DOCUMENT RESUME

ED 287 473 IR 012 870

AUTHOR : Bonar, Jeffrey; And Others

TITLE An ObJect -Oriented Architecture for Intelligent
N Tutoring Systems. Technical Report No. LSP-3.

INSTITUTION Pittsburgh Univ., Pa. Learning Research and

- Development Center.
SPONS' AGENCY. Office of Naval Research, Arlxngton Va.
REPORT' NO\ UPITT/LRDC/ONR/LSP-
. PUB DATE 14 Aug 87
CONTRACT . F41689~84-D- 0002- N00014-83-6-0148;
“\.N00014~83-K0655 *

NOTE 18p.

PUB TYPE Reports - Research/Technical (143)

EDRS PRICE 'MF01/PCOl Plus Postage.

DESCRIPTORS Artificiali Intelligence; Cognzt:ve Processes;

Computer Assisted Instruction: *Computer System

Design; *Courseware; Diagrams; Higher Education;

*Programed Tutoring
IDENTIFIERS *Knowledge Representation; University of Pzttsburgh

- PA

ABSTRACT

This technical report describes a. generic
architecture for building intelligent tutoring systems which is
developed around objects that represent the knowledge elements to be
taught by the tutor. Each of these knowledge elements, called
"bites," inherits ‘both a knowledge organization describing the kind
of knowledge represented and tutoring components that provide the
functionaility to accomplish the rtandard tutoring tasks of d1agnoszs,
student modeling, and.task selection. The goal of the bite-size tutor
is an interface that allows the curriculum of a system to be suppl1ed
by a domain expert who is not a programming expert. Three bite-sized
intelligent tutors have. been 1mplemented at the Learning Research and
Development Center at the Un:vers:ty of Pittsburgh: (1) Bridge: An
Intelligent Tutor for Programming; (2) Smithtown: A Discovery World
for Economics; and (3) Eureka: A Tutor for Hydrostatics Problems.
Descriptions of these three tutors conclude the report, and 11
references are listed. (RP)

o

KhkhkhkAkAkAkA KRR ARA AR AR ARk Ik kb kR hhhkachhhkhhhhdhh kXt hhkhhhhhhhhdkhhhkdx

* Reproductzons supplied by EDRS are the best that can be made *

¥ oo from the original document. *

_J 6¢. ADDRESS (City, Stase, and ZIP Code)

.~ UNCLASSIFIED-
|

TASIFICATION OF THR PA
REPORT DOCUMENTATION PAGE
13."REPORT SECURITY CLASSIFICATIONM 1b. RESTRICTIVE MARK‘INGS

h N

===
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUT-ONIAVAILABILITY OF REPORT

Approved for nubhc release; distribution
unlimited.

J2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE

4. PERFORMING GRGANIZATION REPORT NUMBER(S)
UPITT/ LRDC/ONR/LSP 3

5. MONITORING ORGANIZATION REPORT NUMBER(S)

rning Research :‘& Development (If applicable) bersonne
. Center, Univ. of Pittsburgh Office of Naval Research {code 1142PT)

: NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL
h_ea eyt | 7plaMe OF MONIORIN FiRTCNNERLRN, Programs

7b. ADDRESS (City, State, and 2IP Code)
3939 ()" Hara Street - 800 North Quincy Street’
Pitt§})urgh, PA 15260 Arhngton VA 22217-5000
{ 82. NAME OF FUNDING /SPONSO :
ORGANZIATION = RING | ab.(ﬁs::’cps”&%s)m 9. PROCUREMENT INSTRUMENT IOENTIFICATION NUMBER

N00014- 85~ K-0655/P00004

e AOOR7SS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS"

s PROGRAM PROJECT TASK WORK UNIT

f | TEYEBhNC [iQuz0s %4205'-60 AECERsIoN No.
11, TlTLE (Include Security Classification)

An /ObJect -Oriented Arch1tecture for Inte]haent Tutermq Systema (UNCLASSIFIED)

12. PEPSONAL AUTHOR(S) ;
Jeffrey. Bonar, Robert Cunningham, and Jamie Schu] tz

’ 130’ TYPE OF REF]’ORT . 13Ft;oT‘l“ME COVERED Tb 14, DﬁSfB?F Rﬂl:‘%iﬂrsg’eirq'lwon'th, Day) [15. PAGE COUNT
‘16 SUPPLEMENTARY NOTATION
/ -
y - . .
17. COSATI COOES 18. SUBJECT

