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We describe an object-oriented architecture for intelligent tutoring, systems. The architecture is
oriented around objects that .represent the various knowledge elements that are to be taught by
the tutor. Each of these knowledge-elements, called bites, inherits both a knowledge organization
describing the kind of knowledge represented and tutoring components that provide the
functionality to accomplish standard tutoring tasks like diagnosis, student modeling, and task
selection. We illustrate the approacb with several tutors implemented insour lab.

This work was supported by the-Office of Naval Research, under Contract No. N00014-83-6-0148
and N00014-83-K0655 and the Air Force Human, Resources Laboratory under Contract No.
14'41689-84:D-0002, Order- 0004. Any opinions, findings, conclusions, or recommendations
expressed in this report are those of the authors, and do not necessarily reflect the views of the
U.S. Government.

Reproduction in whole or part is permitted for any purpose of the United States Government.

Approved for public release; distribution unlimited.
4



s,

Introduction

Many projects in intelligent computer-based instruction depend upon detailed but general

theories of human learning or diagnoses of the learner's cognitive state (see, for example, Bonar and

Cunningham [1986], OhISson and Langley [1984] and Van Lehn [1984]). We feel there is also an

enormous potential for Systems based on theory:driven analyses ofsdomain expertise. For particular

fields, for example, cognitive science researchers have developed accounts of skilled performance and

of impediments to skilled performance. Such accounts could be used to develop useful ar.d interesting

instructional systeMs. Widespread development of this kind oftutor would be faciliated by a general

intelligent tutoring system architecture and tool's to support development. In this paper we desribe

our first steps toward suckan architecture, called the Bite-Size Tutor..

The Bite-Size _Tutor is a general intelligent tutoring system shell that provides the
curriculum-independent part of an intelligent tutor and specifies an organization for the curriculum

knowledgeto be supplied by a domain expert. Witk the Bite-Sized Tutor, we can exploit the expert
, -

system approach currently being applied in many intelligent tutoring system projects. In this
approach, competent performance in a domain is analyzed. Ncivices learning that domain may be

observed. The results-of these analyses and observations are a "cognitive task analysis" of the domain

and a "bug catalog" of common novice problems, in the domain. "Cognitive task analyses" (Learning,
Research & Development Center, May 1986) are analyses beyond a behavioral "rational task
analysis" that specifically attend to the underlying cognitive skills and representations involved in

competent performance. "Bug catalogues" (Brown & Burton, 1978; VanLehn, 1982, 19a3) describe

systematic errors or misconceptions that are likely to impede learning or skilled performance. Taken

together, the cognitive task analysis and the bug catalog constitute the "curriculum" of most
intelligent tutors.

Our key goal with the.Bite -Size Tutor is an interface that allows the curriculum of a system to

be supplied by a domain expert who is not a programming expert. This is a crucial goal -- creating the

curriculum for any kind of computer based instruction is a demanding and time consuming task,

running into hundreds of hours of development for each hour of instruction. The toy domains,
microscopic curriculums, and limited instructional activities of experimental intelligent tutors must

be expanded to complete curriculums that meet recognized instructional needs with an array of

techniques and activities for the student. Such an expansion requires extensive input by domain

experts who are not programmers. We in the intelligent tutoring community must provide the tools to

allow this approach.
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In this article, we first discuss problems with current intelligent tutoring system
architectures. We then propose our solution: an architecture that uses the structures of an
object-oriented programming language as domain-independent modules for intelliget tutors. We
discuss the detailed architecture of thaBite-Size Tutor, and illustrate this architecture'ir4th several

examples from projects being developed at LRDC.,Finally, we touch upon future research dir Ftions.

Problems with current intelligent tutoring systems

Close examination of most current.intelligent tutoring system implementations shows them

to be complex and-unwieldy. (We want to emphasize that this discussion is not a criticism of any
particular intelligent tutoring system, but a general problem that appears in many systems.) Pieces of

. -
programming code are repeated in several places; closely-related information is spread apart. It might

appear that these diffieulties are simply a matter of prototype implementations, written without

concern for detailed software engineering issues. While this is part of the problem, there is a more

fundaMental design flaw, related to the use of knowledge within the intelligent tutoring system.

Intelligent tutoring systems are usually conceived as a series of semi-independent components like

"explainer," "diagnoser,"""tutor," and "user modeler." the problem is that thesacomponents need to

share many diverse- pikes of knowledge. The knowledge needed for -different components typically

overlaps considerably. Functional components whose roles are quite clearly delineated in an abstract
description of the system May-he implemented with code diffused through many parts of the system.

