introduction to basic constructions I paid special
attention to symmetrical figures after I had discussed the cube. 1
drew the left half of a vase (vertical cross section) on the
blackboard and I asked them what I had drawn. Indeed, (see figure
on p.30), everybody saw what it was. Now came the difficult task
to draw the other half. As oon as that had been done, criticism
began. We even made use of a mirror to see how wrong the drawing
was. We had to find out how to hold the mirror in order to fit the
other half on the one drawn on the blackboard.

Through the criticism of the drawing the pupils came up with
an analysis of the notion "symmetrical figure". A line can be
drawn in the figure such that for each point on the left hand side
there is a corresponding point on the right hand side. That
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corresponding point is obtained by first drawing a line
rerpendicuiar to the mirror iine and then marking ofif a point at
the right hand side at the same distance as the point on the left
hand side.

We pointed out symmetrical objects that surround us, checked
for symmetry in coats-of-arms end road signs. We examined the
alphabet in connection with symmetrical letters. After that I
asked the following questions: '"Why does one sometimes refer to
one of the two drawing triangles as a semi-square? Would the other
drawing triangle perhaps also be something similar?" They flipped
the drawing triangle over to get the other side and found out that
the other drawing triangle can be called a semi-equilateral
triangle. This led us to the geometrical figures: square and
equilateral triangle. For these and also for the rectangle and the
circle we tried to find the number of axes of symmetry. To do
this, they folded self-made paper models in half in several ways.
We noticed that a circle possesses innumerable axes of symmetry.
Then we drew an equilateral hexagon. This was found to have 6 axes
of symmetry.

1]

Through thinking of symmetrical buildings we came to solid
mathematical figires such as pyramid, prism, cylinder, cone, cube,
sphere. For some figures I showed the pupils paper models, for
others they made models. As a practical epplication of the concept
of symmetry, I asked the following question: "I have a round table.
How do I go about finding th2 center of the table?" Their solution
was that: first, one has to measure the circumference, divide that
in two so that one has obtained 2 points with respect to the
center. Then the diameter has to be drawn and divided in two.

The constant ratio of circ' ference to diameter of a circle
was determined experimentally by the pupils. To do this they each
measured the circumference and the diameter of a large circular
object at home. The tabulation of these observations led to a
discussion about the accuracy of measurements, about rounding off
numbers, about estimating the result. We drew an equilateral
hexagon in the circle and we concluded that the ratio had to be
greater than 3. We drew a square around the circie and we
concluded from that that the ratio had to be smaller tham 4. On
the basis of this, a number of the students' measurements were
viewed with distrust. The students in question were asked to
repeat the experiment.

Next, we took four pencils, identical in length. We checked
their length by putting them next to each other. With the help of
these pencils we tried to construct a quadrangle that had four
equal sides, but "that was not a square."

The name diamond appeared familiar to the pupils. Diamond
shapad objects were enumerated: nougat blocks, the dismonds in s
deck of cards, the diamond in the leaded glass in the front door.
Here was an opportunity to demonstrate the necessity for
definitions. The word diamond also has another meaning besides the
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one used in geometry. Therefore, it is desirable to agree upon the
meaning of the word diamond (rhombus) in geometry. I showed a
couple of diamonds (rhombi) made out of paper. I had them make a
flexible model constructed from &4 strips of paper of the same
length. The strips were attached to each other with 4 hinges.

This showed them that there are different shapes of diamonds
(rhombi). We reached the agreement: a rhombus is a quadrangle
whose 4 sides are egqual. We noticed that the word "four" also can
be omitted. The sentence would still be clear. By folding, we saw
that a rhombus (diamond) has 2 folding lines (axes of symmetry).

We tried to put into words all the properties we had observed by
folding:

- The diagonals of a rhombus bisect each other.

- The diagonals of a rhombus are perpendicular to each other.
- The opposite angles of a rhombus are equal.

- The diagonals of a rhombus bisect the angles.

All this was established by showing that the parts fall on top
of (match) each other. One can also verify the properties of
symmetry by using a mirror. For this we placed the mirror on the
folding line and saw the whole rhombus (diamond).

The rhombus became the starting point for many constructions.
First measurements were chosen and the rhombus could be drawn
anywhere in one's notebrok. Shape and size of the rhombus were
given, but not the location. After that the rhombus had to be
drawn in a certain location. One of the vertices had to coincide
with a given point P; two opposite vertices had to
be located on a given line L, and the side of the

rhombus had to be 4 cm. This determined the L

location of the rhombus completely. The pupils also
recognized, by using the mirror, that the location

of the fourth vertex was determined. Then the P,
rhombus was drawn. In the next task more freedom

was given in that the side of the rhombus and thus

the shape itself could be chosen. We noticed that

this did not modify the position of the fourth

vertex. This was also confirmed by the mirror - the
length of one diagonal was not changed.

I spent a lot of time at these tasks because they form the
groundwork for the basic constructions. From the analysis of a
symmetrical figure we derived that the mirror point of P with
respect to the line L is located on the other side of L at a
distance from L equal to the distasnce of P from L. We saw that
this mirror point can also be determined with compasses and that in
this construction, the radius of the compasses does not matter.

L
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I drew figures on the blackboard. We called the first method, the
drawing and the second, the constructing of the mirror image.

Next, many plane figures were mirrored with respect to a line.
The answer to the question was often shown beforehand in the
mirror. This was often necessary to provide a concrete meaning to
the language we used. The pupils not only heard, but at the same
time saw what was required of them. Since the mirror we used had a
reflecting surface on both sides, we could also mirror figures that
intersect the axis of symmetry. If necesscry, the pupils drew
along the lines of the given figure with a pencil and they saw the
mirror pencil describe the symmetrical figure.

After that I derived 4 important basic constructions from the
properties of the rhombus:

I. The bisecting of a line segment
II. The dropping of a perpendicular
III. The erecting of a perpendicular
IV. The bisecting of an angle

A rhombus made out of paper constituted the material used as a
concrete basis for the basic constructions. 1In order to
familiarize the pupils thoroughly with these basic constructions, I
had them construct precise figures: a regular octagon, a regular
dodecagon, a triangle with i{ts medians, a triangle with its angle
bisectors, a triangle with its altitudes, a triangle with its
perpendicular bisectors and its circumscribed circle. We observed
special features of these figures.

The pupils made a regular hexagonal prism and a regular
octagonal pyramid out of thin cardboard.

they vere required to learn the names median, perpendicular,
etc., They nad to be able to point out the lines and to indicate
how these lines are positioned in the figure. They also had to be
able to construct the lines.

As for the construction of perpendiculars, I taught the
children a construction method that i{s based on the kite-figure.
We had noticed that the rhombus construction required much space.
Therefore it appeared necessary to examine the kite-figure a litt’e
further. The students had already come across the kite while
reflecting a triangle in one of its sides. A new aspect, however,
was the fact that a kite can be seen as a figure consisting of 2
isosceles triangles, but sometimes also as a dividing of a diamond
(rhombus). The isosceles triangle was viewed as a semi rhombus.
In this way the chatacteristics of the figures: rhombus, isosceles
trisngle and kite were experienced as a coherent entity.

The use ¢of the semi-rhombus and the kite are clever means to
carry out constructions when theve is little room for drawing. A
number of students managed to solve difficult problems that were
given to them, for example, when they were asked to drop a

32




Page 25

perpendicular to a line that was drawn completely at the bottom of
the page or when they were asked to bisect a line segment that was
positioned near the edge of the paper. The students were not
required to be able to reproduce these constructions, rather it was
treated as a game.

During the last weeks before Christmas vacation we studied
angles. The introductory lesson took place as follows: I
demonstrated what a straight angle is by stretching my arms
sideways and bringing one arm horizontally towaids the other. What
this arm described we called a straight angle. (A definition was
not given). Next, a few children were asked to make a right angle
with their arms and to point out through arm movements where the
angle in question was.

I asked: "How large is the angle formed by the hands of a
clock at 6 o'clock?" Then one of the boys was allowed to form a
right angle with his legs. Another drew a right angle on the
blackboard with a (drawing) triangle. A semi right angle was
constructed on the blackboard with the help of compasses. The
names: sides of an angle, and vertex were mentioned. 1In the
connection I talked of the distinction we make between line
segment, ray and line according to whether there are two endpoints,
one or none. We saw that a protractor is a semi circle that is
partitioned into 180 equal parts. Each part is called a degree. If
we were to draw the rays, then a straight angle would also be
partitioned into 180 equal parts. The small pieces of the arc are
called arc degrees, the small angles are called angle degrees.
Next, the usual tasks followed: measuring angles using the
protractor aud drawing angles of a given size with the help of a
protractor.

One of the pupils was asked to describe three-quarters of a
circle with stretched arms. This was necessary in order to
demonstrate that some angles are greater than & straight angle.

The pupils computed the size of the angles formed by the hands
of a clock at different hours. I taught them how to mark an angle
using three letters, how to copy an angle using compasses, and what
the names of the different kinds of angles are.

The names: opposite angles, adjacent angles, supplementary and
complementary angles were explained. The pupils were asked to
carry out a number of tasks to test their understtanding. Through
individual contact I made sure that the pupils were able to copy an
angle, that they were able to identify an angle using the new
notation and that they mastered the concepts: re-entrant (reflex),
salient, acute, right and obtuse.

This was the subject matter of geometry in the first stage.
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CHAPTER 1V

COMMENT ON THE SUBJECT MATTER OF GEOMETRY
IN THE FIRST STAGE

As a maxim for the first stage of the initial geometry
instruction I would choose: one should allow the children to act
thoughtfully with the help of manageable materials.

During the initial stage of geometry instruction, the
individual activity of the pupil is central. The question "How
shall I make something?" is an important one. This allows the head
and the hand to be engaged simultaneously in the learning process.
This is the reason for my requesting that pupils make a cube after
the cube has been thoroughly examined. When one looks at this
exercise from the point of view of geometry, this entails finding a
particular ordering of 6 squares. This is an exercise that makes
use of the faculty of imaginati ,n. It is however supported by the
use of material.

A requirement for the material, in generai, is that it
contains the foundation of the logical development of geometry. 1In
this instance this means that if at a later date one gives a
definition for the cube other than "A cube is a polyhedron bounded
by 6 squares," one has to demonstrate that any new definition and
the original one are equivalent. I want to point out in passing
that this definition was used only implicitly during the lessons.

It can be useful to ask how one should join the squares in
order to make a cube and also whether it can be done in more than
one way. With given pieces of cardboard, the question is: which of
those aiffer2nt ways can one use in order to make the cube?

There also is a certain game-element present in the task: "It
is possible to make the cube in one piece. Could I do it also?"
The interesting thing is thet the pupils reach the correct solution
by doing. They can correct their mistakes without the h/lp of the
teacher. The teacher need not even notice that the pupil did it
wrong at first. The material is self correcting.

As one will have noticed, the pupils are asked many questions
collectively in the class discussion. They measure and count.
Discussion of the propertics is not exhaustive. Ample opportunity
remains for the pupils to ask themselves questions.

That a diagonal plane of a cube is & rectangle and not a
square is not arrived at by reasoning, but, if necessary, is
ascertained through measuring. The concepts of square and
rectangle are not defined. However, care is taken to see that the
pupils know the figures y name, that they can distinguish them
from each other and that they can recognize their characteristics.
That surface diagonals are of equal length has already been
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accepted on the basis of an existing structure of observation.
This is true also for the equality of the interior diagonals and
for the fact that a interior diagonal is greater than a surface

diagonal. The pupils are made aware of this structure by means of
questions,

I asked the pupils to make a regular octahedron and a regular
tetrahedron in order to show them that there are other regular
polyhedra besides the cube. However one positions them, they
always look the same. Their shape is attractive. Often the
students ask whether there are any more of those regular polyhedra.
They don't want to research that hcwever - they only ask out of
thirst for knouwledge. Even though the latter is satisfied by my
answer that there are 5 such polyhedra, there is oft:n the need to
show and make the other polyhedra. The construction of these
polyhedra stems from an aesthetic need; in this stage the pupils
never ask for a proof that there are no more than five.

I gave a test on the cube and the properties discussed in
connection with the cube. Except for one jitem, the subject
appeared not to have been too difficult. This item concerned the
systematic counting whereby the pupils had to count twice, three
times or four times. 1In general this has not led to insight. Not
even 10% of the pupils gave thought to double counting when
presented with a new situation. The task was as follows: There are
9 pcints on a circle. The line segment
connecting two of those points is called a
chord of a circle. Look at the figure; a
chord runs from point 1 to point 4. (The
pupils were already familiar with the
words circle and line segment. In ogrder
that an accumulation of new words would
not produce confusion I explained the word
chord in detail.)

a. How many chords can be drawn from
point 1?7

b. How many chords can be drawn in
~otal using only the 9 points?

Koorde means Chord

Question (a) was answered correctly by almost all the purils. Some
pupils thought there were six chords Jusct as for the diagonals of
a polygon, they had subtracted 3.

As for the answer to question (b) most pupils found 9 x 8. A
number of pupils reached the correct answer in the following way: 8
diagonals leave from point 1. Only 7 from point 2, because we
counted the chord 1-2 already. Six diagonals leave from point 3,
etc. In this way they found 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36
chords. These pupils used a more concrete method. They subtracted
the already counted diagonals.
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A train of thought involving multiple counting appeared to be
still too abatract for most pupils at that time. By introducing
this problem in another way and at another time, one should be able
to provide the pupils with a better insight in this matter.

The introduction to "multiple counting," which I gave,
occurred as follows: I said that someone might reason as follows: a
square has four vertices, a cube has six squares and as a result a
cube has 6 x 4 = 24 vertices. I asked what was wrong with this
reasoning and how this error could be corrected. Most pupils
answered with the statement: a cube has only 8 vertices, because I
see 4 at the bottom and 4 at the top. There were also remarks such
as: a vertex is shared by several fquares, namely by three 3quares.
But when they divided by three, their answer had to be viewed more
as a computation of an answer rather than as an insight that would
correct the error. The interest in the paradox, contained im the
problem, was present though. However, in order to reach the
answer, the abstract working method is not practical - the concrete
method is much clearer and shorter. One can conclude from this
that one has to present the problem of multiple counting so that
the abstract method is more efficient.

For example, one can take a tredecagon (13 sides) and ask how
many diagonals there are. Then the pupils can in a class
discussion, try to count the diagonals using the concrete method.
Ten diagonals leave from the first vertex, ten fr.m the second, 9
from the third, etc. They will then see that the last two
vertices are left with none. One gets the sum: 10 + 10 + 9 + 8 + 7
+ 6 +5+ 4+ 3+ 2+ 1+ 0+ 0. In this csse the abstract method
would be more compact. From each vertex 10 diagcnals can be
drawn. If one were to say that there are 13 x 10 diagonals one
would not have taken into account the dfagonai:s that were counted
already. For example, when we check what happened with the
diagonal 12-5 we see that it first has been counted with the
diagonals from vertex 5. 4All diagonals will bs counted exactly
twice because each diagonal has two end points. Instead of
computing 10 + 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 +1 + 0 + 0, we
can also compute i3 x 10 / 2. The pupils now see two methods: one
has the advantage that one clearly sees what one is doing, whereas
the other has the advantage that the solution is obtained more
quickly. The result obtained by means of an abstract method can be
checked via ¢ concrete method. This is reassuring to the pupil.

Indeed, I believe that the problem will be grasped better if
treated in this fashion. However, as I alrealy mentioned, it will
have to be treated at another point in time. At the time when
there is interest in the paradox: "a cube has 6 x 4 vertices," I
cannot find enough motivation for the students fo: the problem:
"How many diagonals are there in a pelygon?"

So, the assigned problem about the chords was aot justified.
It assumed a transfer which I had no right to expect. The paradox
is suitable for presentation to the children, but it would be wrong
to use that type of paradox as a means for testing the chiidren.
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By starting with a cube, one complies with the requirement
that geometry instruction be initiated through psychologically
elementary concepts. The cube is a bounded body which because of
its exceptional regnlarity is easily observable.

Gestalt psychology teaches us the following about observation
(Linchaten I, p. 57 ff):

The world of perception can be described from the aspect of
its ordering which makes orientation possible. For the
description of the systems or ordering, we can choose
different points of view.

-The world of perception is ordered spatially.

-The world of perception is also ordered
chronologically.

-The world of perception can be considered as an
organized conglomerate of shapes, which together, but
also each one individually, stand out against a
background. By shape we understand a bounded entity
that possesses a certain independence. The context in
which the shape is placed we call its field. When
other shapes are present in this field they display,
in their relationship with one another, an
organization which we call field structure. The world
of perception also displays an ordering of meaning
(that of the meaning, relationship of meanings and
meaning structure).

The geometry teacher is initially dealing with the existing
spatial ordering. It is important for him to know the field
structure that each pupil has of the observed shapes, when these
shapes are looked at from a geometric point of view. The point is
that the teacher should find the common nucleus of the geometric
experiences of all the pupils.

Some field structures draw attention automatically. Others,
on the contrary, only come about in correlation with a
certain attitude of the person. Sorecne who concentrates
on a certain task has to adopt a certain attitude. While
he is doing this, the field structures itself in its
particularities. This would escape a person who did not
take on that attitude...

A shape that is seen appears in its totality. It stands
before us. The whole and the parts are visible
simultaneously, 1.e. are given simultaneously. The shape,
or the visual object is also always visibly embedded in a
context that forms the system of relationships or the
backgrzound of the shape.

The context in which the cube is taken up in this case is a
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geometric one (squares, edges, diagonals, vertices). The attention
is focused on a particular astructuring. For secondary students
this only involves making them conscious cf this structure. The
octahedron and the tetrahedron on the contrary involve an expansion
of the world of perception. Many pupils are seeing those polyhedra
for the first time. Since these polyhedra are placed in the same
context as the cube, the structuring for these (pclyhedra) takes
place simultaneously.

It has been my opinion that reguiar and other symmetrical
polyhedra are the simplest bounded figures in the plane when they
are viewed in a context of symmetry. It appeared from the class
discussion (see III, p. 18) that the concept of symmetry is already
structured in the field of perception of 12 year-olds.

1. The pupils are able to perceive that the
drawing represents one half a vase.

2. The pupils are able to add on the other half.

3. The pupils are able to discover mirror points
with respect to a line.

Through asking questions a stronger observational ability
develops which brings about the structuring.

By using a mirror with reflecting surfaces on both sides, the
pupils were able to determine the axes of symmetry for themselves
and they were able to correct mistakes in construction without my
help.

The questions; Have you seen symmetrical road signs? capital
letters? etc. also stimulate observation with respect to geometric
figures. The question: "I have a rcund table. How can I find the
center?" presents the pupil with a simple problem. They follow the
discussion attentively: what is being suggested by one pupil is
being refuted by another one, and finally they find the answer
collectively. First measure the circumference, then divide the
circumference by two, this produces 2 symmetrical points with
respect to the center, then draw the diameter and divide this in
two.

The discussion of the tabulation of the observations:
circumference, diameter, ratio can be made iirteresting for tle
pupils. The Babylonians used the number three in their
computations. How can we show in the figure that we do not use 3?

We first estimate the result before we compute it. How do we
go about rounding ofi? Why do we make so many measurements? All
these are importent questions.

The symmetry of the rhombus is studied especially because this
forms the link with the first basic constructions. The properties
of the diagonals of the rhombus can be associated with the
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construction of the perpendicular bisector of a line segment, a
bisector of an angle, a perpendicular through a given point on a
given line. The rhombus thereby becomes the concrete basis upon
which all basic construction can be patterned. Sometimes one uses
a semi rhombus or one uses 2 semi rhombi with the same diagonal
(kite).

The pupils never ask why the altitudes, medians, etc. of a
triangle intersect in one point. They add this experience to the
observatious.

An angle is an open figure. This can lead to confusion. The
pupil will prefer to see a closed figure. That the lengths of the
sides are irrelevant is, in a way, an abstraction. For this
reason, the notion of angle has to be introduced with care. I link
it with the direction of the (human) legs and I clarify it with arm
swings. This also helps to indicate the region belonging to an
angle. Re-entrant (reflex) angles and angles greater than 360
degrees can also be demonstrated clearly with this method.

Two c¢ircle disks of the same size but made out of different
colored cardboard can be slid onto each other after each one has
been cut along one radius. This produces a movable model through
which the increase in the size of an angle can be visualized.

()
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CHAPTER V

NEW DIDACTICS RELATING TO THE LEARNING OF GEOMETRY
IN THE FIRST AND SECOND STAGE

How and in what way do we experience in textbooks new insights
relating to the didactics of geometry? Boermeester says in this
connection: "All but 3 textbooks begin with the traditional
subject matter in the first chapter. Of those three, one starts
with that material in the middle of the first chapter and another
delays it to the second chapter." I must conclude from this that
the mathematician in the teacher cannot yet resist the temptation
to build up the geometry subject matter in a logical sequence from
the very beginning.

Occasionally one departs from the logical path: if necessary
one omits those items that appear to be too difficult for that
moment but does not deviate from the sequence of a logical
structure. This 1is most clearly demonstrated by the diagrams.
Because school tradition has the figure of 2 parallel lines
intersected by a third line right at the beginning of the logical
structure, this figure - even though it may be distorted from a
logical point of view - must and will be presented to the students
at the very beginning of geometry instruction. The fact that
pupils see this figure as a complete entity is not considered in
their instruction. Pupils most certainly see the equality of
alternate-interior angles and of corresponding angles when two
parallel lines are intersected by a third line. Sensory perception
is correct.

The difficult point, however, is that the teacher wants them
to operate using the following theorems: "If two parallel lines are
intersected by & third line, the alternate-interior anglea are
equal" and "If two lines are intersected by a third line, and if
the alternate-interior angles are equal, then the lines are
parallel." Of course, one can teach the pupils to fill out a
scheme corrrectly. However, can one deduce from that that there is
comprehension?

In the observation, parallelism is not separate from equality
of the angles. They are Siamese twins for the student, as it were.
They are there simultaneously. The one is not the result of the
other for the pupils,.

A similar theorem is: '"The base angles of an isosceles
triangle are equal" and linked with that: "If in any triangle two
angles are equal, the sides opposite those angles are also equal."
Should one desire that the pupils view these theorems as separate,
this would require preparatory lessons during which the pupils are
presented with a number of theorems to be investigated. Their own
investigations are used much too infrequently during class lessons.
The enphasis is on explaining the subject matter. The tasks where
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pupils are actively involved are often considered as a check on
whether a lesson has been understood and whether the pupil can
apply the knowledge. To do this one chooses simple problems that
are directly related to the subject matter cover<d in the lesson.

Would it not he desirable to examine critically the customary
mcthod? 1Is that logical sequence reallv -ecessary at the
beginning? What psychological data are .ken into account by such
an introduction to the subject matter? In his "Adventurous
Mathewatics Instruction,;" Kruytbosch (I p, 11) says:

The intuition of the pupil remains idle in front of the
unyielding mass of the logically constructed deductive
system; his resourcefulness and interest are paralyzed by
it. Against this completely finished structure that seems
to be almost indestructilb:e, the pupil’'s initiative, his
desivre fo. undertaking, seeking out, trying, discovering do
not stand a chance,

The stiff deductive teaching of mathematics is wrong, no:
only from a didactive perspective, but also from an
historic perspective, Many important results have been
found through the inductive method. Why then should these
be displaced to an a posteriori role by the deductive
method?

"f one takes the stand that it is more meaningful for a child
to prove a theorem that is not self-evident than to prove a
self-evident theorem (see De Groot, I), then one should investigate
which theorems are evident for the pupils and omit their proofs
regardless of whether o1 not the proofs are difficult,

There is in the child no need for greater certainty than
the graphic evidance.

Geometry instruction that does not follow a logical sequence
is often labeled as "elementary geometry". One thinks it
undesira’>le to treat solid geometry in this fashion in the
secondary school because one argues that elementary geometry
belorgs to the elementary school curriculum. By trying to analyze
the learning process in geometry, I hope to clarify this idea for
the teachers. 1Ia this connection I refer to what Langeveld has
said (II p. 479 ff):

In each educational process we are dealing with a
substratum which has to be planted. ... We shall have to
establish relations with forms of experience, with known
objects in order to arrive at a problem setting that is
accessible for the child. First of all, one should prepare
or uncoaver & substratum on which something can grow.
Initially this substratum should be our point of departure:
We should make use of the life experiences which possess
reality for the child... He who succeeds in establishing
links with situations which have been built by the child
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himself, stands a good chance of speaking about things
which can be meaningful to that child.... One can
illustrate, organize, focus and help to asssimilate the
forms of experience in a certain way. 1In doing this one
must take into accoout that it should be possible to go
back to the initisa) experiences, toc repeat, to duplicate
new aspects, to analyze connections bettcr and in greater
depth, etc.

In the course of the teaching process we have three
objectives:

1) to bring forward or clarify certain initial experiences;

2) to construct relationships in connection with this,
all the while "condensing”" and returning, where this is
required in the light of the objective, to the full
concreteness of continuously unfolding new initial
experiences;

3) to provide insight into such "condensation"
(= abstraction) methods and to teach how to work with
them.

What Langeveld is saying here about didactics in general, cne
should be able to recognize in special didactics. In my opinion,
one does not pay enongh attention in geometry to bringing forward
and clarifying certain initial experiences. The objects with which
the mathematician works are not new for the pupils. They have
already made use of this materia’, either under the direction of
other teachers in the school situation, or on their own initiative
in a game situation (mosaic box, building block set, erector sets,
etc). Therefore, we should take into account what is calied
autonomy in the learning process by Van Parreren (I, p. 122):

If a subject is instructed to practice certain activities
and if he intends to carry out this assignment, an
autonomous learning process appears to be developing.

The geometric figures have already obtained certain meanings.
These meanings can lead to inappropriate actions during the initial
stages of geometry instruction because the mathematician considers
appropriate only those actions that are based on certain logical
rules of the game. By starting geometry instruction using the
logical structure of though: one really puts the child into an
ambiguous learning situation: the meanings which the material
possesses for the chilidren do not fit the operations that have to
be carried out with the material. This undesirable situation can
be avoided by taking care that already existing meanings are
utilized as much as possible in the initial learning situations.

The viewpoint "Elementary geometry belongs to the elementarv

school and logically structured geometry belongs to the gecondary
school, both courses being independent of each other," is wrong.
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The only correct implication in this statement is the insight that
clementary geometry is the natural predecessor of geometry and
hence pre-eminently suited as & foundation for it. We, as
mathematicians, possess the grecat advantage of being able to
establish relations clearly related to the realm of experience.
Twelve-year-old children start secondary school with a very diverse
knowledge of elementary geometry, This knowledge has been gained,
in part, in the elementary school; in part, in everyday lire.
Although certain regularities have been noticed in the cobserved
stages, the accompanying ordering of the stages has not been
expressed in most cases. The language structuring belonging teu
this ordering is also absent.

During the first two months (called "first period" at the
Amersfoort Lyceum) the geometry class-hours were devoted to
observation of figures, naming the figures, ordering of the
observed figures according to their properties of symmetry and the
introduction of the appropriate language structuring. In order to
provide the children with the opportunity to exchange their
experiences and to practice the accompanying language, they
frequently worked in small groups during this period. This method
also brought about an increzase of the common nucleus of the
structure formation in the fields of perception of the children
(e.g. the "greatest common divisor" or the cross section of the
geometric structure increased). For the pupils, this period is a
time of '"the making of models”" - that is their task. At the same
time there is an exploration of the work domain of geometry. Thus
there is a relation between the objects with which geometry is
dealing and the outside world., This makes it possible to later
reinterpret in the world around us that which has been proven in
geometry through logical methods.

For example, how often is the word "congruent" only linked to
triangles? Has the child experienced that the word "similar" from
geometry has something to do with similarity of shape? By doing
this, the pupils arrive at a certain abstraction. They start from
empirical shapes and proceed towards rigid mathematical drawings
and spatial models. In the protocol in Chapter X one can see how a
pupil went back to the empirical shape when drawing sidewalk tiles
- she also drew sand in the corners of the sidewalk tiles.

The spatial models given to the pupils for examination, the
models they make and the figures they draw with the drawing
triangles and compasses all help them to make this abstraction.

Since the regularities of the objects around us are most
conspicuous, an ordering of geometric figures according to symmetry
is usually possible, Cutting out and folding figures help to
develop this ordering because this allows the pupils to find the
axes of symmetry empirically. By pinning and rotating, the centers
of symmetry are determined., A mirror-is used to find that one half
of a symmetrical figure is the mircor image of the other half. The
planes of symmetry, the axes of symmetry or of rotation and the
centers of symmetry provide the pupils with appropriate graphic
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representations of the basic elements of g=ometry: the plane, the
straight line and the point.

The manipulations mentioned above prepare the pupils for
constructing figures. This construction requires a new
abstraction. Pupils then do not have to visualize an object in
order to be able to draw it as accurately as possible with the help
of a ruler and compasses. In this fashion they gradually move from
sensory perception of figures to graphic representation.

Graphic r ‘presentation is recorded in pre~ise figures.
Figures that are constructed as accurately as possible can, in
turn, boister their representation. Good drawings very often bring
one closer to the solution of a problem. Therefore, the objective
of the teacher is to provide pupils wit“ a correct view of the
graphic representation of geometric figures. He endeavors to do
this in the first place by encouraging pupils to incresse their
technical proficiency at manipulating ccempasses, drawing triangles,
graduated ruler and protractor. This is a skill that provides
pupils with much satisfaction. Their task is to construct precise
plane figures of diverse shapes.

In the second place the teacher tries to reach his goal by
making a clear diztinction between the Jdrawing of figures and the
constructing of fipures. The const:ucting of right ungles
(dropping an' trecting perpendicnlars) and the bisecting of line
segments anc angles with the help of compasses are based on the
graphic structare of thne rhombus. This makes it possible to
organize this subject matter well. When the materiel is inviting
(see Linschoten I, p. 130), fewer recapitulations are needed to
obtai good results. All the: constructions are experienced as a
cone ‘ion of a rhombus (see Fladt I, p. 26). The rhombus is the
cen' _oint - the real basis during the learning of the basic
cons. cions. The ultimate objective is reached when all the
basic constructions can be carried out independently. Then the end
of the first stage has been reached.

Starting from the data gathered through (1) sensory
perception, (2) experiences of movements, (3) spontaneously
complemented perception, the pupils have arrived at a graphic
representation of the objects with which geometry is dealing. They
have learned to translate tnese graphic representations into
precise mathematical figures with the help of drawing materials.

I endorse the standpoint of Berghuys: "To recognize graphic
figures as being instrumental in discovering cheorems and in aiding
memory is consistent with the natural feeling of the
mathematician.”" Berghuys (I, p.6) points out:

It is common practic2 that when confronted with a geometric
problem one immediately picks up a pencil and sketches the
figures. This is true for the professional as well as for
the amateur mathematician.
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From the didactic point of view [t would certainly be
appropriasate to focus more on the visual geometric structure of the
field of perception., In particular, one should bring the pupils in
close contact with sets of geometric figures around us. Let them
rcally draw plane fillings (tessellations) and not just see them
(see Chapter V). One can read in the protocol (Chapter X) what new
experiences this can lead to. Here we are clearly dealing with
what Langeveld calls under the second point: to have the pupils
find relationships in the observed figures. This is necessary In
order to bring the pupils to the first level of thinking. The
first level is reached if the student makes operational use of
known properties in figures with which he is familiar.

Van Hiele points out that the learning process in a child who
is studying geometry clearly follows a discontinous course. The
teacher then will have to allow for variations in pace in order to
bring as many pupils as possible to the second level of thinking.
This level is reached when the pupil is able to manipulate
geometric relations operationally (see Van Hiele i). The teacher
will thus have to make use of a vast quantity of empirical material
in order to help a sufficient mumber of pupils attain the second
level.

The beginning levels of thinking are easily attained by pupils
of the secondary school. Thus it is certainly desirable to exert
great patience during the first years and to give children the
opportunity to think at a higher level. One should not reduce the
subject matter to a lower level for them, nor shoulad one press
students to reach a higher level too quickly.

In the second stage it should become clear to pupils what our
(mathematical) task is - what our aim is in dealing with geometric
objects., Their task is still to draw precise plane fillings
(tessellations).

Berghuys (I, p. 75) writes about the empirical origin of
mathematics.

Before we concentrate on the nature of mathematical
insight, ic is important to examine the process by which it
comes into being. It appears then that sensory perception
images lead us to form mathematical systems. The world of
our senses appears with multiple nuances. It is the task
of the human mind to rule and to subdue thils world. For
that, i{ is necessary to fit the phenomena into simpler
schemes.

The phenomena can be simplified by foregoing certain
qualities which at a particular time have no importance for
us. The schematizing itself is not mathematics, it is only
out of the conscious schematizing, where attention is given
to the scheme rather than to what is being schematized,
that mathematics is born.
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The practice of mathematics is a consisteat development
using the acquired schemes, without paying further
attention to the original empirical contznt and not guided
any mor2 by the observations, at least not by those
observations out of which the original ab-tractions were
derived.

In summary: In the second stage one should start from
phenomena that allow spontaneous ordering. When pupils begin
noticing how the same scheme can be applied over and over again,
the scheme will be recognized as a scheme and geometry can be
ctud’ed as reasoning. Mathematical modes of thinking are now
central. As clarification, it should perhaps be pointed out that
it is not vet the appropriate time to build up geometry according
to a logical structure.

The important question now becomes: What problems can guide
students towards studying geometry according to reasoning so that
they can be initiated into the practice of abstracting?

While pupils are dealing with these problems, the teache:
should try to discern as much as possible what kinds of
difficulties of thinking they could face.

The history of mathematics can probably teach us to find
problems appropriate for this stage.

In this context, the following written by Van Der Waerden (I,
p. 100) is fitting:

+«+. the Egyptians only gave arithmetic propositions without
any motivation. For the Greeks these arithmetic
propositions did not represent mathematics; these only led
them to the question: How does one vove that? If one
examines moce closely the theorems that are ettributed to
Thales, one is struck by the fact that these theorems do
not belong at the beginning of the discoveries of
mathematics, but at the beginning of a systematic logical
exposition of mathematics.

For our didactics, I deem important:

1) the fact that Van Der Waerden has searched for a
basis for Greek mathematics;

2) his way of reasoning that Greek mathematics can have
been derived from Babylonian mathematics;

3) the fact that he discerns different lines of
development in the mathematics of the golden century;

4) that there are . stages to be found.

First here is a purely empirical stage, completely in keeping
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with practical applications. Included are computations of surface
areas, computations of volume, computations of lengths of line
segments in a figure with the help of equal ratios, the theorem of
Pythagoras for right triangles with sides that have rational
lengths,

Then there is a stage in which the need arises to give proofs,
to search for logical relationships and to develop a logical
structure. In that stage, however, the expansion of the theorems
still continues with empirical phenomena as a base. If we take the
historical development as a guide for the instruction of young
children, we also arrive at the aforementioned stages.

According to my experience, the first stage will last 4
months, For the second stage one needs the rest of the first year
as well as the second year. Suggestions for appropriate subjects
for that second stage can be found among other things in T.
Ehrenfest-Afanassjewa (I) and in D. J. Kruytbosch (I).

Neither of the two authors had the intention of giving a
systematic treatment and classification of the subject matter over
the different years. They give examples to awaken interest and to
promote thoroughness.

As for the third stage in the process of instruction: to
provide insight into abstract methods and to learn how to use them,
I refer to what Van Hiele says about the third and fourth level of
thinking in Chapter XVI and about the possibility of reaching these
levels.
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Chapter Vi
THE SUBJECT “TILES"

The subject "Tiles” involves a very old problem: only three
regular polygons can fill the plane around a point O with their
angles (Dijksterhvis I, p. 14). The fact that this cannot be done
with regular pentagons, can lead to the much desired question: "Why
can this be done with regular triangles, quadrangles and hexagons,
but not with regular pentagons, octagons, etc?" The pupils will
wonder about the non-fitting rather than about the fitting aspect
of things. The fact that six squares can bound a portion of space,
or that all right angles are equal (and therefore fit each other),
or that a quadrangle can have four right angles, do not impress
pupils. The subject lends itself to raising questions about
geometric phenomena. This line of development ends in a completely
logical structuring of all geometric phenomena (sez2 Chapter X,
0.120).

The most important objective of this subject "Tiles" is to
present materiel that can lead to the formation of visual geometric
structures in the pupils. This does not imply that the material
will automatically do it. It would be more accurate to say: all
the activities carried out by pupils using the material according
to instructions as well as discussion of the ideas they expressed
during these activities can contribute to the formation of visual
geometric structures.

Thus class discussion is an essential part in this formation:
first, to give irstructions pertaining to the material and second,
to make sure that the pupils' ideas which have come to my attention
during the activities 4re made common knowledge to the class. In
addition, class discussions make it possible to adjust the
ingstructions according to the needs of the group. During this past
year I have often been led by ideas of tha children. 1In 3o doing,
I have been able to gather much more isformation than during the
preceding years. I always repeated the question: "What do you see
in this figure?" Of course, because I was writing up a protocol, I
was intent on obtaining as much information as possible from the
children (see Chapter X).

In this introduction of the subject "Tiles", I will first
discuss what my original intention was.

In setting up t™e material, I started from the following laws
of the .pperception theory of Gestalt psychology:

1. The law of corformity: corresponding figures in
transition ~re often perceived as totalities.

2. The law of proximity: parts that are in each others'
proximity are easily perceived as totalities.
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3. The law of closure: «closed figures are more easily
perceived then open figures. In perception one has
the tendency to close open figures.

4. The law of exact extension: in perception one has
the tendency to extend a figure so that the structure
is maintaine..

These laws can be concretely traced in geometric figures. Van
Hiele (p. 17) discusses these laews in further detail in his thesis.
The above-mentioned apperception laws are accepted as laws that are
valid for insight - for thinking. Hence we can expect that the
introduction of visual geometrical structures, which are based on
these laws, will contribute in an important way to the gaining of
insight into the nature of geometry.

A.D. de Groot also poi.ted to the above-mentioned conformity
in his lecture mentioned earlier.

From the Gestalt psychological side, attention is paid to
the unique part played by the figure, the illustration, in
the development of a geometric concept, and thus in
didactics, some problem transformations can be followed up
concretely by a2 "restructuring" of the figure. The
elements of the figure undergo function modifications, thus
one is able to view the figure in another way.

In the drawings which de Groot provides with the proof of the
theorem that opposite ang'es are equal, he clearly makes use of the
above-mentioned law of proximity.

AA

One has tried to explain lack of geometry (or mathematics)
aptitude as a deficiency in the ability to "restructure':
the pupil is incapable of arriving at structure and
function-modifications which are required in order to
understand a proof.

Alsv when the drawing of auxiliary lines is involved, the
ability to modify the structures and to anticipate new
structures is especially important,
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For this it is necessary that pupils have visual geometric
structures at thelr disposal. These structures are often not
clearly imparted to childrea in the secondary school. (See Chapter
XI.)

One will clearly recognize the apperception laws in the
following tasks. These form the beginning of the problem of the
"Tiles".

1.a. A sidewalk is paved with congruent square tiles. Draw
part of a sidewalk. Use & quarter of a sheet of paper.
Use your drawing triangle to draw right angles.

b. It is possible to pave a sidewalk with congruent squavre
tiles in yet another way. Draw a part of that also.
(Note: to make the edges one may have to break some
tiles in pieces.)

c. Which pattern would you prefer for a bicycle path?
Why? (This question is asked to draw attention to the
straight lines in the figures 1a and b).

. In the second task a stellated hexagon is drawn and pupils are
asked to continue this pattern in the seme way. One obtains a very
regular pattern of rhombi.

2. Draw 6 congruent rhombi, that
are contiguous to each other and
that meet in one point (see the
figure); use compasses and start
with the circle. The sides should
be 2 cm long. Start another such
starshaped hexagon with point 1 as
center. Continue this figure also
until you have covered half a
pe e.

(The pupils see a totally

different plane covering being

developed in which even a three 5
dimensional image can be seen).

Each student is now given 4 small bags containing regular
triangles, pentagons, hexagons and octagons. They are asked:

3.8. Is it possible to pave a floor with regular triangles?
b. Same question with regular quadrangles.
c. Same question with regular pentagons.
d. same question with regular hexagons.

e. Same question with regular octagons.
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Write down the results and illustrate with drawings.

(The answers are arrived at by exploration, and the question
of why it is not possible to pave a floor with pentagons and
octagons remains unanswered temporarily),

The next task is very similar to the preceding one. Each
pupil is again given 4 bags. This time, however, they contain
irregular triangles, quadrangles, pentagons and hexagons. The
pupils are given tasks similar to the one above. They are asked
whether straight lines such as in figure la. are present. Most
students find three arrays of straight lines in the problem of the
triangles. In the drawings these lines should be made clearly
visible; the drawing has to be done very carefully (a whole page
full). The figures drawn in response to the othzr questions can be
made by simply tracing around the shapes that were provided. Half
a page is sufficient. The answer again is found through
exploration. The pupils find they cannot tile a floor with the
hexagon. Again the question of why the pentagons and hexagons
cannot be used remains unanswered.

In task 5, we color the smallest angle of each trisngle drawn
for task 4, with red, the largest one with blue and the chird angle
is given yet another color. We discover colliectively that the three
angles of a triangle together form a straight angle. The straight
angle is observed in different positions (see Chapter X).
Similarly, the pupils find that the four angles of a quadrangle
together form a round angle. Then task 6 follows: <can the latter
proposition be demonstrated with the help of the former? This
provides the key to answering the questions that remain unresolved.
The regular hexagons stand apart. Only 3 of the 6 angles meet in
one point.

The regular hexagons again help us to see that perhaps we
could imagine pentagonal tiles with which a floor could be tiled.
For this the children are given the following tasks:

1.a, Find pentagonal tiles with which a floor can be
covered. Use a sheet of squared paper and cover one
quarter or one half with a pattern made up of the same
tiles.

b. Repeat the assignment using hexagonal tiles.

¢, Color the drawings such that two contiguous tiles have
different colors, yet using as few colors as possible.

The logical relationship that has to be discovered in task 6
can be written in the form of a genealogical tree. §See next
page.£

o
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The sum of the angles
of a quadrangle equals
360°

!

each quadrangle
can be used to
£fi11 a plane

The sum of the angles of a
triangle equals 180°

The sum of the angles
of a pentagon equals
5400

not each pentagon
can be used to
fill a plane

The sum of the angles
of a hexagon equals
7200

|

not each hexagon

can be used to
fill a plane

One can see from the protocol written in Chapter X how the
same material possesses much additional potential. It is also
apparent how during this year we progressed somewhat further, as
far as the logical relations are concerned, than during the
preceding years. This was possible through the introduction of the
figures "saw" and "ladder".

Far more important, however, 18 the fact that this same
material contains many other lines of development which have not
yet come up for discussion. Besides the aforementioned lines of
development: "the sum of the angles of an n-gon" and "the logical
structuring of geometry", the following lines of development can be
considered: "equality of areas", "similarity", "kinds of
symmetry". These lines of development have not appeared to full
advantage in the first seven tasks.

We arrived at the above-mentioned extensions by comparing the
drawn plene coverings with each other. One figure is present in
the other. This means that the equilateral triangles are present
in the rhombi, the rhombi are present in the regular hexagons. By
erazing line segments and by adding line segments, the pupils can
practice "seeing" one figure in the other.

In this way, the restructuring of a figure is practiced. This
is necessary in order to be able to produce a proof and to find the
correct auxiliary line (see Chapter X, p. 98). At the same time
the method allows for identification of components of the whole
structure and completed new structures can be derived (see Chapter
X, p. 103). The process of abstracting is practiced in the same

way (by abstra.ting, we mean focussing on a certain aspect of the
figure while simultaneously disregarding the rest of the figure).
The structuring, restructuring and abstracting are all functions of
mathematical thinking.

The material (material t!ought of in a
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broad sense) contains possibilities for developing logical
teasoning and thinking.

The: question: "What do you see in the figure?"” led to the
exploration of enlargements (see Chapter X, p. 104), thus exploring
similar figures. 1In order to obtain an enlargement, all line
segments have to be enlarged ir the same ratio, but the size of the
angles should not change. This material serves as an introduction
to the proportionality of line segments (see Chapter X1). The
basic figures for the study of proportions, necessary for a logical
development of geometry, can be found in the above-mentioned plane
fillings (tessellations).

Through comparison of figures of different shapes, it can be
ascertained that their areas will be equal, if they can be
constructed with the same components. This forms the basis for the
study of surface area. This same principle can lead to determing
the ratio of the areas of similar figures (only if the ratio of
their sides is rational).

Finally one can look at the symmetry of figures (see Chapter
X, p.124). Flipping (folding in two, mirroring with respect to a
line), rotating (mirroring with respect to a point), shifting
(translation) can be demonstrated easily with the material. Axes
of symmetry, center of symmetry (with their order) and possible
shifts in direction can be determined. This also prevents the
pupils from becoming attached to figures in a certain position. It
allows for the development of certain dynamics in visual images.
This is also helped by letting the pupils look at each others'
drawings.

As a climax at the end of the problem of tiles, the following
assignment is given: 'Color the floor tiled with rhombi. Take as
colors for example: white, grey and black, or in any case a very
light, a very dark and a regular shade; what do you see?"

Aa ambivalent figure develops: one sees cubes in two ways:
from the top or from the bottom. The perception of the person
determines the formation of the structure.
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Chapter VII

APPROACH OF THE DIDACTICS OF GEOMETRY BASED ON
THE PRACTICE OF TEACHING

In this chapter I will discuss how I reached my present
position on didactics. As is the case with most teachers I was
prepared for my task only in the area of the didactics of the
subject matter. While practicing, one accumulates an array of
data. This lad me to criticize existing teaching methods and to
explore new ways of teaching. My didactics are thus based on (a)
experiences gained from practicing, (b) exploration and (c)
corrections through the practice. What follows now are purely
subjective considerations that evolved by locking back at my own
teaching experience and at the way other teachers modified their
teaching after they had had some practice in teaching. A new
teacher starts his career by using methods that were tried and used
by others before him. Very often he uses the method of his former
mathematics teacher. He complements these with his cwn experiences
and so arrives at general teaching rules that are important to him.

