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ABSTRACT

A mathematically rigorous approach to the subject of risk permits us to
develop a more precise and unified set of concepts for analyzing individuals’
behavior under risk. The traditional method of measuring aversion to rigk is
not always warranted. Individuals' behavior under certainty cannot always be
used to predict their behavior under risk. Consequently, optimal saving rates
and optimal production input levels under risk may differ from those
Frescribed by traditional theory.
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SUMMARY

This report clarifies the theory traditionally used in agricultural economics
to describe how individuals make choices among risky alternatives., It uses a
mathematically rigorous approach to ensure that concepts are defined
unambiguously and results are established decisively. It reveals a hidden and
unnecessarily restrictive assumption irn the traditional risk literature. It
demons*“rates that, when this assunption is removed, the behavior of
individuals under certain types of risk is not, as previously thought,
entirely determined by their behavior under certainty.

The theory of individual choice under risk begins with an eccnomic agent faced
with a set of risky alternatives and endowed with a set of preferences over
these alternatives. 1In the classical "expected utility” theory, individuals
are assumed to prefer one risk to another if they judge that, on average, its
outcceme would be more beneficial. Agricultural economics applies this theory
extensively. However, muny claimed consequences of expected utility theory
are actually derived fronx another, hidden assumption: that an individual's
preferences are "continuous" in the sense that slight changes in alternatives
do not lead to sharp changes in expected benefits. Exposing and removing this
logically unnecessary assumption enables us to reinterpret the implications of
the classical theory.

Individuals' preferences over an important class’ of risky alternatives are
independent of their preferences among certainties. Thus, economic behavior
unalr this type of risk cannot generally be predicted from behavior under
certainty. For example, a knowledge of the "utility” (a kind of numerical
rating) that farmers implicitly assign to various possible incomes is not
generally a logically sufficient basis on which to predict their beravior
under risk. Farmers' aversion to risk, or lack thereof, cannot invariably be
determined from the shape of their utility curve of income. Moreover,
farmers' profit-maximizing chcices of production inputs may differ from those
traditionally thought to be dictated by the classical theory, even when their
preferences satisfy the explicit assumptions of that theory.

Understanding the way farmers respond to risk is a prerequisite for sound
agricultural policymaking. Tiis repoxt contributes to such an understanding
by clarifying established teaching and by providing a more precise set of
concepts for studying behavior under risk.
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Conceptual Foundations of
Risk Theory

Michael D. Weiss

1 1NTRODUCTION

Risk is a pervasive influence in agriculture. Irdeed, agriculture is one of
the few industries in which a crucial production input, weather, can neither
be controlled nor predicted. The economic consequences of this fact,
including the effecte of the resulting price risk, are far reaching.
Understanding the ways in which farmers and other participants in the
agricultural economy respond to risk is important to effective agricultural
planning, policymaking, and analysis.

For agricultural economists, such an understanding must be founded on a
general theory of how individuals make choices under risk. But, risk is a
subtle concept, and a theory of choice under risk cannot successfully undergo
testing, revision, confirmation, and ultimately empirical application, if it
is not tiioroughly understood. This difficulty applies as much to the
currently used "expected utility theory” as it does to improved theories yet
to be developed.

The risk literature, particularly the less advanced literature, has not always
been conducive to understanding. Discussions of risk have often relied on
improperly defined concepts or concepts identified inappropriately with
special cases. Some claimed results have depended on incomplete arguments.
Overall, the risk literature has not successfully conveyed a clear, conceptual
view of risk theory that is comparable, for example, to the established view
of the foundations of consumer demand theory. This reporu. will provide
agricultural economists with the foundation for such a conceptual view of risk
theory.

The report investigates the conceptsc that underlie expected utility theory,
the theory tnat describes individuals faced with a choice among risky
prospects as attempting to maximize their "expected utility” (a numerical
measure rating risks against one another). This theory is based on
assumptions of transitivity, completeness, independence (see p. 14), and

The author is an economist with the Commodity Economics Division, Economic
Research Service, U.3. Department of Agriculture.




adherence to an "Archimedean" property (7, p. 292) for preferences under

riak.‘v Moreover, as the report will demonstrate, most treatments of expected

utility theory and its applicationg have relied on an additional, hidden
assumption of continuity of risk preferenceg. Previous writers have discussed
the consequences of altering or omitting various of these assumptions ( for
example, see 3, 4, 7, 12, 13, 14, 15, 16, 21, 29, 42).

This study continues that line of inquiry by investigating the consequences,
both theoretical and practical, of omitting the assumption of continuity. The
results on continuity are part of a broader analysis aimed at clarifying the
weaning and logical relationships of a variety of concepts important to
expected utility theory.

We ftirst define the notion of a "lottery," the formalization of the idea of a
risky prospect, and draw the connection between compound lotteries and
convexity. We show how two textbook definitions of "lottery" can be
interpreted in terms of our definition.

We then define and examine measurable utility functions, utility functions
that represent risk preference orderings and that have a linearity property
mimicking the computation of the expected utility of a lottery. We present
new results on the intrinsic structure of measurable utility functions; we
show that any such function can be uniquely decomposed into a "discrete part,"
an "absolutely continuous part,” and a "singular continuous part."

Conversely, a measurable utility function is definable from such paris. These
results give rise to a new type of discontinuous preference ordering that, in
some economic models, allows preferences among "certainties" to be independent
of preferences among those "uncertainties" that are represented by continuous
lotteries. Such orderings can represent beliavior in which choices among
certainties are made within a different "frame of.reference"” (1, 43) than are
choices among "continuous uncertainties.”

We examine the use of functions on the real line to represent measurable
utility functions defined on lottery spaces (and thereby to represent the
associated preference orderings of lotteries). We describe conditions under
which a measurable utility function g has a "von Neumann-Morgenstern utility
function” u on the rsal line that allows pu to take the "expected utility"” form

[+ 1}
ME) = [ ueiance)

-0

for each L in the lottery space. We also present new representation theorems
showing that any function on the real line, even if discontinuous at every
point, represents some measurable utility function and thus some "rational"
preference ordering of lotteries. These theorems are used to extend the use
of discontinuous utility in modeling farmers' disaster outcomes (30) to
includé the case in which there is a riskless asset.

The concept of "risk aversion" is defined in a purely ordinal manner. It is
shown that the widely claimed equivalence between risk ave.sion and concavity

1/ 1Italicized numbers in parentheses refer to literature cited at the end
of this report.




of an underlying utility function of money hoids in a weakened form for
measurable utility functions wher preferences are continuous, but fails in one
direction, and “appears” to fail in the other, when preferences are
discontinuous. Implications for the empirical identification and modeling ol
risk aversion are discussed.

We conclude by exploring the behavioral consecuences of the new type of
discontinuous risk preference ordering within two risk models: one, a model
of production with uncertain output price, and the other, a model of saving
with uncertain interest{ rate. We show that, when the marginal utility of
money is greater under certainty than under "continuous” uncertainty (in a
carefully circumscribed sense that must be made precise), then (under
additional routine assumptions) the optimal production level and the optimal
saving rate will be lower than the corresponding levels cbtained through
traditional expected utility maximization. We also indicate how economists
can use our analysis to determine the optimal production level when a product
Price support is introduced, as with agricultural commoditiez.

Readers who master the concepts presented in this report should be much better
equipped to understand newer research such as the seminal work of Machina (28,
29). Moreover, they should be better prepared to conduct and evaluate
empirical studies involving risk because they will have a precise and orderly
intellectual framework against which to test the meaningtulness and validity
of empirical arguments.

The theory of choice under risk, dealing as it does with orderings
rrpresenting individuals' preferences over spaces of cumulative probability
distribution functions (see pp. 4-5, 7), is intrirsically a highly
mathematical subject. This report, therefore, contains a good deal of
mathematics. However, the material should be accessible to many agricultural
economice researchert and students who have some knowledge of probability and
real analysis, convex sets, and linear algebra. The main prerequisites are a
familiarity with basic mathematical notaticn (especially that of functions and
sets) and a willingness to do some hard, rigorous thinking about risk.
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2 LOTTERIES

The theory of preferences under uncertainty concerns choices that individuals
make when confronted with alternative risky prospects. These risky objects of
choice are customarily called “lotteries”; this section is concerned with
their definition, properties, and types. We will show how lotteries can be
defined as cumulative probability distribution functions and will describe the
convention for representing compound lotteries that allows this definition to
succeed. Several types of lottery are distinguished. We develop the notion
of a "locrtery space” as a set of lotteries closed under the formation of
compound lotteries and show that this closure property amounts to an
assumption of convexity. We point out alternative, more general definitions
of a lottery as a probability measure or as an element of an abstract "mixture
set.” We also contrast our approach to the subject with those of two widely
used microeconomics textbooks.

2,1 Formalizing the Concept of Iotterv

A lottery may intuitively be conceived of as a game of chance in which various
wrizes occur with preassigned probabilities. These prizes may be money or
even other lotteries (that is, the opportunity to play other lotteries and
receive their prizes). In the latter case, one speaks of a "compound"
lottery.

Consider the example oy a farmer who faces a probability p of a crop
infestation and, hence, a probability l-p of no infestation. If the first
case occurs, he/she faces a spectrum of possible profits depending, for
example, on weather and other unpredictable factors. In the msecond case,
there is another (higher) spectrum of possible profits. In effect, with
probability p, the farmer receives one profit lottery as a prize, and with
probability 1-p, another. This situation has the form of a compound lottery.

The intuitive concept of lottery used in economics is governed by an important
convention: two lotteries are considered "equivalent"” if they have the same
sets of ultimate prizes occurring under the same probability laws, regardless
of the processes by which these prizes are achieved. In short, the internal
compound structure of a lottery is ignored. The objects of choice are not
individual lotteries as one intuitively conceives them, but, rather, are
equivalance classes of individual lotteries.

It might at first appear that one could define a lottery (or, more precisely,
the corresponding equivalence class) mathematically as simply a random
variable whose possible values wer? the various ultimate prizes, those
occurring according to the desired probability law. However, the calcutiation
of an overall random variable to represent an empirical compound lottery in
temms of its constituent sublotteries would be quite complicated. Thus,
random variables are not very convenient as mathematical representations of
lotteries. Rather, it turns out that cumulative probability distribution
Ffunctions (c d.f.'s) are more tractable representations.

Recall that, if X is a random variable on a probakility space with probability
measure P, then the c.d.f. Fy of X is the function Fx: R -+ {0,1] defined by
Fx(r) = P(X < 1) for all r € R (where R is the set of all real numbers). Fy

contains all the probabilistic information inherent in X, but in a more
convenient format. It can be shown to be:




(1) Nondecreasing on R,
(2) Continuous on the right at each point of R, and to satisfy
(3) 1lim Fx(r) = 0 and lim Fx(r) =1,

T+ ™0

Conversely, if F: R + [0,1] is any function satisfying conditions (1) - (3),
then there exists a random variable of which F is the c¢.d.f. Thus, the set of
all c.d.f.'s is merelv the set of all functions satisfying conditions

(1) - (3).

Dejinition, A lottery is a c¢.d.f., that is, a function F: R » [0,1]
satisfying conditions (1) ~ (3). The set of all lotteries is denoted F.

Note that, in general, a lottery need not have an expected value.

Bearing in mind the distinction between the empirical concept of lottery and
our mathematical representation of it, consider ar empirical compound lottery

L that offers empirical lotteries L1 and L2 as prizes with probabilities p and

1l - p, respectively. Then, if the c.d.£.'s C_. and C? are taken to represent

1l

Ll and Lz, regpectively, the c.d.f. pc1 + (1—p‘;c2 will represent L. (Note
that pcl + (1—p)c2 is indeed a c.d.f.; this is readily proved by reference to

the *~fining properties (1) - (3).) This simple relationship—the
representation of compound ermirical lotteries by conver combinations of
c.d.f.'s—is central to the usefulness of c.d.f.'s as mathematical
representations of empirical lotteries.

Several important types of lottery are now defined.

Definition. For each r € R, define a lottery Fr by

Then, Fr is called degenerate. The set of ali degenerate lotteries is
denoted VD.

A degenerate lottery is the ¢.d.f., of a constant random variable. Fr has the
Prize r with probability 1. In empirical work, degenerate lotteries may be
used to reprrsent "certainties."

Definition. A lottery F is called simple if it is a convex linear combination
of degenerate lotteries, that is, if there exist a positive integer m, numbers
rl,...,rm (not necessarily distinct), and nonnegative numbers pl,...,pm (not

necessarily distinct), such that

and

10
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i=1

Tnhe set of all simpie lotteries is denoted #H.
A simple lottery has (with probability 1) finitely many prizes.

Definition. A lottery F is called discrete if there exist a sequence (ri}:;l

of (not necessarily distinct ) numbers and a sequence {pi}:;l of (not

necessgarily distinct) nonnegative numbers such that

[
P, =1
L

[+ +]
F = 2 p.F_ .
joy 1T

The set of all discretc lotteries is denoted "c'

Definition. A lottery F is called continucus if it is continuous as a
function on R and absclutely continuous if there exists a Lebesgue integrable

function £: R + R such that
r'
F(r') - F(r) = I £(t)dt

X

whenever r,r' e Rand r « r'.

(The use of ithe now-atandard, but ssemingly unaccountable, term "absolutely
continuous” to describe the stated property is apparently a vestige of an
earlier period in the development of real analysis, when the definition of
abgolute continuity for a function F was in the following vein: "For each
€ > 0, there is a 8 > 0 such that

a <b1&a

1 <b2<...<an<bn

2

implies

n
L 'EB) - £(a)i < e

k=1

This property was proved equivalent to the sort of integral condition that
nowadays is usually taken as the definition of absolute continuity (see 31).)

11




For an absolutely continuous F, the function f is unique and nonnegative
©

almost everywhere and satisfies J' £(t)at = 1. In short, F is absolutely

—-Q
continuous if and only if it has a probability density function.

Definition., A lottery F is called singular if F' equals 0 almost everywhere.

2.2 lottery Spaces

Different economic problems may involve different types of risk. Thus,
economic agents may be confronted with different "choice spaces"” of lotteries
in different gituations. Yet, although the nieed to consider a variety of
choice spaces is well accepted in, for example, consumer demand theory, it has
not been given much attention in “he risk literature.

What properties should a choice space of lotteries have? Expected utility
theory (or the more general "measurable utility theory™ pursued in this
report) imposes only one condition: that the choice space be "closed under
the formation of compound lotteries.” Expressed mathematically, and in view
of the previous discussion, this requirement is 8imply: whenever 0 € p € 1
and the choice space contains C1 and Cz' then it must contain pc1 + (1-p)C2.

Observe, however, that the set of all functions from R into R, endowed with
the usual operations of addition/subtraction of functions and multiplication
of functions by real numbers, is a vector space over R containing all
lotteries as elements. Thus, the cited requirement can be restated as: the
choice space (considered as a subset of this vector space ) must be convex,

Definition. A lcttery space is a convex sel of lotteries.

One can readily verify that each of the following is a lottery space:. the set
of all (1) lotteries, (2) simple lotteries, (3) discrete lotteries,

(4) continuous lotteries, (5) absolutely continuous lotteries, (6) singular
lotteries, (7) lotteries with finite mean, and (8) lotteries that are c.d.f.'s
of bounded random variables.

In view of the importance of normal distributions to the subject of risk, it
18 interesting that the set of all nurmal lotteries (that is, normal c.d.f.'s)
is not a lottery space. To establish this fact by means of a counterexample,
let F be tne N(0,1) c.d.f. and £ tho N(O,1) probability density function.

2
Then, there is an X, € R such that f(xo) < 1/2(2n)1/ + Let G bhe the N(Zxo.l)
c.d.f. and g the N(Zxo,l) probability density function. Now, if the c.d.f.

(1/2)F + (1/2)G were normal, then its derivative, h = (1/2)t + (1/2)g, would
be a normal probability density function. But this is impossible, since the
inequalities

h(0)

(1/2)£(0) + (1/2)9(0)

v

(1/2)£(0)

1/2(217)1/2,



n(x,) = (1/2)E(x)) + (1/2)g(x,)

¢« (/a(2m’?y + (17acam 3

= 1/2(2m)/?,

h(2xo) = (1/2)6(2xb) + (1/2)g(2x0)

> (1/2)g(2x)

= 1/2(2m)>/?

show that h(xo) is smaller than both h(0) and h(2xo), although xo lies between
O and be. This argument establishes that the set of all normal lotteries is
nct convex. (This fact is certainly known in other contexts (10), but it has
not been expressed clearly in the risk literature of econcmics.) However, any
set of lotteries has a convex hull. Since the convex hull of a set S equals
the set of all finite convex combirations »f elements of 3 (that is,

n
(pisl +...4p 8 | neN, Pyre.o /P € t0.1], x p; = 1,
im]

and sl,...,sn € S},

where N is the set of all positive integers), a lottery space, Co(S), may be
constructed from any set 8 of lotteriegf (such as the set of all normal
lotteries) by forming all finite convex combinations of lotteries in S, and
Co(S) is the "smallest"™ lottery space containing S.