The systems, therefore, are not.modular. In particular, they do not allow for addition of new domain

knowledge or new approaches to the pedagogical tasks.

The WEST tutor (Brown and Burton, 19821 provides an example of these problems. As one of

the most intellectually important "classic "intelligent tutoring systems, it serves as a useful foil for

this discussion. It can he viewed in two ways: in terms of its "issues" (the fundamental lessons the

system is prepared to teach the student) ar'i in terms of its components (e.g. "expert," "differential

modeler," "tutorial selector.") In the actual'Interlisp -D implementation of the tutor, the program is
organized by components. This results in a system with unnecessary duplication and complexity in its

multiple; overlapping representations of issue knowledge. Besides obscuring the organization of its

knowledge, the current implementation of WEST makes it difficult to reuse and extend parts of the

tutor. Given the many open research issues for intelligent tutoring systems, this is a serious problem.

In general, we need a tool that enables the development of tutoring systems much more

rapidly than now,poSsible. Ideally, such a tool will allow a subject domain expert or a teacher (who is

not necessarily a programmer) to modify the domain knowledge and the tutor-student interaction
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without reimplementing the system at each step. Finally, we need a tool to make it easier for those

who develop tutors to test their systems as they are designed.

An Object- Oriented Intelligent Tutoring System Architecture

We propose to take advantage of the character of an object-oriented programming language to

develop* architecture that is modular and is .therefore both comprehensible and easily modified.

Object-oriented programming alfows. the programmer to create a toolkit of objects that represent items

of interest in the application area of the program. Objects represent items in the world by containing

both data, the state of the object, and programs, operations that can change the state. Objects can also

share structure, with one object defining the'structure for several Other objects. Such an object is

called a class. Typically an object specializes a structure it inheritS from above, and in turn defines the

structure for a lower-level set of objects. An object communicates by sending a message to another

object and requesting some action. An object responds to a message by running one of its programs,
. -

thereby changing its state or sending new messages to other objects.

Although objects, ,elasses, inheritance, and messages are the crucial constructs of
object-oriented progtamming, the notions of toolkit and protocol are central to understanding the

power of the approach. A toolkit provides a set of objects designed to be specialized and protocols for

using those objects. Objects,in a toolkit p -ovide a range of capabilities designed to be specialized to

particular applications. A protocol, in the object-oriented sense, is a set Ofmessages that are defined
\* for a broad range of objects. For example, We could design a drawing system where objects

corresponding to rectangles, circles, and characters all responded to the messages draw, e rase, move,

etc,, tote that each kind of object is free to implement these messages differently. This is the essence

of a protocol: a general set of capabilities for simplicity, with a mechanism for accommodating the

compleXity of actual differences.

The Bite-Size architecture is a toolkit for implementing intelligent tutors. In the Bite-Size

architecture, everything the system knows is stored in objects. Some of these objects will correspond to

"issues" in the sense used by Burton and Brown (1982): things that the.systern can understand and
talk to the user \ about. Many of the different objects representing the domain will slim common

substructure. .For such objects, the standard class inheritance mechanisms of object-oriented
programthing are appropriately used. The critical point is that every thing the system will interact

with the user about is a separate class. We call these domain knowledge classes Bites. They are all
subclasses othe class Bite.

Given that we organize the system on the basis of the issues that the system recognizes, where

are we to put components of the tutor like the "diagnoser," "student model," and "task selector"? We



provide these components in, a generic form as high level objects. So, for example, there are objects
that can implement a component like a diagnoser. The class Diagnoser will specify the local data

needed to perform the diagnostic function and the algorithms to use that data. The Diagnoses cies§

specification does not specify any particular diagnosis to be done, only the general procedure and data

required for doing a diagnosis.

The specific data needed for performing an actual diagnosis are provided when the general

component classes (e.g. the Diagnoser class just discussed) are inherited by the Bite classes that

actually need to.use theni. Similarly, the other standard intelligent tutoring system components are
implemented as classes and inherited by the Bites. Consider an example where two kinds of
diagnosers are to accomplish two styles or diagnosis. This would be handled by having the general

properties of diagnosers in a class Diagnoser with the specific properties contained in two subclasses

DiagnoserA and DiagnoserB. Bites are specified to inherit their diagnostic' Capability from
DiagnoserA or DiagnoserB as appropriate.