TERNIS (Canti P ——
f_Few | Groue wiour— Artificial n{in’é%off?‘éeeﬁ'c':ée;"ﬁﬁdﬁ"i'%‘fffé’yp%'?ﬁﬁ'l@dy;b’“" number)

05 09! Cognitive scienca; Instruction, Computer-based; Instruction,

“—1 Intelligent computer-based; Trammu Tutors; Tutors, 1nte1hqe

] 19- ABSTRACT (Continue on reverse if necessary and identify by block number) Th3 S report describes an OBJECt=

~ like diagnosis, student modeling, and task selection. We illustrate the approach with

oriented arc'ntecture for 1nte1hqent tutoring systems, oriented around objects tha* represent
~ the knowledge elements to be taught by the tutor. Each of these knowledge elements, called

"bites," inherits hoth a knowledge organization describing the kind-of knowledge represented
and tutoring components that provide the functionality to accomplish standard tutoring tasks

several tutors implemented at the Learning Research and Development Center.

20 OQiSTRIBUTION / AVAILABILITY , OF ABSTRACT '~ . 21, ABST.

~ A Wi? TY CLASSIF
UNCLASSIFIEDIUNLIMITED. [saME AS RPT, [JoTic USERS unc ast? é‘ SFCATION

—————

All othcr edmons are obsolcte 3

* ZZa NAMZ OF RESPONSIBLE. INDIVIDUAL : , '
Susan e NBVIDUA , h(éﬁéi goalgilgclude Area Code) ZB'Nﬁ)lFiI(I‘ié§¥IBOL
[KC M 1473.34MAR) 3APR edition may be ““d until exhausted. v .secumrv cmssmc;mou OF_THIS PAGE

j~,~

- -

UNCLASSIFIED . .

’&Y' g R S S Y

An Object-Oriented Architecture
for Intelligent Tutoring Systems

Jeffrey Bonar, Robert Cunningham, Jamie Schultz

Intelligent Tu‘tor_ing Systems . N
. Learning Research and Development Center
__ University of Pittsburgh
. Pittsburgh, Pennsylvan.a 15260

Technical Report No. LSP-3

Abstract : :
We describe an object-oriented architecture for intelligent tutoring systems. The archltecture Is
oriented around objects that .represent the various knowledge elements that are to be taught by
the tutor. Each of these knowledge- elements called bstes, inherits both a knowledge organization
deseribing the kind of knowledge represented and tutoring components that provide the

functionality to accomplish standard tutdoring tasks like diagnosis, student modellng, and task
selection. We illustrate the approach with several tutors implemented in.our lab.

.\

(33]

|
This work was supported by the-Office of Naval Research, under Contract No. N00014-83-6-0148 |
and N00914-83-K0855 and the -Alr Force Human Resources Laboratory under Contract No, }
¥'41689-84-D-0002, Order- 0004. Any oplnions findings, conclusions, or recommendations ‘
expressed in this report, are those of the authors, and do not necessarily reflect the views or the 1
U.S. Government

Reproduction in whole or part Is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.

4

" Introduction

Many projects in intelligent computer-based instruction depend upon detailed bn* general
theories of human learning or diagnoses of the learner’s cognitive state (see, for exampl’e, Bonar and
Cunningham [1986], Ohlsson and Langley [1984] and Van Lehn [1984]). We feel there is also an
enormous potential for sy:tems based on theory-driven analyses of domain expertise. For particular
fields, for example, cognitive science researchers have developed accounts of skilled performance and
of impediments to skilled performance. Such accounts could'be used to develop useful ard interesting

b ..
instructional systems. Widespread development of this kind of tutor would be faciliated by a general

intélligent tutoring system architecture and tools to support development. In this paper we desribe
our first steps toward such,an architecture, called the Bite-Size Tutor.

_ The Bite—Size ‘Tutor is a general intelligent ‘ tutorihg .system shell that provides the
curriculum-independent part of an intelligent tutor and specifies an organization for the curriculum
knowledge, to be supplied by a domain expert. With- the Bite-Sized Tutor, we can exploit the expert
system approach currently heing applied in many intelligent tutor{ng system projects. In this
approach, competent.performance in a domain is analyzed. Novices learning that domain may be
observed. The results of these analyses and observations are a "cognitive task analysis" of the domain
and a "bug catalog" of common novice problems in the domain. "Cognitive task analyses” (Learning

Research & Development Center, May 1986) are analyses beyond a behavioral "rational task

analysis” that specifically attend to the underlying cognitive skills and representations involved in
competent performance. "Bug catalogues” (Brown & Burton, 1978; VanLehn, 1982, 1983) describe
systematic errors or misconceptions that are likely to impede learning or skilled performance. Taken
together, the cognitive task analysis and the bug catalog constitute the "curriculum” of most
mtelhgent tutors.