After further exploration there appear to be exceptions to
these rules. In such cases it is necessary to examine other
methods and to gain new experiences. So, the teacher is always
experimenting. This enables him to establish a progressively more
finely structured system of knowledge and of experience with
teaching methods. His own methods can finally play an important
part in this system. Teachers of schools where more attention is
being paid to individual instruction gain more experience, of
course,

It has appeared to me and to others that many of the customary
methods are not satisfactory. This has led me to develop a
didactic method that is strongly based on the experiences gained
from practicing teaching. It is of importance to describe these
experieances in broad terms.

My first experiences go far back in the past. At the
transition from the second to the third class of the secondary
school, my schoolmate was given an assignment ia geometry. I
carried out the assignment, while ghe played with the chicks, I
found that she had absolutely no interest in geometry problems and
that I was not able to instill this interest in her. She finally
copied the assignment and handed it in. 1In the third class I used
tricks to make her solve simultaneous equations. Her grade on the
test was 10, mine was 9. This time she was motivated to
concentrate more on her work because promotion to class 4a was
approaching,

I wantlto report another experience. During the school years

1938-39 and 1939-40 I was employed temporarily in different types
of schools where I substituted for teachers who were drafted into
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the army. Before that I had already had three years of teaching
exrerience. I discovered that the pupils were able to solve the
proolems only if I uced the methods, schemes and language of the
teacher. Because I experienced this phenomenon in all the schools,
I gave a lot of thought to the value of such instruction. My
impression gatrered from this and later experiences is the
following:

When mathematical language is used too early and when the
teacher does not use everyday speech as a point of reference,
mathematical language is learned without concomitant mathematical
insight. The pupils then use a kind of analogy process: they work
by a sort of "feel'" and they try to guess which answers are
expected of them. Their own activities consist of filling out
schemes. The thinking activity, necessary to understand the
logical background of the schemes, is non-existent. In this
connection Kruytbosch (T, p.31) talks about students who prefer to
follow thinking schemes because they dare not think. Van Hiele
discusses this extensively, among other things, in the Chapter 6,
"In what way does insight manifest itself in children?"

The above-mentioned experiences we.e confirmed by my later
experiences. My conclusions are:

1. In general, the children do not know what they are
buildiag up.

2. The children do not know what they are building with.

By teaching a few things about a topic, one does not make the
subject matter an experience for the children; on the contrary, it
remains a story. Initially one can also expect little interest
from the children for a mathematical ordering. When is oue going
to systematize? Only wheu one wishes to obtain an overall picture
of something that presents itself to us more or less chaotically.
It is only meaningful to start ordering when one sees that there is
something to be ordered. Only then can one starc thinking about
the wav in which this something can be ordered. At this stage then
the | oils can search for an ordering scheme under che supervision
of the teacher. Twelve-year-old children have not had enough
geometry experiences to be able to start crdering thenm immediately.
Even i{f these experiences were present, they still would have to be
brought to a conscious level and the pupils would have to be
provided with the appropriate language structure.

It follows from the considerations noted above that the
teacher must provide pupils with experiences from which the need
for ordering and for logical thinking can arise. Initially,
children's thinking is not logical. At least, it is completely
different from what one views as logical thinking in mathematics.
The statements of children are rather matter-of-fact. So, at the
beginning of geometry instruction, one cannot require children to
reason in a logical way. Rather, we have to teach them to reason
logically. This does not happen by placing a logically structured
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deductive system in front of them. Kruytbosch (I, p. 1) notes in
this context:

Logic teaches us forms of thinking. The question, however,
is whether it teaches us thinking itself.

if the teacher has patience, a logical ordering develops
rather spontaneously. Freudenthal (I) points out:

The most important pedagogical quality is patience. One
day the child will ask "Why?". It is useless to start with
systematic geometry prior to that dey. Stronger yet, it
can even be harmful. Geometry instruction should be a
means of making the children aware of the power of the
human mind - of their own mind. Are we allowed thenm to rob
them of the privilege of making their own discoveries? The
secret of geometry is the word "why"., He who does not want
to be a spoil-sport should be able to keep a secret.

As the child has the natural tendency to grow, he wants to try
things out, to discover. It is wrong then for the teacher to
present the subject matter as a completely finished entity, to
point out what paths to follow or to explain methods which the
children can develop for themselves. Such instruction is devoid of
the attractiveness of finding things out for oneself, It also
lacks the satisfaction that accompanies discovery. The mistake can
be made in individual as well as in classroom teaching. It stems
from the natuve of the tasks which the children are given. This
may be the reason why some teachers have not noticed much of that
natural curiosity in children.

The natural tendency of the child to develop is not
sufficient. 1In addition the child has to be motivated to develop
with the help of the subject matter being presented. In the case
of the adept learner, the development has taken place outside the
method that is being used. The expression: "I have no talent for
mathematics”" mostly indicates that motivation is not present. 1In
contrgst with the adept learners, one does not see growth in those
children.

Thus it is important for the teacher to ask how to develop
pupil motivation with the help of the subject matter. Posing this
question leads u:c to the joint domain of pedagogy and psychology.
As a way of achieving this I recommend: Start with everyday speech
and slowly proceved to mathematical language; refer to situations
that are known to the child. 1In geometry, the latter means
referring to observations of figures and relating these
observations to a geometric way of viewing them.

This special way of viewing, whereby figures are looked at in
a geometric context, has the objective of bringing the children to
the first level of thinking in the study of geometry:
understanding that the properties of figures characterize them.
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The sequence in which the figures are presented should mot be
that of the elements: point, line, angle, triangle, etc., but it
should fit the natural organization of perception. The working
method, which follows from it, appears to have its theoretical
foundation in Gesalt psychology. 1In Chapter IX, I will discuss
this foundation of my method in more detail.

It should not surprise us that the method used by many
mathematics teachers in their instruction shows many similarities
to the method of causally-oriented psychology. Their persornal
intellectual development came about through application of the
causal-explanatory method. 1In conformity with this, one starts
f:om the elements: point - line - angle - triangle, etc. and one
builds, in a sequence of axiom - definition - theorem - definition
- theoxem - etc., a logical system from the bottom up.

The influence of Gesalt psychology on them is noticeable in
uncoupling the element "point" and in omitting the first axiom.
The whole deductive system however remains. The “uild-up keeps
originating from the elements. It is not easy to shed such
"thinking habits" which one has obtained through education.

These teachers follow the association theory in their working
method. They build complex ideas out of the elements through
synthesis. 1In doing this they pay special attention to connections
between the elements. This is done by considering many special
methods for solving problems; one thereby establishes many links.
It is evident that this method of working strongly promotes the
existence of "lecson learners”. It does not lead to an integration
of subject matter in most students, neither does it lead to an
integration of methods for solving. They remain distinct little
methods with the function of solving certain problems. The
emphasis is completely on reproducing arguments.

If the question of learning to think is viewed by the teacher
as a question of the feasibility of learning methods for -olving,
he focuses his didactics on the question: How shall I present the
subject matter so that the obstscles encountered in thinking can be
overcome as easily as possible? He analyzes the difficultie. of
thinking, provides many methods of solution, increases his pupils’
knowledge of the subject. He focuses on the external result: he
wants to measure it. This measuring of intensities is a concept
which belongs to physics.

On the contrary, if the question of learning to think is
viewed by the teacher as providing ways in which thinking can be
practiced, the question arises: How should the subject matter be
presented in relatior to the mind of the child? He teaches the
children only general methods. The erphasis is on comprehension
through experience and on integration of the subject matter. He
leans more towards 2 humanities point of view.

Whether or not the teacher has found a good soiution, in the
seuse we mentioned above, will become apparent -uch later. The
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resuits of teaching are not immediately measurable. If one thinks
one has found the correct way, one should thoroughly investigate
whether the method has met its objective. The appropriateness of a
didactic method will become apparent when it has been tried over
many years.

Measuring the result of education is less important than
education itself. The textbonks Presently used, with their uniform
subject matter, are not good for our method. They do not provide
sufficient opportunity for children to find their own methods of
solution.

Introductory geometry instruction will have to be built by the
teacher himself. However, it would be important for the didactics
of introductory geometry to have a pool of problem sets. These
should be problem sets which have been tried by experienced
teachers over several years and that are accompanied by a protocol
and by comments in which the objectives are clearly explained.

Each teacher would be able to draw from this pool in order to
arrive at the most fruitful teaching. At the same time, one should
make the materials available, e.g. construction kits. One should
keep in mind, however, that material that is being used by others
without documentation, most probably will be misused as was the
case with Ligthart who used wall Pictures in his working method.

In "Pedagogical Studies" (Jan Ligthart, commemorated by G.
Oosterkamp) of April, 1956, one reads:

The schoolmasters did not completely ignore Ligthart, they
hung the wall pictures, which he had recommended as a
stimulation for active instruction, on the wall. Then, at
a certain hour of a certain day of the week, a wall picture
was put in front of the class and commented on.

In this way, everything was brought into the sphere of
intellectualism and it dried cut there. Of the children's
activity little or nothing was left.

I can imagine that teachers will use construction kits because of
the pressure of the times; psychology certainly has its influence.
It is expected that children should be kept happily busy during a
portion of the class period. This frequently happens by having
children listen to some stories by the techer. If during a class
period, it doesn't go further than having children merely involved
in cutting and gluing materials, one could do better by giving the
pupils a construction kit of a plane or a boat or a building.

The objective of using a construction kit, as mentioned above,
is to provide each child with his own geometry materials. The
child can get so much out of this material if the teacher knows how
to place that material in the right context. The pupils - and
initially also the teacher - start making discoveries; they
explore. If a teacher does not want to conform his didactics to
the needs of the child, it does not make sense to force him to
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change his didactics, Perceiving the ueeds of the ¢
everything. One will have to convince the teacher o
certain training (re-training is not correct here;

training is probably better) in the area of pedagogy
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Chapter VIII

APPROACH OF THE DIDACTICS OF GEOMETRY
INSTRUCTION FROM THE THEORY

"There really is no genvrally recognized didactics for
mathematics. Actually the didactics is not elevated above th=
level of 'I do it this way' and 'I do it that way'." This is
written by Streefkerk (I), one of the writers of Euclid, Journal
for the Didactics of the Exact Sciences.

I personally object to the frequently used statzmzut: "I have
been doing it like that for (several) years and it works very
well." As long as subjectivity predominates in this way at the
meetings of mathematics teachers, there cannot be a collective
scientific development of didactics. The methods of mathematics
instruction are still too much determined by tradition and
intuition and too little by purposeful reflection. I should point
out here that the didactics of mathematics is still a budding
science. It is therefore appropriate to cite from Kohler's (I,
p.40) second chapter of his Gestalt-psychology. This chapter is
entitled: Psychology as a young science.

Even in our day, Rontgen did not at once make measurements
when he discovered X-rays. First of all he had to analyze
their properties in qualitative experimentation. Later, of
course, his rays could become a means of measuring
constants of crystals. Much too easily do we forget the
fact that, at their start but also when more particular new
fields come into sight, the natural sciences rely almost
completely upon qualitative observation. ...wherever we
have a good quantitative problem in psychology and
correspondingly accurate method of measuring, we can
immediately apply procedures which are comparable to those
now used in physics. ...for the majority of psychological
problems this is not the case. Where in psychology have we
that knowledge of important functional relationships on
which indirect and exact measurements could be based? It
does not exist. Therefore, if the development of more
exact methods presupposes the existence of such knowledge,
the gathering of it must be our first task. For the most
part, our preliminary advance in this direction will have
to be crude. People who protest in the name of exactness
do not understand our situation in psychology. They
realize neither the nature nor the historical background of
indirect quantitative methods. If we wish to imitate the
physical sciences, we must not imitate them in their highly
developed contemporary form. Rather, we must imitate them
in their historical youth, when their state of development
was comparable to our own at the present time. Otherwise
we should behave like boys who try to copy the imposing
manners of full-grown men without understanding their

60




Tt

Page 53

raison d'etre, elgso without seeing that intermedieste phases
of development cannot be skipped. In this respect, a
survey of the history of physics is most illuminating. If
we are to emulate the natural sciences, let us do so
intelligently.

Since I am convinced of the validity of this statement, I have not
carried out measurements as are done in the natural sciences. The
tests a teacher usually administers at the end of a iearning
process serve as a means of classifying the pupils, e.g. good,
average, poor (or a more detailed classification). These tests are
usually not analyzed in the context ot psychology of thought.

These tests do n~nt provide decisive answers as to the way in which
learning evolved. In "Introduction to Psychology" with Langeveld
(II1,p.399) as principal author, mention is made of an experiment
by Gertrud Bauer (one of the students of Selx).

She let children - 9 to 11 years old - define a number of
concepts, e.g. letter carrier, house, thirst. ...She first
put the children to work without giving any directions.
Then she gave some instructions concerning the correct
method of defining by critically discussing a number of
definitions. It appeared that the results improved
dramatically.

Such investigations do not give us any clues about the didactics to
be followed. They only show that there is a significant difference
between the presence and absence of instruction. The method that
was followed and the way in which the instruction was provided were
subordinate. It was precisely because this kind of experiment
dealt with determining the ability to learn methods of solution by
using quantitative measurements, that the didactics - the way in
which learning evolves -~ was not considered.

If we think, however, that Van Parreren (I) has demonstrated
the existence of independent processes in learning, then the
didactic approach that is being followed should be taken as an
important factor in the experiments designed to give quantitative
estimates of intellectual performance. I would like to illustrate
this with an example that is known to us all.

The operation "dividing by a fraction'" is eventually applied
faultlessly by the childiren of the elementary school. This
operation can be taught to them in the fullowing wav:

"The dividing fraction first stands on its head before it
is multiplied. (Kurt Strunz I, p.85).

If one should follow such a didactic approach, it would be aimed at
a structure of thinking that has not developed in a rational way,
i.e. not by discovering a pattern. Therefore, this structure of
thinking has not evolved as a result of acquiring insight. This
procedure then leads to an independent thinking process that has
been established by associations acquired through the material.
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In 2 didactic experiment we will have to ask ourselves what
measurements actually make an acceptable substitution procsible.
When measuring intellectual performance, the didactics that is
being followed should not be left out of consideration. Evea
though the teacher may try to bring the pupils to a structure of
thinking developed in a rational way, he has no certainty that he
will succeed. Associations can evolve irrespective of the
intention of the teacher. I will illustrate this with an example:

The basic constructions of geometry can be learned in totally
different ways. The teacher can teach children the manipulations
they need in order to arrive at the desired constructions with the
help of compasses and ruler. He can also teach them to see the
constructions as constructions of a rhombus. In both cases the
children will acquire associations. Through these associations
independent learning is uncovered. The associations appear to be
present because children can carrv out the constructions without
thinking. They do them rather automatically.

The teacher who has tried to establish a rational base, i.e.
the learning of the constructions on the basis of the properties of
a rhombus, does not know, however, how the associations evolved.
They could have evolved as a result of the pupil observing and
imitating the manipulations carried out with compasses by the
teacher. This can take place without the acquisition of a gometric
concept. The attitudes among the teachers can be very different.
It is still possible that the results amoang the pupils will be the
same.,

When one introduces subject matter too early, it is expecially
true thet associstions without sufficient rational base will be
formed. The ultimate result: actio~s, answers, solutions can still
be correct even though the correct concept may not be present.

Teachers are responsible for the development of this kind of
association to a greater or lesser extent. When pupils help each
other, it usually consists, especially in the earlier years, of
helping in the formation of associations outside a rational base.
The schemes given by mathematics teachers to solve certain problems
can also cause the formation of associations outside a rational
base. I refer here to the known schemes that are customary for
computations involving logarithms,

In order tu prevent incorrect formation of associations, one
should be cautious about providing schemes (e.g. explicit outlines,
plans,...) at the beginning of geometry instruction.

It would be different if the solving of problems were the goal
of instruction. In that case, the manner in which independent
operations came into existence would not play a role. No matter
how the associations evolved, the ultimate way of operating is
exactly the same. One can no longer object to the upside down
position of the fraction which is the divisor: the computations
using the trick are carried out faultlessly. Whether or not one
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agrees with a fraction standing upside down, completely depends on
one's objective of teaching.

Such a didactic approach most probably will not lead to
integration of the subject matter or of the available methods of
solution. Therefore, many other associations will bPave to evolve
before the concept becomes operational (Van Hiele, p.00). An
example of a subject that frequently is tackled the wrong way at
the modern secondary school is descriptive geometry. There the
subject matter is mostly drilled into the pupils' head in the form
of recipes. It would be much better if this sul’:ct would be taken
as an auxiliary subject to stereometry.

Didactics is closely ra:lated to pedagogy and psychology on the
one hand and methodology on the other hand. The articles in the
Euclid Journal cover the area of didactics that relates to
methodology. Didactics then is subordinate to methodology and has
to orient itself according to the method that is being followed.
This is seen in the didactic experiments of Mooy and Boermeester.
For them, the method is paramount. The class conversation is held
in order to improve the results of the method that is being
followed. The method also effects some organizational changes in
the school. One or more hours per week are added to the school
curriculum during which the pupil can consult with the teacher.

In the article by Beth, referred to above, one can read that
Jaensch also wants to complement the existing system in that
ménner.

Perhaps it would be possible in teaching mathematics to
introduce into the curriculum a systematic logical build-up
one hour a week - even that is not necessary - in which
free productive construction pley is to be used to
stimulate understanding.

One tries to maintain the logical systematic build-up of
mathematics by means of didactic tools.

Turkstra1 says that we still are in an impasse as far as
initial geometry instruction is concerned. We are imprisoned
between two poles: the formal-logical treatment and the
graphic-psychological.

On the one hand, each mathematician with some feelings for
didactics accepts that the strictly logical method for
beginners is no longer suitable, but on the other hand, one
is afraid to grapple with the consequences of a radically
new system that displaces the previous one.

The textbooks are a clear reflection of this. Aside from a
few that definitely have gone in a new direction, most
books have kept the old structure, even though they have
adjusted as far as style ard objectives are concerned, some
even as far as didactic objectives are concerned. However,
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and this is most important, we have not yet found the
correct way that would give general satisifaction for our
initial geometry instruction.

There has been a tendency in recent years to usec¢ the results
of cognitive psychologists. For example, Selz has written about
the process of thinking in order to account for the didactics that
is being followed and to maintain the method of a logically built
deductive system. However, these cognitive psychologists do not
provide answers about learning. When we interpret their theory in
reiation to didactics, we will have to do so with the greatest
possible care (Van Hiele, p.30).

objective of geometry teaching is learning, from the very
beginning, a logically built system of theorems. They, therefore,
follow the formal logical method of operation; they proceed
according to a deductive method and they assume that the analysis
of visual geometry has already taken place, or they do not see the

need for such an analysis. Klein (I, p. 172) states the following
about this:

|

1
There still is a large number of teachers for whom the
Pure logic cannot provide the foundation of mathematics.
Deduction can only begin when the first part of the problem
is solved: when one understands a system of simple
fundamental ideas and assumptions - the so-called axioms
which state the most basic self-evident facts.

If one assumes that analysis of the visual has already taken place,
one has dealt insufficiently with the question which Klein raises:

An important question for pedagogy is: how, in an
individual, is spatial visualization developed to the
degree of precision we need in mathematics?

In reality, teachers take the viewpoint of the university teacher.
They consider it their task to merely transfer culture which
automatically should include the learning of precise thinking. 1In
this case also (a deductive system built on insufficient
foundations), the concept will only become operational when many
associations have been established.

It should be pointed out that didactics is just as old as
teaching itself, hence very old. From the many modifications it
has undergone in the course of time, it appears, just as for the
whole realm of teaching, to possesses a dynamic character. The
study of didactics, however, failed to develop which explains why
it has not become a science.

One cause was a too hasty transition to quantitative
measurements. The outcomes of these measurements were judged to be
more important than the didactics which shouid have contributed to
the performance of the children. The learning process was not
analyzed; therefore, the way in which pupils learned and achieved
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was not sufficiently investigated. Didactics cannot be judged
exclusively by means of tests administered at the end of the
learning process.

Didactics is a practical science that has not been
sufficiently objectified. Ways of comparing individual cteaching
performances have not been found nor has a language been created to
make statements about this science. Since one is unable to deal
with the heart of the problem, one keeps looking for a solution in
the organization of subject matter to be taught,

It will only be possible to investigate what positive results
several didactic methcds have had when the means has been found to
compare these methods objectively. A next step will be to
investigate how these re:.lts have been arrived at. One will
subsequently have to find out what factors govern the learning
situations and to what extent these factors can be reconciled with
the didactic method to be followed.

It seemed appropriate to me to first procvide a description of
my own experiences, gained from practice, and thea to arrive at a
foundation of my own didactics while taking into account the
results of psychology and pedagogy. This foundation simultaneously
provides the motivation for the experiment and determines its
objective.

Footnote:

1. Turkstra en Geursen. Psych. did. inl. bij het werkschrift,
Groningen 1949, [See p. 55.]
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Chapter IX

FOUNDATION OF THE METHOD 1 USED DURING
THE INITIAL GEOMETRY INSTRUCTION

It appears from the preceding chapters that didactics always
should be viewed in connection with the objective of teaching As
Freudenthal points ¢ t, it is the general consensus that learning
geometry is a means .f letting children experience the power of the
human mind, i.e. of thei~ own mind. The goal of teaching geometry
is focused upon exact tuinking. The degree of rigor is very closely
linked to the concept "exact" in mathematics.

What degree of rigor is needed for logical thinking? Heything
(I) formulated the following propositions in an article entitled
“"Mathematical rigor in science and schooi:"

1. Mathematical rigor is not a fixed concept but has
undergone an evolution in *the course of time,

2. For the school, only a form of rigor that has been
approved by science can be used,

3. Not the degree of rigor attained, but aiming for and
developing exact thinking are important for the
formative value of mathematics instruction.

4. Aiming for rigor should not take place at the expense
of the graphic content of the subject matter.

I would like to add here a fifth rule, expecially for initial
geometry instruction:

In the first years one should not impose the same standards
on all students as far as rigor is concerned. The latter
shoutd be allowed to vary from case to case.

The teacher may require more from one pupil than from another.

The theory of layers of consciousness of the School of Cologne
can perhaps show us how to develop exact thinking. Willwell (I,
P.162 ff) presents the theory as follows:

The 1l est layer contains images of the observed object,
while a knowledge of the state of affairs remains in the
background. Above it are layers where this knowledge is
more extensive and the concrete is less visible (and
becomes schematic).

On the contrary, systematic joining of concepts occurs in

an abstract uppermost level which spreads over the visual
layers and guarantees clarity of concepts and results of

66




Bl

B
p

Page 59

the thinking.

Although the experience of formulating concepts includes
processing of visual material, it is not totally visual.
On the contrary, the visual can occur apart from the
conceptual, oroducing only design. The visual is not the
essence of thought, but only its garment, its resemblance,
its means of expression,

According to this theory, the human mind is partitioned in
different layers. Certain layers are never present by themselves.
The lowest layer, the layer of graphic representations, is directly
connected with sensory perception. In the higher layers, thinking
is more prominent, graphic information is being ordered and mutual
relationships are being ascertained. In the highest layer,
abstract thinking occurs (i.e. thinking in schemes, non-graphic
thinking in categories) through which the world of concepts is
being ordered in a surveyable way and through which the goal -
directedness of thinking - is brought abSout.

The visual foundations of thought do not surpass thought
itself. They are governed and shaped by it.

This lowest layer provides for actual experience.

Personal motivatlon is more related to the layers of visual
representations than to the more abstract highest layer.

Should one ignore this layer of individual representations in
didactics, one risks that either the instruction will degenerate
into verbiage because it has no links with the reality of the
child, or individual representations will crop up at the most
unexpected moments. These individual representations are not
brought under the control of thinking precisely because of this
negation in didactics. They have not been incorporated into the
structuring and they impede thinking.

Thinking should be concerned with restructuring visual
material only after it has aimed at understanding the real
subject matter. Conceptualization is not visual in its
nature; likewise a blurred outline remains a visual
representation of things. We find that it supports thought
in the formation of concepts, structuring intricate visual
perceptions as it does so.

The above-mentioned statements from psychology show the need
in didactics for establishing links with the lowest graphic layer
in order to be able to arrive at fruitful instruction.

The special didactics of geometry therefore starts with
perception of figures. Perception of figures is an otject of study
of Gestalt psychologists. Kohler gives extended reports about
perception. Experiments have shown that the Joining of parts into
a group takes place spountaneously during perception. Kohler (I)
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devotes a chapter to "spont
in the fields of perception.

This ordering cannot be the result ~f complex learning
erents but must occur through the senses. The ability to
work analytically grows with age.

There is an interrelationship between the visualization of
time and the visualization of space.

This same organization that brings ordering into space appears
to be Lresent also in the ordering of time and, according to some
cognitive psychologists, in thinking as well. This is not the
ippropriate place to discuss more thoroughly the physiological
exposition of Kohler on this meaningful organization. The four
laws of apperception theory of Gestalt psychology have been
mentioned in Chapter VI. Van Hiele (p. 18) has discussed these
laws in his dissertation in relation to insight and he further
refers us to the work of Van Parreren. This author provides a
necessary addition to Gestalt psychology by his distinction between
intention and autonomy in the learning process. Van Parreren (I,
p. 140) writes:

Apart from intentional and rational guidance that
conscicusness can provide to action, conccious processes
can also be the result of autonomous acting and they can
reinforce the latter through their emphases.

According to Gestalt psychology, one should aim in the first place
at letting pupils experience the subject matter as an integrated
entitv. One thereby maintains the same organization as the one
that exists in perception. It is therefore desirable to partition
the subject matter i~ .o "units" that form surveyable entities for
pupils.

We will also have to pay attention to the age and mental level
of the child, because the capacity to analyze increases with age.
Should one present subject matter that conceptually belongs to too

high a level, then the pupils can only arrive at results through
independent actions based on associations acquired from the
material. These associations are formed independently of the

intention of the teacher, and this will happen even though the
subject matter may form a beautiful "unit."

One can also conclude, on the basis of the theory of Van
Parreren, that pupils must be given enough time to arrive at the

correct formation of associati.i1s. One therefore should not start
with a new unit until the previous one has been thoroughly
assimilated. In this connection, Van Hiele (p. 41) points out the

importance of the plateaus in the learning curve. Streefkerk (I)
writes:

There are as many didactics as there are authors; or
perhaps not. Are the didactics that form the basis for all
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those books except for vune, (I am thinking, for example, of
the bocks of Dr. Van Hiele) not really all the same, such
that there is only one (perhaps completely wrong)
didactics?

My answer to this is clear: from a psychological point of view
they are all incorrect indeed. Tu ali these books the method that
is being followed is primitive: a compietely logical system is
built up from the elements.

Starting from the building elements rather :han from the total
building plan can no longer be accepted, becausr. it is completely
founded cn association theory in its most primitive form. By
holding on to this theory, didactics has remained far behind the
progress of psychology. Strunz (I, p. 24) points out in this
respect:

The teacher of mathematics - for whom psych-logy was an
unimportant subject to be dispensed with during his study
at the university - lacks the requisite psychogical insight
needed to question himself about uis teaching, not only
about didactics and the psychology of performance but also
about experience, structure, and aspects of developmental
psychology.

In the first stage I therefore started from the field of perception
that was already structured more or less in a geometric sense.

This geometric structuring has to be the center of attention at the
beginning of geometry instruction., The figures, long known from
observation, are placed in a geometric context. I have dome that
by means of models of a cube. First a few questions were asked
about it.

The question: "How should the squares be drawn so that they
can form a cube upon folding?" changes the receptive attitude of
the pupils into an actively organizing attitude. This can be
ascertained very easily among twelve-year-olds: _.he expressions of
joy are spontaneous. This is the best attitude in order to arrive
at the structuring of the field of perception.

A cube is a regular bounded figure. Kohler (I, p. 145)
writes:

Simple and regular wholes, also closed areas, are formed
mo : readily and more generally than irregular and open
wholes., The order of sensory fields, in this sense, shows
a strong predilection for particular kinds of

organizat: »ns...

In Chapter III I expanded on the ohservation lesson I gave about
symmetry. The results of it can be found in Chapter IV. These
agree with the above-mentioned statement by Kohler.

Duvring this stage the pupils make models, draw figures, find
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geometric properties that characterize tne figures and finally they
construct the figures with comr'sses and ruler. The pupils have
oriented themselveo; they have been brought in touch witk the
geometric objects, their names and their characteristics.

At the end of this stage, the basic constructions can be
carried out independently. The properties of figures need not yet
be known as associations. They have only partizlly reached the
autonomous layer.

Since I am dealing here with the foundation of the method, I
refer to Chapters IITI, IV and V for an overview of the subject
matter covered during the first stage. The pupils were to work
through the first five chapters of our workbook for practice.

In the second stage, it has to become clear to the pupils what
we are going to do with these geometric sbjects. We have to give
them the awareness that the human mind is capable of logical
ordering, of exact thinking. For the didactics of geometry, this
means that one shouid provide appropriate preparation and that one
should search for favorable conditions that will allow the pupils
to come to an active structuring of the fieid of thinking.

We again present integrated entities. These however now
consist of sets of figures. For this e choose figures that are
already present in the visual layer ot thinking. We place these in
a geometric context whereby the pupil. will structure these complex
figures in a geometric sense. Sinc this involves a particular
structuring of the field of percep- .a, the guidance of the teacher
is necessary. The latter should nc. assume that the structuring
will take place spontaneously. The pupils, however, spontaunaously
contribute significantly to this structuring.

The pupils <hould gradually proceed from visual
representations to ideal geometric representations of the figures.
The latter are the objects of geometry.

The transition from concrete to abstract can be found in the
Chapter "Tiles". There the sidewalks with tiles gradually change
into plane coverings with geometric objects. The visual
representation is incorporated in the structuring. The chiluren no
longer see a picture of something that was perceived visually (a
sidewalk) but a picture of something that only exists in thought.

The plane coverings are subsequently placed in a geometric
context through the ordering according to geometric
characteristics, such as: congruence (which includes equality of
line segments and equality of angles), symmetry, similarity, etc.
In so doing we always return to the graphic representation;
parallel lines, enlargements, saws and ladders have to be
incorporated in the structuring (i.e. they also have to be taken up
in the peometric context). Through this, the pupils are made aware
of the geometric properties of those figures.,
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The material plays an important role in this. Congruence of
2lane figures is expertienced by means of cardboard models that fit
on each other. Symmetry is experienced by means of a mirror that

has a reflecting sucface on both sides; similarity by means of
enlargements. Tre magnifying glass and the distorting mirror can
provide help in detecting the correct characteristics of similar
figures.

Paralleiism of lines can be linked to direction, distance and
slope in the graphic represertation., These lead to the geometric
characteristics: lines ha'ing the same direction, lines which are
equally distant, lines with equal slopes. The axiom of parallelism
initially does not play a role at all. Through this method of
observation, zeometric relations and geometric orderings evolve
during the second stage. However, one only talks about
mathematical thinking when the pupils operate with the relations
and orderings, when relations between relations are being found, or
when a scheme is recognized as a scheme.

How can we activate this productive thinking fn didactics?
The productive thinking has been studied in particular by Selz and
by Duncker. They study productive thinking in adults and build
their theory o. protocols acquired through introspection of the
test persons. .. didacticians, however, are dealing with the
genesis of productive thinking. If we wis® to draw conclusions
from the theory of cognitive Psychologists, we will have to test
these conclusions in the context of school practice.

Some conclusions of the cognitive psychologists on the
thinking process now follow briefly.

Selz talks, in "On the laws of the ordered thinking process"”,
ahout an operation of a complex. As I mentioned earlier, the same
organization that exists for the sensory perception, also appears
to guice the thinking process. Selz (I, p. 94, p. 119) writes:

It has been well established that complex patterns can be
reproduced in their totality. It is essential that such
patterns be recalled in such a wav that they cannot be
broken down into their elements.

Research has snown many times over that the will to recall
causes certain intellectual operations necessary for such
recollection to begin to work. The choice of the will to
reproduce a complex pattern produces an intellectual
operation vhich is essentially a reproduction process. On
the other hand, a recollection of a schema of the complex
pattern could facilitate the process of abstraction or of
combination.

The choice of the will to reproduce a complex pattern sets
into motion the intellectual operations necessary to
generate such a pattern.

-
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Selz distinguishes the following thinking operations:

Reproduction of a complex pa*tern, abstraction, combination
and completion of a complex figure,

For the completion of a complex figure he gives (p. 128) three
laws:

1. A given part of a comprex figure which is part of a
whole tends to cause the reproduction of the whole
figure.

2. A schema, anticipating all the characteristics of a
complex figure, tends to cause the reprodvction of
the whole figure.

3. A firmness of purposz2, focused on completing a schema
ofi the anticipated complex figure, tends to cause
the reproduction of *the whole figure.

Duncker (I, p. 100), however, gives the following critique:

I believe Selz has gone too far when he considers even
involuntary reproductions as determined: that is, as
exactly anticipated.

Similarly, Van Parreren (II) argues against this determination:
.hinking dces not always proceed azcording to rational actions, but
there are also independent actions on the basis of associations
that have bz2en formed.

Even though Duncker uses a slightly different terminology from
Selz, both theories have many points in common. Therefore, it is
not necessary to expand on this theory here,

The way a person thinks is not only determined by natural
aptitudes and by biological maturation, but education plays a very
important role as well, We therefore cannot trace the thinking of
twelve-year-olds from the theory of Selz. Langeveld (VI, p. 40)
argues that it is incorrect to view the child as a scaled down
edition of a future adult.

It is exactly because there is such latitude in human
development that man can be educated.

He views "the principle of exploration" as being of utmost
importance; man continously breaks through the concrete
surrounding phenomena; behind each discovery i: another one.

One often does not sufficiently realize what the influence of
teaching is on mental development. This is a _ i4rent from certain
statements, e.g. bright pupiles will always succeed. This sounds as
if the kind of teaching does not matter for them. Through better
didactics, where the inclination for exploration is more

72



Page 65

consciously taken into account, a shift in the type of pupil could
evolve from the algorithm type to the more structuring type (van
Hiele, p. 74).

Prins and Van Gelder (I) concur on the necessity of a return
to the phenomenon of learning afier a reflection upon the
psychology of thinking and lea-aing and on the basis of
investigations during recent years. They argue that more attention
should be paid to receptive-structuring moments of thinking and
that the phenomenon of learning should not be reduced to a
cognitive process - even though differentiating may have already
taken pl-ce.

The words "structure" and "structured" are suitable for use in
discussing the foundations of the didactic approach that is being
followed. I will, in my explanation, establish connections with
the graphic layer of thinking of the reader, in so doing I adhere
to my own didactices. Even though a parquet floor is not totally
visible, because the furniture covers parts of it, we
spontaneously complete the structure in our thinking. 1In this we
can recognize the laws of apperception theory. For the law of thLe
correct continuation implies that we think the pattern is continued
snder and behind the furniture, exactly in the same way as we
perceive it in the visible part of the parquet floor. The parquet
is judged differently by a dancing couple than by an interior
decorator. The latter will view the floor in relation to the
attributes ~f the whole room, whereas the dancing couple judges the
floor by its degree of slipperiness. The mathematician views it in
yet anotl.er way. He perceives the geometric particularities of the
floor such as parallelism, congruence, etcz. The context varies
according to the attitude of the observer. The parquet fioor is
structured differently by the above-mentioned persons. The
establishment of the context in itself already elicits a
spontaneous structuring.

Duancker (I, p. 91) gives the following example:

The readex may try the following experiment: given the
suggestion that he search out everything "red" in his
environment, he looks in his room or on the street for
everything of that color. There will be an astonishing
change - perhaps a familiar one - in the “"form" of his
environment. It will L: structured in a "red" way:
everything that appears red will spring forth in an
uunseemly way. Previously unnoticed objects (1like
billboards, book bindings, or neckties) will become the
chief spokesmen of the surroundings and establish a

relationship among themselves. It doesn't happen
gradually, but "leaps into the eye" and dominates the color
structure of the environment. The state of recognition

limps after it. It is also possible to give the suggestion
that one search out everything "round" in the environment.
Suddenly one discovers totally different forms; the
presence of red seems to dissolve.
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Similar results occur in the fielgd
s

of perception whenever
one is instructed to attend to a -c

o-called "suggestion."

A particular structuring evolves as a result of the attitude.
A mathematician requires a different attitude from a physicist who
aims at a completely different structuring. A mathematician, for
exarnple, will pay attention to the equality of shape or area when
comparing a marble and a wooden windowsill. A physicist on the
contrary will look at the equality of temperature.

The context in which figures are put by a mathematician always
has a varying geometric character: the figures can be examined for
their symmetry, similarity, possibility for stacking, etc.

We therefore are dealing with two forms of spontaneocus
perception. The first spontaneous perception is independent, the
second evolves under the influence of the context. Therefore, when
the teacher provides an appropriate context, the children can make
discoveries.

A frequently encountered mosaic for a parquet floor is the
herrinzbone pattern. At first one sees lanes in such a parquet
floor. After closer examination these lanes seem to be made up
from rectangular boards that meet each other in a certain vway.
Thus structures can sometimes be redifferentiated.

Anothe:r frequently used mosaic consists of large sguares where
each square is made up of four rectangular boards. Here too one
first perceives the squares that form the understructure and only
after that does one perceive the hirsher structure of the
rectangular hboards. This mosaic consists of the same elements as
the preceding one.

In the above-mentioned example the thinking operations can be
clearly identified because they are linked to perception. The
nongraphic thinking operations, however, take place i the sare
way. This is one of the basic principles of Gestalt psychulogy. I
will therefore consider thinking and perceptin from the same
viewpoint: as analcgous mental functions that are governed by the
same operations. There exists an interaction between beth
functions, such that, especially inr goemetry, it cannot always be
determined which function provides the solution and to what extent
one function supports the other.

Berghuys (I, p. 81) deicribes mathematical insight as follows:

Mathematics in itself is not empirical kunowledge.
Mathematical activity consists of a schematizing of
empirical data, but mathematics, as a science, is a study
of this schematization. The knowledge of the schematizing
is not the knowledge of the empirical data. Therefore,
mathematical insight is something different from empirical
intuition.
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Nor can insight be characterized as intellectual knowledge
of being. For the scheme that is being studied is the form
of the empirical data which have given rise to that
schematizing. Therefore, it does not provide a knowledge
that belongs to the domain of the mind, completely above
the phenomenon; the domain of the mind is precisely
elevated above ach scheme because of its self-possession.

Mathematical insight however involves both: the empirical
material that is being dealt with in the scheme, as well as
the mind that holds the material in its grasp in order to
master it. For the human mind, with its will and
intellect, is known for its ability to subjugate
empiricism, At the same time, empiricism is known for its
property of letting itself be manipulated by the mind.

In this way mathematics is a knowledge of the mind as well
as of the world; rnot a knowle 'ze of a mere a priori kind,
but also of our empirical surroundings.

Perhaps one could talk more readily of a point of tangency
between intellectual and sensory knowledge. For the
intellectual part is not known in itself, but in its
relationship to empiricism; and the empirical part is only
known in its relationship to the intellect.

However, this implies that typically mathematical subjects
of thought can never be completely pure.

A purely iatellectual consideration in which some object
would be transparent for us in its whole nature is not
within reach for us humans.

The theory of thinking (which henceforth will also include
perception) will be sumrarized briefly in order to make it easily
available for the didactics.

As a result of an assignment given by the teacher,
goal-oriented thinking evolves in the pupil. This thinking is
supported by associations that have already been acquired. The
thinking d'rects itself to a structure. The operations of thinking
bring about:

1) a more refined structuring of the perceived structure;

2) a viewing of the perceived structure as a component
structure of another structure;

3) the ability to expand the perceived structure;

4) the ability to recognize the isom.rphism of the
perceived structure with an already known structure.

It is not difficult to recognize here the work of Selz.
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As a follow-up, we then have the following rules for
didactics. The teacher should aim for the following:

1) that his pupils can build perception structures in a
geometric sense;

2) that they will diagnose these structures as component
structures of more complex ones;

3) that they will expand these structures in so far as
the context permits;

4) that they learn to recognize corresponding elements
in isomorphic structures.

It is very important that children have a correct concept of
the context which the teacher has established, otherwise a
spontaneous structuriang cannot take place.

The teacher tries to bring his pupils to a higher level of
thinking by means of the four above-mentioned operations. In this
way, productive thinking can be practiced. Apart from that, the
teacher should establish which subject matter should be learmned
independently. The transition to = higher level of thinking can
oniy take place when a suffici:nt number of associations, of the
suhject matter covered, have been formed.

The teacher will gradually modify the context in a more
mathematical direction; he will move further away from empiricism,
Then the difference from a physical or technical context becomes
clear. A conclusion that has been arrived at in a mathematical way
is correct and cannot be refuted by observations. For example,
when it has been proven that the sum of the angles of a triangle is
180 degrees, the correctness of this theorem is not affected by an
experiment that would produce a result of 179 degree. In the
technical and physical sciences one must allow for the possibility
that it may be necessary to establish corrections by doing new
experiments.

The development of exacti thinking has its origin in conscious
perception. First of all, facts of experience are ordered. The
space surrounding the observer is structured in a geometric sense.
The objective of "educating to exact thinking", in fact, implies
that during the first years the pupils are taught to better
understand and master the properties of space in which the whole of
life takes place. One could talk here about an intermediate goals:
learning to know and understand space. Van Hiele (p. 144)
elaborates on this and names some fifteen geometric aspects that
could come up for study during the structuring of space.

Van Hiele (p. 151) further points out chat it is far from
certain whether it is meaningful for the pupils, who should be
counted among the future "consumers" of mathematics, to be able to
prove theorems. Ther:fore, an intermediate goal should be
considered at least as important, if not more so than the goal with
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which I started this chapter. For the "producers" as well as the
"consumers" of geometry will have to know and to understand space.

It appears justified to me not to apply the same rigid
standards to all pupils of the first years because structuring
ability increases with age (see IX, p. 60). One should rather
consider these years as an observation period in which to prepare
the pupils for different options offered by study programs.

I would like to return to the concrete starting point in the
didactics of my initial geometry instruction: the cube. The
objective of teaching is: to know and understand space better.
This knowing and understanding is viewed differently by the
mathematician and the physicist, the biologist, the artist, etc.
Therefore, the pupil will first have to be informed about the
objects with which these subjects deal and about the background
against which these objects have to be perceived. The objects and
the context will appear most clearly to the pupils when these can
be directly connected to already acquired experviences. For the
initial geometry instruction, there are experiences which all
pupils have had, that is, in relation to the block building set ..nd
the mosaic building set. The pupils have even structured space in
some sense, for they have built houses, churches, etc.

By starting with the cube, the pupils rapidly learn to know
the names of a number of geometric objects. Next, regularity
(symmetry) can be chosen as a context. On the one hand, geometric
objects thereby acquire charactaristic properties; on the other
hand, space thereby becomes structured in a certain sense. In this
way, properties of geometric objects are recognized in objects of
the real world.

If one chooses as a context the stacking of geometric objects,
as is done in the problem set "Rhombododecahedron'", one obtains a
better foundation for the geometric concepts of area and volume on
the one hand; and on the other hand space becomes structured in
such a way that the objects of the real world can be thought of as
being built from mathematical objects. A house then becomes a
rectanguiar parallelopiped on which a tri-faced prism or a
four-faced pyramid is placed. A hurch tower then consists of, for
example, a regular prism on which a regular pyramid has been
placed. A water tower is then viewed as a large cylinder, etc. A
tree must be strongly ide-~lized before one could recognize a
¢ylinder in it, In the e way, one would have to idealize the
leaves in order to be able to show their symmetry. For that
reason, leaves are less suitable for arriving at an analysis of
symmetry; many objects and tools lend themselves better for
learning symmetry, Many of these objects and tools are more
clearly symmetrical and they car be more clearly associated with
geometric objects. (See IV, p. 30.)

It is possible for space to become more finely structured by
pupils by varying the geometric context. However, it appears
necessary to me that one ask oneself in what way space is already
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structured for the twelve-year-old child and on which level of
thinking the geometric context for i2-i3 year-olds can be
considered to be. For this, we have to know how far the child has
proceeded in his development in that respect duriag the elementary
school peried. The progress of development of intellectual
functions of the child has to be borne in mind especially.

Oberer (I, p. 356) concludes the following on the basis of his
investigation of school children 7 to 13 years old:

As P. Vogel has shown, we can establish that in a thirteen-
year-old, not a single category of thought process can be
found which had not already been in evidence by the age of
seven.,

In connection with this he made use of a classification according
to sixteen '"forms of thinking" among which are the following:

classification, function, property, whole and part,
means-goal, cause-effect, genesis and development.

He comes to the conclusion that the child is capable of a
synthetic train of thought, bnt that during the whole elementary
school period, analysis type thinking predominates. The most
important form of thinking according to him is "whole-part'" and he
postulates that the other forms of thinking can be reduced to that
one. The form of thinking "whole-part" should be viewed as a
"consciousness of belonging together" for the seven-year-old child.
The child names the components of a whole without the connection.
In older children however a "consciousness of relationships"
develops.

In the main, there are objective learnings which can be
formulated as expressions.,

Therefore, in didactics we should certainly not forget to choose a
clearly visible goal for the child. The child would like to know
why he is doing something: the teacher should not lose sight of
the motivation. 1In my special didactics during the first two
months, that means for the pupils: What can we make with the help
of compasses, drawing triangles, protractor, cardboard? The

teacher hopes to realize his objective: a geometric structuring of
space by the children. Space was already classified into parts by
the children. These parts in themselves form more or less

restructured wholes.