The proposed architecture solves the problems described above by making the system highly

modular. Each curriculum element is represented explicitly as a class. To the extent that curriculum

elements share structure, that sharing is explicitly represented in the inheritance among the classes

representing these elementi. Similarly, each of the key tutoring components is represented as a class
object. These component classes are used to provide tutoring function to the doinain classes. Like the

domain element classes, component chines use inheritance to represent shared structure:

The Curriculum Elements: Bites

The structure of the classes representing curriculum element bites is defined by inheritance

from two kinds of classes. Tutoring component classes, such as the student model and the diagnoser,

provide a framework in which data must be supplied by the implementer or curriculum designer. We

plan to build a non-prograMming interface ite facilitate defining these bites. Bites also inherit
structure based on the kind of knowledge they represent. We 'have defined several classes of bites:

Abstraction Hierarchy Bites, Definition Bites, Input/Output Bites, and Discovery Bites. In this
section we discuss each ifidetail.

An abstraction hierarchy represents an ordering of concepts in .the curriculuin. In this
hierarchy specific versions of a concept appear at the lowest level of the hierarchy and more general
versions of that concept appear higher in the hierarchy. An example of this is shown in Figure I.

There we see the abstraction hierarchies for Ohm's Law and Kirchhoff's Law from our electricity tutor.

The two highlighted nodes show the relationship between the specific concept, "current is unchanged
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across an uninterupted wire," and the more general concept, "Kirchhoffs Law." The "UninterruptedS"

bite is a specific version of the "KirchoffsLaw" bite and this is shown at a lower position in the

hierarchy.

Abstraction hierarchy bites play an important, organizing role in the tutors. These bites

exercise a range of simpler ideas in the curriculum. In electricity, for example, understanding

Kirchhoffs Law implies understanding a collection of more fundamental ideas: circuit geometry (e.g.

parallel vs. series),.resistor behavior, battery behavior, current, resistance, and voltage. Because of

this organizing role, the problems abstraction hierarchy bites generate are critical for the diagnosis of

student performance. Only abstriction hierarchy bites have sufficient perspective (i.e. connection to

other bites representing fundamental ideas) to test the student's perforMance in problems that

integrate across several bites (Lesgold & Iviil, 1987). Implementing this perspective is a current area

of active research. Our initial work is presented in the section on tutoring components.

Absteactionli Rbstractionette

the tureArklAt tS

IsSeries BitorsAndAf tSoutce

Unkiterruptea
BetoreAndAttP

LormerinParthanSerties

KirchottsL4w . " P4rSuins

thiinterruptedP

VoltDropt uweomp
VSeries '4%;

VoltSurr,

Vol tDrupSanteP4r311Comp
VirParallel =:.,.,

Volt SaciirP4reutop

OhmsLaw B -I
Vii--1
V.-I

Figure 1. Abstraction Hierarchy from the Electricity Tutor

Definition Bites represent concepts that the student is to learn without being taught much

background. Examples of this would be the concept of gravitational force as it is used in our tutor for

hydrostatics (Archimedes's Principle). It's important for the student dealing with buoyancy to

understand how graiiti works, but, it's not important to know why it works that way.

Input/Output Bites represent concepts that'have a black-box behavior. The student needs to

know that certain inputs produce certain outputs andneeds to1now the rule (formula) describing the
behavior. The student does not'need to know the justification for the behavior.The behavior of a
resistor in an electric circuit is bestrepreSented inan I/O bite.
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Discovery Bites enable several of our tutors to combine the advantages of student-initiated

learning in discovery worlds with support for students who lack the skills to learn efficiently from a

pure discovery world. These tutors provide a simulation of some aspect of a domain. The intelligent

tutoring system allows the student to explore the simulation freely until it decides the student is

floundering, then it makes a suggestion. Discovery Bites represent the inquiry skills. An example of

this type of bite is "vary only one variable while holding all else constant." [Shute and Bonar, 19861.

Tutoring Components: Diagnoser

There are three main tutoring components of the bite-sized tutoring architecture: the
Diagnoser, the Student Model, and the Task Selector. We discuss each component in turn. The

Diagnoser is invoked by some event that occurs during the tutoring session. The implementor of a

specific tutor detern, es what events invoke the Diagnoser. In particular, we want to allow for
different grain -sized observations of the student, ranging from making a diagnosis only when a

student completes a problem to making a diagnosis based on the si,udent's movement of the mouse

every n milliseconds.

The Diagnoser class is best illustrated in our implementation of the Electricity tutor. Consider

what happens when a .student responds to a problem constructed at some intermediate bite in the

Kirchhoff's Law abstraction hierarchy. That problem has been constructed from a number of
component bites representing the fundanientals needed to understand the abstraction hierarchy bite.