2.3 lationahi o) ]

Our definition of lotteries as c.d.f.'s contains the impiicit assumption that
a lottery's ultimate prizes can be represented by real numbers. Indeed, if F
is a lottery and t is a real number, we are interpreting F(t) as the
pProbability that the lottery will provide an ultimate prize in the irterval
{-o,t]. Thus, in our approach, the real line reprusents the set of possgible
prizes, and these prizes are presumed to be quantit;ies of money or the like.

It is possible, however, to define lotteries so that quite general types of
objects are permissible as ultimate prizes. One such definition characterizes
a lottery as a probability measure defined on a measurable space (20) of
prizes. To understand how this approach relates to our own, recall that there
is a natural one-to-one correspondence between the set F of all c.d.f.'s P and
the set of all Borel probability measures m on R, given by

m({-o,t]) = F(t) (FeF, teR)

{see 8). For any c.d.f. P, this formula determines a unique Borel probability
measure m on the real line (that is, in effect, on our set of prizes) that

o



contains the same probabilistic information as F, but in a different format.
Clearly, the correspondence maps convex combinations of ¢.d.f.'3 to convex
-combinations of the corresponding measures; thus, Bcrel probability measures
on R share the ability of c.d.f.'s to represent empirical compound lotteries
conveniantly in terme of their sublotteries, Although the use of point
functions such as c.d.f.'s does offer computational advantages, there would
have been no conceptual barrier to our originally defining lotteries to be
Borel probability measures on R. Similarly, given a measurable space
consisting of any objects considered prizes, one could define a lottery to be
a probability measure on that space (see 18).

An even more general definition of luccery is implicit in Herstein and Milnor
(23). There a "mixture set" 18 defined as any set of objects that are capable
of being combined with one another, and with weights in {0,1], to form analogs
of convex combinations. Convex sets of c¢.d.f.'s and convex sets of
probabili’y measures are subsumed as special cases. (See pp. 11-14 for a
fuller discussion of tihir important paper.)

Because many economists learn the fundamentals of the theory of behavior under
uncertainty from micineconomics textbooks, it is instructive to examine how
such works typically approach the subjact of lotteries. Let us consider two
widely used texts, varian (44) and Henderson and Quandt (22).

varian does not define lotteries as specific mathematical entities, but
instead characterizes them through several axioms. All lotteries are assumed

to anave only two prizes ('themselves possibly lotteries); a lottery with prizes
x and y that occur with probabilities p and 1-p, respectively, is denoted

P°x+(l1-p) °vy.

The axioms are:

lox +(l-l) oy =x (Ll)
PoOx+(lp)ocy=(l-p)°cy+pox (L2)
qe(Pex+ (1-p)ey)+ (1gq)°oy=(gp) © x+ (1-qp) ° y. (L3)

The intended interpretation of axiom (Ll1) is that "getting a prize with
probability one is the same as getting the prize for certain.” (L2) signifies
that the order in which a lottery's prizes are specified is »f no consequence.
(L3), the "compound lottery axiom,” requires that the lottery whose prizes are
POo°x+ (1-p) © vy and y (attained with probabilities qand 1 - q,
respectively) be considered the same as the lottery whose prizes are x and y
(attained with probabilities gp and 1 -~ qp, respectively). 1In effect, this
axiom stipulates that the internal structure of a lottery is immaterial; only
the ultimate prizes and their probabilities of being attained are significant.
Thus, (L3) is an axiomatic statement of the convention on representing
lotteries by c.d.f.'s adopted earlier (p. 4).

C.d.f.'s clearly satisfy the preceding characterization of lotteries. 1In
fact, if we interrret p ¢ x + (1-p) © y as the convex combination px + (l-p)y
whenever x and vy ae c.d.f.'s and O € p € 1, then any c.d.f. X can be
expressed in tho "two-prize” notation as 1 ¢ x + 0 © x, and equations (Ll)

? 14



through (L3) reduce to trivially true statements concerning the algebra of
functions, namely:

1x + Oy = x (L1')
px + (1-p)y = (1-p)y + px (L2')
q(px + (1-p)y) + (1-q)y = qpx + (1-gp)y. (L3')

(Similarly, probability measures defined on reasurable sets of prizes satisfy
equations (Ll) through (L3).) Thus, there is no logical inconsistency between
our definition of lottery and the more general characterization given in
varian (44). Nevertheless, usirg c.d.f.'s has some advantages. We shall
return to this point shortly.

In Henderson and Quandt (22), as in Varian, lotteries are not defined as a
known type of mathematical object, but are characterized axiomatically. Only
one axiom, an analog of the compound lottery axiom described above, is given.
Attention again centers on lotteries having only two prizes; a lottery with
prizes A, B (and corresponding probabilities p, 1-p) is denoted

(P,A,B).

Just as Varian's p © x + q © y may be interpreted as the convex combination
px + (1-p)y of the <.4.f.'s x and y, Henderson and Quandt's (p,A,B) may be&
interpreted as t!. convex combination pA + (1-p)B whenever A and B are
c.d.f.'s and 0 € p € 1. (In particular, when A and B are money prizes (and
thus represented in our approach by degenerate c.d.f.'s), (p,A,B) may be
interpreted as the c.d.f. pF. + (l—p)FB, which (unde2r the assumption that

A €< B) is a step function F given by

0 if . ¢ A
F(t) = Ip ifA <t ¢B
1 ifB < t.

A similar remark holds for Varian's p ©x + q © y.)

Economists generally believe that axiom systems for behavior under risk based
on abstract characterizations of lotteries (22, 23, 44) imply such standard
results as the propositions that individuals act to maximize their expected
utility (of, say, income) or that risk aversion is equivalent to concavity of
the utility function of (say) income. We will show, however, that these
results require an additional assumption. The assumption that preferences are
continuous, imposed on a choice space of c¢.d.f.'s., will prove sufficient (see
also 18). This assumption is meaningful when lotteries are defined as
c.d.f.'s, since the set of all c.d.f.'s has a natural topology, the "topology
of weak convergence.” In contrast, the abstract characterizations of
lotteries do not provide for any topological structure on the choice space.
Under these characterizations, an assumption of continucus preferences is
inexpressible, and the standard results may fail.
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3 MEASURABLE UTILITY FUNCTIONS

Although expected utility theory may be considered to have begun with Cramer
(9) and Bernoulli (6), it was not until the appearance of von Neumann and
Morgenstern's pathbreaking study (45) that economists succeeded in their quest
to find some rational basis for the intuitively appealing principle that
individuals faced with & choice among risky prospects attempt to maximize
their "expected utility.” Taking as given a preference ordering of lotteries
satisfying several plausible axioms, von Neumann and Morgenstern showed that
one can define a numerical-valued function pu of lotteries so that:

(1) u(t.l) > u(Lz) if and only if Ll is strictly preferred tc I'z' and

(2) w( pt.l + (1—p)t.2) = pu( Ll) + (1-p)u( Lz) whenever Lland I'z are in the choice

space and O € p € 1. Condition (2) is 2 linearity property reminiscent of
taking expected values. Ffunctions satisfying (1) and (2) are called
measurable utility functions.

Following the simplified and generalized approach of Herstein and Milnor (23),
we now present basic dcfinitions and sketch the proof of existence of
measurable utility functions. We establish the properties of uniqueness and
invariance and relate these properties to the historical controversy over
whether measurable utility is an ordinal or cardinal measure. We define
continuity (including continuity of preference orderings) and use a result of
Grandmont (18) to establish that any risk preference ordering representable by
a discontinuous measurable utility function must itself be discontinuous.

Finally, we present new results on the decompogition of measurable utility
functions.

3.1 Existence

The Herstein-Milnor proof of the existence of measurable utility functions is
based on the abstract concept of a "mixing operation,” a mathematical device
reminiscent of the process of constructing a compound lottery out of two
lotteries and a probability. Recall that, if x and y are lotteries and

0 € p< 1, then px + (1-p)y is often termed a "probability mixture” of x and
Y. In this context, a function that maps each p, x, and y to px + (1-p)y is
the prototype of a mixing operation. Although this particular type of mixing
operation is of greatest concern to us, Herstein and Milnor actually prove the
existence of a measurable utility function for a wide class of mixing
operations. Indeed, the objects being mixed do not even have to be lotteries,
although lotteries are a particular (and important) case. Thus, the
Herstein-Milnor approach reveals that von Neumann and Morgenstern's
"measurable utility theorem" is but a special case of a very general result.

We now present the formal definition of a mixture space:

Desinition. Let S be a set and M1 [0,1] X S X S » S a function such that the
following pruperties hold for all a,b € S and al: k,A € [0,1]):

M(1,a,b) = a (1)

M(A,a,b) = M(1-A,b,a) (2')

M(Kk,M(A,a,b),b) = M(kA,a,b). (3')
16
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Then, (S,M) is called a mixture space, M a mixing operation on S, and S a
mixture set with mixing operation M,

This general concept of a mixture space becomes more familiar under the
following notational convention: given a mixing operation M on S, any

a.be€ s, and any A € {0,1], use the symbol "Aa + (1-A)b” to denote M(A,a,b).
In this notation, the symtcls "Aa" and "(1-A)b" need not themselves be
assigned any algebraic meaning; that is, these composite symbols are not
necessarily intended to denote the result of any mathematical operation.
Similarly, the symbol "+" should not necessarily be interpreted as having any
meaning in itself, such as summation. Rather, given A, a, and b, it is only
the undivided symbol "Aa + (1~A)b” to which meaning is here being attached—
namely, as an alternate means of denoting the function value M(A,a,b). Under
this convention, properties (1') — (3') reappear as

la + (1-1)b = a (1)
Aa + (1-A)b = (1-A)b + Aa (2")
k{Aa + (1-A)b] 4+ (1-x)b = (xA)a + (1-xA)b. (3")

The suggestivenegs of the notation "Aa + (2-A)b" and of the properties

(1") — (3") (which read like the properties (Ll') - (L3') of lotteries

(p. 10)) is, of course, no accident, for an important example of a mixture
space is furnished by any lottery space S paired with the probability mixing
operation that maps A € {0,1] and iotteries a,b € S to the lottery

Aa + (1-A)b € S, Thus, although Herstein and Milnor prove their general
results without ascribing any algebraic meaning to the notation "Aa + (1-A)b",
this notation does coincide with standard algebraic notation, and can be
interpreted algebraically, when the mixture space consists of a lottery space
with probability mixing. Henceforth, whenever we treat a lottery space as a
mixture set, the use of probability mixing will be implicitly assuwmed. (Por
other applications of the concept of a mixing operation, such as to coior
vision, see 19.)

Definition. Let S be a set on which is defined a complete weak preference
ordsring (that is, a complete transitive relation), Z. The corresponding
strong preference ordering, >, is defined by:

a>bif and only if a 2 b and not b £ a.
The corresponding indifference relation, ~, is defined by:

a~bifandonly ifaz bandb 2 a,.

We call (S,Zz) a preference space.
Definition. Let (S,Z) be a preference space. A function p: S - R is called
order-preserving (uwith respect to ) if, for any a,b € S, one has p(a) > u(b)
if and only if a > b (or, equivalently, p(a) » u(b) if and only if a Z b).

Definttion. Let (S,M) be a mixture space. A function v: S -+ R is called
lingar 1f, for all a,b € S and all A € {0,1],

v(M(A,a,b)) = M(A,v(a),v(Db)),
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that is,

v(Aa + (1-A)b) = Av(a) + (1-A)w(b).

The preceding notion of linearity should not be confused with linearity for a
vector-space mapping, although the two notions are closely related. The
notion used here may be motivated by the fact that a real-valued function
defined or an interval of the real line satisfies the second formula given in
the definition if and only if it is both concave and convex, and the latter
condition holds if and only if the graph of the function is a segment of a
straight line. (Such a function is linear in the vector-space sense if and
only if its domain is the entire real line and its graph contaius the origin.)

Definition. Let S be a set with a complete weak preference ordering 2 and a
mixing operation M. We call (S,Z,M) a preference mixture space. i\ linear,
order-preserving function on S is called a measurable utility function.

The central question addressed by Herstein and Milnor is that of the existence
of a measurable utility function on a set S, In the situation of most concern

to us, S is a set of lotteries and M is the probability mixing operation on S.
Herstein and Milnor’'s main result (23) is:

Theorem 1. Suppose (S,Z,M) is a preference mixture space for which the
following assumptions hold:

(1) For any a,b,c € S, the sets (x € (0,1] | ca + (1-a)b Z c} and
{x = [0,1] | ¢ 2 ca + (1-x)b} are closed; and

(2) Por any 2,a',be s, if a ~ a‘', then
(1/2)a + (1/2)b ~ (1/2)a’' + (1/2)b.
Then, there exists a measurable utility function on S.
For a detailed proof, see Herstein and Milnor (23). However, the intuition
underlying the construction of a measurable utility function on S is as
follows: given a > b, consider the "interval"
Sy, = {xes i a Z x 2 Db},

It is first proved that, for each x € sab' there is a unique element uab(x) of
(0.1] such that

x ~pp(0a + (14, (%))b.

(This result is analogous to the simple fact that, if a, x, and b are real
nunbers for which x € (b,a], then there is a unique uab(x) € [0,1] such that

X = ppiX)a + (1, (x))b.)

Of course, uab(x) is determined not only by x, but by a and b as well. To

arrive at a method of assigning a "utility value” to x alone, one now selects,
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and henceforth "holds fixed,” two elements Fgr Iy of S satisfying I, > ry-

Then, given any x € S, one chooses any a,b € S for which x,r:o,r1 € sab and

defines
M (%) = [y (X)-u (2 )1/ DR, (1) )R, (T )]

It can be shown that, if also a',b' € S are such that x,r_,r

o'T) € sa'b" then

Malbu(x) = ab(x)'

Thus, M ab(x) depends cnly on x and not on which particular a,b are chosen, and

it can be denoted u(x). The function pu: S + R thus defined can be shown to be
linear and order-preserving, hence a measurable utility function on S.

Examining the above reasioning in the context of real numbers may provide
additional insight. Por real numbers a » b with x € (b,a), one easily
calculates that

By (X) = (x-D)/(a-Db).

Given rl > ro and assuming x,ro,rl € (b,a], one finds that

M, (x) = [(x-D)/(a-b) ~ (r,-b)/(a-D))/[(x,~b)/(a-D) - (r,~b)/(a-b)],

which does not depend on a or b. Thus, in this case,

w(x) = (x-r )/(r,-r,).

Note that p is order-preserving wvith respect to the relation » on R.
Purthermore, u is linear on R with respect to the mixing operation M' de:.ined
by the ordinary algebraic formula

M'(a',a',b') = a'a' + (1-a')b’.
In fact,

wa'a' + (1—x')b') = ((«'a' + (1-x')b') —~ ro]/[rl—ro]
= a'(a'—ro)/(rl-ro) + (1-a' )(b'—ro)/(rl-ro)

=a'p(a') + (1-a' )u(b').

When S is a lottery space, condition (2) of Theorem 1 is known in various
forms as the "independence axiom.” Its interpretation is that, if a, a‘', and
b are any lotteries and an individual is indifferent between a and a', then
he/she is indifferent between the compound lottery offering prizes a and b,
each with a 50-percent probability, and the compound lottery offering prizes
a' and b, each with a 50-percent probability.
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2.2 Uniquaness and Invariance

Although Herstein and Milnor (23) address the question of the existence of a
measurable utility function, they do not explicitly consider the uniqueness of
such a function. Wwe now address this issue, following Varian's approach (44),
but £illing in some gaps in his troatment.

We begin with the following result, which, although basically well-known, is
apparently often confused with the "invariance property" (see p. 17):

Proposition 1., Let u and v be order-preserving functions on a preference
space (S,2). Then, there exists a unique function

f: Range (v) -+ Range (u}
such that
p=€0y,

Moreover, f is increasing. (Ncte: Here and in the remainder of this report,
"o" has its usual meaning of composition of functions.)

Proof. Given any r € Range (v), choose any a € v—l(r), and put

f(r) = pla).

Note that f is a well-defined function, since, if a,a’' € v (), then
v(a) = r = y(a'), from which it follows that a ~ a' and p(a) = u(a’').

Purthermore, u = £ o v, gince, for any a € 8§, we have a € v-l(v(a.)). so that
u(a) = £(v(a)). clearly, f is unique, for if also u = g © v, then
0= (f-g) © v, 80 that £ and g agree on Range (v). Finally, £ is increasing;
for, suppose r,r’' € Range (v) and r > r'. Then, there e<cist a,a’' € S such
that v(a) = r and v(a') = r', Necessarily, a > &', so that
£(r) = p(a) > p(a’) = £f(r').

Q.E.D.

For measurable utility functions, the range assumes a particularly s.mple
form:

Proposition 2. Let u be a linear function on a mixture space (S,M). Then,
Range (u) is an interval.