I wish to start from these wholes in crder to establish the
correct connections in the thinking of children. I cannot imagine
that 12-year-old children have already acquired enough experiences
so that they are able to make a classification of the whole of
reality. Just as we are convinced that the total view of an infant
does not cover the entire reality, it is also probable that the
total view of a twelve-year-old child will consideratly differ from
that of adults. This involves the scope as well as the structuring
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of the image. If the didactician, thinking that this would be
desirable according to holistic psychology, wishes to start with
the entire reality in order to let twelve-year-olds classify it, he
will have raised his expectations too high. One cannot structure
space geometrically (i.e. one cannot abstract to geometric solids)
if one doces not know what that implies. Therefore we have to start
by letting the children experience with known objects what
geometric structuring means - or stated differently - we have to
make the children clearly aware of the context in which the
perceived objects are placed. If this is accemplished, then the
children themselves are capable of structuring reality around them
in a geometric sense,

Likewise, the physirs teacher will have to make clear to the
pupils, with the help of actual experiences, what a physical
context entails, After that, the children are capable of
structuring the world around them in a shysical sense. They then
have experienced what it means when one perceives something in a
physical context.

If one proceeds differently, one incurs the risk of having to
establish too many associations because the desired structuring
then cannot be built on top of an already existing structuring.
Both extremes: starting from point, line, etc. and starting from
the entirrs reality are not suitable for the child; for both
approaches, too large an abstraction is required, For both
starting points, a philosophical attitude is needed that do-s not
suit a twelve-year-old. Concrete entities, that can be easily
manipulated, are the best possibilities with which to start. From
that poinc one can turn tr a thorough examination: the parts of
the perceived entity can be investigated, and conversely, the
perceived object can be considered as part of a whole. In this
way, analytical as well as synthetic thinking can be practiced by
means of graphic representatiors,

Selz (II, p. 8 ff) draws attention to the fact “hat Gestalt
psycholcgists as well as association psychologists start from
dynamic principles,

Gestalt psychology differentiates itself fundamentally from
associational psychology in that it does not employ
synthetic structures to categorize Phenomenological
entities made up of physical elements. It uses Just the
opposite strategy and starts from the origins of
percepticn, from the wholeness of the source, and searches
for a phenomenological structure based upon real
experience; it does not use artificially created
categories to justify its inner workings, but rather uses
the dynamic principles of phenomenological integrity:
wholeness, size, order, connection and organization,
principles which underlie the nature of this psychology and
which account for the diversity of its views. It has
little tc do with the elegant simplicity of construct.on as
it exists in the physical world,
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In contrast with this, Selz says:

These dynamic principles of Gestalt psychology do not fully
explain the structure of phenomenology, but at least
establish the foundations of psychological principles of
perception which is the basis of its origin. Among such
psychological principles is the recognition that the
strength of any theory is not acutally self experienced and
thus cannot be considered phenomenological evidence. The
structure of phenomenology, particularly when using
principles of phenomenological development, cannot solely
be explained by psychological theory. The appearance of an
explanation from psychological theory occurs by combining
the principles of phenomenological integrity: wholeness,
size, order, connection and organization when these dynamic
principles of wholeness, size, order, connection and
organization are entirely different. The structural
Principles of world phencmena are moreover a vast manifold
and not a small wonderful simplex like the dynamic
Principles of the building of a physical world.

The question of constructing phenomenological questions,
consequently, is the cornerstone for a new holistic
(man-made) psychology.

Selz then gives the following build-up:

In order to achieve a new holistic (man-made) psychology we
need more than a foundation of truth as evidenced in che
quality of physical sensation, something the old psychology
relied heavily on. We need to be able to understand and
combine the aspects of phenomenology.

Just as there are two qualities of this psychology,
understanding and combining aspects of phenomenology, there
are similarly two qualities for combining aspects ot
phenomenology to achieve the new holistic psychology: the
qualities of comparison and repetition.

He then discusses the system "the sounds”, "the quality of colors",
"the layers ot time" and "the layers of space" and finally he talks
about the phenomeno-logical system: "the wholes and shapes",
However, a thorough discussion of these topics lies beyond the
scope of this bonok.

Thus there is a similarity between the way in which a
structuring evolves that is based on hearing and, for example, a
Structuring that is based oa sight. As we know, there already is a
wide range in the extent of Structuring in the area of music among
twelve-year-olds. 1In the first place, the environment (the milieu)
of the child will have had a streng influence. Natural aptitude
will also be an important factor. 1In general, school will not have
taken much part in this structuring. The same, however, can also
be said of the extent of geometric structuring of space in the
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child and of the extert of physical and biological structuring.
Therefore, the range of the extent of geometric structuring of
space in twelve-year-olds should also be very wide. 1In the case of
spatial structuring, the environment of the child is also the most
important factor, the school having only little influence. 1In
connection with the subject of arithmetic, undesirable (faulty)
associations can even have been acquired. I especially refer to
the geometric concepts of area, volume and proportion.

We teachers at the secondary school, therefore, are dealing
with a group of pupils who, because of different natural aptitudes
and different environments, are very diverse in the extent of their
geometric structuring of the world around them. They even think
with the help of a number of associations which have a restraining
influence on the geometric structuring. The latter problem could
be alleviated through a closer contact between elementary school
and secondary school. The Arithmetic Committee, that has already
made a start on this, hopefully will be able to carry out its
operations in the actual didactic domain. It has alrfady outlined
what subjects should be covered in elementary school.

Kohnstamm (I, p. 91) similarly had high expectations of
improved didactics:

Practical conclusions concerning didactics can only be
drawn when the logical functions,; which apparently can be
developed from the first year of the elementary school on,
are incorporated into the subject matter and into tkhe
assignments which can inspire the child and which also are
of real importance for his future. The work of Montessori
and Decroly point in that direction, but we are only at the
beginning of an era where didactics will be built on the
results of the new child psychology. This much seems
certain already, that we wili have to drastically modify
current opinions on the illogical character of the mind of
the child.

For the time being teachers at the secondary school cannot
count on that and they will have to devote the first period
(approximately two months) to finding out how far each child has
proceesded with geometric structuring. Through ceonversations
(individual and class conversations) the teacher can find a common
base for this geometric structuring. This will be different for
each group. By using better didactic methods in the elementary
school, it should be possible to obtain more homogeneous groups in
the future. Then the formative value »f teaching could become an
important factor in addition to the development resulting from
natural aptitude and environment.

Interest is extremely important for this formation. Kohnstamm
calls it '"the direction-giving and the problem-conquering moment of
intelligence”. It is one of the most difficult tasks of didactics
to decide how to take this factor into account as much as possible.
I gave a few problem sets in Chapter XV that can arouse interest in

81




Page 74

children. The majority of the problem sets evolved in connection
with questions by pupiis who could not cope with the customary
class system and who completed their education at the Utrecht
Lyceum,

Since, after reaching the first ievel of thinking, a period of
active (productive) thinking is expected from the children, and
since it is especially this thinking that is the center cf
attention of the geometry-didactician, I carried out my experiment
during the months of January, February and March. During those
months, the subject matter that is being presented is strongly
geared towards the transition to the next level of thinking,

The purpose of the experiment was to give a clear description
of the learning situation in which I put the children and to set up
an analysis of the ensuing learning processes ‘n the children.
Especially important for the didactician is the investigation of
the normal course of the learning process. There could also be
investigations of the course of those learning processes that lie
oJu- ' ie the normal range. This type of study, however, should be
dome 1. collaboration with a school psychologist. These
investigations in turn could provide the didactician with
indications that could complement and refine his own didactics.
Given the number of children in the first classes, it would be
almost impossible for the teacher to devote sufficient attention to
such special situations,

Because of the large size of the groups, it has been
impossible for me to organize a sufficient number of individual
question-and-answer sessions between teacher and pupil in order to
be able to make reliable statements about the genesis of thinking
in the individual. There is not sufficient quiet and time in
school to do this. The school psychologist here has a vast
potential field for work. One advantage the psychologist has is
that, unlike laboratory work, he can observe children under normal
circumstances during lessons by the teacher and that he can
complement these observations by individual interviews outside the
lessons (e.g. during his free work hours). 1In this way, the
development of a numbter of pupils under rather normal circumstances
could be followed.

I am forced to limit myself in my analysis and to investigate
to what extent the structuring of perception, the structuring of
thinking and the language structuiring - the third accompanying the
first two - are being developed by children in a group as a result
of the learning process that has its origin in the learning
situation presented to them.

Just as it was an important question for psychoi.ogy as to what
method should be used, it is also an important one for didactics.
If didactics wants to be elevated above the unscientific level "I
do it this way", one will first of all have to reflect on the way
in which to exchange ideas about the didactic method that is being
followed.
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If the subject matter that is being covered in the method is
different from the customary subject matter, a description of the
material used should be provided.

One should indicate which didacti., psychological and
pedagogical principles formed the starcting point. Likewise, the
intermediate educational goals of the subject matter should be
indicated, in order to be able to examine later whether these goals
have indeed been reached. Next, a protocol should follow, in which
the contents of the lessons should be described as accurately as
possible, so that the person who practices teaching can find out
how the material has been presented. Finally, one should give an
interpretation of the entire study.

Only then is a discussion on a sclentific level possible:

1) about the learning situation in which the children have
been placed;

2) about the progress of the learning process;

3) about the correctness of the interpretations.

We will have to arrive at such a method in order to avoid
acquiring a chaotic array of data. This also prevents talking past
each other (i.e. not communicating).

Ruttmann (I, p. 53) expresses it as 10llows:

A scholarly explication of any subject having to dc with
one's intrinsic experiences means something quite different
trom foilowing abs.lute and logical principles of human
thought. These principles simply .epeat in their
formulation and application rigidly exact methods which
produce so-called scholar.y outcomes.

Sir~e this particular method is requ‘red for scholarly
results, it deteirmines how a person will initiate any
inquiry. Furthermore, it is in this manner that standards
are established.

I would like to advocate *the presentation of a protocol of tte
lessons as a method for the stud of didactics, especially given
the stage in which the latter still remains. This is the best way
to provide a picture of learning situations and of t'e learning
process. Some examples are: the srotocol given by Boermeester (1,
p. 94 ff), Brandenburg (I) and the protocol mentioned by Stellway
(1, p. 256).

Before one proceeds to analyzing the way in which the soluticn
to a geometric problem evolves, it is necessary to analyze the
didactic method that is being used. For the way in which the
children solve geometric problems could be dependent on the
particular didactic method followed. In our own careers, it has
happened several times that a modifiad didactic approach resulted
in cumpletely different methods of solution. The pupils then came

Q
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up with solutions which we ourselves, not being raised with this
didactic approach, did not know and which appeared to originate
from the didactic method followed.

The following problem serves as an example:

Construct a circle such that it tcuches a given circle in a
given point, and in addition, such that it touches another
given circle.

In Van Thiju’ the following hint is provided with this
problem: "by applying no. 53". No. 53 is as follows: "When a
circle touches two other circles, then the line that connects the
two -—oints of tangency goes through one of the points of conformity
of tue last-tamed circles."

One pupil analyzed the problem as follows: "If *he circles
were the same size, I could solve the problem, because then the
center of the circle to be constructed is located on the
perpendicular bisector of the line segment MN connecting the
centers of the given circles and on the line MP. The point of
intersection S of these lines is the center and SP is the ‘adius of
the circle to be found. This circle has a common angent at P with
the given circle M. Then came a moment of insight: I can replace
the given circle M by a circle with the same radius as the given
c' *cle V¥ ind which has the same line of tangency at P as the given
¢ rcle . There are two of those circles, and therefore ther are
generally two solutions."

This solution, where the pupil first goes back to a special
case, uamely the symmetrical case is a consequence of the didactic

method followed. For in our didactics, symmetry from observation
is being incorporated into the geometric structuring. See Chaptear
IV, p. 30.

Whereas the hint provided in the textbook leads to the
examination of the set of circles that touch two given circles
externally, the analysis given by the pupil leads to the
examination of a miuch simpler set of circles, namrly those that
touch each other in the same point P,

Van Thijn gives the following problem on p. C2: "Draw a
circle that touches a given straight line and a given circle, whe:e
the point of tangency P on the straight line is also given." (no.
34).

This problem also c be solved by drawing an auxiliary circle
of the same size as the given circle and that touches the given
line in P, The supplement of Van Thijn however giver .he following
hint:

Let M be the center and R the radius of the given circle;

the center X of the circle to be found is jiocated on the
perpendicular one can draw a. P on the given line; 1if we
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assume, first f all, that the tangency between the two
circles is exterril, one has MX - PX = R; the problem is
then reduced to the construction of a triangle MPX with
data ar in no. 53 of section 6; should the tangency between
the circles be internai,; then one has to construct a
triangle MPX ¢f vhich PX - MX = R, compare with no. 51
section 6,

The preblem to which the former problems have been reduced, in turn
are again artificial problems where the correct auxiliary lines
have to be found.

For this problem also one sowetimes provides a hint. First
ronstruct a circle that is concentric with the circle to be found
and where the radius is equal to the sum or the difference of the
radii cf the given circle and the circle to be Zound. 1In this
manner the problem is being reduced to the construction of a circle
that goes through a given point and that touches a given line at a
given point.

One should ask oneself whether it is meaningful to submit
problems such as the ones described above to all pupils. This
depends on the function one assigns to the problems. Van Hiele (p.
146 ff) describes the functions the problem can carry out in
geometry. In addition, one should ask oneself whether it is
meaningful, in conn.ction with the learning process. to provide
hints with problems. With problems that have the goal of i ucing
productive thinking, hints can strongly interfere with the rogre=s
of the phases of the thinking process (De Groot II, p. 53). For
problems such as the ones mentioned above, the statement by De
Groot about a set-up in a chess problem is valid: "In the first
phase, the subject allows the set-up to work on him: the problem
takes on shape for him". (p.76).

When the hints provided with the problem do not fit with the
associations thar are activated in the pupil by the assigned
pr.blem, then these will disturb the first phase - named the phase
of problem formation by De Groot. Even if the hints are provided
in a supplement, they can disturb the different phases during which
consecutive ideas for arriving at the solution are worked out. For
how can the pupil know at what moment it is useful to look at the
hint? Even then the kint can disturb his thinking. The most
important question however is: Which experiments have shown that
the hints that are being provided are justified from a didactic
perspective?

The method used bv the cognitive psychoclogists is an
experimental introspective method. This is less suitabl for
children, because a command of language is essential for that
method. There is a question whether results acquired from
introspection of adults are also valid for pupils of the secondary
school.

If one assumes that it is desirable to give hints accompanying
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problems, one would do better to indicate more than one method of
solution and include some that are found by the pupils themselves,
For then there is greater probability that the pupil will rezeive a
hint ‘hat fits into his scheme of thinking. The psychology of
thought that has been delineated for adults, cannot give rise to a
psychology of itearning for the secondary school. The thinking of
those young people will first have to be studied more thoroughly.
This can be done through a collahoration between didactician and
school psychoiogist by placing the child in the most appropriate
learning situations. One should choose learning situstions so that
an experimental exploratory method of investigation is possible.

In those learning situations it is possible to observe the pupils
under normal circumstances.

The individual learning process ic influenced Ly many factors
of a psychological nature, the knowledge of which is valuable for
the teacher as a pedagogue, but that are beyond the scope of this
didactic experiment, therefore also beyond the scope of this
dissertation.

The above-mentioned example shows that tliere is a close
relationship between the methods c¢f solution used by the pupils and
the didactic approach one follows. If one emphasizes, in the
didactic experiment, the impruvement of learning performances
through transfer of methods of solution from good pupils to other
pupils, then there is no change in the presentation of the subject
matter - it is only being refined in c.rtain aspects.

The following points should be investigated carefully:

1. "he study of which learning situations most appropriately
connect with the thinking of children. This not
only implies a study of the difficulties of thinking
the subject matter can provide, but also a study of
the manner in which that subject matter can be

preseated.

2. A systematic analysis of the learning process as it
takes place among children on the basis of protocols
of the lessons,

3. An adaptation of the scope and arrangement of the
subject ‘:atter to the mind of the child.

Only after some light has been shed on these points, can one
proceed with the question: What should we measure and which
measurements are representative of actual progress in the learning
process?

In setting up learning situations, one can be guided by
statements of psychclogists in order to try to establish the best
possible connections betweer those learning situations and the
psyche of the child.
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Footnotes:

1. Richtlijnen voor een nieuw leerplan rek. op de L.S.
Purmerend 1956, [See p. 73.]

2. Zie Van Thijn, Kobus, Wasscher. Verz. van plan.
vraagstukken met supplement. p. 87. no 53, 54,
18e druk Groningen 1952, [See page 76.]
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Chapter X
PROTOCOL OF THE WORK-PIECE "TILES"

[Note: Figures 1-12 referred to in this chapter can be
found on pages 143-151.]

In order to report as accurately as possible on the cless
conversation, I drew a seating chart of the classroom for each
lesson. ~EFach compartment contained only the name and the number of
the pupil so that much space remained to write down notes,

While the children were working out an assignment, I wrote
down in shorthand, under the names, details of the conversation and
at the bottom of the sheet I wrote down general remarks. I also
made notes, after I went around in the class, of reactions to the
tasks. At the end of the class hour, I added more remarks when
neaded. The notes were always trauscribed during the same
afternoon or evening. Even though I aimed at giving a precise
reproduction of the class conversations, or.e should not assume that
the protocol literally reproduces what the children said.

Since the names of the pupils are not mentioned in the report,
I labelled thz answer of a pupil with Pp. Sometimes I use Pps to
indicate that many pupils gave that arswer. I mention the number
of tne Pp, in those cases where .he answer can be of importance, in
crder to make an analysis of the performances of pupils
individually. (My remarl.s are labelled Tr.)

I told the children at the ocutset that I would work somewhat
differently with them. I told them: "Geometry is to be worked on
only at school. You will write in a notebock that has blank sheets
of paper, ruled paper and squared paper. This notebook is to be
handed in after each lesson. I am going to ask all kinds of
questions. We are going to do different things. We are going to
draw and make puzzles. Since everyone should have an opportunity
to think, questions should not be answered immediately. We wil:
agree on a sign for you to show that you know the anster. Do n.t
lift your hand high up in the air. Do not luok at whet your
neighbor is doing. Most often there are several correct answers.
Even when you are solving a puzzle, you should not lonk at the
result of someone who has already finished. This would take all
the fun out of solving the puzzle. Make sure you have all the
necessary mat~rials for each geometry lesson: drawing triangles,
compasses, protractor, ruler, eraser, 2 colored pencils.
Fortunately., I have been able to give all of you a satisfactory
grade on your Christmas report card. This grade will remain so, on
the condition that you cooperate and that your behavior is good.
If you contribute interesting solutions and ideas, your grade cen
be increased " In this manner I hoped to let the children work in
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reasonably normal circumstances.

The first class conversation with group Ia now follows. zThis
group consists of 24 pupils, of which 6 were repeating the class.
In order to obtain as clear a picture as possible, these 6 pupils
did not participate in the experiment. At the Amersfoort Lyceum it
is possible to let those pupils work at thei: own level in a
"workroom”,)

Tr.

Pps.

Tr.

Tr.

Pp.

Tr.

Tr.

Pps.

Pp-.

Tr.

Pp.

17

On the label write your name and under your name

write the title of the work-piece: "Tiles". We aro
going to study different floors that can be paved w.th
tiles. I heve written a sentence on the blackboard.
There ure two difficult words in that sentence: "A
sidewalk is tiled wi*h congruent square tiles." Do we
know the word sidewalk?

ceseesssss(* Translator's Note: There are gseveral words
to indjcate a sidewalk in Dutch. The one used in the
Sentence written on the blackboard is more formal, hence
not as likel, to be known by the pupils as the word that
is commonly used. The pupils answer by giving the
commonly used name.)

Do we know the word congruent? (Nobody appeared to have
heard this word before, as I expected. I tried to
approach the word in the following way.)

When I look at the chairs on which you sit, I notice
that they are congruent. (Several pupils thought they
knew it now: the same tiles, equal tiles.)

When you stack two tiles, they have to fit. (We then
started looking at the phrase "the same".)

If 1 say: Tomorrow you will sit on the same chair again,
1 do not w.an the chair of your neighbor. So, the phrase
“the same" is not clear enough.

Now the word equal: What is equal?

The area.

Let us try. Area is meastred in .....?

Square centimeters.

Imagine now two tiles each of whose area is i2 square
centimeters. They are thus equal. Should those tiles

really be congruent?

No, because they can differ in their length and their
width.

o
o



Pp.

Tr.

Pps.

Pp.

Pp.

Tr.

Pp.

Tr.
Pp.

Tr.

Pp.

Tr.

Pp.
Pp.

Pp.

17

11

11

11

10

17
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Could you show that on the blackboard?
Draws two rectangles 2 x 6 and 3 x 4 square centimeters.

Indeed they are not congruent - the word equal is also
not such a good choice.

They do not fit on each other either. (We conclude that
Pp. 17 has given the best answer so far.)

When you sat down at the breakfast table this morning,
were there any congruent ¢ jects on it?

Yes, plates, knives, forks, mugs.

At cur house the mugs are not congruent. (My conclusion
that she came from a large family was correct),

Each one of us has a different mug. Then you know which
one is yours,

But in the afternoon, when you have company Jo you then
drink out of congruent teacups at home?

Yes, but then we have different teaspoons.

When I look carefully at your ch=irs, they are not
congruent (The pupils understood immediately. I made
reference to the little labels with a number at the back
of each chair.)

What are those numbers for?

To tell them apart.

Correct, in order to be able to make a distinction, to
be able to distinguish them. The teaspoons of Pp. 11
serve the same purpose. You can thereby distinguish
congruent teacups. Who can now finish tne following
sentence, Congruent objects are.,....

They are objects that fit in each other.

I believe that congruent teacups do not entirely fit in
each other, the ear (harile) is in the way. With tiles
it works beautif "1ly

Objects that have the sa e volume.

No, because then it can still be high or low.

Congruent objects are objects that cannot be

distinguished from each other. (This was accepted with
general agreement - it was stated well. Then the pupils
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Pp.

Tr.

Pps.

Pp.

Pp.

Tr.

Pps.
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divided the first blank sheet into four parts by 1
vertical and a horizontal line., I did this
Simultaneously on the blackboard.)

Ta.k: Now draw, on a quarter of a sheet, a sidewalk
paved with congruent square tiles - make the side 2 cm,
Make the right angles neatly with the drawing triangles,
Think of the sidewalk or of a tiled floor at home, Draw
what you see before you in your mind. It can perhaps be
done in several ways, {As they made this drawing, I was
struck by the fact that everybody immediately drew
continous lines). /Figure 1 and 2 [see pages 142-143]
were both drawn without clear preference; one figure was
drawn as often as the other. Almost all pupils found the
two possibilities by themselves.)

How are the tiles most often positioned?
As in figure 2,

Why are they positioned like that?
Bccause it makes it much stronger,

Can you feel at the handlebar of your hicycle whether
the tiles are in the wrong po_.itioni

Yes, then the wheel gets caught in a groove, just as in
a rail.

In which direction do you have to ride your bicycle?

In that one. (They indicate the correct direction with
their fingers.)

(Was ju:t thinking of the direction perpendicular to the
one indicated. When we drew the direction in ihe figure
on the blackboard, they saw it clearly. Then I remarked
that ten days before T “.d been in a city where the tiles
were positioned in yet another way.)

Yes, on its edge,

Whoever understands what Pp. 10 means by that can try to
draw it. (Again I saw many pupils first draw parallel
lines, but now in an oblique direction. A number of
pupils did not understand at all. They said: Then you
obtain exactly the same. 1In this they were also right.
Therefore I said: Jdc not rotate it too far.)

But then it stands on it's vertex. (We also observed
that the word edge is not clear enough: by edge is meant
a side. The word "vertex" is better here.)

o«
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May I also r tate my notebook? Then I have it already,
(Next, we looked at the three figures.)

Tr. What do I see in figure 17

Pps. Lines.

Tr. Can you say something about those lines?
Pps. Yes, parallel.

Pp. 15 They are at the same distance from eac'’. other. (I

pointed tc the horizontal lines and called th.s an array
of parallel lines.)

Tr. Does the figure have another such array of parallel
lines?

Pps. Yes, s» (vertical hand movement).
Tr. Does figure 2 also have such an array of parallel lines?
Pps. Yes, only so (horizontal hand movement).

Tr. Does figure 3 (see page 144) also have an array of
parallel lines?

Pps. Yes, I see them.

Pps. I do not. (One of the other pupils then heid a ruler
along that set and moved it across two arrays.)

Pp. 3 So they do not have to be vertical or horizontal. (We
have demonstrated this clearly once again with the ruler.
There are many directions.)

Tr. Should the tiles be of exactly the same size in orde:r to
be able to tile a floor with them? Imagine for a minute
that you have two kinds of tiles, large and small squares
(I allowed for thought, then came..... )

Pp. 11 They should not be, if the small ones together precisely
form a large one.

First class conversation in Ib.

The group Ib consists of 27 pupils of which 6 were repeating the
class. The numbering of the pupils now begins with 19 and ends
with 39. Of course the class conversation with this group differs
in a few points - I want to mention these differences. Three
pupils had already heard the word congruent.

Pp. 33 It means the same.
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Pp.

Tr.
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Tr.

Pp.

Pps.
Pp.

Tr.

Tr.

Pp.

Tr.

25

25

39

30

37
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Where had you seen that word?
I had this in the seventh zlass in elementary school.

Yes, it means equal. I did not have it in school, but
I don't remember where I have seen or heard it.

I saw it in the back of the geometry book. It is
mentioned there: first case, second case.

Do you also knew what it means?

It says: Congruent figures are figures that can cover
each other completely.

Now, this is beautifully said. I will see whether
the others would perhaps also guess it. Those three
chairs are congruent. (I pointed towards three
unoccupied chairs.)

It will probably mean the same.
Yes, it has to be equal.

To cover each other, as Pp. 25 has said, and also
completely, is difficult to realize. It could be done
with tiles. If I say to Pp. 33 and Pp. 34: You are
sitting on the same chair....... Why do you laugh ncw?

Then they would sit on one chair.

No, I mean from the same factory and of the same make

and so on. Thus ve see thst in any case the phrase "the
same"” can lead to confusion. Now the word "equal”". What
is then equal?

The area.
The shape and ..... the measurements.

Yes, that is said very well. The measurements are
perhaps somewhat difficult to obtain, but it is correct.
What is arca really? (Pp. 36 and Pp. 39 and probably
some more children thought that area is length times
width).

What do you compare the area with? In what units do you
measure it? What do you express it in?

In square centimeters, or square decimeters or square
meters.

Now take some tiles of 12 square centimeters. Are those
equal?
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Pp.
Tr.

Pp.

Pp.

Pn.

Pp.

Tr.

Pp.

Pp.

32

24
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38
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Yes.

Do they then also have to be congruent, or can they be
different?

It can still be 2 X 6 and 3 X 4. (This was drawn rn
the blackboard.)

The word equal also leads to confusion. Look carefully
at the back of the chairs. (It was clear: they had
different numbers,)

What is that for?

In order to know to which table it belongs.

Good, who can say it somewhat differently?

In order to be able to distinguishk them.

Let us try again. Congruent objects are......(I poi t
to Pp. 19).
O .jects that are equal. (Protests from all sides. I

again mention that we just saw that the word equal was
not a good choice because equal tiles n ed aot be
congruent.)

They are objects that cannot be distinguished from each
other.

The teacups of our set at hore are not congruent,

Then they most certainly have little cracks by which you
can recognize them.

Yes, that is what I meant.

In fact, objects are never congruent, because the
fingerprints on the objects are different.

Let us imagine that we have a very special microscope
with whic: you could observe those fingerprints., Then
the objects can be distinguished by those fingerprints
and then they are indeed not congruent. (While drawing,
some students constructed square after square and they
had difficulty seeing the existence of more
possibilities.)

Second class conversation Ia.

Tr.

Last time we talked about a set of parallel lines.
Another word for parallel is .......7? Oue of you even
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opserved that the lines in figures 1, 2 and 3 are at the
same distance from each other. (With the help of two
large drawing triangles I demonstrated on the blackboard
how one can draw a set of parallel lines. I drew a set
where the distance between the lines was the same and a
set where that was not the case. The direction was
completely random,)

Instead of using one of the triangles, you can also use

a ruler. (This also was demonstrated.) Now we are going
to draw a tiled floor that is very common. It involves
rhombi where six acute angles repeatedly meet in one
point. Look caiefully how I construct it. (1
constructed a star built on a hexagon figure. See page
41.) Now you are going to construct this tiled floor for
yourself in your notebook. First divide a circle in 6
equal parts. Then construct the star based on a hexagon.
Then construct another such star at the vertices of the
other acute angles of the rhombi that have been drawn
already. Cover half a page (see figure 4, page 145). It
took the pupils the remainder of the hour to do this., I
watched how they were doing it and I occasionally helped
one or another,

Whispered to me that he saw cubes in the fignre., This
gave me the idea to inquire of the others what they saw
in the figure, I received as answers: hexagon,
everywhere those stars, rhombi, zig-zag lines that are
interrupted but that continue further on. but nobody else
noticed cubes.,

Second class conversation with Ib.

Tr.

Tr.

Pp. 30

Pp. 32

First I will review what we did last time. We first
talked about the word congruent, We saw that the phrase
"the same" does not really reflect what one means by
congruent. Covering each other completely, as Pp. 25 had
stated, was appropriate for flat figures, for example,
tiles. The word "equal" where we all immediately thought
of area was confusing, because tiles that have the same
area are not necessarily congruent, (Agreement in the
class: Yes, 2 X 6 and 3 X 4.)

Pp. 30 brought up something interesting yesterday. Does
someone remember it? Maybe you yourself remember it?

No, I only said equal area. (Then she started to
hesitate.) No, I said equal shape and something else.

(Completed and said) equal measurements.

Congruent figures are rigures of equal shape and with
the same measurements. After that, we observed that the
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Tr.
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Pp.
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Pp.
Pp.
Tr.

Pps.

Pp.
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Page 88

numbers on the chairs, the teaspoons in the teacups, etc,
allow us to distinguish congruent objects. If we were
able to see fingerprints on the cups (as Pp. 37 mentioned
yesterday), then these cups would not be congruent any
more. For then thev would ba distinguishable from each
other. Then you drew a +idewalk that was covered with
congruent square tiles. dost of you have already found
two different possibilities. I have already drawn three
on the blackboard, (A few students had also found the
third case,)

How are the tiles mostly positioned on tune bicycle path?
(Without hesitating this time): So (hand movement).

Why, so?

Otherwise you could get caught in a groove.

Do you notice something whan you compare figure 1 and
figure 37

They are all the same squares,
Yes, who can say it in a different way?

It is exactly the same figure, but rotated, (This
elicited agreement from different sides.,.)

What do you see in figure 1 7

Squares,

Everywhere right angles,

Lines,

Can you say something about these lines?
Parallel,.

+o++ +(*Translator's Note: Pupil gives the Dutch
srncnym for parallel,)

Cozrect, I see a whole lot of them.
Yes (they make a horizontal movement with their hands).

What else do you see?

Still more parallel lines, vertical (this was again
accompanied by a hand movement). There are equal vnieces
in between.
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Is there a se¢t of parallel lines in figure 2 also?
Yes, like that (horizontal movement).

No more?

Yes, if you draw it through.

They are not there - you can think of them as there.

And in figure 3 ? (The answer was yes from all sides
without hesitation. Two sets. Pp. 19 pointed them out
by putting a ruler on the figure and by shifting it
across the figure. Then I asked if they had ever drawn
parallel lines by moving two triangles along each other.)

Try to obtain a set of parallel lines by shifting your
ruler on the table. (Some found them after searching for
awhile.)

Why is it more difficult for me to do it on the
blackboard then for you on the table?

It is difficult to hold. (They watch carefully to see
if I will succeed. I drew a line, another one 10 cm
lower, again one 10 cm under the second one, and so on.
They are all in a oblique position.)

What did I make equal?

A decimeter.

Yes, 10 cm is a decimeter. But that is not what I asked.
The distance.

Correct, I made the distances between all the lines 10
cm. Now I will add a few other ones at different
distances. Do we still remember that we made many aice
figures before Christmas vacation? We made regular
polygons among other things. (I picked up a rhombus made
out of paper and asked: Was this one of them?)

(Enters. She lives outside of Amersfoort and always
arrives scmewhat late. She is included in the
conversation at once.) No, because two vertices have
acute angles and the two other vertices have obtuse
angles.

Is that not allowed?

No, they have to be equal.

Can't an acute ar3le and an obtuse angle be equal?
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Pps.

Pp. 32

Tr.
Pps.

Tr.

Pps.

No.

Tell me why not. (Silence)

You see how difficult it is to make clear that which is
so simple. We will first have to ask ourselves what an
acute angle is and what an obtuse angle is, because that
is what really matters. (Upon this, the tongues were
loosed.)

Below 90 degrees and the other above 90 degrees then
they cannot be equal. (At this point I took a
rectangular notebook.)

Is this rectangle then a regular polygon?

(Wanted to tell it quickly and started): That point

(by this she meart the point of intersection of tke
diagonals, because her fingers pointed toward those
lines) is not equidistant from the angle..... (here she
stopped; it was visible from her face that, at the same
moment she saw that the point of intersection of the
diagonals was eq.idistant from the vertices).....not
equidistant from those lines. (Here she pointed towards
the sides of the rectangle.)

Correct, that is good. The point of intersection of
diagonals is equidistant from the vertices, but not
equidistant from the sides of the rectangle. (I
simultaneously pointed towards the parts I talked about.)
Can somebody phrase it somewhat simpler?

The sides have to be equal. (Agreement.)

Who could tell me again what a regular polygon is? (I
point towards Pp. 38.)

It is a figure with equal sides.

(I again pick up the rhombus): And this rhombus then?
It has equal sides and you just rejected it.

They have to have equal sides and equal angles.
Which regular polygons did we construct?
Hexagons, octagors, dndecagons,

Good. Now smailer. There is alsc a regular pentagon.
Which one has the smallest nump.:.r of sides?

Three.
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Could there not be two? <::::::::>
No.

(A few boys arrived at the figure
drawn here, Pp. 35 and Pp. 36)

If there are curves, where is the angle then? And

shall we also call those curves, sides? (We did not
dwell on it. Next, I gave each of the pupils a little
bag containing regular triangles, one with regular
pentagons, one with regular hexagons and one with regular
octagons. I wrote the following questions on the
blackboard:

Can one tile a floor with:

1) congruent regular triangles?
2) congruent regular quadrangles?
3) congruent regular pentagons?
4) congruent regular hexagons?

5) ~congruent regular octagons?

The outcome of each puzzle had to be written in the
novebook. The children immediately noticed that I had
not given them a bag containing regular quadrangles.)
Yes, why did I not give one like that?

Third class conversation Ia.

(I entered with a box full of transparent little bags which I

had just collected from the pupils in class Ib. I showed them a
few.)
Tr. Do you remember what these could be?
Pps. Regular polygons,
Tr. What do you think my question will be?
Pp. 16 Whether a floor can be tiled with them. (I again
wrote the questions on the blackboard. Here the pupils
also noticed that the bag containing the quadrangles was
missing.)
Tr. Answer the questions right after you finish making

the puzzles. Then draw neat tiled floors in your
notebook. You may omit edges where tiles have to be
broken. Pp. 3 stacked the regular pentagons and pointed
out to me that they were not completely congruent.
Indeed, some were quite different. I whispered to him
that they really were intended to be congruent. He
accepted this. Pp 2 quickly finished and he put the
shapes back into the btag. He could draw it without using
the shapes. In passing I also asked some others whether
they would need the shapes while drawing.
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Thought he would, in the cases where it did not work.
Did not know yet.

Said he did not need them, but drew right isosceles
triangles instead of equilateral ones. He noticed that
it was wrong only when I put the shape in front of him.

The sides have to be equal, and I did not do it
correctly. (Pp. 11 thought it was easier to have the
shapes around. A moment later I saw that she traced
around the shape with her pencil. We looked at the
drawing and imagined that if she constructed the polygons
with compasses it wculd be much neater. She did that
very easily. A couple of pupils who could not construct
the center of the second hexagon were helped when I
suggested using a mirror. Those were pupils who
understood that the center had to be constructed. It
appeared later that some other children had not
constructed the centers. Many pupils immediately drew
the horizontal !ines through. The otker sets of lines
they noticed later. They used those then as a check (see
figure 5, page 146). Pp. 12 draws a large triangle first
and chen divide., it into small ones. Pp. 9 observes that
the floor tiled with squares (regular quadrangles) should
not be drawn any more, and that the floor tiled with
triangles can be obtained from the figure tiled with
rhombi, drawn during the preceding lesson. The latter
can be done by drawing in the diagonals. It is also
noticeable fiom the figures of the other pupils that they
have been thinking about the stellated hexagon. Only Pp.
2 makes use of the method whereby one drawing triangle is
moved along the side of another one to draw parallel
lines. He is also fastest in finishing everything.)

I cannot construct a regular pentagon.

You constructed the regular hexagon by dividing the
circle in six equal parts. You did that with the

compasses. You can also d'vide a circle in five equal
parts, but then you have to use a protractor. (He solved
the problem after a few minutes. I saw him divide 360

degrees by 5 and he made the central angle 72 degrees.)

Third class conversation Ib,

Tr.

Tr.

For this lesson I brought six rhombi with which you

can make a stellated hexagon. I also brought eight
rhombi with which you can make a stellated octagon. (One
of the girls made it.)

If I want to construct this stellated hexagon on the
blackboard, how do I start?
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First we draw a circle,
I do not see a circle.

We imagine it to be there (points to a circle that
runs through the outermost vertices).

If I tell you that the sides of the rhombi have to be
2 cm, can I then draw that circle? Is its radius then
perhaps 4 cm?

No .

What shouid I do? (It appeared diffuclt to forget
about that first circle.)

The innermost vertices are also located on a circle.
We can start with that.

I will construct a stellated hexagor. on the blackboard
and you do it in your notebook. Whoever is ready,
construct other stellated hexagons at the vertices of the
acute angles of the rhombus. Pay attention! Do it
correctly. (In this class there also was only one pupil
who saw a spatial figure in the rhombi. Pp. 34 saw
stairs.)

(Then came the plane coverings with the regular polygons.
Here also, the pupils paid attention to the other sets.
Even though, in this group, the construction of the
stellated hexagon had immediately preceded (during the
same class hour) the drawing of the plane coverings, I
did not find that the pupils were inclined to use that
construction to help them draw the regular triangles and
regular hexagons (see fig. 6, page 147). Pp. 32 observed
that all line segments of the stellated hexagons are 2
cm, including the line segments that were not there - she
pointed to the diagonals and she thus saw other figures
in the drawing.)

Fourth class conversation 1Ia.

This lesson again started with the distribution of bags.

Tr.

These little bags now contain irregular triangles,
quadrangles, pentagons and hexagons. The assignment is
again: can a floor be tiled with these? (It was
surprising to see that it sometimes took less time to
cover the plane with quadrangles (see figure 10, page
149) than with triangles. It may have been related to
the fact that the quadrangles can be made to fit in only
one way, whereas there is more than one possibility with
the triangles.)
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Tr. I see that you all made the same figures. Are there
straight lines in those figures?

Pps. Yes, three sets (see figure 9, page 1°3).

Tr. Now draw a whole pageful of those triangles. You
may draw the first triangle by tracing around the shape
with your pencil - the other triangles should be drawn
such that the three sets of parallel lines appear
clearlv, How do we do that?

Pps. With the drawing triangles. (I had to help a few
pupils individually so they could do it.)

Tr. You may draw the other figures by simply tracing around
the model with your pen<cil,

Fourth class conversation Ib.

Pp. 32 What about those regular bi-angles that were mentioned
sometime ago. Do they exist? Was what Pp. 35 drew on
the blackboard correct?

Tr. Do you feel like including this one among the others?
Pp. 32 No, it looks so totally different.

Tr. What is different?

Pp. 32 It has those funny arcs. The others do not have that.

Tr. Let us agree that the polygons we are dealing with

can only have straight lires. From now on we assume that
polygons are only bounded by straight sides. Then the
smallest possible number of sides is three. (Just as in
the other group I then handed out the bags and the pupils
started to make puzzles. Pp. 30 first makes a star, then
turns half of the triangles around and finally arrives,
with a little help, at a plane covering with kites. Also
in this group many pupils need to be helped in order to
draw parallel lines using two drawing triangles.)

Fifth class conversation Ia.
(We first compared the pupils' drawings with each other.)
Tr. Here I have one where first a square was constructed
and next to it another square, etc. How did this one do

it? (I held another notebook up.)

Pps. First drew horizontal lines.

-
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Tr. And then?
Pps. Then marked 2 cm off everywhere.,
Tr. Yes, at many places. Is that necessary? (I again

held up another notebook.)
Pps. No. He measured less often.

Tr. So, we have to use judgment when we draw. What
about the bicycle path? Do I not have to measure much
nore often in that case?

Pps. No. The other pieces are exactly in the middle.

Tr. Yes, in fact you can draw them simuitaneously. (I
showed a few more drawings.) Are these squares large
enouzh? What has been made 2 cm here?

Pps. The diagonal,

Tr. These (I held up another notebook) are somewhat
askew. You can position them exactly on their vertex.
(The pupil had drawn sides of the squres parallel to a
diagonal of the rectangular sheet of paper). How did you

do that?
Pp. I first drew a large square along the edge of the
paper and then I drew a diagonal inside. I repeatedly

marked off Y cm on that diagonal.

Tr. Now we will look at the drawings of the triangles.
We all thought about the horizontal lines. But now look
at another set of lines. On the floor tiles with rhombi
there also are small line segments that belung to the
same line.

Pps. It is very difficult to draw it correctly.

Tr. Now I am looking at the floor tiles with regular
hexagons. What is the difference between the two
drawvings? Those who sit in the front can see it well.

Pps. In the one figure there are small arcs in the middle
of the hexagon, but not in the other.

Tr. Those are arcs of a circle that have been drawn with
compasses in order to correctly construct the centers of
the hexagons. It has been done accurately in the first
drawing. Can we also tile a floor with regular
pentagons?

Pps. No.

pusk
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I also want to see a drawing of that. We cannot yet
construct the pentagon with the compasses, but we can do
it neatly with the help of a protractor. How shall I
divide the circle I am drawing on the blackboard into
five equal parts? (A number of children know it.)

I first have to do a computation. (How many more
children know it?)

Divide 360 degrees by 5, that is 72 degrees.
Tell me what I have to do (see figure 7, page 147).
Position the protractor near the center.

Do you mind that the protractor is smaller then
the circle I drew?

No. (That is the general opinion. We mark off an
arc of 72 degrees five times on the circumfevrence of the
circle.)

It does not look so neat on the blackboard. That

is because of the chalk. Make sure the point of your
pencil is nice and sharp. How can I succeed in placing
the second pentagon nea-ly against the first one? (We
look in the mirror and see where it has to be placed.)

Circle around with the compasses. (I demonstrate
it on the blackhoard.)

What now?
First the circle.
And then?

Mark off five times again. (Forgot to make the
compass2s wider and thus marked off the side of the
regular hexagon.)

Ycu did not do it correctly. You first have to

make the compasses wider. (At the end of the hour, many
children asked whether they could draw all the figures
once more. I gave them all a new blank sheet. At the
next class hour the chalk for the compasses for use on
the blackboard was nicely sharpened.)

Fifth class conversation Ib, was practically the same as that of



Page 97

Sixth class conversaticn Ia.

drawings.

During that day a lot of the work had to be drawn. Just that
day I had almost lost my voice. The pupils remade various

Pp. 16 and Pp. 18 made the puzzles first because they

had been sick the previous day.

Sixth class conversation Ib.

Tr.

Pp.

Tr.

Pp.

Tr.

Pps.

Place the first page with figures 1, 2, 3 and 5 in

front of you. We have many rore parallel lines in figure
1 then in figure 2. By positioning the tiles
differently, a whole set of parallel lines has
disappeared. In figure 5 - the figure with all those
triangles - we have three sets of parallel lines. Could
I also get rid of a large number of grooves (continous
straight lines) here by positioning them differently?

By moving the second row over a distance of half
a tile.,.

Dnes it have to be over a half a tile?

No. (Cne of the pupils draws on the blackboard what
is bheing discussed.)

Could I get rid of the parallel lines in figure 97
They also are all tr.angles?

Yes, of course, in the same way.

How is it that you all, except for one, made the

same drawing? We see that there arec many possibilities
of doing 1it.

We thought that the sides had to fit.

Yes, but the assignment only involved tiling the

floor. It can be done in many different ways. What

about the quadrangles of figure 107

You cannot move the quadrangles because there are
nn parallel lines.

On the second page you drew a floor with rhombi and

a floor with regular hexagons: figure 4 and figure 6.
Do we see something when we compare those figures with
each other?

There are hexagons in figure 4.

In order to check whether you all see those in the
figure I will ask you to erase a few line segments in
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figure 4 so that I car find the hexagon you have seen.
(This appeared not to be difficult.)

There also are still greater hexagons in the figure.
(The other pupils also see that now.)

Which figure contains more line segments, figure 4
or figure 6?7

Figure 4,

I thus have to add line segments to figure 6 in order

to see figure 4 in it. (This appears to be a difficult

task: a lot of help is needed.)

Can we also derive figure 5 from figure 47

Divide the rhombi in 2 triangles.

And from figure 62

Yes, by drawing the radii.

Can we also see the rhombi and the hexagons in figure

52 Is there also a stellated hexagcn in it? (This went
very easily.)

Now take figure 9. Each triangle has three angles.

Pick out a triangle and color the smallest angle of that

triangle with red. (All chose the correct angles,)

How do I go about helping somebody who does not see
which angle is the smallest one?

Use the protractor to measure the angle. (There
was no other opinion,)

Now color with red all angles of the same size.

(I had to warn many students not to forget any. The
warning itself was sufficient.)