For example, a bite in the Kirchhoff's Law abstraction hierarchy constructs problems based on

component bites concerning resistors, current, circuit geometry, etc.

Once the system has a student response to a problem, the abstraction hierarchy bite begins a

diagnosis. Using capabilities provided by the Diagnoser class,' the bite sends a message to each

component bite asking if the, domain knowledge in the component bite is relevant to the studcnt's

response, current tutoring goals, and the current tutoring mode. If it is, the Diagnoser then checks to

see, if the student is misusing the concept taught by this bite. "Misuse" is defined by a specific

diagnosis algorithm operating on the specific data of that bite. The Diagnoser then updates the
student model accordingly. Note that the data for the student model are, of course, stored in the bites.

When the Diagnoser has completed updating the bites, it invokes the Task Selector to choose what it

should do next.

Tutoring COmponents: The Student Model

6
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The Student Model maintains several components relevant to representing student
performance. First; the Student Model contains a record of the events of the session. This is stored in a,

class variable ofthe Bite class so that all curriculum bites (which are instances of subclasses of Bite)

have access to one copy, of it. In addition, the Student Model specifies a series of instance variables

that rep: event student performance on individual bites. We currently use a differential modeling

scheme where we keep three separate measures of the student's success with each bite. One is a

measure over the entire tutoring session, one is a measure over the the last five events, and the last is

a measure of the last (or current) event. These measures are ratios of how many times the concept of

each bite was used appropriately by the student, divided by how many times it should have been used

as determined by the Diagnoser.

Tutoring Components: The Task Selector

The basic flow of control of the tutor is based on Tutoring Mode objects stored in a stack located

in a global object Tutoring Session. Tutoring Mode instances set the local state for a series of
instructional tasks. The tutoring Mode has two instance variables useful to the Task Selector. One

indicates criteria kw the mode being satisfied, and one .indicates.some threshold for deciding that the

student is-floundering and currently unable to learn the current concept in the current mode.

Each mode object defines several messages. The Initialization message initializes the two

instance variables mentioned above, based on the current student model. A Process message' teaches

the relevant bites in a manner consistent with the current mode (see below). A Satisfaction message

will determine if the current mode is satisfic.i and what steps are to be taken when it is. It usually
Means popping the present Modeilistance if the Tutoring Sesslon,stack and pushing a new mode

instance on the sf,ack. A Threshold message decides what actions to take. when the student shows

evidence of not being able to satisfy the mode object. This will usually initiate pushing some.remedial

mode object onto the stack. _

/The Task Selector first examines the stack. If it is empty the Task Selector creates a new

instance of some default mode and sends the local Initialization message to the mode. The Task

Selector then returns the Control to the student. If the stack is not empty, the Task Selector sends the

Satisfaction message. If the current mode is not satisfied, the Threshold message is then sent. Finally,

if the threshold.condition is not met the Process message is sent.

Tutoring modes describe the type of tutor-student interaction that is currently being used. We

arainiplementing six of thes,a modes:

11
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-Exploration -- The student is obtaining information from the discovery world in

order to refine and complete developing hypotheses.

-Experimentation -- The student is performing some action designed to conffrm or

differentiate hypotheses, whether explicitly stated or recognized by the tutor.

-Elaboration -- The student is testing some previously confirmed hypothesis.

-Didactic -- The tutor is driving the interaction by proposing problems for the
student,

-Demonstration -- The tutor takes over and demonstrates some concept explicitly.

-Coaching - The tutor provides some hints that will help the student understand the

bites in question:

Example Bite-Sized Intelligent Tutors

Bridge: An Intelligent Tutor for Programming

Briuge is a tutor that teaches computer programming. In Bridge, the student user is presented

with problems of a complexity appropriate to the first ten weeks of an introductory programming

course. Bridge coaches the student through three phases of problem-solving for each problem posed.

In the first phase, the student constructs a set of step-by-step instruct:ons by choosing and arranging

informal English phrases. In the .next phase, the student matches these phrases to visual
representations of programming schemata we call "plans" [Soloway et al., 19821 and combines the

representations to build a runnable program. In the final phase, the student uses the visual
representation as a guide to building a correct programming language solution to the original
problem. Currently Bridge tutors Pascal; other programming languages could be tutored using the

same approach.

In the current Bridge implementation (Boner & Cunningham, 1986) the

curriculum-dependent bites are the programming plans and the plan specializations needed for each

problem that Bridge can tutor. These plans fit into an abstraction hierarchy with the problem-specific

programming plans at, the lowest level of the hierarchy. The Diagnoser determines whether a
particular bite is being used appropriately by comparing the student's current program with the

requirements specified for that plan in the current phase. This information is represented by a
requirements, language that defines a group of operators which indicate various things about the

plans, the correct order of their appearance, and their relationships to each other. Figure 2 shows an

example of this language. This example shows some of the requirements of the Counter Variable Plan

in Phase 1 for the Ending Value Averaging Problem.