Our key goal with the Bite-Size Tutor is an interface that allows the curriculum of a system to
be supplied by a demdin expert; who i isnot a programmmg expert. This is a crucial goal -- creating the
curriculum for any kind of computer based mstructlon is a demanding and time consuming task,
running inte hundreds of hours of development for each hour of instruction. The toy domains,
microscopic curriculums, and limited instructional activities of experimental intelligent tutors must
-be expanded to complete curriculums that meet recogmzed instructional needs with an array of
techmques and .activities for the student. Such an expansion requires extensive input by domain
experts who are not programmers. We in the intelligent tutoring community must provxde the tools to
allow this approach

=Y ——

In this article, we . first discuss problems with current intellige\nt tutoring system

- architectures. We then propose our solution: an architecture that uses the structures of an

object-oriented programming language as domain-independent modules for intelligth tutors. We

discuss the detailed architecture of the Bite-Size Tutor, and illustrate. this architecture with several
examples from projects being developed at LRDC.. Finally, we touch upon future research dirdctions.

Problems with current intelligent tutoring systems

Close exammatlon of most current intelligent tutoring system 1mple mentations shows them
to be complex and unw1eldy (We want to emphasne that this discussion is not a criticism of any

e

programming code are repeated in several places; closefy- related mformatlon is spread apart. It might
appear that these difficulties are 51mply a matter of prototype implementations, wrltten without
concern for detailed software engineering issues. While this is part of the problem, there is a more
fundamental design flaw, related to the use of knowledge wgthin the intelligent tutoring system.
Intelligént tutoring sy§tems are usually conceived as a series of semi-independent components like

explamer," "diagnoser," "tutor,” and "user modeler." The problem is that these: :components need to
share many diverse pieces of knowledge The knowledge needed for dlﬁ'erent components typically
overlaps considerably. Functional camponents whose roles are quite.clearly delineated in an abstract
description of the system may be implemented with code diffused through many parts of the system.
The systems, therefore,. are not.modular. In partlcular, they do not allow for addition of new domain
T knowledge or new approaches to the pedagogical tasks.

The WEST tutor {Brown and Burton, 1982} provides an example of these problems. As oheuof

i th> most intellectually important "classic" intelligent tutoring systems, it serves as a useful foil for
~ this discussion. It can he viewed in two ways: in terms of its "issues" (the fundamental lessons the

system is prepared to teach the student) ard in terms of its components (e.g. "expert " "differential

modelér," “tutorial seiector.”) In the actual+Interlisp-D implementation of the tutor, the program is

organ’ized by components. This results in a system with unnecessary duplication and complexity in its

multiple; overlapping representations of issue knowledge. Besides obscuring the organization of its
knowledge, the current implementation of WEST makes it difficult to reuse and extend parts of the

tutor. Given the many open research issues for intelligent tutoring systems, this is a serious problem.

- In general, we need a tool that enables the development of tutor{ng systeins much more
‘ rapidly than now,possible. Ideally, such a tool will allow a subject domain expert or a tzacher (who is
not necessarily a programmer) to modify the domain knowledge and the tutor-student interactior,

~

partlcular intelligent tutormg system, hut a general pt oblem that appears in many systems.) Pieces of /

N\

without reimplementing the system at each step. Finally, we need a tool to make it easi‘er for those
who develop tutors to test their systems as they are designed.

~ An Object-Oriented Intelligent Tutoring System Architecture

We propose to take advantage of ‘.the character-of an object-oriented programming {anguage to
develop_dn architecture that is modular and is-therefore both comprehensible and easily modified.
Object-oriented programming allows the programmer to crea’te a toolkit of objects tl}at represent‘items
of interest in the application area of the program. Objects represent items in the world by containing
both data, the state of the object, and progran;s, operations that can change the state. Objects can also
share structure, with one ol;ject defining thg'siructure for several other objects. Such an object is
called a class. Vypically an qi)ject specializes a structure it inherits from above, and in turn defines the
structure for a lower-level set of quects. Arn object communicates by sending a meséage to another
object and requesting some action. An object responds to a message by running one of its programs,
thereby ch,anéiﬁg its state or sendiflg new messages to other objects.