Proof. Consider any r,r' € Range (u), A € (0,1]. We have r = u(a),
r' = u(a') for some a,a’' € S, Then Aa + (1-A)a’' € S and

p(Aa + (1-2)a’) ~ au(a) + (1-a)u(a’)
= Ar + (1-A)r’

€ Range (u).
Q.E.D.

To characterize the function f of Proposition 1 when u and v are measurable
utility functions, we shall need the following:
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Definition. Let S be a subset of R. A function A: S » R is called affine on
S if there exist a,b € R such that, for all = € S,

A(x) = ax + b.
If S = R, such a function is alled simply affine.

Lemma 1. let S be an interval in R. Then, a function A: S + R is affine on S
if and only if, for any x,y € S, p € (0,1],

A(px + (1-p)y) = PA(X) + (1-pP)A(Y).
Proof. 1If A is affine on S, a simple calculation shows that the above formula
holds. To prove the converse, assume that this formula holds and (without
loss of generality) that S contains more than one point. Consider any c¢,d € S
with ¢ <« d. Por any w € [(c,d]}, it is easy to show that

w = twc + (1—tw)d,
where tw = (w-d)/(c-d). Since tw € [(0,1], it follows that
A(w) = twA(c) + (1—tw)A(d)
- tw(A(c)—A(d)) + A(d)
= w(A(c)-A(d))/(c—d) + (cA(d)-dA(c))/(c-d),

8o that the restricted function A{(c,d] is affine on (c¢,d}]. However, it is
easily shown ( for example, by differentiation) that the coefficients of

A|(c,d] are the same over all intervals {c,d] € S. It follows that A is

affine on S.
QDEDDD

We can now prove the following:

Theorem 2. Suppose u and v are measurable utility functions on a praference

mixture space (S,2,M). Then, there exists an increasing affine transformation
A such that

p=AOyvy,

(That is, "a measurable utility function on (S,*,M) is unique up to an
increasing affine transformation”.)

Proof. By Proposition 1, there is an increasing function
f: Range (v) =+ Range (u)

such that u = £ © v, cConsider any c,d € Range (v), p € (0,1]. We have
c = v(x) and 4 = y(y) for some X,y € S. Thus

f(pc + (1-p)d) = £f(pv(x) + (1-p)v(Y))
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f(v(px + (1-P)y))
= pu(px + (1-p)y)

= pu(x) + (1-phu(y)

PE(v(x)) + (1-p)f(v(Y))

pf(c) + (1-p¥f(d).

It follows by Lemma 1 that f is affine on Range (v). Since f can clearly be
extended to an affine transformation, the theorem is proved.

Q.E.D,

Corollary. Suppcse p and v are measurable utility functions on (S,2,M).

Then, whenever xl,xz,yl,yz € S and Yl + Yoo

Ci(xy )=1(x) D1/ TH(Y, 1=R(Y, )T = [V, V(X)) 1/TV(Y, )-v(Y, )],

(Intuitively, tne ratio of utility differences depends only on (S,Z,M) and the
lotteries chosen, not on the choice of measurable utility function.)

Proof. ©Obvious,

In addition to being unique up to an increasing affine transformation,
measurable utility functions are also invariant under increasing affine
transformations:

Theorem 3. 1If p is a measurable utility function on (S,%,M) and A is an
increasing affine transformation, then & © p is a measurable utility function
on (S,Z,M).

Proof. Obvious.
Though apparently often confuszd with one another, the concepts of
"uniqueness” and "invariance" for utility functions are, in a certain precise
sense, exact opposites. To exhibit this relationship in the case of
measurable utility functions, let (S,Z,M) be a preference mixture space, and
let U be the set of all measurable -.tility functions on (S,2,M). Define a
set-valued function, T, on U as follows: for each p € U, T(n) is the set of
all transforms of p by increasing affine transformations; tha* is,
T(p) = (A ©°p | A is increasing and affine}.

Then, invariance means:

for each p € U, ™ud) C u,
while uniqueness means:

for each p € U, U C T(pu).
Ancther source of much confusion in the literature has been the question of

vhether "measurable utility” is an ordinal ¢r cardinal measure (see 22, p. 52;
5, 17). A complete characterization of measurable utility as a "measurement

17



device" is provided by Theorems 2 and 3, which imply that, ir the language of
modern measurement theory, measurable utiility defines an "interval scale" (see
36 for the requisite -background in raasurement theory).

3 -~ aniin"j.x.

The question of when a measurable utility function is continuous presupposes
that the aeaning of "continuous,” as applied to a function whose domain is a
set of lotteries, is understood. A full consideration of this topic would
involve general topology. However, a less abstract approach using the notion
of a "metric space” will suffice for our purposes.

The concept of the continuity of a function f at a point xo may be expressed
informally and heuristically by the requirement that, whenever x approaches
xo, f(x) approaches f(xo). when the context admits of some appropriate notion
of distance, this characterization may be re-expressed as: whenever the
distance between x and xo approaches 0, £(x) approaches f(xo). we now

introduce formally the notion of a "distance function” or "metric."
Definttion. Let Sbe a set and d: S X § » {0,0) a function satisfying:
(1) Por all a,b e S, 4(a,b) = 0 if and only if a = b;
(2) Por all a,b € S, d(a,b) = d(b,a) ("symmetry"”); and

(3) Por all a,b,c € S, d(a,c) < d(a,b) + d(b,c) (the "triangle
inequality"”).

Then, d is called a metric on S and (S$,d) is called a metric spaca.
2
As an example, a metric d1 on R can be defined by

dl[(rl'rz)'(sl'sz)] = [(rl"sl)z ¥ ("2""2)2]1/2

2
for any (rl,rz),(sl,sz) € R, This metric corresponds to the usual notion of
the distance between two points in the plane.
Now, there is perhaps no immediately obvious notion of the "distance" between

two lotteries. However, it can be shown that there exists a metric, 4, on the
set F of all lotteries, having the property that, for any lottery L and any

sequence U"n):-l of lotteries, one has d(Ln,L) - 0asn~ o if and only if

{Ln):_l converges weakly to L (11, p. 285). (Recall that weak convergence of
{Ln);’_, to L means that, for each point t of continuity of L, lim L (t) =

N
IL(t). Weak convergence defines a natural topology on F.) This correspondence
between weak convergence and a notion of distance motivates the following:
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Definttion. Suppose S is a set of lotteries, u. S + R is a function, and
Lo € 8. Then, u is continuous at Lo if, whenever (Ln):-l is any sequence of

elements of S that converges weakly to I‘o' one has p,(Ln) + p,(Lo) as n * o, If

B is continuous at L for each L € S, p is called continuous, Moreover, a weak
preference ordering Z on S is called continuous (and we may speak of
"continuous preferences") if there exists a continuous order-preserving
function on S representing 2.

Definition. If S is a lottery space and (S,2) is a preference space, we call
{S,2) a lottery preference space,

Theorem 4 (18). Let (S,2) be a lottery preference space. Then, there exists
a continuous order-preserving function on (S,Z) if and only if

(1) Por any L, € S, the sets (L € S | L?.Lo)and {Les | LOZL) are
closed in S, (Fortheset (Le S| L 2 Ly}, for example, this means
that, for any sequence of lotteries L, satisfying L, z L, for all n
and converging weakly to a lottery L, one has L £ L,..)

Moreover, there exists a continuous measurable utility function on (S,Z) if
and only if, in addition to condition (1), the following condition holds:

(2) Por any L_,3.,L

> 3GSandanyte[0.1]. if L

1 ~ I‘z' then

tL) + (1-t)L, ~ tL, + (1-t)L,.

For the proof, see Grandmont (18). (Note that Grandmont uses the more general
definition of a lottery as a probability measure. )

At various places in this report, we will want to be able to conclude that a
preference ordering represented by a discontinuous measurable utility function
is itself discontinuous. What will justify this assertion? After all, in
general, the mere existence of a discontinuous order-preserving function
certainly does not imply that the corresponding preference ordering is
discontinuous. (Indeed, given any continuous preference ordering, one can
always construct a discontinuous order-preserving function for it by composing
one of its continuous order-preserving functions with a discontinuous
increasing function from R into R.) However, measurable utility functions
enjoy the following distinctive property: a preference ordering having a
datscontinuous measurable utility function must be ¢iscontinuous. In fact, a
preference ordering represented by a measurable utility function is continuous
tf and only Lf each of its measurable utility functions is continuous.

To prove these claims, r.call that, by Theorem 2, all measurable utility
functions on a lottery preference space (S,2) are transforms of one another by
increasing affine transformations. Thus, whenever one is continuous, all are
continuous. Suppose there exists a discontinuous measurable utility function
on (S,2). Then, all measurable utility functions on (S,2) must be
discontinuous, and it follows from the second half of Theorem 4 that either
condition (1) or condition (2) of that theorem must fail. But condition (2)
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holds, since (S,2) has a neasurable utility function. Thus, condition (1)
must fail, and it follows from the first half of Theorem 4 that (S,Z) has no
continuous order—preserving funntion; that is, Z is discontinuous.

iti

We will now prove a structural decomposition theorem for measurable utility
functions definad on a .iottery space. We will see how such a function may be
broken down into a "discrete part," an "absolutely continuous part," and a
"singular continuous part."” This result will further our understanding in
three respects. First, it will reveal explicitly the separateness of an
economic agent's behavior toward discrete lotteries (and thus toward
degenerate lotteries, which represent certainties) and that agent's behavior
toward continuous lotteries ("continuous uncertainties") when this behavior is
represented by a measurable utility function. It will thereby provide--for
some situations--a theoretical rationale for the related conjectures:

(1) that individuals use a different frame of reference (1, 43) when choosing
under certainty than when choosing under certain forms of uncertainty and (2)
that individuals' risk preferences are discontinuous, Second, this result
will show how a measurable utility function relates to known classes of
lotteries that may lend themselves to econometric and statistical
applications. Third, it will suggest a new, canonical method of constructing
imeasurable utility functions (a method that we shall use, impli-itly, in
sections 4-6 of this study). This new method will revexl the existence of an
entirely new class of discontinuous preference orderings under uncertainty;
previously, the property of discontinuity had apparently been associated only
with lexicographic orderings (16, 21, 28, 42), and then rather tenuously.

Although measurable utility functions remain our basic concern, we will state
and prove the decomposition theorem for iinear functions, as the decomposgition
depends only on the algebraic structure of the function. However. any
increase in generality is only apparent, because a linear function U on a
lottery space s is automatically a measursble utility function on (s,t“),

where Zu is a complete transitive relation on S defined by

Ll t“ L2 if and only if u(Ll) H u(Lz) (Ll,L2 € 8).

The decomposition of linear functions on lottery spaces will be seen to be
rooted in the decomposition of the lotteries themselves. Thus, we begin with
some remarks about lotteries and their decompositions. Details and further
background may be found in (8, 31).

Any discrete lottery is singular (8, p. 12). We shall be interested, however,
only in those singular lotteries that are continuous, of which a clasgsic
example is the Cantor distribution (11, p. 141). The sets of all singular
continuous, absolutely continuous, and discrete lotteries, respectively, are
convex and pairwise disjoint.

Now, it is well-known that, for any lottery L, there exist pl,pz,p3 € (0,1]
and lotteries Ll' Lz' L3 that are, respectively, discrete, absolutely

continuous, and singular continuous, such that
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p, * P, + Py=1

L = plLl + pZLZ + paLa.

The numbers pl, Pz’ p3 are unique. Although Ll, L,, L, are not generally

2 3

unique ( for example, if L is discrete, then p, =p, = 0, and Lz and L3 may be

arbitrary absolutely continuous and singular continuous lotteries,
respactively), the decomposition is unique in the sense that the product
functions PlLl' Psz' and 93L3 are unique. These functions may be viewed

naturally as the (uniquely determined) discrete, absolutely continuous, and
singular continuous parts of L.

However, unless pi =1, piLi will not be a c¢.d.£f.; thus, a linear function u
that may be defined at L will not generally be defined at piLi. To achieve a

convenient decomposition of u, we will need to extend the domain of p to
contain all the above parts piLi of each lottery L at which p is defined. To

facilitate this process of extension, we assume that, whenever p is defined at
L, it is also defined at each Li for which P, ¥ 0. (Note that P; # 0 if and

only if Li is unique in the obvious sense. 1In fact, if piLi = qiui and pi #

D, then, since

p;(1lim L.(t)) = q (lim M. (t)),
t- o t+o

we obtain p; ~q ¥ 0 and, therefore, Li = ui. The converse is obvious.)

We will now make these ideas more precise,

Definition. A function K: R + (0,1] is called a subdistribution function
(s.d.f.) if: )

(1) it is nondecreasing;

(2) lim K(t) = 0; and
t+—00

(3) it is right-continuous at each t € R.

One can easily verify that K is an s.d.f. if and only if there exist a lottery
F and a p € {0,1] such thot K = pF. The number p is unique (in fact, p =

lim K(t)). Moreover, F is unique unless K is the zero function.

t-o

Definition. An s.d.f. K is called discrete (respectively, absolutely
continuous, singular continuous) if there is a p € (0,1] and a discrete

(respectively, absolutely continuous, gingular continuous) lottery F gsuch that
K = pF,
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The sets of all nonzero s.d.f.'s that are, respectively: (1) discrete, (2)
absolutely continuous, (3) singular continuous, are pairwise disjoint (where
“nonzero” means "not the zero function"™). Note that it follows from our
definitions that the zero function is a discrete, absol:tely continuous, and
singular continuous 8.4.£. Allowing this "degenerate" case will simplify our
work.

¥e can now reformulate our description of the decomposition of a lottery as
follows:

Propoegition 3. If K is any 8.4.f., there exist unique 8.4.f£.'s XK., K_, K

1 2 3
auch that K.l. is Jdiscrete, K_ is absolutely continuous, K_ ia singular
continuous, and

2 3

K= Kl + K +K_.

Notation. If S is any set of lotteries, we define S « a8 the convex hull

(within the vector space over R of all functions from R into R) of S u (0}
(vhere "0" denotes the zero function on R).

Cbserve that & set S of lotteriesz is empty if and only if

s, = {0}
and is nonempty if and only if

S, ={pL | pe(0,1] and L € S).

The sets of all (1) s.d.f.'s, (2) discrete 8.4.f.'s, (3) absolutely continuous
s.d.f.'s, and (4) singular continuous 8.4.f.°‘s are o. the latter form.
Nctaiton. Por simplicity, we donote by sl, sz' 83 the sets of all lotteries
that are, respectively: (1) discrete (so that 31 = "a)' (2) absolutely

continuous, (3) singular continuous. Accordingly, S are the sets

1'32'33

® * *

of all s8.4.f.'s of th respective types.

Definition. Ilet S' be a convex set of 8.4.£.'8. A function u': S' <+ R is

called iinear if, for any p € {0,1], xl,xz € S', we have

(PR, + (1-P)K,) = Pu'(K,) + (1-pI'(K,).

Theorem 5. Iet u ke a linear function on a lottery space S. Then, p has a
unique linear extension « O S, satisfyirg

1, (0) = 0;

that is, there euists & unique linear function u « on S, such that
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K, (0) = 0

u,s-u.

Proof, 1f S is empty, then u is necessarily the empty function. In this
case, S, = {0}, and the zero function on S, is the unique linear extension of

pu taking zero to zero. Suppose, then, that S is not empty. Relying on the
characterization of S, described earlier, define

#,(PL) = pu(L)

whenever p € {0,1]), L € S. Note that u, is well-defined on S, 8ince either
PL = 0, in which case p = 0 and K (PL) = O, or PL ¥ O, in which case p and L
are uniquely dotemmined by pL. Furthermore, K, is linear. To establish this

point, considcr any xl,xz € S, and « € (0,1], and put

- + .
Z = oK, + (1-)K,

L, € S, Now, if

Ofcoum,xl-plblandxz-p 1Ly

2L2 for some pl,p2 € {(0,1], L

Z = 0, then apl - (1--<:x)p2 = 0, 80 that
Kk, (Z) =0
= “Plu(Ll) + (1"0)92#( Lz)
- au,,(xl) + (l—a)u*(xz).
Suppose, then, that Z ¥ 0, and put

Zw ~ apl + (l-u)pz.

Since zw € (0,1], we have

1y(2) = u,[2,0(a9 /2 )L, + ((1-00P,/Z )L, ]]

z p[(op,/2 00, + ((1-adp,/z )L, ]
= 2 [(op,/2 ML) + ((1-aIp,/Z (L))

= o (K)) + (- (K,).
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Finally, we show that pu  is unique. Suppose that u* is any linear function on

S, such that u*(0) = 0 and ux|S = u, Then, for any p € {0,1], L € S, we have

wr(pL) = px[(1-p)0 + pi]

(1-p)u*(0) + pu*(L)

0 + pu(L)

= u (pPL).
Thus,

nx =,
Q‘E‘D‘

Notation. Given any linear function g on a lottery space S, we will continue
to use the "star symbol" "u_" to denote the unique linear extension to S_.

