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ABSTRACT

A mathematically rigorous approach to the subject of risk permits us to
develop a more precise and unified set of concepts for analyzing individuals'
behavior under risk. The traditional method of measuring aversion to risk is
not always warranted. Individuals' behavior under certainty cannot always be
used to predict their behavior under risk. Consequently, optimal saving rates
and optimal production input levels under risk may differ from those
prescribed by traditional theory.

Keywords: Behavior under risk, expected utility, risk aversion

ACKNOWLEDQ4ENTS

I would like to thank Peter Coughlin, Beverly Fleisher, Charles Johnson,
Thomas Lutton, Mark Machina, Lloyd Teigen, and David Torgerson for their
helpful comments on various aspects of this research. Particular thanks go to
Roger Betancourt for many stimulating and informative conversations.

The initial manuscript was typed by Dorothy Armentrout. The editor was Judith
Latham.

SALES INFORMATION

Additional copies of this report can be purchased from the Superintendent of
Documents, U.S. Government Printing Office, Washington, DC 20402. Ask for
Conceptual. Foundations of Rtsk Theory (TB-1731). Write to the above address
for price and ordering instructions. For faster service, call the GPO order
desk at (202) 783-3238 and charge your purchase to your VISA, MasterCard,
Choice, or GPO Deposit Account. Bulk discounts of 25 percent are available
for orders of 100 copies or more. Foreign customers, please add 25 percent
for postage.

Microfiche copies ($6.50 each) of this publication can be purchased from the
National Technical Information Service, Identification Section, 5285 Port
Royal Road, Springfield, VA 22161. Include the title and series number in
your order. Enclose check or money order payable to NTIS. For faster
service, call NTIS at (703) 487-4650 and charge your purchase to your VISA,
MasterCard, American Express, or NTIS Deposit account.

The Economic Research Service has no copies for free maiUng.

1301 bier; York Ave., NW.

Washington, DC 20005-4788 July 1987



RAas

SUMMARY ii

1 INTRODUCTION 1

2 LOTTERIES 4
2.1 Formalizing the Concept of Lottery 4
2.2 Lottery Spaces 7
2.3 Pslationship to Other Approaches 8

3 MEASURABLE UTILITY FUNCTIONS 11
3.1 Existence 11
3.2 Uniqueness and Invariance 15
3.3 Continuity 18
3.4 Decomposition 20

4 MEASURABLE UTILITY ON THE REAL LINE 31
4.1 Induced Utility Functions 31
4.2 "Expected Utility" Representations 32
4.3 Measurable Utility Models for Meal Functions 33
4.4 Implications for Discontinuous Utility in Peasant

Agriculture 46

5 RISK AVERSTON 50
5.1 Defin_tions 50
5.2 Relation to Concavity 51
5.3 Implications for Identifying and Modeling Risk Aversion 60

6 ECONOMIC APPLICATIONS 62
6.1 Optimal Production Levels Under Price Uncertainty ....... 62
6.2 Optimal Saving Rates Under Uncertainty 70

REFERENCES 76



SUMMARY

This report clarifies the theory traditionally used in agricultural economics
to describe how individuals make choices among risky alternatives. It uses a
mathematically rigorous approach to ensure that concepts are defined
unambiguously and results are established decisively. It reveals a hidden and
unnecessarily restrictive assumption is, the traditional risk literature. It
demone rates that, when this assumption is removed, the behavior of
individuals under certain types of risk is not, as previously thought,
entirely determined by their behavior under certainty.

The theory of individual choice under risk begins with an economic agent faced
with a set of risky alternatives and endowed with a set of preferences over
these alternatives. In the classical "expected utility" theory, individuals
are assumed to prefer one risk to another if they judge that, on average, its
outcome would be more beneficial. Agricultural economics applies this theory
extensively. However, many claimed consequences of expected utility theory
are actually derived frail another, hidden assumption: that an individual's
preferences are "continuous" in the sense that slight changes in alternatives
do not lead to sharp changes in expected benefits. Exposing and removing this
logically unnecessary assumption enables us to reinterpret the implications of
the classical theory.

Individuals' preferences over an important clas& of risky alternatives are
independent of their preferences among certainties. Thus, economic behavior
unaar this type of risk cannot generally be predicted from behavior under
certainty. For example, a knowledge of the "utility" (a kind of numerical
rating) that farmers implicitly assign to various possible incomes is not
generally a logically sufficient basis on which to predict their behavior
under risk. Farmers' aversion to risk, or lack thereof, cannot invariably be
determined from the shape of their utility curve of income. Moreover,
farmers' profit-maximizing choices of production inputs may differ from those
traditionally thought to be dictated by the classical theory, even when their
preferences satisfy the explicit assumptions of that theory.

Understanding the way farmers respond to risk is a prerequisite for sound
agricultural policymaking. Tail; report contributes to such an understanding
by clarifying established teaching and by providing a more precise set of
concepts for studying behavior under risk.
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Conceptual Foundations of
Risk Theory

Michael D. Weiss

1 INTRODUCTION

Risk is a pervasive influence in agridulture. Indeed, agriculture is one of
the few industries in which a crucial production input, weather, can neither
be controlled nor predicted. The economic consequences of this fact,
including the effects of the resulting price risk, are far reaching.
Understanding the ways in which farmers and other participants in the
agricultural economy respond to risk is important to effective agricultural
planning, policymaking, and analysis.

For agricultural economists, such an understanding must be founded on a
general theory of how individuals make choices under risk. Rut, risk is a
subtle concept, and a theory of choice under risk cannot successfully undergo

testing, revision, confirmation, and ultimately empirical application, if it
is not thoroughly understood. This difficulty applies as much to the
currently used "expected utility theory" as it does to improved theories yet
to be developed.

The risk literature, particularly the less advanced literature, has not always
been conducive to understanding. Discussions of risk have often relied on
improperly defined concepts or concepts identified inappropriately with
special cases. Some claimed results have depended on incomplete arguments.
Overall, the risk literature has not successfully conveyed a clear, conceptual
view of risk theory that is comparable, for example, to the establishe0 view
of the foundations of consumer demand theory. This report will provide
agricultural economists with the foundation for such a conceptual view of risk
theory.

The report investigates the concepts that underlie expected utility theory,
the theory that describes individuals faced with a choice among risky
prospects as attempting to maximize their "expected utility" (a numerical
measure rating risks against one another). This theory is based on
assumptions of transitivity, completeness, independence (see p. 14), and

The author is an economist with the Commodity Economics Division, Economic
Research Service, U.S. Department of Agriculture.

1 6



adherence to an "Archimedean" property (7, p. 292) for preferences under

risk: Moreover, as the report will demonstrate, most treatments of expected
utility theory and its applications have relied on an additional, hidden
assumption of continuity of risk preferences. Previous writers have discussed
the consequences of altering or omitting various of these assumptions (for
example, see 3, 4, 7, 12, 13, 14, 15, 16, 21, 29, 42).

This study continues that line of inquiry by investigating the consequences,
both theoretical and practical, of omitting the assumption of continuity. The
results on continuity are part of a broader analysis aimed at clarifying the
meaning and logical relationships of a variety of concepts important to
expected utility theory.

We first define the notion of a "lottery," the formalization of the idea of a
risky prospect, and draw the connection between compound lotteries and
convexity. We show how two textbook definitions of "lottery" can be
interpreted in terms of our definition.

We then define and examine measurable utility functions, utility functions
that represent risk preference orderings and that have a linearity property
mimicking the computation of the expected utility of a lottery. We present
new results on the intrinsic structure of measurable utility functions; we
show that any such function can be uniquely decomposed into a "discrete part,"
an "absolutely continuous part," and a "singular continuous part."
Conversely, a measurable utility function is definable from such pacts. These
results give rise to a new type of discontinuous preference ordering that, in
some economic models, allows preferences among "certainties" to be independent
of preferences among those "uncertainties" that are represented by continuous
lotteries. Such orderings can represent behavior in which choices among
certainties are made within a different "frame of.reference" (1, 43) than are
choices among "continuous uncertainties."

We examine the use of functions on the real line to represent measurable
utility functions defined on lottery spaces (and thereby to represent the
associated preference orderings of lotteries). We describe conditions under
Which a measurable utility function g has a "von Neumann-Morgenstern utility
function" u on the real line that allows g to take the "expected utility" form

co

1.t(L) f u(t)dL(t)

-03

for each L in the lottery space. We also present new representation theorems
showing that any function on the real line, even if discontinuous at every
point, represents some measurable utility function and thus some "rational"
preference ordering of lotteries. These theorems are used to extend the use
of discontinuous utility in modeling farmers' disaster outcomes (30) to
include the case in which there is a riskless asset.

The concept of "risk aversion" is defined in a purely ordinal manner. It is
shown that the widely claimed equivalence between risk aversion and concavity

1/ Italicized numbers in parentheses refer to literature cited at the end
of this report.
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of an undezlying utility function of money holds in a weakened form for
measurable utility functions when preferences are continuous, but fails in one
direction, and "appears" to fail in the other, when preferences are
discontinuous. Implications for the empirical identification and modeling o.
risk aversion are discussed.

We conclude by exploring the behavioral consequences of the new type of
discontinuous risk preference ordering within two risk models: one, a model
of production with uncertain output price, and the other, a model of saving
with uncertain interest rate. We show that, when the marginal utility of
money is greater under certainty than under "continuous" uncertainty (in a
carefully circumscribed sense that must be made precise), then (under
additional routiae assumptions) the optimal production level and the optimal
saving rate will be lower than the corresponding levels obtained through
traditional expected utility maximization. We also indicate how economists
can use our analysis to determine the optimal production level when a product
price support is introduced, as with agricultural commodities.

Readers who master the concepts presented in this report should be much better
equipped to understand newer research such as the seminal work of Machina (28,
29). Moreover, they should be better prepared to conduct and evaluate
empirical studies involving risk because they will have a precise and orderly
intellectual framework against which to test the meaningfulness and validity
of empirical arguments.

The theory of choice under risk, dealing as it does with orderings
rnpresenting individuals' preferences over spaces of cumulative probability
&Attribution functions (see pp. 4-5, 7), is intrinsically a highly
mathematical subject. This report, therefore, contains a good deal of
mathematics. However, the material should be accessible to many agricultural
economics researchers and students who have some knowledge of probability and
real analysis, convex sets, and linear algebra. The main prerequisites are a
familiarity with basic mathematical notation (especially that of functions and
sets) and a willingness to do some hard, rigorous thinking about risk.

3
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2 LOTTERIES

The theory of preferences under uncertainty concerns choices that individuals
make when confronted with alternative risky prospects. These risky objects of
choice are customarily called "lotteries"; this section is concerned with
their definition, properties, and types. We will show how lotterieb can be
defined as cumulative probability distribution functions and will describe the
convention for representing compound lotteries that allows this definition to
succeed. Several types of lottery are distinguished. We develop the notion
of a "lottery space" as a set of lotteries closed under the formation of
compound lotteries and show that this closure property amounts to an
assumption of convexity. We point out alternative, more general definitions
of a lottery as a probability measure or as an element of an abstract "mixture
set." We also contrast our approach to the subject with those of two widely
used microeconomics textbooks.

.1 Formalizinq the Concept of Lottery

A lottery may intuitively be conceived of as a game of chance in which various
prizes occur with preassigned probabilities. These prizes may be money or
even other lotteries (that is, the opportunity to play other lotteries and
receive thetr prizes). In the latter case, one speaks of a "compound"
lottery.

Consider the example ox: a farmer who faces a probability p of a crop
infestation and, hence, a probability 1-p of no infestation. If the first
case occurs, he/she faces a spectrum of possible profits depending, for
example, on weather and other unpredictable factors. In the second case,
there is another (higher) spectrum of possible profits. In effect, with
probability p, the farmer receives one profit lottery as a prize, and with
probability 1-p, another. This situation has the form of a compound lottery.

The intuitive concept of lottery used in economics is governed by an important
convention: two lotteries are considered "equivalent" if they have the same
sets of ultimate prizes occurring under the same probability laws, regardless
of the processes by which these prizes are achieved. In short, the internal
compound structure of a lottery is ignored. The objects of choice are not
individual lotteries as one intuitively conceives them, but, rather, are
equtuaLonce classes of individual lotteries.

It might at first appear that one could define a lottery (or, more precisely,
the corresponding equivalence class) mathematically as simply a random
variable whose possible values were the various ultimate prizes, those
occurring according to the de:Jived probability law. However, the calculation
of an overall random variable to represent an empirical compound lottery in
terms of its constituent sublotteries would be quite complicated. Thus,
random variables are not very convenient as mathematical representations of
lotteries. Rather, it turns out that cumuLattve probabtLtty dtstrtbutton
functions (c d.f.'s) are more tractable representations.

Recall that, if X is a random varizIble on a probability space with probability

measure P, then the c.d.f. FX of X is the function FX R -. (0,1] defined by

Fx(r) = P(X r) for all r e R (where R is the set of all real numbers). Fx

contains all the probabilistic information inherent in X, but in a more
convenient format. It can be shown to be:

4



(1) Nondecreasing
(2) Continuous on
(3) lim F

x
(r) = 0

Z-1-00

on R,

the right at each point of R, and to satisfy
and lim F

X
(r) = 1.

Conversely, if Ft R -, (0,1] is any function satisfying conditions (1) - (3),
then there exists a random variable of which F is the c.d.f. Thus, the set of
all c.d.f.'s is merely the set of all functions satisfying conditions
(1) - (3).

Deltnttin. A Lottery is a c.d.f., that is, a function F: R -, (0,1]
satisfying conditions (1) - (3). The set of all lotteries is denoted F.

Note that, in general, a lottery need not have an expected value.

Bearing in mind the distinction between the empirical concept of lottery and
our mathematical representation of it, consider an empirical compound lottery
L that offers empirical lotteries Li and L2 as prizes with probabilities p and

1 - p, respectively. Then, if the c.d.f.'s C1 and C2 are taken to represent

L1 and L2, respectively, the c.d.f. pCi + (1-p)C2 will represent L. (Note

that pCi + (1-p)C2 is indeed a c.d.f.; this is readily proved by reference to

the "'fining properties (1) - (3).) Thts stmpLe reLattonshtp--the
reprosentatton of compound eirltrtcaL Lotteries by convex combtnattons of
c.d.f.'s--ts centraL to the usefuLness of c.d.f.'s as mathemattcaL
representations of emptrtcaL Lotteries.

Several important types of lottery are now defined.

Deftnttton. For each r e R, define a lottery Fr by

10 if t <r
Fr (t)

11 if t r.

Then, F
r

is called degenerate. The set of all degenerate lotteries is

denoted P.

A degenerate lottery is the c.d.f. of a constant random variable. Fr has the

prize r with probability 1. In empirical work, degenerate lotteries may be
used to reprnent "certainties."

DeftW.tton. A lottery F is called stmpLe if it is a convex linear combination
of degenerate lotteries, that is, if there exist a positive integer m, numbers
ri ..... rm (not necessarily distinct), and nonnegative numbers pl ..... pm (not

necessarily distinct), such that

and

5
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m
F = E

1

piFr
i

.

i=

2he set of all simple lotteries is denoted H.

A simple lottery has (with probability 1) finitely many prizes.

neftnttton. A lottery F i3 called dtacrete if there exist a sequence (ri}wii

of (not necessarily distinct) numbers and a sequence Cpi}71 of (not

necessarily distinct) nonnegative numbers such that

and

co

jj pi = 1
1=1

F = E pi F .

i=1 i

The set of all discrete lotteries is denoted H
a

.

neftnttton. A lottery F is called conttnuous if it is continuous as a

function on R and absolutely conttnuous if there exists a Lebesgue integrable
function f: R R such that

ri

F(r') F(r) f(t)dt

whenever r,r' e R and r r'.

(The use of the now - standard, but seemingly unaccountable, term "absolutely

continuous" to describe the stated property is apparently a vestige of an
earlier period in the development of read analysis, when the definition of
absolute continuity for a function F was in the following vein: "For each
e > 0, there is a 8 > 0 such that

implies

al < bl a2 b24 ... 4 an < bn

E If(bk) f(ak)I e."
k=1

This property was proved equivalent to the sort of integral condition that
nowadays is usually taken as the definition of absolute continuity (see 31).)

6
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For an absolutely continuous F, the function f is unique and nonnegative

almost everywhere and satisfies f f(t)dt = 1. In short, F is absolutely

continuous if and only if it has a probability density function.

Deftnttton. A lottery F is called stnguLar if F' equals 0 almost everywhere.

2.2 Lottery Spaces

Different economic problems may involve different types of risk. Thus,
economic agents may be confronted with different "choice spaces" of lotteries
in different situations. Yet, although the reed to consider a variety of
choice spaces is well accepted in, for example, consumer demand theory, it has
not been given much attention in the risk literature.

What properties should a choice space of lotteries have? Expected utility
theory (or the more general "measurable utility theory" pursued in this
report) imposes only one condition: that the choice space be "closed under
the formation of compound lotteries." Expressed mathematically, and in view
of the previous discussion, this requirement is simply: whenever 0 4 p 4 1
and the choice space contains C1 and C2, then it must contain pCi + (1-p)C2.