Now color the largest angle of the triangle

blue and do the same for all angles of that size.
Finally give the third angle another color. (I made the
same drawing on the blackboard. See figure 9.)

We will now ask ourselves what we see at such a vertex.
Opposite angles that are equal.

I see three different angles.

The angles of the triangle are there, each twice.
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Pp. All angles together are 360 degrees.
Tr. Yes, good; one more thing.
Pp. Three of them make a straight angle,
Tr. Good, we indicate the straight angle with an arc,

Do I also see that straight angle in the other prints?
Pp. Yes, of course, exactly the same.
Tr. Can I see that straight angle in yet another way?
Pp. 25 Yes, on that other line.
Pps. Yes, also in that other direction.

Tr. That straight angle zan be positioned in three
different ways in the figure. We indicate each straight
angle with a semi-circle. Now go over to figure 10 - the
floor tiles with irregular quadrangles. Everybody has a
quadrangle made out of cardboard. In order to find out
where the equal angles are, we number the angles of the
rardboard model 1, 2, 3 and 4. You then colur equal
angles in the figure with the same color. Thus we use
four different colors. (Very soon, most children colored
the angles without using the quadrangle made out of
cardboard.)

Tr. Whac do we now notice in such a point?

Pp. There is exactly one of each angle, because there
are four different colors.

Pp. The four angles together are 360 degrees.

Tr. Good, we will call that a round angle. Which angles
were those? (I hold the cardboard quadrangle up.)

Pp. The four angles of the quadrangle,

Tr. The four angles of a quadrangle form a round angle

when we fit them together. Now watch out: I know that
the angles of a triangle form a straight angle when
fitted together. I claim that T can predict that the
angles of a quadrangle have to form a round angle when I
fit them together. Who thinks that he also can predict
that?

Pp. 30 It is true for a regular quadrangle because four
right angles together form a round angle, For a non
regular quadrangle, it is also true, because it is only
parceled out differently,

Q _ 1077
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Pp. I thought so too. You take away something from
one angle and you add it to the other.

Pp. 37 Four angles always form a round angle. (He could
not add anything to it,)

Pp. 38 I divide the quadrangle in two halves - so -
(movement along the diagonal) one triangle forms a
straight angle, so two form a round aungle.

Pp. 34 1 also had the idea of dividing the quadrangle in
two triangles,

Tr. Who explained it most clearly? (All pointed towards
Pp. 38.) (I color the three angles of one triangle and
then the three angles of the other triangle with chalk,
in order to make clear for everybody that one then has
obtained exactly the four angles of the quadrangle.)

Tr. You have all found that a floor cannot be tiled
with the pentagons. Pp, 30 has tried to do it stubbornly
- she did not want to give up. Perhaps, had she been

able to say beforehand that it would not work, she would
not have spent so much time trying to do it.

Pp. 30 It cannot be done because then you would get more

than 360 degrees., (Agreement from all sides.)

Tr. Can you say it exactly? (The bell rings. I hear
3 X 180 degrees from many sides, one girl say 2 1/2
times.)

Seventh class conversation Ia.
Tr. Pp. 17 does not draw squares in figure 3, but,..,.,.

Pp. 17 Rhombi. (He is iiven material consisting of a
board with nails and loose rubber bands in order to
make a plane covering with squares set on their vertex.)
(Moving the tiles with the intention of getting rid of
parallel lines here also did not present difficuities.
Pp. 9 had already drawn the equilateral triangles in that
way and the figure had already been looked at with that
in mind. Here also restructuring required much effort.
It appears to be difficult to redraw (in figure 6) those
line segments that have been erased in figure 4. When
coloring the smallest angle of the irregular triangle of
figure 9, Pp. 15 took an angle with the shortest side.
Therefore, I demonstrated using the material described in
Chapter IV (last paragraph) how an angle can grow.
Without my saying anything, he told me that he had
precisely taken the largest, the obtuse angle, because he
thought that the smallest angle should be adjacent to the
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shortest side. After we had colored the angles, we
started making observations about the angles which meet
at a point.)

In a triangle there is one of each, and at such a
point there are two of each.

If I take a mirror, I can s e that angle in the mirror.

Where do you place the mirror and what do you see?
(It was demonstrated on paper and on the blackboard that
it is not pessible to make the thres colors of the mirror
image coincide with the colors cf the real cbject.)

Folding. (The pupils again saw that this also did
not work and that in fact it came to the same thing as
mirroring,.)

Had the idea to fold twice, whereby the first
folding occurred along the bisector.

Yes, you can arrive at it by doing it that way, but

I can see it immediately. (The word .....* reminds them
of something.)

(*Trauslator's Note: The Dutch expression translated by
the word "immediately" contains the word "turn". So the
pupils are reminded of the word "turn" and this leads
them to the correct answer. It is a play on words that
is not meaningful in English since there is no equivalent
translation for that expression which was translated by
"immediately".)

Half a turn.
Rotate half a turn.

Put your pencil on a point and rotate the notebook
half a turn. Pay attention to the colors.

Three together form a straight angle.

Do we all see that a red, a blue and a yellow angle
together form a straight angle? (It appears to be so
becausz they now also find straight angles on the other
lines. Next, the pupils colored the four angles of the
quadrangle. They found that the four different angles of
the quadrangle meet in one point and there they form a
round angle.)

When I know that the angles of a triangle together
form a straight angle, how can I then predict that the
angles of a quadrangle together form a round angle?

You divide a circle in four quadrants and you say
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Pp.

Pp.

Pp.

Tr.

Pp.

Tr.

Pps.,

Pp.

Pp.

Pps.
Tr.

Pps.

15

that it is parceled out somewhat differertly in the case
of the other quadrangles,

(Wants to know first, whether a quadrangle can be
circumscribed by a circle. The answer came from all
sides of the class: a triangle can always bLe
circumscribed by a circle but not a Gquadrangle, I ask a
cocuple of pupils, but they have no idea.)

(hesitating) Yes, if only that diagonal divided
it into two halves, then .....

The diagonal divides the quadrangle into two triangles,
One of the triangles is a straight angle and so is the
other one.

Who has now said it most clearly?
Pp. 5
But who gave the idea to Pp. 57

Pp. 3 (Pp. 3 now also sees that the two parts need
not be halves. The three angles of the first triangle
and the three angles of the second triangle are now
marked with chalk on the blackboard and it is verified
that those together are the four angles of the
quadrangle),

The floor can be tiled with triangles and also with
quadrangles, but not with pentagons, hexagons, etc. One
of you spent a lot of time trying to do it. We would not
have to search so long, if we could predict that it is
not possible,.

You then get more than 360 degreecs.

Shows that it is 3 X 180 degrees, because he divides the
pentagon on the blackboard into three triangles. We
count 9 angles that together exactly form the five angles
of the pentagon,

Does this reasoning also hold for hexagons? for
heptagons?

Yes, because then you get still many more,

We have already made a plane covering with hexagons

though. Where?

Yes, the regular hexagons. (We look at figure 6
again. The bell rings. I hear a few pupils say: here
there are three in one point.)
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Seventh class converssation Ib,

Last time we saw that figure 6 can be obtained

from figure 4 by erasing a few line segments. Also from
figure 5. And figure 4 could also be derived frem figure
5 by erasing line segments. Conversely, we had to draw
line segments in order to obtain figure 6 ©back from
figure 4 or 5, Would this procedure perhaps produce
something new in the other figure? Take for instance
figure 9, the plane covering with the nonregular
triangles. Erase a line segment., Does anybody know the
new figure?

Yes, a parallelogram.

With three letters 'L'. .an I obtain other ones?

Yes, erase another line.

Perhaps still more.

Yes, exactly three, because there are three different
sides.

Can we say something about the parallelogram?
Yes, opposite angles are equal.

Opposite sides are equal,

Are the parallelograms congruent?

No .

How do you know that?

They do not fit on each other, the measurements are
different.

I can say something about those parallelograms though,
when I compare them with each other.

Yes, the areas are equa:.

How does she know that the areas are equal?

Each one consists of two of the same triangles.

(I drew the erased lines back on the blackboard such that
they could again see that the triangles are simply

attached to each other in different ways.)

Are there any more parallelograms in the figure, if
I allow more line segments to be erased?

11]




Pps.

Tr.

Pp.
Pp.

Tr.

Pps.

Pp.

Pps.

Tr .

Pps.

Pps.

Page 104

Yes, a whole lot.

Draw one with a3 colored pencil. (This did not
produce any difficulties.)

Now look at one of the first parallelograms and try

to find a parallelogram that is an enlargement of that
one. Draw the outline. (Most children take a
Farallelogram cthat is enlarged three times. Some
students, among others Pp. 25, did not succeed
immediately.)

A photographer sometimes makes an enlargement of a
photograph. A person on the second photograph is then an
enlarged image of the first photograph. Have you ever
looked in 2 distorting mirror? Is tha. also an enlarged
image?

No, it makes you very tall, or very shcrt and fat.

You are stretched in one direction.

Correct, you are enlarged in only one direction.

That long and narrow parallelogram of yours has looked in
the distorting mirror - it is also enlarged in only one
direction.

Now I see it - I need that one,

How many of the smallest ones can fit in the
enlargement? How many do fit in it?

Four.

Pp. 28 has drawn a still larger parallelogram. It

has been enlarged three times. How many parallelogram
can fit in it?

Six.

Nine,

There are three rows, each with three parallelograms.
By erasing a line segment in figure 9 we obtained

a parallelogram. Now erase two line segments. Who knows
the figure which we now have?

A trapezoid,

Can you find more than one?

Yes, they look different,
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What is the difference between a parallelogram and
a trapezoid? What is the distinction?

The opposite angles of a trapezoid are not equal.

The opposite sides are not equal.

A trapezcid has one pair of parallel sides and a
parallelogram has two.

What did we find last time at the end of the class
period?

The angles of a triangle together form a straight
angle, 180 degrees.

The angles of a quadrangle together form a round
angle, 360 degrees,

And then?

Draw the diagonal, then you have two triangles, 2 X
180 degrees = 360 degrees,

Yes, we could predict that the angles of a
quadrangle together are 360 degrees when we know that the
angles of a triangle together are 180 degrees. We then

asked whether we could cover a plane with pentagons. The
answer is no. Can we also predict that?

Yes, because there are three triangles, it is more
than 360 degrees.

How much exactly?

3 X 180 degrees = 540 degrees.

Draws the three triangles in the pentagon.
How much is that for a hexagon?

4 X 180 degree = 720 degrees,

Is it thus not possible with hexagons?

No.

Is it never possible with hexagons?

Yes, we have drawn it in figure 6.

Why is it possible with the regular hexagons?
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If the six angles are 720 degrees, then three angles
are 360 degrees.

Do we all see that? Only three angles meet in one

point of the figure. Would there be any other hexagons,
except for the regular one, with which we can cover a
plane?

We thought so. (I drew the hexagonal

tile shown here on the blackboard and

I gave each student a sheet of squared
paper.)

Try at home whether you can cover a plane with this

tile. Use a quarter or a half of a page for each
drawing. You may also try and find other hexagons with
which it is possible tn cover a plame. We call this
paper, squared paper. Are those geometrical rhombi.....?
[#*Translator's Note: The Dutch word for squared paper is
ruitjespapier. Ruit, however is also the word for
rhombus. That is the reason for the above question by
the teacher.]

No, squares.

class conversation Ia.

gave the same introduction as in class Ib. The pupils
a line segment in figure 9.

12

11

4

11

11

Which figure did we obtain?

A rhombus.

No, becauss the sides are not equal.
It is a rectangle.

No, because the angles are not equal.
It is a parallelogram.

You have not all erased the same line. How many
different parallelograms are there?

There have to be three difterent parallelograms
because there are three different sides.

Make all three. Are they not congruent?

No.
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Pp. 1 (hesitates.)
Tr. How could I check that?

They do not fit on each other when you cut them out
and you stack them.

[*XS

Pp.

Tr. What do we see when we look at the parallelograms?
Pp. 1 Each time two parallelograms have a common side.

Pp. 9 The lengths and widths of a parallelogram are
equal.

Tr. That is the right idea but we prefer to say side
instead of length and width.

Pp. 9 The sides are equal.

Tr. Which ones? All of them?

Pp. 9 The opposite sides are equal.
Pp. Opposite angles are equal.

Tr. Look carefully at how the three parallelograms are
made. What do you notice about them?

Pp. 12 Equal area.

Tr. Who can explain why the areas of the three
parallelograms are equal?

Pps. They are the same triangles, (Next we searched
for an enlargement. All pupils made a two-fold
enlargement. The story of the distorting mirror appeared
to be necessary here toc. The rneme trapezoid appeared to
be known.)

Tr. What is the distinction between parallelogram and
a trapezoid?

Pp. The sides are no longer equal.

Pp. The angles are no longer equal.

Pp. 4 The areas are not equal, because the one is made
out of two and the other is made cut of three triangles,.

Pp. 8 But it can be equal though. You certainly can draw
a trapezoid that has the same area as a parallelogram,
(Nobody doubts that, not even Pp. 4.)

Pp. 7 A trapezoid has only one pair of parallel sides and
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a parallelogram has two pair.

Pp. 16 I wanted to say the same. (Then we reviewed what
we found at the end of the preceding lesson.)

Tr. Why is it possible to tile with regular hexagons?
Pp. Because all sides are equal.
Tr. The regular octagon also has equal sides, and yet

with regular octagons it is not possible. It cannot thus
be a matter of equality of sides.

Pp. Because all angles are equal.

Tr. We are getting closer, but that was also the case
with the regular octagon and pentagon.

Pp. Yes, but only three angles meet.

Tr. Yes, let us do some computations. How many degrees
are the six angles when taken together?

Pp. 720 degrees,
Tr. And then?
Pp. The three angles together are half of that, that

is 360 degrees,

Tr. Good, and that is not the case with the non-regular
hexagon. It does not work with the non-regular hexagon.
It does work with the regular hexagon. Would there be
any other hexagons with which it would be possible?

Pps. I think so. (These pupils were also given a model
of a hexagonal tile and they were asked to try and find
hexagonal and pentagonal tiles for themselves at home.)

During the next lesson the pupils worked on a problem. Each
Pupil was given a quadrangle made out of cardboard and of a shape
as shown here. The question was: Would it be possible to pave a
floor with tiles of that shape? Do noc only
answer yes or not, but write down all your
thoughts on this problem. When you are ready,
draw a line under your work and turn the page
50 I can see that you have finished. After 20
minutes I handed out bags with the same tiles.
Task: Check whether the answer you gave is
correct. You may add comments on your sheet
under the line you drew. (See further
discussion in Chapter XII.)

|
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Eighth class conversation Ib.

First I drew some interesting findings of the children on the
blackboard - pentagonal and hexagonal tjles. Then I gave the task
of coloring those tiles such that no two of the same color were
adjacent to each other and such that the number of colors was as
small as possible. The same colors were allowed to meet in a
verte< though. The pupils with less imagination could use the
given examples,

Tr. Last time you investigated whether it was possible
to pave a floor with quadrangular tiles of this form.
(Here I drew the quadrangle with the re-entrant angle on
the board.) A number of you had decided beforehand that
that was not possible. Then it appeared that it was
possible after all. How could I have predicted that it
would be possible?

Pps. This quadrangle can be divided in two triangles and
hence the angles together form a round angle.

Tr. I wrote down the following on the blackboard. You
will give me the figures and tell me each time how you
obtained them.

The sum of the angles
of a trizngle is 180°

l

of a quadrangle of a pentagon of a hexagon
3600 5400 7200
Tr. What would those arrows mean? You sometimes see

them in a history book or in a family novel,.

Pp. 28 The three items below follow from the item above.

Pp. 37 A genealogical tree.

Tr. Exactly, now I claim that from "the sum of the
angles of a quadrangle is 360 degrees" something else
follows. What?

Pp. With each quadrangle a floor can be tiled.

Tr. Good, we will write that down:

Each quadrangle can be
used to cover a plane.

117




Pp.

Pp.

Tr,

Pp.

Tr.

Pps.

Tr.

Pp.

19

32

34

Page 110
What can I write undetr: The sum of the angles of 2
pentagon is 540 degrees?
A floor cannot be tiled vith pentagons,
But what has been drawn on the blackboard here
then? Those are pentagonal tiles with which it was
possible.

A floor cannot be tiled with regular pentagons.

Then I do not know much about the other pentagons.,
What about those?

Not every pentagon can be used to cover a plane.

Do we agree with that? And what do I put under:
The sum of the angles of a hexagon is 720 degrees?

Exactly the same: Not every hexagon can be used
to cover a plane.

Do we remembz2r yhat a parallelogram is?
Yes .

There was another kind of figure also.
Trapezoid.

Do we remember what the distinction is between
those two figures?

The parallelogram has equal sides, "so and so" (hand
motions) and the trapezoid does not have :that.

Do I know then what a trapezoid is? The sides "so
and so" not equal. (I drew a quadrangle with unequal
sides.)

In the trapezoid one pair of sides is parallel
and in the parallelogram two pairs.

Next time you are all to bring a sheet, covered with
parallelograms; you may choose the measurements
yourselves. Would it also work with trapezoids.?

Yes, because they are quadrangles,

Then you will also draw a half pageful of trapezoids
at home. (They wrote that down on their schedule.)

We will look again at the first page of our figures.
In those figures, we noticed many straight lines. 1In
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figures 4 and 6, on the second page, we did not see
straight lines. While you were drawing I asked you:
What do you see in the figure? (Pp. 34 answered then:
No straight lines, but zig-zag lines.) Do you see one?
Color it then,

I see many more than one.

If you see more than one, then color two
different ones. Again start with figure
1. (A number of children had the tendency
to color the broken line shown here when
they worked on figure 2., While they were
doing it they started to doubt. They
asked me whether that line was also a
zig-zag line. I then drew the correct
figure on the blackboard. Back and forth,
bYack and forth, etc.

What does this figure remind you of?
Flashes of lightning.

You can make one like that with a folding pocket-rule
and then you can give it the shape you want.

Since we are talking about the carpenter, what coes
he use? (Before I finished the sentence the words came
from all sides.)

Ninth class conversation Ia,

First I drew on the blackboard the pentagonal and hexagonal
tiles the children had found and I gave them the task of coloring
them by using as few different colors as possible.

Tr.

Pps.

The quadrangle you looked at last time had a strange
form. Some of you therefore thought that it would not be
possible to pave a floor with it. Afterwards it appeared
that it was possible after all, when you tried it out
with a large number of cardboard models which you yere
given. How could I have predicted it?

The quadrangle can be divided into two triangles and
then the four angles together form a round angle,

You could also divide the quadrangle into three
triangles,

Yes, certainly - let us now add up the angles.

Then you take too much.
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Let us look at it carefully.
Angles 1, 2 and 3 together
180 degrees. Angles 4, 5

and 6 together 180 degrees,
That is together 3 X 180
degrees., What did I take too
mu.h?

A straight angle there
(pointing) and again one
at the other side.

Thus take away 2 X 180 degrees. I am left with
1 X 180 degree.

A Straight angle has been forgotten at the point
(pointing).

Do we all see it? The re-entrant angle has not been
counted completely. (Indicaied it with an arc). We thus
get....?

Yet again 360 degrees.

Even though we can compute the sum of the angles in
different ways, we always obtain 360 degree ..

Yes, of course, it has to be like that. (We then
wrote down the genealogical tree, see eighth class

conversation Ib.)

What follows from: The sum of the angles of a
pentagon is 540 degrees?

With some pentagons it works.

You mean: a floor can be tiled. Yes, from what
does that follow?

From the tiles drawn on the blackboard.

Yes, but what I really asked was: What follows from:
The sum of the angles of a pentagon is 540 degrees?

It is only possible if, for example, three angles
together form a complete angle.

It is possible with irregular ones.
How do you know that?

I can see it from those tiles. (Points towards
the drawings on the blackboard.)
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It does not work with all pentagons,

Thus in summary we can say: Nct every pentagon

can be used to cover a plane. Pp. 2 has indicated how it
can be and we have seen from the figures that it is
possible indeed.

And how about the hexagons?
Not every hexagon can be used to cover a plane.

Last time we found a couple of new quadrangles,
What are their names again?

Parallelogram and trapezoid.

Can somebody tell me what the difference is between
those two?

Yes, for a parallelogram one line segment had been
erased, and two for a trapezoid.

Good, we arrived at the figures that way. But Pp.
10 was not here last time. Who can tell her exactly what
the distinction is between the two figures?

A trapezoid has one pair of parallel sides, and a
parallelogram has two. (Many wanted to say the same
thing.)

For the next lesson you will make a floor, tiled

with parallelograms whose measurements you may choose for
yourselves, Would it also be possible using congruent
trapezoids? (See figures 11 and 12, page 150.)

Yes, because it is a quadrangle.

Good. It has to work. Make half a page full for

each figure, (Next we looked at figure 6 and we found
zig-zag lines, see class conversation Ib., When asked

what they saw in the figure, they answered:)

The letter Z, the letter N, the letter W, the
letter M.

A flash of lightning. (Some pupils did not think that
was true.)

A saw.

We will call this figure a saw. From what can we
recognize a saw in such a figure?

You can see that from the angles.
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Tr. Can you recognize it from something else? (This
took awhile).

Pp. 12 From the parallelism of the lines.

Tr. I call a saw an open figure. Why?

Pp. Because you can continue on and on - there really i{s no
end.

Tr. Who can name other open figures?

Pp. 2 Straight lines.

Pp. 17 An angle and a point.

Tr. There are ladders in the figures. The uprights can run
towards each other as in figure 5, or they can be
parallel as in figure 1 . Try and find semi-ladders in
the figures - one upright with rungs.

Pps. You can only look for ladders in the figures where there

are straight lines. Figure 6 cannot be taken into
consideration, neither can figure 10.
Ninth class conversation Ib.
Tr. What did we loock for in the figures yesterday?
Pps. Saws.

Tr. I called the saw an open figure. 1Is a triangle
also an open figure?

Pps. No.

Tr. Name another open figure.

Pp. 37 A cylinder, you can look through it.

Pp. 35 A straight angle.

Pps. Acute angles. Obtuse angles,

Tr. I can see in figure 5 a ladder with two uprights
that run towards each other and many rungs. (I drew an
upright with rungs on the blackboard., This is also an
open figure. Look for ladders, one upright with rungs in

figures 1 through 12 (pages 143-151).

Pp. There cannect be any in figure 6, because there is
no upright.

perb
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Last time we looked for saws in the figures. From
what can I recognize a saw?
From the angles that have to be equal.

Can I recognize the saw from something else? From
the lines perhaps?

Yes, they have to be parallel, one set 'so' (hand
movement) and one set 'so' (hand movement).

From what do I recognize a ladder?
From the parallel rungs.
Can I also see it from the angles?

The rungs form the same angles with that line (by
this is meant the upright) on the upper side.

And on the underside?

Nct equal to the upper ones. All lower angles are
equal to each other.

So as not to get confused we call all upper angles a

set of corresponding angles and all lower angles another
set of corresponding angles. When I see that all lower
angles are equal, is the figure then a ladder?

Yes.
We now write in the notebook:

I recognize the saw from its equal angles, or
from its parallel lines (two sets).

I recog ‘ze the ladder from its parallel lines,
or from its equal corresponding angles (one set
is sufficient).

(Next each child was given a pentagon of the shape drawn
here).

There is a re-entrant angle in th»

pentagon you received. Try to find
out how many re-entrant angles a
pentagon can have at most. Write

down all your thoughts on this,
Next, try to draw such a pentagon on
the other side of your sheet. (They
were given ten minutes to fiad the
answer. See further discussion in
Chapter XII, p.162.)
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Tenth class conversation Ia.

Tr.

Pp.
Pp.
Tr.

Pps.

Tr.

Pps.

Tr.
Pp.

Tr.

Pp.

Tr.

Tr.

Pps.
Tr.

Pps.

Tell me again how the saw can be recognized in the
figures.

From the equal angiles,

Also from the parallelism of the lines.

How do I recognize the ladder?

From the parallel rungs.

Is there also another way to recognize a ladder?

The rungs each time form the same slope with respect
to the upright. (I drew half a ladder with sloping
uprights.)

Do you understand what Pp. 2 means?

Yes, those angles are equal. (One pupil shows it
on the blackboard.)

Are the other ones also equal?
No, only when it is a straight ladder.

Good. Are the lower angles not equal to each other
here then?

Yes, equal to each other, but not equal to the upper
ones.

We call all upper angles a set of corresponding

angles - they correspond to each other - they are
positioned like that in the figure. The other set of
corresponding angles is always on the underside. (Next,

we write down how we recognize the saw and also the
ladder, see 9th class conversation Ib.)

Figure 9 has many saws and many ladders. Have you

found those? (I check that). 1In that same figure we
have seen a parallelogram and we have drawn an
enlargement of it. Ve are going to look now at the other

pages and try and find figures that also have been
enlarged. Which figure do we see in the first tile
floor?

A square,

Are there also enlargements in the figure?

Yes, two times, three times.
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In mine even four times.

Draw their outline. I will come around and look at
what you are finding. (One does
not find an enlargement in
figure 2. Pp. 6 hesitates.
Would the figures drawn here be
enlargements of each other?)

Is the shape still the same?
When I look at figure I

with a magnifying glass, do I
get figure II if the glass |
magnifies exactly twice?

No, there is only one indentation.

I see other figures in addition to triangles in
figure 5.

Then you should check whether there also are

enlargements of those other figures. If you find any,
color them. Perhaps you will find other figures that are
enlarged in the preceding drawings as well. (Rectangles
are found in figure 1. 1In figure 4, only hexagons and
enlargemnts. In figure 6, no vnlargement. In figure 3,
triangles, rhombi, trapezoids, parallelograms, hexagons,
stellated hexagons, etc..) (The last ten minutes are
spent on the same problem about the pentagon as in Ib.)

Take the sheet cuvered with parallelograms in front
of you (see figure 11). What figures are numerous in
that drawing?

Ladders.
Saws.

Color one of the angles in the middle of the sheet

with red. Look for a ladder or a saw of which this angle
forms a part. liten color the same angles of the ladder
or the saw with red. Then you will look for another
ladder or saw that has a red ang:e. Color the angles
that are equal to that red angle with red also. Go on in
that fashion. Count the number of ladders and saws that
you have used. Record your result.

There are many more ladders then you make use of.
Should I count those also?

No, you only count those you have used. (I had to
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help here and there to find the saws. Almost all the
children chose ladders, Many had to be made aware of the
fact that there were more angles of the same size as the
first angle.)

Now check whether you have used the saw at least once.

Some time ago we made a genealogical tree. Who can
remember what it looked like? What was at the top?

The sum of the angles of a triangle is 180.degrees.
What followed from that?

The sum of the angles of a quadrangle is 360 degrees.
The sum of the angles of a pentagon is 540 degrees.
The sum of the angles of a hexagon is 720 degrees.

How did that follow from it?

You divide the quadrangle into two triangles and then
the angles together are 2 X 180 degrees = 360 degrees.
The pentagon is divided into three triangles and the
hexagon into four.

I thus use "the sum of the angles of a triangle is

180 degrees" successively twice, three times and four
times. I indicate that with two arrows in the following
manner:

The sum of thc angles of a triangle

is 180°. "__1

'

The sum 2f the angles of The sum of the angles of
a quadrangle is 3609, a pentagon is 540%.

You have already written down this genealogical tree in
your notebook. Now put in the correct number of arrows.

I now draw a simple parllelogram on the blackboard
and I color one angle with red. Is there another angle
that has the same size as this one?

Yes, the opposite angle.

I do not color this angle with red yet, but I write
down the following rules The opposite angles in a

parallelogram are equal. I would like to know whether
this rule also has forefathers. (I drew two arrows above
it.)

Yes, I know it: the ladder.

i
O
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Where do you see a ladder?

Extend the line.

Come and draw the ladder in the figure (blue). Good.
Which angle has the same size as this red angle? (Color
that one also with red. What now? Is that it?

Now a saw.

Good. You come and color this one (green).

Then the angle colored last is again equal to that

one. (At the same time he colored the opposite angle of
the parallelogram with red.)

Are we ready?

Yes.

Who are the forefathers?

The ladder and the saw.

How many arrows?

One from each.

Write this short tree in your notebook.

Ladder Saw

The opposite angles in a
parallelogram are equal.

Can't you also do it in another way?

How would you do it?

Fold the triangle.

Look carefully. You can also use a mirror.

No, I can see it already. Then it would become a kite.

Pp. 23 has a genealogical tree, even though she may

never have checked who her forefathers were. Pp. 21 also

has one. Perhaps they descend from the same

great-great-great-grandmother because both their names

are M. Then their genealogical trees are linked

somewhere. Instead of two genealogical trees, there
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would be only one in fact. The short tree we just found
may perhaps belong to that other larger genealogical
tree. Only I do not know where the link is situated. We

have alrecady found rany truths in the figures.
Practicing geometry is, among other things, looking for
relationships that exist between truths. It is
interesting to try and join everything in one large
genealogical tree. It may take us as much as three
years. We ultimately want to know what they are
descended from and that, of course, is the most
difficult.

I know it: it is the point. A line originates out
of a point, an angle out of a line and next a triangle.

We will see whether you are correct. In the

meantime I am very doubtful about that. Let us first try
and see whether we can find a forefather of: "The sum of
the angles of a triangle is 180 degrees". (I drew a
triangle on the blackboard).

Does anyone perhaps see a forefather? 1 first have
to add something to the drawing.

Through that point a line parallel 'so'. (She
indicates a line through the top, parallel to the base).

Do you understand it? 'So'. (I drew the line).

(Enthusiastically) I see it - I know it already.
A saw and another one.

Now calm down. First Pp. 28 will color a saw and
colv. the equal angles. Next Pp. 30 will color a saw and
color the equal angles. Is that it?

Yes, they form a straight angle.

Who is then the forefather?

The saw.

How many times has it been used? How shall I write
it then?

Saw and then two arrows

underneath and then...

The sum of the angles of
a triangle is 180°.
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Tr. Where can you write this in your notebook? Is there
any room left?
Pps. Above the other one. (The pupils write it above).
Pp. 36 It can also be done in another way.
Tr. Yes, tell us about it
Pp. 36 I make a ladder. I extend that
line. And I add another
rung. (He draws the figure

shown here on the black-
board).

Tr. Which forefathers are involved
here? And how many times?

Pps. The ladder once and the saw once.
Tr. This is outstanding. We thus see that it can be
demonstrated in more than one way. Can it be done using

the other vertices?

Pps. Yes.

Eleventh class conversation Ia.
(This class conversation was practically the same as the
preceding one until:

Ladder Saw

The opposite angles in a parallelogram
are equal.

Then it is asked:)

Pp. 4 Could it be done differently? You can also divide
the parallelogram into two triangles which are the same.

Tr. Yes, it can be done like that also. We will do that
some other time. Do you understand the way we have done
it now?

Pp. 4 Yes, that was not difficult.

Tr. Pp. 4 and Pp. 7 perhaps have the same great-great-
great-grandfather when you would look at their
genea.ogical trees, because both their names are P.
Then their genealogical trees are linked together there.
Let us see whether we can investigate of what the rule:
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The sum of the angles of a triangle is 180 degrees, is a
result. (I drew a triangle on the board.)

I can see how it should be done (here she looks

in her notebook.) You extend that line and draw a
parallel line, and then you have a ladder. (See above
figure.)

Can we all see what Pp. 11 means? (I drew the lines

in the figure. One of the pupils colored the ladder and
gave the corresponding angles the same color. Another
pupil colored the saw and gave the corresponding angles
the same (different) color, so that the straight angle
was made obvious.)

Where can I place the tree?

Ladder Saw

‘oo

The sum of the angles of a
triangle is 180°.

Above the other one.
Write it there in ysur notebook. That same ladder and

saw already were the forefathers of another tree. We can
thus link them in a tree.

Ladder Saw
The sum of the angles of a ———wxq Opposite angles in a
triangle is 180°. parallelogram are equal.

The sum of the angles of a
quadrangle is 5600,

v

etc.

You now have seen arn example of what we frequentiy do in
geometry. We already know a great deal about geometric
figures. We are now going to try and find certain
relationships, and finally we will try to join everything
we have found into one genealogical tree.

In the other group, the children drew this line.
(I drew a line thiough a vertex parallel to the opposite
side.)
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Yes, I see it, With saws. (Here too, a couple of
children colored the equal angles with the same color and
again the straight angle was made obvious.)

Eleventh class conversation 1b4.

Tr.

Pps.

Tr.

Pps.
Pps.

Tr.

Pps.
Pps.

Tr.

Pps.

Tr.

Twelfth

Tr.

Pp.

Place figure 9 in front of you. You found two
parallelograms in this figure. One parallelogram was an
enlargement of the other. Msost of you had enlarged the
parallelogram twice., Pp. 28 had enlarged it three times.
We now start with figure 1. Do we see a figure irn this
drawing that is also present in an enlarged form?

A square. Twice. Also three times. Perhaps four
times,

You will draw those figures and their enlargements

on a new sheet of paper. Draw their real size. Start
right now because I believe you have a lot to do. I will
walk around. Feel free to ask anything.

There is not anything in figure 2 is there?

We find the same in figure 3 as in figure 1.

Such figures you need not draw twice, of course.

Write under the drawings which figures they were taken
from.

I see hexagons and enlarged hexagons in figure 4.

There are many figures in figure 5.

Yes, there are many figures in figure 5, If there

is an enlargement of such a figure it should be included,
of course. Perhaps you will alsc find another figure in
the first tiled floor.

A rectangle,

Whoever did not finish, may continue at home.

class conversation Ia.

We are going to look at the tiled floors in a completely
different way. Imagine the floor extended so that you do
not see the ends., Could I then find axes of symmetry in
the first tiled floor? (I had already drawn that tiled
floor on the blackboard.)

Vertically, along that line that is there already.
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Good. (I mark it with colored chalk. May I take
this one also vertically? (I point to another one.)

Yes.

We will draw only one of each kind. Do you see
any other kinds?

Horizontally.

Good. (I drew a horizontal axis of symmetry.)
any more?

Obliquely, along the diagonal.

And of course also alcng the other diagonal. (I drew
both of them on the figure.)

Whoever finds it difficult should use a mirror. Are
there any more?

Divide the tiles exactly in half. Vertically.

And horizontally as well. (I drew those on the board.)

Does the figure have centers of symmetry? That means:
Can I find a point such that when I rotate the figure
around that point, I get the same tiled floor?

Yes, I see one. (He comes and indicates a point of
intersection in the middle of the drawing.)

Yes, all those points - vertices.

0f what order is that center?

It is of the fourth order because you rotate the
figure a quarter of a turn,

Are there, except for those points of intersection,
any more centers of symmetry?

The centers of the squares.

What is the order of these?

They are also of the fourth order. (i draw such
a point ard write down IV next to it.)

Are there any more centers of symmetry?

No.

They are not so easy to find. I will help a little.
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There are more centers of symmetry, but not of the fourth
order. It is the same case as with the rhombus. (I drew

a rhombus.,) This figure has_a center, but not of the
fourth order.

Of the second order because you have to rotate half
a turn.

Yes, can you now find one like that in the tiled floor?

In the middle. (He comes and indicates the correct
point on the blackboard.) I write down Il next to it.

Last week you searched for enlargements and you
drew them. I now give you the following assignments:

I. Draw the figures and the accompanying enlargements
side by side on a new sheet of paper.

IT. Draw axes of symmetry in the tiled floors.

II1. Indicate centers of symmetry, as I have
demonstrated on the blackboard and write down next
to them what the order of each one is. First you
work on figure 1, then figure 2, etc.

(The class conversation then proceeded similarly to the
eleventh class conversation Ib.)

Twelfth class conversation Ib.

Tr.

Pps.

On the board I drew the figures and enlargements
which could be obtained out of the first tiled floor.
What did you find?

A square. Enlarged two, three and four times. A
rectangle., Enlarged two and three times.

Did anybody find sowmething in the second tiled floor?
No.

And in the third tiled floor?

The same figures as in the first one.

And in the fourth tiled floor?

A hexagon and a hexagon that is enlarged twice.

And in the fifth tiled floor?

Triangles. Enlarged once, twice, three times and
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four times. The same hexagons as in the fourth tiled
floor. Trapezoid, enlarged twice and three times.
Phombi, enlarged once, twice and three times.

The whole blackboard is covered with figures, Let

us first look at them. The s'de of the square is doubled
- next taken three times and then even four times. Has
the area also been doubled?

No, it has become four times as large,

How do you know that?

You can divide that large square into four small
squares. (I draw the division in the large square.)

And when I enlarge the side three times?
Then it is nine times.

And four times enlarged?

Then it becomes sixteen times.

Now the rectangles,

It is the same.

How do you know that?

The large rectangle can be divided into four
rectangles and the next one into nine.

Now with the triangles.
The second one can be divided into four triangles.

We have seen that in the algebra class, Then we
have 9, 16, 25, etc.

Now the regular hexagon.

It does not fit in it.

Would the area really be four times as large?
fes, four times.

How can I see that?

Divide.

What does Pp. 37 mean?
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Pps. Divide the hexagon into triangles and then count them.
Tr. How many triangles in the first one?
Pps. Six. (Next, together we count the number of

*riangles in the second hexagon that first has been
divided into six large triangles.)

Pps. 24. Hence, four times as large.

Tr. And if I were to take a hexagon that has been
enlarged three times?

Pps. Then it becomes nine times as large as the first one.
Tr. Now the trapezoid.
Pps. Again, it does not fit, Also divide into triangles.

Tr. Now you make the divisions for yourselves in your
notebook. What do you find?

Pps. 3, 12, 27,

Tr. Would it always come out?

Pps. Yes.

Tr. Let us then write this down in your notebook. When
I look at the first row of figures, what has remained the
same? When I look at the second row of figures, what has
remained the same?

Pps. The shape.

Tr. Upon enlargement, the shape of the figure remains
the same. Write down:

The shape of the figures remains the same upon
enlargement. We therefore call the figures
similar.

When the measurements are enlarged ? times, the
area becomes 4 times as large.,

When the measurements are enlarged 3 times, the
area becomes 9 times as large.

When the measurements are enlarged 4 times, the
area becomes 16 times as large.

(Next, we looked for the axes of symmetry and the
centers of symmetry. The lesson further proceeded
as in the twelfth class conversation Ia.)
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Thirteenth class conversation Ia.

(For

the beginning of this lesson see twelfth class

conversation Ib.)

Tr.

Pp. 14
Tr.

Pp. 14

Tr.
Pps.
Tr.
£ps.
Tr.

Pps.

Pps.

Pp. 10

If I enlarge the side of the square 3 times, how many
times is the area then enlarged?

Six times.

How do you know that?

It is nine times, I can fit the small square nine
times into the large one, three rows of three. (I draw
the division on the blackboard.)

And if I enlarge the square four times?

Then the area becomes 16 times as large.

What about the second figure: the rectangle?
Again 4, 9, 16,

And the small triangles?

Then it fits three times.

No, four times.

Yes, four times,

How do we find out who is correct?

Divide into small triangles. (One of the pupils
does that on the blackboard.)

We find four times. And what about the next triangle?
Nine little triangles.

Now we turn to the areas of the hexagons. If the

side has been enlarged twice, what do you think the area
of the enlargement will be?

It does not fit in it,

Wnat do you think thec answer should be?

Fcur times also.

How shall I demonstrate that?

136
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Pp. 7 First compute the area.
Tr. Good, how do you compute that?
Pp. 7 I do not know.

Fp. 6 I had thought of dividing the 1Xagons into
rhombi,

Tr. Good, come and demonstrate it on the blackboard.
We find 3 rhombi and 12 rhombi. lt fits. Hence, again
four times,

Pp. 15 Can it not be done in another way?

Tr. Yes. How did you want to do it? Come and draw it
on the blackboard.

2
y N
\%, ;VN/

-
3] e

fig., 1 fig. 2

(He draws two parallel lines and after some hesitation,
he divides the isosceles triangle into two congruent
triangles. See figure 1 above. Is it finished?

Pp. 15 No. (He draws figure 1 and counts four times as
many triangles in figure 2 above as in figore 1.)

Tr, Us it necessary to still further divide the triangles
in figure 17

°p. 15 No, but I did not see how to do it then.

Tr. I erased two line sefments in the first figure. Now
vou erase the correct line segments in the second figure,
(He did this correctly.)

Tr. However we divide the figure, we always find that if the
side has been enlarged twice, the area becomes four times

as large. And if the side is enlarged three times?

Pps. Then the area becomes nine times as large,
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Now we will turn to the trapezoids. Does th: same
apply here too?
Yes.

Make a division for yourselves so that this is
apparent. (All divide the trapezoids into triangles,)

When we look at such a row of figures, for example,
all rectangles or all triangles, what has remained the
same?

The shape.

Figures that have the same shape, we call similar.

Now write down in your notebook: When a figure is
enlarged, the shape remains the same. Therefore, the
figures are called similar., When the measurements are
enlarged twice, the area becomes 4 times as large,
etc.

Those numbers are the square numbers. Can't we
summarize those sentences?

Yes. Certainly. Try it.
The areas of the figures are the square numbers.

Is that so? Look once again at the rov of the

triangles. Is the area of the second triangle equal to

four?
No, it is not correct.
Time iz up now. You will see later that you are

right, that those three sentences can be summarized in
one scontence.

Thirteenth class conversation Ib and twelfth class conversation

Tr.

Pp.

Tr.

Pp.

Place figure 5 in front of you: the plane covering
with equilateral triangies. You found the centers of
symmetry in that figure. A center of symmetry of the
sixth order - what does that mean?

After rotating six times it stands right again.

And after a sixth of a turn? Think of the plane
as being extended far away.

Then it fits also. After rotating six times it
went around completely.

to

Ia.
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Tr. After rotating a sixth of a turn, the figure covers
itself again. It looks again as before. By rotating,
the figure can cover itself. This can be done in another
way. How?

Pps. Through mirroring.

Pps. Through folding.

Tr. Yes, we also sometimes talk about flipping ove~.

Along which line shall I flip?

Pps. Around that one, or that one.

Tr. What are they called?

Pps. Axes of symmetry,.

Tr. The tiled floor can also cover itself again through

displacement (translation). We still think of thz tiled
floor as being extendzd far away.

Pp. Yes, up obliquely. (I indicate this with an arrow,
No. 1.)

Tr. Are there any other solutions?

Pp. Yes, up obliquely on the other side (I draw arrow
No. 2.)

Pp. Horizontal. (Arrow No. 3.)

Pp. Also to the left. (Arrow No. 4.)

Tr. Any more?

Pp. Up vertically, (Arrow No. 5.)

Tr. Any more?

Pp. Yes, froem that point to that point.

Tr. Come and show it to us. (Arrow No. 6.)

139




Page 132

Then also to the left, {Arrow No. 7.)
May it also go downwards?
Yes, why not?

Then a whole lot downwards. (Arrows No. 8, 9, 10
11, 12,)

Any more? Could I also slide it over two tiles?
Yes, of course. (I draw arrow No. 13.)

I can do the same with all thoce arrows.

Good, any more?

Yes, I see some mor2. (He comes and indicates
which one he mz2ans. I draw arrow No. 14.)

It can go on and on.,

There ar: meny directiows inm which one can displace
(sliq | a plane covering such that it will cover itself
agair (In both classes the pupils followed the same
sequenc2. Firsi to the right, thon upwards, then to the
left, then horizontally to the right and to the lett,
then vertically, then downwards.) Next the pupils were
given the following tusk.

draw an angle, and then a

:cond angle whose legs
ive parallel to the legs of the
first angle. Can you say 2
something about those angles?

They are equal.

I color the first angle with red. Now you will
try and find out what this equality fo.lows from. I
wrote, with two arrows above it:

Two angles, whose legs are parallel,
are equal.

You write down all your thoughts,

14v
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Fifteenth class conversation Ib and fourteenth class conversation
Ia.

I started this lesson by writing the following problem on the
blackboard:

1. An entrance hall of 17 by 20 dm is being paved with
square tiles whose sides are 1 dm. Draw this tiled
floor. Scale 1:10.

Tr. Do all of you know what that means?
Pps. 1 cm on the drawing is 10 cm.
Tr. What measurements do we have to use for the drawing?
Pps. 17 cm and 20 cm.
Tr. 2. Draw the same entrance hall, this time paved
with regular triangles whose side is 1 dm.
Scale 1:10.

3. Draw a hexagonal market place (regular hexagon) with
2 sidn of 10 meters. Scale 1:10., Pave this alsc
with square tiles whose sides are 1 m.

4, Draw the same market place, but now covered with
triangular tiles, whose side is 1 m. Scale 1:100.

(The pupils who had received a satisfactory grade for a
certain algebra test were allowed to start drawing
immediately. The others spent the rest of the hour
discussing with me the errors they made on the algebra
test. They had to make the drawings at home.)

Sixteenth class conversation Ib and fifteenth class conversation

Ia.

Tr. Let us first look at the drawings of the entrance
hall. If the square tiles cost F 1.60 and the triangular
ones F 0.70, which pavement is the most expensive?

Pps. This can be answered immediately. The square tiles.

Tr. Why?

Pps. Because half of F 1.60 is equal to F 0.80. The
square tiles are more expensive.

Tr. But you need less of them?

Pps. Yes, but you have twice as many triangles as squares,

Q 1‘11
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Who else found that? (Six pupils in both classes.)

Look carefully at your drawings. Have vou diawn regular
triangles whose side is 1 cm? (They had Arawn semi
squares.)

No, one side is longer than 1 cm.
The triangle is one half of the square though.
Let us draw it precisely.

(Draws a square with an equilateral triangle in it
with the compasses.)

Is it half of it? Less than half or more than half?

It is half if it goes all the way to the top. (She
had not drawn it incorrectly in her notebook, but she had
not seen that there were more than 17 rows.)

Good. (I drew it on the blackboard.) How dc you
krow that?

The two outmost pieces are then together exactly
Aas large as the triangles,

Which tiled floor is more expensive?