Theorem 5 amounts to the assertion that the mapping that takes v on S, to its

restriction v|S is a one-to-one correspondence from the set of all linear
functions v on S, satisfying v(0) = 0, onto the set of all linear functions on

S. In fact,the existence of an extension for edch linear p on S amounts to
the fact that the correspondence is onto, while the uniqueness amounts to the
fact that the correspondence is one-to—one. This correspondence allows us,
intuitively speaking, to view p  as merely another form of ju, and, where

convenient, to study u_ instead of p. In particular, p, has a more naturszlly

descrilbvxd decomposition into discrete, absolutely continuous, and singular
continuous parts than does pu.

Definition. Let S be a set of s.d.f.'s with the property that, whenever K € S
and K = Kl + Kz + !(3 (where Ki € si*' i=1,2,3), then Ki €S (i =1,2,3).

Then, we call S decomposable.

Thus. a decomposable set of s.d.f.'s is simply one that, whenever it contains
an s.d.f., also contains its discrete, absolutely continuous, and singular
continuous additive parts. For example, if S is the set of all lotteries, or
the set of all lotteries with finite mean, then S  is decomposable.

Definition., Given any decomposable set S of s8.4.f.'s, ve define the
projection operators

mt S+ Sn si* (i = 1,2,3)

as follows: for any K € S, write K = l(l + b, + Ka, where Ki € si

2 *
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5

Lol

(i =1,2,3). Then

m(K) = K. (i=1,23).

The ni's are analogous to the canonical projections associated with a

direct-sum decompogition of a vector space (25, p. 161). In fact, they
satisfy the following properties:

(1) "i is linear, in the sense that

m (B9 + (op] =9 ¢ (PIT(K) (B € (0,11 Tk € S

(2) 1 (S) =S n si*;

(3) " < mo= "i (ni is "idempotent®);
(4) m ° "j =041if 1 # j (ni and "j are "orthogonal®); and

(5) ﬂ'1 +w o+ 1r3 = Is (the identity operator on 8).

2

In essence, the property of being "decomposable” will ensure, in the
forthcoming decomposition theorem, that the "additive parts” of u . are
well-defined. The property ensuring that the parts of p itself (in a sense
that will later become clear) are well-defined is expressed by:

Definition. Let S be a set of 8.d.f.'s with the property that, whenever K € S
and K = Kl + K2 + K3 (where Ki €S, ,1i=1,2.3), then

K./lin K. (t) € S
to

for any i for which Ki ¥ ©. Then, S is called hereditary.

In particular, whenever I, = plt.l + pzl‘z + p3L3 is an element of a hereditary
set S of lotteries (where pi >0, Li € si' i=1,2,3), then any Li whose pi is

positive must itself be in S. Examples of hereditary sets are the set of all
lotteries and the set of all lotteries with finite mean.

The notions of "hereditary” and "decomposable” are related in the following
way':

Propogition 4. A set S of lotteries is hereditary if and only if S « 18
decomposable.

Proof. If S is empty, S, = {C}, and the equivalence holds trivially. Assume
S # ¢, and suppose first that S is hereditary. If K € S, and X ¥ O, then
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K=piL for some p > 0, L € S, o that al.ox-pqlnl+pq_znz+pqat.3 forla_n
q:l € {0,1], I‘i € si such that either Li € S or qi =0 (i=1,2,3). Thus,
pqiLi €es . n si* for each i. It follows that S, is decomposable. To prove
the other half of the equivalence, suppose S . 18 decomposable, and consider
any L€ S, Wahave L = p1L1 + pzl.2 + pal.3 for some pi € [0,1], Li € si'
Since, necessarily, L = S, and each PiLi € si ., we have piL

x

i € S*, 80 that

P;L, = q M, for some q, € (0,1], M, € S. However, L, and M, are lotteries;
thus, if p, ¥ 0, then L, = M, € S. It follows that S is hereditary.

i i
Q.E.D.

The foregoing proposition allows us to define projection operators on S «
whenever S is a hereditary set of lotteries.

With these preparations, we can now give the desired decomposition theorem:

Theorem 6. let u be a measurable utility function (in fact, any linear
function) on a hereditary lottery space S. Then, K, has a unique

decomposition

e = &) + &+ &

into linear functions ti on S, such that ¢ j_(0) = 0 and “¢ i(K) depends only on
the ith part of K” (that is, ti - ti o ﬂi (i=1,2,3), vhere each ., is the

i
pProjection operator from S  onto S, N si ).

®

Proof. To prove the existance of the decomposition, note that,- by the
properties of the projection operators, we have

He = B, © Ig

x

‘#,°("14'"24'"3)

= (g, ©m) +(n, 0m) +(n, °m).

Clearly, each u, © 7; is linear and takes the zero function to 0. Moreover,
for any K ¢ S0 B, © ﬂi depends only on the ith part. ﬂi(K), of K, since

(K, © M UK) = (B, © 7 © m )(K)

Thus, existence ig proved.
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To establish the uniqueness of the decomposition, let ¢ i (i =1,2,3) be any
linear functions on S, such that ti(O) = 0, ‘i - ‘i ] "i' and

By = &) + 6, + &y

Then, we need merely observe that, by the properties of the projection
operators,

Byomg=(gom+omtgonmyom

-°+°|+£i°"i°"i

&
for each i.
Q.E.D.

The linear functions ‘i (i =1,2,3) appearing in Theorem 6 may be considered,

respectively, the discrete, absolutely continuous, and singular continuous
"parts” of p . Thus, the theorem shows how the extension to S ,of a

measurable utility function on S is "built up” from its discrete, absolutely
continuous, and singular continuous parts. (Actually, Theorem 6 can easily be
generalized to encompass situations in which lotteries are uniquely decomposed
with respect to classes other than 31. 32. and 33.) Let us examine in more

detail how this decomposition of p, relates to p itseli. To do 30, we need:

Proposition 5. Poxr any sets S and T of lotteries,

(Sn‘l’)*- S, nT,.

Proof. 8Since (SN T)u (0} € SuU (0), we have (S n T), € S,. Similarly,
(8nT), C T, Thus, (S n T), €8, n T,+ To establish the reverse inclusion,

note first that it reduces to (0} O (0} if either S ox T is empty. Suppose
S, T are nonempty, and consider any Z € S, n T,. Since 0 € (S n T),, we may

assume Z ¥ O. Now, we have Z = pL = @ for sows p,q € {0,1], L €S, MeT.
Necessarily, p = lim PI(t) = lim qd(t) = q, so tl £ L =M, SN T ¥¢g, and

t+w t+o
Ze(SNnT),. Thus, (Sn T), 2 s, nT,.

Q.B’.D.

Proposttion 6. Let u be a linear function on a lottery space containing a
lottery space T. Then

T,

], - o
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Proof. Both functions {u

7| and b |7, have T, as their domain and, if T 4,
®

both map an arbitrary element pM (p € (0,1], M € T) of T, topu(M)., IfT =g,
then T_ = {0}, and both functions are the zero function on T w®
QoEoDo

Now, as shown in the proof, the decomposition appearing in Theorem 6 takes the
form

Be = (uy O m)) + (p, O m,) + (p, ©m).

¥ wever, it follows from the definition of m and Propositions S5 and 6 that,
for each i,

My O, = .u*|s* n si*] °om

= {ufsnsp,] em

= [+ .
.uls n si]* m i
The sets S n si (i =1,2,3) are pairwise disjoint. Moreover, since the convex

hull of the union of the sets S n si is S, the values of u on these sets--or,

to put it differently, the functions uls n si
the additive decompogition of B, corresponds, in a sense, to a decomposition

--detemine u on all of S. Thus,

of u into "building blocks" u's n si (1 =1,2,3), (Note that, if S n si - g
as would occur, for example, if i = 1 and all lotteries in S were continuous—

thern uls n si is merely the empty function.) Of course, the functions

uls n si are measurable utility functions whenever u is a measurable utility

function; each merely represents the "restriction to S n S," of the preference

i
ordering representad by u.

We earlier alluded to the conjectures that individuals may have:
(1) different frames of reference toward certainty and certain forms of

uncertainty and (2) discontinuous risk preferences. To explore these points,
we need:

Definition (18). A set S of lctteries is called o-convexr if, whenever {Li);.o-l

is a sequence of elements of S and (pi);)-l is a sequence of nonnegative

[v.]
numbers for which z p; = 1, one has
j=]
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[+ )
ZpL € S,
w1 11

If S is o~convex, a function p: S -+ R ies called o-linear if, for any sequences

(Li):_l, (pi)?_l as just described, one has
® @
u[ L pini] = L pym(L;).
i=1 i=l

let pu 2nd S be as in Theorem 6, and assume P € S. Now, the "certain”
lotteries are the degenerate lotteries, and these are discrete. Thus, all
behavior of u over "certainty" ie reflected in i¢s values at discrete
lotteries. Purthermore, if either all discrete lotteries in S are simple or p
is o-linear, {hen the behavior of u over "certainty"” determines its values at
discrete lotteries. 1In either case, Theorem 6 shows that pu « €xhibits a

natural split into a discrete part, ‘1' that accounts for the behavior imposed

(algebraically) on u by its values at lotteries representing certainties, and
a continuous part, cz + (3, that accounts for the behavior of pu at lotteries

complementary to the discrete ones—namely, the continuous lotteries. In this
sense, u may be viewed as eing determined by two separate measurable utility
functions, with one incorporating—and indeed being determined by—the
behavior of u over certainty.

This intrinsic split would appear to provide a type of theoretical
plausibility for the conjecture that individuals may have a different frame of
reference toward certainty than they have toward uncertainty in cases in which
the nondegenerate discrete lotteries play only a formal role and the only
pertinent uncertainty arises from continuous lotteries (as might occur, for
example, if, through a central-limit-theorem—type process, many small,
independen’: effects generated normal distributions that in turn generated the
continuous lotteries in the individual's lottery space); for the split in u «

that would be implied by such distinct frames of reference is already imp.licit
in u . Similarly, this intrinsic split provides a rationale for the

conjecture that some individuals' risk preferences may be "discontinuous at
certainty” (that is, may admit of a measurable utility function that is
discontinuous at degenerate lotteries). This conjecture is supported by the
observation that the computational ability of the human brain is limited;
thus, there is no apparent empirical reason why an individual with preferences
among certainties and preferences among continuous lotteries should be capable
of so conforming these preferences thac, when they are extended to mixtures,
the limit properties necessary for continuity should hold. (Discontinuous
responses to risk are discussed from another viewpoint in Kahneman and Tversky
(26).)

Our examination of the decomposition of a measurable utility function suggests
the following general method of constructing measurable utility functions from
"pieces.” Given a measurable utility function u i on a preference lottery

space (Ti,?.i), where T; €8 (i=1,2,3), let T be the convex hull of
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T, T, UT,, and define a function u: T »+ R in the following manner: for any

L € T, by Proposition 3, there are unique s8.d4.f.'s Ki € si guch that L =
*

Rl + Rz + Ka. Since L is a convex combination of elements of Tl' Tz' and T3'

it follows that each Ki € Ti . By appeal to Theorem S, define
*

w(L) = ul*(Kl) + #2*(!(2) + ua*(xa).

Clearly, u is linear on T, since each My is linear on T; - Let Z be the
* *

preference ordering ?.u induced on T by u (8ee p. 20). Then, u is a measurable

utility function for the preference space (T,Z), and u Ty = M. Our

definitions of various "two-rule"” measurable utility functions in sections &
through 6 are based on'this construction. This construction also establishes
that distinct frames of reference toward certainty and "continuous"
uncertainty, as previously discussed and qualified, can always be represented
by some appropriate measurable utility function. In contrast, the existence
of such distinct frames of reference would be incompatible with the
traditional expected utility theory based on integrals, which implicitly
requires that preferences be continuous.

By taking T:I. to be a set of simple lotteries and setting 73 = ¢ in the above

construction, we find that the elements of T are convex combinations of simple
lotteries and lotteries having densities. Examples of such combinations arise
in applied work when distributions having densities are truncated, as in the
case of agricultural commodity price distributions that are truncated through
the introduction of a support price, or in the case of income distributions
that are truncated through the introduction of an income floor. 1Im -
traditional expected utility theory, such Aistributions are evaluated as a
whole. In contrast, our apprcach allows behavioral responses to the discrete
and continuous constituents of such distributions to be treated independently.
In fact, when, as in the examples cited, the only discrete distributions in
the individual’'s fcrmal lottery space that have any practical role are
degenerate, our approach provides a method of modeling empirical behavior that
is consistent with the axioms of expected utility theory, yet does not require
that the individual's choices among certainties detemmine his/her choices
among pertinent uncertainties (continuous probability distributions).

7
*

o
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4 MEASURABLE UTILITY ON THE REAL LINE

We will next examine the relationship between measurable utility functions
defined on lottery spaces and functions defined on the real line that may
20xveé as convenient representations of them. We will thereby clarify the use
of so—called "utility functions” of income or wealth to represent behavior
under risk.

We first describe how measurable utility functions give rise to "utility
functions on R.” We also state conditions under which a measurable utility
function can be represented as an "expected utility” functional in terms of a
“von Neumann-Morgenstern utility function” defined on R. We then adopt a
somswhat different point of view. We take a function on R as given and
investigate when there is a unique measurable utility function that gives rise
to it. We obtain new representation theorems that provide a basis for
interpreting discontinuous real functions as utility functions. We then
consider implications of these results for the use of discontinuous utility
functions in develocpment theory (30).

$.1  Induced Utilif s

Notation. We denote by "n" the natural one-to-one correspondence from R onto
P defined by

™(r) = F, (r €R).

Definttion. Let p be an order-preserving function defined on a preference
lottery space (S,2) for which P € 8, We call u © n the uttlity function
tnduced on R by u and say 4 © n is tnduced dy (S,X). Moreover, if u is linear
(hence a measurable utility function on (S,%)), we say u © n is measurably
tnduced dy (S,2). (Thus, a function f: R + R is measurably induced by (S,2)
if and only if there exi~i.s a measurable utility function u on (S,Z) such that
f=ponq.)

Note that the meaning of "linearity” for u as applied to degenerate lotteries
is quite different from that for u © n as applied to »eal numbers. For any
p € (0,1}, r,8 € R, linearity of u is expressed as

u(PPr + (l-P)Pa) - Pll»(l"r) + (l-P)u(l’s)-
In contrast, linearity of u © 7n takes the form

(Lonl(t)y =at +b (t € R)

for some a,b € R. Failure to distinguish betwoen a real number and its
corresponding degenerate lottery could lead one mistakenly %o agsert that
every measurable utility function p on S, by definition, satisfied

Kw(pr + (1-p)s) = pu(r) + (1-p)u(s) (p € [0,1], r,8 € R),

from which it would follow that
wp) = w(p-1 + (1-p).0)

= p(1) + (1-p,u(0)
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= P(u(1) - u(0)] + u(0) (p € (0,1]),

80 that p would appear to be linear on (at least a subinterval of ) R. This
apparent finding could tempt one tc the unwarranted conclusion that B is "risk
neutral" (s2e p. 50).

” s 1% "

As should by now be clear, a theory of measurable utility does not logically
require the assumption that lotteries have expected values. However, the
situation in which "the utility of a lottery equals its expected utility" (a
notion that requires explication) is at the heart of traditional expected
utility theory. Thus, we state a result (translated trom Grandmont (18) into
our language) giving conditions under which the situation cited obtains:

Theorem 7. Suppose (S,2) is a o~convex preference lottery space such that
P C S. Then, the following conditions, taken together, are necessary and

sufficient for the existence of a continuous bounded function u: R + R such
that the function p: S + R defined by

o

w(L) = jummun (L € 5)

—m
is a measurable utility function for (S,2):

(1)Poreach1.oes, the sets (L € S | LZLO} and (L € S | LOZL) are
closed in S (see Theorem 4 on p. 19).

(2) Por all Ll,L ,La € S and all p € {0,1], if Ll ~ L., then

2 2

le + (.l—p)I.3 ~ pL2 + (1—p)L3.

For the proof, see Grandmont (18).

Definition. Let u be a measurable utility function on a lottery space S. A
function u: R + R for which

[+ |

w(L) = juwmun (L €s)

—m
is called a von Neumann-Morgenstern utility function (for u).

If u is a von Neumann-Morgenstern utility function for a measurable utility

function p defincd on S, then the integral formula for 1 may also be expressed
as

K(L) = E(u © X)
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whenever L € S and X is a random variable having L as its c.d.f. Moreover, if
P € s, then, for each r € R,

[+ 1}
ey = [ ucerr (e

-~
= u(r),
so that
pon=u;

that 18, u is the utility function induced by p on R, and u(r) is "the utility
of F " (as assigned by u). Some treatments in the literature of expected

utility theory obfuscate the distinction betweer the "nonrandom” function u on
R and the random variable u © X, defined on a probability space.