Observe, however, that the set of all functions from R into R, endowed with
the usual operations of addition/subtraction of functions and multiplication
of functions by real numbers, is a vector space over R containing all
lotteries as elements. Thus, the cited requirement can be restated as: the
choice space (considered as a subset of this vector space) must be convex.

Deftnttion. A Lottery space is a convex set of lotteries.

One can readily verify that each of the following is a lottery space. the set
of all (1) lotteries, (2) simple lotteries, (3) discrete lotteries,
(4) continuous lotteries, (5) absolutely continuous lotteries, (6) singular
lotteries, (7) lotteries with finite mean, and (8) lotteries that are c.d.f.'s
of bounded random variables.

In view of the importance of normal distributions to the subject of risk, it
xs interesting that the set of all normal lotteries (that is, normal c.d.f.'s)
is not a lottery space. To establish this fact by means of a counterexample,
let F be the N(0,1) c.d.f. and f tho N(0,1) probability density function.

Then, there is an x0 e R such that f(x0) < 1/2(270
1/2

. Let G be the N(2x0,1)

c.d.f. and g the N(2x0,1) probability density function. Now, if the c.d.f.

(1/2)F + (1/2)G were normal, then its derivative, h = (1/2)f + (1/2)g, would
be a normal probability density function.
inequalities

h(0) = (1/2)f(0)

> (1/2)f(0)

= 1/2(2n)
1/2

But this is impossible, since the

+ (1/2)g(0)

,

7
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and

h(x0) = (1/2)f(x0) + (1/2)g(x0)

< (1/4(2v)
1/2

] + (1/4(2v) 1/2 ]

= 1/2(2v)
1/2

,

h(2x0) = (1/2)f(2x0) + (1/2)g(2x0)

(1/2)g(2x0 )

= 1/2(2v)
1/2

show that h(x0) is smaller than both h(0) and h(2x0), although x0 lies between

0 and 2x0. This argument establishes that the set of all normal lotteries is

net convex. (This fact is certainly known in other contexts (10), but it has
not been expressed clearly in the risk literature of economics.) However, any
set of lotteries haw a convex hula.. Since the convex hull of a set S equals
the set of all finite convex combinations -A elements of 9 (that is,

n

(pis]. +...+ pen I n e W, pi ..... pn e [0,1], E pi = 1,
i=1

and si,...,sn e S},

where W is the set of all positive integers), a lottery space, Co(S), may be
constructed from any set S of lotteries (such as the set of all normal
lotteries) by forming all finite convex combinations of lotteries in S, and
Co(S) is the "smallest" lottery space containing S.

263Balatignahil?12Qther411212MatheB

Our definition of lotteries as c.d.f.'s contains the implicit assumption that
a lottery's ultimate prizes can be represented by real numbers. Indeed, if F
is a lottery and t is a real number, we are interpreting F(t) as the
probability that the lottery will provide an ultimate prize in the irterval
(-m,t]. Thus, in our approach, the real line reproaents the set of possible
prizes, and these prizes are presumed to be quantities of money or the like.

It is possible, however, to define lotteries so that quite general types of
objects are permissible as ultimate prizes. One such definition characterizes
a lottery as a probability measure defined on a measurable space (20) of
prizes. To understand how this approach relates to our own, recall that there
is a natural one-to-one correspondence between the set F of all c.d.f.'s F and
the set of all Borel probability measures m on R, given by

m(;-op,t]) = F(t) (F e F, t e R)

(see 8). For any c.G.f. F, this formula determines a unique Borel probability
measure m on the real line (that is, in effect, on our set of prizes) that

8
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contains the same probabilistic information as F, but in as different format.
Clearly, the correspondence maps convex combinations of c.d.f.'s to convex
combinations of the corresponding measures; thus, Sorel probability measures

on R share the ability of c.d.f.'s to represent empirical compound lotteries
conveniently in termms of their sublotteries. Although the use of point
functions such as c.d.f.'s does offer computational advantages, there would
have been no conceptual barrier to olr originally defining lotteries to be
Sorel probability measures on R. Similarly, given a measurable space
consisting of any objects considered prizes, one could define a lottery to be
a probability measure on that space (see 18).

An even more general definition oZ lvocery is implicit in Herstein and Hilnor
(23). There a "mixture set" is defined as any set of objects that are capable
of being combined with one another, and with weights in (0,1], to form analogs
of convex combinations. Convex sets of c.d.f.'s and convex sets of
probability measures are subsumed as special cases. (See pp. 11-14 for a
fuller discussion of thie important paper.)

Because many economists learn the fundamentals of the theory of behavior under
uncertainty from microeconomics textbooks, it is instructive to examine how
such works typically approach the subject of lotteries. Let us consider two
widely used texts, Varian (44) and Henderson and Quandt (22).

Varian does not define lotteries as specific mathematical entities, but
instead characterizes them through several axioms. All lotteries are assumed
to nave only two prizes (themselves possibly lotteries); a lottery with prizes
x and y that occur with probabilities p and 1-p, respectively, is denoted

p 0 x + (1-p) 0 y.

The axioms are:

1 0 x + (1-1) 0y x

pox+ (1p) oym (1p) oy+pox

q 0 (p 0 X 4. (1-p) 0 y) + (1-q) 0 y (qp) 0 X + (1qp) 0 y.

(Ll)

( L2 )

(L3)

The intended interpretation of axiom (LI) is that "getting a prize with
probability one is the same as getting the prize for certain." (L2) signifies
that the order in which a lottery's prizes are specified is of no consequence.
(L3), the "compound lottery axiom," requires that the lottery whose prizes are
p 0 x+ (1-p) 0 y and y (attained with probabilities q and 1- q,
respectively) be considered the same as the lottery whose prizes are x and y
(attained with probabilities qp and 1 - qp, respectively). In effect, this
axiom stipulates that the internal structure of a lottery is immaterial; only
the ultimate prizes and their probabilities of being attained are significant.
Thus, (L3) is an axiomatic statement of the convention on representing
lotteries by c.d.f.'s adopted earlier (p. 4).

C.d.f.'s clearly satisfy the preceding characterization of lotteries. In
fact, if we interpret p 0 x + (1-p) 0 y as the convex combination px + (1-p)y
whenever x and y are c.d.f.'s and 0 4 p 4 1, then any c.d.f. x can be
expressed in the "two-prize" notation as 1 0 x + 0 0 x, and equations (L1)

9 14



through (L3) reduce to trivially true statements concerning the algebra of
functions, namely:

lx + Oy = x (L1')

Px + )y = ( )y + Px (L2')

q( px + ( 1-p )y ) + (1-q )y = qpx + ( 1-qp )y . (L3')

(Similarly, probability measures defined on measurable sets of prizes satisfy
equations (L1) through (L3).) Thus, there is no logical inconsistency between
our definition of lottery and the more general characterization given in
Varian (44). Nevertheless, using c.d.f.'s has some advantages. We shall

return to this point shortly.

In Henderson and Quandt (22), as in Varian, lotteries axe not defined as a
known type of mathematical object, but are characterized axiomatically. Only

one axiom, an analog of the compound lottery axiom described above, is given.
Attention again centers on lotteries having only two prizes; a lottery with
prizes A, B (and corresponding probabilities p, 1-p) is denoted

(P,A,B)

Just as Varian'spox+qoymay be interpreted as the convex combination
px + (1 -p)y of the c.d.f.'s x and y, Henderson and Quandt's (p,A,B) may be
interpreted as t!., convex combination pA + (1-p)14 whenever A and B are
c.d.f.'s and 0 4 p 4 1. (In particular, when A and B are money prizes (and
thus represented in our approach by degenerate c.d.f.'s), (p,A,B) may be
interpreted as the c.d.f. pF. + (1-p)F

B
which (under the assumption that

A 4 B) is a step function F given by

0 if < A

F(t) = p if A 4 t <B
1 if B 4 t.

A similar remark holds for Varian's p 0 x q 0 y.)

Economists generally believe that axiom systems for behavior under risk based
on abstract characterizations of lotteries (22, 23, 44) imply such standard
results as the propositions that individuals act to maximize their expected
utility (of, say, income) or that risk aversion is equivalent to concavity of
the utility function of (say) income. We will show, however, that these
results require an additional assumption. The assumption that preferences are
continuous, imposed on a choice space of c.d.f.'s., will prove sufficient (see
also 18). This assumption is meaningful when lotteries are defined as
c.d.f.'s, since the set of all c.d.f.'s has a natural topology, the "topology
of weak convergence." In contrast, the abstract characterizations of
lotteries do not provide for any topological structure on the choice space.
Under these characterizations, an assumption of continuous preferences is
inexpressible, and the standard results may fatl.
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3 MEASURABLE UTILITY FUNCTIONS

Although expected utility theory may be considered to have begun with Cramer
(9) and Bernoulli (6), it was not until the appearance of von Neumann and
Morgenstern's pathbreaking study (45) that economists succeeded in their quest
to find some rational basis for the intuitively appealing principle that
individuals faced with a choice among risky prospects attempt to maximize
their "expected utility." Taking as given a preference ordering of lotteries
satisfying several plausible axioms, von Neumann and Morgenstern showed that
one can define a numerical-valued function g of lotteries so that
(1) g(Li) > g(L2) if and only if Li is strictly preferred to L2, and

(2) g(pLi + (1-p )L2) = pµ( L1) + (1 -p)µ( L2) whenever Island L2 are in the choice

space and 0 4 p 4 1. Condition (2) is a linearity property reminiscent of
taking expected values. Functions satisfying (1) and (2) are called
masurabLe uttLtty functions.

Following the simplified and generalized approach of Berstein and Milnor (23),
we now present basic definitions and sketch the proof of existence of
measurable utility functions. We establish the properties of uniqueness and
invariance and relate these properties to the historical controversy over
whether measurable utility is an ordinal or cardinal measure. We define
continuity (including continuity of preference orderings) and use a result of
Grandmont (18) to establish that any risk preference ordering representable by
a discontinuous measurable utility function must itself be discontinuous.
Finally, we present new results on the decomposition of measurable utility
functions.

3.1 Existence

The Berstein-Milnor proof of the existence of measurable utility functions is
based on the abstract concept of a "mixing operation," a mathematical device
reminiscent of the process of constructing a compound lottery out of two
lotteries and a probability. Recall that, if x and y are lotteries and
0 4 p 4 1, then px + (1-p)y is often termed a "probability mixture" of x and
y. In this context, a function that maps each p, x, and y to px + (1-p)y is
the prototype of a mixing operation. Although this particular type of mixing
operation is of greatest concern to us, Berstein and Milnor actually prove the
existence of a measurable utility function for a wide class of mixing
operations. Indeed, the objects being mixed do not even have to be lotteries,
although lotteries are a particular (and important) case. Thus, the
Hersteim-,Milnor approach reveals that von Neumann and Morgenstern's
"measurable utility theorem" is but a special case of a very general result.

We now present the formal definition of a mixture space:

Deftnttton. Let S be a net and M: (0,1] xsxs -0 S a function such that the
following properties hold for all a,b e S and al:: K,X e (0,1]:

M(1,a,b) = a (1' )

M(X,a,b) = M(1-X,b,a) (2' )

M(KA X,a,b),b) = M(KX,a,b). (3' )

11
16



Then, (S,M) is called a mixture space, M a mtxtng operation on S, and S a
mixture set with mtxtng operation M.

This general concept of a mixture space becomes more familiar under the
following notational convention: given a mixing operation M on S, any
a.b E S, and any A E [0,1], -.me the symbol "Aa + (1-A)b" to denote M(A,a,b).
In this notation, the syMbcls "Aa" and "(1-A)b" need not themselves be
assigned any algebraic meaning; that is, these composite symbols are not
necessarily intended to denote the result of any mathematical operation.
Similarly, the symbol "+" should not necessarily be interpreted as having any
meaning in itself, such as summation. Rather, given A, a, and b, it is only
the undivided symbol "Aa + (1-x)b. to which meaning is here being attached- -
namely, as an alternate means of denoting the function value M(A,a,b). Under
this convention, properties (1') - (3') reappear as

la + (1-1)b = a

Aa + (1-A)b = (1-A)b + Aa

K[Aa + (1-701)] + (KA)a + (1-KA)b.

( 1" )

(2")

(3")

The suggestiveness of the notation "Aa + (1-A)b" and of the properties
(1") - (3") (which read like the properties (L1') - (L3') of lotteries
(p. 10)) is, of course, no accident, for an important example of a mixture
space is furnished by any lottery space S paired with the probability mixing
operation that maps A E [0,1] and lotteries a,b E S to the lottery
Aa + (1-A)b E S. Thus, although Herstein and Minor prove their general
results without ascribing any algebraic meaning to the notation "Aa + (1-x)b",
this notation does coincide with standard algebraic notation, and c2n be
interpreted algebraically, When the mixture space consists of a lottery apace
with probability mixing. Henceforth, whenever we treat a lottery space as a
mixture set, the use of probability mixing will be implicitly assumed. (For
other applications of the concept of a mixing operation, such as to color
vision, see 19.)

Deftnttton. Let S be a set on which is defined a complete weak preference

ordering (that is, a complete transitive relation), t. The corresponding
strong preference ordering, >, is defined by

a > b if and only if a t b and not b t a.

The corresponding indifference relation, -, is defined by

a- b if and only if a t b and b t a.

We call (S,t) a preference apace.

Deftnttton. Let (S,t) be a preference space. A function g: S R is called
order - preserving (wtth respect to t) if, for any a,b E S, one has g(a) > g(b)
if and only if a > b (or, equivalently, g(a) g(b) if and only if a t b).

Deftnttton. Let (S,M) be a mixture space. A function vs S -, R is called
Ltnsar If, for all a,b e S and all A E [0,1],

v(M(A,a,b)) M(A,v(a),v(b)),
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17



that is,

y(Aa + (1-X)b) - My(a) + (1-X)v(b).

The preceding notion of linearity should not be confused with linearity for a
vector-space mapping, although the two notions are closely related. The
notion used here may be motivated by the fact that a real-valued function
defined on an interval of the real line satisfies the second formula given in
the definition if and only if it is both concave and convex, and the latter
condition holds if and only if the graph of the function is a segment of a
straight line. (Such a function is linear in the vector-space sense if and
only if its domain is the entire real line and its graph contai:is the origin.)

Deftnttton. Let S be a set with a complete weak preference ordering k and a
mixing operation M. We call (S,k,M) a preference mixture space. h linear,
order-preserving function on S is called a measurable uttLtty function.

The central question addressed by Herstein and Milnor is that of the existence
of a measurable utility function on a set S. In the situation of most concern
to us, S is a set of lotteries and M is the probability mixing operation on S.
Herstein and Milnor's main result (23) is:

Theorem 1. Suppose (S,k,M) is a preference mixture space for which the
following assumptions hold:

(1) For any a,b,c e S, the sets (a e (0,1] I as + (1-a)b k c} and
(a (0,1] I c k as + (1 -a)b} are closed; and

(2) For any a,a',b e S, if a - a', then

(1/2)a + (1/2)b - (1/2)a' + (1/2)b.

Then, there exists a measurable utility function on S.

For a detailed proof, see Herstein and Milnor (23). However, the intuition
underlying the construction of a measurable utility function on S is as
follows: given a > b, consider the "interval"

Sab - (xeSI akxkb).

It is first proved that, for each x e Sab, there is a unique element gab(x) of

(0,1] ouch that

x gab(x)a + (1-gab(x))b.

(This result is analogous to the simple fact that, if a, x, and b are real
numbers for which x e (b,a], then there is a unique gab(x) e (0,1] such that

x = A
ab

(x)a + (1-g
ab

(x))b.)

Of course, gab(x) is determined not only by x, but by a and b as well. To

arrive at a method of assigning a "utility value" to x alone, one now selects,
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and henceforth "holds fixed," two elements ro, r1 of S satisfying r1 > r0.

Then, given any x E S, one chooses any a,b E S for which x,r0,r
1
e S

ab
and

defines

Mab( x ) (stab( x )-uab( ro ) ]/( stab( )-Aab( r0) ]

It can be shown that, if also a',b' E S are such that x,r
0
,r

1
E S

a'b'
, then

M
a'b'

(x) = Ma (x)

Thus, Me (x)(x) depends on x and not on which particular a,b are chosen, and

it can be denoted A(x). The function ms S -6 R thus defined can be shown to be
linear and order-preserving, hence a measurable utility function on S.

Examining the above reasoning in the context of real numbers may provide
additional insight. For real numbers a > b with x E (b,a], one easily
calculates that

A
ab

(x) = (x-b)/(a-b).

Given r
1

> r
0

and assuming x,r
0
,r

1
e (b,a], one finds that

Mab(x) ((x-b)/(a-b) - (ro-b)/(a-b)]/((ri-b)/(a-b) (ro-b)/(a-b)],

which does not depend on a or b. Thus, in this case,

A(x) (x-r
0
)/(r

1
-r

0
).

Note that A is order-preserving with respect to the relation on R.