8 .
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(PushToHighest AEVAPCounterVar lab leP len
Exists?
(Hints (In order- --to compute the average,

Y66 will need to divide the sum
of the integers by,the number of
integers read in. Include- a plan
to ,read in the number of
integers.)

(To compute the average, you. must
divide the sum of 011 the
integers read tn 7y the'count of
the number of- ,integers. Include
the %"Keep cod t of ... % plan
now.))) /

(EVAPCounterVariablePlan Sequence ...
EVAPInkUtHewValueVariablePlan
EVAPCounterVariablePlan
(Hints-(Youhave to acquire the numbers

BEFORE you can count them.)
(Put the-step yag use to acquire the

numbers above the step youuse to
,count them.)

(Put Vlieep count of ...%" planbelow
the %Read In ...%"

or VGet ....V plan.)))
(AnyOf (EVAPCounterVariablePlan Sequence

EVAPCounterVariablePlan
EVAPResultOutputPlan ...)

(EVAPCounterVariablePlan Sequence
EVAPCounterVariablePlan
EVAPResultValuePiani..)

(Hints (You must count the numbers BEFORE you
can compUte ehe average:)

(PUt the statement you use to count
the numbers higher than the one
you use to compute the average.))

))

Figun 2. Requirements Language from Bridge

Some of the requirements language operators we have found useful are:

-Sequence -- this de cribes the order in which the plans should appear in the
program. Figure 2 shows three such sequence requirements. The '...' that separates

some plans indicat that zero or more plans can come between then. in the

student's solution.

-Exists? -- This operator indicates that the plan mentioned must appear in the

program. In figure 2, the Counter Variable Plan is required to be in the program.

-AnyOf -- this is the equivalent of an OR operator. It is satisfied if any of its

arguments is satisfied.

-All -- this is the equivalent of an AND operator. It is satisfied only if all of its

arguments are satisfied.

-Not -- this is the usual NOT operator. It is satisfied only if its arguvent is not

satisfied.

-PushToHighest -- This manages several requirements at once and selects a hint

dealing with the first unsatisfied plan.
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Figure 3. Bite Hierarchy for Smithtown. "InterrogationBite" is a class of Discovery Bites,

Smithtown: A Discovery World for Economics

The economics discovery4world simulates an imaginary town which conforms to the laws of
supply and demand. The student controls several variables, e.g. population, income per capita,
interest rates, consumer preference, number of suppliers, and weather. The student changes one or
more of these variables and observes the resultabt change on the other variables of the world. The
student has several tools to aid discovery, e.g. a notebook to record the changes observed in the
variables and a graph package to observe relationships between variables. In addition to teaching an
economics curriculum, the tutor teaches scientific discovery skills, so some of its bites are discovery
bites (see Figure 3). The economics curriculum bites will teach about the patterns in the data collected
by the students as they explore the thicroworld.
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Eureka: A Tutor for Hydrostatics Problems

Eurektt employs an exploratory microworld environment that demonstrates the principles of

buoyancy pertinent to Archimedes' Principle (Klopfer, 1985). The mode of learning is very similar to

the economics tutor. The student explores the microworld, makes hypotheses when he or she discovers

some relationship, and then tests those hypotheses with subsequent experiments. The student has the

ability to change several'variables in the "laboratory" environment: the mass of the block, the density

of the liquid, the gravitational force, etc. He has the same tools available to aid his exploration that

were,described above in the economics tutor.
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Figure 4. Bite-Sized Hierarchy from the Eureka Tutor

'4'igure 4 shows the inheritance lattice for Eureka. This tutor is very similar in structure to the
economics tutor. It uses discovery bites to tutor useful scientific skills. It hasbites that teach about

observable patterns in the data collected during the session.
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Concluding Remarks

We have illustrated a generic architecture for building intelligent tutoring sr-xoms. In

particular, we have focused on techniques for domain, independent representation of the I vledge to

be taught. The key idea is to organize the tutor around objects that represent the knowledge to be

taught, not around the various components of the tutor.

Although each of the tutors diScussed is implemented, very little code is actually shared

between them. We are currently reimplementing several of the tutors to share code for all the basic

components and knowledge organizations. We have also begun working with non-programming

domain experts in,designing an interface to let them design the tutor's curriculum.
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