We also point out that, whenever a measurable utility function p is defined on
(a lottery space containing) P, then, for any simple lottery

n

L = E piFr '
i=] i

u(L) too can be expressed as an "expected utility.” 1In fact, if u is the

utility function induced by pu on R and X is the obvious random variable taking
the value ri at i, then

n

p(L) = § pu(x;)
i=1

= E(u © X),

A similar remark holds if p is o-linear and L is discrete. However, in these
cases, if u is discontinuous at some ri for which pi > O, then E(u °© X) cannot

be expressed as a Stieltjes integral of u with respect to L, becauge that
integral will not be defined (see pp. 47-48 for a further discussion of this
point),

'3 M ble Utility Modeis for Real Functi

A common feature of economic studies involving risk is the adoption of a
utility function on R (that is, a "utility of wealth” or "utility of income"
function) to repreaent an economic agent's risk preferences. From the
standpoint of measurable utility theory, this use of a function from R into R
to represent a risk preference ordering raises several basic and important
questions regarding the relationship between such functions and lottery
preference gpaces that may measurably induce them., For example, what
functions from R into R are measurably induced by some lottery preference
space? Can such a function be induced by more than one preference oxrdering
defined on the same lottery space? An affirmative aiswer to the latter
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question would mean that some functions from R into R could serve
simultaneously as utility functions induced by incompatidle preference
orderings on the same lottery space.

We begin by showing that any function £t R ~ R (sven, fcr exampie, if
discontinuous everyuvhere) is msasurably induced by some lottery preference
space. Specifically, we prove

Theorem 8. The relation "p induces f" is a one-to-one correspondence from the
set of all linear functions on H onto the set of all functions from R into R.

(To understand the theorem, recall that M is the 8zt of all simple lotteries
and that a linear function p on H is automatically a measurable utility
function on the lottery preference space (H,t“), where the preference relation

hu on H is defined by
Iol l“ Lz if and only if u(Ll) > u(Ioz).)

Proof. We first prove that the correspondence is one—to-one. Suppose linear

functions u and v on # induce the same utility function f: R - R, Consider
any simpla lottery

n n
L= p.F (p, » 0, p; = 1).
12-:1’”1 i 1§1i

FProm the iinearity property for u and v, it follows by induction that

n
p(L) = P:u(F_ )
1§1 7y

n

P, f(r;)
Lpisey

n
Y PV(F_ )
151 A

= y(L),
80 that u = v, Thus, the relation "u induces £" is one-to-one.
We next prove that this relation is onto. Let £: R - R be an arbitrary

function. We will construct a linear function f* on # th: (viewed as a
weasurable utility function on (H,Zf,,)) induces f. In fact, for any L € H

m
(where, say, L = P.F_ ), put
121 isy
m
f*(L) = p.£(8,).
1)21 im i
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Note that, for f*(L) to be well-defired, £*(L) must depend only on L and not
on the particular representation of L chosen. But this condition is
satistied, for we have:
Lemmo 2, Suppose m and n are positive integers, el,...,sm and !:1, ...,tn {not
necessarily distinct) numbers, and pl. ‘oo ,p'.l and ql, AN ,qn (not necessarily
distinct) nonnegative numbers such that

n n

): p.P = z P, .

AL TR i
Then, for any function f£f: R -+ R,

m

n
p;f(8;) = £(t,).
L

Proof of lLemma. Without loss of generality, we may assume that each Py and qj

is positive. Let S be the set of distinct s i'a; that is, let

S=({(sBelR| forsome L€ (1,...,m}), 8 = si}.

Por each 8 € 8, define

Is- (ie(l,....m}) | 8, =g@g},

i
Then, the sets Is, 8 € S, form a partition of {1,...,m}, and we have
m

p.F = p.P
1):-:1 is 328 121. l's

) sés [igrspi] 's ‘

i

Similarly, defining

T=(teR| for some j € {1,...,n), ¢ -tj}

and (for each t € T)

Jt = {je(1,...,n} | £, = t),

3
ve obtain

n

ji-:lqutj ) tgr[jgatqj]'t'

3 4(



From our hypothesis, it follows that
z p:|F_ = E [ L q.]r .
sesligra 1] 8 ter jes, 3t

Howaver, since the pi's and qj'a are all positive, S and T are precisely the
sets of points of discontinuity of the left and right sides, respectively.
Thus, S = T, and we have

[ p; ~ ]P = 0,
8€S ieI8 jGJ 3

Now, it is easily verified that, in the vector space over R of all functions
from R into R, the functions Fs' 8 € S, form an independent set. It follows

that, for each s € S,

Since

m
‘pf(8.) = p,f(s.)
Lpseo s L E mke

Z P, ]f(s)
ieI

and (similarly)

quf(t ) = Ze;r[ ]f(t),

=1
the lemma is proved.

Thus, £*: H - R is a well-defined function. It 18 clearly linear. Thus, it
is a measurable utility function on (H,hf*). Finally, observe that, since,

for any t € R, f*(rt) = f(t), £ is the utility function o: R induced by £f*.
QcEch

Note that this result assures us that &ven arbitrary unbounded functions may
serve as measurably induced utility functions on R. Thus, the use of H as a
lottery space cilrcumvents the "St. Petersburg Paradox" (that is, the argument
that the use of unbounded utility functions necessarily implies the existence
of "in{inite utilities”). Observations in this vein hawve already appeared in
the literature (see 2, 41).

our next theor-m shows the connection between boundedness of real functions
and c-linearity of measurable utility functions. Pirst, recall that Ho is the

set of all discrete lotteries. We shall need
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Propostition 7. "c is o-convex.

@ ) o .
Proof. Suppose (Li}i_l is a sequence of elements of ﬂo and (pi}i_l is a

o

sequence of nonnegative numbers such that E pi = 1. Por each i, there sxist

im)
®

a sequence (t. ju1

1,j}
numbers such that

of numbers and a sequence {qi'j}°°

jm=1 of nonnegative

L 4,4 =1

@
L, = T q, .F
t j§1 LIty

Now, it is a well-known fact from set theory that there exizts a one-to-one
correspondence, ¢, from M onto M X M. Thus,

o ® o
LRty = T TRy
=1 P gd) g LT

=rP F /
L un)lq«n) to(n)

where ¢>(n)1 is the first coordinate of ¢(n). Since each p¢(n)lq¢(n) is

nonnegative and
[+ o)

®
L Pyny 9y ™ LB, TA
new HM)y (M) 2 2 T3

[+ o)
we conclude that E piLi is discrete.
i=1

QnE.Do

Proposition 7 permits us to consider o-linear functions on Ho. We can now

prove



Theorem 9. The relation "p induces f” is a one-to-one correspondence from the
set of all o-lirear functions on "cr onto the set of all bounded functions from

R into R.
{Az in Thscrem S, & s-linsar functicn u on #c is viewsd as & mesasurable

utility function on (Hc,?.u).)

Proof. PFirst, note that the correspondence is into the set of all bounded
functions from R into R. Indeed, suppose a c-liinear function g on H, induced

a utility function £: R < R that was unbounded-—-say, unbounded zbove. Then,
for each i € N, there would exist an r; € R such that £(r;) > 2., By the
o-convexity of Hc and the o-linearity of u, we would have

® i
L (Y2 )P, e

i= i
and
® < o0
i i
ml YL (/2 )F_ | = § (/2 )W(F_)
[11-:1 ri] & i
ot
= T (1/27)K(x,).
1= t

But this is impossible, since

n i
(/2 )YE(r,)>
121 i

for each a2 € N, Thus, f must b2 bounded above. Similarly, f must be bounded
below. We conclude that the correspondence is into (compare 18, Lemma 2).

Next, suppoaé that o-linear functions pu and v on Ho induce the same bounded
utility function f£: R - R, ILet

L=V p.F
1211"1

be any discrete lottei’y. Then

o0
(L) = P.u(F_ )
121 isy

= L pyf(s,)
iml
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)
) iz-:lin( 1P‘"i.)
= y(L).

Thus, 4 = ¥v. This proves that the correspondence i3 one-to-one.

Pinally, to prove that the correspondence is onto, suppose fi1 R - R is an
arbitrary bounded function. Define a function f*; "c -+ R ag followse: for any

L€ "o' (where, say,

put
£*{L) = p f(s,).
R
To prove that £x(1.) is wail-defined, we need

o
J=1

nuxbers and (pl }‘:_1, (q_j )‘;_1 are sequences of (not necesgarily distinct)

Lemma 3. Supypose (o i}:al' {t j) are sequences of (not necessarily distinct)

nonnegative numbers such that
[+ o

.):191 - Lgy=12

i= =1

© ©

E p.F = ): | N
jm1 * 84 j-1qj “j
Then, for any bounded function £: R -+ R,

[ (-2}
p,E(s, > = £(t,).
RN

Proof of Llemma. Without loss of generality, we may assum& that each p:.L and qj
is positive. We proceed as in the proof of Lemma 2, defining

s-(aeﬁtlforsomeiﬁll,s-si'),

T-(teklfoz'somejell,t-tj),
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and (tor all s Sand t €T)

I.-(ielllt'i-s),

Jt'(jeult--t).

J
A8 before, we obtain

L[L, P = LL, 4]
ss[ier 1] 8 terlyer, It
s t
(here using the absolute convergence of the series to justify the
rearrangement of terms).
Next, we prove that 8 = T by showing that S and T are precisely the 3ets of

points of discontinuity of the left and right sides, respectively. It will be
enough to prove this for S. (Note that S need not here be finite; indeed, it

could even be dense in R.)

Toward this end, for each 8 € S, put

P. - E P, -
icl
8

Note that each P. is positive. Put

Fa= PF
Lo

and consider any r € R, Por any ry,r, € R satisfying I, ¢ r<r,, we have
F(r,) - K(r)) = X P (Fg(r,) - Fo(x))].
s€sS
Since this series is uriformly convergent on R, we obtain
P(rt) - (r~) = z Ps[rs(r*-) - Ps(r-—)]
8€S

(where the "+" and "-" denote right- and left-hand limits). However, for each
8 € 8, P'(r+) - r.(:~) is either 1 or 0, according to whether r is, or is not,

equal to 8. Thus, P(r+) — P(r-) is positive if and only if r € S, which
proves that S is precisely the set of points of disco..tinuity of F. Arquing
similarly for T, we conclude that S = 1,

Thus ’ puttinq

for each t € T, we have




Note that this series is uniformly convergent on R, and consider any 8, € S.

Reasoning as before, we obtain
L (%a = 94)Fy(85%) - Fy(85)1 = O,
which reduces to

(P, -Q )F (8 +)-F_ (8-)] =0,
8, 8, 8, O 8, ©

It follows that P = Q . But
% %

o

p.f(s8.,) = P _f(s)
1§1 it sés s

®
£(t.) = T Q f(t)
jglqj )7 L

(see the proof of Lemma 2). Thus, the lemma is proved.

Thus, the function fx: nc <+ R is well-defined. Purthermore, it is c-linear.

(To establish this point, let (Li):_l be a sequence of elements of Ho_, and let

{pi}:_l be a sequence of nonnegative numbers such that 2 pi = 1, Then,

i=1

drawing on the proof of Propositior 7 (and using the same notation), we can

write

[+ ]
£x z piLi

i=1 f*[ L Patn ), Yoy

neM
rtpe q £(t )
el tt’(n)l $(n) " &(n)

o0 [+ J

= L P )9 LE(t L)
igl ijgl 1Ij ilJ

o0
= L pyfXLy).)
im]

&(n)

Since f*(Ft) = f(t) for each t € R, we conclude that f* (viewed as a

measurable utility function on (Ha,?.f*)) induces £. It follows that the

Correspondence under consideration is onto.

Q.E.D.




Theorems 8 and 9 cbviously imply that (necessarily distinct) preference
relations on distinct loCtery spaces may measurably induce the same utility

function on R. More important, however, is the question of whether distinct
preference relations on the sane lottery space can measurably induce the same

utility function on R, We will now demonstrate that they can when thees
preference relations arc not required to be continuous. In fact, we will
construct uncountably many distinct preference relations, all of which are
defined on the same lottery space and neasurably induce the same utility

function on R. Both in form and notation, our construction will parallel that
given during our discussion of the decomposition of measurable utility

functions (pp. 29-30). In particular, for each t € R, we will specify

measurable utility functions u it defined on lottery spa. 8s 1’it c si

(i= 1,2,'3) and will use these to define a measurable utility function B, on

theconmhun,T,ole VT, , ULUT.,,

t t 2t 3t

To proceed, consider an arbitriry function f: R » R. By Theorem 8, there
exists a (uniquo) measurable utility function, “1' on H that induces f£. Por
each t € R, put Tie = He Big = Byo Tae = @, and (correspondingly) Byy = g.
Let TZt be the lottery space consistirg of all elements of s2 with finite
mean. Define a preference ordering, zzt' on T, by the rule:

L Zzt M if and only if IL(t) € M(t) (L,M € th).

{Thus, for exaxple, if L and M were the c.d.f.'s of profit random variables X
and Y, respectively, "L zztw would mean that the probability of realizing a

Profit oxceeding t would be at least as great for X as for Y.) Choose any
a. > 0 for which a, > 2f(t). The function Boy? th -+ R defined by

uzt(L) - a.t[l—L(t)] (L € th)
is clearly a measurable utility function that represents tzt. Let T, be the
convex hull of Tlt U Ty U Tat' (Of course, all the Ter t e R, are identical;

let T be this common set.) Then, in accordance with our earlier construction
(pp. 29-30), the rule

B (L) = "‘1t*(“1) + uzt*(bz) + "‘3t*“‘3)

(where L =L +L,+L_€T,L. €8S, (i=1,2,3)) defines a measurable
1l 2 3 i i,
utility function Ko and a corresponding preference relation ?'t' on T. By the

definition of Big (see the proof of Theorem 8) and our construction,
measurably induces f.

t
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Next, we show that z. and zt are distinct whenever s ¥ t. Suppose s ¥ t, and
observe that there clearly exiat lotteries Lz'“z € Tz. - th such that
Lk(l) < Hz(l) and Lz(t) > Mz(t). Then, L2,H2 €T,
B (L)) =0 + aa[l-Lz(B)],
and, similarly,

B(L,) = at[}—Lz(t)],

Re(M,) = as[l—nz(s)],

i = o mc].

so that u.(Lz) > u'(Hz) and “t(Lz) ¢ ut(Hz). We conclude that 28 and 2t are
distinct orderings.

We have thus demonstrated that incompatible preference orderings defined on

the same lottery space can measurably induce the same utility function on R.
Since f was arbitrary, it follows that, in problems involving risk, no

assumptions concerning a utility function on R are sufficient to characterize
the underlying risk preferences. Rather, the risk preferences can only be
characterized by assumptions at the more abstract Level of the preference
ordering itself.

As we shall see below, the key to the preceding construction lies in the fact
that each By and thus (by the remarks following Theorem 4) each tt, is

discontinuous. To establish discontinuity, suppose t € R, and choose
bt € {0,1] such that

- ]

b, #1 [f(t)/au.

For each n € N, let Ln be any element of th such that

~1
Ln(t -n ) =0,

L (t) = b,

~1
L(t+n )=1
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(there is an obvious piecewise-linear lottery that will do). Then, L_ -+ F
wedkly as n +» o. However, for each n,

he(L) = af1 - 1 (t)]
= a.t(l - bt)
* £(t)
- ut(l’t).
It follows that [ is not continuous at Fy. ™us, Zt is discontinuous.

The preference relations Zt (t € R) constitute our first "concrete" example of

the new type of discontinuous risk preference ordering described in the
introduction (p. 2). Since each “t is discontinuous, and since every

measurable utility function satisfies the Herstein-Milnor axioms for
measurable utility theory (23), this example establishes that the
Herstein-Milnor axioms do not imply that measurable utility functions are
continuous. (There seems to have been a lack of clarity on this point in the
literature. One source of confusion may have been an overly liberal
intarpretation of Herstein and Milnor's careful assertion that one of their
axioms "approximately states that an individual's preference ordering is
continuous with regard to probability distributions” (23, p. 293). Norx has
the situation been helped by the fact that the Archimedean axiom of expected
utility theory (7, p. 292) is even more widely known (sometimes in slightly
changed form) as the "continuity axiom" (see, for example, 22, p. 53). Our
example also shows that the continuity axiom does not imply continuity for
measurable utility functions.)

The preceding results naturally raise the question of whether distinct
continuous preference relations on the same lottery space can measurably
induce the same utility function on R. The answer is given by

Theorem 10. Let S be a lottery space containing P. Suppose Zl and Zz are

continuous nreference relations on S that measurably induce the same utility
function, £, on R. Then, Zl and Zz are identical.

Proof. It follows from our assumptions that there exist measurable utility
functions p and v that represent Zl and Zz, respectively, and that induce the

same utility function, £, on R. Furthermore, by the remarks following
Theorem 4, u and v must be continuous.