Furthermore, A is linear on R with respect to the mixing operation M' defined
by the ordinary algebraic formula

In fact,

MI(al,al,b1) = a' a' + (1-al)bl.

µ(a' a' + (1 -W)1,1) = ((alai + (1-00)b1) - ro]/[ri-ro]

= al(al-ro)/(ri-ro) + (1-a')(131-r0)/(ri-r0 )

= a' µ(a') + (1-a')A(b1).

When S is a lottery space, condition (2) of Theorem 1 is known in various
forms as the "independence axiom." Its interpretation is that, if a, a', and
b are any lotteries and an individual is indifferent between a and a', then
he/she is indifferent between the compound lottery offering prizes a and b,
each with a 50-percent probability, and the compound lottery offering prizes
a' and b, each with a 50-percent probability.
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1.2.__UniquanaiiansLinzariansat

Although Herstein and Milnor (23) address the question of the ortatence of a
measurable utility function, they do not explicitly consider the untqueness of
such a function. we now address this issue, following Varian's approach (44),
but filling in some gape in his treatment.

We begin with the following result, which, although basically well-known, is
apparently often confused with the "invariance property" (see p. 17):

Proposttton 1. Let A and v be order preserving functions on a preference
space (S,t). Then, there exists a unique function

such that

f: Range (v) -6 Range (A)

f 0 v.

Moreover, f is increasing. (Note: Here and in the remainder of this report,
u0. has its usual meaning of composition of functions.)

Proof. Given any r e Range (v), choose any a e v1(r), and put

f(r) tga)

Note that f is a well-defined function, since, if a,a' e v
-1

(r), then
v(a) = r = v(a'), from which it follows that a - a' and A(a) = A(a').

Furthermore, A = f 0 v, since, for any a e S, we have a e v-1(v(a)), so that
A(a) = f(v(a)). Clearly, f is unique, for if also A = g 0 v, then
0 = (f-g) 0 v, so that f and g agree on Range (v). Finally, f is increasing;
for, suppose r,r' e Range (v) and r > r'. Then, there e-cist a,a' e S such
that v(a) = r and v(a') = r'. Necessarily, a so that
f(r) = g(a) > µ(a') = f(r').

Q.B.D.

For measurable utility functions, the range assumes a particularly sImple
form:

Proposttton 2. Let A be a linear function on a mixture space (S,M). Then,
Range (M) is an interval.

Proof. Consider any r,r' e Range (A), A e [0,1]. We have r = A(a),
r' = g(a') for some a,a' e S. Then Aa + (1-A)a' e S and

g(Aa + (1-A )a') n AA(a) + (1-A)g(a')

= Ar + (1 -A )r'

e Range (g).

Q.S.D.

To characterize the function f of Proposition 1 when A and v are measurable
utility functions, we shall need the following:

" 1 0



Deftnttton. Let S be a subset of R. A function A: S R is called afftne on
S if there exist a,b E R such that, for all x E S,

A(x) = ax + b.

If S = R, such a function is called simply afftne.

Lemma 1. Let S be an interval in R. Then, a function A: S 4 R is affine on S
if and only if, for any x,y E S, p e (0,1],

A(px + (1-p)y) = pA(x) + (1-p)A(y).

Proof. If A is affine on S, a simple calculation shows that the above formula
holds. To prove the converse, assume that this formula holds and (without
loss of generality) that S contains more than one point. Consider any c,d E S
with c c d. For any w E (c,d], it is easy to show that

w = twc + (1 -tw)d,

where t
w = (w-d)/(c-d). Since t

w
E (0,1], it follows that

A(w) = twA(c) + (1 -tw)A(d)

= tw(A(c)-A(d)) + A(d)

= w(A(c)-A(d))/(c-d) + (cA(d)-dh(c))/(c-d),

so that the restricted function AI(c,d] is affine on (c,d]. However, it is

easily shown (for example, by differentiation) that the coefficients of

AI(c,d] are the same over all intervals (c,d] C S. It follows that A is

affine on S.

Q.E.D.

We can now prove the following:

Theorem 2. Suppose g and v are measurable utility functions on a preference
mixture space (S, ?,M). Then, there exists an increasing affine transformation
A such that

2. A 0 v.

(That is, "a measurable utility function on (S,t,M) is unique up to an
increasing affine transformation".)

Proof. By Proposition 1, there is an increasing function

f: Range (v) Range (g)

such that g = f o v. Consider any c,d e Range (v), p E (0,1]. We have
c = v(x) and d = v(y) for some x,y E S. Thus

f(pc + (1-p)d) = f(pv(x) + (1-p)v(y))
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= f(v(px + (1-p)y))

A(Px (1-P)Y)

" Mx) (1-P)A(Y)

= pf(v(x)) + (1-p)f(v(y))

= pf(c) + (1-plf(d).

It follows by Lemma 1 that f is affine on Range (v). Since f can clearly be
extended to an affine transformation, the theorem is proved.

Q.E.D.

COroLtary. Suppose g and v are measurable utility functions on (S,t,M).
Then, whenever x

1
,x
2
,y
1
,y
2

e S and y
1

y
2

,

04x2)-A(x1)]/Ogy2)-A(y1)] = [v(x2)-v(x1)]/[v(1,2)-v(1,1)].

(Intuitively, the ratio of utility differences depends only on (S,t,M) and the
lotteries chosen, not on the choice of measurable utility function.)

Proof. Obvious.

In addition to being unique up to an increasing affine transformation,
measurable utility functions are also tnuartant under increasing affine
transformations:

Theorem 3. If g is a measurable utility function on (S,t,M) and A is an
increasing affine transformation, then A 0 g is a measurable utility function
on (S,t,M).

Proof. Obvious.

Though apparently often confused with one another, the concepts of
"uniqueness" and "invariance" for utility functions are, in a certain precise
sense, exact opposites. To exhibit this relationship in the case of
measurable utility functions, let (S,t,M) be a preference mixture space, and
let U be the set of all measurable .lity functions on (S,t,M). Define a
set-valued function, T, on U as follows: for each g e U, T(g) is the set of
all transforms of g by increasing affine transformations; that is,

T(g) = (A ogIAis increasing and affine).

Then, invariance means:

while uniqueness means:

for each g e U, T(g) C U,

for each g e U, U c T(g).

&loner source of much confusion in the literature has been the question of
Whether "measurable utility" is an ordinal or cardinal measure (see 22, p. 52;
5, 17). A complete characterization of measurable utility as a "measurement
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device" is provided by Theorems 2 and 3, which imply that, it the language of
modern measurement theory, measurable utility defines an "interval scale" (see
36 for the requisite' background in naasurement theory).

3.3 Continuitl,

The question of when a measurable utility function is continuous presupposes
that the meaning of "continuous," as applied to a function whose domain is a
set of lotteries, is understood. A full consideration of this topic would
involve general topology. However, a less abstract approach using the notion
of a "metric space" will suffice for our purposes.

The concept of the continuity of a function f at a point xo may be expressed

informally and heuristically by the requirement that, whenever x approaches
xo, f(x) approaches f(x0). When the context admits of some appropriate notion

of distance, this characterization may be re-expressed as: whenever the
distance between x and x

0
approaches 0, f(x) approaches f(x

o
). We now

introduce formally the notion of a "distance function" or "metric."

Deftnttton. Let S be a set and d: S x S (0,m) a function satisfying:

(1) For all a,b e S, d(a,b) = 0 if and only if a = 13;

(2) For all a,b e S, d(a,b) = d(b,a) ("symmetry"); and

(3) For all a,b,c E S, d(a,c) 4 d(a,b) + d(b,c) (the "triangle
inequality").

Then, d is called a metric on S and (S,d) is called a metric space.

As an example, a metric d1 on R2 can bP defined by

d
1
kr

1,r 2),(01,82)1
((r 1-81)2 + (r

2
-s

2
)
2
]
1/2

for any (ri,r2),(81,02) e R
2

. This metric corresponds to the usual notion of

the distance between two points in the plane.

Now, there is perhaps no immediately obvious notion of thp "distance" between
two lotteries. However, it can be shown that there exists a metric, d, on the
set F of all lotteries, having the property that, for any lottery L and any

sequence (Ln)n.1 of lotteries, one has d(Ln,L) 0 as n m if and only if

(L
n

)
1

converges weeny to L (li, p. 285). (Recall that weak convergence of

(Ln):0 to L means that, for each point t of continuity of L, lim Ln(t)
mom

1,(t). Weak convergence defines a natural topology on F.) This correspondence
between weak convergence and a notion of distance motivates the following:
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Deftnttton. Suppose S is a set of lotteries, AL S P is a function, and

L
0

e S. Then, A is conttnuous at L
0

if, whenever (L
n n=
)4*

1
is any sequence of

elements of S that converges weakly to L0, one has A(Ln) 4 A(L0) as n 4 m. If

A is continuous at L for each L e S, g is called conttnuous. Moreover, a weak
preference ordering k on S is called conttnuous (and we may speak of
"continuous preferences") if there exists a continuous order-preserving
function on S representing k.

Deftnttton. If S is a lottery space and (S,?) is a preference space, we call
(S,?) a lottery preference apace.

Theorem 4 (18). Let (S,k) be a lottery preference space. Then, there exists
a continuous order-preserving function on (S,?) if and only if

(1) For any LoeS, the sets (LesILky and (LeslLotr.) are

closed in S. (For the set (LeSILky, for example, this means

that for any sequence of lotteries Ln satisfying Ln L Lo for all n

and converging weakly to a lottery L, one has L k Lo.)

Moreover, there exists a continuous measurable utility function on (S, L) if
and only if, in addition to condition (1), the following condition holds:

(2) For any L1,12,L3 e S and any t e [0,1], if Ll - L2, then

tL
1

+ (1 -t)L
3

- tL
2

+ (1 -t)L
3

.

For the proof, see Grandmont (18). (Note that Grandmont uses the more general
definition of a lottery as a probability measure.)

At various places in this report, we will want to be able to conclude that a
preference ordering reprenented by a discontinuous measurable utility function
is itself discontinuous. What will justify this assertion? After all, in
general, the mere existence of a discontinuous order-preserving function
certainly does not imply that the corresponding preference ordering is
discontinuous. (Indeed, given any conttnuous preference ordering, one can
always construct a dtsconttnuous order preserving function for it by composing
one of its continuous order-preserving functions with a discontinuous
increasing function from R into R.) However, measurable utility functions
enjoy the following distinctive property: a preference ordertng havtng a
dtsconttnuous measurable uttltty functton must be etsconttnuous. In fact, a
preference ordertng represented by a measurable uttLtty functton to conttnuous
tf and only tf each of its measurable uttttty functtona to conttnuous.

To prove these claims, r,call that, by Theorem 2, all measurable utility

functions on a lottery preference space (S,k) are transforms of one another by
increasing affine transformations. Thus, whenever one is continuous, aid. are
continuous. Suppose there exists a discontinuous measurable utility function
on (S,k). Then, all measurable utility functions on (S,k) must be
discontinuous, and it follows from the second half of Theorem 4 that either
condition (1) or condition (2) of that theorem must fail. But condition (2)
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holds, since (S,f) has a measurable utility function. Thus, condition (1)
must fail, and it follows from the first half of Theorem 4 that (S,k) has no
continuous order-preserving function; that is, k is discontinuous.

3.4 Decomposition

We will now prove a structural decomposition theorem for measurable utility
functions defined on a xottery space. We will see how such a function may be
broken down into a "discrete part," an "absolutely continuous part," and a
"singular continuous part." This result will further our understanding in
three respects. First, it will reveal explicitly the separateness of an
economic agent's behavior toward discrete lotteries (and thus toward
degenerate lotteries, which represent certainties) and that agent's behavior
toward continuous lotteries ("continuous uncertaintes") when this behavior is
represented by a measurable utility function. It will thereby provide - -for
some situations--a theoretical rationale for the related conjectures:
(1) that individuals use a different frame of reference (1, 43) when choosing
under certainty than when choosing under certain forms of uncertainty and (2)
that individuals' risk preferences are discontinuous. Second, this result
will show how a measurable utility function relates to known classes of
lotteries that may lend themselves to econometric and statistical
applications. Third, it will suggest a new, canonical method of constructing
measurable utility functions (a method that we shall user implitly, in
sections 4-6 of this study). This new method will reveal the existence of an
entirely new class of discontinuous preference orderings under uncertainty;
previously, the property of discontinuity had apparently been associated only
with lexicographic orderings (16, 21, 28, 42), and then rather tenuously.

Although measurable utility functions remain our basic concern, we will state
and prove the decomposition theorem for Ltnear functions, as the decomposition
depends only on the algebraic structure of the function. However, any
increase in generality is only apparent, because a linear function µ on a
lottery space S is automatically a measurable utility function on (S,k4),

where f is a complete transitive relation on S defined by

L
1

k L
2

if and only if g(I,1) u(L2) (1,1,1,2 E S).

The decomposition of linear functions on lottery spaces will be seen to be
rooted in the decomposition of the lotteries themselves. Thus, we begin with
some remarks about lotteries and their decompositions. Details and further
background may be found in (8, 31).

Any discrete lottery is singular (8, p. 12). We shall be interested, however,
only in those singular lotteries that are continuous, of which a classic
example is the Cantor distribution (11, p. 141). The sets of all singular
continuous, absolutely continuous, and discrete lotteries, respectively, are
convex and pairwise disjoint.

Now, it is well-known that, for any lottery L, there exist pl,p2,p3 E [0,1]

and lotteries L
1
, L

2
, L

3
that are, respectively, discrete, absolutely

continuous, and singular continuous, such that
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and

P
1

P2 +P3 "" 1

L = p1L1 + p2L2 + p3L3.

The numbers pl, p2, p3 are unique. Although L1, L2, L3 are not generally

unique (for example, if L is discrete, then p2 = pi = 0, and L2 and L3 may be

arbitrary absolutely continuous and singular continuous lotteries,
respectively), the decomposition is unique in the sense that the product
functions piLl, p2L2, and p3L3 are unique. These functions may be viewed

naturally as the (uniquely determined) discrete, absolutely continuous, and
singular continuous parts of L.

However, unless pi = 1, piLi will not be a c.d.f.; thus, a linear function A

that may be defined at L will not generally be defined at piLi. To achieve a

convenient decomposition of A, we will need to extend tho domain of A to
contain all the above parts piLi of each lottery L at which A is defined. To

facilitate this process of extension, we assume that, whenever A is defined at
L, it is also defined at each L. for which p. # O. (Note that p. # 0 if and

only if Li is unique in the obvious sense. In fact, if piLi = qpi and pi /i

0, then, since

p
i
(lim L

i
(t)) = q (lim Mi(t)),

t- tow

we obtain pi = qi # 0 and, therefore, Li = Mi. The converse is obvious.)

We will now make these ideas more precise.

Deftnitton. A function K: R -0 (0,1] is called a subdtstrtbutton function
(s.d.f.) if:

(1) it is nondecreasing;

(2) lim K(t) = Of and

(3) it is right-continuous at each t e R.

One can easily verify that K is an s.d.f. if and only if there exist a lottery
F and a p e [0,1] such th..t K = pF. The number p is unique (in fact, p =
lim K(t)). Moreover, F is unique unless K is the zero function.
t400

Deftnitton. An s.d.f. K is called discrete (respectively, absolutely
continuous, stnguLar continuous) if there is a p e (0,1] and a discrete
(respectively, absolutely continuous, singular continuous) lottery F such that
K = pP.
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The sets of alt nonzero s.d.f.'s that are, respectively: (1) discrete, (2)
absolutely continuous, (3) singular continuous, are pairwise disjoint (where
"nonzero" seams "not the zero function"). Note that it follows from our
definitions that the zero function is a discrete, absolutely continuous, and
singular continuous s.d.f. Allowing this "degenerate" case will simplify our
work.

NS can now reformulate our description of the decomposition of a lottery as
follows:

Proposition 3. If K is any s.d.f., there exist unique s.d.f.'s K
1
, K

2
,

such that K1 is discrete, K2 is absolutely continuous, K3 is singular

continuous, and

K = K1 + K2 + K3 .

Notation. If S is any set of lotteries, we define S* as the convex hull

(witbtn the vector space over R of all functions from R into R) of S u (0)
(where "0" denotes the zero function on R).

Observe that a set S of lotteries is empty if and only if

S* = (0)

and is nonempty if and only if

S = (pL 1 p E [0,1] and L e S).

The sets of all (1) s.d.f.'s, (2) discrete s.d.f.'s, (3) absolutely continuous
s.d.f.'s, and (4) singular continuous s.d.f.'s are oA. the latter form.

Notation. For simplicity, we denote by S1, S2, S3 the sets of all lotteries

that are respectively: (1) discrete (so that Si = Ha), (2) absolutely

continuous, (3) singular continuous. Accordingly, S1 , S2 , S3 are the sets
* * *

of all s.d.f.'s or th respective types.

Deftnttton. Let S' be a convex set of s.d.f.'s. A function ;Lit Si R is
called Ltnear if, for any p E [0,1], K1,K2 e S', we have

;11(pit + (1-p)K
2
) = pui(K,) + (1-p)g'(K

2
).