Then you first have to count the tiles. (I point

to one of the boys who writes the computation on the
blackboard.) There are 17 x 20 = 340 square tiles
needed. This costs 340 x F 1.60 = F 544.

Now we will compute the other .ne. (They counted
20 rows, each of 40 tiles.)

There are 20 x 40 = 800 triangular tiles needed.
This costs 800 x ¥ 0.70 = F 560,

That is more expensive,

But the tiles that are now in the entrance hall

are expec‘ally nice. We will now examine the regular
hexagon. (I drew the hexagon and I asked how the pupils
had done it. All but one pupil had drawn the figure.)

Mark the circumference with points.

How many triangular tiles do we need and how nany
squares? (Many pupils first wanted to count them.)

In one triangle theie are 100, hence there are 600.
(100 had been counted.)

-
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There are 100 in the large trirangle., ¢ learned
that in algeb.- class,

I first took half of it.
This trapezoid?

Yes, and then counted.
How?

I just counted, the odd numbers: 21 + 23 + 25 + 27 +
29 + 31 + 33 + 35 + 37 + 39, And then multiplied the
answetr by twn.

I did the same thing, but I have added the first
and the last and multiplied that by 5.

I summed up 1 + 3 + 5 + ..... + 19, that is 5 x 20.
I multiplied that by six.

Good, you divided the hexagon into six large
triangles. Has anybody done it in a different way?

Yes, but it does not come out right. I took the

lower half. First a triangle 10 x 21, Then two are
added to each subsequent row. This adds 9 x 2 = 18 to
it.

Let us look carefully at what you did. (In the

meantime I have drawn the figure on the blackboaid.)

At first 2 are added. But then 4 are added.
2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 = 90, Arl 210 +
90 = 300. The top half is also 300. That comes out,.

I took 20 x 10, that is much :asier.

Where are those 20 x 107

That rhombus, then you have 10 rows of 20 tiles.

And you take that three times, because the hexagon has
three rhombi. (we recognize that this is the quickest

method.)

Now the number of square tiles. How do we
determine that? (The drawings were good.)

Then we first have to compute the area. (His voice
gets lost.)

First that triangle, that is 17 x 10. (She was
allowed to round off the length at 17. I had alr:ady
mentioned that last time during the drawing.)
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Pps. You can place the triangles next to each other.
This makes a vectangle of 17 by 15.

Tr. Hence 17 x 15 = 255 tiles are needed. (A couple
of students had to think carefully that one cannot just
put together the triangles, indicated by 1 and 3 on the
figure of page 128, one triangle first has to be flipped
over.,

Tr. Now another question. What is the area of the
market place? (It takes awhile, then I hear one pupil
chuckle and finally they all understand.)

Pps. That is the same.

Tr. Say it then.

Pps. 255 square meters.

Tr. And the areca of the hexagon on the blackboard.

Pps. 255 square centimetars.

Tr. Thus, the area of a figure is the number of square
centimeters that are needed to cover the figure.
Remember this. You cover the figure with square tiles of

1 square centimeter.

Seventeenth class conversation Ib,

Tr. We now know many figures. I will write down
which quadrangles we have seen, Whoever I point to
should name one. (In this way we formed the row:

square, rectangle, trapezoid, parallelogram, rhombus,
kite, irregular quadrangle.) We have also drawn the
enlargements wihich we observed in the plane coverings.
Now we will tcy it without those plane coverings.

Everyone take a blank sheet., Draw a triangle and then
that triangle enlarged twice. (All but one pupil,
carried out the construction according to case $S§S. Only

Pp. 5 copied an angle and used the case SAS.) Now a
square. Take the side to be 2 cm. Enlarge it 1 1/2
times. (Some pupils made the side of the new square 5
cm. When I asked them: '"What did you multiply by?"
They were able tn correct the error immediately. Pp. 33
made a rectangle. I asked him: '"Have you enlarged the
square now?")

Pp. 33 No, the other one has to be 3 too.

Tr. If you want to clarify for somebody what a trapezoid
is, you can do that by making a drawing saying: That is
it. You canr also try to define it - say it in words.
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(I point to Pp. 35 for him to try it.)

Pp. 35 I was sick during that lesson when you discussed
the trapezoid.

Tr. That does not matter. You do know what it looks
like, don't you? Come and draw it first. (Pp. 35 draws
a trapezoid.)

Tr. Good, now try and say it in words.

Pp. 35 The upper and underside have to be parallel.

Tr. Can this not be then? (I drew a trapezoid where the
parallel sidas are n-t horizontal.)

Pp. 35 Yes. The upper and underside or the left and
the right side have to be parallel.

Pp. 28 You could say it shorter: One pair of sides
has to be parallel.

Tr. Is it something like this? (I drew a hexagon
with one pair of parallel lines.)

Pp. 35 No, it has to be a quadrangle.
Tr. You have not said that yet. Say it again now.

Pp. 35 A trapezoid is a quadrangle in which two sides
are parallel.

Tr. When is the trapezoid isosceles?

Pps. When the legs are equal. When the two other
sides are equal.

Tc. Draw an isosceles trapezoid and then draw that
trapezoid twice enlarged. (rhe pupils found many
solutions. There was one who did not dare tackle it.)

Pps. I extended the legs, then I obtain a triangle - I
enlarge that one first and then I take the legs of the

trapezoid twice.

Pps. I first take the lower side twice, and then the
altitude and then the legs.

Pps. I copy two angles with the compasses.

Pps. I divide the trapezoid into a rectangle and two
triangles and then I enlarge the rectangle first.

Pp. 29 (Made use of the axes of symmetry and took the
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altitude and the halves of the parallel sides twice.)

38 (Divided the trapezoid in two triangles with a
diagonal, and enlarged all sides and the diagonal twice.)

You all have found many solutions. Who can say in
words what a parallelogram is?

31 A parallelogram s a quadrilateral with two sets
of parallel lines.

Everyone draw one,. I ncw ask you to draw a
parallelogram whose sides are twice as large but one that
is nct similar to the one you first drew. (I wrote down

this problem on the blackboard.) (Pp. 19 took the
altitude twice as large. He thought that the
parallelograms had to be similar. Pp. 35 took the same
altitude and thereby knew that they could not be similar.
Most pupilc estimated the angles by eye. Therefore I had
to ask several times: "How do you know that the
parallelograms are not similar?")

Because the angles are not equal?
How can I be sure of that?

By measuring the angle with a protractor. (Many
then wrote down the degrees.)

I did it before with compasses.

Could I ask the same question for a rectangle?

(I pointed to the problem on the blackboard.) It says:
Draw a rectangle, and next a2 rectangle whose sides are
tw? e as large, but one that is not similar to the
rectangle you first drew.

No.

Why not?

The angles remain equal.

If I were to change the word to parallelogram, would
it then be possible?

No, also. The angles are also right,

And if I were to change it to rhombus? (Two Lupsils,
Pp. 25 and Pp. 26 first thought it could not.)

What is a rhombus?

25 Then the sides are equal ané¢ the diagonals bisect

N
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Pp.

Tr.

Pps.

Tr.

Pps.

Tr.

Pp.

Pp.

Pp.

Tr.

Pps.

Tr.

Pps.

Tr.

25

25

20

20

20

each other, and ......

When I ask you tc draw a rhombus, what do you do?
I make the four sides equal.

Is it a rhombus then?

Yes.

You then should not make such a long sentence about
the diagonals.

A rhombus is a quadrangle with four equal sides.

Could we draw a -hombus tuat is not similar to
another?

Yes, ycu can change the angle of the rhombus.

Good, now draw it. (Most pupils draw a diagonal

in the rhombus. This was enlarged more than twice then.
The sides are farther apart from each other then, they
say.)

(Then { draw two circles on the blackboard.)

Are those circles similar?

Yes.

The enlargement has to be indicated. How large is

it? How could I determine this? (I point towards

Pp. 20.)

You have to measure the radius then. (I measure the
radius of the smallest circle, It is 12 cm.)

And then the other one. (I measure 27 cm.)

Then I have to divide 27 by 12. The enlargement
is 2 1/4,

I now draw two very simple figures. (I draw two
unequal line segments.,) What are those figures called?

Line segments.
Are they similary
Yes, of course.

How do I find the enlargements?
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Pps. Measure the line segments.

Sixteenth class conversation Ia.

The differences with the seventeenth class conversation Ib
were: in the case of the isosceles trapezoid the solution
involving the axis of symmetry and the solution involving the use
of the diagonal were not found. All pupils thought that one can
draw a rhombus whose sides are twice as large as those of a given
rhombus and that is not similar to that rhombus. I therefore asked
them to draw a rhombus that was similar to that given rhombus and
one that was not similar. This time the diagonal was used. Pp. 16
enlarged both diagonals, drew them perpendicular to each other and
made them bisect each other. This produced a similar rhombus. The
non-similar rhombus was obtained by changing the length of the
diagonals, but by making sure that the side remained the same
through the use of compasses. Pp. 3 thought that the circles were
not similar. The others thought they were.

Tr. How can we convince Pp. 3 that this is indeed so?
Pp. 3 1 can see it already, it has been enlarged twice.
Tr. How do you know that?

Pp. 3 I estimate that.

Tr. Could you find it exactly?

Pp. 3 Yes, by measuring the radii. (I measure 10 cm and
22 cm.)

Pps. The enlargement is 2 1/5.
Tr. I now draw two line segments, Are they similar?

Prs. Yes, just as for the radii, first measure. (I
measure 17 cm and 39 cm.) the enlargement is 2 5/17.

Tr. Thus circles are always similar. One can always
be considered as an enlargement of the other. So are
line segments. Are there perhaps any other figures that
are always similar?

Pp. 3 Squares.
Pps. Equilateral triangles.
Pp. 16 Yes, hexagons. Those hexagons which we drew with

a circle. (I drew regular hexagons in the circles on the
blackboard.)

Tr. How large is the enlargement?
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Pp.
Pp.
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17

16

17
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Also 2 1/5.

Also those other regular polygons.

Can you tell me again what a regular polygon is?
All sides have to be equal and also all angles.
Can I choose the angles of a regular hexagon?
No.

Can I say what their size is?

60 degrees.

What kind of angle is it? (I point towards the
angles of the hexagon on the bilackboard.)

Obtuse angles.

It will be 120 degrees.

That is twice 60 degrees.

How do you divide the hexagons.

Into six triangles. (I draw them in the hexagon.)
Now, start at the center.

One sixth of 360 degrees is 60 degrees. All those
other angles are also 60 degrees because they are all
equal.

I can also compute it in another way. (I drew a
triangle, a quadrangie, a pentagon and a hexagon on the
blackboard.) What do I know about the sums of the
angles?

For the triangle 180 degrees, for the quadrangle

360 degrees, for the pentagon 540 degrees, for the
hexagon 720 degrees.

Then you divide by 6, that is 120 degrees.

Can you now compute the angles of the regular
pentagon? (I pointed towards the figure on the wall.)

540 degrees - 5 = 108 degrees. During the next cwo
1ours the pupils were given a test on tiles. They were
given a sheet of paper completely covered with isosceles
triangles (base 2 c¢m and legs 4 cm.) They were asked:
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I. Which bounded figures can you find in the drawing?
Draw their outline, indicate them by writing doun
a number in them and fill out the chart below.

a b c

No. Name Is there also an How many different
enlargement? shapes are there?
Yes, no, 2x, 3x, many| One, two, many.

1 |isosceles| Yes, 2x, 3x, many ong — ——
triangle
2
3
4
II. Have you also found hexagons? Is there a regular

one? If so, draw th. outline with red. Do not
forget to write down the answers and to explain.

ITI. Are there any figures that do not have the same
shape, but that have the same area? Give name,
number or enlargement.

IV, Are theré any open figures? Color them. Indicate
them with their name. .

V. Draw the axes of symmetry. 1Indicate them with the
letter S,
VI. Construct one enlargement of the figures, (Draw

the enlargement on the sheet.)

Time: 2 X 45 minutes,

Footnotg:

1. Geo-plan van Gattegno (I p. 172). [See p. 100.]
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Glossary: rechthoek  means rectangle
vierkant means square
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gelijkbenig means isosceles
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regelmatige means regular
ruit means rhombus
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vergroot means enlarged
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triangle
straight angle
trapezoid
enlarged
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Chapter XI

ANALYSIS OF THE PROTOCOL IN RELATION TO THE
VISUAL GEOMETRIC STRUCTURING OF THE ALREADY
GLOBALLY STRUCTURED FIELD OF PERCEPTION,

I first will give some comments on the didactics followed in
this connection.

During the first trimester (September until Christmas
vacation) the pupils have become acquainted with geometric solids
and figures, i.,e. they have observed and globally structured the
figures and their components that were presented to them. The
accompanying language structuring consisted of giving names to the
objects. A geometric structuring had to be established over this
global stru:turing. To achieve this I placed those figures, among
other things, in the context of "symmetry". 1In doing so, one
should make sure that this concept of symmetry, that is present in
a globally structured way in the pupils, has been analyzed by them
first (see IV, p. 30), so that they will be able to arrive at a
geometric structuring of the field of perception.

Should one skip the analysis of the concept of symmetry, then
one cannot expect that the pupils wi'l rise above the already
existing global structuring, because the context does not allow for
an extension of the structure. The analysis of the figures
examined for their symmetry brings to the foreground many
characteristics of equality in those figures. The properties are
thus found empirically and not by way of reasoning, The
accompanying language structuring consists of verbalizing these
characteristics in geometric terminology.

This makes it possible to establish a visual geometric
structure for the objects.

By global structure I mean the structure that is present in
the things around us, before an analysis in a geometrical sense has
taken place. (See Van Hiele, p. 192), This global structure need
not be the same for everyone,.

Above this global structure, another structure, which I want
to call the visual geometric structure, is established through the
analysis of objects in a geometrical context on the basis of
empirical truths.

Above this visual geometric structure, the more abstract
structurings of thinking are established.

During the second trimester (January, February, March) the
geometric objects remain visual. Figures, drawn as accurately as
possible, then represent geometric objects for the pupils.
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Above the visual geometric structuring, a structuring of
thought has to be established by the pupils., This includes:
arriving at properties of figures by way of reasoning.

My didactics were directed towards discovering and helping to
develop those visual geometric structurings that lend themselves
especially well to extension of the structuring of thought. This
extension can take place when the visual structures are put in the
correct context by the teacher. The correct context here, for
example, is the logical connection of the properties.

The plane coverings appeared to me to be the most appropriate
material for that. It was presented to the children under the
title "Tiles". Van Albada had used this subject for his pupils at
the Rotterdams Montessori Lyceum. It then involved no more than
the drawing of tiled floor-. Hence, a global structure was
established. It was observed that only some tiles could be used to
pave a floor, and others could not be used to pave a floor. I have
expanded this subject for the pupils of the Utrechts Lyceum in
order to promote the establishment of a visual geometric structure
in the pupils (description see Chapter VI.)

I will now examine whether it is apparent from the protocol
that the pupils have arrived at a visual geometric structure of the
plane coverings and how far this reaches. As a starting point of
the treatment, I have taken the global structuring of plane
coverings insofar as this is present in the pupils on the basis of
their acquaintance with sidewalks and tiled floors,

It appears from the first lessons that the groups arrive at a
clear distinction between the concepts "equal" (equality of acea),
"congruent" (all properties equal except for the location) and "the
same" (identically equal) through their analysis. The difficulties
that certain pupils experience are to be found in the language
structurings (see XIII, p. 174),

I have c'ear proof that the concept "congruent” was well
understood by the assignments which the pupils completed on
congruent triangles during the month of May. Many pupils wrote
AT ¥ BT and angle A ¥ angle B, :ven though the equality sign was
always used in the examples in the book. 1In this connection one
should compare Tarski (I, p. 67). I had not experienced this
before, but I also had not held an extended class discussion on
this subject during previous years,

The analysis of parallelism of lines is necessary in order to
obtain a geometrical structuring. Through class conversations,
children learn what their collective knowledge about this is, In
this way they arrive at an extension of the geometric structuring
of the field of perception. The characteristic of equal distance
between parallel lines appeared to be generally known. This
appears from the answers: They are the same distance from each
other (Pp. 15, X, p. 84); there are equal line segments between
the lines (X, p. 89). A sma'l number of pupils do not recognize
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the parallelism of the lines when they are oblique (X, p. 84). The
remark of Pp, 29 (X, p. 88) that fig. 3 is the same as fig. 1 and
the question: May I also rotate my notebook, then I have it (fig.
3) already?, are proof that the properties "same direction” and
"equal distance" are experienced as belonging together. By drawing
parallel lines using displacement of a triangle along a ruler, the
geometric characteristic "the same slope with respect to a third

line" is implicitly established.

This experience wa- also verbalized later. Pp. 2 (X, p. 116):
The rungs each time hav the same slope with respect to the
upright. Pp. (X, p. 115): The rungs form the same angle on the
upper side with the uprigh:.

Nobody named non-intersecting as a chara.teristic. This is
also obvious tecause it would be an observation of something that
is not there. In order to arrive at an analysis in this sense, one
has to start from another structure that is no longer global.

It is exactly this characteristic that is being used in the
customary build-up of the definition of parallelism. From a
didactic point of view, this entails many difficulties, among which
is the need for indirect proof in the initial geometry in order to
show that when two parallel lines are intersected by a third line,
the corresponding angles are equal. Similarly, the proof of the
theorem: "Two lines are parallel if, when cut by a third line,
corresponding angles are equal", using the ccncept of central
symmetry, is based on geometric structurings that have not yet been
established. Furthermore, these geometric structurings require a
language structuring (XIV, p. 189) that has not yet been acquired
by the pupils. It is for that reason that I introduce the
parallelism of lines and the equality of corresponding angles and
of alternate interior angles as Siamese twins: they are always
present simultaneously,

The name "ladder" is used to evoke the relation between
Parallelism and equality of corresponding angles; the name "saw" to
evoke the relation between parallelism and the equality of
alternate interior angles. The teacher can try and see whether the
pupils are able to separate the Siamese twins only when the pupils
themselves have established logical orderings in a system of
theorems and when they have experienced that the ordering is not
fixed a priori and that it is thus possible to establish different
orderings in a system of theorems. It is my experience that this
Structuring is established with great difficulty even in the second
year of the secorn'ary school - for this, it is necessary that the
pupils be on the second level of thinking.

The geometric characteristics of parallelism in the visual
field of perception were understood well. This was apparent from
greater dexterity in handling drawing triangles and ruler when
pupils were drawing figures 1, 2, 3 and 5 again, where general use
was made of the equal distance concept in order to draw parallel
lines faster.
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The property of equality of angles became apparent by coloring
equal angles, when the task was given that an angle could be
colored with red only after a ladder or a saw had been found that
already contained a colored angle (X, p. 117). 1In concrast with
this, the task (X, p. 98): '"color with red all angles in fig., 3
that are as large as the angle that is already colored with red"
assumes only a global structure,

Since I could not predict that all children would possess a
global structure of a plane covering with equiiateral triangles,
regular hexagons, ..., I gave each child little bags filled with
regular triangles, pentagons, hexagons and octagons. Indeed, when
drawing, it appeared that only a few pupils had at their disposal a
sufficiently fine structure of the large equilateral triangle
divided into small ones. This figure had been discussed during the
algebra class, in connection with a sequence of odd numbers and a
sequence of square numbers,

The context, which was an arithmetic one, namely "counting",
has brought about associations with respect to convenient counting.
This became apparent when the pupils were asked to determine the
number of triangular tiles that were needed to pave a hexagonal
marketplace (see X, p. 134): Pp. 36: "There are 100 in the la.ge
triangle, we have seen that in the algebra class." The answer of
Pp. 19 stems from a formed structure; he Jivides the hexagon in two
trapezoids aud then conveniently counts: 21 + 23 + 25 4, .....+ 27
+ 39 and finds 5 X 60. Pp. 9 also shows us that a geometric
structure of the hexagon which leads to a very appropriate action.
She divides the hexagon into three rhombi. Each rhombus contains
10 rows of 20 tiles. The above named pupils combine the arithmetic
structure acquired earlier with the givern geometric structure and
refine the latter with the former.

In order to let the pupils again observe the global structure
of the plane design with congruent rhombi, I used the rhombi from a
mosaic box with which a stellated hexagon was first made (X, p.91).
In the protocol one can read how, starting from the stellated
hexagon, the pupils constructed a plane figure built with rhombi
positioned in a regular fashion. Here and there, the plane
covering threatened not to become regular, because not enough
attention was paid to the requirement that six acute angles must
always meet in one point. This meant that quite a few corrections
had to be made.

Seeing the straight lines and the parallel lines in the
figures 1, 2, 3, etc., is a consequence of the abstracting ability
that each person possesses to a greater or lesser extent.

Some children spontaneously perceive regulesr hexagons in the
tiled floor constructed from rhombi; others perceéive zig-zag lines,
cubes, a step, etc. (X, pp. 88-93). Others perceive figures only
when their attention is diawn to them through words. Duncker call
this a structuring on the basis of so-called "Einstellungen" (see
examples in Chapter IX, p. 65).
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Using the terminology of the rules for the didactics I have
given in Chapter IX, abstracting can be defined as follows:
Abstracting is the recognition of structures or partial structures
of a more complex structure, The questions: "Do we see something
when we compare figures 4 and 6?"; '"Can we also derive fig. 5 from
fig. 4 or from fig. 62" are to be considered as practice for
abstracting and restructuring. The children clearly expressed an
active interest here.

For those who have difficulty with abstracting, one can use as
didactic help: "Erase a few of the lines". Conversely, when finer
structuring is involved, one can say: "Add a few lines." In this
way new structures evolved out of fig. 9 (fig. 11 and 12, p. 151).

The organizing principles emerged through my repeatedly asking
tle question, "What do you see in the figure?" The zig-zag lines
(p. 111) were the starting point for the structuring of the
geometrical figures. Saws and ladders were looked for and drawn in
the figures (p. 113). The remark by Pp. 38 (p. 98): "There are
still larger hexagons in it", led to structuring the figures
geometrically in the sense that enlargements were looked for
(p.125). The saws and the ladders were also structured
geometrically. This appears in the protocol (p. 115), because the
pupils were able to name rhe characteristics.

That enlargement also obtained a geometric structur- appeared
first of all in the large variety of construcutions that were made
whea an isosceles trapezoid had to be enlarged two-fold (p. 138),
Second, it appeared while constructing non-similar parallelograms,
etc. (p. 139), where "the inequality of the angles'" was used as the
characteristic. Third, it was apparent during the computing of the
multiplication factor of circles and line segments (p. 140).
Fourth, it appeared during the search for figures that are always
similar (p. 141).

The notion of equality of area precedes the finding of area
because the notion of equality of area is precisely necessary for
measurement of area. The pupils appear to be able to decide on the
equality of ares independent of size. The equality of the areas of
three non-congruent parallelograms was accepted ¢n the basis of
divisions into mutual’y congruent parts (pp. 103-108). Pp. 8 even
remarkded that one certainly can draw a trapezoid and a
parallelogram whose areas are equal (p. 108).

Then follows the comparison of areas (p. 126). It appears not
to be redundant to repeat the division into congruent parts,
because Pp., 14 ‘p. 128) thought that when the side of the square is
enlarged three-fold, that area is enlarged six-foid. This mistake
was not made in the other group. This favorable result can be
attributed to the fact that the same mistake had been made earlier
in that group. Several pupils thought in a previous class
conversation that a parallelogram that is enlarged three-fold
contains 6 small parallelograms (p. 105).
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By choosing a vnit of area one finally arrives at the concept
of size of a surface. Paving a floor or a marketplace with tiles
provided the experience needed tc show that the counting of the
number of square tiles that cover a marketplace is the same as
determining the number of square meters in the area of that
marketplace; this means determining the size and the area of the
marketplace (p. 135).

By analyzing tiled floors in the arithmetic context
"counting", structures develop that can be called visual geometric,
as soon as it is established that the determinatior. of the area of
a figure is the same as councting the number of squares (the chosen
unit) with which the figure can be covered.

Only after this new visual geometric structure has been formed
can one proceed to a higher structure where the area of the figure
is linked to a formula.

I had the impression that Pp. 36 and Pp. 39 {p. 84), and
probably a few more pupils, linked the formula "length X width" to
the word area, without a formed geometric scructure being present.
Theis answers were based on associations that had developed in
elementary school. Van Hiele (p. 202) exresses this as follows:
"The pupils, starting from the analyzed structure of the teacher,
have formed out of that, a global structure for themselves. This
global structure has little or nothing to do with real objects.
Therefore, the pupils are not able to make use of their global
structure in a concrete stituaticen.,"

Finally, the movements that can be made to cover a tiled floor
(translations, flipping over, rotations) were looked at.

The translations did not entail any difficulties. One can
read on page 130 and following how the orientation of a line that
ws present in the figure as a side was first found as the direction
for a translation. This line ran upwards in an oblique direction.
Only afterwards was the horizontal direction found, first to the
right and then to the left. The vertical direction (up) was
observed even later, probably because this direction was not
present as a side in the figure. Later other totally different
oblique directions upwards, and finally also downwards, were found.
Similarly, when moving the tiles in fig. 9 in order to let the
grooves disappear, it appears that the translation is easily seen.

Flip-ov...s and rotations are easily perceived when the tile is
a vegular polygon. It is less easy when the tile is not regular.
After the inaccuracy of the statement of Pp. 9: "When I take a
mirror, I can see th:.t angle in the mirror (for fig. 9)", was
demonstrated with the help of a mirror, a number of pupils wanted
to demonstrate the equality of the angles by folding.

Pp. 8 felt that the equality could be shown with the help of
two flip-overs (p. 101).
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It was also hard for them to see that the angles can covar
each other by rotating around the vertex a half turn. Many rocated
their notebook as I had showed them in order to see it better:
hence, theiv visual rzpresentatic of symmotry was still
insufficient.

A test, the questions of which can be found on p. 201, was
given to the pupils at the end of the second trimester. The
purpose of the test was to determine to what extent the pupils had
been able to form associations of visual geometvic structures.

The results of the 38 pupils (Pp. 30 had left the country in
the meantime) are given in the table on the next page.

The first questio~ is divided in three parts; the fifth
question in two parts. Problem VIb was added by the pupils during
the test. This question was as follows: Draw in the figure VI
(= VIa) the axes of symmetry and the centers of symmetry.

It was accepted that part (a) of I was correct when in column
(a) the names of the figure found by the pupils were correct and if
there were not too few of them. Later I discussed the test
individually with each student. This was necessary because
questions I, III and IV had not been posed in such great detail
that one could make judgments on “he bas.s of tne written work
only. Indeed, even though we tried ver: hard to present the
problems clearl;, we had no guarantee .tat they really were.
Similarly, the rotations that were use” in the third and the fourth
columns, appeared to present difficulties, even though they had
been explained verbally with an examr

Part (b) of I was deemed correct when the enlargements had
been seen: VIa was only considered correct when it was clear that
use had been made of the characteristics of enlarging when they
we e drawing. The answers to this sequence of questions indicate
for whom enlarging has become a visual geometric structure. A plus
sign in the table indicates that the figures were correct. A
vertical line in the table indicates that a smali mistake had been
made that could be immediately corrected during the individual
conversation or that the ruler had been used more than the
compasses. A minus sign in the table indicates that I was not
convirced that the associations had been properly formed. For 5
pupils out of 38 I did not know with certainty whether they could
make use of visual geometric structures in the context of
similarity.

In problem Ia a vertical line was used when the only existing
language structure could not be used without mistakes. For
instance, Pp. 9, 33 and 39 used the word 'square' for the rhombus
whose side was 4 cm. In addition, Pp. 39 used the word 'round' for
circle. However, on inquiry, the mistake appeared not to reside in
the visual geometric structure. That same rhombus was classified
as a parallelogram by many pupils. This was evidently caused by
the rhombus bheing positioned on one of its sides. For that same
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reason, an isosceles triangle that is positioned on one of its legs
is very often perceived as a scalene triangle. On inquiry, this
mistake was immedi~tely corrected. I have indicated this in table
Ic by a pl s sign 10llowed by a dot. More than half of the pupils
did not immediat ly perceive the parallelogram as a rhombus.

Pp. 11 and Pp. 13 appeared to have difficulties with the
notation, The bad result oy Pp. 27 can be explained by her having
missed 20 minutes of each class hour. She appears not to be cn the
first level of thinking.
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Results of the .est

Many pupils reacted as fo..ows when they learned what mistakes
they had made in II: "How I have been caught!" The vertical lines
in the list of the results indicated that they corrected themselves
clearly upon inquiry. The criteria for such correction were that
the pupils not only had to tell that the angles were not equal in
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the hexagon colored with red, but also had to tell how they could
see that those angles could not be equal. Many characteristics
were given by them. For example, "it cannot be circumscribed by a
circle,” which had to be further explained. Or, “there are not six
equilateral triangles,”" which also had to be demonstrated. One
Pupil pointed towards the lines connecting the center of the
opposite sides of the hexagons and remarked that in one case the
line was perpendicular on the sides, and that in boih other cases
it was not. A pupil rarely thought of looking more closely at the
size of the angles. Only when I asked them to compare the size of
the angles of the hexagon was it observed that the inequality of
these angles is based on the fact that the upper angle o the
composing isosceles triangles is smaller than a base angle. For 5
pupils I was not certain whether a good structure had been formed.

It is remarkable that the 9 pupils who had found on their own
the rhombus with side of 4 cm of Ic, also correctly answered the
question concerning the hexagon. In total, 18 pupils out of the 38
found on thei- own that the figure did not contain regular
hexagons. Thi larger number can be explained by the more detailed
questioning which directed attention towards that which had to be
perceived.

Question III was generally answered correctly. A few students
followed their own notation. Many students found, upon inquiry,
many more figures of equal area than they had written down. During
this converration many pupils discovered that one-fold enlargements
of figures that have the same area produce new figures that arain
have the same area. Cnly Pp. 20 gave as an answer to question IV:
"No, there are no open figures." He could not explain well what
his thoughts were. He appeared to be able to draw saws and ladders.

The questions Va, Vb and VIb deal with symmetry. They were
not allowed to use a mirror to determine the axes. Of the 38
pupils, 8 could determin. the axes of symmetry and the ceanters of
symmetry withou® any mistakes. They found them for the plane
coverings as well as for the simple figures., Eighteen pupils were
not eble to determine the axes and the centers without any mistakes
by simply looking at the figures. They needed a mirror. 1In order
to see that the isos:eles triangle does not have any center of
symmetry, they had to make use of a sheet of transparent paper on
which thes same plane covering had been drawn. During the test, I
also noticed that a few pupils stealthily used the drawing
triangles as mirroring surfaces.

When we look at the columns of the table, we can draw
conciusions for the performances of each child individually. This
however is not the objective of the experiment.

The horizontal rows given a decisive answer to the question
whecther the hypothesis of the didactics we followed is correct as
far as the first part is concerned: '"Can visual geometric
structures be established in 12 year-old pupils The answer is
very clear from the table: The pu.ils can form these structures
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for themselves, when the organizing principle is: enlargement,
parallelism or regularity. For the organizing principle of
symmetry, the following restriction has ts be made: during the
first year one can make use of symmetry as an organizing principle
only when one works with scissors and glue, i.e. when one starts
from the special empirical action of folding, rotating and
mirroring of figures. Here one thus can see my above-mentioned
maxim confirmed: "One should let the children act thoughtfully
with manageable material as a help." The ability for visual
representation in twelve year-olds is generally insufficient for
the observation of symmetries. They identify straight and oblique
symmetry. They have not separated these notions from each other
into abst- ct thinking. This can be explained as follows. The
children have experienced during the first trimester that an axis
(vertical) of symmetry divides the figures into two congruent parts
through a one-to-one correspondence of the points (see observation
lesson in IV, p. 30). Since they have not yet reached the second
level of thinking, and hence are generally not able to discern
whether or not a relation is symmetrical, they have the tendency to
identify a line that divides the figure into two congruent parts as
an axis of symmetry. 1Indeed, mistakes were made if the axes
(oblique) of symmetry divided the figure irto two congruent parts,
Here again we have an example of "Siamese twins."
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Chapter XII

ANALYTSIS OF THE PROTOCOL IN RELATION
TO THE STRUCTURING OF THOUGHT

My field of investigation encompasses both experiences the
pupils gain as a group with the help of the material presented to
them and individual and class conversations as described in Chapter
X. Statements about the group in general do not imply that these
are applicable to all pupils. Here also the well-known rule
applies: the whole contains more than the sum of its parts.

From the protocol it is apparent that the group is on the
first level of thinking in plane geometry. Corresponding with what
was mentioned above, this implies that a conversation on that level
of thinking is possible with the group. It does not mean that all
pupils should be on that level. For those pupils in whom insight
is on the verge of materializing, these class conversations can be
very illuminating; similarly, for the pupils that are not yet on
the level.

The leveis of thinking have been discussed by Van Hiele (I).
The first level of thinking only .mplies that the pupil sees that
geometric figures are characterized by certain properties, that he
is able to apply known properties in an operational way to a known
figure. This does not imply that the pupil has already arrived at
a classification of geometric figures that are known to him. The
formation of arsociations is not yet complete: the properties do
not yet represent factual knowledge. The teacher should not yet
expect thut the pupil knows exactly which properties belong to a
given figure and which figure is determined by certain given
properties. The attainment of the level only means that pupils see
that a geometric object possesses certain determining properties
and so are able to search for the characteristics. A
classification made by the pupils is to be considered ‘y the
teacher as proof that the subject matter has been assimilated, that
associations have been formed, that the subject matter can be
handled independently. That a conversation on the first level of
thinking is possible is apparent from the protocol on p. 89 where
the pupils are reasoning that a rhombus and a rectangle are not
regular polygons, and on p. 105 from the argument given why the
figure obtained caunot be a rhombus nor a rectangle. It is alse
apparent from pages 110 and 113, where the pupils construct the new
figures parallelogram and t apezoid using their properties. It is
also apparent from the responses to the questions on how one can
recognize a ladder and saw. At the same time the concept of
parallelism seems to be well understood there.

On p. 101 one can read in the pr~tocol how the pupils tackle
the following task: "I know that the angles of a triangle, when

juxtaposed, together form a straight angle; 1 assert that I can
predict that the angles of a quadrangle form a round angle whe: I
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fit them together such that they touch each other. Does anybody
think he or she also can predict that?"

The protocol clearly indicates that the pupils first look
outside the logical context for a satisfying explanation that will
reflect on what grounds th /s can accept the correctness for
themselves. Pp. 30 starts with a regular quadrangle and thus first
takes a special case in which the relation is recognized. Pp. 16
(p. 101) also thinks of a square - she has already juxtaposed the
four angles, because she starts with a circle with four quadrants.
Pp. 3 apparently does not understand what Pp. 16 means, because he
asks whether a ‘circle can circumscribe a quadrangle. The special
case is subsequently generalized: with another quadrangle one
obtains a different division of the round angle, at one place a
little is removed, at another a little is added; the pupils reason
on the grounds of reasoanableness. The working method described
above: the generalization of a principle .hat has been ascertained
for a particular case should not be rejected in itself., For in
physics, many important laws have been established in this way.

The pupils are told by the teacher that this method is not
legitimate in mathematics; a p-oof should follow.

Thus my conclurion is that the pupils do not make use of
premises that are available to them (see Ehrenfest II). This
result should not surprise us. For reasoning of this kind, insight
on the second level of thinking is required; a new relation has to
be found with the help of a known geometric relation.

From the protocol it also appears that both groups did arrive
at a logical reasoning stage. It shows especially in the class
conversation on p. 101 how this was possible, how the pupiis
finally reached the goals with each others' constructive help. Pp.
3 first saw the special case: When the two triangles, obtained by
drawing the diagonal in a nuadrangle, are congruent (he talks about
the two halves), then it follows from the theorem - the sum of the
angles of a triangle is 180 degrees, that the sum of the angles of
a quadrangle is 360 degrees, Because he divided the quadrangle
into two triangles, Pp. 5 was able to give the geneval proof.

Because grometric insight was involved here, I «id not want to
draw the attenticn of the pupils to the language they used: One
triangle is a straight angle. I only drew attention to the angles
of the triangles by indicating them with chalk. I had mentioned
that we were tolking about the angles of the triangles and that
each three-some forms a straight angle when the angles are put
together. The teacher should sey;arate the language and the thought
expressed by means of that langrzge, Here the important thing was
the idea and this was approved bccause it was understood by fellow
pupils. That thz pupils were receptive to a logical t..in of
thought appears from the answer to my question of who had expressed
it most clearly. 1In one group P>. 38 was pointed to without
exception and in the other group, Pp. 5 aided by Pp. 3.

That all pupils participated intensively; is apparent from the
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fact that all methods of solution were immediately transferable.
The group we now able to demonstrate directly in an exact way that
a floor cannot generally be tiled with congruent pentagons and
hexagons. Also, the group was able to answer the question why it
can be done with regular hexagons. Pp. 2 is farthest along in the
analysis of the problem, for he remarks that it is possible to tile
a floor with those pentagons and hexagons for which three angles
together form a round angle (X, p. 1i2).

I gave the question about the quadrangle with the re-entrant
angle (p. 108) in order to see if a logical train of thought had
already become possible. Of the 38 pupils who participated, 16
immediately gave a correct description. Of the other pupils, only
taree arrived at a correction of their train of thought after
seeing the proof. The remaining pupils gave a report in which they
attributed their lack of success to an insufficiency in the graphic
structuring.

Here are a few of their statements:

Pp. 4: You can divide the figure into two triangles, so it is
possible.

Pp. 6: It is not possible because the sides are not equal. The
opposite angles are not ecual either.

Correction: It is possible because one can divide this figure into
2 triangles and the angles together form a round angle.

Pp. 7: Yes, because one can divide it into two triangles. FEach
triangle has three vertices that together form a straight
angle. It has two straight angles - tcgether a round
angle.

Pp. 8: Yes, it is possible, one can divide it into two triangles
that together possess angles that form 360 degrees. One
point, where they meet, is a round angle.

Pp. 10: Yes, it is possible because all those figures fit in each
other, with sides, with angles.

Pp. 11: When one puts the cardboard model down, one asks oneself
whether two points would fit in that recess (indentation)
but that does not work and also no other points can fit in
it because something is left or it is too small.

Correction: When one puts a cardboard model down and right next to
it one wi“h the same side against it, three other points can fit in
the recess. When you go on like that it fits well.

Pp. 13: It is not possible. Because the figure can be divided
into three triangles each of 180 degrees, they then do not
form a rouud angle because a round angle is 360 degrees
ancd this is 3 X 180 degrees = 54C degrees.
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Correction: It is possible, Four different angles merge in one
point. For the angles together form one round angle,

Pp. 14: It is not possible because they do not fit in each other.

Correction: It is possible after all, but I had thought at first
that two had to fit in each other.

Pp. 16: Yes, I think that you can make a tiled floor here because
first of all you can divide it into two triangles. The
figure really looks a little like a half step and if there
is one half, anuther half has to fit in it, and in that
one still another and so on. Therefore all those figures
together have to form a floor.

Pp. 19: One cannot make a figure with tuat triangle because when
one places 2 points of the other triangles in the tail,
there remains a hole,

Correction: One can make a figure with that triangle by putting
the small triangles around and around and then ocae can place
anoth(r row on top of it,

Pp. 22: I think it cannot be done, because two equal salient angles
fit in the re-entrant angle of the figure and one of
those salient angles is opposite the re-entrant angle. 1In
this way a circle is formed, but the center remains open.
Because the two sides that come out of tae salient angle
are not equal, one cannot fill the middle of the circle.

Correction: I have now seen that it is possible after all. If one
puts three different angles in the re-entrant angle, namely the
largest angle of the figure, the smallest angle of another figure
and the middle angle of yet another figure then it fits precisely.
If one places against the longest side of the first figure the
longest side of another one and one pruceeds in that fashion, one
can cover the whole floor.

Pp. 25: It is possible I think because it is a quadrangle and the
four angles of a quadrangle together form a round angle
when they meet in omne point; but now all of a sudden I
see that one angle a re-ertrant angle in the quadrangle
and therefore I do ..t know it anymore. I think it is
not possible because of that re-entrant angle.

Pp. 26: Those little figures fit in each other, because when you
divide that little figure in the middle you get two
triangles and one triangle contains 180 degrees and two
triangles 360 degrees thus it could become a round angle
and there remains no hole it it then.

Pp. 29: You cannot cover a floor with this figure, because the

acute angle does not fit in the obtuse angle. The angles
do not fit into each other.

173




Page 166

Correction: It is possible with this figure, when you place the
three acute angles in the obtuse angle, it fits precisely sc you
can go on like that.

Pp. 30: In crder to pave a florr with tiles, those tiles not only
should be congruent, but they also have to fit in each
other. I Delieve that you cannot have a floor with these
tiles because they do not fit in each other. The upper
angle is too small for the lower angle and two of those
upper angles together are too large. I could make one
strip though.

Correction: One can tile a floor with those tiles and this by
means of a strip. One has to make that strip twice and then put
strip 2 against strip 1.

Pp. 39: It is not possible because if now the points were equal
and the points were as large as the recess, then it would
be possible, then the sides would also be equal.

Correction: It is possible if one first puts them next to each
other, omne with the recess upwards and next to it one with the
point upwards, then one places the small point in the recess, then
next to that one, one with the point in the recess and next to that
one, one puts one with the long pcint in the recess, etc. This way
it forms a closed entity.

Let me first investigate what the possibilities are of
arriving at a solution. I have chosen this particular quadrangle
because most certainly there is no global structure of it p -esent
in the pupils. This assumption is confirmed by the reports of the
children: there is only one exception. Only Pp. 10 succeeds in
forming for herself a global structure of this plane covering and
to establish a visual geometric structure. For she observes that
it fits with the sides and with the angles. She told me later
also, that she had pictured to herself the plane covering with the
cardboard models. Because I give a quadrangle, the global
structure of which Is not present in the pupils and which cannot be
found easily outside empirical situations, the other possibility of
arriving at a solution is given a better chance.

This other solution is based on an extension, in an abstract
sense, of the already existent visual geometric structure of a
plane covering with convex quadrangles. The context allows for
this extension of structure, because there has beeu abstract
reasoning in a previous class conversation, during which logical
reasoning took place in arriving ¢t the conclusion that the angles
of a quadrangle together form a round angle. This was derived from
the fact that the angles of a triangle form a straight angle. The
quadrangle chosen for that was convex.

A numbevr of pupils appeared to be able to establish an
abstract structure of thought. They noticed that the quadrangle
can be divided into two triangles. Some gave an additional comment
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that hence the angles of the quadrangle form a round angle. The

analysis of Pp. 25 attests to the insight that a theorem that has
been proven for the case of a convex quadrangle cannot simply be

transferred to the case of a quadrangle with a re-entrant angle.

However, he did not arrive at a proof that the theorem also holds
for that kind of quadrangle.

Pp. 13 got stranded because he held the following viewpoint:
Because the quadrangle can be divided into three triangles, the sum
of the angles of the quadrangle is 3 X 180 degrees., He did not
find the mistake in this reasoning, neither did he later. This led
me to come back' to that topic in a class conversation. There the
paradox was quickly solved (X, p. 112).

from the report of Pp. 16, it is apparent how great the need
of the children is to have an explanation based on global
structure, besides abstra-t ressoning. Ti.e idea of a step could be
clearly found back in her drawing. She thus had looked for a
global structure upon which she could base a visual geotetric
structure,.

It did not occur to the other pupils to look for a solution
according to a way other than the visual method. They did not go
beyond the global structure that empiricism provided then.

There were two pupils who were unable to make a p-ane covering
with the cardboard models in the time that was given to them.
Those were Pp. 15 and Pp. 18. The latter had been absent
frequently.

I conclude from the reports that the pupils are able to set up
an abstract structure of thinking, but that they prefer an
explanation based on a visual goemetric structure.

If one presents the problem to others, for example,
mathematics teachers, they generally do not solve the problem
without visual geometric structuring. They also start from a
global structure, and establisht a visual geometric structure next,
but they then much move rapidly set up the logical structure above
that. They have, as it were. obtained an association for a
structuring through, i.e. from the visual geometric structure to
the abstract structure,

The above-mentioned preference of the children is alsso
apparent from their way of tackling the following problem; '"How
many re-entrant angles can a pentagon have at most?" (X, p. 115).
This problem zan als> be solved .n two different ways.

One possibility is that one tries to -rrive at the solution
through drawing; here one forms a geometric structure through
"trial and error."

The other poszibility is that one establishes a logical
structuring above an existing geometric structure - "relations
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among the angles of a polygon." The latter method was chosen by
only 2 of the 36 pupfls.

Pp. 21: I think two angles, because a pentagon is 540 degrees. A
re-entrant angle is more than 180 degree. Therefore
there cannot be three re-entrant angles, because 3 X 180
degrees = 540 degrees, but the re-ertrant angle was more
than 180 degrees.

Pp. 38 expresses himself with much greater difficulty and
doubted his own reasoning, because when he did not succeed in
drawing the figure he changed the number 2 back to 1. He wrote:

This pentagon can at most have (2) 1 re-entrant because it
was said that a re-entrant angle is more than 180 degrees.
Because the angles together are 540 degrees.

("Said" here referred to earlier lessons, because I had not given
any hints. I did not want to focus attention on the number 180.)

Sixteen pupils gave the correct answer by means of visual
geometric structuring. For the other nineteen this structuring is
not fine enough to arrive at a good solution.

According to the main idea of the didactics I am proposing, it
is necessary that the pupils get a global structure of a system of
theorems.

In the protocol one can find (X, p. 110 ff) how I made use of
a well-known structure, the genealogical tree, to introduce that
idea. We are dealing here with an isomorphism that is cnly based
on a metaphor (Van Hiele, p. 195). The resemblance is only global.
The objects with which one is now working are the geometry theorems
(relations) themselves. These objects came into being during the
visual geometric structuring. They are the laws (relations) that
have bteen supplied through empiricism and that have been translated
into geometric ianguage. It is the special empiricism (folding,
rotating, etc.) that was used for the visual geometric structuring
of the geometric objects.