It clearly suffices to prove p = v, For this, we will use the following
well-known result:

Lemma 4. For any lottery .. chere exists a sequence of simple lotteries that
converges weakly (indeed, uniformly un R) to L.

Proof of Lemma. For any integer n » 3, define intervals



Ik = ((k-1)/n,k/n) (k =1,...,n01)

I, = (n-1)/n),1].

Let L be any lottery. Sinceo Il, . "In are disjoint and exhaust (0,1), the

sets

-1
=L (L) (k=1,...,n)

are disjoint and exhaust R. Moreover, since L is a lottery, the sets Jk have

the following properties: Jk < J e whenever k ¢ ¢ (that is, each element.—-if

any——of Jk is less than each element—if any—of Jc whenevar k < 2). Each Jk

is an interval (posqibly empty). J1 and Jn are nonempty. Jz, .
bounded below. Each of J_, ...,Jn is closed on the left; that is, each

v 0d  are
n

2
contains its left-hand endpoint.

It follows that there exist numbers

a, €a, <...<a
such that
Jl - (—w,al),
In = (@)
and
T = (3 10%)

for k = 2,...,n-1. Defiue L. R + (0,1] by

0 ifteld

b 3
I.n(t:)- 1 1fteJn
k/n :i.ft:eJk (1 <k ¢n).

Then, Ln is a simple lottery (since, as is easily proved, the simple lotteries

2 2 precisely those having finite range). Moreover, since I(t) € Ik whenever

t e Jk' we have iI.n(t) ~I{t)l € 1/n. Thus, the lemma is proved.

Continuing with the proof of the theorem, let L be any element of S. By the

lemma, there exists a sequence (I.nl::_l of simple lotteries convercing weakly

a0
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to I,. Since u and v agree at each degenerate lottery, they must agree at each

I‘n' But then u(L) + v(L), by the continuity of u and v. We conclude that

p = v, and the theorem is proved.
Q.8.0.

4.4 Izolicati for Di ti Utility in P ! {cult

In his study of discontinuous utility (30), Masson argued that an expected
utility model derived from a utility function of income with a jump
discontinuity may be an appropriate representation of farmer behavior when a
disaster-avoidance motive is present. He based his conclugions on the
£indings of O'Mara‘s study (32) of the diffusion of technical change in amd
around a farm project in Mexico. Masson pointed to directly estimated utility
functions arising out of O'Mara’'s study as in fact providing emp.rical
evidence of discontinuous utility. The use of discontinuous utility functions
had earlier been suggested by Roy in the context of his "safety-first” theory
(39). A "juwmp point” of such a utility function might be, for example, the
level of income at which bankruptcy occurs.

Neither Masson nor Roy, however, altempted to establish the legitimacy of
discontinuous utility functions within a theory of behavior under risk. We
will now addross this issue with particular attention to the use of
discontinuous utility functions when a riskless asset is ar ilable. The
reader may find it of interest to contrast our methods with the graphical
methods used by Pyle and Turnovsky (35) (whose work also considers
implications of riskless versus risky asseta, though in a different context).

The assumption that an economic agent has the choice of holding a riskless
asset is formally the assumgtion that his/her lottery space contains
degeneralte (hence simple) lotteries. The consideration of lottery spaces
containing simple lotteries is also important for another reason: in many
empirical studies of behavior under risk, it is the subjects' expressed
preferences among various putative simple lotteries that are used to construct
utility functions of income. Thus, any realistic model intended to reflect
the behavior observed in such studies must assume that the subjects' lottery
space contains simple lotteries.

Now, the common presumption is that functions on R that are put forth as
utility functions for risky choices are to be intexpreted as von Neumann—
Moigenstern utility functions (see p. 32). In the traditional case in which
the utility function of income is continuous, the inclusion of simple
lotteries in the lottery space poses no difficulty. However, when the
(proposed) utility function is discontinuous, it cannot always be interpreted
as a von Neumann-Morgenstern utility function, for its integral with respect
to a simple (and hence discontinuous) lottery may be undefined (see below).
How, then, is such a function to be interpreted, and on what basis can it
characterize behavior under risk? Specifically, how can it be related to a
preference oxdering of risky prospects? To place these questions in sharper
focus, let us review the theoretical justification for using continuous
functions as "utility functions” of income and then contrast this case with
that of discontinuous functions.

We begin by pointing out that, within the traditional theory of behavior under

risk, the fundamental economic datum is a preference ordering defined on a
lottery space. When, for analytical convenience, one pursues a risk-related

o




study by selecting a continuous function u: R + R and designating it a
*utility function" of income, one is msrely defining a preference ordering of
lotteries implicitly rather than explicitly. Indewd, in the usual case in
which expected utility maximization is intended, the rule

[+ )
W) = _[ud:.

-

defines a linear function g on the (necessarily convex) set of all lotteries L
for which the inteyral is finite. Then, in the usual manner (see p. 20), u
determines a preference ordering h“ for which u is a measurable utility
function. In this way, u determines z“. Yet, z“ also measurably induces u by
means of 4. One can summarize these relationships among u, u, and zu by the

statement that any continuous function u: R + R determines a preference
lottery space that, in turn, measurably induces u. It is this correspondence
between continuous real fuactions and preference lottery spaces that justifies
interpreting the former as "utility functions.”

Por discontinuous functions u: R + R, however, the relationship to preference
lottery spaces is less apparent. As already noted, the Stieltjes integral

-ojwm

may not even be defined when u is discontinuous and L is simple. Thus, the
arguments used in the continuous case are not applicable here, and we are
confronted with the task of proving that the use of discontinuous real
functions ac vtility functions is not merely spurious, but, rather, can be
justified by the existence of an appropriate correspondence between such
functions and preference lottery spaces. We now proceed toward a resolution
of this issve.

Pirst, suppose an individual has available no riskless asset—that is, that
there are no degenerate lotteries in his/her lottery space. In fact, suppose
that he/she chooses only from among continuous lotteries representing bounded

random vaziables. Assume u: R » R is continuous except perhaps at finitely
many points. Then, for any one of his/her lotteries, L, the Stieltjes
integral

[+
I udL
-Q
is well-defined, so that u, though discontinuous, may serve as a von Neumann—
Morgenstern utility function, derfining a measurable utility function (and
associated preference lottery space) as previously described. In this

situation, u is legitimized as a utility function by the same relationship to
a preference lottery space as would he enjoynd by a continuous real function.
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Alternatively, suppose now that the individual does have a choice of holding a
riskless asset; that is, suppose that his/her lottery space contains the
degenerate lotteries. Then, if u has a discontinuity at to' both u and Pt
(o)
are discontinuous at to, and u will not be Stieltjes integrable with respect
to P, (that is,

%o

will not exist). This observation follows directly from the definition of the
integral. (In fact, from amchg the various Stieltjes sums

n
u(s!)(F_ (s. .)—-F_ (8.)],
i§l i to i+l to i

one could always select two that differed by nearly u( t°+) - y( to—), yet whose

subdivisions

see B ,Bi,B

i-1 i1 *°°

were arbitrarily fine.) Thus, u cannot fulfill the role that the traditional
expected utility framework requires of a von Neumann—Mcrgenstern utility
function-—namely, of serving as the integrand of a Stielties—integral
functional that assigns to every lottery in the choice space its "expected
utility.”

How, then, when a riskless asset is available, can discontinuous utility on
the real line be rationalized within an acceptable theory of preference
behavior under risk? A simpie answer is provided by Theorems 8 and 9, for
they establish that any function u: R + R, even if discontinuous at every
point, detarmines a unique measurable utility function on the lottery space of
all simple lotteries (or, if u is bounded, even a unique o-linear measurable
utility function on the "larger” lottery space of all discrete lotteries)
that, in turn, induces u. Thus, discontinuous utility functiors on the real
line, while not necessarily consistent with the maximization of expected

von Neumann-Morgenstern utility, are consistent with the maximization of
mesasurable utility. Our theorems legitimize the use of such functions as
representations of behavior under risk (as in Masson's stud/ (30)) by showing
that each may be associated with a measurable utility function, and thus with
a preference ordering, defined on a lottery space.

In establishing one-to-one correspondences between real functions and
measurable utility functions, Theorems 8 and 9 assume that preference
comparisons arc to be made only among simple lotteries or among discrete
lotteries. It is natural to ask whether gimilar correspondences hold when
continuous lotteries (in conjunction with simple or discrete lotteries) are
allowed in the lottery space. We will now show that such correspondances do
not hold. 1In fact, although any discontinuous function on R is still
measurably induced by some preference ordering, such an ordering is not
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unique. Thus, if a discontinuous utility function of income were used to
model behavior under risk for both simple (or discrete) and continuous
lotteries, no underlying risk preference ordering could be uniquely identified
(unless, of course, additional restrictions were introduced).

To formalize and prove this assertion, let £: R < R be any function, and let
be any measurable utility function defined on the space C of all continuous
lotteries. We will construct a measurable utility function that induces £,
yet agrees with u on C. (We consider here only the conjunction of simple
lotteries and continuous lotteries; when f is bounded, the proof for the
discrete lottery case is gimilar.) Now, by Theorem 8, there isgs a (unique)
measurable utility function, £*, defined on H that measurably induces f. Let
L be the convex hull of # U C. Then, every lottery L in L can be written as &
convex combination

where 0 < pL <1, SL is a simple lottery, and CL is a continuous lottery.

Furthermore, as can be demonstrated by a short argqument based on the lottery

decomposition results described previocusly (pp. 20-21), pL, pLsL, and (1—pL)cL

are unique., We are thus assured that the measurable utility function, v,
defined on L by

W(L) = pLEX(S,) + (1P IM(C,) (L eL)

is well-defined. Clearly, v measu~3bly induces f. Moreover, v|C—the

restriction of v to C—equals u. Thus, we have constructed a measurable
utility function (and, therefore, a preference ordering—namely, the ordering
ZV determined by v) that encompasses both f and p in the senses desired.

Consequently, since u was arbitrary, £ cannot identify a unique preference
ordering, and our assertion is proved. It follows that the empirical use of
discontinuous utility functions may be spurious unless the lottery space is
properly restricted, as in Theorems 8 and 9,

A final issue requiring clarification is the interpretation of "jump size" at
points of discontinuity of utility functions of income. Masson (30)
interprets a "larger"” drop in utility values at points of discontinuity as
signifying a "more serious” economic disaster. Prom the standpoint of
measurable utility theory, however, no such interpretation is warranted. PFor
an induced utility function contains no more information on behavior under
risk than its underlying preference ordering, and the latter is concerned
solely with order of preference, not strength of preference.
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5 RISK AVERSION

An individual is "risk averse" if, whenever confronted with a risky prospect,
he/she prefers a guaranteed payment equal to the expected value of the
prospect, to the prospect itself.

The concept of risk aversion is usually considered within the framework of the
traditional expected utility theory based on integrals. within that
framework, risk aversion is known to be equivalant to the concavity of a von
Neumann-Morgenstern utility function. In this section, we investigate the
relationship of risk aversion to concavity within the more general setting of
weasurable utility theory.

We first present the basic definitions. We then show that the equivalence
betweon risk aversion and concavity holds (in a weakened form) for measurable
utility functions when prefarences are continuous, but may fail in one
direction, and “appear"” to fail in the other, when preferences are
Giscontinuous. Pinally, we consider the implications of the "apparent”
failure for the empirical identification of risk aversion.

5.1 finiti
Recall that the mean of a lottery L (here denoted E(L)) ic defined as the
[+ ]
Stieltjes integral J tdl{t) whenever the ir’.egral exists. Recall alsc the
-w

function n: R + P defined earlier (p. 31).

Definition. Let (S,2) be a preference lottery space in which each lottery has
a finite mean. Assume n[E(S)] C S, where E(S) is the set of means of elsments

of S. Then, (S,2) (or 2) is called:

(1) weakly risk averse if, for each L € S, FE(L) zL;

(2) risk neutral if, for each L € S, ~ L; and

FE(L)

(3) weakly risk loving if, for each L € S, L 2 PE(L)‘

If 2 is replaced by > in (1) or (3), then (S,Z) (or Z) is called strongly risk
averse or strongly risk losing, respectively.

Most treatments of risk aversion leave the impression that the notion requires
a utility framework, or even an expected-uti.ity framework, for its definition
(for exceple, see (22, 27, 44)). In fact, however, risk aversion is a purely
ordinal concept.

Por precision, we will noced:

Definition. M function f: R =+ R is weakly (respectively, strongly) concave if

f(ta + (1-t)b) > tf(a) + (1-t)£(b)

$0



(respectively, f(ta + (1-t)b) > tf(a) + (1-t)£(b))

vhenever t € (0,1), a,b € R, and is weakly (respectively, strongziy) convexr if
—f is weakly (respectively, strongly) concave.

5,2 Relation to C.,cavity
We can nhow prove:

Theorem 11. Let (S,2) be a prefererce lottery space for which each lottery

has a finite mean and P € S. Assume (S,2) measurably iaduces on R a utility
function, £. Then:

(1) 1. 2 is weakly risk averse (respectively, weakly risk loving;
risk neutral), then f is weakly concave ( respectively, weakly
convex; affine). The analogous gtatement holds if “weakly” is
replaced by "strongly."

(2) If f is weakly ccncave (respectively, weakly convax; affine) ang

Z is continuous, then 2 is weakly risk averse (respectively, weakly
risk loving:; risk neutral),

Proof. 1lat u be a measurable utility functio. for (S,2) that induces £f. To

prove (1), suppose X is weakly risk averse, and consider any a,b € R,
P € (0,1). Put

L = pF, + (1—_9)?,’;
then L, € S and

E(L) = pa + (1-p)b.
Since
FE(L) z L,
it follows that
u(FE(L)) » WL).

Thus,
w[nea + o] > pu[nca)] + 1pufncm]s
that is,
£lpa + (1-p)b] > pE(a) + (1-p)ECR).

Thus, £ is weakly ccicave.

If Z is weakly risk loving, the proof is similar. Finally, if Z is risk
neutral, then it is both weakly risk averse and weakly risk loving, so that f
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is both weakly concave and weakly convex, hence (by Lemma 1, with S = R)
affine.

™he second half of (1) is proved similarly.

To prove (2), suppose f is weakly concave and Z is continuous. Then, by the
remarks following Theorem 4, i must k¢ cortinuous. We will need the following
two lewmas (see 11, pp. 150-51, 33, pp. 211-12):

Leema 5. If L is any lottery with a finite mean, then

lim tI(t) = 1lim t(1-L{t)) = O,
t+-m t+n

Proof of lemma. It is known that any lottery L with a finite mean satisfies

© [+

JtdL(t) - Jl—L(t)dt
0 0

0 0
JtdL(t) = —J L(t)dt.
- -
(Note: We adopr the convention here that Stieltjes integrals are taken over
0
closed intervals. 1In particular, J tdi{t) refers to (-—,0], not (-mw,2).

—w
.. % specificity is not necessary, of course, for Riemann integrals.) Now,
for any r » 0, we have (by integration by parts for Stieltjes integrals)

r X
JtdL(t) = ri(r) - J' L( t )dt
0 0
r
- r[L(r)—l] + J 1-L(t)dt
0
and
) 0
JtdL(t) - rl(-r) - JL(t:)dt.
-r -r

If we now take limits as r - ®» and apply the results just cited, we obtain at
once the desired conclueiong.
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Lemma 6. Por any lottery L with a finite mean, there exists a sequence
©
(Ln,n"l of simple lotteries such that

(indeed, uniformly on R) and

E(Lh) <+ E(L) as n -+ o,

Proof of lemma. Consider any integer n 3 3. We will construct a simple
lottery Ln such that

IE(L ) - E(L)| < I/n

and, for each t € R,

1L (t) - I(t)| < I/n.

This will clearly be sufficient to establish the lemma.

[+ +]
Since lim L(t) = 0, lim L(t) = 1, and J' tdL(t) exists—and, by
t+-m t* -
Iezma 5—there exists a B » 0 such that
B 00
| J' tdL(t) - ItdL(t)l < 1/4n,
-B -0

BL(-B) < 1/4n,
3[1—1.(3)] < 1/4n,

I{t) < 1/n whenever t ¢ -B,

I{t) > 1 - 1/n whenever t » B.

Define Ln(t) = 0 for all t < -B and Ln(t) = 1 for all t » B. Then
ILn(t) - I{t)| < 1/n whenever t € (—w,~B) U (B,w). Our definiticn of I"n on

(1)

(2)

(3)

(4)

(5)

(-B,B) must await our construction of an appropriate partition of (-B,B] into

subintervals.