Thoorom 5. Let ;I be a linear function on a lottery space S. Then, g has a
unique linear extension g* on S* satisfyirg

g*(0) = 0;

that is, there endsts a unique linear function g* on S* such that
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A*(0) 0

and

AdS A.

Proof. If S is empty, then A is necessarily the empty function. In this
case, S* = (0), and the zero function on S* is the unique linear extension of

g taking zero to zero. Suppose, then, that S is not empty. Relying on the
characterization of S* described earlier, define

A*(PL) = INg )

whenever p e (0,1], L e S. Note that A* is well-defined on S*, since either

pL = 0, in which case p = 0 and A*(pL) = 0, or pL 0 0, in which came p and L

are uniquely determined by pL. Furthermore, A* is linear. To establish this

point, considcr any K1,K2 e S* and a e (0,1], and put

Z = aK
1

+ (1-a)K
2

.

Of course, K
1

p
1
L
1
and K

2
p
2
L
2

for some p
1
,p

2
e (0,1], L

1
,L

2
e S. Now, if

Z au 0, then apl = (1-0p2 is 0, so that

g*(Z) ... 0

ap
1
g(L

1
) + (1-a)p

2
A(L

2
)

am*(Ki) + (1-a)A*(K2).

Suppose, then, that Z 0 0, and put

z
o

apl + (1-0132.
c

Since Z e (0,1], we have

A*(Z) = A*K((api/Z00)1,1 + ((1-a)p2/20)L2]j

= Zme((api/Zw)Li + ((l-a)p2/Zw)L2]

= Zalf(api/Zw)A(Li) + ((1-a)p2/20)A(L2))

0[A*(K1) + (1 -(0A,(K2).
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Finally, we show that g* is unique. Suppose that A* is any linear function on

S* such that A*(0) = 0 and A*IS = A. Then, for any p e (0,1], L e S, we have

1.1.*(pL) = A*[(1-p)0 + pL]

= (1-p)A*(0) + pg*(L)

= 0 + pA(L)

A*(PL).

Thus,

Q.E.D.

Notation. Given any linear function g on a lottery space S, we will continue
to use the "star symbol" "g*" to denote the unique linear extension to S.

Theorem 5 amounts to the assertion that the mapping that takes v on S* to its

restriction vIS is a one-to-one correspondence from the set of all linear

functions v on S* satisfying v(0) = 0, onto the set of all linear functions on

S. In fact,the extstence of an extension for etch linear A on S amounts to
the fact that the correspondence is onto, while the uniqueness amounts to the
fact that the correspondence is one-to-one. This correspondence allows us,
intuitively speaking, to view A* as merely another form of A, and, where

convenient, to study u* instead of A. In particular, A* has a more naturally

describeid decomposition into discrete, absolutely continuous, and singular
continuous parts than does A.

Deftnttton. Let S be a set of s.d.f.'s with the property that, whenever. K e S
andK=K1+K2+K3(whereK.1 eS.,i=1,2,3),thenK.eS (i = 1,2,3).

1

Then, we call S decomposable.

Thus. a decomposable set of s.d.f.'s is simply one that, whenever it contains
an s.d.f., also contains its discrete, absolutely continuous, and singular
continuous additive parts. For example, if S is the set of all lotteries, or
the set of all lotteries with finite mean, then S* is decomposable,

Definition. Given any decomposable set S of s.d.f.'s, 'e define the
projection operators

Tr.: S-6 S r) SI . (i = 1,2,3)

as follows: for any K e S, write K = K1 + X2 + K3, where K.
1

e S.
1
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(i = 1,2,3). Then

00 as K
1

1,2,3).

The v.1 's are analogous to the canonical projections associated with a

direct-sum decomposition of a vector space (25, p. 161). In fact, they
satisfy the following properties:

(1) vi is linear, in the sense that

vi(pJ + (1-p)K1 = pvi(J) + (1-p)vi(K) (p E (0,1); J,K E S);

(2) t.1 (S) = S n S.

(3) v1. c)

1
= v

i 1
(v. is "idempotent");

(4) v.
1

0 v
j
= 0 if i # j (v. and IT are "orthogonal ")) and

(5) vl + v2 + v3 = IS (the identity operator on S).

In essence, the property of being "decomposable" will ensure, in the
forthcoming decomposition theorem, that the "additive parts" of A* are

well-defined. The property ensuring that the parts of A itself (in a sense
that will later become clear) are well-defined is expressed by:

Dwfinitton. Let S be a set of s.d.f.'s with the property that, whenever K E S
and K = K1 + K2 + K3 (where K.

1
E S. , i = 1,2.3), then

KI/lim Kilt) E S

t-tm

for any i for, which Ki # 0. Then, S is called hereditary.

In particular, whenever L = p1L1 + p2L2 + p3L3 is an element of a hereditary

set S of lotteries (Where pi A 0, Li e Si, i = 1,2,3), then any Li whose pi is

positive must itself be in S. Examples of hereditary sets are the set of all
lotteries and the set of all lotteries with finite mean.

The notions of "hereditary" and "decomposable" are related in the following
way:

Proposttton 4. A set S of lotteries is hereditary if and only if S* is

decomposable.

Proof. If S is empty, S* = (0), and the equivalence holds trivially. Assume

S 0 0, and suppose first that S is hereditary. If K E S* and K 0 0, then
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K = pL for some p > 0, L e S, so that also K = pq1L1 + pq2L2 + pq3L3 for some

qi a [0,1], Li a Si such that either Li e S or qi = 0 (i = 1,2,3). Thus,

pgiLi e S* n Si for each i. It follows that S* is decomposable. To prove

the other half of the equivalence, suppose S* is decomposable, and consider

any L e S. We have L = p1L1 + p2L2 + p3L3 for some pi e [0,1], Li e Si.

Since, necessarily, L S* and each piLi a S we have piLi e S*, so that
4*

piLi = giMi for some qi a (0,1], Mi e S. However, Li and Mi are lotteries;

thus, if pi # 0, then Li = Mi a S. It follows that S is hereditary.

Q.E.D.

The foregoing proposition allows us to define projection operators on S*

whenever S is a hereditary set of lotteries.

With these preparations, we can now give the desired decomposition theorem:

Thoorom 6. Let g be a measurable utility function (in fact, any linear
function) on a hereditary lottery space S. Then, g* has a unique

decomposition

g* + t, + f3

into linear functions ti on S* such that ti(0) = 0 and "ti(K) depends only on

the ith part of K" (that is, ti ti 0 vi (i = 1,2,3), where each vi is the

projection operator from S* onto S* n Si).

Proof. To prove the existence of the decomposition, note that,- by the
properties of the projection operators, we have

g*
g* o IS

= g* 0 (v1 + v2 + v3)

(g* ° 171) (g* 0 77.2) (g* 0 77.3).

Clearly, each g* 0 vi is linear and takes the zero function to 0. Moreover,

for any K g* 0 vi depends only on the ith part, vi(K), of K, since

Eg* ° TriEK) Eg* 0 0 ITO(K)

Thus, existence is proved.

Eg* 0 villyi(K)).
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TO establish the uniqueness of the decomposition, let ti (i = 1,2,3) be any

linear functions on S* such that Ci(0) = 0, ci Li 0 ffi, and

A* tl t2 C3.

Then, we need merely observe that, by the properties of the projection
operators,

m* 0 = (C1 0 17i t2 0
12 £3

0
173)

0 ffi

m 0 4' 0 ti 0 gi 0

for each i.

Q.E.D.

The linear functions 4i (i = 1,2,3) appearing in Theorem 6 may be considered,

respectively, the discrete, absolutely continuous, and singular continuous
"parts" of g*. Thus, the theorem shows how the extension to S* of a

measurable utility function on S is "built up" from its discrete, absolutely
continuous, and singular continuous parts. (Actually, Theorem 6 can easily be
generalized to encompass situations in which lotteries are uniquely decomposed
with respect to classes other than Si, andand S3.) Let us examine in more

detail how this decomposition of g* relates to g itself. TO do so, we need:

Proposttton S. For any sets S and T of lotteries,

(S n T)* = S* n T*.

Proof. Since (S n T) u (0) c S u (0), we have (S n T)* c N*. Similarly,

(S n T)* c I. Thus, (S n T)* c S* n T*. To establish the reverse inclusion,

note first that it reduces to (0) D (0) if either S or I is empty. Suppose
S, T are nonempty, and consider any Z e S* n I. Since 0 e (S n T)*, we may

assume Z # O. Now, we have Z = pL = 004 for some p,q e [0,1], L e S, N e T.
Necessarily, p = lim pL(t) = lim 411(t) = q, so t) it L = M, S n T # 0, and

tfto t4m
Z e (S n T)*. Thus, (S n T)* D S* n T*.

Q. E. D.

Proposttton 6. Let g be a linear function on a lottery space containing a
lottery space T. Then

[tLIT] A*IT*.
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Proof. Both functions [ALIT)* and g*IT* have T* as their domain and, if T 0 0,

both map an arbitrary'element pM (p 6 (0,1], M E T) of T* to pg(M).' If T = 0,

then = (0), and both functions are the zero function on I.

Q.E.D.

Now, as shown in the proof, the decomposition appearing in Theorem 6 takes the
form

MI 0 Wi) + (A* 0 112) + (A* 0 113).

vvwever, it follows from the definition of vi and Propositions 5 and 6 that,

for each i,

g* 0 yi [g
*
IS

*
n Si ] o ni

= [g*1(S n Si)*, o vi

n Si 0

The sets S n Si (i = 1,2,3) are pairwise disjoint. Moreover, since the convex

hull of the union of the sets S n Si is S, the values of g on these sets--or,

to put it differently, the functions gIS n Si--determine g on all of S. Thus,

the additive decomposition of g* corresponds, in a sense, to a decomposition

of g into "building blocks" gIS n Si (i = 1,2,3). (Note that, if S n Si = 0--

as would occur, for example, if i = 1 and all lotteries in S were continuous

then igIS n Si is merely the empty function.) Of course, the functions

iciSnS.are measurable utility functions whenever g is a measurable utility

function; each merely represents the "restriction to S n Si" of the preference

ordering represented by g.

We earlier alluded to the conjectures that individuals may have:
(1) different frames of reference toward certainty and certain forms of
uncertainty and (2) discontinuous risk preferences. To explore these points,
we need:

DeftrIttton (18). A set S of lotteries is called or-convom if, whenever (Li) =1

is a sequence of elements of S and (pi)7 is a sequence of nonnegative

co

numbers for which E pi = 1, one has
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co

rpi L
i
e S.

1=1

If S is a-convex, a function g: S -6 R is called a-Ltnear. if, for any sequences

(Li 1).=1 (12i ) i=1
as just described, one has

r m co

Al E piLil E pig(Li) .

i=1 i=1

Let g and S be as in Theorem 6, and assume P C S. Now, the "certain"
lotteries are the degenerate lotteries, and these are discrete. Thus, all
behavior of g over "certainty" is reflected in its values at discrete
lotteries. Furthermore, if either all discrete lotteries in S are simple or g
is a-linear, then the behavior of g over "certainty" determines its values at
discrete lotteries. In either case, Theorem 6 shows that g* exhibits a

natural split into a discrete part, /1, that accounts for the behavior imposed

(algebraically) on g by its values at lotteries representing certainties, and
a continuous part, /2 + 13, that accounts for the behavior of g at lotteries

complementary to the discrete ones--namely, the continuous lotteries. In this
sense, ;Lamy be viewed as being determined by two separate measurable utility
functions, with one incorporating--and indeed being determined by the
behavior of g over certainty.

This intrinsic split would appear to provide a type of theoretical
plausibility for the conjecture that individuals may have a different frame of
reference toward certainty than they have toward uncertainty in cases in which
the nondegenerate discrete lotteries play only a formal role and the only
pertinent uncertainty arises from continuous lotteries (as might occur, for
example, if through a central-limit-theorem-type process, many small,
independent effects generated normal distributions that in turn generated the
continuous lotteries in the individual's lottery space); for the split in g*

that would be implied by such distinct frames of reference is already implicit
in g*. Similarly, this intrinsic split provides a rationale for the

conjecture that some individuals' risk preferences may be "discontinuous at
certainty" (that is, may admit of a measurable utility function that is
discontinuous at degenerate lotteries). This conjecture is supported by the
observation that the computational ability of the human brain is limited;
thus, there is no apparent emptrtcat reason why an individual with preferences
among certainties and preferences among continuous lotteries should be capable
of so conforming these preferences that, when they are extended to mixtures,
the limit properties necessary for continuity should hold. (Discontinuous
responses to risk are discussed from another viewpoint in Kahneman and Tversky
(26).)

Our examination of the decomposition of a measurable utility function suggests
the following general method of constructing measurable utility functions from
"pieces." Given a measurable utility function mi on a preference lottery

space (Ti,ti.), where Ti c Si (i = 1,2,3), let I be the convex hull of
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T1 u T2 u T3, and define a function g: I R in the following manner: for any

L e T, by Proposition 3, there are unique s.d.f.'s Ki E Si such that L =

+ K2 + K3. Since L is a convex combination of elements of Ti, T2, and T3,

it follows that each K. e Ti . By appeal to Theorem 5, define
1
*

A(L) .1° 1A1 (K1) A (lc) A
3

(K
3
).2* e

Clearly, g is linear on T, since each gi is linear on Ti . Let t be the

preference ordering tA induced on T by g (see p. 20). Then, g is a measurable

utility function for the preference space (T,t), and glTi = gi. Our

definitions of various "two-rule" measurable utility functions in sections 4
through 6 are based onthis construction. This construction also establishes
that distinct frames of reference toward certainty and "continuous"
uncertainty, as previously discussed and qualified, can always be represented
by some Appropriate measurable utility function. In contrast, the existence
of such distinct frames of reference would be tncompattbZe with the
traditional expected utility theory based on integrals, which implicitly
requires that preferences be continuous.

By taking Ti to be a set of simple lotteries and setting 13 = a in the above

construction, me find that the elements of T are convex combinations of simple
lotteries and lotteries having densities. Examples of such combinations arise
in applied work when distributions having densities are truncated, as in the
case of agricultural commodity price distributions that are truncated through
the introduction of a support price, or in the case of income distributions
that are truncated through the introduction of an income floor. In
traditional expected utility theory, such distributions are evaluated as a
whole. In contrast, our approach allows behavioral responses to the discrete
and continuous constituents of such distributions to be treated independently.
In fact, when, as in the examples cited, the only discrete distributions in
the individual's formal lottery space that have any practtcaL role are
degenerate, our approach provides a method of modeling empirical behavior that
is consistent with the axioms of expected utility theory, yet does not require
that the individual's choices among certainties determine his/her choices
among pertinent uncertainties (continuous probability distributions).

0 0
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4 MEASURABLE untxm ON THE REAL LINE

We will next swine the relationship between measurable utility functions
defined on lottery spaces and functions defined on the real line that may
serve as convenient representations of them. We will thereby clarify the use
of so-called "utility functions" of income or wealth to represent behavior
under risk.

We first describe how measurable utility functions sive rise to "utility
functions on R." We also State conditions under which a measurable utility
function can be represented as an "expected utility" functional in terms of a

"von Neumann-Morgenstern utility function" defined on R. We then adopt a
somewhat different point of view. We take a function on R as given and
investigate when there is a unique measurable utility function that gives rise
to it. We obtain new representation theorems that provide a basis for
interpreting discontinuous real functions as utility functions. We then
consider implications of these results for the use of discontinuous utility
functions in development theory (30).

4.1 Induced Utility Functions

Notation. We denote by -n- the natural one-to-one correspondence from R onto
P defined by

n(r) Fr (r e R).

Deftnttton. Let p. be an order-preserving function defined on a preference
lottery space (S,t) for which P c S. We call A 0 n the uttLtty function
tnducod on R by A and say A 0 n is traduced by (S,t). Moreover, if A is linear
(hence a measurable utility function on (S,t)), we say A 0 n is masurabLy
tnducod by (S,t). (Thus, a function f: R R is measurably induced by (S,t)
if and only if :here exisLa a measurable utility function A on (S,t) such that
f - µ 0

Note that the meaning of "linearity" for A as applied to degenerate lotteries
is quite different from that for A 0 n as applied to real nuMbers. For any
p e [0,1], r,s e R, linearity of A is expressed as

P(P1Pr + (1-P)Fes) PA(Fr) + (1-P)µ(FB).

In contrast, linearity of A 0 n takes the form

cp, o nut) - at + b (t e R)

for some a,b E R. Failure to distinguish betwoen a real number and its
corresponding degenerate lottery could lead one mistakenly to assert that
every measurable utility function A on S, by definition, satisfied

A(pr + (1-p)s) Pµ(r) + (1-p)A(s) (p e (0,1], r,s E R),

from which it would follow that

ti(P) "5 14(P1 + (1..0.0

aa Pµ(1) + 1-p itg 0 )
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a Kµ(1) - A(0)] + A(0) (p e (0,1]),

so that A would appear to be linear on (at least a subinterval of) R. This
apparent finding could tempt one to the unwarranted conclusion that A is "risk
neutral" (woe p. 50).