Although objects,) .Classes, inheritance, and messages are the cruclal constructs of
object oriented programming, the notions of toolkit and protocol are_central to understanding the
power of the approach. A toolkit provides a set of objecis designed to be specialized and protocols for
using those objects. Objects.in a toolkit . ovide a range)of capabilities designed to be specializéd'fo
particular applications, A p}-o,t'ocol, in the object-oriented sénse, is a set o}'\messages that are defined

"\ for a broad range of objects. For example, we could design a drawing System where objects

correspondmg to rectanglns, c1rcles, and characters all responded to the messages draw, e g ase, move,
ete. Note that each kind of object is free to 1mplement these messages differently. This is the essence
of & protocol a general set of capabilities for simplicity, with a mechanism for accommodatmg the

complexity of actual differences.

The Bite-Size architecture is a toolkit for implementing intelligent tutors. In the Bite-Size ‘

architecture, everything the system knows is stored in objects. Some of these objects will correspond to
"issues" in the sense used by Burton and Brown (1982): things that the systera can understand and
talk to the user\about. Many of the- different objects representing the domain will shere common

Substructure. :For such objects, the standard class inheritance mechanisms of object-oriented

programming are appropriately used. The critical point is that every thing the system will interact
with the user about is a séparate class. We call these domain knowledge classes Bites. They are all
subclasses of the class Bite. s

Given that we organize the system on the basisi of the issues that the system recognizes, where

are we to put components of the tutor like the "diagnoser,” "student model," and "task selector"? We

L A T

provide these compénents in a generic form as high level objects. So, for example, there are objects

‘that can implement a component like a diagnoser. The class Diagnoser will specify the local data

needed to perform the diagnostic function and the algorithms to use that data. The Diagnoser class
specification does not specify any particular diagnosis to be done, only the general procedure and data
required for doing a diagnosis.

The specific data needed for performing an actual diagnosis are provided when the general
component classes (e.g. the Diagnoser class just discussed) are inherited.by\the Bite classes that
actually need to.use thei'n. Similarly, the other standard intelligent tutoring system components are
implemented as classes and irherited by the Bites. Consider an example where -two kinds of
diagnosers are to accomptish two styles of diagn051s This would be handled by hav1ng the general
properties of diagnosers in a class Diagnoser with the specific properties contained in two subclasses
DiagnoserA and Diaghoser-B. Bites are specified to inherit their diagnostic’ capahili‘t,l from
DiagnoserA or DiagnoserB as appropriate.

i
]

The proposed architecture solves the problems described above by making the system highly
modular. Each curriculum element is represented explicltly as a class. To the extent that curriculum
elements share structure, that sharing is explicitly represented in the 1nher1tance among the classes
representing these elements. Similarly, each of the key tutoring components is represented as a class
object. These component classes are used to provide tutoring function to the domain classes. Like the
domain element classes, component clasces use inheritance to represent shared structure.* .

The Curriculum Elexnents: Bites

“The structure of the classes representing curriculum element bites is defined by inheritance
from two kinds of classes. Tutoring compqnent classes, such as the student model and the diagnoser,
provide a framewpi'lc in which data inust be supplied by the implementer or curriculum designer. We
plan to build & non-programming interface ito facilitate defining these bites. Bites'also inherit
structure based on the kind of knowledge they represent. We 'have defined several classes of bites:
Abstraction Hierarchy Bites, Definition Bites, Input/Output Bites, and Discovery Bites. In this
section we discuss each ifi detail. '

An abstraction hierarchy represents an ordering. of concepts-in .the curriculuin. In this
hierarchy specific versions of a concept appear at the lowest level of the hierarchy and more general
versions of that concept appear higher in the hieraz‘chy. An example of this is shown in Figure 1.
There we see the abstraction hierarchies for Ohm's Law and Kirchhoff's Law from our electricity tutor.
The two highlighted nodes show the relationship between the specific concept, "current is unchanged

Co Y '

» t

4

LTRSS

1
5
3
Py
Y

\\
LR
L H

N

across ;m uninterupted wire," and the more general concept, "Kirchhoff's Law." The "UninterruptedS"
bite is a specific version of the "KirchoffsLaw" bite and thus is shown at a lower position in the
hierarchy.

Abstraction hierarchy i)ites play an important.orga;xizing role in the tutors. These bites
exercise a range of simpler ideas in the curriculum. In electricity, for example, understanding
Kirchhoff's Law implies undérstarlding a collection of more fundamental i"déas: circuit geometry (e.g.
parallel vs, series),.resistor behavior, ba'ttery i)ehavior, current, resistance, and voltage. Because of
this organiziné role, the problems abstraction hierarchy bites generate are critical for the diagnosis of
studen?performance. Only abstraction hierarchy bites have sufficient perspective (i.e. connection to
other bites representing fundamental ideas) to test the student's performance in problems that
integrate across several bites (Lesgold & Ivill, 1987). Implementing this perspective is a current area

of active research. Our initial work is presented in the section on tutoring components.