On the basis of experience in teaching I came to the rfollowing
conclusions in VII, p. 47:

1., The childien generally do not know what they are
building up.

2. The children do not know what they are building with.

We can now understand these conclusions in the context of the
didactics. For two kinds of oblects are being studied without
discrimination, and one does not stress that enough, i.e., in what
is given and in what had to be proved. The pupil thinks that the
figure illustrating what is given and what has to be proved is the
geometric object. During the proof, however, he should become
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aware that proven theorems are his objects. As soon as the theorem
concerning the geometric object (= figure) has been proved, a rew
object of another building structure comes into being. Prior to
that, this new building block was not allowed to be viewed as a
block.

By treating the subject matter in this way, the pupils caunot
come to a satisfactory structure formation. The essential element
is not whether or not the fixst page should start with the axioms,
whether or not to start with an introductory course, whether or not
to work with notebooks, but is the way of working. The way of
working, whatever method one follows, has to be such that the
children can come to the formation of new structures through
analysis of structures that are known to them and that have been
placed in a geometric context by the teacher.

During the first trimester I did this by starting from the
already globally structured field of perception. Because the
children participate actively in the analyses of the geometric
objects (the figure and the models) in a geometric context
(symmetry), the globally structured field of perception is
structured by them in a geometric sense. The structures formed in
this way I have called visual geometric structures.

The pupil who has visual geometric structures at his disposal
is on the first level of thinking. In him, associations have
4eveloped for the geometric characteristics of ‘the figures. He
knows, on the basis of empiricism, the relations among the elements
of a geometric figure. This is necessary in order that the pupils
can understand what one is building with in geometry,

The pupils now still have to experience how it is being built.
The structure of the building-up of the theorems is isomorphic with
the structure of an imaginary web in which the knots represent the
geometric relations. These knots are connected in a certain way
and in certain directions, 1These connections and directions are
determined by the organizing principles. The threds of the web are
the logical relations. 1In each knot many arrows meet and many
leave from there. There are points out of which arrows only leave.
These particular points represent the axioms.

No object in the field of perception possesses this structure.
The genealogical tree is a structure that is known to the children
and that can be modified most easily into the desired structure.
That this modification is possible, appears from the answers in the
protocol on p. 110. For it was accepted w'thout further
explanation that a relation can follow from a single other
relation. It was also accepted (p. 121) that one has a certain
amount of freedom in the choice of the relations from which a
certain relation can follow. That the resemblance between the
structures only consists of the global was clear for both groups of
pupils.

The pupils have understood how £t is being built. This

177




.
g

Page 170

appears from the protocol on p. 122, where they readily established
the cennection between two genealogical trees.

I was surprised to see how quickly the pupils produced the
proof of the theorem: "The sum of the angles of a triangle is 180
degrees" (X. p. 120 ff). In fact they did not look for auxiliary
lines; these were present automatically. This is the result of
having the visual geometric structure of fig. 9 at one's disposal.
The given triangle is lifted out of (abstracted from) this figure
with the necessary auxiliary lines. This was most clearly
demonstrated by Pp. 11; she placed fig. 9 in front of her and told
how the figure of the given triangle has to be extended (p. 121).

The formation of the new structure "the ordering of the
relations"” involved great enthusiasm.

In order to check whether the drawing of the correct auxiliary
line(s) is indeed related to having a visual geometric structure at
one's disposal, I assiguned the following difficult problem after
ten da,s: "Show that two angles are equal when their legs are
parallel and have the same orientation." One can read on p. 132
how I introduced that problem.

Of the 36 pupils who were given this problem, 3 just drew the
given figure, 3 pupils drew auxiliary lines that could not have led
them to the objective and they got stuck, 4 pupils tried to work
with saws and ladders but did not establish a clear ordering in the
figure nor in the accompanying reasoning.

One pupil did not draw auxiliary lines, but wrote: "These
angles ~»re equal because when one displaces a line it will be
exactly as straight and as oblique as the first one, on the paper.
This holds thus for both the lines.'" After that, she concluded the
angles were equal. So she worked with a translation - a visual
geometric structure.

Still four other pupils worked with a visual geometric
structure, but they did draw extensions. Two cf them worked with a
translation and two with a roiation. The latter mentioned that
opposite angles in a parallelogram are equal. Their work did not
show a clear ordering.

Twenty-one pupils set up a more-or-less clear logical

ordering. Since the lowest number of links that is necessary is
two, I labeclled each solution that c.nsists of two links as
adequate. Of those, there were 13; three among those did not have

a completely correct accompanying description. Here are some of
the solutions,

B A
Pp. 1 draws the connecting line between
the vertices and uses two ladders to arrive at
the solution,
= L3 D
Four pupils extcnd one leg 5f one
¢! 2 c

Forad
~J
o
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of the angles. ‘The description of Pp. 5 is given here as an
example. It shows a good language structure.

"The angles are equal because when you extend line A it
forms a ladder with line B and line C. Angle 1 is found
again at E and angle 2 is found again at F. Hence, angle 1
and angle 3 are equal. C is a ladder with A and B. A is a
ledder with C and C. The lower or upper angles of a ladder
are always equal. Angle 1 and angle 2 are both lower
angles of ladder A-B-C. Anglc¢ 2 and angle 3 are both upper
angles of A-C-D. Angle 2 is therefore equal to angle 1 and
angle 3. Angle 1 and angle 3 are therefore equal.

Ladder

'

Two angles whose legs are parallel are equal.”

Four pupils extend both legs, but use only one.

Pp. 26 wroteo:
"When you extend the lines then you get a ladder for each
zngle and a line from one angle forms a rung of the ladder
of the other angle, therefore those angles are equal.
Ladder has corresponding angles."

Here only the most necessary was writte down which ,hows that
she has a good thinking structure at her disposal.

Four pupils drew an auxiliary line that couid still be called
appropriate when one thinks that a saw has manv equal angles.

Pp. 22 wrote:

" Saw Ladder
3
Angles whose legs are 4

parallel are equal.

If one wishes to show that thcse angles are equal, one
should make use of one saw and one ladder, because in a
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ladder the corresponding angles are equal, and in a saw all
angles are equal. One first should go up one rung on the
ladder (2) and with the saw two sngles towards the angle
where we have to arrive at (4) (see drawing)."

This answer also points to a good language structure. The saw
is clearly seen as one figure.

The remaining 8 pupils drew s« different number of auxiliary
"ines, one, two and as much as a complete plane covering with
parallelougrams. Five of them used no more than th.ee links and
represented their way of thinking better in the figure than in
their words. Pp. 17 drew the following figure.

T™he angles 1 were all colored with red. Underneath was
writte.:

"The ladder and the saw /7/ /// ///

In a parallelogram the opposite angles // 1//
are equal; hence also the adjoining angles." //' //
7 7%-

The reference to adjoining angies probably meant the opposite
angles.

This test cannot be considered as an examination in its usual
meaning. With such a test one wants to check on which students
have firished the learning process. This test was purposely given
during the period of structure formation, i.e. at a moment when one
could expect that the l:2arning process was finished in none of the
pupils. »

Before on2 administers tests in the normal instvuctioral
process, the teacher first consciously prcceeds to the formation of
associations. This has been omitted here completely. Therefore,
the result of this work does not reveal a picture of the abilities
cf the pupils: the three pupils who handed in blank sheets, had
beautiful grades on their reports, as well as for mathematics.

From the result of the tes*, it is apparent that having at
one's disposal visual geoms*“~ic structures facilitates the
transition to logical stru..dres of thinking and that the finding
of auxiliary lines should not present difficulties heresath.

The visual geometric structure of figure 11 led me to finding
the solution to the problem presented by De Groot {I):
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Prove that the are: of a parallelogram 1is equal to the tase
times the altitude for che case that the projection of the
raised side on t!;2 base is greate~ then the base.

DuC F

A B Ds E C' ) Fc
¢ nxb —

The prosf tests on the fact that one has to define a number n
such that n x b is greater then the projectiou of the raised side
on the base. For the rest, the figure speaks for itself:

Area ABCD ='% area AEFD =-% area D'F'FD = area D'C'CD.
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Chapter XIII

THE LEARNING OF TECHNICAL LANGUAGE. ANALYSIS OF
THE TEACHING PROCESS (PROTOCOL) IN RELATION
TO LANGUAGE STRUCTURING.

The learning of a new subject is always accompanied by the
learning of technical language.

The language problems which the children experience in
geometry can be compared with those I underwent during the study of
my didactics. I thereby arrived at the following working method in
order to study language problems during the learning process of
geometry:

First: a global analysis of my own learning process by means
of introspective self-observation with the objective of arriving at
organizing principles.

I will first describe the way in which the theoretical
foundations of the didactics I follow have been found. Here
attention had to be focused on two formations: <concept and
language of the subject "didactics." The formation of language
structures that belong to the subject follows the formation of
concepts. The formation of concepts hes taken plaze previously.

Chapter I of th?s study is an orie..tation: What is a didgactic
experimen:? The mental correlate (see Mannoury, p. 137) of this
word - the¢ meaning I attached to this word for myself - did not
concur with the meaning others had attached to thic word. 1
thought that a didactic experiment was set up in order to
investigate the phenomenon that is called didsctics, in this case
the didactics of geometry. Instead I found as examples of such
experiments: learning conversations that had the objective of
improving learning performances. In addition, some appeared o
think that didactics shouid be derived from psychology.

Langeveld makes a statement about the relationship between
pedagogy and psychology that ca ts doubts on the above-mentioned
relationship between didactics .ad psychology. This statement
seems to be in aucord with my experience and it made me2 assume that
the mental corre.ate of the expression "didactic experiment” does
not yet contain a clearly defined common element among teachers and
didacticians. It is therefore incorrect to consider the expression
"Jidactic experiment' as a technical term.

In crder to approach the phenomenon, I invectigated in chapter
II how didactics appears to others and I compared this with the
outcome of my own impressions. After seeing a protocol from
Stellwag, it became clear to me that there are big differences in
views on the didactics of mathematics. It further appeared to me
that there are still two words for which there exists no clear
common mental correlate, namely "elementary" and "self-active". To
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me, geometry is elementary in the secondary school if it starts
from the global structures that have reference to the world around
us. Pupils are self-active when they actually participate in the
analysis of the structures.This can take place, for example, by
their "acting thoughtfully"” or by their participating in a
collective discussion.

Upon further consideration of the work of mathematics teachers
at experimental schools, I came to the following conclusion: one
canot and should not expect publications from experimental schools
about the didactics to be followed. The work of the pioneers is
still practically at the stage of exploration (See Koning I).

In Chapters III and IV, I consider my own didactics in
relation to the sutject matter and the learning situations of the
first trimester. At the beginning of this work thit was completely
new to me, I started from a global structure that I aiready
possessed. The language I ase in these chapters should not be
labeled as "technical language;"” it belongs to the linguistic style
I had at my disposal at that moment.

In this global analysis of didactics, I thus arrive at the
following conclusion as far as language is concerned: there are a
number of words for which the mental correlate differs strongly
among teachers and this is apparently caused by their starting from
their own linguistic style. Up to now insufficient coordination
has taken place through mutual exchange of ideas. The
above-mentioned words are technical terms: "didactic",
"elementary", "self-active." If one wants these words to function
effectively in the technical language, then lidacticians of the
discipline shouid aim for less diversity of the mental correlate
among those who use the words.

Through the study I subsequ..tly made, in order to show that
the learning situations I created con orm to the conditions the
teacher poses for each educational process, I arrived at an
extension of my linguistic style. This primarily consisted of
delineating more precisely the mental correlate of the technical
terms I had learned from the practice. Use was made of this
language structure in Chapter V in which the learning of geometry
was analyzed according to the principles Langeveld has established
fcr the teaching process. The subject didactics thereby took on
shape. Through study and testing, I acquired fcr myself a clearer
mental correlate of technical terms such as: structure, context,
intention, autonomy, association, plateau, level of thinking, hatit
formation. Associations were also acquired for the technical
terms.

In Chapter VI1T 1 pointed out that teachers, in schools where
more attenton is being paid to individual instruction, naturally
gain many more experiences than those in schools where instruction
is given according to the traditional method. In the former
schools the pupils ofteu nave the opportunity to ask their teacher
for clarifications during one or more hours per day. The practical
action of the teacher is then directed towards the individual
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learning process, with the incidental objective of helping the
pupil move forward. The thinking of the teacher during this
intuitive action is executive-practical (see Langeveld II, p. 315).
Thus he acquires global structures of the didactics, much in the
same way as parents form these for themselves to a greacter or
lesser extent when they help their children with their homework.

The example Langeveld gives of this form of thinking, "I
become skillful at handling the hammer by using it" can perhaps be
used as a metaphor for the above-mentioned situation.

If we compare the case mentioned above with the case where
instruction takes place in a classroom situation where fewer
questions are asked by the pupils, the form of thinking of the
teacher will be more directive-practical. For the teacher has now
prepared himself for teaching his iesson. Langeveld here makes a
further distinction between practico-practical and
theoretico-practical. In the first alternative, the action is the
object of study: "how do I handle the hammer?". The teacher has
then reached the first level of thinking: 'the aspect of the
didactics" and is at the stage where he says, "I do it this way and
I do it that way and it works very well."

The compulsory use of the executive-practical form of thinking
during individual class hours increases in value when the teacher
afterwards chooses the action as the object of his thinking. One
can ask oneself: "How do I handle the hammer?"” but also: 'How do
I want to handle the hammer?" Langeveld calls the latter
theoretico-practical; it can be oriented towards the action. The
didact‘c experiments of Mooy, Boe. eester and Bunt~ are all at this
level. Hence the teacher does not dwell on lesrning itself, but on
the result of teaching. This result is measured at the end of the
learning process. The didactics has a means-goal relationship with
respect to the learnability of intellectual performances and thus
stems from an approach of the natural sciences (see Langeveld V,
p.231).

If one wants to penetrate into the essence of didactics, one
should choose as the object of thinking not only the action of the
teacher but also the teaching situation. Here the subject is
co~-determinirg the instructional process and its result.

Tneoretico-practical thinking is then directed tow: rds the
action as well as towards the thinking: "What should I know in my
thinking when I ask myself how I want to handle the hammer?" It is
exactly this orientation towards the thinking that provides the
opportunity for analysis through which a higher level can be
attained.

The opinion that the problem set "Tiles" can contribute to the
formation of visual geometric structures in the pupils and that
this formation is desirable, thus stems from th. practice of
teaching, the latter by means of the theoretico-practical form of
thinking.
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In order to be able to arrive at insight into the didactlics
one follows, a more thorough analysis of the nature of the
didactics followed is needed. This is necessary because I was not
able to analyze the protocol. I did not see clearly enough “he
organizing principles along which I could analyze the didactics,
and language failed me completely. Therefore it was necessary to
approach the didactics more closely (see Chapters VII and VIII). I
was successful at this by making comparisons between several
didacti. approaches. This enabled me to define my own didactics
better.

Thinking is now directed more explicitly (see Langveld II, p.
315) towards finding out how the didactics that is beirg followed
really wovrks. It is now also possible to arrive at a theory of
didactics and its foundations.

From the analysis it appears that I have objections to a
certain didactic approach if: (1) it advocates a building up of
geometry by way of the elements, (2) it stresses the supplying of
methods of solution too m _h, and therefore (3) it promotes too
strongly the learning (memorizing) of lessons. In contrast with
this I propose that my didactic approach: (1) promotes a building
up of geometry by way of structure, (2) first directs the thinkirg
activity of the pupils to the analysis of structure prior to the
formation of associations and (3) concurrent with that, provides an
opportunity for the pupil to develop thinking focused on
structuring.

Starting from the fact that the .mportant element in geometry
is to develcp logical thinking, my further analysis in chapter IX
brought me to the works of the cognitive psychologists, Selz and
Duncker. Cognitive psychologists analyze thinking but they do not
analyze the gradual developrent of the thinking. The dissartation
of De Groot (II) is an experimental investigation that analyzes the
thinking of the chesz player but it does not study the process by
which chess is learned If none wants to analyze learning, one has
to focus on learning processes and learning situations. However
the disciplines are closely related by the nature of things.
Findings fiom the prsychology of learning can inspire the cogniti -e
psychologist while he is setting up h’s theory. Conversely, the
resuits obtained by the cognitive psychologist, through analysis of
his thinking processes, can be of help to the educational
psychologist in his explorations. There is thus a certain
interaction between the two disciplines, similar to the interaction
we know hatween mathematics, physics and chemistry. One discipline
is not a. .uxiliary discipline of the other, nor does one follow
from the other.

The learning processes that stucy the learning to think may

not be viewed as thinking processes, nor should the teaching
processes be confused with the learning processes. During a
learning situation in which the teacher places his pupils, not only
the children but also the teacher find themselves in a learning
process. The learning process of the teacher forms a part of the

teaching process. This learning process the teacher goes through
Q
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belongs to the study of the didactician. Initially, when the
didactics has yet to be analv.ed, the teacher himself is this
didactician and the only way to obtain data is through
self-observation.

Since the .eacher has leearned the subject matter during his
training, but has not learrned how to teach this subject mattier, the
above-mentioned learning process starts when he enters school. One
can then rightly say that the children are guinea pigs This
statement also holds for the pupiis of experimental schools. The
pupils are no longer guinea pigs when the teacher has analyzed the
didactics he uses and when this didactics has acquired a
theoretical basis.

If one views the teaching process not only as a process during
which trancsfer of culture takes place, but also as an educational
process, it is necessary to bring the theoretical foundations into
agreement with the requirements of pedagogy. The teacher's
instructional method should not be an imitation of instructional
methods of former teachers. The increase in scientific insight
into the disciplines of pedagogy and psychology 1llows for a much
better approach to teaching problems than was possible 30 years
ago. In addition, the change in the "notion of education" requires
a totally different relationship between teacher and pupil.

In order to delve into the foundations, an analysis of the
didactics is necessary first of all. This entails:

1) setting up hypotheses on which the didactics is based;

2) analyzing the teaching process in order to test these
hypotheses;

3) setting up a theory of the didaccics on the basis of
the laws thus obtained.

I hope to have sufficiently shown with this that the didactics
does not simply follow from pedagogy, nor from the psychology of
learning or ~hild psychology and that the didactics of mar‘hematics
certainly d.es not follow from cognitive psychology.

The mathematics didactician investigates what the
possibilities are for a teacher to teach mathematics, i.e. how he
can bring the pupil to exact thinking. He cannot investigate this
by taking snapshots before and after the learning process. Such an
action is based on an over-simnlificacion of the problem to be
studied. In reality, the psyc ology of thought, psychology of
learning, pedagogy, general didactics. child psychology and the
diccipline of mathematics itself all meet in the domain of the
didactics of mathematics. The mathematics didactician should %now
all these disciplines and in addition he should know semantics.

In my teaching I started from the customary objective: the
learning of exact thinking. According to Gestalt psychology,
thinking has already begun in conscious perception. Honigswald (I,

-‘q,
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p. 206) points out:

The "sense" of the perception is the Gestalt; and the
designa_ion of the sense of the GCestalt is devermined by
the perceptions. Gestalten are "produced" objects.,

Therefore the situations into which I brought the children yere
focused on the objective: learning to know and to unders:and
space. From these learning situations, one can proceed to the
learning situatiuns which are adapted to the learning of exact
thinking. As far as the didactics of the subject matter is
concerned, there is a questinn whether one can create such learning
situations that fit with the objective of mathematics teaching by
using a method that is founded o: association theory.

If one takes the viewpoint of child-centered instruction, *he
goal: learning to know and to understand space in a geometric
context is then not an intermediate, but a temporary goal in the
sense indicated by Langeveld (IV, p. 63):

The tenporary goals are rest points along the way to the
gener2: and ultimate goals... They are given in -~tages
along the developmental path of the child.

After studying the work of Selz it appeared possible to me to
define the organizing principles of my didactics. The language to
express this properly was still absent however. I have acquired
this technical language by reworking the language structures Selz
and Duncker used with the help of the word "structure." Therefore
the following rules for the didactics evolved: The teacher should
aim at the follow.ng:

1) that his pupils will build up the global structures
in a geometric sense;

2) that they will recognize these structures as component
structures of higher ones;

3) that they will extend these structures, in so far as
the ccntext allows it;

4) that they vill learn to recognize corresponding
elements in isomorphic structures.

With the help of this language, I established the ordering
principles of my didactics. The latter thereby became a
discipline. By using this language in Chapters XI and XII, I
acquired the structure of a techuical language.

The course of events sketched above clearly shows that first a
formation of concepts took place in myself and that only afterwards
could I proceed to the formation of a technical language. We see

demonstrated here what Brouwer (I) calls "the primate of the idea
above the language".
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We can now draw a parallel for the formation of the language
structures in the child . .,ring geometry instruction. I present the
a4naiysis of this formaction in the foliowing scheme: At the start
of the instruction each child possesses his owr linguistic style.

In the course of the teaching process the teacher will:

1) try to find the common mental correlate of words and
concepts which are present in the child and wh?ch he will
neead;

2) clarify and complement this mental correlate so that it
coincides with the meaning of the word in tane discipline;

3) expand the language style in so far as necessary,

When in the course of the learning process, the aspect of
geometry has become clear, i.e., when the pupiis have acquired
associations for the visual geometric structures, the teacher
proceeds to the pre aration of abstract geometric structures
(structures of thinking). During the structuring period that aow
follows in the course of the learning frocess, the children use
their linguistic style and not the technical language. The
establishment of the concomitant language structure takes place
only after concepts have been formed.

Prins and Van Gelder (I) distinguish logical-structuring
moments and receptive-structuring moments in the learning process.
These two moments can be clearly found in the analysis of the
learning process I went through myself. The first-named moments
occur during the concept formation I tketched; the second moments
take place just prior to the formation of the language structure.
One has to keep in mind howcver that both moments can be further
divided. Logical-structuring consists of intentional analyzing,
immediately foilowed by structures of thinking that are formed
independently, Receptive-structuring consists of intentionally
taking on a receptive attitude, whereby associations are formed
independently (for example, language) and as a result of that,
structures are formed independently.

Children make frequent use of other means for understanding
than language. The spoken language is complemented by looks and
body movements. During the discussions, many head, shoulder and
hand movements are added to express approval or disapproval, deubt
or certainty. The children have yet to experience that languag: is
the means of supporting the analysis - between the speaker and ‘'t
listeners - and that for this, an orcerly sequence of spoken ¢r
written sentences is necessavy. Many pupils in the first class are
not yet able to make use of language in that way. This is
especially apparent from the reportis (Chapter XII, p. 164 ff) in
which the pupils attempt to write down the thoughts they have while
they are solving a problem. The purpose of the discussions is to
listen to each other and to speak to each other. In this way a
more cor ‘ect use of language is acquired along with more precise
thinking.
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During the first class conversation, the mental correlate ot
the word "congruent" is explored and clarified. Next, the meaning
of that word as a technical term is more precisely established, It
appears in the protocol how we arrive at: Congruent means
"iandistinguishable with respect to shape and measurements'" (Pp 2.,
p. 83 and Pp. 30, p. 85). If we wish to distinguish congruent
objects, we apply distinctive signs. So one uses different
teaspoons with congruent teacups (Pp. 11, p. 82). For the same
reason we affix a number to congruent chairs (Pp. 10, p. 82 and Pp.
30, p. 86). At the same time an action is linked to congruence:
they fit on each other (Pp. 17, p. 81 and Pp. 3, p. 90). The
concept of congruence has to be detached from area and volume:
figures with the same area need not be congruent (Pp. 8, p. 82).

In orde:r to observe congruence, the children look at the shape and
the measurements of objects and figures. They experience ttat all
characteristics have to correspond, except for the location,

During the second class conversation, the concept of
parallelism had to be linked to equality of directiou. Observing
that the grooves in the tiled floor (fig. 2) are parallel does not
prove that this connection has been established. The direction in
which one should ride a bicycle on a tiled path should not coincide
with the direction of the grooves (Pp. 5, p. 83). 1In this fashion
sttention is drawn towards the word direction. Direction can be
linked with movement., The pupils rotate fig. 2 in order to obtain
fig. 3: the parallel grooves then take on another direction. It
appears from the class discussions that Pp. 3 {p. 84) cannot yet
adequately distinguish between the notions parallel, horizontal and
vertical. The displacement of the ruler along the grooves of tiled
fioor no. 3 was necessary in order to ci.arify that in a global
geometric structure che concept parallel is linked to equality of
direction (Pps., p 84).

The word edge appeared to possess several meanings., Since
this seems to involve a mental correlate (Mannoury I, p. 38), the
difficulty could be solved immediately by pointing out to the
children that mathematics has two other words at its disposal, two
technical terms, "side" and "vertex."

I also want to analyze here to what extent the children have a
need for defining. We see this need especially in the process of
exploring a concept.

Pp. 32 (p. 94) thus wants certainty about "regular bi~-angles"
that had been talked about, in passing, a few sessions before.
After her analysis that the sides are funny arcs, she only wanted
the statement that such figures are not counted among the regular
polygons, She had no need for a complete definition yet. When
reasoning that a rectangle is not a regular polygon, one looks for
a characteristic of regularity to which the rectangle does unot
conform. This can be, for example: "the point of intersectinn of
the diagonals is not equidistant from the sides" (Pp. 32, p. 90).

When the pupils were asked to indicate the 2zig-zag lines in a
given figure, they only asked me for approval of their judgment in
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cases of doubt (p. 110). Therefore, no definition was given for
the term "2ig-zag line." The pupils discover while drawing which
lines do not belong to them.

The procedure was similar in the drawing of anlargements. I
asked a question when the druwing threatened to go wrong (e.g. [p.
6, p. 117).

It is simple for the students to ascertain that a rhombus is
not a regular polygon, namely, because the angles are not equal
(Pp. 27, p. 89). They thereby have a clear concept of a square in
mind. It is much more difficult for them to say what a rhombus is.
(Pp. 25, p. 139). The pupil will then tell all he knows about a
rhembus. The pupils have the tendency to incorporate into a
definition all the properties of a figure.

As soon as thke pupils know how to construct a rhombus in one
way or another, they can come to a correct formulation of a
definition (Pp. 25, p. 139).

It is difficult for the pupils to make the correct distincti.n
between trapezoid and parallelogram (p. 137). This precedes the
defining of bo h figures. 1In order to be able to arrive at a good
definition of .rapezoid, a critical attitude is required and the
group does not possess that yet., Therefore the def'nition evolved
only because I always produced counter-examples.

Upon reading the test, given on p. 142, I encountered a couple
of seemingly contradictory answers. Question II read: Have you
also found hexagons? Is there 2 regular one ameng them? If ves,
draw the outline with red. Do not forget to write down the answers
and to explain.

Pp. 22 gave the following answer to this question: '"Among the
hexagons I found there is also one regular one, because all six
sides are equal. The angles are not equal."

Upon inquir, it appeared to me that she really did not make a
distinction between regular and semi-regular. This phenomenon can
be explained as follows:

For a pupil, a co'plex of properties he has not yet ordered
belong to a figure. A similar complex of not yet ordered
properties also belong to the word regular. There now are two
possible modes of connection. The first is that one calls a figure
regular when it possesses the whole complex of properties that are
linked to regularity. One can only wake use of this mode of
connection here to ascertain that a given figure is aot regular.
For, in order to show that a figure is regular, the totality of the
properties of regularity has to be established first. 1Indeed, many
pupils have acted according to the above-mentioned mode in order to
shuvw that a given figure is not regular: they named a property
that regular hexagons ought to possess and that the given hexagon
did not possess (see p. 160).. There is, however, still another
possible mode of connection between figure and regular. One can
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link them also when the complexes of properties that belong to them
possess one or more common elements. The pupils very often still
have to experience what the custom (usage) is. The rule of the
game became clear to many pupils only during the oral conversation.
Their reaction "I have been caught" indicates that they had been
tested on rules of the game which had not been sufficiently
established for them.

Before one can proceed to the defining of particular figures
in the teaching process, it is necessary first to estahlish a
totality of properties of such a figure and second to order these
properties according to knowr principies. Only after this has been
completed, can one arrive at definitions in which "necessary and
sufficient" characteristics can play a ronle.

The ordering of geometric figures according to geometric
characteristics belongs to the first level of thinking.

The finding of interdependence and the ordering of relations
takes place on the second level of thinking.

The ordering in a system of theorems is established when the
pupils are on the third level. Then insight into the theoi, of
geometry bhas been acquired.

I will explain this further with an example, It follows from
empiricism that a regular pentagon has: (I) equal sides, (II) equal
angles, and (III) equal diagonals, On the second level of
thinking, one can make use of the orderirg principle congruence,
i.e. one can deduce the congruence of triangles on the basis of
certain characteristics. The pupils then can establish the
following ordering:

ITTI follows from I a2ad II according to SAS and also II
follows from I and III according to SSS.

It is only possible on the third level to conclude from this
that there are (at least) two definitions for a regular pentagon.

For an analysis of the language structure in another sense, it
is desirable to have a shorthand report at one's disposal.

Footnote:

1. Dr. L.N.H. Bunt, Geschiedenis van de wiskunde als onderwerp
voor he- gymm. A. Groningen, 1954. (See P. 176.)
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Chapter XIV

FURTHER ANALYSIS AND FOUNDATINN OF THE DIDACTICS

It appears necessary to me to summarize my conclusions about
the didactics in the preceding chapters. In the initial stage of
geometry instruction I start from “he global structure the children
have acquired. Before the study of geometry can start, it is
important to build these structures geometrically. For this I
choose objects from the surrounding world that lend themselves
especially well to bringing about the geometric structures: the
extended building block set.

Since the pupils have to be able to understand the structure
of the analysis, it is not desirable to start from a total picture
of the world. A pupil proves he possesses the structure of the
analysis when he shows that he can manipulate the o:ganizing
principles. One of these organizing principles is “'symmetry."

This rests on the act of thinking named by Delacroix (I, p. 240):
the identification of component parts. If the teacher draws half
of a vase, then each pupil can add the other half to it. For he
has a concept of a whole vase at his disposal. The existing global
structure of the symmetry concept becomes structured geometrically
thrcugh an analysis of the deviations the completed vase has with
respect to the concept of a vase., For this analysis I make use of
an object for which the pupils have a2 clear concept. It has become
evident to me that the head of a cat is much less suitable; the
activity of the pupils is then focused more on an aesthetic rather
than on a geometric structuring. The teacher will have to arrive
at the most effective material by trial.

During the first trimester the organizing principle of
symmetry is prominent because this connects best with the natural
organization of perception. Empiricism provides diversity; the
intellect identifies and orders (Delacroix, p. 209). The pupil
makes drawings and models, searches for and uses planes of
symmetry, axes vi symmetry and centers of symmetry; he is actively
involved with hand and head, he identifies and orders, in short, he
explores.

In a synthetic build up one ought to reflect on the objacts
with which one is working. To do this we call on the developmental
psychologists who assume that "to develcp”" means: to establish a
structure for oneself. In Piaget (I, p. 15) for example, one reads
the following about this:

Intelligence, in effect, was showing up as a coordination
of actions. These actions are first of all, simply
material or sensory-m>tor (that is, without the use of the
symbolic function or representation), but, already, they
organized themselves in schemes which carried with them
certain structures of totality.
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There are no indications that abstract thinking among
twelve-year-olds has developed to a point that its relations with

the material world and action have been disconnected. This is the
reaion for my maxim that the didactics should start from a
"thinking activity with manageable material as a help." Since the

making of models, etc. is not a goal, but a help, scissors and glue
are only of temporar; use, By “elementary geometry" for the
secondary school, I therefore understand a geuretry that starts
from the global structures of thinking that we find in children,
The requirement of establishing connections with the existing
global structures during the formation of new mental stiuctures
remains valid for the whole geometry course.

One will have to accept that the child who studies geometry
initially will have totally different structures of thinking ot his
dispossl i.in the teacher had expected to establish. 4 beginn!ng
Pupil, for example, does not see a reversible relation divided fn
its two parts: in this area the act of thinking "identification -
distinction" has not yet been opcrative. The separation of the
Siszmese twins appears not to be Possible yet. During the first
year, therafore, one should avoid any symmetrical relations; or
better, one should never make use of them.

The twelve-year-old child has acquired structures through his
life experiences. We call these structures global structures.
These all came into being as a result of the act of thinking:
identification - distinction. One can obtain totally different
global structures of the same object depending on the context in
which one views the object. The example of the parquet floor
already points in that direction. The global structure of a
dancing couple is mainly based on it being more or less slippery.
For the interior decorator the Structure of the parquet floor is
linked to that of the whole room. The organizing principle has an
aesthetic character. For the very young child the parquet floor
takes on a global structure in which the organizing Principles are
linked to the possibilities for Play which it provides.

Some children discover rather early the geometric structure in
the parquet floor. We have observed this as follows: our youngest
daughter (6 years, 10 months) was able to reproduce the
herring-bone pattern of such a floor with small rectangular tiles
without looking at the parquet floor. She could also carry that
out faultlessly with tiles in which the sides containing the right
angles have totally different ratios. This showed that she had a
Sstructure of an organizing principle at her disposal. Her one and
a8 half year older sister (8 years, 3 months) was unable to
reproduce the herring-bone pattern with tiles, even though she had
repeatedly looked at the parquet floor. The geometric structure of
the parquet floor had not yet been sufficiently formed in her. She
could see the lanes, but not the herringbone. She had not yet seen
through its structure.

The ordering Principle can be pointed out by observing the
regularity of the figures. When these structures are sufficiently
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fine, ore can speak of the existence of visual geometric
structures. Initially they still have a global character. The
existence of such structures is a necessary condition in order to
be able to start geometry instruction.

The structures that have to serve as starting-points for the
child at the beginning of geometry instruction can be divided into
two categories: the perception structures that are especially
studied by the Gestalt psychologists and the structures of the
organizing principles that have been defined by Van Heile (p. 143).

Briefly, one can imagine the didactics of geometry as being
built up in the following manner.

One starts from the global structures in a geometric context.
These can be grouped into perception structures and organizing
structures.

The organizing structures can come into being in var’ us ways,
by putting into practice the relation "to fit in" (puzzles) and "to
fit on" (sticker-puzzles). By letting pupils, for example, cut out
figures and investigate the different ways these will fit in the
holes, one provides g:ometric structuring material for them.

When the pupil is able to structure geometrically, he reaches
the first level of thinling: he is able to apply known properties
to a known figure in an operational way; he acquires visual
geometric structures of the figures, but he cannot yet incorporate
links in his reasoning.

It is only after this period of active formation of visual
geometric structures of geometric objects (figures) that it becomes
meaningful to insert a period during which associations are formed.
I then let the pupils do a lot of constructing during the lesssons;
through the use of compasses and ruler, the characteristic
properties become attached to the figure. If one introduces this
period too early, an association formation will most probably be
established, but the pupil is not on the level of thinking - he
therefore misses the opportunity to make operational use of his
knowledge. 1In this procedure one takes into account the plateaus
in the learning curve. (See Van Heile, p. 41.) 1If everything
proceeds well, the pupil has ascended to the first level of
thinking from level zero (the global structuring). One could say
that the concept of "geometry" came into being because the theorems
are the objects of geometry proper.

In the learning process we now have a repetition: first a
period of structure formation followed by a periou of appropriate
association formation. aAs far as the structure fcrmation is
concerned, however, there is a difference- the transitien from
level zero to the first level is, in essence, different from the
transition from the fjrst tc t.e second levei. On level zero
everything is glokal fiom & cecwmetric yuint of view. Through the
analysis in a global geomet. - zontuxt, geometry is born, as i
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were., The transition from the first to the second level only
brings about a structuring-through within the geometric context.

There can be a transition to the second level of thinking
precisely because of the opportunity that has been created to make
use of the organizing principles of the context. These principles
provide geometric characteristics rather than a global aspect.

This level of thinking implies that the pupil sees that an
ordering can be established in the relations, that one relation can
follow from other relations. He can possibly look for new
relations himself by starting from given relations, or he can order
a number of given relations. He thus can make operational use of
the relations.

I will illustrate this with an example: I take parallelism as
the organizing principle. Globally this means sameness of
direction. Visually, this means acquaintance with the geometric
characteristics of parallelism - among other things, equality of
angles. In order to give this characteristic a signal character, I
introduced the names saw and ladder.

If one now orders figure 9 (which evolved through ordering of
a large number of congruent triangles) according to the parallel
lines that one can observe in it, one finds the relation: '"The sum
of the angles of a triangle is 180 degrees". (See X, p.98). 1If
however one orders figure 9 according to the ladders and saws that
are present in it, a structuring-through towards the following
scheme is possible:

Ladder Saw

Sum of the angles of a triangle is 180°;

Hence, a structuring-through towards an ordering in the relations
is possible. (See X, p. 119 f£f). By this structuring-through, a
new structure has been formed. Having this new structure at his
disposal, the pupil proves that he has attained the second level of
thinking. He then has grasped the concept of what geometry is all
about.

The first level of thinking implies comprehension of the
aspect of geometry and the second level implies comprehension of
the essence of geometry.

The didactics aimed to prepare for the second level of
thinking is similar to the one aimed to prepare for the first level
of thinking. The learning process again has a period of structure
formation, followed by a period of association formation. These
periods, however, are much longer. This is especially due to the
fact that the concepts by which we have ordered still have to be
structured-through., The visual geometric concept "congruent”
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implies: "all elements equal." After structuring through, it
implies: "tc bde atle to vperate with the cases of congruence."
The visual geometric concept enlarging (the corresponding angles
equal, the corresponding line segments proportional) has to be
structured-through to the cszses of similarity. The visual
geometric concept "saw" and "ladder" has to be structured-through
to the known theorems about parallelism in connection with
alternate-interior angles and with corresponding angles. I have
indicated this earlier with the words: the separation of the
Siamese twins. Therefore, the second level of thinking is a
necessary condition here; this subject ought not be presented to
beginners. There is even a questicn whether the attainment of the
second level of thinking is sufficient, whether perhaps the thixd
level of thinking wouldn't be necessary (see Van Hiele, p. 174).
The relation between parallelism and equality of angles is
symmetrical and the symmetry is essentially used. When the pupil
hes directed his attention towards this symmetry of the relation,
one can then say, for the first time that this relation is a
logical relation for him. The pupil is then on the third level of
thinking.

In ordexr to let the pupils better experience the essence of
geometry I use a known global structure, "the genealogical tree."
The ge~ealogical tree clearly provides the opportunity for
extension at both ends: the antecedents and the descendents. The
former involves searching for a set of mutually independent axioms,
the latter involves the finding of new theorems from the theorems
that are already known.

In order to promote the formation of new structures by the
children, the teacher should aim at the following:

1) that his pupils will build up the global structures in a
geometric sense;

2) that they will recognize these structures as component
structures of higher ones;

3) that they will expand these structures, in so far as
the context allows it}

4) that they learn to recognize corresponding elements in
isomorphlc structures.

In this connection I start in the second trimester from the
visual geometric structures: the plane coverings (see fig. 1
through 12). Since these may not yet be structured in a visual
geometric way, I stait from the global structures of sidewalks,
tiled floors and mosaics which the pupils made with congruent
cardboard figures. These global structures of perception are
structured in a geometric sense by having the pupils nake drawings
of these mosaics as accurately as possible. These visual geometric
structures are compared with each other; the one is viewed as a
component structure of the other. They are refined by applying
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ladders, saws, eénlargments, etc. This preparation is necessary in
order to make it pussible for the Pupils to acquire those new
structures belonging to the higher level of thinking. These
contain he same elements as the visual geometric structures, The
novel aspect is the ordering that is established among the
relations. Subsequently, it is important that th- pupils have at
their disposal the structures of the organizing rrinciples that are
used in the analysis.

For congruence of triangles, the latter means: to be able to
conclude the equality of six elements from the equality of three
elemewnts. The dustomary terminology for this is as follows:
congruence follows from the given characteristics and the equality
of the remaining elements follows from this congruence.

The empiricism - the correspondence of the construction -
implies five characteristics for the congruence of triangles.

The same procedure is used for the theory of parallelism: the
saw and the ladder can be recognized ei:ther from parallelism of
lines, or from equality of angles. From each of these figures two
characteristics are valid. The accompanying terminology here is:
Parallelism of lines implies the presence of the saw and this
implies equality of angles, Equality of aagles implies the
existence of the saw and this in turn implies parallelism of lines.

A pupil who is on the third level of thinking and who has the
structure of organizing principles at his disposal can reason as
follows:

If two triangles have two sides and the included angle
equal (S.A.S.), then the remaining elements are also
equal (A.S.A.). If two triangles have one side and
both the adjacent angles equal (A.S.A.), then the
remaining elements are also equal (S.A.S.).

If two lines are parallel, then the alternate interior
angles are equal. If alternate interior angles are equal,
then the lines are parallel,

Many teachers make use in their didactics of tools such as
ladder and saw, but they use a termirology that can only be
understood by pupils that are on the third level of thinking. They
also sometimes use schemes that do not belong to the pupils'
present level of thinking.

Similarly, the proof of the above-mentioned symmetrical
relations requires a level of thinking that is too high for the
first year, because the ordering of a system of theorems forms the
base for these proofs.

One can easily follow the analysis of the children in the
protocol,
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When I ask for tne forefathers of the theorem: "the sum of
the angles of a triangle is 180 degrees,'" the children have to do
the following:

a) extend the figure of the single .iangle until it is
incorpnrated into a pattern of triangles;

b) abstract, i.e. choose that part of this pattern that {s
necessary for reasoning about the theorem. This
amounts to choosing the correct auxiliary lines.

c) establish the ordering of thinking that leads tc the
conclusion that the sum of the angles of the
triangle is 180 degrees.

This is an example of an inductive thinking process. If one
derives from the above-mentioned theorem that the sum of the angles
of a quadrangle is 360 degrees, one is dealing with deductive
reasoning that was started with an inductive thinking process.

The deductive as well as the inductive thinking processes are
intentional. The teaching of exact thinking has to be directed, in
the first place, towards increasing the versatility of the pupils'’
thinking. This versatility consists of having the pupils learn to
switch smoothly from inductive to deductive reasoning.

The pupils thus have to experience that when there is a
relation between A and B, there is a possibility that A is the
premise and B the conclusion, but also the converse. They will
also have to see that the reasoning which establishes such a
relation can have variations. One can have A - P - B, but also
A - Q - B.

As scon as the pupils are able to draw correct conclusions in
this way and can examine the :onclusions of others, they have
reached the third level of thinking. I therefore would like to
indicate this third level of thinking by "insight into the theory
of the subject geometry”. Only when the pupil has gained this
insight, is he able to following an axiomatic build-up of geometry
and to participate in the actual construction of a system of
theorems. From that moement on, instruction can be given by means
of a deductive system. This is a very appropriate means of
establishing results, although one shall have to keep in mind that
oue arrives at these results by way of a thinking process in which
induction and deduction continously alternate.

My conclusion therefore is as follow.: A system of teaching
that has the tendency to be based exclusively on deduction or on
induction is wrong. In the initial instruction neither purely
deductive nor purely inductive reasoning is appropriate. What is
important Lere is that the pupils establish relations between
empirically obtained results, and thatwghey gain insight into the
empiricism. The first goal is not yet“ﬁﬁe building up of a system
of thecrems, but the development of thinking. The class as a unit
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anelyzes at a certain level, and the pupils learn to analyze by
participating in discussions. The teacher only guides discussions
and provides favorable learning situations. Parts of a cystem of
theorems are found, and only after insight has been gained into the
struccure of this system is it appropriate to try and build a
system from a certain given sets of axioms by using a deductive
approach.

One should not expect that the pupils themselves would b2 able
to arrive at a certain system of axioms from the parts, found by
them, of the system of theorems by using an inductive approach. In
order to establish such an ordering, it is necessary that one looks
at geometry from a higher viewpoint, and for this it is necessary
that one has reached the fourth level of thinking. (Van Hiele,
p.175.)

I now will give an overview of the didactics of geometry as a
whole in relation to learning situations.

In the first learning situations one starts from existing
global structures of perception and structures of ordering. The
objects are figures. A number of figures and concepts are placed
in a geometric context by the choice of organizing principles.
Initially this is a known ordering {fit*ing, piling, etc.) The
figures thus become geometric symbols (see Meyerson I, p. 574);
they are carriers of geometric relations that we have found by
means of empiricism. These geometric relations become the objects
of study of geometry. The goal of the first learning situations is
to let the pupils experience the aspect of geometry in an empirical
way. The pupils acquire visual geometric structures. The
structure of the organizing Principle takes on a geometric symbol
through the concepts of cotigruence and parallelism (ladder and
saw).

The structuring-through makes it possible tu place pupils in
learning situations where they can experience the dependency of
relations. By letting pupils analyze at their level, an ordering
of certain relations evolves. Known relations can be a consequence
of other known relations and new relations can be discovered from
known relations. The goal of these learning situations is to bring
Pupils from empiricism to the essence of geometry. Through this
analysis it becomes possible for Pupils to expand their visual
geometric structures into structures that belong to the second
level of thinking. For this transition to the second level, it is
necessary that they have acquired (aLtthough still implicitly) the
structures of the organizing principles. What has been going on in
the pupils' thinking can be t{ndicated as follows: The organizing
principles (e.g. congruent and parallel) have taken on a signal
character and can be recognized. Ladders and saws each possess two
characteristi.s; triangles have five. 1In the latter instance, the
signal character lies in the word congruent.

After the structure of the organizing principles has been made
explicit, the pupils are capable of reasoning such as: the
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parallelism of two or more lines implies the existence of a ladder
and this in turn implies the equality of corresponding angles.

The equality of two sides and the included angle implies the
congruence of triangles and this implies, for example, the equality
of the third side.

If one now takes the geometric relations of a figure itself as
objects, chen a separation in the relations, namely, into premises
and conclusions, evolves after the structure of thinking on the
second level has been made explicit. While making the accompanying
structures explicit, the following scheme evolves: given - to be
proved - proof.