48221EXIAKUHULtilitr_.

As should by now be clear, a theory of measurable utility does not logically
require the assumption that lotteries have expected values. However, the
situation in which "the utility of a lottery equals its expected utility" (a
notion that requires explication) is at the heart of traditional expected
utility theory. Thus, we state a result (translated from Grandmont (18) into
our language) giving conditions under which the situation cited obtains:

Theorem 7. Suppose (S,t) is a s- convex preference lottery space such that
c S. Then, the following conditions, taken together, are necessary and

sufficient for the existence of a continuous bounded function u: R R such
that the function A: S R defined by

co

tgio= fu(t)dL(t) (L e S)

--a)

is a measurable utility function for (S, ?):

(1) For each lioeS, the sets (LeSILty and {LesIittL) are

closed in S (see Theorem 4 on p. 19).

(2) For all L1,L2,L3 e S and all p e (0,1], if L1 - L2, then

pLi + (1-p )L3 pL2 + (1-p)L3.

For the proof, see Grandmont (18).

Deftnttton.

function u: R
Let A be a measurable

R for which

(L)

utility function on a lottery space S.

f u(t)dL(t) (L e S)

A

-co

is called a von Neumann-Morgenstern utiLity function (for A).

If u is a von Neumann-Morgenstern utility function for a measurable utility
function A defimd on S, then the integral formula for A may also be expressed
as

A(L) E(u 0 X)
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whenever L E S and X is a random variable having L as its c.d.f. Moreover, if
V c S, then, for each r E

so that

ti(Fr) = u(t)dpr(t

u(r),

A 0 71 u;

that ts, u ts the uttLtty function induced by A on R, and u(r) is "the utility
of Fr" (as assigned by A). Some treatments in the literature of expected

utility theory obfuscate the distinction between the 'nonrandom" function u on

R and the random variable u 0 X, defined on a probability space.

We also point out that, whenever a measurable utility function A is defined on
(a lottery space containing) V, then, for any simple lottery

n

L =E piFr ,
i=1 i

A(L) too can be expressed as an "expected utility." In fact, if u is the

utility function induced by A on R and X is the obvious random variable taking
the valtm, r. at i, then

n

p.(L) E piu(ri)
i=1

= E(u 0 X).

A similar remark holds if A is a-linear and L is discrete
cases,ifuisdiscontinuousatsomer.for which p

i
0,

be expressed as a Stieltjes integral of u with respect to
integral will not be defined (see pp. 47-48 for a further
point).

. However, in these
then E(u 0 X) cannot

L, because that
discussion of this

4.3 Measurable Utility Models for Real Functions

A common feature of economic studies involving risk is the adoption of a
utility function on R (that is, a "utility of wealth" or "utility of income"
function) to represent an economic agents risk preferences. From the
standpoint of measurable utility theory, this use of a function from R into R
to represent a risk preference ordering raises several basic and important
questions regarding the relationship between such functions and lottery
preference spaces that may measurably induce them. For example, what

functions from R into R are measurably induced by some lottery preference
space? Can such a function be induced by more than one preference ordering
defined on the same lottery space? An affirmative aaswer to the latter
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question would mean that some functions from R into R could serve
simultaneously as utility functions induced by tncompattbt preference
orderings on the same lottery space.

MO begin by showing that any function f: R R Oven, for example, if
discontinuous everywhere) is 'measurably induced by some lottery preference
space. Specifically, we prove

Theorem 8. The relation "A induces f" is a one-to-one correspondence from the

set of all linear functions on H onto the set of all functions from R into R.

(To understand the theorem, recall that H is the swat of all simple lotteries
and that a linear function A on H is automatically a measurable utility

function on the lottery preference space (H,k), where the preference relation

t on H is defined by

Li kA L2 if and only if A(181) A(L2).)

Proof. Ws first prove that the correspondence is one-to-one. Suppose linear
functions A and is on H induce the same utility function f: R R. Consider
any simply lottery

n n
L = E piFr (pi 0 0, E pi = 1).

i=1

From the linearity property for A and v, it follows by induction that

A(L) = E P A(Fr. )
i=1

n

= E pif(ri)
i=1

n
E piv(F )

i=1
Li

v(L),

so that A = v. Thus, the relation "A induces f" is one-to-one.

We next prove that this relation is onto. Let f: R R be an arbitrary
function. We will construct a linear function f* on H thc (viewed as a
measurable utility function on (H,kf,)) induces f. In fact, for any L e H

m
(where, say, L = E piPs ), put

i=1

f*(L) E pif(si).
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Note that, for f*(L) to be well- defined, f*(L) must depend only on L and not
on the particular representation of L chosen. But this condition is
satisfied, for we have:

Lemma 2. Suppose m and n are positive integers, ei,...,em and ti,...,tm (not

necessarily distinct) numbers, and pi,...,pM and qi,...,qm (not necessarily

distinct) nonnegative numbers such that

.E PiPs E
i=1 i J.1

t
3

Then, for any function f: R 4 R,

.E pif(si) E q4f(ti).
j=1

Proof of Lemma. Without loss of generality, we may assume that each pi and qj

is positive. Let S be the set of distinct sis, that is, let

S (s e R I for some i e = si).

For each s e S, define

I
s

(i e (1,...,m) I s = s).

Then, the sets Is, s e S, form a partition of (1,...,m), and we have

as

Pi% E E Pirs
i=1 i seS ler

E E Piro.
seS ier

Similarly, defining

T= (t e R I for some j e (1,...,n), t=

and (for each t e T)

we obtain

J
t
= (j e (1,...,n) I t

j
t },

3=1 3
girt. E

t
girt.

teT
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From our hypothesis, it follows that

ESU& PT°

However, since the pi's and cil's are all positive, S and T are precisely the

sets of points of discontinuity of the left and right sides, respectively.
Thus, S = T, and we have

Z.Ut Pi giro

Now, it is easily verified that, in the vector space over R of all functions
from R into R, the functions Fs, s e S, form an independent set. It follows

that, for each s e S,

Pi E
ieI

s
jeJ

s

Since

E pif(60 E .E piftso
i=1 seS lei

E E pima)
seStieI J

and (similarly)

n

E q4f(t4) = EfE g41 f(t),
j'*1 j ] teTtjeJt Jj

the lemma is proved.

Thus, f*: H R is a well-defined function. It is clearly linear. Thus, it
is a measurable utility function on (0,tf*). Finally, observe that, sine,

for any t E R, f*(rt) - f(t), f is the utility function 01 R induced by f*.

Q.E.D.

Note that this result assures us that oven arbitrary unbounded functions may

serve as measurably induced utility functions on R. Thus, the use of H as a
Lottery space ctrcumvents the "St. Petersburg Paradox" (that is, the argument
that the use of unbounded utility functions necessarily implies the existence
of "infinite utilities"). Observations in this vein have already appeared in
the literature (see 2, 41).

Our next theorem shows the connection between boundedness o. real functions
and a-linearity of measurably utility functions. First, recall that If is the

set of all discrete lotteries. We shall need
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Proposition 7. if is a-convex.

Proof. Suppose (Li)7.1 is a sequence of elements of aa and (pi)71 is a

as

sequence of nonnegative numbers such that E pi = 1. For each i, there exist
i=1

a sequence (t. Act)
j=1

of numbers and a sequence (q
i,

.)) of nonnegative
3 j=1

numbers such that

and

co

E qi = 1
j=1

ao

Li = qi 4Ft
jE=1 i,j

Now, it is a well-known fact from set theory that there exists a one-to-one
correspondence, , from N onto N x W. Thus,

co co m
E piLi = E

j-1

Piqi
'

jPt
i=1 i=1 3-1

neN
E P410)

1
St<n)Ft

0(n)
'

where .(n)1 is the first coordinate of 0(n). Since each p
0(n)

q
0(n)

is

1
nonnegative and

co co

E P
1E

E
. .

-ne61 1
cicl4 n)

=1
Pi

13

ro

E pi.'

i=1

= 1,

ao

we conclude that E p
i
L
i

is discrete.
1=1

Q.E.D.

Proposition 7 permits us to consider a-linear functions on Ha. We can now

prove
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Theorem 9. The relation "A induces f" is a one-to-one correspondence from the
set of all a- li.-'ear functions on H

a
onto the set of all bounded functions from

R into R.

(he in Theorem 8, a a-linear function A on H
a

is viewed as a measurable

utility function on (Ha,k).)

Proof. First, note that the correspondence is Into the set of all bounded

functions from R into R. Indeed, suppose a a-linear function A on Ha induced

a utility function f: R 4 R that was unbounded--say, unbounded above. Then,

for each i E M, there would exist an ri E R such that f(ri) a 21., By the

c- convexity of Ha and the a-linearity of A, we would have

and

E (1/2
i
)Fr. e He

i=1

A[ E (1/21)F r] = E (1/2
i
)A(Fr.)

i=1 i i=1

But this is impossible, since

ao

E (1/2 )f(r ).
i=1

n

E (1/2
i
)f(ri) > n

i=1

for each n E M. Thus, f must be bounded above. Similarly, f must be bounded
below. We conclude that the correspondence is into (compare 18, Lemma 2).

Next, suppose tha a-linear functions A and v on Ha induce the same bounded

utility function f: R 4 R. Let

ao

L = E piF.
i=1

be any discrete lotteri. Then

co

A(L) E PiA(F8 )
i=1

co

E pif(80
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co

E piv(p. )

= v(L).

Thus, g = v. This proves that the correspondence i3 one-to-one.

Finally, to prove that the correspondence is onto, suppose f: R R is an

arbitrary bounded function. Define a function f*: Ha = R as follows: for any

L F Ha (where, say,

put

ao

r P F ),

1=1
i s

i

f*(L) = E pif(si).
i1

To prove that f*(7,) is well-defined, we need

Lemma 3. Suppose (o.1)7.
1

(tjj}cc'=1 are sequences of (not necessarily distinct)

numbers and (a.)
=1

are sequences of (not necessarily distinct)

nonnegative numbers such that

and

00

pi E qj .
i.1 J-1

00 ao

p E qjr,
s.

i=1 j=1 'j

Then, for any bounded function f: R -6 R,

co

.
E P gs
1=1

E g4f(t4).

Proof of Lemma. Without loss of generality, we may assume that each pi and qj

is positive. We proceed as in the proof of Lemma 2, defining

S= (s e R I for some i e W, = ei),

T = (t e R I for some j e W, t ti},
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and (tor all a a S and t e T)

121=(iell1 pi =s ) ,

= (j e M I ti = t).

As before, we obtain

E Piro E girt
as ier

s
teT jeJ

t

(here using the absolute convergence of the series to justify the
rearrangement of terms).

Next, we prove that S = T by showing that S and T are precisely the sets of
points of discontinuity of the left and right sides, respectively. It will be
enough to prove this for S. (Note that S need not here be finite; indeed, it

could even be dense in R.)

Toward this end, for each s e S, put

Ps .E Pi.
lel

8

Note that each P
s

is positive. Put

F = E Pars,
seS

and consider any r e R. For any r1,r2 e R satisfying r1 c r < r2, we have

F(r2) - F(r1) = E plicps(r2) - Fs(ri)].
seS

Since this series is uniformly convergent on R, we obtain

F(r) - F(r-) = E Ps[Fs(r+) - Fs(r-)]
seS

(where the "+" and "-" denote right- and left-hand limits). However, for each
s e S, F

s
(r+) - F

s
(z-) is either 1 or 0, according to whether r is, or is not,

equal to s. Thus, F(r+) - F(r-) is positive if and only if r e S, which
proves that S is precisely the set of points of disco,.tinuity of F. Arguing
similarly for T, we conclude that S = T.

Thus, putting

for each t e T, we have

Qt E
jtqi

E (Ps - Qs )Fs = 0.
seS
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Note that this series is uniformly convergent on R, and consider any so e S.

Reasoning as before, we obtain

which reduces to

E (Y. (2.)v.(00+) Fs 0 '
(8 -)1 0,

seS

(P
8

- Q
8

)(F
8

(s
0

- F
80

(8
0
-)] = 0.

0 0 0

It follows that P = Q . But
80 80

and

ao

E pif(si) = E Psf(s)
i=1 seS

ao

q4f(t.) r Q
t
f(t)

j =17 teT

(see the proof of Lemma 2). Thus, the lemma is proved.

Thus, the function f*: Ha -6 R is well-defined. Furthermore, it is a-linear,

(To establish this point, let (Li }i)45°
=1

be a sequence of elements of H
a
, and let

a)co

(pi)i=1 be a sequence of nonnegative numbers such that r pi = 1. Then,
i=1

drawing on the proof of Proposition 7 (and using the same notation), we can
write

co

E
piLil

13.01) c10(n)Pt.(n)]i=1 neM 1

LP0(n)ig.(n)f(tro(n))

co co

1

p q. f(t
1.

.)
Ja i ,3 '31= j=1 1

E pif*(Li).)
i=1

Since f*(Ft) = f(t) for each t E R, we conclude that f* (viewed as a

measurable utility function on (Ha,kf*)) induces f. It follows that the

correspondence under consideration is onto.

Q.E.D.
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Theorems 8 and 9 obviously imply that (necessarily distinct) preference
relations on distinct lottery spaces may measurably induce the same utility
function on R. More important, however, is the question of whether distinct
preference relations on the an lottery space can measurably induce the same
utility function on R. MO will now demonstrate that they can When these
preference relations axe not required to be continuous. In fact, we will
construct uncountibly many distinct preference relations, all of which are
defined on the same lottery space and ueasurably induce the same utility
function on R. Both in form and notation, our construction will parallel that
given during our discussion of the decomposition of measurable utility
functions (pp. 29-30). In particular, for each t e R, we will specify
measurable utility functions A

it
defined on lottery spikes T

it
c

Si
(i = 1,2,3) and will use these to define a measurable utility function At on

the convex hull, T
t'

of T
lt

u T
2t

u
3t.

To proceed, consider an arbitrary function f: R 4 R. By 'Theorem 8, there
exists a (unique) measurable utility function, Ai, on H that induces f. For

each t e R, put Tlt = H, Alt = Al" T3t = 84 and (correspondingly) A3t = 0.

Let T
2t be the lottery space consistirg of all elements of S

2
with finite

mean. Define a preference ordering, k2t, on T2t by the rule:

L k
2t M if and only if L(t) 4 M(t) (L,M e T2t).

(Thus, for example, if L and M were the c.d.f.'s of profit random variables X
and Y, respectively, "L k2tM" would mean that the probability of realising a

profit exceeding t would be at least as great for X as for Y.) Choose any
at > 0 for which at > 2f(t). The function A2t: T2t R defined by

2t(L) = a t[1-L(t)) (L e T2t)

is clearly a measurable utility function that represents k2t. Let Tt be the

convex hull of Tlt u T2t u T3t. (Of course, all the Tt, t e R, are identical;

let T be this common set.) Then, in accordance with our earlier construction
(pp. 29-30), the rule

A
t

= Alt (L1) + Alt (L2) + A
3t

(L
3

)

(whereL=L1 +L2 +L3 eT, L.eS. (i = 1,2,3)) defines a measurable

utility function At, and a corresponding preference relation on on T. By the

definition of Alt (see the proof of Theorem 8) and our construction, kt

measurably induces f.
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Next, we show that is and kt are

Observe that there clearly exist

L2(s) 4 M (s) and L
2
(t) > kt2(t).

and, similarly,

and

distinct whenever 0 t. Suppose s 0 t, and

lotteries L2,K2 e
2s

T
2t

such that

Then, L2,W2 E T.

s
(L

2
) = 0 + a

s
[1-1,

2
(s)),

At(L2) a t [1-Is2("11

ms(M2) = a
s
[1-W

2
(a)),

At(M2) at(1412("1'

so that As(L2) > AB(M2) and At(L2) < p.02). We conclude that till and axe

distinct orderings.

IN have thus demonstrated that incompatible preference orderings defined on
the same lottery space can measurably induce the same utility function on R.
Since f was arbitrary, it follows that, to problems involving risk, no
assumptions concerning a uttttty function on R are sufftctent to characterise
the 4nderLying risk preferences. Rather, the risk preferences can only be
characterised by assumptions at the more abstract Level. of the preference
ordering itself.

As we shall see below, the key to the preceding construction lies in the fact
that each mt, and thus (by the remarks following Theorem 4) each tt, is

discontinuous. To establi3h discontinuity, suppose t E R, and choose
b
t

E (0,1] such that

1bt 1 - [f(t)/atj.

For each n E W, let Ln be any element of T2t such that

and

L
n
(t - n

1
) = 0,

Ln(t) bt,

L
n
(t + n

-1
) = 1
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(there is an obvious plecewise-linear lottery that will do). Then, Ln -+ Ft

weakly as n 4 co. However, for each n,

At(%) at[l Ln(t)]

at(1 - bt)

0 f(t)

t(Ft)

It follows that At is not continuous at Ft. 'Maus, kt is discontinuous.