Toward thie end, note that, by a standard theorem on Stieltjes integrals (40,

P. 108), there exists a 8 > 0 such that, for any fi..ite sequence of numbers

bl < bz € see ¢ bm for which

o8
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b = .B'

1l
bm = B'
and
each b“_1 - bi is less than §,
and for any choices tl""'tn-l of points t:i € (bi'biﬂ]' one has
n-1l B
| ) ti[l.(bi+1) - L(bi)] - Itmt)l < 1/4n.
i=1 -8

We define a part’-ular such finite sequence as follows: as in the proof of
Lesma 4, we parxt.cion {0,1] into intervals

Ik = ((k-1)/n,k/n) (k =1,...,n-1)

1, = ((n-1)/n,1},

obtaining thereby intervals

-1
Jk = I (Ik) (k=1,...,n)
and numbers
al ‘ az ‘ 0 0 ‘ an.l

auch that

Jl - (_wlal)l

Jn - (an—l'w)'
and

I =(a_.a) (k=2,...,01).

We next (in effect) subdivide those Jk that lie (at least partly) within

{-B,B] into subintexvals of length less than 8. More precisely, we define the
set S to be the union of: (1) the set of all a (if any) for which

-B € °‘k < B and (2) any one finite subset (cl,...,cz) of (-B,B] such that

-B-cl< <ci<ci+1< <c¢-8
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and each Ci41 " Sy is less than 8. We may write S as

S=(b b},

1’°"°'"m

where b. <« b, whenever i <« j. Necessarily, b

i 3 1l
bi+1 - bi <« 8§ foreach i=1,...,m1l. Thus, the finite sequence bl" ..,bm
satisfies the conditions of the theorem cited.

= ~B ard bm = B, Moreover,

Now, define Ln on (~B,B) by
Ln(t) - L(bi) ift e [bi'biﬂ)'

Clearly, Ln (having now been defined on all of R) is a simple lottery.

Observe that each subinterval (b ,b., ) is contained in some 1 = L 1)

Thus, if t e [bi,bi+1),- then L(t),L(bi) € Ik' that is, L(t),Ln(t) €1

Ik has length l/n, it follows that

k' Since

1L (t) = L(t)]| < 1/n.

Since, for all t € (-w,~B} v (B,w), a similar inequality was established
earlier, we conclude that

IL (t) - I(t)] < 1/n

for all t € R, as was to be shown.

Finally, we prove that IB(Ln) ~ B(L)I < 1/n. Applying the cited integration
theorem to our bl' .o "bm' choosing (in the language of that theorem)

t -b le[b.'b

i i+ i i+1] (i=1...,m1),

and (for brevity) putting
m1
W= i§1b1+1 [L(biﬂ) - I'(bi)]'

we obtain

B
Iw - J taL(t)
-B

< 1/4n.
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Howuver,

® w2
I tdr (t) = bL (b)) + 'zlbi + [Ln(bi+l )-L, (b, )] + ba‘.[l—Ln(bm—l)}
i=
=
= ~BL(-B) + W - B[I‘(B"I‘(bm—l)] + B[l-—L(bm_l)]
= W ~ BL(-B) + 3[1—1.(3)].
Thus,
B B ©
IE(L ) - E(L) < Iw- Jtdl‘..(t)l + ' Itdl‘..(t) - ItdL(t)i
-B -B -

+ BI(-B) + B[l-—L(B)]
< 4(1/4n)
= 1/n,
which completes the proof of the lemma.

Returning now to the proof of the second half of the theorem, suppose f ie
weakly concave and z (and thus ) is continuous, and consider any L € S. By

Lemma 6, there is a sequence (Li}:_l of simple lotteries (hence, elements of
8) such that I‘i -+ L weakly and B(Li) * E(L) a8 i * @. We may write

Ny
Ly = L PyyFe.
ij

=1

for each i. Since f is weakly concave, we have
“[Pz(t..)] = f[E(Li)]
p
n
i
- f[ E p..t. ]
=1 13713

n.

3
> P..E(t..)
j§1 135(85

n
i “[jgipijptij]

= ML)
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for each i. Bowever, as i -+ w, we have Li -+ L weakly and (since B(Li) -+ E(L))

1’13'(1.1) * Fe(p)

weakly. Thus, by the continuity of u,

“["z(m] > (L),

so that

FE(L) Z L.
Since L € S was arbitrary, it follows that 2 is weakly risk averse.

For the case in which f is weakly convex, the proof of the corresponding
result is similar. Finally, if £ is affine, it is both weakly concave and
weakly convex, and the corresponding result follows from the two previous
cases.

QchDa

In the usual expected utility theory based on integrals, part (2) of Theorem
11 follows immediately from Jensen's Inequality (8, p. 47). However, in the
more general measurable utility theory presented here, we do not know that pu
can be expressed as an integral. In particular, Theorem 7 (P. 32) does not
apply, since we are not assuming that S is o-convex. Our proof applies to
such non-o-convex lottery spaces as the space of all lotteries having a finite
mean (which is, in a natural sense, the “largest" lottery space over which
risk aversion can be considered).

Theorem 11 raises the question of whether weak concavity of f implies weak

risk aversion for 2 when 2 is not continuous. We now show that it does not;
in fact, not even strong concavity of f would suffice.

To prove our assertion, we consider once again the discontinuous preference
onrderings Zi:' and the corresponding discontinuous measurable utility functions

B (t € R), conatructed earlier (pp. 42-44). Recall that each by was

constructed partly from—and, in turn, measurahly induced—an arbitrarily

given function, £, on R. In particular, we may suppose f to be strongly
concave. Resuming the assumptions and notation of that construction, we fix

t € R and choose any L € T, such that I(t) = 1/2 and E(L) = t (the c.d.f. of
some uniform density centered at t will obviously do). Then,

My ["’E(L)] - £[E)

= f(t).

However,

(L) = a [1—1.(1:)]
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- at/z
> £(t)

by the definition of a,. Thus,

L > Ppery

from which it follows that ?‘t is not weakly risk averse.

Theorem 11 establishes that, in measurable utility theory, as in the
traditional expected utility theory based on integrals, risk aversion implies
concavity for measurably induced utility functions on R. In the latter
theory, a von Neumann-Morgenstern utility function that is measurably induced
by a weakly risk averse preference ordering must be weakly concave. Thus, in
this case, the utility of a lottery is expressed as a Stieltjes integral with
a weakly concave integrand. However, the situation in measurable utility
theory is more subtle: notwithstanding part (1) of Theorem 1ll, we will now
construct a weakly risk averse preference ordering that, over all continuous
lotteries corresponding to bounded random variables, is represented by an
expected utility functional whose integrand is not concave. In fact, if, for
some interval {a,b]., we restrict the set of lotteries considered to those
arising from random variables taking values only in [a,b], then we can even
specify the integrand to be strongly convex.

To accomplish the construction, put TJ. = H, let T2 be the set of all
continuous lotteries that arise from bounded random variables (note that Tz is
convex), and let T be tho convex hull of T uT Given any weakly concave

2°
function u: R » R, defi.ne a measurable utxhty function

Byt Tl - R
by

[+ ]
By (L) = I WL (L eT).
-0
Let “2 be any measurable utility function on T
property (“Property P"):

2 satisfying the following

For each M € Tz' u[E(M)] » uz(M).

(We give examples in the next paragraph.) Finally, define a measurable
utility function, g, on T by

u[AL + (1—A)H] - Aul(L) + (l-A)uz(M) (e (0,1}, LeT,, Me Tz);

1'
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this definition is justified by a previous result on the uniqueness of lottery
decompositions (see p. 49). Then, u is weakly risk averse. In fact, suppose

H €7, and note that there exist A € {0,1], L € Tl' and M € T2 such that

H= AL + (1-2)M,

Thus, by the weak concavity of u and Property P of “2' and letting X be any
random varijiable whose c.4d.f. is L, we have

W(Pp ) = By (P )

Fe(n)

u[m(L) + (l-A)E(H)]

v

Au [E( L)] + (1-A)u [E(H)]

v

Au[B(X)] + (1A ), (M)

v

AE(uOX) + (1-A)p,(M)
= Mll(L) + (1-7\)#2(!!)
= u(H).

We now exhibit a measurable utility function “2 satisfying Property P and
allowing g on ‘r2 to be expressed as an integral of a nonconcave function. For
this, let v: R » R be any continuous nonconcave function dominated by u—that
is, for which

v(x) € u(x)

for all x € R, Define Bt Tp R by

[+ ]
By(M) = Ivdu MeT).

-

Then, for each M € Tz' letting Y be any random variable whose c.d.f. is M and
applying Jensen's Inequality, we obtain

u[E(H)] = ulE(v)]
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3 E(u°Y)
3 E(voY)

- #2(")'

so that "’2 satisfies Property P. Since u(M) = p.z(M) for all M € Tz' # has the
desired representation as an integral over Tz. Alternatively, it is clear

that, if we had defined T2 as the set of all continuous lottories that arise

from random variables whose values all lie in some specified interval (a,b],
and if we had required that u dominate v only over {a,b], then we could have
chosen v to be strongly convex.

5.3 Implicati £ rentifyi 1 Modeling Ris) s

To understand how the previous examples relate to the separate problems of
identifying and modeling behavior in the presence of risk, consider first an
investigator who wishes to construct an economic model involving risk averse
behavior. within the traditional interpretation of expected utility theory,
the investigatcv would, in effect, assume that measurable utility functions
take the form of expected utility integrals, and he/she would adopt & concave
von Neumann-Morgenstern utility function as a "generator"” of the risk
behavior. This approach, however, carries the implicit assurption that the
individuals under st idy have the same frames of reference toward certainty
(degenerate lotteries) and "contintous uncertainty" (continuous lotteries),
since the measurable utility of a lottery is determined, through the integral
formula, by the utility values assigned to certainties.

If, on the contrary, the researcher does not wish to rule out a priori the
possibility of different frames of referenca--the possibility that an
individual's risk preferences for certainties may differ from his/her risk
preferences for continuous lotteries, so that his/her risk preferences are
discontinuous--then the assumption of concavity for v would not guarantee risk
averse behavior. For, as our first example demonstrated, even a strongly
concave utility function on R can be measurably induced by a preference
ordering that is not risk averse.

Our second example, however, suggests that some risk averse preference
oxderings might manifest the illusion of being determined by a nonconcave~—or
even strongly convex--utility function on R, For, as we established in that
example, preferences among certain continuous lotteries can be determined by
such an "apparent” utility function even when the full preference ordering is
risk averse. In a work developed within the classical expected utility
framework, Hildreth and Knowles cite several empirical studies (including
their own) of individuals' risk preferences that produced apparently risk
neutral or risk loving responses (in effect, "nonconcavities" in the utility
functions on R) in cases where one might expect the decisionmakers' true
preferences to be risk averse (24, p. 33). They characterize these
nonconcavities as inaccurate and suggest various possible explanations for
their occurrence (see also 37).

The theory that we have delineated here, however, provides an alternative
hypothesis: the nonconcavities are legitimate; interpreted within the context
of measurable utility theory, they do not contradict risk aversion. Rather,
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the respondents in the studies, vhile being risk averse, may have had
discontinuous, "two-rule” type measurable utility functions (reflecting
dichotomous behavior toward certainty and "continuous uncertainty”), and they
may have responded to some queries in the studies as though uging their
"continuous uncertainty” rule (;&2, in the notatiom of our second exampie, with

vV nonconcave) rather than their “certainty” rule (,ul, with u necessarily

concave). Of course, we can only assert here that this hypothesis is a
logical possibility; the determination of its empirical applicapbility is
beyond the scope of this report.
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6 ECONOMIC APPLICATIONS

We now reconsider and generalize two economic models of behavior under risk
Presented by Rothschild and Stiglitz (38). The fi.st of these models concerns
production with an uncertain output price, while the second involves saving
with an uncertain interest rate. Rothschild ard Stiglitz assume that an
economic agent compares lotteries on the basis of their expected utilities; in
our approach, an economic agent compares lotteries according to their
measurable utilities. We will find that, if the marginal utility of money is
greater under certainty than under "continuous uncertainty"” (the msaning of
this distinction will become clear shortly), then (under additional routine
assumptions) the optimal production level and the optimal saving rate will be
lower than the respective solutions of the expected utility models. No
assumption of risk aversicn is required.

6.1 optimal Production Levels Under Price Uncertainty

We now consider a model of production with uncertain output price in which the
pProducer is assumed to be endowed with a "two-rule" measurable utility
function that allows, but does not require, him/her to use one preference rule
for choosing among certainties and another for choosing among continuous
lotteries. As we have seen, this assumption is compatible with measurable
utility theory. (In this connection, recall our observation (p. 29) that the
valves of a measurable utility function at simple lotteries are determined by
its values at certainties.) We will examine first- and second-order
conditions and obtain an explicit solution of the former that expresses output
in terms of tne two preference rules and certain features of the price
variable, We will find that, in the two-rule case, the producer will
generally choose a utility-maximizing output level different from the one
he/she would choose if following a more restrictive expected utility-
maximizing approach. In particular, if the producer's marginal utility of
money is greater under certainty than under "continuous uncertainty" and both
the expected utility and measurable utility models have interior solutions,
then the latter model will generate a lower optimal production level than the
former. Purthermore, it is possible to have a zero production level and a
pogitive production level that are simultaneously optimal. A particular
pricing situation to which the analysis applies is that of a random price that
is truncated below through the introduction of a "support price," as with
agricultural commodities.

To set the stage for the analysis, let p (output price) be a bounded random
variable on a probability space (2, B, P) and C: {0,w) » R (the cost function)
a function such that C"(Q) > O whenever Q » 0. Fror each Q » 0, define a
random variable w(p,Q) (profit) by

m(P,Q) = PR — C(Q).

We will use the convention that, whenever X is a random variable, its c.d.f.

is denoted Fx. (Note that, in the special case in which X is constant, Fx is

merely a degenerate lottery as defined earlier.) We assume the producer has a
measurable utility function, u, defined at each profit lottery F"(p 0) (Q > 0)

and at each degenerate lottery Ft (t € R); of course, Ft represents "money
amount t with certainty.” More specifically, and in the spirit of endowing u
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with a two-rule form that generalizes the expocted utility approach, we
suppose that, for each lottery L for which the following integrals exist, we
have

[~ [+ 1]
ML) = .[“1"["1(1‘)] ¥ J‘“zd[["z*"al(l‘)]’
~ -

where the functions

m S$+S8 (i=1,2,3; S the set of all ¢.4.f.'s)

(not to be confused with profits) are projection operators of the type
desgcribed on pp. 24-25 (8o that nl(L) and [n1+1r2](l:.) are the discrete and

continuous "parts" of L, respectively) and Uy /4,1 R » R are functions for
which ui(t) > 0, ué(t) > 0, ui(t) < 0, and “ﬂ(t) < 0 forall t ek, BRs

indicated, the domain of u is taken to * 3 the set of all lotteries L for which
the integrals are finite. This set is clearly convex, and it contains each
degenerate lottery and, since p is bounded, each n(p,Q} (Q » 0). Finally, we
assume that p, U v, and C are sufficiently "nicely behaved” to permit

repeated differentiation under the Stieltjes integral sign (see 33. p. 409).

We wish to determine maxima Q » 0 of u(P"(p Q)) by examining first~ and
’

second-order conditions. However, obtaining these conditions is n>t quite
straightforward, as the Stieltjes integrals in the definition of "*Prr(p Q)) do
’

not display Q (with respect to which we are to differentiate) very explicitly.
We need to rewrite these integrals as Lebesgue integrals with random-variable
integrands that display Q as a parameter. This change of form will allow
differentiation under the integral signs. Moreover, in conformity with the
"two-rule"” form of p, we wish these random variables to correspond,
respectively, to the discrete and continuous lotteries that aprear in the

canonical convex decomposition of P"(p Q) (see Proposition 3, p. 22). Thus,
’

we need to determine this decomposition of P"( £.Q)"
’

that explicitly relates the constituents of the decomposition to p, C, and Q.