Only when the pupils have these structures at their disposal
can the teacher introduce learning situations in which the pupils
experience how an ordering in the relations evolves. Through
analyzing the theorems for their correctness, the pupils ascend to
the third level of thinking. The nature of the signal character of
the figures is being analyzed (see, for example, Chapter XIII,
p.183), In these learning situations, the thinking activity is
also directed towards finding the zonverse of theorems and drawing
up definitions. The schemes of the ordering of the relations
becomes the object of study in order to obtain insight into the
theory. Pupils who possess this insight into geometry have reached
the third level of thinking.

Such pupils are then capable of the following arguments:

If two lines are intersected by a third line and the
corresponding angles are equal, then the first two lines are
parallel; and conversely: 1if two parallel lines are
intersected by a third line, then the corresponding angles are
equal.

if in two triangles two sides and the included angle are
egual, then the third side and its adjacent angles are also
equal, and conversely.

The teacher can place those pupils in learning situations in
which they can actually participate in the building up of a system
of theorems.

Only the pupils who have reached the scientific insight
(fourth level) can study the foundations of the theory. They are
able to help with the building up of a deductive system from the
foundations. Among them, and only them, one finds persons who can
compare different theories, who can seek out missing axioms in
other geometries and who can establish the foundaticns of a new
theory and build a deductive system on 1t.

Since the learning process of the pupil who is studying
geometry is founded on the special didactics of geometry, I will
compare this learning process once again with that of the teacher
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who is learning didactiecs.

It can be useful for general didactics to proceed with my
analysis of the last named learning process which I started in the
preceding chapter. I will thereby make use of the already
mentioned terminology of Langeveld (V, p.228) and I will develop my
own terminology on the basis of his.

The initial objects in the learaing process of the teacher
are, among others, the performances of the pupils. These have an
undifferentiated shape for the beginning teacher. The teacher
possesses certain global structures of his objects. In this
learning process, one can also expect that different teachers will
have very different global structures. For there are differences
in training, experiences, intuition and environment. During the
explanations, the shape becomes cifferentiated. The teacher
acquires structures of his objects. These structures belong to the
aspect of teaching. Explaining is a purproseful action and )
therefore encoripasses a moment of thirking (executive-practical).
When the teacher reflects on “he explaining, his actions become
more differentisted. He acquires structures of the explaining.
These belong to the aspect of teaching (practico-practical form of
thinking).

We see the following points of correspondence between both
learning processes: one starts from observations; the action is
initially acting-thinking and thinking-about-the-acting (technical
thinking). Then a change takes place in the object of study. The
reflection upon the teaching process is the condition to arrive at
a higher level, i.e. to gain comprehension of the essence of
teaching.,

If the theoretico-practical thinking is only directed towards
the action of the teacher, one only takes into account a single
aspect of didactics, namely, the transfer of the subject matter.
If, however, one takes the teaching situation as a reciprocal
action situation, then the theoretico-practical thinking leads to a
formatiou of structures that belong to the essence of teaching.
Then didactics is being placed in line with the humanities.
However, there are also factors thet influence the teaching process
and that lie outside the science of the subject to be taught. One
of these factors is the thinking of the pupils. 1Ir order to
understand the nature of this thinking, the teacher will first have
to perceive the aspect of it. There he will also have to start
with theo stage where he makes use of the executive-practical and
practico-practical forms of thinking. He can ascertain through
observation that the thinking of twelve-year-olds differs
remarkably from the thinking of adults. This aspect of teaching is
well-known to most experienced teachers. In order to reach the
essence of it he will have to follow the gencsis of the thinking
with the help of the practico-practical and theoretico-practical
thinking process. He will have to observe, theorize, experiment.

When the factors th'at influence the teaching process have been
Ly
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diagnosed and have been perceived and understood in the context
"educating," when in addition they have led to meaningful
integration, then the teacher has gained insight into the
didactics: he then sees the organizing principles on which the
didactics rests. If he reaches the point where he has at his
disposal the structures that belong to this level, he is then able
to formulate provisional goals in relation to the incomplete goal
that is partially determined by the subject. This theoretical
thinking is now explicitly directed towards the didactics.
Langeveld (II, p. 315) tziks about subject-oriented theoretical and
reflexive theoretical.

The similarity between both learning processes is that each
new factor, that brings a change in the learning process, has to be
diagnosed in the original objects and has to be perceived in the
correct context. Gaining of insight into the essence of that
factor is possible by directing the thinking onto the process
itself. For the leacning process of the pupil in geometry, those
factors are the new organizing principles that are added, e.g.
"parallelism". This organizing principle is added after
"congruence"” is first diagnosed in the learning situations
“sidewalks." It is subsequently perceived and understood in a
geometric context by means of ladders and saws. Because the
thinking is directed towards the characteristics of parallelism,

the pupils gain insight into the essence of parallelism,.

For the learning process of teaching, the thinking of
twelve-year-olds is a factor that initially is insufficiently taken
into account. This factor first has to be diagnosed in the
teaching situation, has to be perceived and understcod in the
context "educating." It can only become an organizing principle in
the theory of didactics when the thinking of the teacher has been
directed towards the characteristics of the genesis of the thinking
and towards the levels of thinking. In this way, the teacher
touches upon the essence of an important organizing principle: the
ordering of the subject matter according to the levels of thinking.
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Chapter XV
THE LEARNING PROCESS IN THE LAST TRIMESTER

The subject matter to be covered during the third trimester
was determined by structures of thinking that were present in the
children at the beginning of that trimester. These partly evolved
in the learnings process of the second trimester.

By manipulating the organizing principles: "to fit, to pave,
to enlarge,"” the pupils had acquired visual geometric structures.
Plane figures that possess a certain regularity were now
geometrically structured for them by being linked to geometric
characteristics. Sets of congruent figures took or a geometric
structuring for the pupils because they learned to see ladders,
saws and enlargements in them.

During the use of the first-named organizing principle,
attention was paid to equality of the elements of figures; for the
second, to equality of orientation of lines; for the third, to
equality of shape of figures. The theories of congruence,
parallelism and similarity are based on these principles.

Before the transition to the second level of thinking is
possible, these organizing principles themselves have to be
geometrically structured. Ladders, saws and enlargements are
geometrically structured; they already have geometric
characteristics.

By building on the above considerations, the learning process
can be developed in the following directions:

1. The organizing principle "congruence" can be structured
through. This was already used in a global geometric
way, such as "to fit in" and "to fit on."

2. One can allow associatinns to be formed that are
connected with paralielism (ladders and saws), in order
to let the pupils have the principle at their disposal.

3. One can expand the number of visual geome ric structures
by starting from new known global geometric structures
and determining their organizing principles.

The bringing together of figures to make a whole is brought
about not only through the organizing principle of "paving" but
also through "stacking.” We encounter a very special form of
"stacking" among the building kits. There, a number of plane
figures{jare put together until they form a spatial entity. These
spatial entities ip.turn can be chosen as objects for stacking.

The making of networks is thus one of the expansions of visual
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geometric structures mentioned uader point 3. In the context
"stacking,”" one can prepare for the concept "volume'" in the same
way as paving was preparation for the concept area. (p. 136 f£f).

In the last trimester I first introduced learning situations
that had the goal of bringing about a2 structuring through of the
organizing principle "congruence." It was a period with much
individual work. <Under my guidance, a large number of
constructions of triangles were carried out. Since many teachers
introduce the congrience of triangles in this way, it is not
necessary to give a detailed description of this teaching process.

The results were collectively established in a class
conversation. The characteristics SSS, SAS, ASA were derived from
the corresponding constructions. It had already been experienced
in the course of the constructions that one is not entirely free in
the choice of angles and sides. For instance, the sum of two sides
of a triangle has to be greater than the third side. Since the
property of the sum of the angles of a triangle was known, the
characteristic AAS could also be found. It appears from the
construction that SSA is not a complete congruence characteristic.
It is one, however, when the angle is a right angle. Stripe aad
protractors were made available to the pupils who liked working
with these materials.

Next, a number of constructions of triangles were made where
altitudes, medians, and bisectors were involved in the instructions
given. Because it now involved the formation of associations for
five characteristics, the precise measurements were given. In a
free choice of t..e data, one runs a risk of encountering new
problems, namely that of dependency and contradiction of data.
(During the constructions of triangles from their elements, this
had surfaced, but in a very restricted form.) Attention was being
paid to the possibility of multiple solutions, however, because
this would reinforce the correct interpretation of the case SSA.

As for learning to know space in a geometric sense, I judge
the making of models to be very important. Honigswald (I, p. 220)
says:

It is not spatial figures per se which are defined by a
system of geometric knowledge. Rather it is certain
determining criveria which chartacterize the spatial
figures in a concrete way. Indeed, the fact that the
criteria are related to figures - and only to figures -
gives them a singular characteristic: it mafks them as
moments of true perception.

I therefore ended the course with an activity about the
"making and drawing" of solids. This contributes to the formation
of global stereometric (three dimensional) structures. I will
reproduce this activity in shortened question-and-answer form.
This most clearly shows what the pupils are able to achieve by
themselves in this area.
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First lesson

Our startiang-point +as again the cube. The model I used for
demonstration had a loose upper base and a loose diagonal plane.
This partition divided the cube into two pieces for which the name
"prism" was mentione¢. The first task was as follows: '"Just as we
succeeded earlier in making a cube out of one single piece of
paper, we can make the prism in a similar way. Try it.

Most pupils circled around the edge (4 c¢m) twice in order to
obtain the upper base. They thereby observed that in doing this
one does not easily make mistakes. Only one pupil needed help in
making the upper base,.

Next I showed a regular four-faced pyramid the bzse of which
fitted on the upper base of the cube. I therefore could place this
pyramid in the cube. 1 did this and mentioned that the altitude of
the pyramid was exactly equal to half the altitude of the cube. I

then asked: "How many of those pyramids are needed in order to
build a whole cube?" One pupil said, "two." I also received
answers such as "four" and "six." Nobody bid higher. Once the

number 6 had been mentioned, more and more pupils agreed with this
number. One of the pupils was asked to explain why 6 was the
correct answer,

Next I asked: '"Can we also make a network of the pyramid?"
Pps: "A square with an isosceles triangle on each side." Some
thought that it had to be an equilateral triangle. Tr: "How can
we find out who is correct?"” Pps: "By measuring.”" In this way
it was found that the triangle has to be isosceles. Tr: "How
long should the legs be? The model I have is larger than the model
you have to make - and nobody has the pyramid." I showed two

cubes side by side; in one thecre was the diagonal partition and in
the other the pyramid. Then a couple of pupils saw it: the leg of
the isosceles triangle is half the diagonal of the cube. The
pupils explained it to each other: '"When you extend a leg you
arrive exactly at the opposite vertex."

Then came the second task: "Draw the network of this
pyramid.”" A few pupils did not take half of t 2 diagonal of the
rectangle, but Walf of the diagonal of the square. They discovered
their mistake because the network did not produce a pyramid. The
pupils went home with the assignment to make a prism and three
pyramids for the following lesson.

Second lesson

Tr: "What is the volume of the prism?" Pps: "32 cc because
two prisms together form a cube." Tr: "What is the volume of the
pyramig?" Pps: (after some hesitation) "10 2/3 cc."” Tr: "Show

me that 6 pyramids together have the same volume as two prisms."”
All hands were needed to hold the pyramids.
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Now came the first task: '"Glue the prisms together so that
they form a cube and glue a pyramid to each face of the cube. Tr:
"How many lateral faces does this solid have and what dc they look
like?" Pps: "Triangles. Rhombi." Finally, the answer "rhombi"
was predominant. Tr: "How do you know that they are rhombi?"
Pps: "Two triangles together form a rhombus.” We felt with the
palm of the hand that the triangles were positioned in cre plane.
Tr: "How many rhombi are there?" Pps: "12" Tr: "The name of
this solid is a rhombodode~zhedron."

The solid can be made by drawing twelve rhombi and gluing them
together. Tr: "Which measurements of the rhombus are alrcady
known?" Pps: "The diagonal is 4 cm and the sides are the legs of
the isosceles tiiangle, thus 3.5 cm." (A few pupils obtain 5.4
cm.) I showed a model of a rhombododecahedron and asked one of the
pupils to find the vertices of the cube and to point them out.
Fortunately I had a few models to distribute among them. It then
became a race to find the vertices of the cube. This assignment
was necessary in order t> arrive at an ordering of the vertices of
the rhombododecahedron. We found: There are 6 vertices where each
time 4 acute angles of the rhombus meet and 8 vertices where each

time 3 obtuse angles meet. Then came the task: '"Make this
rhombododecahedron out of one piece.” During the work I gave
hints: "Number the vertices where 3 obtuse angles meet 1, 2, ...,8

and the vertices where 4 acute angles meet I, II, III, .... VI.
Connect the sides that have to be glued together with an arc."”

Mcre than half of the pupils succeeded right away in puttiing

together the rhombi in the correct way. The figure was finisred in
one hour of free work.

Third lesson.

I started by asking the volume of the rhombododecahedron.
Pps: "Twice the volume of the cube of course, 128 cc." The pupils
asked me to give similar additional assignments. I then drew the
following figures: six contiguous regular triangles that met in
one point; four contiguous squares that met in one point; three
regvlar hexagons that met in one point. I asked whether they
recognized these figures. Pps: "We saw those when we had the
'tiles.' It did not work with regular pentagons, because a small
space was left and it did not work with regular octagons either."

Tr: "Draw those three regular pentagons again on a piece of
cardboard. The protractor can only be used once. The rest has to
be carried out with compasses and rulers."” I simultaneously drew
it on the blackboard and drew an arc in the open space. Tr: "Why
do I draw an arc there?" Pps: "It can be glued together." Tr:
"Exactly. If I want to, I can make a tri-faced top hat. It is
possible to make a so0lid that is bounded with only regular
pentagons. You need twelve of those, in each point three of them

meet. Try it."
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Whoever was finished w.th this assignment was allowed to start
with the following investigation:
Are there solids that are bounded by:
a. regular hexagons?
b. regular quadrangles?

¢. regular triangles?
d. regular octagons?

Fourth lesson

I redrew on the blackboar? the three figures that had been
discussed at the beginning of .ne preceding lesson. They were
named figure 1, figure 2, and figure 3 (they are the basic patterns
of the tiled floors 5, ! and 6 respectively). Tr: "Has anybody
succeeded in making a solid that is bounded by regular hexagons?"
Pps: "No, it does not work. There is no open space." Tr: "And
squares?" Pps: "Yes, that is the cube." Tr: "There is no open
space in figure 2 though." Pps: "That one square is in the wrong
position. It has to be drawn somewhere else." Tr: "Correct, I
have to erase that then. Then I have an open space and I can glue
the two open sides together. I drew an arc in the open space.
Could I not also do that with the hexagons: erase one, such that
there is some open space?" There was agreement until a few saw
that this also would not work. Th “1exeagons then fall on each
other.

Tr: "Is it possible with regular octagons?" Pps: "No, then
you also have only two."

Tr: "Now the triangles. Who nas found a solid that is
bounded by regular triangles?" Most pupils had found the
tetrahedron. A few also found the icosahedron. Tr: "How many
triangles meet at each point?" Pp: "In the icosahedron, five. "
Tr: "In which figure on the blackbord should I erase something?"
Pps: "In figure 1." I then erased a line. Tr: "What else can I
do?" Pps: '"Remove two segments or three segments." Tr: "You
certainly all found what the end result is. That is the
tetrahedron. There apparently has to be another solid where four
triangles meet in one point." One of the pupils proudly showed a
model. It was bounded by 10 regular triangles. When we looked at
it more closely it appeared that five triangles met in two vertices
and in the other vertices only four met.

The task now was: '"Make a solid that is bounded by regular
triangles where four meet in one point." It was not given how many
triangles would be needed in all. It was a surprise when the known
octahedron made its appearance. Many pupils had alredy drawn too
many triangles when it was whispere?;i "There are eight of them."

s
¥

In this manner we came empiricafly et systematically to the
existence of five regular polyhedra. 267
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Fifth lesson

Tr: '"There are also solids that are boundad by a number of
squares and a number of equilateral triangles.” Each child was
given the assignment of making 8 equilateral triangles and 8
squares, each with a side of 4 cm. They than were asked to
investigate the following:

a. There is a solid that is bounded by two triangles and
three squares., Make it and give it a name.

b. There is a solid that is bounded by 4 triangles and one
square, Make it and give it a name,

c. There is a solid that is bounded by 8 triangles and two
squares, such that at each vertex one square and three
triangles meet. Make the solid out of one piece.

The assignments a. and b. were given in order to allow the names
prism and pyramid to obtain a broader meaning and to emphasize the
characteristic features of these solids.

One pupil solved question ¢ by combining into one solid the

not yet glued pyramids (of question b.) made by his neighbor and
himself.

Sixth lesson

Two other assiznments were given:

d. There is a solid that is bounded by 8 triangles and 6
squares, such that at each vertex 2 squares and 2
triangles meet. The triangles are opposite each other
at a vertex. Make such a solid out of one piece.

e. There is a solid that is bounded by 8 triangles and 18
squares. At each vertex 3 squares and one triangle
meet. Make this solid out of one piece.

Since nuw the number of faces became too large to be held
together, only the systematic drawing method was left. The
information concerning the figures that meet at one point provides
the key to the solution. A global ordering is established and the
stereometric figures that this evolves are structured in a visual
stereometric way.

The last solid appeared to be too difficult for many pupils.
I therefore showed the solid. After the pupils had observed the
edges of 8 squares that appears on the solid, the solution no
longer seemed difficult.

In this way over a period of three weeks, a whole set of
solids was gathered that were worth studying more closely. In
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order to let the pupils focus better on the geometric
characteristics, I had them draw a number of these solids on blank
paper. This took place as follows: The solid that had to be drawn
was placed in a certain way. We imagined it was intersected by a
certain vertical plane (frontal plane). The intersection was drawn
in actual size. The edges that belonged to the intersection were
drawn thickly; the remaining lines of the intersection were thin.
These lines were merely auxilfary lines. We then looked for the
lines that were perpendicular to the frontal plane. Sometimes
these were edges, sometimes diagonais or altitudes, These lines
were drawn obliquely at an angle of 30 degrees with the horizontal.
They were drawn half their real size. The figure was finished by
showing the edges thickly. The invisible edges were drawn in a
thick dotted line.

I had pre-drawn the cube in two different positions on the
blackboard. First with a lateral face positioned frontally and
later with a diagonal plane in the frontal position. In both cases
the cube rested on one of its faces. Using this fixed procedure
the pupils drew solids that had been discussed earlier. They did
this during four class hours. Among these solias there was also
the solid of assignment e. which we called a hall lantern. A few
pupils could even draw this solid with a little help. The
dodecahedron and the icosahedron were not part of tihis assignment.

The children often had difficulty finding the points where the
perpendiculars met the frontal plane. For the most part they had
not sufficiently realized that the finding of these points was
important.

The last test of the first year had the objective: to
investigate whether sufficient associations had been formed for the
visual geometric structures. To do so, a regular dodecagon was
drawn collectively. The vertices were labeled with the letters A
through L and the center with the letter M. Next the pupils had to
carry out the following assignments:

1. Write down two triangles that are congruent to triangle
MAD and which have E as a vertex.

2, Write down three triangles that are similar to triangle
MAD and which have E as a vertex.

3. Write down five triangles that are congruent with triangle
LBD and which have E as & vertex.

4., Write down two triangles that are similar to triangle
AEI and which have D as a vertex.

5. Fill in: BFHL is a ..... (commented on orally),

6. Give the names of as many different figures as possible
that have the points A through M as vertices.
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The pupils were advised in an oral comment to draw as few figures
as possible.
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ENGLISH SUMMARY
by
Dina van Hiele-Geldof

of

THE DIDACTICS OF GEOMETRY IN THE LOWEST CLASS OF
SECONDARY SCHOOL

This thesis is an inquiry into the
geometrical instruction in a class

concrete material in a systematic way so as to unfold visual

thinking and to transform it in the abstract way of thought which
the logical system of geometry demands.

didactic possibilities of
where the child is given

The author is mathematics teacher at a secondary school in
Amersfoort (Holland). Teaching of geometry in Holland starts in
the lowest form of the secondary school, i.e. at the age of 12,

The descriptions in Chapter III refer to the teaching of
mathematics to children at this school during the months of
Sept.-Dec. 1955. The children had been divided into two groups in
alphabetical order, so they may be considered as having been chosen
at random. Chapter V gives an account of the method adopted.

When initiating a child into geometry we take into account
it's previous experience. To do so, we start from known
geometrical shapes, such as: cube, square, rectangle, rhombus, etc.
The primary perception of these objects leads to undifferentiated
Structures that are analyzed under the guidance of the teacher. By
a phenomenal analysis she will draw her pupils attention to the
geometrical qualities of the shap«s in order to clarify the context
of the subject-matter. Paper folding, cutting out and construction
of models are important tools in order to develop the children's
knowledge of space, especially that of the symmetry of geometrical

shapes. By these activities they enrich their store of visual
structures,

The relations found should be settled by a joint effort of
teacher and pupils, for the latter are not yet familiar with the
technical terminology and must learn it by practice. The
structures that finally emerge from this analysis can be considered
as symbols of the subject-matter of geometry. The word 'symbol'
should here be interpreted as meaning 'a mental substitute for a
complex of undifferentiated relations that is subsequently
elaborated in the pupil's mind.' The rhomb, for instance, is a
symbol of the following characteristics: it has four equal sides,

equal opposite angles, diagonals that bisect the angles and are
perpendicular to each other.

The fact of working at and desi
particular, of making the necessary
leads to the
Finally the s

gning geometric models and, in
drawings and constructions,
acquisition of a system of signals for these symbols.
ymbols are recognized even if only part of their
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characteristics can be seen. Anticipation of a symbol then becomes
possible.,

To encourage the pupils' personal exploration we facilitate
the orientation in undifferentiated structures by means of a number
of natural organizing principles that are already present in the
pupils' minds in an undi.ferentiated form (i.e. not geometrically
analysed), such as: division of plane and space, piling - f
objects, symmetry with respect to planes, lines or points. Thise
organizing principles are the factors that permit a schematic
anticipation of the symbols. At this stage we say that the first
level of thinking - the aspect of geometry - has been reached.

This implies for example that a pupil who knows the properties
of the rhombus and can name them, will also have a basic
understanding of the isosceles triangle = semirhombus.

In this teaching situation the pupil will first acquire
symbols, then the signals matching these symbols and finally he

will learn how these symbols and signals may be used. This first
stage, the period of the pupils' orientation by 'practical
thinking', takes approximately 20 lessons.

Pupils at the first level of thinking have acquired special
structures that have taken the place of the original
undifferentiated structures; we call them visual geometrical
structures. At this level a geometrical shape is still interpreted
as the totality of its geometrical properties. The pupils are not
yet capable of differentiating them into definitions and
propositions. These two will have to wait until the children have
reached a higher level of thinking for they belong to the deductive
system of propositions. Logical relations are not yet a fit
study-object for pupils who are at the first levei of thinking.

For the transition to the second level of thinking the
attention of the pupils should be deflected from the primary
subjects to the relations between the properties of geometrical
patterns. We shall have to organize the aggregate of geometrical
properties. Furthermore, the 'implication' must acquire its
special meaning within the context of geometry.

The forming of signals at the second level of thinking demands
a preliminary orientation, now in the field of visual geometrical
structures, The pupils will never understand certain essential
geometrical concepts, such as parallelism, unless the visual
structures have acquired a more subtle differentiation.

For the next stage in the hierarchy of structures, on the
second level of thinking, general class discussions are
undispensable. During the months of January, February and March of
the Sept. 1955 - Sept. 1956 course I took notes during the lessons
and worked them out immediately after, The syllabi have been
described in Chapter VI. They form an introduction to: the
logical connexion of relations, the theory of parrallelism, the

'
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theory of congruence, the theory of superficies and the theory of
translation. Chapter X gives a detailed account of discussions on
the subject of 'tiles'. With the help of these discussions we can
analyse constructive moments in the process of learning. Chapter
XI contains an analysis of the transition from the undifferentiated
to the visual geometrical perception field whereas Chapter XII
analyses the development of logical thought. We paid special
attention to this particular period as it gives an insight into the
pupils' way of proceeding from concrete situations to abstract
thought patterns,.

As a basis we took the child's undifferentiated structure of a
sidewalk. The Dutch tiled sidewalk is a typical illustrative
object of the concept of parallelism. The pupils were given the
task of building up a tiled floor from congruent tiles of card
board, such as triangles, squares, etc. In this way the concrete
basis will not be lost. The pupils were instructed, carefuly to
copy the patterns in their exercise-books, and were told to compare
the results and to elaborate them by drawing in 'ladders', 'saws',
enlargements, etc. (see figs. 1 to 12 inclusive),

In so doing we made use of the following didactical
principles:

1. The pupils will structure the perception structures in
a geometrical sense.

2. These structures are subsquently refined, i.e.
differentiated in a more subtle way.

3. Structures will be visualized as components 2f a
hierarchically higher structure.

4, Ismorphic structures will be iderntified.

The orientation is effected by means of the observation of
parallels, congruent angles, similar shapes, of relations such as:
the three angles of a triangle together form a straight angle (see
fig. 9).

In this way organizing principles such as 'parallel’',
‘congruent' and 'similar' acquire the meaning of symbols.

The organizing principle 'congruent' becomes the symbol of the
property: 'indistinguishable with respect to form and measures'.,

The 'ladder' becomes the geometrical symbol for the property:
'to have two sets of parallel lines and equal angles',

The enlargement grows into a geometrical symbol for the
properties of equivalent patterns: 'corresponding angles are
equal, the ratios of corresponding linear segments are the same,
the ratio of their areas equals the square of the ratios of two
corresponding sides',

IToxt Provided by ERI
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The use of these symbols finally leads to their recognition by
the pupils. Ladder and saw then become signals: each of these
patterns is recognized, either by the parallelism of their lines or
by the equality of their angles.

The introduction of the 'implication' into the geometrical
context opens the way to the exploration of the essence of
geometry. We appealed to the pupils' knowledge of the
(undifferentiated) structure of the genealogical tree.

The 10th class discussion shows how the pupils found the
ancestors of the property: "the sum of the angles of a triangle is
a straight angle'. The plane filling with congruent irregualr
triangles apparently functioned as mother-structure. Once the
pupils had accepted the above-mentioned geometrical structures in
their functions of symbol and signal, the auxiliary lines, needed
to prove the relation were, as it were, incorporated into this
mother-structure.

As soon as the pupils begin to understand the signal character
of the symbols of ladder and saw, they are able to understand more
advanced thought structures, such as: 'the parallelism of the
lines implies (according to their signal character) the presence of
a saw, and therefore (according to their symbholic character)
equality of the alternate-interior angles.

Thus a new structure has appeared, the elements of which are
the organizing principles of the original structures. The second
level of thinking is reached: the essence of geometry. The
didactical principle that guides the pupils towards this higher
level of thinking seems to be: 'Make sure the pupils have at their
disposal a number of visual geometrical structures that contain the
same elements as the abstract structures you wish to confer.'

During the structuring period of the learning process the
children are not expected to express themselves in technical terms
but are allowed to use their own pattern of speech. The
acquisition of the concept should precede that of the describing
linguistic structure (see Chapter XIII).

To clarify the new context we inserted - during the last term
of the first year - various practical tasks that lead to the
intermediate goal of the subject matter: the five criteria of the
congruence of triangles. The subject matter and procedure of this
particular term are described in Chapter XV.

The pupils comes to accept the criteria on the ground of the
uniqueness of construction. They work with protractor and with
strips, and also with a pair of compasses and a ruler. The
criteria are found empirically.

Once the pupils have accepted the organizing principie

'congruence' as a symbol and a signal, they are able to advance
towards the next thinking structure: 'one of the criteria implies
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the presence of congruent triangles,
character of a symbol,
triangles'.,

and therefore, because of its
the equality of the other element of these

However, to get this far we shall need a total of appr. 50

lessons. In our shcool we are then at the beginning of the second

year,

Having given a phenomenological analysis of the
teaching-learning procedure in Chapters VII and VIII I have tried
to arrive at a closer scrutiny into the fundamentals of dida-tics
in Chapter IX. .To this purpose I studied Gestalt-psychology
(Kohler), psychology of thinking (Selz and Duncker), psychology of
learning (van Parreren), pedagogy and development psychology
(Langeveld), didactics (Strunz) and semiotics (Mannoury).

A careful scrutiny into and analysis of the children's process
of learning enabled me to arrive at 2 synthesis of didactics

(Chapter XIV) - partly owing to an introspective observation of my
own process of learning (Chapter XIII).

During the second

of an organized aggregate of relations between
elements of the rhomb.

signals at their disposal can understand what is meant by 'proof'

year the rhomb becomes a geometrical symbol

its elements - the
Pupils who have these symbols and their

in geometry. They have arrived at the second level of thinking.

Once the pupils have mastered sufficient second-level thinking
structures, we can start changing the context. Now the logical
relations themselves move into the foregrovnd and we can start
lnvestigating the nature of these relations. This leads to an even
higher level of abstraction, such as: 'parallelism of the lines
implies equality of the corresponding angles and vice versa.'

On reaching this third level or thinking, which we call
insight into the theory of geometry, we can start studying a
deductive system of propositicas, i.e. the way in which the
interdependency ¢~ relations is effected. Definitions and
propositions now come within tne pupils' intellectual horizon,

Finally we can choose as a subject-matter the system of
propositions itself, A comparative study of the various deductive
systems within the field of geometrical relations is a subject
reserved for those, who have reached the fourth level of thinking

in geometry. Of these we can say, that they have acquired a
scientific insight into geometry,
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Tenets

I

In order to be able to arrive at an efficient study of a certain
subject, it is desirable to investigate

1. whether more than one level of thinking is involved in
the study of the subject;

2. which levels should be attained in order to reach the
goal of the study;

3. how the attainment of the levels of thinking can be
supported didactically,

II

It is important for the formation of concepts not to use schemes
that belong to the unformed structure of thinking during the
structuring period in the learning process.

III

It is meaningful to compare didactic methods scientifically only
when the foundations and the theory of these didactic methods have
been established and tested.

v

Just as the analysis of learning processes in an exnerimental
situation allows the investigation to penetrate more deeply into a
real thinking process itself, the didactician will be able to
penetrate more deeply into the genesis of thinking upon analyzing
the learning processes in the school.

v

The question '"what do you see?" is meaningful only after one has
made sure that the subject knows the context in which this questicn

has to be answered.

Vi

The problem of selecting a school for a child could be kept within
certain limits if it were possible to give child-centered
instruction during the first two years of the sccondary school.
This would allow for natural selection to take place.
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VII

For the most part the organizing principles of general didactics
will have to be obtained through a mutual comparison with special
didactics,

VIII

The choice of subject matter for geometry for the introductory
course will have to be based, according to the newer insights of
pedagogy and psychology, on figures that form a geometric structure
and not on their elements.

IX

The introduction of axes and centers of symmetry acquires special
meaning only if one starts from observations which are reinforced
by manipulation such as folding, rotating, fitting on each other,
etc.

X

The formation of visual geometric structures in the pupils is aided
most efficiently by allowing them to use appropriate material, such
as building kits.,

X1

Since different subjects 2ften start from the same structures or
from the same objects, it would be desirable, at least in the
beginning, to coordinate the instruction of these subjects.

XII

It is desirable to analyze the methodologies used in geometry
instruction in mathematical, psychological and didactic
perspectives so as to be able to determine to what extent they
differ didactically.

XIII

It is possible and desirablze that pupils, who appear to possess
sufficient aptitude for it, recognize that the theorems of geometry
they know can be oxganized in a deductive system that possesses
similarities with a "genealogical tree" and that tl.s genealogical
tree can be chosen at will from a network of availalble relations.
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X1v

One could interpret elementary geometry instruction as the
formation of visual geometric structures through analyses of the
global structures that are provided by empiricism. 1In connection
with the introductory course in geometry proposed by WIMECOS, it is
desirable to investigate the psychological correlate of the
expression "elementary geometry."

Xv

For the natural sciences one will have to look for subject units
for the initial instruction which meet the following conditions:

1. they have to make clear what the context of the course
in question is;

2. they have to belong to the immediate realm of
interest of the children;

3. they have to provide enough subject matter for
discussion without there being the need to go
to a higher level of abstraction.

XVl

Even though concrete courses (with an empirical approach) should be
the starting-point as much as possible in mathematics teaching, one
should not say that mathematics instruction should be based on the
teaching of the natural scif .ces. For mathematics, as well as the
natural sciences, can devel.p from the same basic empiricism. They
differentiate themselves from each other at a rather high level of
abstraction,

XVII

More than before, one will have to collect material in order to
allow the pupils to orient themselves in the topics of physiecs.
For the development of technology is such that a spontaneous
orientation cannot easily take place.
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PART II

DIDACTICS OF GEOMETRY AS LEARNING

PROCESS FOR ADULTS

(Last article written by Dina van Hielé-Geldof)
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DIDACTICS OF GEOMETRY AS LEARNING
PROCESS FOR ADULTS

The essence of didactics is the encounter of three elements:
the pupil, the subject matter and the teacher. This is true for
general didactics as well as for didactics of special subjects. A
methodology may be seen as a particular way to bring about this
encounter, principally by ordering the subject matter.

Didactics should not be viewed as applied pedagogy, or as
applied psychology, or as an outcome of the science of the subject
to which one wishes to introduce the pupils.

The didactical approach that developed as a result of
interaction with practice and that is able to combine the
pedagogical aspect, the psychological aspect and the scientific
aspect of the discipline into one encompassing structure, will
potentially be most fruitful for practice.

In this article I will not consider the pedagogical aspect -
the relationship between pupil and teacher, nor will I discuss the
sociological aspect - the relationship among the pupils. I wish to
limit myself to the learning process - the relationship between
pupil and subject matter - in order to focus attention on the
particular structure of didactics. For adults too can still learn.

I will start from the practice; I will tell what I do and I
will explain what my objectives are. I do not stress what I do,
but why I do it. The function of the material, of the classroom
conversations, etc. is central. .

The subdividing of the ultimate goal of teaching into
intermediateggoals is important in order to be able to arrive at
principles o he didactic method partlicular to the discipliae.
The method intuitively rests on these principles.

The goal of teaching, as it has been formulated, namely, that
we teach children exact thinking, or we teach children the method
of mathematicians (i.e. deduction), or we teach them Euclidian
geometry, does not state anything fundamental about the didactic
problem: how this learning takes place.

The ultimate goal of teaching will have to be clarified by
intermediate and temporary goals so that one will be able to
understand the structure of geometry learning.

Information (Inquiry)

My first geometry lesson at the secondary school is
information for me. It is & fs.t that man is able to perceive
structure in almost sany material however unordered it may be, and
that this structure can be perceived in the same way by different
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people. This allows man to discover the intrimsic ordering in the
material that is presented to him. For example, the knowledge of
shapes is developed through manipulation of material objects.

. . . .

Young children are already able to
distinguish geometric figures. For example,
they can make a square with a rubber band on
the geoboard of Gattegno. They can make a
square, positioned obliquely (see figure), when
one indicates two consecutive points of this
square on the geoboard. This geoboard is
provided with nails at the location of the grid
points.

If we make an isosceles trapezoid, they . *
can make a trapezoid that has completely
different measurements and that is in another . *
position. Figures are recognized by their
shape as a whole. . *

Reflection upon the manipulaticn of material objects, by
taking the relations between those shapes as an object of study,
can lead to geometry. This is the idea from which I start and I
wish to know which shapes have already been differentiated in a
geometric sense by the twelve-year-old pupils.

This becomes apparent during the first class conversations. I
ask them, for instance, to tell me what regularities they pecceive
in a cube. I show them several cubes of different sizes. The
equality of the plane figures as well as of the line segments and
the right angles are always spontaneously mentioned. The
parallelism and the similarity are not mentioned spontaneously.

In addition, I ask the pupils why they are so convinced that
this equality exists. It appears that the pupils are proposing as
a method, the action of "fitting." The equality that is being
observed is not a result of measuring with the ruler, but of
experiences gained previously through the stacking of building
blocks, the making of puzzles, the drawing of the outlines of
figures, etc.

The regularity that has been discovered in the shapes during
the period preceding the secondary school has already established a
global structure (i.e. not yet analyzed in a geometric sense) in
the shapes such that it is possible to start with geometry lessons
in the secondary school. The pupils themselves make the relation
of equality explicit. For congruence is the means by which we
order geometrically. Goal and means are clearly brought forward.

I know from the inquiry {(first geometry lesson) that the
pupils ave capable of purposeful action. We can call these first
class conversations the informative phase in the learning process
of the pupils. They discover which aspect, out of the multitude of
experiences they have already had, we are dealing with., The action
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of fitting allows the observation of equalities of parts in
figures,

Directed orientation

The pupils are brought into a new phase of learning through
these conversations. They now lcok at figures in a certain way.
Figures are not only being folded, but in the process of doing so,
one purposefully looks at what equalities of parts of the figure
are being revealed.

During the preschool years children learn manipulations, e.g.
folding, etc. These manipulations which we need have been
sufficientl;y mastered by the pupils. They are now accompanied by a
more conscious perception in a geometric sense. The pupils are
actively engaged in cutting out figures and in subsequently
checking in what way those figures fit in the openings; networks of
known spatial figures are beiug made aund these are checked by
actually making the figure; it is also investigated in how many
different ways plane figures can be folded in two through actual
folding.

This period during which the manipulation is prominent and is
being required of the pupils, we call directed orientation. The
empirical experiences are broadened through manipulations. There
is continual investigation of how one part of a figure can take the
place of another part.

Explicitation

The results of the manipulation of material objects are now
expressed in words. Equalities that have been observed are
enumerated. Each child need not find out everything for himself.
Subjective experiences are exchanged. 1In this way the figures
acquire geometric properties. The theorems are expressed by the
pupils. The role of the teacher here consists of introdacing the
necessary technical terms.

One could call this the objectification of the subjective
experiences. It conforms to the customary "geometry" terms from
the native language, in which the axperiences are expressed.

During the information-conversations, the pupils speak their own
language. What is crucial in these conversations is to get to know
what knuwledge the pupils bring with them.

The goal of explicitation is to establish properties of
figures. As a result, the shape as a whole becomes less important
and the figure becomes a conglomerate of properties.

A thombus then is a figure whose four 3ides are equal, whose
opposite angles are equal, whose diagonals bisect the angles, whose
diagonals bisect each other and form right angles with each other.
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The properties are being read from a particular object, namely, a
rhombus made out of paper that could be folded in two along each of
its diagoneals.

Materials

One could ask oneself whether it is necessary to start with
the cube.

Once the teacher has thoroughly examined the goal of his first
lessons, once he knows the function of the class conversations, he
can vary his method.

A completely different presentztion can be obtained by means
of cut-outs. The pupils cut out the plane outline of spatial
figures and glue these to make a solid. Then follow class
conversations about these solids. The teacher remains in the
background and listens, and hears what knowledge the pupils
possess.

In each case one starts from whole entities in which something
can be seen. For example, in the figure of two intersecting lines,
initially no angles are perceived. It is nothing more than two
lines. Geometric spectacles are needed in order to Perceive
elements in this figure. The material that can serve for a
phenomenological analysis should possess a shape that is already
differentiated in a geometric sense by the pupils. We call this
didactic principle the experiencing of the context.

The function of the very first material can be described as
follows: it has to be representative in the sense that it allows
the context to become clear.

During directed orientation, which involves expanding
empirical experiences, the teacher introduces new material. The
function of the material then is such that it should be able to
contribute to the discoveries of the pupils. Given the fact that
the objective now is that the pupil purposefully searches for
resvlts of "fitting'", we are not dealing with merely materials, but
with material geared towards the task. The manipulations that have
to be carried out with the material, place the concepts of
congruence and of symmetry within reach of the child. During this
phase of the learning process, the pupil is dependen: on the
ability of the teacher to find the appropriate tasks. It would be
wrong to assume, as is sometimes done, that the adult has to be
prepared to be a child among the children 1f he wants to provide
adequate guirance to the learning process of the child during this
phase.

The world of experience of the adult is completely different
from that of a twelve-year-old pupil. The teacher sees and knows
the objects in a way different from that of the pupil. The
exploration of the teacher should concern the didactic approach -
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by generating tasks, by creatiug favorable learuing situations -
but not the exploring of the material.

If he were to do so, he wculd run the risk of missing his
goal. He would let the children discover all kinds of things which
in reality would only be an imitation of wnat he himself
discovered. Whether the child is learning depends on the
wllingness of the child to carry out tasks with the material. When
the teacher allows his pupils to use scissors and glue in the
classroom, he will find that twelve-year-olds certainly have the
inclination to explore.

A figure undergoes a metamorphosis as a result of the
manipilations followed by a phenomenological analysis aad an
expliciting of its properties: it becomes what we call a geometric
symbol. An abstraction has taken place.

The first intermediate goal during the initial geometry
instruction is the formation of geometric symbols. They develop in
the course of expliciting the results of fitting with insight.
Fitting with insight is possible when it appears from the
information-lessons that the pupil is capable of purpeseful action.

Free orientation

By comparing symbois with one another, by searching for
similarities and differences, the pupils orient themselves in the
domain of symbols. For example, now they will begin perceiving a
square as a rhombus because the square possesses all the properties
of the rhombus. It is a special rhombus: a rhombus whose angles
are right, or a rhombus whose diagonals are equal. At the same
time, these two properties are experienced as inseparable from the
rhombus "being square.” The right angles of the rhombus
necessarily imply the equality of the diagonais and conversely.

By working with figures, the pupils finally will recognize the
figures by scme of the’.r properties. The symbols acquire signals,
so that it becomes posaible to build known figures, where a concept
has been formed through analysis, out of their elements. During
this phase there is not yet a real problem setting. It is rather
an ordering of the manipulations that have to be carried out: I
first have to do this, than that, in order to obtain the intended
result. A new type of manipulation now develops: the drawing of
figures of which elements are given or chosen. During free
orientation the teacher appeals to the inventive ability of his
pupils.

Empirical experiences can be expanded still more by joining
figures that are already known, for example, by mirroring a
triangle along one of its sides, or by rotating a triangle half a
turn around the midpoint of one side.
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Integration

Free orientation finally leads to being oriented in the domain
of the symbols. The symbols then possess field characteristics.
The operation "to fit" is reversible and associative. One knows
beforehand whether it will fit without actually fitting it. The
manipulations are understood, there is insight into the operation.
The concept congruent has acquired a geometric context. Congruent
triangles can be recognized and can be constructed. The concepts
which one has formed of the figures play an important role.

Whether integration has taken place can be

seen from the operation with the figure as a
totality of properties. Example: How can you
demonstrate that the lines connecting the

points of intersection of two circles with | /
equal diameters is perpendicular to the lines <{

connecting the centers of both circles and
also, how can you demonstrate that both
connecting lines bisect each other? The answer
is: because a rhombus can be seen in the
figure. P

Another example: How do you know that the
construction (see figure) to drop a
perpendicular from a point P to a line L is ~C
correct? The answer is: because a kite can be
seen in the figure. This action already
implicitly contains the deduction. The
deduction however is not yet made exp'’icit in
this phase. S

When integration has taken place, we say that the pupil has
reached the first level of thinking. He then knows the domain as a
totality of relations. Study is shifted from the shape as a whole
to the network of relations that is now, as it were, stretched over
the form of appearanie. We can call these new figures "ideal"
figures. They came about by taking the manipulations at level
zero, the fitting, as the object of study. Because of that, this
operation becomes reversible. The ideal figures, in turn, now
determine the form of appearance. A clear example of this is the
square: at level zero, a square is not perceived as a rhombus; at
the first level of thinking, it is self-evident that a square is a
rhombus. An analysis and a free orientation were necessary in
order to arrive at this generalization from the partic¢ular object.
The new opportunity to be able to operate with a figure as a
totality of properties in fact means that the geometric symbols
have lost their abstract character. The ideal figures of the first
level of thinking are as concrete as the shapes as a whole are for
someone at the zero level.

The second intermediate goal of the iritial geometry

irstruction can then be formulated as follows: to learn to
understand those symbols of the discipline that belcng to the first
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level of thinking, namely, the aspect of geometry, and that allow
geometric thinking about space.

Summary

The transition upward from the zero level to the first level of
thinking is characterized by 5 phases:

1) information by means of representative material gathered
from the existing substratum of empirical experiences in
order to bring the pupils to purposeful action and
perception;

2) directed orientation which is possible when the child
demonstrates a disposition towards exploration and is
willing to carry out the assigned operations;

3) explicitation through which subjective experiences are
objectified and geometric symbols are formed;

4) free orientation which is the willful activity to choose
one’s own acitons as the object of study in order to
explore the domain of ebstract symbols;

5) integration which can be recognized as being oriented
in the domain, as being able to operate with the figures
as a totality of properties.

Substratum

Using cthis same scheme, we can also follow the exploration of
the child, which is essential in order to provide the child with
insight into the change of shapes, through which he is able to
distinguish shapes.

1., Information here coincides with the discovery that the
objects are movable.

2. In his orientation the child is restricted to his
environment; he can only manipulste the objects that are
within his reach.

3. A change in the manipulation takes place when the child
becomes aware of the fact that certain situations recur as
a result of his manipulations, He establishes a
connection between his own manipulstions and the result
of these manipulations.

4, Then follows the willful activity: he desires certain
situations to recur; his actions become goal-oriented.

S. After repeated trials and failures, a mastering of the
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manipulation finally follows: the child is able to stack,
te fold, to fit, etc. Figures can be recognized in
various positions; they have a shape, i.e. they are not
tied to a location, and they are distinguishable from

each other.

This creates the possibilitity of starting to study geometry
at the age of 12. Furthermore, at this age the native language is
sufiiciently developed to bring this implicit knowledge into the
open in a class conversation.

Broadening the context through the introduction of new aspects.