The preference relations kt (t E R) constitute our first "concrete" example of

the new type of discontinuous risk preference ordering described in the
introduction (p. 2). Since each At is discontinuous, and since every

measurable utility function satisfies the Berstein-Milnor axioms for
measurable utility theory (23), this example establishes that the
Berstein-Milnor axioms do not imply that measurable utility functions are
continuous. (There seems to have been a lack of clarity on this point in the
literature. One source of confusion may have been an overly liberal
interpretation of Berstein and Nilnor's careful assertion that one of their
axioms "approximately states that an individual's preference ordering is
continuous with regard to probability distributions" (23, p. 293). Nor has
the situation been helped by the fact that the Archimedean axiom of expected
utility theory (7, p. 292) is even more widely known (sometimes in slightly
changed form) as the "continuity axiom" (see, for example, 22, p. 53). Our
example also shows that the continuity axiom does not imply continuity for
measurable utility functions.)

The preceding results naturally raise the question of whether distinct
continuous preference relations on the same lottery space can measurably

induce the same utility function on R. The answer is given by

Theorem 10. Let S be a lottery space containing P. Suppose ki and k2 are

continuous preference relations on S that measurably induce the same utility

function, f, on R. Then, ti and k2 are identical.

Proof. It follows from our assumptions that there exist measurable utility

functions A and v that represent ki and k
2

, respectively, and that induce the

same utility function, f, on R. Furthermore, by the remarks following
Theorem 4, A and v must be continuous.

It clearly suffices to prove A = v. For this, we will use the following

well-known result:

Lemma 4. For any lottery :.. chere exists a sequence of simple lotteries that

converges weakly (indeed, uniformly on R) to L.

Proof of Lemma. For any integer n f 3, define intervals
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and

I
k

= ((k- 1) /n,k/n) (k = 1,...,n-ly

I
n

= ((n-1)/n),1].

Let L be any lottery. Since
n

are disjoint and exhaust (0,1), the

sets

Jk i(I
k)

(k a° 1,...,n)

are disjoint and exhaust R. Moreover, since L is a lottery, the sets Jk have

the following properties: Jk < whenever k < t (that is, each element.--if

any--of Jk is less than each element--if anyof J
t
whenever k < t). Each J

k
is an interval (possibly empty). Jl and Jn are nonempty. J2,...,Jn are

bounded below. Each of J2,...,J
n

is closed on the left; that is, each

contains its left-hand endpoint.

It follows that there exist numbers

such that

and

al 4 a2 4 ... tan
-1

J
1
= (-m,a

1
),

n am Ean-1 ,m),

3k

for k = 2,...,n -l. Defitle Ln: R 4 (0,1] by

0 if t e J1

L
n
(t) = 1 if t e Jn

k/n if t e Jk (1 < k < n).

Then, Ln is a simple lottery (since, as is easily proved, the simple lotteries

a 3 precisely those having finite range). Moreover, since L(t) e Ik whenever

t E Jk, we have iLn(t) L(t) I 4 1/n. Thus, the lemma is proved.

Continuing with the proof of the theorem, lot L be any element of S. By the

lemma, there exists a sequence (Ln)Li of simple lotteries converging weakly
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to L. Since g and v agree at each degenerate lottery, they must agree at each
L . But then g(I0 v(L), by the continuity of g and v. We conclude that

g v, and the theorem is proved.
Q. Z.D.

In his study of discontinuous utility (30), Wasson argued that an expected
utility model derived from a utility function of income with a jump
discontinuity may be an appropriate representation of farmer behavior when a
disaster-avoidance motive is present. He based his conclusions on the
Findings of O'Nara's study (32) of the diffusion of technical change in and
around a farm project in Mexico. Masson pointed to directly estimated utility
functions arising out of O'Mara's study as in fact providing empirical
evidence of discontinuous utility. The use of discontinuous utility functions
had earlier been suggested by Roy in the context of his "safety-first" theory
(39). P. "jump point" of such a utility function might be, for example, the
level of income at which bankruptcy occurs.

Neither Masson nor Roy, however, attempted to establish the legitimacy of
discontinuous utility functions within a theory of behavior under risk. We
will now address this issue with particular attention to the use of
discontinuous utility functions when a riskless asset is ar ilable. The
reader may find it of interest to contrast our methods with the graphical
methods used by Pyle and Turnovsky (35) (whose work also considers
implications of riskless versus risky asseta, though in a different context).

The assumption that an economic agent has the choice of bolding a riskless
asset is formally the assumption that his/her lottery space contains
degenerate (hence simple) Lotteries. The consideration of lottery spaces
containing simple lotteries is also important for another reason: in many
empirical studies of behavior under risk, it is the subjects' expressed
preferences among various putative simple lotteries that are used to construct
utility functions of income. Thus, any realistic model intended to reflect
the behavior observed in such studies must assume that the subjects' lottery
space contains simple lotteries.

Now, the common presumption is that functions on R that are put forth as
utility functions for risky choices are to be interpreted as von Neumann-
Novgenstorn utility functions (see p. 32). In the traditional case in which
the utility function of income is continuous, the inclusion of simple
lotteries in the lottery space poses no difficulty. However, when the
(proposed) utility function is dtsconttnuous, it cannot always be interpreted
as a von Newmann- Morgenstern utility function, for its integral with respect
to a simple (and hence discontinuous) lottery may be undefined (see below).
How, then, is such a function to be interpreted, and on what basis can it
characterize behavior under risk? Specifically, haw can it be related to a
preference ordering of risky prospects? To place these questions in sharper
focus, lot us review the theoretical justification for using conttnuous
functions as "utility functions" of income and then contrast this case with
that of discontinuous functions.

IN begin by pointing out that, within the traditional theory of behavior under
risk, the fundamental economic datum is a preference ordering defined on a
lottery space. When, for analytical convenience, one pursues a risk-related
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study by selecting a continuous tumult:Lon u: R R and designating it a
"utility function" of income, one is merely defining a preference ordering of
lotteries implicitly rather than explicitly. Indeed, in the usual case in
which expected utility maximization is intended, the rule

ACi4

ao

Udis

OD

defines a linear function A on the (necessarily convex) it of all lotteries L
for which the integral is finite. Then, in the usual manner (see p. 20), A
determines a preference ordering to for Which A is a measurable utility

function. In this way, u determines tA. Yet, to also measurably induces u by

means of A. One can summarize these relationships among u, A, and to by the

statement that any continuous function ut R 4 R determines a preference
lottery space that, in turn, measurably induces u. It is this correspondence
between continuous real functions and preference lottery spaces that justifies
interpreting the former as "utility functions."

For dtscontimuous functions u: R 4 R, however, the relationship to preference
lottery spaces is less apparent. As already noted, the Stieltjes integral

cD

udL

may not even be deftned when u is discontinuous and L is simple. Thus, the
arguments used in the continuous case are not applicable here, and we are
confronted with the task of proving that the use of discontinuous real
functions ai Utility functions is not merely spurious, but, rather, can be
justified by the existence of an appropriate correspondence between such
functions and preference lottery spaces. We now proceed toward a resolution
of this issue.

First, suppose an individual has available no riskless asset--that is, that
there are no degenerate lotteries in his/her lottery space. In fact, suppose
that he/she chooses only from among continuous lotteries representing bounded
random variables. Assume u: R 4 R is continuous except perhaps at finitely
many points. Then, for any one of his/her lotteries, L, the Stieltjes
integral

tidL

CD

is well-defined, so that u, though discontinuous, may serve as a von Neumann -
Morgenstern utility function, defining a measurable utility function (and
associated preference lottery space) as previously described. In this
situation, u is legitimized as a utility function by the same relationship to
a preference lottery space as would he enjoyed by a continuous real function.

47 52



Alternatively, suppose now that the individual does have a choice of holding a
riskless asset; that is, suppose that his/her lottery space contains the
degenerate lotterieb. Then, if u has a discontinuity at t0, both u and Ft

o
are discontinuous at t0, and u will not be Stieltjes integrable with respect

to P
t

(that is,
0

too
uciFto

will not exist). This observation follows directly from the definition of the
integral. (In fact, from among the various Stieltjes sums

E u(si)(Ft
0
(si4.1)

0
(s,)],

one could always select two that differed by nearly u(to+) - u(to-), yet Whose

subdivisions

000 S1. 8., S1. ...1 1 41

were arbitrarily fine.) Thus, u cannot fulfill the role that the traditional
expected utility framework requires of a von Neumann-Morgenstern utility
function--namely, of serving as the integrand of a Stieltjes-integral
functional that assigns to every lottery in the choice space its "expected
utility."

How, then, when a riikless asset is available, can discontinuous utility on
the real line be rationalized within an acceptable theory of preference
behavior under risk? h simple answer is provided by Theorems 8 and 9, for
they establish that any function us R R, even if discontinuous at every
point, determines a unique measurable utility function on the lottery space of
all simple lotteries (or, if u is bounded, even a unique a-linear measurable
utility function on the "larger" lottery space of all discrete lotteries)
that, in turn, induces u. Thus, discontinuous utility function, on the real
line, while not necessarily consistent with the maximization of expected
von Neumann-Morgenstern utility, are consistent with the maximization of
msasurabLs utility. Our theorems legitimize the use of such functions as
representations of behavior under risk (as in Masson's stud./ (30)) by showing
that each may be associated with a measurable utility function, and thus with
a preference ordering, defined on a lottery space.

In establishing one-to-one correspondences between real functions and
measurable utility functions, Theorems 8 and 9 assume that preference
comparisons are to be made only among simple lotteries or among discrete
lotteries. It is natural to ask whether similar correspondences hold when
continuous lotteries (in conjunction with simple or discrete lotteries) are
allowed in the lottery space. we will now show that such correspondences do
not hold. In fact, although any discontinuous function on R is still
measurably induced by some preference ordering, such an ordering is not
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unique. Thus, if a discontinuous utility function of income were used to
model behavior under risk for both simple (or discrete) and continuous
lotteries, no underlying risk preference ordering could be uniquely identified
(unless, of course, additional restrictions were introduced).

To formalize and prove this assertion, let fs M R be any function, and let g
be any measurable utility function defined on the space C of all continuous
lotteries. We will construct a measurable utility function that induces f,
yet agrees with A on C. (We consider here only the conjunction of simple
lotteries and continuous lotteries; when f is bounded, the proof for the
discrete lottery case is similar.) Now, by Theorem 8, there is a (unique)
measurable utility function, f*, defined on H that measurably induces f. Let
L be the convex hull of H u C. Then, every lottery L in L can be written as a
convex combination

L = per., + (1 -pL)CL,

where 0 4 pL 4 1, SL is a simple lottery, and CL is a continuous lottery.

Furthermore, as can be demonstrated by a short Argument based on the lottery
decomposition results described previously (pp. 20-21), pL, pLSL, and (1p0CL

are unique. We are thus assured that the measurable utility function, v,
defined on L by

(L) = pLf*(SL) + (1 -pL)A(CL) (L E L)

is well-defined. Clearly, v measuribly induces f. Moreover, vIC--the

restriction of v to C--equals g. Thus, we have constructed a measurable
utility function (and, therefore, a preference ordering namely, the ordering
t
v determined by v) that encompasses both f and g in the senses desired.

Consequently, since A was arbitrary, f cannot identify a unique preference
ordering, and our assertion is proved. It follows that the empirical use of
discontinuous utility functions may be spurious unless the lottery space is
properly restricted, as in Theorems 8 and 9.

A final issue requiring clarification is the interpretation of "jump size" at
points of discontinuity of utility functions of income. Masson (30)
interprets a "larger" drop in utility values at points of discontinuity as
signifying a "more serious" economic disaster. From the standpoint of
measurable utility theory, however, no such interpretation is 'erranted. For
an induced utility function contains no more information on behavior under
risk than its underlying preference ordering, and the latter is concerned
solely with order of preference, not strength of preference.
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5 RISK AVERSION

An individual is "risk averse" if, wherever confronted with a risky prospect,
he/she prefers a guaranteed payment equal to the expected value of the
prospect, to the prospect itself.

The concept of risk aversion is usually considered within the framework of the
traditional expected utility theory based on integrals. Within that
framework, risk aversion is known to be equivalent to the concavity of a von
Neumann-Morgenstern utility function. In this section, we investigate the
relationship of risk aversion to concavity within the more general setting of
measurable utility theory.

We first present the basic definitions. We then show that the equivalence
between risk aversion and concavity holds (in a weakened form) for measurable
utility functions when preferences are continuous, but may fail in one
direction, and "appear" to fail in the other, when preferences are
discontinuous. Finally, we consider the implications of the "apparent"
failure for the empirical identification of risk aversion.

5.1 Definitions

Recall that the moan of a lottery L (here denoted E(L).) is defined as the
ao

Stieltjes integral j tdL(t) whenever the ir:egral exists. Recall also the

-co

function n: R -6 V defined earlier (p. 31).

Definition. Let (S,t) be a preference lottery space in which each lottery has

a finite mean. Assume n[E(S)) c S, where E(S) is the set of means of elements

of S. Then, (S,t) (or 0 is called:

(1) many risk averse if, for each L E S, FE(L)L
t

(2) risk neutral. if, for each t E S, F
E(L)

L; and

(3) many risk Loving if, for each L e S, L L FE(L).

If t is replaced by > in (1) or (3), then (S,t) (or t) is called strongLy risk
averae or strongLy risk LoAng, respectively.

Most treatments of risk aversion leave the impression that the notion requires
a utility framework, or even an expected-utiiity framework, for its definition
(for ex4eple, see (22, 27, 44)). In fact, however, risk aversion is a purely
ordinal concept.

For precision, we will noed:

Definition. A function f: R R is weakLy (respectively, strongLy) concave if

f(ta + (1-t)b) tf(a) + (1-t)f(b)
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(respectively, f(ta + (1 -t)b) > tf(a) + (1 -t)f(b))

whenever t e (0,1), a,b e R, and is weakly (respectively, stron26y) cony= if
-f is weakly (respectively, strongly) concave.

5.2 Relation to a.ucavity

We can now prove:

The'rom 11. Let (S,h) be a preference lottery space for which each lottery
has a finite mean and P c S. Assume (S,k) measurably induces on R a utility
function, f. Then:

(1) 14. ? is weakly risk averse (respectively, weakly risk loving;
risk neutral), then f is weakly concave (respectively, weakly
convex; affine). The analogous statement holds if "weakly" is
replaced by "strongly."

(2) If f is weakly concave (respectively, weakly cony's:0 affine) and
? to continuous, then t is weakly risk averse (respectively, weakly
risk loving; risk neutral).

Proof. Let g be a measurable utility function for (S, ?) that induces f. To
prove (1), suppose k is weakly risk averse, and consider any a,b e R,
p e (0,1). Put

then L e S and

Since

it follows that

Thus,

that is,

L = pFa + (1-p)F7,,

E(L) me pa + (1-p)b.

471(Pa ( 1-P )b PA [n( a)) ( 171))+0 )1 I

f [pa + (1 -p )b] >s pf(a) + (1-p)f(b).

Thus, f is weakly concave.

If t is weakly risk loving, the proof is similar. Finally, if t is risk
neutral, then it is both weakly risk averse and weakly risk loving, so that f
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is both weakly concave and weakly convex, hence (by Lemma 1, with S = R)
affina.

The second half of (1) is proved similarly.

To prove (2), suppose f is weakly concave and t is continuous. Then, by the
remarks following Theorem 4, g must ba esortinuous. We will need the following
two lemmas (see II, pp. 150-51, 33, pp. 211-12):

Lemma 5. If L is any lottery with a finite mean, then

lim tL(t) lim t(1-L(t)) = 0.

t4-co t4co

Proof of Lonna. It is known that any lottery L with a finite mean satisfies

and

tdL( t) = f 1-L(t)dt

0 0

0 0

tdL(t) = L(t)dt.

-co -co

(Mtos WO adopt the convention here that Stieltjes integrals are taken over
0

closed intervals. In particular, f tdL(t) refers to (-oo, 0], not (-0o,0).

-oo

specificity is not necessary, of course, for Riemann integrals.) Now,

for any r > 0, we have (by integration by parts for Stieltjes integrals)

and

tdL(t) = rL(r) f L(t)dt

0 0

= r[L(r)-1] + f 1-L(t)dt

0

0 0

tdL(t) = rL( -r) L( t)dt.

-r -r

If we now take limits as r 4 co and apply the results just cited, we obtain at
once the desired conclusions.
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Lemma 6. For any lottery L with a finite mean, there exists a sequence

(L
n n=
ell

1
of simple lotteries such that

Ln L weakly

(indeed, uniformly on R) and

E(Ln) E(L) as n - co.

Proof of Loma. Consider any integer n 3. We will construct a simple
lottery Ln such that

and, for each t e R,

IE(Ln) - E(L)I < 1/n

ILn(t) - L(t)I 4 1/n.

This will clearly be sufficient to establish the lemma.

ao

Since lie L(t) = 0, lin L(t) = 1, and j tdL(t) exists--and, by
t4-co t400

-oo

Lemma 5 there exists a B > 0 such that

and

Ij tdL(t) - j tdL(t)1 < 1/4n, (1)

-B -oo

BL(-8) < 1/4n, (2)

B[1-L(B)) < 1/4n, (3)

L(t) < 1/n whenever t < -8, (4)

L(t) > 1 - 1/n whenever t B. (5)

Define L
n
(t) = 0 for all t < -B and L

n
(t: = 1 for all t ) B. Then

IL
n
(t) - L(t)I c l/n whenever t e (-oo,-B) u (B,m). Our definition of L

n
on

(-B,B) must await our construction of an appropriate partition of ( -B, B] into
subintervals.