Abstcaction -t her,

. BetureAndAtiS L

-) tsSerias d—..‘—- BetoreAndAftSource
. UninterruptedS
O ———
BetorsAndAat?
. - et LowerinParthanSeries
. J e - leParallel «<.. |
‘ KirchoftsLew v T ParSuins
? o —————— .
yd K * ' Uninterfuptedd
g K maeee VoltDropt owCoin,
Absteactiont ———— AbstractionBite "\ VeSeries 220 P P
’ N = VoltSuins
. veparaver <2, VoltDrupSaineParinCoing
; VuttSamer arCutnp
o ifimev
I Ve-R
OtunsLaw << R=~t
. v };... .
Vet

Figure 1, Abstraction Hierarchy !‘ron; the Electricity Tutor

Definition Bites represent concepts that the student is to learn without being taught mut;h
background. 'Examples of this would be the concept of gravitaticnal force as it is used in our tutor for
hydrostatics (Archimedes's Principle). It's important for the student dealing with buoyancy to
understand how gravity works, but, it's not imporéant to know why it works that way.

Input/Output Bites representconcepts thathave a black-box behavioxl. The student needs to
know that certain inputs produce certain outpuf:s and-needs totknow the rule (formula) describing the
behavior. The student does not 'need to know the j ustification for the behavior. The behavior of a
resistor in an electric circuit is best represented inan /O bit;z.

-

Discovery Bites enable several of our tutors to combine the advahtéges of student-initiated

learning in discovery worlds with support for students who leck the skills to learn efficiently froma -

pure discovery world. These tutors provide a simulation of some aspect of a domain. The intelligent
tutoring systeni allows the student to explore the simulation freely until it decides the student is
ﬂodndering, then it makes a suggestion. Discovery Bites represent the inquiry skills. An example of
this type of bite is "vary only one variable while holding all else constant.” [Shute and Bonar, 1986}.

Tutoring Components: Diagnoser

There are three main tutoring components of the bite-sized tutoring architecture: the
Diagnoser, the Student Mbdel, and the Task Selector. We discuss each component in turn. The
Diagnoser is invoked by some event that occurs during the tutoring session. The implementor of a
specific tutor detern. es what events invoke the Diagnoser. In particular, we want to allow for
different grain-sized observations of the student, ranging from making a diagnosis only when a
student completes a problem to making a diagnosis based on the s’udent’s movement of the mouse

every n milliseconds.

The Diagnoser class is best illustrated in our implementation of the Electricity tutor. Consider
what happens when a student responds to a problem constructed at some intermediate bite in the
Kirchhoff's L.aw abstraction hiert;rchy. That problem has been constructed from a number of
component bites representing the fundanientalg needed to understand the abstraction hierarchy bite.
For example, a bite in the Kirchhoffs ‘l‘..aw abstraction hierarchy constructs problems based on
component bites concerning resistors, current, circuit geometry, ete.

Once the system has a student response to a problem, the abstraction hierarchy bfte begins a
diagnosis. Using capabilities provided by the Diagnoser class, the bite sends a message to each
component bite asking if the domain knowledge in the component bite is relevant to the studcnt's
response, current tutoring goals, and the current tutoring mode. If it is, the Diagnoser then checks to

see if the student is misusing the concept taught by this bite. "Misuse" is defined by a spacific
diagnosis algorithm cperating on the specific data of that bite. The Diagnoser then updates ‘the
student model accordingly. Note that the data for the student model are, of course, stored in the bites.
When the Diagnoser has completed updating the biteé, it invokes the Task Selector to choose what it
should.do next. \

. Tutoring Components: The Student Model

10

The Student Model maintains several components relevant to representing student

performance. First, the Student Model contains a record of the events of the session. This is stored in a-

class variable of .the Bite class so that all curriculum bites (which are instances of subclasses of Bite)
have access to one copy of it. In addition, the Student Model specifies a series of instance variables
that rep:esent student performance on individual bites. We currently use a differential modeling
schéeme where we keep three separate measures of the students success with each bite. One is a
measure over the entire tutoring session, one is a measure over the the last five events, and the last is
a meas_ure of the last (or current) event. These messures are ratios of how many times the concept of
each bite was used appropriately by the student, divided by hew many times it should have been used
_as determined by the Diagnoser. :

Tutoring Components: The Task Selector

The basic flow of control of the tutor is based on Tutoring Mode objects stored in astack located
in a global obJect Tutotring Session. Tutoring Mode instances set the local state for a series of
instructional tasks. The Tutormg Mode has two instance variables useful to the ‘Task Selector. One

indicates cnterla for the made being satisfied, and one 1nd1cate'= some threshoid for deciding that the

student is- ﬂoundermg and currently unable to learn the current concept in the current mode.