The pupils have reached this first level of thinking after
some 25 lessons. How does the learning Process proceed from there
on? There are two options: either to broaden the context by
letting pupils experience other aspects drawn from the substratum,
namely, parallelism of lines and similarity of figures, or to
modify the context and to take the ideal figures as object of
study, i.e. the network of relations itself. We first have to
expand the context because one single aspect is too limiting for
future problem settings. One single aspect leads to a certain
structure which is experienced throug! exploration. During that
stage, a child is not surprised at whether or not figures fit each
other. It is accepted as fact. The relations are discovered
through manipulations and they determine the structure. Similarly,
the falling of objects does not create astonishment. This can only
become a problem when it is considered from a certain point of
view. For this, the pupil will first have to have experienced the
physical aspect.

We encounter this same phenomenon in didactics. The teacher
who bases his instruction on one single aspect and who does not see
other aspects, does not have a real didactic problem. His
explorations lead him to the practico-practical stage; he arrives
at a structure about which no doubt exists.

When, in didactics, several different aspects are not
considered, this can lead to a structure that ought to be
incompatible with one or more aspects. Apart from the aspect
relating to the science of the discipline proper (which has always
been considered), lately another aspect, one relating to
developmental psychology, has come under consideration. In
Professional teaching circles one is at present looking for the
overarching structure that includes both. At the me2tings of
mathematics and physical science teachers on April 14 of this year
at Utrecht, Beth talked about the didactic consequences of the
research into the foundations of the exact sciences.

His opinion is that the science of the discipline requires
that the secondary school teacher perform a psychic (mental)
intervention. This would mean that not only the mathematics
teacher but virtually all teachers should perform such a psychic
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intervention. For why would one assume the physical sciences'
thinking or the thinking of the humanities is more accessible than
mathematical thinking? Geography and history classes deal with
relations between facts rather than with the facts themselves.

If this intervention is valid for most subjects taught at the
secondary school, this statement of Beth means nothing more than
that all teaching requires a psychic intervention. Nobody will
dispute the necessity of providing instruction. It is exactly by
means of guided learning processes that the child can grow faster
and reach a developmental level he zould not attain without
instruction. I cannot imagine that Beth would place mathematical
thinking so high that only this discipline would require a psychic
intervention.

If we were to arrive at conclusions on the basis of
considerations of the discipline, that a particular psychic
intervention appears necessary for the learning of the subject,
then the didactitians, who no longer can ignore the aspect of
developmental psychology in their own subject, will have to
demonstrate the need for that intervention in the case of
mathematics instruction and they will have to indicate how to
perform it. Teachers have not learned how to perform this
irtervention during their study of the discipline, nor can it be
logically derived from the science of that discipline.

In my opinion, it is not justified, from the point of view of
developmental psychology, to perform a particular psychic
intervention as long as the analyses of the learning situations,
which would demonstrate the need for such an intervention, have not
been carried out. Wa cannot be cautious enough with our
interpretations. These interpretations need not come about in a
logical way, but rather in a phenomenological way. Not clearly
seeing the distinction between the levels of thinking, which
results in one's not perceiving the gap between teacher and subject
matter on the one hand and pupil and subject matter on the other
hand, can lead to incorrect conclusions.

The tenor of this article is precisely to demonstrate how a
gradual ascension to mathematical thinking is certainly possible.
If instruction itself is already viewed as a psychic intervention,
then "geometry-learning" does not need a particular invention once
we, the teachers, have grasped the structure of this learning.

Parallelism and similarity

Let me now return to my method. I ought to make clear how I
let the pupils experience the aspects of parallelism and similarity
by drawing on the substratum and I also should indicate which
empirical experiences have yet to be acquired. The pupils are at
the first level of thinking. Because of this, they know that they
have to search for relations.
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The first task I give is as follows: draw part of a sidewalk
paved with congruent square tiles whose side is 2 cm. One could
also consider a tiled wall in the kXitchen. After the pupils have
collectively found three ways of doing that, I ask them what they
cbserve in those figures, They discover, among other things, sets
of parallel lines, The empirical experiences are broadened by
Providing them with bags that contain congruent regular triangles,
pentagons, and hexagons respectiv ‘s They themselves formulate
the tasks: "Attempt to pave a flc .r with these figures." Neat
figures are drawn, in the process of which, close attention is
being paid to the parallel lines.

"Ladders", "seaws" and "enlargements" are discovered in these
Plane coverings. No definitions are constructed, but information
is gathered., For example: "Is the (accompanying) figure also a
saw?"

It is not an
enlarzement
| It is an
enlargement
The answer is: "You can feel that in the movement of your hand.

We follow a zig zag pattern, back and forth, always in the same
direction."

Information concerning the meaning of an enlargement is
gathered with the help of counterexamples the children know from
experience. The image projected by a distorting mirror does not
enlarge the figure equally in all directions.

During the phase of directed orientetion, the children are
asked to color angles of equal size in the plane coverings. The
function of this coloring is to focus attention on the geometric
structure of these plane coverings, to make the relations more
visible,

They finally can state explicitly: "Ladders have two sets of
equal co.responding angles and one set of parallel lines; saws
have two sets of parallel lines and equal angles., 1In a
parallelogram, the opposite sides are equal and parallel, and the
opposite angles are equal, etc."
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One should avoid letting pupils ascertain equalities by
measuring with ruler or protractor. For then the above statements
are not generated by the pupil himself. The operation "to measure
parts of different figures" is a control operation to test the
correctness of hypotheses that are already present.

This phase of the learning process however deals precisely
with the development of hypotheses. In addition, in mathematics
one will not test hypotheses by measuring, but opme will verify them
through deduction. If, for example, one allows the pupils to
ascertain the equality of the base angles of isosceles triangles by
measuring them, we do not provide a good background for deduction
to be used later. The folding of an isosceles triangle made out of
paper and the fitting into the opening of a triangle that is cut
out, and then reversed, provide a better background for the proof
which makes use of the congruence concept. The generalization then
rests on the idea that each isosceles triangle can be folded in
half; the infinite repeatability of the action is accepted.

During the period of free orientation, plane coverings of
congruent triangles and of congruent quadrangles are drawn. The
plane coverings become structured geometrically by looking for
ladders, saws, enlargements, axes of symmetry, etc. The plane
coverings are compared with each other. A structuring-through of
the figures takes place. The figures rhombus, quadrangle. square
now also have parallel sides. The sum of the three angles of a
triangle is 180 degrees; the angle sum for a quadrangle is 360
degrees.

Ver: frequrently the children do not immediately discover the
saws in the plane coverings with quadrangles. I made them move 4
pencil alorng the sides of an angle colored in red while not lifting
the pencil from the paper.

During this period, saws acquire signals. They car be
recognized either by equal angles, or by parallel lines. Ladder
also possesses two signals. Because, at this moment, there is not
yet a systematic search for characteristics, the pupils do not
discover all the characteristics of a parallelogram. What is
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important here is that each child himself discovers sigrals as a
result of his manipulations. This is shown by the fact that the
children are able to select the data tha: will allow them to draw
the figures.

The same applies to the drawing of eniargements. The cases of
similarity have not yet been stated. The children however are able
to draw enlargements of any figures. They know that all line
segments have to be enlarged equally and that the an,les remain the
same,

r

The existence of integration thus is apparent from t%: fac
that the pupil works with the figure as a totality of properties,
Figures possess signals that do not all have to be stated
explicitly but that appear to be present in the action.

The number of geometric symbols is increased, among other
things, through the use ~¢ geometrically structurcd plane
coverings. That the pupils %Xnow how to use these symbols, that
they understand them, is evident when they show good intuition in
finding the correct auxiliary line.

Modification of the context

This finding of the correct auxiliary line is important in the
learning process where we modify the context. It then involves
verbalizing the connections amo»g the relations, the knowledge of
which is implicitly contained in the action. The ordering of
relations shotld now become a purposeful action. By starting from
empirical experiences we can make the children become conscious of
this purpose. During the informative phase of this learning
process, I make use of the familiar structure of a genealogical
tree in order to focus pupils' attention on how one relation
follows from the other.

During a class conversations, the pupils collectively find how
the statement "the sum of the angles of a quadrangle is 360
degrees" can follow from "the sum of the angles of a triangle is
180 degrees.”" (A protocol of these class conversations can be
found on page of my dissertation.)

Another example. The pupils collectively look for the
antecedent of "the sum of the angles of a triangle is 180 degrees."

They themselves find the idea of
drawing an auxiliary line through the
vertex, parallel to the base. The single

triangle is extended in their thoughts and
viewed as an element in the plane covering
consisting of triangles that are all

congruent with the given triangle. Fronm Y AN AN
this they abstract what is necessary, i.e.
one pair of parallel lines and two saws. A N
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The freedom in the choice of the — Y
antecedents is also noticed, because the >
ladders as well as tne saws are named by A
them as possible antecedents. This shows

that the genealogical tree is viewed only
as a global resemblance, as a metaphor.

When looking for the antecedents of ///
the theorem "an~les whose sides are 2

parallel are equal,'" many pupils produced 3
an auxiliesy l.ne which we do not normally

draw (see figure). Antecedents are one

ladder and one saw. Because a ladder can

be seen, angle 1 = angle 2. Because a saw

can be seen, angle 2 = angle 3 = angle 4. &

During the first vear 1 do not proceed beyond this
experiencing covtext. The pupils further bLrcaden their empirical
experiences duri.g the laest tris:ste.. They make solids that are
bounded by ccpruent squares and congruent regular triangles, whose
sides are equ‘l. They dc not get to see the model beforetand. The
tasks become gridually more difficult.

The first assignment is: make a solid that is bounded by 1
square ~nd 4 regular trianglec, The fcurth assignment however is

as fo’ -: make a solid that is bounded by 6 squares and 8
triar It is added that 2 squares and 2 regular triangles meet
at ew :rtex, such that the triangles are opposite e¢ach other.

New so .. is which they have never seen before are constructed.

In order to focus attention on the geometric structure, the
pupils draw top, fron% and side views. In addition, the pupils
learn to correctiy depict the figures on a plane.

The function of this operation is dual. It aims at:

1) forming visual geometric structures, because there
always has to be a purposeful search for parallelism
and perpendicularity before drawing can begin;

2) promoting construction skills.,

During the second year, a start can be made with the learning
process which must lead the pupils to the second level of thinking.
The description of this can be found in Euclides XXXIII, Gray 1958.

One can at once start with directed orientation. The pupils
learn deduction. The figures become sets of ordered properties.
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Levels of thinking

Work at the first level of thinking in geometry allows a
continously increasing knowledge of space in a geometric sense.
Apart from the knowledge of space in a geometric cense, the
children learn to know space in a physical sense, in a biological
sense, etc., Even though the objects of study are frequently the
same, the difference between the disciplines is expressed during
symbo! formation.

Furthermore, the modus operandi, the method used to objectify
the acquired experiences, is not the same in all disciplines.
These differences should already become apparent through activities
at the basic level, because they cause a differentiation into
geometric thinking, physical thinking, etc.

As & result of sensory experiences that objects are movable
and can take each others' place, the pupils have become familiar
with the aspect of form. Forms are recognized by their shape and,
as a result, name giving is possible. At the basic level of
geometry, purposeful action takes place in order to arrive at the
essence, the structure, of the forms. Because we introduce
manipulation (fold-ups, fitting-in, etc.) in the guided learning
process, the children arrive at a discovery of the structure of the
forms.

In order to be able to arrive at an exchange of sensory
perceptions, we attempt to record the structure in language
symbols. This leads to purposeful acting in order to reproduce the
results of fitting in the form of geometric properties. The names
of the forms now have acquired a content; they have become
geometric symbols. Orientation leads to recognition.

We therefore call this first level of thinking, the aspect of
geometry. The purposeful fitting hereby has changed into geometric
thinking. It is a thinking that is oriented towards the result,
the structure, the properties of the forms, but it is also a
thinki-3 that is directed towards the form of thinking itself in
order to arrive at the structure of thinking.

In order to penetrate into this structure, the essence of
geometric thinking, goal-oriented thinking, again first has to be
objectified by means of language. Wc accelerate the learning
process, for example, by introducing the geometric symbol "to
follow from'" by means of a genealogical tree, itself drawn from the
substratum. After the structure of geometric thinking has been
made explicit, a purposeful deduction can take place. The results
are recorded in an ordering of the geometric relations. We call
this ser nd level of thinking: the essence of geometry.

The practical results of this second level of thinking are
that one possesses insight into the appearance of forms in space.
The determination of the structure of the forms now is an
application of geometric thinking. The structure no longer need be
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approached by means of thought-filled action, by means of fitting,
because the properties can be determined by means of deduction.

The second level of thinking however has theoretical results
as well, because it implies a modification of the context tniough
the appearance of a new aspect. As purposeful deduction finally
becomes a thinking habit, the operation has become reversible and
associative. Deduction is recognized, takes on shape, becomes a
symbol in the new context; the mathematical aspect becomes
prominent. In summary, we could characterize geometric thinking at
the second level of thinking as follows.

It .s the thinking that:

1) uaveils tite structure of geometry;

2) leads to insight into the forms; (This becomes evident
because the thinking habit brings with it concrete
action.)

3) brings out the aspect of geometry.

Mathematical thinking now acquires structure because a new way
of thinking has become purposeful.

The third level of thinking is analogous:
1, The structure of mathematics is revealed.

2. Insight into geometry evolves because the thinking
habit involves concrete action with a geometric form
of thinking.

3. It brings out the aspect of logic.
At the fourth level of thinking, "exact thinking" provides:
1) the structure of logic;

2) insight into nathematics because the thinking habit
implies concrete action in mathematics.

By making these distinctions, the object "level of thinking"
becomes a symbol; it acquires structure for us. It becomes an
applicable concept.

If we now focus our attention on this structure, we can
conclude that there has to be a "fifth" level of thinking, i.e.,
insight into the subjeci logic.

The structure becomes more obvious when I investigate the
results for a person who masters the successive levers of thinking.
When a form of thinking has been mastered, then the structure of
this thinking becomes so familiar that it is replaced by a routine
action. One could say, it proceeds almost automatically,
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associations have been formed. The substratum becumes richer.

In the course of the guided learning process, we can notice
that a time coirrrs when the Pupil has mastered the symbols of the
technical language that belong to geometric operations. Later on, |
the pupil will have mastered the symbols of the technical language |
that belong to geometric thinking. The substratum is richer
because one can talk of maihematical perception.

Later still, he knows how to think geometrically., A
goal-oriented operation or a mathematical method, namely,
deduction. When the person has reached integration, the operation
takes place almost automatically, the thinking process proceeds
quickly. As a result of practice, formation of associations has
taken place. The thinking is brought back to observation and to
concrete operations, The substratum contains new perception
structures and new operations. One sometimes refers to it as a
"sixth" sense. The intent can be disparaging: he is a real
mathematician (from a sensory point of view), or it can be
Praising: he is a genius /where one stresses the thinking).

In order to arrive a. the fourth level of thinking, three
modifications of the context have been necessary, after the first
context has been brought into consciousness.

He who is capable of working productively on the fourth level
of thinking, can try to pattern geometry according to an
axiomatically built system of theorems. He thereby takes an a
priori point of view. When he becomes conscious of this viewpoint,
he knows that aspect of his own actions that bears on the
psychology of thinking.

If the logician remains operating from a mathematical point of
view, he can approach the subject along a mathematical train of
thought. This, however, does not bring his thinking to a higher
level of thinking. An a priori point of view implies that exact
thinking is the highest form of thinking.

When the logician omits considering the aspect of the
Psychology of thinking when investigating the foundations, he will
not succeed in stating the essence of logical thinking even though
he experiences a mathematical thinker within himself (his
substratum is rich). Many mathematicians wrestle with seeming
problems because they exclude the psychological aspect, namely,
Personality,

The question of whether mathematics is only based on a
thinking operation is an apparent problem. Thinking and operation
can be distinguished, but they cannot be separated. Concept and
language can be distinguished, but cannot be separated,.

The thinking operation itself first has to be made conscious
through language symbols and the language symbols are a consequence
of the thinking operation. To be sure, the objects of study of a
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logician are the thinking operations of a mathematical thinker, but
his information has to be acquired by means of sensory perception,
i.e. only a mathematical thinker can arrive at such a study.

The background of the analyses, in the course of the
investigation of the foundations, will precisely have to be the
mind of the human being. Exact thinking will then acquire
structure.

The addition of the language symbols "aspect" next to "object"
and "structure” next to "system" could provide clarification, if
one were to delve beneath the surface to the concepts of these
symbols and if one were to record them in a definition. Perhaps
this would provide content for the "operational definition"
concapt. This can be a positive contribution of logic to the test
psychologist.

The logician ill have to proceed to a new form of thinking,
For him, this represents an exploration from his substratum. This
is the opposite of the deductive method with which he is so
familiar. Indvction is required of him!

For those who do not exclude the aspect of the psychology of
thinking as a means of ordering, new perspectives open up. For
them, it is evident that there are logical and non-logical
statements. It is exactly through this that the logical acquires
shape. An analysis in this sense opens up the possiblility of
reaching the fifth level of thinking.
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PART III

1. ENGLISH SUMMARY OF DISSERTATION
by Pierre van Hiele

2. THE CHILD'S THOUGHT AND GEOMETRY
by Pierre van Hiele
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ENGLISH SUMMARY
by
Pierre Marie van Hiele

of

THE PROBLEM OF INSIGHT IN CONNECTION VITH SCHOOL CHILDREN'S
INSIGHT INTO THE SUBJECT MATTER OF GEOMETRY

In this study we have tried to examine the meaning and
functions of insigh: during a process of learning. In view of the
subject's extent we had to limit the scope of our study somewhat.
For that reason we have confined ourselves to the study of
mathematical insight in general and of geometrical insight in
particular.

A teacher first meets evidence of his pupil's insight when, as
a result of the process of learning, the latter reacts adequately
to situations that were not included in this process. This
inference, however, is admissable only if the pupil's action has
been executed throughout wity deliberate intent, i.e. if we can
safely assume that no chance element has played a part in it.

The above definition of insight corresponds well with that of
the Gestalt theory. 'To act &s a result of insight means: to act
on the strength of a structural achievement'. This definition
links up observation and thought and though initially we may
interpret it in a purely figurative sense we shall see later on,
when we come to a closer analysis of the concept of thought, that
it hides a far deeper meaning too.

An analysis of rational thought will reveal three importnat
moments in it:

1. t'e forming of structures;

2. the forming of valencies [associations], (as when, for
example, learning 'by heart');

3. analysis (see Selz's research).

The above-mentioned forms of thought are fundamentally
dissimilar and demand an entirely different personality adjustment.
Analysis is an action requiring an 'active' adjustment, as it
yccurs under the continous pressure of an individual's 'intent.'

'he forming of valencies [associations], on the contrary calls for
a 'receptive' adjustment - it is an autonomous process. Structural
formation, finally, demands the ability of rapid mental switchovers
from a receptive to an active adjustment and vice versa: receptive
in its acquiescence to the absorption of the 'spontaneous'
structures emanating from the material; active in its
concentration on the analysis and modification of these structures,
once they have been formed.
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We could classify the structural types as follows:

Structural expansion.

Structural refinement.

. The construction of superstructures.

. The transition to isomorphic structures.

s Lo

Each succeeding structural form demands a 'higher' insight than the
preceding one.

The creation of a structure demands two basically distinct
acts of thought: the identification of its components, and their
classification.

We can distinguish two types of identification:
undifferentiated identification and identification following
analysis of the object. The former leads to an undifferentiated
structure, the latter to a structure based on analysis.

The analysis of an object enables us to abstract and eliminate
s certain number of its conceptual moments. The resultant
conceptual impoverishment will lead to new forms of identification
and thus to new structures.

In reality, of course, the study of geometry concerns itself
mainly witn the examination of structures 'as such,' after they
have been abstracted from the object. Consequently,
undifferentiated structures cannot be called truly mathematical,
and this applies equally to the type of insight that produces them.

The study of the classifying principles of interrelated
structures will sooner or later lead to a building up of the
classifying principles themselves. At first these structures will
be undifferentiated but they are lik:ly to lose their original form
when analysed. The result will be a new 'higher' structure,
embodying the classifying principles of the original ones.

This is an entirely new process of thought: we call it the
‘transition to a higher level of thinking.' This transition can
only be effected if we have accumulated enough symbols leading to
this new level (i.e. after so many concepts have condensed into the
symbols that we can use the latter to guide us in our study).

In mathematics, and in particular in geometry, it is easy to
follow this trend. The presentation of concrete (study) material
evokes visual undifferentiated structures. Children become
familiar with these structures fairly early in life, long befecre
they reach the level of secondary education.

It is important to define the geometric aspects that crop up
when we study a concrete foundation. They are:

a. The perception and recognition of geometric patterns.
b. The division of plane and space.
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¢. The use and disposition of congruent patterns.

d. Similar patterns.

e. Stacking of patterns.

f. Transformation of patterns,

g. Symmetry with respect to a plane.

h. Symmetry with respect to a line.

i. Symmetry with respect to a point.

j. Surface and content.

k. Movements in space: translation, rotation, screw.
1. Curves.

m. The fact that mirrors need not produce congruent images.
n., The plane projection of spatial patterns.

o. The intersection of patterns.

All these aspects are significant in geometrical practice. It
is therefore important to give them proper consideration when we
compile our syllabus.

The teaching of geometry could be interpreted as the
realization of a two-fold aim:

1. The study of geometry gives the pupils a definite angle
of approach to, and understanding of, the
characteristics of space and this shows them how to
achieve a certain domination over space.

2. Nowhere else will the pupils find a better chance:
a, to create a logical and coherent scientific system;

b. to develop their capacity for the acquisition of
knowledge, not by practical experience but by the
application of pure thought.

If, in his geometry class, the teacher sufficiently stresses
the fifteen aspects mentioned above, he will undoubtedly achieve
the first aim.

Realization of the second aim, however, largely depends on the
amount of attention paid to the various levels in geometrical
thinking.

A pupil reaches the first level of thinking as soon as he can
manipulate the known characteristics of a pattern that is familiar
to him. For instance: if he is able to associate the name
'isosceles triangle' with a specific triangle, knowing that two of
its sides are equal, and to draw the subsequent conclusion that the
two corresponding angles are equal.

As soon as he learns to manipulate the interrelatedness of the
characteristin of geometric petterns he will have reached the
second level of thinking, e.g. if, on the strength of general
congruence theorems, he is able to deduce the equality of angles or
linear segments of specific figures.
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He will reach the third level of thinking when he starts
manipulating the intrinsic characteristics of relations. For
example: if he can distinguish between a proposition and its
reverse.

Provided the process of teaching lasts long enough, the
symbols used in it will progressively lose their original
significance until finall their only functi n will be that of
junctions in a network of relations. Usually this network will be
coherent in a meaningful way though the relaticns themselves have
been determined mainly by valencies, formed during the process of
learning.

This sequence of events is precisely what we need in geometry,
as the network of relations is, actually, what we are aiming at in
our syllabus. However, as teachers we always ought to remember
that this network of relations should emerge during the process of
learning and from the concrete situations. Only then we can expect
the growth of a reversible structure, i.e. a structure in which the
children can find their way back from abstract relations to
concrete situations. This is what we need if we are aiming at a
productive application of geometrical know)edge.

Unfortunately the teaching of geometry frequently follows
other ways: much too often the teacher tries to instill a direct
knowledge of the network of relations without having passed through
the intermediate stage of concrete situations. At the first glance
this way of tackling the subject can be quite successful, and it is
true that factual knowledge about the network of relations is often
acquired in less time. It has the disadventage, however, of
largely neglecting the important matter of the basic substructures;
the analytical link with concrete (visual) structures will be
absent, for the pupil will have created his entire network of
relations by an imitative process incited by the teacher's
structural exposition. As the resultant structures have little
mutual cohesion we cannot expect much transfer, neither within the
field of geometry itself, nor with respect to other spheres of
activity.

By now it is clear that the teacher of geometry faces a double
task:

a. he should help his pupils to transform the structures,
produced in their visual field of observation, into
geometrical structures;

b. he should teach the children the use of the algorithms
in several parts of mathematics.

The understanding of algorithms depends on a special kind of
insight, which we call algorithmical insight.

In addition to this we find a more general insight, based on
structural forms that are able to be developed into algorithms.
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And finally there are those levels of thinking that permit
insight into completely new principles of thought.

The teacher will not find it easy to ensure an adequate
development of these two latter types of insight within the bounds
of classroom tuition. For one, the usual test-methods and
examinations do not work in this respect: these types of insight
cannot be adequately assessed by means of test-papers. If the test
problems cover a limited field of acquirements, algorithmic skill
will suffice to solve them., It is a fairly simple matter to teach
a child a number of manipulative structures that enable him to
reduce a high-level problem to a lower level of thinking.

We could avoid this handicap by embodying the whole range of
available subjects into our test-papers. As the pupils could
hardly have memorized all the algorithms they would be unablie to
reduce the problems to a lowe. level. But even then it is doubtful
whether they would manage to solve them, for though some of the
pupils will undoubtedly possess the structural understanding needed
to develop algorithms, the average span of time available for a
test-paper will rarely cover the process of thought involved in it.

The result is that both examinations and test-papers tend to
push the pupil towards algovithmical insight instead of leading him
on towards the far more valuable higher forms of insight.

This does not imply ti.at it is impossible to perceive and
assay these two higher forms of insight, 1If the teacher-pupil
relationship is based on confidence, then the pupil's reactions
will shew the teacher how, and to what extent, he is absorbing and
digesting the subject matter. Once we know which level the pupil
has reached, we can learn by a painstaking analysis of the process
of learning, how to bring about a further increase of insight.

It is highly important to know how the child itself
experiences insight. The acquisition of insight into the many
spheres of matter that lie within the range of the dealings and
aptitudes of a human being is ore of the basic necessities of life.
Moreover, our own inner urge impels us to it: the conciousness of
acquired insight is a memorable inner experience and gives us a
feeling both of power and of safety. If, from term to term, we see
no sign of developing insight, then we may safely assume that the
child has no contact with the subject matter. There can be many
reasons for such a negative approach, We shall name three only: -
maybe we are presenting the subject matter in too small separate
units that do not have enough self-evident mutual cohesion; maybe
we are operating on 2 level of thinking that is beyond the pupil's
understanding and, thirdly and lastly, the subject matter itself
may have no bearing at all or the child's own world. However, if
we constantly remind ourselves to base our presentation of the
subject matter on the firm foundation of visual material, then
there will be little danger of the child's lusing contact with it.
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THE CHILD'S THOUGHT AND GEOMETRY

by P.M. van Hiele

The art of teaching is a meeting of three elements; teacher,
student, ard subject matter. Since it is very difficult to keep
all of these things in view at the same time, one has a tendency t
neglect one of them, which gives an incorrect view of the
situation. Because if one nrglects subject matter, one only sces
the relationship between teacher and student; if one loses sight of
the student, then cne only sees the structure of the subject
matter. Sometimes one does not sufficiently realize that the
teacher is there to direct the student's studies.

Nevertheless let us acknowledge for the sake of argument that
one should take into ac:ount the three aspects mentioned above
without omitting any of them. There remains nonetheless a great
danger and it appears to me that it has not been sufficiently
recognized. The difficulty which arises is that the subject matter
as met by the student is of a completely different structure from
that known by the teacher.

If we agree that the aim of our teachipg is that the student
should know how to prove theorems, it is highly improbable that the
student's thought aims directly towards this goal. Improbable,
because the student will not be able to grasp, in its intrinsic
sense, the ides of proving a theorem. In fact, if he had this
idea, he would not have the need to learn it. Understanding
mathematics comes down to this: knowing the relationships between
theorems that one studies. As soon as one understands the meaning
of these thecrems, one knows their relationships at the same time.

All this is very simple and shows us clearly why mathematics
is so difficult for students. The teacher knows the relationships
between the theorems, but he knows them in a different way than the
student. His explanation of these relationships does not suffice
to make them intelligible to the student. What the student must
und~.stand in the first place is that there are such things as
theorems. This is all that one can expect from a beginning
student. The following example will illustrate what I mean.

A teacher wants to teach plane geometry to beginning studente.
He uses symmetry with respect to a straight line, in order to teach
them the relationships between equality of segments or angles,
perpendicularity, etc. He teaches them that the points on the axis
of symmetry are iavariant, that symmetric segments have the same
length, that symmetric lines intersect on the axis of symmetry. In
order to see if the students have understood what he has taught, he
gives them the following problem: "Let ABC be & triangle for which
the extensions of the sides meet the line L. Construct the
symmetrical triangle with respect to L." The teacher imagines the
following solution: "The lines AB and AC meet the axis L in two
points that we will call P and Q. These points are invariant under

« 247

IToxt Provided by ERI



a5

3}

SRR

Page 244

symmetry. Then the distances AP and AQ are invariant, so that one
can construct the symmetrtical point A', In the same way one finds
the points B' and C'."

All of this reasoning, this whole way of conceiving the
material, is the reasoning of a teacher who knows all the
relationships. The student is completely incapable of developing a
similar process of thought without the teacher's help. The teacher
has used the fact that the lengths of symmetrical segments are the
same as the basis for his argument. Such a technique is
meaningless for the students because they have not yet seen a
counterexample; they have not yet seen transformations which change
the length of segments.

But there is a more important reason for us to oppose this
method of teaching of which we have given an example: it requires
students to reason with the help of a system of relations between
ideas whose meanings they ao not ¢ven know. It is a matter of
"points," "axis of symm-try," "segments," '"to meet," "igvariant,"
“to change length," "triangle," "extension." Obviously, the
teacher has explained these expressions, he has shown points and
segments, he has demonstrated at the blackboard what is meant by
extending a segment. Possibly he nas asked the studentz to
formulate the definition of vertical angles. It is even possible
that the definition was found to be not quite correct and that as a
result he showed this by means of a counterexample, One must
realize however that it is the teacher who is giving the
counterexample. The students would fall because to be in a
position to give a counterexample one must have a system of
relations at one's disposal, and they do not have one.

I hope that the thoughts that I have just presented to you
will have clearly shown that the teacher reasons by means of a
system of relations that he alone possesses. Starting with this
system, he explains the mathematical relations that the students
end up manipulating by rote. Or else the student lesrns by rote to
operate with these relations that he does not understand, and of
which he has not seen the origin.

At first glance things seem to be in order: the students will
end up having at their disposal the same system as the teacher. Is
this not the proper goal of the teaching of mathematics, namely:
tane possession of a system of relations identical for all those
that use it, appropriate to express arguments, a system in which
the relations are linked in a logical and deductive fashion?

Let us not be too optimistic. First of all, a system of
relations structured in this way is not based on the sensory
experiences of the student. Though it is possible that the system
of relationships itself has inspired some experiences on the part
of the student, the mathematical experiences that the student has
been able to have are based only on the system imposed by the
teacher. This system, imposed and not understood, forms the base
of his reasoring. As one knows, a system of relations which is not
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based on prior experience has the potential of being forgotten in a
short time.

Therefore the system of relations is an independent
construction having no rapport with other experiences of the
child. This means that the student knows oniy what has been taught
to him and what has been deduced from it. He has not learned to
establish the connections between the system and the sensory world.
He will not know how to apply what he has learned in a new
situation.

Finally, the student has learned to apply a system of
relations that has been offered to him ready-made, he has learned
to apply it in certain situations specifically designed for it.

But he has not learned how to construct such a system himself in a
domain which is still unstructured. If, on the other hand, we were
to succeed in ensuring as a result of our teaching that the
students are capable of coun .tructing for themselves a deductive
relational system in a new domain, we would have produced the
optimal mathematical training.

In general, the teacher and the student speak a very different
language. We can express this by saying: they think on different
levels. Analysis of geometry indicates about five different
levels.

At the Base Level (Level 0) of geometry, figures are judged by
their appearance. A child recognizes a rectangle by its form and a
rectangle seems different to him than a square. When one has shown
a six-year-old child what a rhombus is, what a rectangle is, what a
square is, what a parallelogram is, he is capable of reproducing
these figures without error on a geoboard of Gattagno, even in
difficult arrangements. We have used the geoboard in our research
so that the child will not be bothered by the difficulties
resulting from drawing figures. At the Base Level, a child does
not recognize a parallelogram in the shape of a rhombus. At this
level, the rhombus is not a parallelogram, the rhombus seems to him
a completely different thing.

At the First Level of geometry, the figures are beare~s of
their properties. That a figure is a rectangle means that it has
four right angles, diagonals are equal, and opposite sides are
equal. Figures are recognized by their properties. If one tells
vs that the figure drawn on a blackboard has fcur right angles, it
is a rectangle even if the figure is drawn badly. But at this
level properties are not yet ordered, so that a square is not
necessarily identified as being 4 rectangle.

At the Second Level properties are ordered. They are deduced
one from another: one property precedes or follows another
property. At this level the intrinsic meaning of deduction is not
understood by the students. The square is recognized as being a
rectangle because at this level definitions of figure come into

play.
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At the Third Level, thinking is concerned with the meaning of
deduction, with the converse of a theorem, with axioms, with
necessary and sufficient conditions.

One can probahly thus distinguish five levels of thought in
geometry. This number is moreover of little importance in
understanding what a level of thought is.

These levels - as we have said - are inherent in the
elaboration of thought; they are independent of the method of
teaching used. It is possible, however, that certain methods of
teaching do not permit attainment of the higher levels, so that the
methods of thought used at these levels remain inaccessible to the
students., The following points can contribute to a specification
of levels of thought:

a. At each level there appears in an extrinsic way that which
was intrinsic at the preceding level. At the base level, figures
were in fact also determined by their properties, but someone
thinking at this level is not aware of these properties.

b. Each level has its own linguistic symbols and its own
system of relations connecting these signs. A relation which is
"correct" at one level can reveal itself to be incorrect at
another. Think, for example, of the relation between a rectangle
and a square. Numerous linguistic symbols appear at two successive
levels; moreover they establish a liaison between the various
levels and assume continuity of thought in this discontinuous
domain. But their meaning is different: it becomes manifest by
other relations among these symbols,.

¢. Two people who reason at two different levels cannot
understand each other. This is what often happens between teacher
and student. Neither of them can manage to follow the thought
process of the other and their dialogue can only proceed if the
teacher tries to form for himself an idea of the students' thinking
and to conform to it. Some teachers make a presentation at their
own level while asking students to reply to their questions. In
fact, it is nothing but a monologue, for the teacher is inclined to
consider all the answers which do not belong to his syscem of
relations as stupid or misplaced. A true dialogue must be
established at the level of the students. For this to happen, the
teacher must often, after class, ask himself about the responses of
his students and strive to unde-stand their meaning.

d. The maturation which leads to a higher level happens in a
special way. Several stages can be revealed in it (this maturation
must be considered above all as a process of apprenticeship and not
as a ripening of a biological sort). It is thus possible and
desirable that the teacher aids and accelerates it. The aim of the
art of teaching is precisely to face the question of knowing how
these phases are passed through, and how help can effectively be
given to the student.
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Let us now examine the phases which, in the process of
apprenticeship, lead to a higher level of thought.

The first phase is one of inquiry: the student learns to know
the field under investigation by means of the material which is
presented to him. This material leads him to discover a certain
structure. One could say that the basis of human knowledge
consists of this: mankind is characterized by the revelation of
structure in any material, however disorganized it may be, and this
structure is experienced in the same way by several people, which
results in a conversation that they can have about this subject.

In the second phase, that of directed orientation, the student
explores the field of investigation by means of the material. He
already knows in what direction the study is directed; the material
is chosen in such a way that the characteristic structures appear
to him gradually.

In the course of the third phase, explicitation takes place.
Acquired experience is linked to exact linguistic symbols and the
students learn to express their opinions about the structures
observed during discussions in class. The teacher takes care that
these discussions use the habitual terms. It is during this third
phase that the system of relations is partially formed.

The fourth phase is that of free orientation. The field of
investigation is for the most part known, but the student must
still be able to find his way there rapidly. This is brought about
by giving tasks which can be completed in different ways. All
sorts of signposts are placed in the field of investigation: they
show the path towards symbols.

The fifth phase is that of integration; the student has
oriented himself, but he must still acquire an overview of all the
methods which are. at his disposal. Thus he tries to condense into
one whole the domain that his thought has explored. At this point,
the teacher can aid this work by furnishing global surveys. It is
important that these surveys do not present anything new to the
student; they must only be a summary of what the student already
knecws.

At the close of this fifth phase a new level of thought {is
attained. The student has at his disposal a system of relations
which are related to the whole of the domain explored. This new
domain of thought, which has acquired its own intuition, is
substituted for the previous domain of thought which had a
completely different intuition.

The objectivity of mathematics rests on the fact that new
systems of relations are agreed on by different people. The new
symbols are linked by the same relations among many people. If one
decides that the goal of education should be the uniqueness of the
relational system, one could restrict oneself to having that
learned. And the student would seem to understand the reasoning
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perfectly, for it would result in correct conclusions based on his
relational system. But that is not to say that he would attach to
it the same significance as his questioner. This significance
cannot be disentangled solely from the language used, it depends
also on the experiences which led to the formation of the
relational system, that is, it 7 pends on what happened at a lower
level of thought.

If one does not take the content of the symbols into
consideration, but only their relations, one could say that from a
mathematical point of view, everything is perfect. The student is
capable of aandling the relational system of deduction without
mistakes. But from the pedagogical and didactic point of view, and
from the social point of view, one has wronged the student! One
has committed a pedagogical error because one has stolen from the
student an occasion to realize his creative potential. From the
didactic point of view, one has neglected to let the student
discover how to explore new domains of thought by himself.

Finally, one has wronged society because one has provided the
student with a tool which he can handle only in situations which he
has studied.

The theory of levels of thought leads to the following
important conclusions.

1. One has been able to see that the levels of thought are
inherant in thought itself; thus they are not only the concern of
those who occupy themselves with didactics. The levels of thought
have, for example, a certain importance for mathematics itself.
One can only express onself clearly in mathematics when one uses
symbols belonging to one's own level. If one manipulates
functions, it is of little importance that they are defined Ly the
expression f(x) or by the equation y = f(x). One learns to know
the function while using it and out of this activity flows the
content of the notion of function. If one asks oneself, at a
higher level, the questions of what a function is, of what one has
really done, one will arrive at the conclusion that it is a pairing
of elaments x and of elements f(x). The function is defined
neither by f(x), nor by y = f(x), but rather by the symbol for the
pairing which one can represent, if one wants, by £f. Error results
from trying to give a definition at a lower level of thought, from
exploiting a structure contained implicitly in an activity before
it has become sufficiently familiar. Because this attempt is
doomed to failure, one limits oneself to representing either the
result of this action, £(x) - or else the action itself, y = f(x).
The mistake is not only a didactic one, but also theoretical.
(This example is drawn from a conversation with Professor
Freudenthal.)

One makes an analogous error when one tries to construct a
system of axioms using symbols which belong to a level of thought
which is too low. Systems of axioms belong to the fourth level
where in fact one no longer asks the question: what are points,
lines, surfaces, etc.? At this fourth level, figures are defined
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only by symbouls bound by relations. To find their appropriate
content, it is necessary to return to lower levels where the
content of these symbols can be perceived. But with this content,
these symbols belong to a relational system which cannot be
axiomatized bacause it cannot have direct liaisonn with logic.

2. Just as a child only learns his native language by applying
grammatical rules (which are deduced from current usage), he only
learns mathematics by applying mathematical rules. These rules
only become firm, that is, become explicit, when one questions
oneself about activities displayed at a lower level. It is in ttis
way that 211 mathematical rules are formed, even the rules of
formal logic. The application of rules is important, but the rule
of application resides above all in the exploration of new domains
bordering those where the rules and laws have been developed.

3. Two or more people can understand each other in a specified
area of thought when they use a language in which they experience
the same relations between the linguistic signs. The certainty of
mathematics is based on the infallible way in which mathematical
language can be used. The "mathematician at any price" can be
happy with this: LANGUAGE is everything for him and he hardly
cares what a symbocl represents for others. (Just think of the
point-line duality in the projective plane!) There is no problem
from the algorithmic point of view. But if one is also concerned
with knowing if agreement will still occur when the field of
investigation is broadened, it is desirable to examine whether the
symbols used by the questioner have a common base. It will not
suffice then to learn the linguistic symbols and their liaisons,
but it will be necessary to start with the same material at the
lower level and to see if one succeeds, starting from there, in
developing the same domains of higher level symbols.

Description of a geometry course.

The first part of a geometry course ought to ailow the
attainment of the first level of thought, which we will call the
aspect of g2ometry. The aim of teaching is as follows: geometric
figures such as cubes, squares, rhombuses, rectangles, circles, 4
etc. should become bearers of their properties. A rhombus is no
longes recognized by its appearance, but, €0~ ~xample, by the fact
that the sides are equal or that the diagouals are perpendicular
and bisect each other, or these two properties together.

One uses a collection of concrete geometric figures and
materials with which students will themselve3 make models of the
figures. The manipulations which the students perform with this
material will be the base of a new relational system in the process
of formation.

The second part of the course should allow the attainment of
the second level of thought, which we will call the essence of
geometry or the aspect of mathematics. The aim of instruction now
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is to learn the relations which link properties of figures. For
example, the sum of angles of a triangle is 180 degrees; the
alternate interior angles formed by two parallel lines and a
transversal are equal. What is more, one begins, Jduriag this
period, to order properties of figures logically. The first
property mentioned above becomes antecedent to the following: the
sum of the angles of a quadrilateral is 360 degrees.

Material could consist of a series of congruent triangles or
quadrilaterals with which students could try to construct a paving.
Here again, students learn to uncover a structure while
manipulating a material. In a paving constructed from congruent
triangles, they see systems of parallel lines, parallelograms,
trapezoids, hexagons with their centers of symmetry, etc. appear.
This material later suggests in a natural way the auxiliary line
needed to show that the sum of angles of a triangle is 180 degrees,
using the method of alternate-interior angles.

The third part of the course should allow the attainment of
the third level, that of discernment in geometry, or the essence of
mathematics.

The aim of instruction is now to understand what is meant by
logical ordering (what do we mean by: One property "precedes"
another property?).

The material is made up of geometric theorems themselves. In
the ordering of these thecrems certain ideas will become apparent,
namely: the link between a theorem and its converse, why axioms
and definitions are indispensable, when a condition is necessary
and when sufficient. Students can now try to order new domains
logically, as for example when they first study the cylinder.
Analysis of what they see will teach them that the cylindrical
surface contains lines and circuwferences. After having stated a
definition, they will %e able to try to prove the existence of
lines and circumferences.

If the course could be continued further (which is generally
impossible in general education), the fourth level would be
attained, that of discernment in mathematics. The aim of teaching
at this level would be to analyze the nature of a mathematician's
activity and how it differs from the activity displayed in other
disciplines. Oue cannot attain this fourth level until one is
sufficiently familiar with the procedures of mathematicians that
one can do them automatically. One must form within oneself
associations such that one step induces others. And it is only
when these steps can be integrated that one can grasp the structure
of mathematical activity.

But a similar integration takes place at the time of
tra'sition from one level of thought to a higher level. In the
course of passage from the base level to the first level, it is
manipulation of figures which gives birth to structure. This
nourishes thought at the first level. Thus the figures become new
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symbols defined by their relations with other symbols.

At the first level the context is different from that of the
base level. Action developed in this new context furnishes an
integration which makes access to the second level possible, and so
forth.

The teacher who deliherately strives to lead his students from
one level to another, gets them ready to develop a deductive system
by themselves and to uncover faults in a deductive argument.

Acting this way, the teacher does not impuse domains where thought
should be practiced, but helps the students to specify them on
their own. This does not mean, as has already be a stated above,
that he will leave the student the burden of discovering
everything, but that he will require from the student some
particular activity which in each of the five stages is directed in
a different way. Application of these principles will surely not
mean a lightening of the task of the teacher. But he will have the
satisfaction of knowing what he is doing and of understanding his
students' reactions better.

Teaching a deductive system requires patience above all. This
system only exists at the third level of thought, and its essence
is only perceived at the fourth level. It may appear tempting to
build geometry from transformations of the plane, but then one
again has the aim of building a deductive system. One c&unot
confuse this construction with the elaboration of geometric
thought. 1If one takes transformations as a departure point, one is
already supposing the existance of a pre-existent domain of
thought. Someone who is too hasty reduces his own domain of
symbols, with children, to intuitive symbols which belong at a much
lower level and which do not have the meaning he gives to them.
Under these circumstances, one is forming algorithmic types, that
is, minds capable of applying algorithms in a satisfactory way
without their knowing their content sufficiently. In this case one
is teaching the material wfthout sufficient formative value.

When one directs instruction too rapidly towards a
mathematical relational system because one disdains teaching the
geometric relational system, one risks losing mathematics forever.
What one gets is a verbal rclational system in which new operations
are impossible. One finds an example of such an error in the
teaching of fractions in Holland. 1In this instruction, a verbal
relational system is established. For most of the students,
operations with fractions are completely incomprehensible. If in
teaching the teachers only recognized that the relational system of
the students is more valuable than that of the teachers!

The heatt of the idea of levels of thought lies in the
statement that in each scientific discipline, it is possible to
think and to reason at different levels, and that this reasoning
calls for different languages. These languages sometimes use the
same linguistic symbols, but these symbols do not have the same
meaning in such a case, and are connected in a different way to
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cther linguistic symbols. This situation is an obstacle to the
exchange of views which goes on between teacher and student about
the subject matter being taught. It can perhaps be considered the
fundamental problem of didactics.

Footnote:

1. Dr. P.M. van Hiele, professor at the Lycée de Bilthoven (the
Netherlands), is the author of a thesis on the problem of
intuition (in psrticular on the role of intuition in the
teaching of geometry). This thesis was defended before the
University of Utrecht on July 4, 1957.

Dr. van Hiele delivered this paper to the conference "pilot
course on the teaching of mathematics", organized by O.E.C.E. at
Sévres, November 17 - 27, 1957. We thank him vigorcusly for
having authorized us to publish this remarkable study of the
problems of initiation.
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