Toward this end, note that, by a standard theorem on Stieltjes integrals (40,
p. 108), there exists a 8 > 0 such that, for any finite sequence of numbers
b < b2 < < an for which
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b
1

= -B,

= B,

and

each b1+1 - b
1

is less than 8,

and for any choices t
11 1

of points t e [b ,b
1+1

], one has

IE ti[oi+1) - L(bi)] - f tdli(t)1 < 1/4n.
i=1

-B

MO define apext7nular such finite sequence as follows: as in the proof of
Lemma 4, we partition [0,1] into intervals

ik = [(k-1)/n,k/n) (k = 1,...,n-1)

and

obtaining thereby intervals

and numbers

such that

and

We next (in

[-B,B] into

set S to be

-B 4 ak 4 B

In = [(n-1)/n,1],

Jk = L 1(Ik) (k = 1,...,n)

a
1

4 a
2

4 ... 4
an-1

jl ("1"1),

Jn= [a
n-1

,co),

Jk = [ak_i,ak) (k = 2,...,n-1).

effect) subdivide those J
k

that lie (at least partly) within

subintervals of length less than 8. More precisely, we define the

the union of: (1) the set of all ak (if any) for Which

and (2) any one finite subset (c1,...,ct) of [-B,B] such that

-B = c
1

c c
t
= Bci+1
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and each ci+1 -.cl is less than 8. We may write S as

S =

where b < b
j
whenever i j. Necessarily, b

1
= -B and b

m = B. Moreover,

bi+1 - bi < 8 for each i = 1,...,m-1. Thus, the finite sequence bl,...,bm

satisfies the conditions of the theorem cited.

Now, define L
n
on (-B,B) by

Ln(t) = L(bi) if t e (bi,bi+1).

Clearly, Ln (having now been defined on all of R) is a simple lottery.

Observe that each subinterval
1

(b.
1
b
i+1

) is contained in some J
k

L 1(I
k

).

Thus, if t e (bi,b1.4.1),. then L(t),L(bi) e Ik, that is, L(t),Ln(t) E Ik. Since

I
k

has length 1/n, it follows that

ILn(t) - L(t)I 4 1/n.

Since, for all t e (-m,-B) u (13,00), a similar inequality was established
earlier, we conclude that

ILn(t) L(t)I t 1/n

for all t e R, as was to be shown.

Finally, wu prove that tE(Ln) - E(L)I < 1 /n. Applying the cited integration

theorem to our b
1

choosing (in the language of that theorem)

t. = b. e (b.,b. ] (i = 1,...,m-1),
1 1+1 1 1+1

and (for brevity) putting

we obtain

w s
i.
E
1

bi+1[Lcbi+1) - Loo),

-B

B

ftdrami < 1/4n.
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However,

Thus,

ce
mr-2

tan(t) = + E kwilin(b.)-Ln030) + biull-Ln(b! 1))
i=1

-BL( -B) + W - B[L(B)-L(bi)] + B[1-L(b

W - BL( -B) + B[1-L(B)).

co

IE(Ln) - E(L)I 4 IW - j tdL(t)I + 1 f tdL(t) - j tdL(t)I

-B -B

+ BL(-B) + B[1 -L(B)1

4(1/4n)

= 1 /n,

which completes the proof of the lemma.

Returning now to the proof of the second half of the theorem, suppose f is
weakly concave and t (and thus g) is continuous, and consider any L e S. By
Lemma 6, there is a sequence (Li)7m1 of simple lotteries (hence, elements of

S) such that Li -0 L weakly and E(Li) -0 E(L) as i co. We may write

ni
L = r .F

.

Li
1.3 t.71

p
1)

for each i. Since f is weakly concave, we have

4[PE(Li), f[E(Li)}

= Ei pi4tid
J

ni

E p
ij

f(t
i3
.)

.

Jvu

n
i

AIA.Pijrtiji

= ti(Li)
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for each i. However, as i 4 m, we have Li L weakly and (since E(Li) E(L))

FE(Li)
4 F E(L)

weakly. Thus, by the continuity of g,

g[FE(L)] g(L),

so that

FE(L) L.

Since L e S was arbitrary, it follows that k is weakly risk averse.

For the case in which f is weakly convex, the proof of the corresponding
result is similar. Finally, if f is affine, it is both weakly concave and
weakly convex, and the corresponding result follows from the two previous
cases.

In the usual expected utility theory based on integrals, part (2) of Theorem
11 follows immediately from Jensens Inequality (8, p. 47). However, in the
more general measurable utility theory presented here, we do not know that g
can be expressed as an integral. In particular, Theorem 7 (p. 32) does not
apply, since we are not assuming that S is a-convex. Our proof applies to
such non-a-convex lottery spaces as the space of all lotteries having a finite
mean (which is, in a natural sense, the "largest" lottery space over which
risk aversion can be considered).

Theorem 11 raises the question of whether weak concavity of f implies weak
risk aversion for k when k is not continuous. We now show that it does not;
in fact, not even strong concavity of f would suffice.

To prove our assertion, we consider once again the discontinuous preference

rrJerings Lt, and the corresponding discontinuous measurable utility functions

gt (t E R), constructed earlier (pp. 42-44). Recall that each gt was

constructed partly from --and, in turn, measurzibly induced an arbitrarily
given function, f, on R. In particular, we may suppose f to be strongly
concave. Resuming the assumptions and notation of that construction, we fix
t e R and choose any L e 12 such that L(t) - 1/2 and E(L) = t (the c.d.f. of

some uniform density centered at t will obviously do). Then,

However,

gt[FE(L)] f[E(L)]

= f(t).

At(L) at[1-1(t)]
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by the definition of a
t

. Thus,

414 at/2

) f(t)

L
t

FE(L) ,

from which it follows that Lt is not weakly risk averse.

Theorem 11 establishes that, in measurable utility theory, as in the
traditional expected utility theory based on integrals, risk aversion implies

concavity for measurably induced utility functions on R. In the latter
theory, a von Neumann-Norgenstern utility function that in measurably induced
by a weakly risk averse preference ordering must be weakly concave. Thus, in
this case, the utility of a lottery is expressed as a Stieltjes integral with
a weakly concave integrand. However, the situation in measurable utility
theory is more subtle: notwithstanding part (1) of Theorem 11, we will now
construct a weakly risk averse preference ordering that, over all continuous
lotteries corresponding to bounded random variables, is represented by an
expected utility functional whose integrand is not concave. In fact, if, for
some interval [a,b], we restrict the set of lotteries considered to those
arising from random variables taking values only in [a,b], then we can even
specify the integrand to be strongLy convex.

To accomplish the construction, put Ti = if, let T2 be the set of all

continuous lotteries that arise from bounded random variables (note that T2 is

convex), and let T be the convex hull of 71 u T2. Given any weakly concave

function u: R Re define a measurable utility function

by

All T1
4 R

co

g
1
(L) = j udL (L E T

1
).

Let g2 be any measurable utility function on T2 satisfying the following

property ("Property P"):

For each X E T
2

, u[E(M)1 i g
2
(M).

(Se give examples in the next paragraph.) Finally, define a measurable
utility function, g, on T by

g[AL + (1-A)M1 = Agl(L) + (1-X)g
2
(M) (A E [0,1], L e Tl, M E T2 );
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this definition is justified by a previous result on the uniqueness of lottery
decompositions (see p. 49). Then, A is weakly risk averse. In fact, suppose
E T, and note that there exist A E [0,1], L e T1, and M E T

2
such that

H AL +

Thus, by the weak concavity of u and Property P of A2, and letting X be any

random variable whose c.d.f. is L, we have

A(PE(R)) " A
1(F i(H) )

= u[a(L) + (1-A)E(M)]

Au[E(L)] + (1-A)+00]

Au[E(X)] + (1-A)A2(M)

XE(u0X) + (1-A)A2(M)

APti(L) (1-A)A2(M)

we now exhibit a measurable utility function A2 satisfying Property P and

allowing A on 12 to be expressed as an integral of a nonconcave function. For

this, let vs R R be any continuous nonconcave function dominated by u--that
is, for which

v(x) t u(x)

for all x E R. Define A21 T2 4 R by

co

;i2(M) = 1 vdM (M E T2 ) .

-co

Then, for each P1 E T2, letting Y be any random variable whose c.d.f. is M and

applying Jensen's Inequality, we obtain

u [E( M)} u [E( Y ))
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E(uoy)

E(voy)

so that g2 satisfies Property P. Since g(M) = g2(M) for all M E 12, g has the

desired representation as an integral over T
2'

Alternatively, it is clear

that, if we had defined T
2
as the set of all continuous lotteries that arise

from random variables whose values all lie in some specified interval (a,b],
and if we had required that u dominate v only over (a,b], then we could have
chosen v to be strongly convex.

5.3 Implications for Identifying and Modeling Risk Aversion

To understand how the previous examples relate to the separate problems of
identifying and modeling behavior in the presence of risk, consider first an
investigator who wishes to construct an economic model involving risk averse
behavior. Within the tradtttonca interpretation of expected utility theory,
the investigatoy would, in effect, assume that measurable utility functions
take the form of expected utility integrals, and he/she would adopt u concave
von Neumann-Morgenstern utility function as a "generator" of the risk
behavior. This approach, however, carries the implicit assumption that the
individuals under stady have the same frames of reference toward certainty
(degenerate lotteries) and "continuous uncertainty" (continuous lotteries),
since the measurable utility of a lottery is determined, through the integral
formula, by the utility values assigned to certainties.

If, on the contrary, the researcher does not wish to rule out a prtort the
possibility of different frames of reference - -the possibility that an
individual's risk preferences for certainties may differ from his/her risk
preferences for continuous lotteries, so that his/her risk preferences are
discontinuous- -then the assumption of concavity for v would not guarantee risk
averse behavior. For, as our first example demonstrated, even a strongly

concave utility function on R can be measurably induced by a preference
ordering that is not risk averse.

Our second example, however, suggests that some risk averse preference
orderings might manifest the tLLuston of being determined by a nonconcave--or
even strongly convex--utility function on R. For, as we established in that
example, preferences among certain continuous lotteries can be determined by
such an "apparent" utility function even when the full preference ordering is
risk averse. In a work developed within the classical expected utility
framework, Hildreth and Knowles cite several empirical studies (including
their own) or. individuals' risk preferences that produced apparently risk
neutral or risk loving responses (in effect, "nonconcavities" in the utility

functions on R) in cases where one might expect the decisionmakers' true
preferences to be risk averse (24, p. 33). They characterize these
nonconcavities as inaccurate and suggest various possible explanations for
their occurrence (see also 37).

The theory that we have delineated here, however, provides an alternative
hypothesis: the nonconcavities are legitimate; interpreted within the context
of measurable utility theory, they do not contradict risk aversion. Rather,
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the respondents in the studies, while being risk averse, may have had
discontinuous, "two-rule" type measurable utility functions (reflecting
dichotomous behavior toward certainty and "continuous uncertainty"), and they
may have responded to some queries in the studies as though using their
"continuous uncertainty" rule (g2, in the notation of our second example, with

v nonconcave) rather than their "certainty" rule (gl, with u necessarily

concave). Of course, we can only assert here that this hypothesis is a
logical possibility; the determination of its empirical applicability is
beyond the scope of this report.
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6 ECONOMIC APPLICATIONS

We now reconsider and generalize two economic models of behavior under risk
presented by Rothschild and Stiglitz (38). The first of these models concerns
production with an uncertain output price, while the second involves saving
with an uncertain interest rate. Rothschild and Stiglitz assume that an
economic agent compares lotteries on the basis of their expected utilities; in
our approach, an economic agent compares lotteries according to their
measurable utilities. We will find that, if the marginal utility of money is
greater under certainty than under "continuous uncertainty" (the meaning of
this distinction will became clear shortly), then (under additional routine
assumptions) the optimal production level and the optimal saving rate will be
lower than the respective solutions of the expected utility models. No
assumption of risk aversion is required.

6.1 imal Production Levels Under Price Uncertainty

We now consider a model of production with uncertain output price in which the
producer is assumed to be endowed with a "two-rule" measurable utility
function that allows, but does not require, him/her to use one preference rule
for choosing among certainties and another for choosing among continuous
lotteries. As we have seen, this assumption is compatible with measurable
utility theory. (In this connection, recall our observation (p. 29) that the
valves of a measurable utility function at simple lotteries are determined by
its values at certainties.) We will examine first- and second-order
conditions and obtain an explicit solution of the former that expresses output
in terms of tne two preference rules and certain features of the price
variable. We will find that, in the two-rule case, the producer will
generally choose a utility-maximizing output level different from the one
he/she would choose if following a more restrictive expected utility-
maximizing tapproabh. In particular, if the producer's marginal utility of
money is greater under certainty than under "continuous uncertainty" and both
the expected utility and measurable utility models have interior solutions,
then the latter model will generate a lower optimal production level than the
former. Furthermore, it is possible to have a zero production level and a
positive production level that are simultaneoualy optimal. A particular
pricing situation to which the analysis applies is that of a random price that
is truncated below through the introduction of a "support price," as with
agricultural commodities.

To set the stage for the analysis, let p (output price) be a bounded random

variable on a probability space (0, S, P) and C: (0,m) -6 R (the cost function)
a function such that C"(Q) > 0 whenever Q a O. Vor each Q i 0, define a
random variable w(p,Q) (profit) by

w(P,Q) PQ C(Q)

We will use the convention that, whenever X is a random variable, its c.d.f.
is denoted F. (Note that, in the special case in which X is constant, Fx is

merely a degenerate lottery as defined earlier.) We assume the producer has a
measurable utility function, A, defined at each profit lottery P (Q i 0)

1/(13,Q)

and at each degenerate lottery Ft (t e R); of course, Ft represents "money

amount t with certainty." More specifically, and in the spirit of endowing g
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with a two-rule form that generalizes the expected utility approach, we
suppose that, for each lottery L for which the following integrals exist, we
have

p(L) I uid[Tr1(L)1 u2dfre24-e3](L)),

-co -co

where the functions

Wi S S (i - 1,2,3; S the set of all s.d.f.'s)

(not to be confused with profits) are projection operators of the type
described on pp. 24-25 (so that n1(L) and Cel.W2](L) are the discrete and

continuous "parts" of L, respectively) and ul,u2: R R are functions for

Which u'ft) > 0,
2u'(t) > 0, u"(t) < 0, and u2(t) < 0 for all t e R. As

2

indicated, the domain of g is taken to 'F'3 the set of all lotteries L for which
the integrals are finite. This set is clearly convex, and it contains each
degenerate lottery and, since p is bounded, each e(p,Q) (Q i 0). Finally, we
assume that p, u

1
, u

2
, and C are sufficiently "nicely behaved" to permit

repeated differentiation under the Stieltjes integral sign (see 33, p. 409).

We wish to determine maxima Q > 0 of g(Fn(p,m) by examining first- and

second-order conditions. However, obtaining these conditions is nA quite
straightforward, as the Stieltjes integrals in the definition of p r ) do

ff(P,Q)
not display Q (with respect to which we are to differentiate) very explicitly.
We need to rewrite these integrals as Lebsague integrals with random-variable
integrands that display Q as a parameter. This change of form will allow
differentiation under the integral signs. Moreover, in conformity with the
"two-rule" form of g, we wish these random variables to correspond,
respectively, to the discrete and continuous lotteries that appear in the
canonical convex decomposition of F

n(P,4)
(see Proposition 3, p. 22). Thus,

we need to determine this decomposition of F
n(P,Q)

. We will do so in a way

that explicitly relates the constituents of the decomposition to p, C, and Q.