~ Each mode ohject defines ‘several rﬁessages. The Initialization message initializes the two
instance variables mentioned above, based on the current student model. A Process message teaches
the relevant bites in a manner consistent witl: the current mode (see below). A Satisfaction message
will determine if the current mod= is satisfir 4 and what steps are to be taken when it is. It usually
mesans popping the preéent rhode\ihstance ¥ the Tutoring Sesgx;‘onhstack and pushing a new mode
instance on the sfack. A Threshold message decides what actiohs to take. when the student shows
evidence of not being able to satis’f& the mode object. This will usually initiate pushing some.remedial
mode object onto the stack. -) l

- / \

The Task Selector first exammes the stack If it is empty the Task Selector creates 4 new
instance of some default mode and sends the local Initialization message to the mode. The Task
Selector then returns the control to the student. If the stack is not empty, the Task Selector sends the
Satisfaction message. If the current mode is not satisfied, the Threshold message is then sent. Finally,
if the thréshold’cohdition is not met the Process message is sent.

%~

Tutoring modes descrioe the type of tutor-student interaction that is currently be.ing used. We
are'implementing six of these modes:

o

) o ~r\o' AR AR e Neiag f - ".*’ B —vm\~lu EEENLEEEN B ‘ o ‘ ST T T e Xy -y ¥
%

-Exploration -- The student is obtaining information from the discovery world in
order to refine and complete developing hypotheses.

-E;cperimentation -- The student is performing some action designed to confirm or
differentiate hypotheses, whether explicitly stated or recognized by the tutor.
-Elaboration -- The student is testing some previously confirmed hypothesis.
-Didactic -- The tutor is driving the interaction by proposing problems for the
student:

-Demonstration -- The tutor takes over and demonstrates some concept explicitly.
-Coaching - Thelutor provides some hints that wiil help the student understand the

bites in question: \
Example Bite-Sized Intelligent Tutors

Bridge: An Intelligent Tutor for Programming

t
Briuge is a tutor that teaches computer programming. In Bridge, the student user is presented

with problems of a complexity appropriaté to the first ten weeks of an introductory programming
course. Bridge coaches the student through three phases of problem-solving for each problem posed.

In the first phase, the student constructs a set of step-by-step instructions by choosing and arranging
informal English plL:ases. ‘In the -next phase, the student matches these phrases to visual
representations of programming schemata we call "plans" [Soloway et al., 1982] and combines the
representations to build a runnable program. In the final phase, the student uses the visual
representation as a guide to building a correct programming languag2 solution to the original
problem. Currently Bridge tutors Pascal, other programming languages could be tutored using the

same approach.

In the current Bridge im‘ﬁlementation (Bonar & Cunningham, 1986) the

curriculum-depende;lt bites are the programming plans and the plan specializations needed for each
problem that Bridge can tutor. These plans fit {nto an abstraction hierarchy with the problem-specific
programming plans at the lowest level of the hierarchy. The Diagnoser determines whether a
particular bite is being used apprdpriately by comparing the student's current program with the
requirements specified for that plan in the current phase. This information is represented by a
requirements, language that defines a group of operators which indicate various things about the
plans, the correct order of their appearance, and their relationships to each other. Figure 2 shows an
example of this language. This example shows some of the requiremerts of the Counter Variable Plan
in Phase 1 for the Ending Value Averaging Problem.

N (PushToHighest (EvaPCountervariablePlan
: Exists? o)
(Hints (In order-to Compute the average,
- you will need to divide the sum
e of the integers by the number of
: integers read in. Include a plan
to read in the number of
integers.)
. (To compute the average, you. must .
divide the 3us of all the
integers read in Yy the ‘count of
the nunber of.integers. lnclude
the %"Ksep count of ... %* plan
C. . . now.))) 4}
‘. (EvAPCountervariablePlan Sequence/ ...
EVAPInputNewVdluevVariablaPlan
£vAPCountervariablePlan /.. :
(Hints {You ‘have to acquire the nusbers
. BEFORE you _can count thes.) .
) * . (Put the step you use to acquire the)
numhers 3bcve the stép you ‘use to .
.count thewm.) o
(Put %"Keep count of ...%" plan-belov
the %"Read in ...%")
or %*Get%" plan.)))
(Anyof (EVAPCounterVariabliePlan Sequence ...
EVAPCountervartableflan ...
EVAPResultOutputPlan ...) RN
(EVAPCounterVariableP lan Sequence ... :
EVAPCountervariablePlan ...
EVAPResultValusPlian . .")
(Hints (You must count the numbers BEFORE You .
. can compyta the average.)
£ (Put the statasent you use to count
N the numbers higher than the one /
you use to compute the average.))