We will do so in a way

To begin, observe that, for any Q » 0, t € R, we have

Fop.y(t) = B(BRC(R) € t)

= 7 [t /g)
Thus,

Py ™ Fp © [(1+C(Q))/Q],

where I is the identity function on R and, as usual, "o denotes composition
of functions. By means of this formula, we may use the canonical convex
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decomposition of rp to obtain that for r" Now, put

(p,Q)°
A=(reR | p ir}) > 0),

-1
= Up (r),
ﬂl YEA

a, = w9,

(where "/" denotes the set-theoretic complement). Then, A s at most

countable, and 01'02 € B. Consider first the case in which | is a "proper

mixture” of a discrete lottcory and a continuous lottery, tha‘. is, the case in

which P(ﬂl) > 0 and P(ﬂz) > 0. Let (QI,BI,PI), (ﬂz,Bz,Pz) oe the conditional

probability spaces induced by (Q,B8.F; on the events 01, Q,_, respectively, and

2'
define restricted muppings

P, -plnl

Clearly, pl and p2 are (bounded) random variables on (01,81,191) and
(02,82,92), respectively. Purthermore, it can be shown without much
difficulty that pl is discrete, Pz is continuous, and
F =p(0 )P + P(Q_)y .
p ™ B(AIF, +RAHF,
Consider next the case in which p is itself discrete. Then P( “1) = 1 and
P( nz) = 0, ard by choosing p1 = p and p2 to be any (bounded) continuous random
variable, we can still assert

F =p(Q Y <+ P(O ) .
p " MOPF, + RO,

This formula likewise holds if p is continuous, for then P(nl) « 0 and
P(nz) = ], and we need only choose p2 = p and let p:l be any (bounded) discrete
random variable. Thus, in all cases, if Q > 0, we can assert that

Frep,gy T BT ° [ceecorva] + By P, [cxecc@ryre)
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+ P(Q,)r

= B0, oceo) * P (%2)p 0c(o)’
so that
0 00
MFrip,0)) ° I“l"[l’“’l”plq-cm)] + [ oo, PzQ-C(Q)]
— ~o

= 2, )E[u, o(p,0-c(2))] + B(n,)E[u,o(p,0-c(2))] .
It follows (see 33, p. 409) that, for any Q » O,

fu(r

,,(p',))]‘(&‘) - P(ﬂl)r‘.[[ui°(plq-c<g))] {pl.co(g)]]

+ 2(n, ) [uzocp,0-c(0))] [p, <" (@) ]
vhile
(u, 17(R) = (o) [ugece 0-cte))] [p, < (@)
+ [u3otp,0cton] [
+ 2o, e[ [ugers. o cion)] [p,< (@)
+ |ugote,e-cian) [<o))]
<o

by virtue of our assumptions about the signs of the various derivatives.
Thus r
most two, Anymaximm Q.ofp.(l'

)](0,) can have at most one maximum and u(F )) can have at

w(p, -

P, - )) must satisfy either

Q* = 0 ("nonproduction”) (1)
or

Q* > 0 and (u(F

w(p, )1 (%) = O (2)

However, although condition (2) is sufficient to ensure that Q* is a maximum

of w(r

mp )) (0,m), it is not generally sufficient to ensure that Q* is a
.
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waxinum of u.(l'"(p“)_\. To £find a maximum of u.(l'"(p’.)

satisting condition (2), one needs to compare u.(rﬂ(p o*

) whien there is a Q* ¢ R
with
y) Wi

¥ ) = i

m(p,0) ¥ c(0)’

- ul[-C(O)] .

The latter, of course, is the p-utility of fixed costs. Thus, in the two-rule
model, even if p ir ocontinucus (8o that all profit random variables asgscciated
with positive production levels are continuous), there is always at least one
profit lottery, representing fixed costs, whose utility must be determined

from "1 rather than from “z'

Now, condition (2) holds Jjor Q > 0 if and only if

0 n (WE, o 1)

= 2 x| [ujotp, 0ccen)]p; | - 2en) e (@)RCu o(p 2-c2))
+ B0, ) [uzecp,e-con]p,] - 2(n,)c (@)ECuz0(p,0-c0))]

= B())A () - B(8,)C'(Q)B)(Q) + B(7,)A,(Q) ~ B(R,)C*(Q)B,(Q)

= [P(ﬂl)ll - P(OI)C'BI + P(nz)lz - P(ﬂz)C‘le(Q),

where, for given Uy, Uy Pyr Py and C, the functic.is “1"2'51'52‘ (0,o) » R
are defined in the obvious manner. Jbserve that, since [u(!’"(p .))]" is
negative throughout (0,®), [u.(r"(p . ))]' is decreasing and thus invertible.

Acvordingly, when condition (2) is satisfied, its unique solution is

[] - ' -1
Q= [P( 01 )H—P( 01 c 81+P( 02 )Az P( 02 e le (0).

Let us compare this solution with the one that arises under cla.sical expected
utility theory (38). We assume (Q,B,P), P, C, m(p,Q) (for any Q » 0), and u1

are as in the preceding discussion. Define a measurable utility function u by
the "axpected utility" rule

o
WLy = J‘ u,dL

-

for each lottery . for which the right-hand side exists (the set of all such L
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is convex). Then, for all Q > o,
ME, o o)) = E[u,ome-ccon],

(WF, o 010 = B[ [uecpo-can] et}

(WF, o 017 = B[ [urecpe-cion)] [pc )

n(p,
+ [ujotre-cion] [<o]]
< 0,

Thus, ”(Pn(p .)) has at most one maximum, and Q* € (0,®) is a maximum if and
only if either

Q* = 0 and (KF,  )1(Q%) < O ()

or

Q* > 0 and ((F ))]'(Q*) = 0. (2)

n(p, -

Of course, (1') amounts to the condition

2[v;(-c(01)[p<(0)]] < o,
which reduces to
E(p) € C'(0).
This is a sufficient conditio. for 0 to be a maximum (that is, for
nonproduction to be optimal) in the present case, but not in the two-rule

case. Likewise, condition (2) guarantees a maximum in the present case, but
not in the two-rule case.

Now, in the expected utility model, we have, for each Q > 0 (using the same
decomposition of P"(p 0) as before),
e,

MEp.e)) ™ I %9 R, Q)

® ®

-®ay) [ %p ece) * F(T) J uyer P,R-C(Q)

-® )
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= 20, E[u,o(p,0-c(9))] + 28,2 (u;o(p,0-c(0))],
so that

(w(P

np, 31" () = P(aE[ [use(p 0cten)]p, |

- 28, e (e [u;o(p 0-c(2))]
+ ®a, ) [uzecp,0-c0))]p,]

- 28, )c" (QE [u;(p,2-c(2))]
= B(A)A (Q) - B(R,)C"(Q)B (Q)

+ B(0,)A,(Q) - B(,)C'(Q)B(Q).

where ﬁ, Bl are defined as before and (for given ul, pl, pz, and C) the

functions 33'83' (0,w) - R are defined in the obvious manner. Thus, when
condition (2) is satisfied in this model, its unique solution is

Q = (R(, A, -P(A, }C'B, +R(Q, )A,-B(,)C'B,] “(0).

It follows that the expected utility model and the two-rule model generally
give rise to different optimal production decisions. In particular, if p is
continuous, the solution of condition (2) is

. -1
Q = (A, - C'B,] (0)
in the expected utility model and
- (A, - ¢'B.1 Y0)
Q = (h, 21 ¢

in the two-rule model. In this case, the latter solution is obtained by

substituting u, for the von Neumann-Morgenstern utility function, u . in the

former.

To compare the models further, suprose that each has an interior solution
(that is, a solution of condition (2) that is optimal over (0,»)) and that

u; > uj on R. (This inequality may be described heuristically as the

aszsumption that the marginal measurable utility of money is greater under

certainty than under “continuous uncertainty.') Then, examining the

expansicns of [u(r"(p ))]' (which, we recall, are comprised of decreasing
’ .

functions) in both models jointly with condition (2) reveals that the solution

of the expected utility model must excssad that of the two-rule model. Thus,
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in brief, when the marginal utility of money is greater under certainty than
under continuous uncertainty in a two-rule model, maximizing measurable
utility leads to a lower optimal production level than maxinizing expected
utility.

AS an example of a situwtion where the foregoing analysis can be applied 2na
within which a mixed-price lottery arises naturally, consider the introduction
of a price support for an agricultural ccomodity. Assume (for sinplicity)
that the presupport price is a (bounded) continuous random variable, po.

Suppose that a support price, s € R, is introduced, so that, in effect, P is

truncated below at 8, forming a new random price variable, p. We assume that
1'*(p0 < 8) > 0, Then,

[l ifpo<l
p-
po ifpo>'l
80 that
0 iftcs
F(t) =
p()

P (t ift>s
p)() £

and (as is easy to show)

F, = Ppo(')pa + [1—rpo(s)]c,

where G is a continucus lottery defined by

V) ift ¢ s
G(t) =
{P_ (t)~F (8))/(1-P_ (8)] if t » 8,
Po Pg Po

In this case, we have

B(R,) = B(p, < 8),
B(R,) = B(p, > ),

F =P,
P 8
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Furthermore, Fp (8) is merely the probability that the presupport price will
(o]

be equaled or exceeded by the support price, while G(t) is the conditional

probability that the presupport price will lie at or below t if it exceeds the

support price. These relationships help us interpret the expression for the

optimal production level Q arrived at earlier.

5.2 Optimal Saving Rat ; it

We next investigate a model in which an individual who has different
preference rules for certainty (degenerate lotteries) and "continuous
uncertainty” (continuous lotteries) must decide how much of his/her initial
wealth wo > 0 to consume ’: the current period and consequently how much to

invest for consumptior in the next period. We assume that the rate of return
onh saving is represented by a random variable. We will examine first- and

second-order conditions and show how a solution may be obtained. We will find
that the possibility an individual may be indifferent between (a) consuming wo

entirely in period 1 and (b) investing a certain part of WO for later

consumption cannot generally be ruled out. Finally, we will compare our model
with the expected utility version of (38), which ours generalizes, and will
find that the two models deterrine different solution values. In particular,
when the marginal utility of money is greater under certainty than undex
continuous uncertainty, the optimal saving rate will be lower than the rate
obtained through traditicnal von Neumann-Morgenstern expected utility
maximization.

To begin, let r (the rate of return on investment) be a bounded, continuous
random variable, and suppose that a saving rate of 8 € (0,1] generates a
"certain" first-period consumption of (1-s )wo and an "uncertain"” second-period
return of swor. The choice space over which the individual seeks to maximirze
his/her intertemporal utility is

{ ) | 8 € (0,1])

F F
(1-8 )Wo swor

(where, as earlier, "Fx" denotes the c.d.f. of the random variable X). Note

that this choice space consists not of lotteries but of ordered pairs of
lotteries. However, the definitions presented in our discussion of the
existance of measurable utility functions (pp. 11-13) are sufficiently general
to encompass "multidimensional lotteries” and "multidimensional utility”: for
if 8 and T are any lottery spaces such that S contains each F( 18 )W

(o]

(s € (0,1]) and T each st - (8 € {(0,1]), then the choice space we are
0
considering is contained in the Cartesian product

s xXT,

which is a mixture space. (In fact, S X T C ¢ X &, where ¢ is the set of all
functions from R into R. Since ¢ is a vector space over R, ¢ X ¢ is a vector
space over R under the inherited operations of coordinate—wise addition and
scalar multiplication. Since S X T is a convex .ubset of & X $, it has a



mixture-space structure.) Wwe §111 specify S and T, define a measurable
utility function, u, on § X tkwgnd assume that the individual gseeks to find an
element of the choice space that maximizes p over the choice space,
Furthermore, following Rothschild and Stiglitz (38), we desire that u: (1) be
additively separable bstwesn psricds, (2) discount psricd 2 utility, and (3)
allow for different behavior toward certainty and “"continuous uncertainty."

(A full treatment of the economic implications of additive separability for
measurable utility functions would take us beyond the bounds of our present
purpogse. Additive separability in expected utility theory is discussed in
Pollak (34).)

To guarantee these properties, let u,,u e R +» R be functions for which

(t) < 0 and u! (t) < 0 for all t € R. (We also assume that U, Yy, and r are

sufficiently "nicely behaved” to allow repeated differentiation under the
Stieltjes integral sign (33, p. 409).) Define a measurable utility function

g H-+R
by
[+ ]
n, (L) = I wdl (L € H)
-w
and a measurable utility function
Nyt J-+ R
by
[+ ] [+ ]
n, (M) = (1-6)[ J u dm (M) + J udim, +rr3](M)] (M € ),
- -

where J is defined as the (convex) set of all lotteries M for which the
right-hand side of the equation above is finite, the ﬂi are the usual

projection operxators, and 8 € (0,1) is interpreted as the "pure rate of time
discount of utility.” Finally, define a measurable utility function, B, on

H %X J by
p[m] = n (@) + nyom) [(emy e wx 3],

Note that, since r is bounded, each (F ) (8 € (0,1]) is in

l-W SWr
(L-e )W "W

Domain (u). Then, when 8 € (0,1], we have
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® 0
“[(F( 1-8 )wo'r !Wor)] = I v s W, + (1'8)[0 + I “zdstor]
- -

- ul [( 1-8 )wo] + (1-6 )E[uzo( swor)].

while 8 = O implies

“[(P( l-s)wo‘PsWor)] = “[(Pwo'Fo)]

= ul(wo) + (1—8)u1(0).

Thus, pu exhibits the desired properties (1), (2), (3).

For brevity, with p, W., and r understood, define ¢(: {0,1] * R by

e(s) = uf(e (s € (0,11).

1

F )

(1-8)W," 8W r J
Then, if s € (0,1], we have

£'(8) = ui[(l-s)wo](-wo) + (1-8)E[[ué°(awor)]wor]

£"(8) = u:'i[(l—s)wo](-’wo)2 + (l-S)E[[uEO(BWor)]Wzrz]
< 0,

Thus, £/(0,1] can have at most one maximum, and ¢ can have at most two. Any

wmaximum, s8*, of ¢ must satisfy either

8* = 0 (no wealth saved), (1)

s* = 1 (all wealth saved), (2)
or

0O ¢ 8% ¢ 1 and £'(8*) = 0. (3)

However, although condition (3) is sufficient to ensure that s* is a maximum
of £|(0,1], it is not generally sufficient to ensure that s* is a maximum of

¢. To £ind a maximum of ¢ when there is an s* € R satisfying condition (3),
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one would need to compare ¢(s*) with ¢(0). Note that £€(0) is the p-utility
associated with "no wealth saved;"” it depends on Uy, whereas {(s*) depends on

u1 and uz.
Now, condition (3) holds for s € (0,1) if and only if
0= —ui[(l—a)wo] + (1—6)3[[ué°(swbr)]r]
= A(8) + (1-8)B,(8)

= (A + (1-8)B,1(8),

where, for given Uy, u,, Wy, r, and &, the funciions A,B,: (0,1] * R are
defined in the obvious manner. However, since A' and Bé are everywhere
negative, A + (1-5 )B2 is decreasing and thus invertible. Accoxdingly, if
condition (3) holds, its unique solution is

8 =(A+ (1—5)32]'1(0).

Let us compare these results with those of the classical model that portrays
the individual as operating by means of a single, expected utility-type
Preference rule. We assume "o' r, ul, 8, and nl are as before. Define

measurable utility functions

ny: I+ R
and

p: HX J3-R
by

[+ +]
ny(M) = (1-8) I udM (M e J)
—-m

and

R[] = ) # nn (L) e nox 3,

where now J is defined as the set of all lotteries M for which the integral
appearing in the definition of n, is finite., Put

(o) = u(r )"o'r"'o‘)]
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for each s € (0,1]. Then, for each s € (0,1],

£(8) = u1 [( 1-8 )wo] + (1~8)E [ulo( swar)] '

£'(8) = ui[(l—s)wo](—wo) + (1-8)E[[ui°(wor)]wor],

" - " - 2 - " 2
¢"(8) ul[(l s)wo]wo + (1 B)E[[ulo(swor)]wzr ]
< 0.
Thus, ¢ has at most one maximum, hence exactly one (sirce it is continuous on

(0,1]1). (Note thav, in the two-rule model, by contrast, ¢ was not, in
general, continuwus at 0.) Moreover, 8* € (0,1] is the maximum if and only if

either
g* = 0 and ¢{'(8*) € O, (1)
g* = 1 and ¢°'(8*) 3 O, (2')
or
O < 8% <1 and £'(8*) = 0. (3)

Observe that condition (1') reduces to

-ui(wo) + (l-s)ui(O)E(r) €0,
that is (assuming ui(o) ¥+ 0),

E(r) € [1/(1~8)1Cuj(W,)/u;(0)].

This inequality is a sufficient condition for O to be the maximum of £ in the
present model but not in the two-rule model. ILikewise, condition (2') and
condition (3) each guarantees a maximum in the present model, but not in the
two-rule model. Now, condition (3) holds for 8 € (0,1) if and only if

—uj [(a-swy] + (1-8)[[uzecmm n)]z] = o,

which can be expressed as

A(s) + (1—8)81(8) =0,

where A: (0,1] » R was defined previously and B,: (0,1] » R is defined in the
obvious manner. However, since A' + (1-8 )Bi is evervwhere negative,
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A+ (1-8 )B1 is invertible. It follows that, if condition (3) holds, then its
unique solution must be

s =(a+ (1—8)81]-1(0).

We conclude that condition (3) generally has different solutions in the
classical and two-rule models. The soiution formulas differ in that the
two-rule mudel replaces the classical model's von Neumann-Morgenstern utility
function, u. in 81' with u,, reflecting the different treatment of

uncertainty in period 2,

In particular, suppose each model has an interior solution (that is, a
solution of condition (3) that is optimal over (0,1])) and ui > ué on R (that
is, "the marginal measurable utility of uoney is greater under certainty than
under continuous uncertainty”). Then, examination of the expansions of ¢ in
hoth models jointly with condition (3) reveals that the expected utility model
yields a higher optimal saving rate than the two-rule measurable utility
model,
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