To begin, observe that, for any Q > 0, t e R, we have

Thus,

Fir(154)
(t) = P(PQ-C(Q) 4 t)

= Fp[(t+C(Q))/Q).

g
P

o [(I+C(Q))/Q).
Fn(P,Q)

where I is the identity function on R and, as usual, "0" denotes composition
of functions. By means of this formula, we may use the canonical convex
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decomposition of F to obtain that for Fir(p42). Now, put

and

A = (r e
1

I P(p (r)) > 0),

ni = U p1(r),
reA

112 = n/n
1

(where "/" denotes the set-theoretic complement). Then, A :45 at most
countable, and 0

1
,0

2
e B. Consider first the case in which p is a "proper

mixture" of a discrete lottery and a continuous lottery, thee. is, the case in
which P(01) > 0 and P(02) > 0. Let (21,131,P1), (02,82,P2) ne the conditional

probability spaces induced by (n,a,t; on the events 0 0
2'

respectively, and

define restricted mappings

P
1

di Pln1

and

P2 4° Pin

Clearly, p1 and p2 are (bounded) random variables on (01,151,P1) and

(0
2

,15
2
,P
2
), respectively. Furthermore, it can be shown without much

difficulty that p1 is discrete, p2 is continuous, and

F = P(0
1
)F
pl

+ P(0
2
)F
p2

Consider next the case in which p is itself discrete. Then P(01) - 1 and

P(02) 0, ar.d by choosing pi = p and p2 to be any (bounded) continuous random

variable, we can still assert

Fp = P(0
1
)F
pl

+ p(n
2
)F
p2

This formula likewise holds if p is continuous, for then P(ni) - 0 and

P(n2) - 3, and we need only choose p2 = p and let p1 be any (bounded) discrete

random variable. Thus, in all cases, if Q > 0, we can assert that

Frr(p,Q) = P(01)
1

0 [(I+C(Q))/Q) + P(02)Fp
2

0 [(I+C(Q))/Q)
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so that

p(n1 )FP
(Q)

+ P(n
2
)r
P2 (Q)'

co co

ig Fir(
Q))

uld {13( n
1
)rp

Q )
r u d[Po r.
J 2 L 2 p

2
Q-C(Q)]

1
--00 -10

P(111)+10(piQ-C(Q))) + P(L12)+20(p2Q-C(Q))).

It follows (see 33, p. 409) that, for any Q > 0,

while

rr
riT( ))]'( 1 n1 It1 0(P

1
Q-c( [Pi-V(Q)1J

P( n2 [ [ui°( P2Q-c( )] [P2' )]

(JL(Fn(P. )] "(Q) )E [ [WIN Pis2-C( ) )) [131-C )
12

[Uic( P1Q-C( ) )) [-C"( )) 1

P(n2)E[k°09. C(Q) )) [P2-C.(Q)]2

Itl20(P2Q-C( ) )) [-C"( ))1

< 0

by virtue of our assumptions about the signs of the various derivatives.

Thus, g(F
ir(13. )

)I(0,m) can have at most one maxim and g( F
7(13.)

) can have at

most two. Any maximum, Q*, of g(F
7(13.)

) must satisfy either

or

Q* = 0 ("nonproduction") (1)

Q* > 0 and (A(Flop, ))]*(Q*) 0. (2)

Rowever, although condition (2) is sufficient to ensure that Q* is a maximum

of g(F
ir(1). )

)1(0,a), it is not generally sufficient to ensure that Q* is a
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maxisrm of ii(F
/O P. )-

1. To find a maximum of g(FIT(p,.)) when there is a Q* e R

satisi7ing condition (2), one needs to compare g(FIT(p,v)) with

0))

ulf-c(0)].

The latter, of course, is the g-utility of fixed costs. Thus, in the two-rule
model, even if p is continuous (so that all profit random variables associated
with positive production levels are continuous), there is always at least one
profit lottery, representing fixed costs, whose utility must be determined
from

ul
rathen than from u

2
.

Now, condition (2) holds for Q > 0 if and only if

0 n (0(F )3'(2)
ff(P. )

p(01)ERuio(P110-c(02))1pli 13(01)ci(4)1quio(Pi4-c(Q))]

+ P(n2)E[lu2c,(P2Q-c(Q))1p2] P(02)ci(Q)8Cu20(132Q-c(4))]

P(gykl(Q) P(nOC'(2)131(4) + P(02)A2(4) P(02)C'(2)132(02)

- CPO1A1
p(n

1
)1C'15

1
+ P(n2)A2 -

2
)C'13

2
](Q),

Where, for given ul, u2, pl, p2, and C, the functicae A1,142,81,B2: (0,m) R

aredefinedintheobviousismner.3bservethat,since[WP m," is
/OP..)

negative throughout (0,m), (g(F0(1,.))3' is decreasing and thus invertible.

Amordingly, when condition (2) is satisfied, its unique solution is

(11011R1 -12(ni)c,B1+P(n2)A2 -P(r12)c,B2] -1(o).

Let us compare this solution with the one that arises under claJaical expected
utility theory (39). MO assume (0,B,P), p, C, v(p,Q) (for any Q 0), and ul

are as in the preceding discussion. Define a measurable utility function g by
the "expected utility" rule

a

) al j
1
dt

for each lottery A. for which the right-hand side exists (the set of all such L
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is convex). Then, for all Q 0,

A(Fn(pQ)) = +10(pQ-C(Q))1,

CA(Fil(p,.))].(02) = ERui°(PQ-C(Q))1[P-01(Q)11.

and

Em(Pff(p,.))]"(02) = ERulo(pQ-c(02))1[P-v(Q)1'

+ [ui°(PQ-c ( Q ) )1 [-0"(Q)11

0.

Thus, A(P
ff(P. )

) has at most one maximum, and Q* E [0,m) is a maximum if and

only if either

or

Q* = 0 and [A(F Tr(p,.))].(Q*) 4 0

> 0 and [A( FIl(p,.))].(02*) I° 0.

Of course, (1') amounts to the condition

Which reduces to

Efu'(--C(0))lp-C1(0))1 4 0,

E(p) 4 C1(0).

(1' )

(2)

This is a sufficient conditio: for 0 to be a maximum (that is, for
nonproduction to be optimal) in the present case, but not in the two-rule
case. Likewise, condition (2) guarantees a maximum in the present case, but
not in the two-rule case.

Now, in the expected utility model, we have, for each Q > 0 (using the same
decomposition of F

ff(P,Q)
as before),

AL"ff(P,02))

co

u dr
1 Tr(p.Q)

-0)

dF + P(0
2

) u
1
dr
pP(ill)

u
1 P1Q-C(Q)

2
(Q)

-(0 -00
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so that

P(ni)Etuio(PiQ-c(imi P(n2)quio(P2Q-c(Q))),

C*(Fir(p,.)))1(4) = P(n1)ERnio(p1Q-C(Q)))131]

P(ni)C.(Q)+?(Pp-C(Q))1

P(n2)Etiuici(P2Q-C(Q)))1321

P(n2)C.(Q)qui (P2Q-C(4) ))

P(ni)Al(Q) P(ni)V(Q)B1(Q)

P(n2)14,3(Q) P(n2),V(Q)B3(Q),

where Ai, B1 are defined as before and (for given
u1, . p 1- p2,

and C) the

functions 863,113: (0,m) R are defined in the obvious manner. Thus, when

condition (2) is satisfied in this model, its unique solution is

Q [P(niAl-P( ni)c'Bi+P(n2)h3-P(n2)c'E3)-1(0).

It follows that the expected utility model and the two-rule model generally
give rise to different optimal production decisions. In particular, if p is
continuous, the solution of condition (2) is

Q = Ch3 C43
3
]-1(0)

in the expected utility model and

Q = (A - C'13
2
]-1(0)

in the two-rule model. In this case, the latter solution is obtained by
substituting u

2
for the von NeumannNorgenstern utility function, u

3,
, in the

former.

To compare the models further, suppose that each has an interior solution
(that is, a solution of condition (2) that is optimal over C0,00) and that
u' > ul

2
on R. (This inequality may be described heuristically as the

assumption that the marginal measurable utility of money is greater under
certainty than under "continuous uncertainty.) Then, examining the
expansions of ugr

v( P,-)
w (which, we recall, are comprised of decreasing

functions) in both models jointly with condition (2) reveals that the solution
of the expected utility model must exceed that of the two-rule model. Thus,
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in brief, When the marginal utility of money is greater under certainty than
under continuous uncertainty in a two-rule model, maximizing measurable
utility leads to a lower optimal production level than maximizing expected
utility.

M an example of a situation when the foregoing analysis can be applied and
within which a mixed -price lottery arises naturally, consider the introduction
of a price support for an agricultural commodity. Assume (for siaQlicity)
that the presupport price is a (bounded) continuous random variable, p0.

Suppose that a support price, s e 111, is introducod, so that, in effect, p0 is

truncated below at s, forming a new random price variable, p. We assume that
P(p0 < s) > 0. Then,

so that

and (as is easy to show)

P
Is if po < s

p
o

if p ) 11,

if t < s

P(t)
-

F (t) if t s

F
P

= F
P

(s)F + 11-F
p

(s))G,
0 0

where G is a continuous lottery defined by

G(t) =

In this case, we have

and

[(F (t)-F (s)]/(1-F (s)]
p0 p0 p0

P(n1) P(p0 4 8).

POO - P(p0 > s ),

,
8

1

F = G.
P2
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Furthermore, Fp (s) is merely the probability that the presupport price will
0

be equaled or exceeded by the support price, while G(t) is the conditional
probability that the presupport price will lie at or below t if it exceeds the
support price. These relationships help us interpret the expression for the
optimal production level Q arrived at earlier.

6.2 Optimal Saving Rates Under Uncertainty

We next investigate a model in which an individual who has different
preference rules for certainty (degenerate lotteries) and "continuous
uncertainty" (continuous lotteries) must decide how much of his/her initial
wealth W > 0 to consume the current period and consequently how much to

invest for consumption in the next period. We assume that the rate of return
on saving is represented by a random variable. We will examine first- and
second-order conditions and show how a solution may be obtained. We will find
that the possibility an individual may be indifferent between (a) consuming WO

entirely in period 1 and (b) investing a certain part of WO for later

consumption cannot generally be ruled out. Finally, we will compare our model
with the expected utility version of (38), which ours generalizes, and will
find that the two models deterrine different solution values. In particular,
when the marginal utility of money is greater under certainty than under
continuous uncertainty, the optimal saving rate will be lower than the rate
obtained through traditional von Neumann - Morgenstern expected utility
maximization.

To begin, let r (the rate of return on investment) be a bounded, continuous
random variable, and suppose that a saving rate of s e (0,1] generates a
"certain" first-period consumption of (1-0W0 and an "uncertain" second-period

return of sW
0
r. The choice space over which the individual seeks to maximize

his/her intertemporal utility is

((F(1-01
0
,F
sW

0
r)

I s e (0,1])

(where, as earlier, "F
X" denotes the c.d.f. of the random variable X). Note

that this choice space consists not of lotteries but of ordered pairs of
lotteries. However, the definitions presented in our discussion of the
existence of measurable utility functions (pp. 11 -13) are sufficiently general
to encompass "multidimensional lotteries" and "multidimensional utility": for
if S and T are any lottery spaces such that S contains each F

(1-8)W
0

(s e (0,1]) and T each Fial (s e (0,1]), then the choice space we are
0

considering is contained in the Cartesian product

S x T,

which is a mixture space. (In fact, SxTc0x0, where $ is the set of all
functions from R into R. Since 0 is a vector space over R, 0 x 0 is a vector
space over R under the inherited operations of coordinate-wise addition and
scalar multiplication. Since S X T is a convex subset of 0 X 0, it has a
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mixture-space structure.) We specify S and T, define a measurable
utility function, A, on S x TLind assume that the individual seeks to find an
element of the choice space that maximizes A over the choice space.
Furthermore, following Rothschild and Stiglitz (38), we desire that A: (1) be
additively separable between periods, (2) discount period 2 utility, and (3)
allow for different behavior toward certainty and "continuous uncertainty."
(A full treatment of the economic implications of additive separability for
measurable utility functions would take us beyond the bounds of our present
purpose. Additive separability in expected utility theory is discussed in
Pollak (34).)

To guarantee these properties, let uvuz: R R be functions for which

*AIM < 0 and u2(t) < 0 for all t e R. (We also assume that ul, u2, and r are

Sufficiently "nicely behaved" to allow repeated differentiation under the
Stieltjes integral sign (33, p. 409).) Define a measurable utility function

by

nl: n R

n
1
(L) j u

1
dL (L e H)

and a measurable utility function

by

n2'
R

03

fCOn (M) = (1 -8)lu
1
dir

1
(M) + u

2
dpr

2
+ff

3
EM)1 (M e J),

-03

where J is defined as the (convex) set of all lotteries M for which the
right-hand side of the equation above is finite, the Tri are the usual

projection operators, and 8 e (0,1) is interpreted as the "pure rate of time
discount of utility." Finally, define a measurable utility function, A, on
Hxj by

p4(L,M)] n1(L) + r)2(M) {(L,M) eHxd.

Note that, since r is bounded, each (F
(1-s)W

,F
sW r

) (s e (0,1]) is in
0 0

Domain (A). Then, when s e (0,1], we have
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AkF(1-0W
0

aW
0
r )1 j u

1
dF

(1-s)W
0

+ (1-8) I 0 + f u
2
dF

sW
0
r
I

-00 -00

= u
1
1(1-s)W

0
+ (1-6)E[u

2
0(sW

Or
)1,

while s = 0 Implies

g[(F = µ[(F ,F )1
W 0(1-s)

WO
,FsW

0
r)]

u
1
(W
0
) + (1-8)u

1
(0).

Thus, g exhibits the desired properties (1), (2), (3).

For brevity, with g, W0, and r understood, define C: (0,1] R by

C(s) = gt(F(__
)Ws

,F
sW r

), (s E [0,1]).
0 0

Then, if s E (0,1], we have

and

C'(s) = ull(1-s)W01(-V0) + (1-8)Eku2O(sWor)]Worl

C"(s) = u"[(1-s)W
0
1(=W

0
)
2

+ (1-8)Eku"e(sW
0
r)101

2

0
r
2]

0.

Thus, CI(0,1] can have at most one maximum, and C can have at most two. Any

maximum s*, of L must satisfy either

or

s* = 0 (no wealth saved),

s* = 1 (all wealth saved),

0 <8* < 1 and C'(s*) O. (3)

However, although condition (3) is sufficient to ensure that s* is a maximum

of CI(0,1], it is not generally sufficient to ensure that s* is a maximum of

C. To find a maximum of C when there is an s* E R satisfying condition (3),
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one would need to compare t(s*) with t(0). Note that t(0) is the g-utility
associated with "no wealth saved," it depends on ul, whereas t(s*) depends on

u
1
and u

2.

Now, condition (3) holds for s e (0,1) if and only if

0 = -ui[(1-0W0) + (1-8)BR4T(sW0r))r]

= A(s) + (1-8)B2(s)

= + (1-8)B
2
ys),

where, for given ul, u2, W0, r, and 8, the functions A,82: (0,1] 4 R are

defined in the obvious manner. However, since A' and B2 are everywhere

negative, A + (l-8)B
2

is decreasing and thus invertible. Accordingly, if

condition (3) holds, its unique solution is

s = (A + (1-8)B21
-1

(0).

Let us compare these results with those of the classical model that portrays
the individual as operating by means of a single, expected utility-type
preference rule. We assume W0, r, u1, 8, and ni are as before. Define

measurable utility functions

and

by

and

n2: J

A: Hxj.... R

co

n (M) = (1-8) f u dM (M E .7)

p.[(L,M)] = ni(L) + n2(M) ((L,M) e H x

where now 3 is defined as the set of all lotteries M for which the integral
appearing in the definition of n2 is finite. Put

E(s) = µ((F(1-0W IFsW
0
r )1
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for each s a (0,1]. Then, for each a E (0,1],

C(s) = ul[(1-s)Wol + (1-8)+10(sW30),

r(s) = ui[(1-s)W6)(4/0) + (1-8)ERuio(sWor))Worl,

and

C"(s) = ul[(1-0)WJW: + (1-8)E[(u10(sWor)Mr21

< 0.

Thus, t has at most one maximum, hence exactly one (since it is continuous on
(0,1]). (Note that:, in the two-rule model, by contrast, C was not, in

general, continuous at O.) Moreover, s* E (0,1] is the maximum if and only if

either

or

s* = 0 and C'(s*) 4 0, (1' )

s* = 1 and C'(s*) 0, (2')

0 < s* < 1 and r(s*) = O.

Observe that condition (1') reduces to

-ut1 (W
0
) + (1-8)W(0)E(1 r) 4 0,

that is (assuming ui(0) ' 0),

E(r) 4 (1/(1-8)Hui(W0)/ui(0)]

(3)

This inequality is a sufficient condition for 0 to be the maximum of C in the
present model but not in the two-rule model. Likewise, condition (2') and
condition (3) each guarantees a maximum in the present model, but not in the
two-rule model. Now, condition (3) holds for s E (0,1) if and only if

1
+ (1-8)ER1 u'o(OW

0
= 0,

which can be expressed as

A(s) + (1-8)131(s) = 0,

where A: 10,1] R was defined previously and 111: (0,1] R is iefined in the

obvious manner. However, since A' + (1-8)Bi is eveywhere negative,
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A + (1-8)B
1

is invertible. It follows that, if condition (3) holds, then its

unique solution must be

= [A + (1-8)B
1
] 1(0).

W. conclude that condition (3) generally has different solutions in the
classical and two-rule models. The solution formulas ,Uiffer in that the
two-rule model replaces the classical model's von Nemann-Morgenstern utility
function, u

1
, in B1, with u

2
, reflecting the different treatment of

uncertatnty in period 2.

In particular, suppose each model has an interior solution (that is, a
solution of condition (3) that is optimal over (0,1]) and ui > ui on R (that

is, "the marginal measurable utility of money is greater under certainty than
under continuous uncertainty"). Then, examination of the expansions of c in
both models jointly with condition (3) reveals that the expected utility model
yields a higher optimal saving rate than the two-rule measurable utility
model.
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