))

~

. Figure 2. Requirements Language from Bridgs ’\

Some of the requirements language operators we have found useful are:

-Sequence -- this de?scr_ibés the order in which the plans should appear in the s
program. Figure 2 shows three such sequence requirements. The "..." that separates
some plans indicate_g that zero or more plans can come between then: in the
. student's solution.) A
-Exists? -- This operator indicates that the plan mentioned must appear in the
. ‘ program. In figure 2, the Counter Variable Plan is required tobe in the program.
-AnyOf -- this is the equivalent of an OR operator. It is satisfied if any of its
arguments is satisfied.
-All -- this is the equivalent of an AND operator. It is satisfied only if all of its
arguments are satisfied.
-Not - this is the usual NOT operator. It is satisfied only if its argument is not
satisfied. .
-PushToHighest -- This manages several requirements at once and selects a hint
dealing with the first unsatisfied plan. -

o

e brgwser (selncted tile TUTOHPART)

A

MezaTuter . /maomu{.gewmv.u
/ TableSortOnRsievantVars
,//
NeQataCollectForGeneralzation
Diagneser
NoeelevantinputDataCollection

tHypothesisFromGeaph
Uzotiinesz002avsraph
MagGiChangawithPrice -
QoedCholces Withlraph
/cr,gmgc
. .mwladguorgnnmﬂon\ Hvpothesifomtatia
Tadlelsolate V. -
Interrogationhite S~ ;"’
R M
\ \ N3sufficlentChgToBasaVarsforAbstract
- NBRslavantResuitBateCokoction
NBACtueRdtDataCotection T
NefredictadResultDataColiection
NOSystematicDataCollection
Tutoi s t ..)
vamponan StudentModel NOSaseineDats
DetinitionBite

Ocapl.Understanding ~
) Supply Scheduie
[/ demend Scheduis

Supply Curve
/

Damand Curve .
Deita.Quantity.Domandod
Dvlu.oumtlty.&app&d

Law.0t.Demand ‘ '

* Smithtown: A Discovery World for Economics

Figure 3. Bite Hierarchy for Smithtown. "InterrogationBite” is a class of Discovery Bites,

The economies dlscovery‘world simulates an imaginary town which conforms to the laws of
supply and demand. The student controls several variables, e. g. population, income per capita, _
intérest rates, consumer preference, number of suppllers, .and weather. The student changes one or -
more of these variables and observes the resultant change on the other variables of the world. The -
student has several tools to aid discovery, e.g. a notebook to, record the changes observed ir. the
variables and a graph package to observe relationships between variables. In addition to teaching an
economlcs curriculum, the tutor teaches scientific dlscovery skills, so some of its bites are discovery

b1tes (see Figure 3). The economlcs curriculum bites will teach about the patterns in the data collected
by the students as they explore the microworld. : : o

3

Eureka: A Tutor for Hydrostatics Problems

' Eureks employs an exploratory microworld environment that demonstrates the principles of
buoyancy pertinent to Archimedes' Principle (Klopfer, 1985). The mode of learning is very similar to
the economics tutor. The student explores the microworld, makes hvpotheses when he or she dlScovers‘
some relationship, and then tests those hypotheses with subsequent experiments. The student has thé
ability to change several'variables in the "laboratory" environment: the mass of the block, the density
of the liquid, the grav1tatlonal force, etc. He has the same tools available to ald his exploration that

were described above in the econontics tutor.

tutervglosne e
o Lroertmassuia Tonihage -
N . ' P (u-r.od- " /, wmm .
\ - ! Tainsessarintrsent¥ors
. é Cuechang . 4 T oniaseats tevare

Coperedias / MOSymematxtetecosoction
, Sogruser ;_//// DS MulonaORg? or A7 06 Lan

)| * /
\ \ NBAC tusPineustBe t Cotnt taun
W apiirege
! \ Nypothosnd rembraph
" okt ot WitGr o s

/Mutv
hdn ol ¥

* Avpetweignt

Figufe 4. Bite-Sized Hierarchy from the Eureka Tutor

/'f‘igure 4 shows the inheritance lattice for Eureka. This tutor is very similar in structure to the
economics tutor. It uses discovery bites to tutor useful scientific skills. [t has-bites that teach about

observable patterns in the data collected during the session.

Concluding Remarks

We have illustrated a generic architecture for building intelligent tutoring sy~*~ms. In
particular, we have focused an ‘echniques for domain-independent representation of the i vledge to
be taught. The key idea is to urganize the tutor around objects that represent the knowledge to be
taught, not around the various components of the tutor.

Although each of, the tutors discussed is implemented, very little code is actually shared
between them. We are cdrrently reimplementing several of the tutors to share code for all the basic
componedts and knowledge crganizations. We have also begun working with non-programming
domain experts indesigning an interface to let them design the tutor's curriculum.

Acknowledgements

This article discusses a series of intelligent tutors and educational coinputer envi;dnments developed
at the Learning Research and ljevelopment Center. Many people at the center have contributed to the .
educatlonal and computational aspects of the work dlscussed "here. In particular, Valerie Shute
developed the subject matter content and pedagogy 'for the Smithtown microeconomics intelligent
discovery world. The discovery worlds are experimental tools in a project of Robert Glaser's to
characterize and improve discovery learning. Kalyani Raghavan has extended the discovery world
work of Valerie Shute and Peter Reimand in the development of Voltaville and in further work with
Smithtown. Joyce JIvill develoﬁed MHO, the Bite-Size electricity tutor, to which Andrew Bowen also
made a substantial contribution. Cindy Cosic, Leslie Wheeler, Mary Ann Quayle, Paul Resnick, and
Gary Strohm have all worked on the tutors discussed in the article. Finally, Alan Lesgold and Stellan

Ohlsson have made iraportant contributions to the ideas developed here.

12’) L. . . \

K , " cer cor s el N . .
(XN ST 2ef ' 2 Y PR . . LY .
& *sz)..m POV Pt s 2 IR AN AL b ses et R SR I DR

References

Bonar, J. G., & Cunningham, R. (1986). Bridge: An intelligent tutor for thinking about programming.
Technical Report. University of Pittsburgh, Learning Research and Development Center .)
Brown, J. S., & Burton, R. B. (197 8) Diagnostic models for procedural bugs in basic mathematlcal
skills. Cognitive Science, 4, 379-426:

Burton, R. B. & Brown, J. S. (1982) An investigation of computer codching for informal learning
act1v1ty In D. Sleeman & J.S. Brown (Eds,), Intelligent Tutoring Systems, pp. 79-98. London:Academic
Press. :

Klopfer L. E. (1985). Intelligent tutoring systems in science education: The coming generation of |

) computer-based instructional programs. In Proceedmgs of the” US-Japan Conference on S(:teru:e
Educa?wn, Washmgton DC. . RS

~
Learning Research & Development Center. (May, 1986). Guide to cognitive task analysis. Technical
Report.
University of Pittsburgh, Learning Research & Development Center.

Lesgold, A. M., & Ivill, J. (1987). Toward intelligent systems for testing. Technical Report LSP-1.
University of Pittsburgh; Learning Research and Development Center.

Shute, V. & Bonar, J. (198@). Intelligent tutoring systems for scientific inquiry skills. Program of the
Eighth Annual Conferenc: of the Cognitive Scign}:e Society (pp. 353-370). Hillsdale, NJ: Lawrence
.Erlbaum Associates. ‘ .

Soloway, E. M., Ehrlich, K., Bonar, J. G., & Greenspan, J. (1982). What do novices know about
programming? In B. Shneiderman.and A. Badre (Eds.), Directions in human-computer interaction.
Norwood, NJ: Ablex.

Stefik, M. & Bobrow, D.G. (1986) Object oriented programming: Themes and variations. AI Magazine,
6, 40-62. ; ‘ .

13

Vanlehn, K. (1981).’ Bugs are not enough: Empirical studies of bugs, impassés and repairs in .
procedural skills. Technical Report CIS-11 (SSL-81- 2) Palo Alto, CA: Xerox Palo Alto Research _ {
Center. [Also, (1982), Journal of Mathematical Behavior, 3, 3-71] \
|
\

VanLehn, K. (1982). Felwtty conditions for human skill acqutsztzon Valzdatzng an Al-based theory.
Technical Report CIS-21. Palo Alto, CA: Xerox Palo Alto Research Center

