
DOCUMENT RESUME

ED 287 467 IR 012 863

AUTHOR Baumlin, James S.; Cone, Dennis
TITLE Teaching Teachers To Compute: A Revised Syllabus.
PUB DATE [85]
NOTE 9p.
PUB TYPE Viewpoints (120)

EDRS PRICE
DESCRIPTORS

MF01/PC01 Plus Postage.
*Authoring Aids (Programing); *Computer Literacy;
Course Content; Courseware; Higher Education;
Humanities; Instructional Design; *Preservice Teacher
Education; *Programing Languages

ABSTRACT
Education courses in BASIC remain a foundation of

teacher training for computer use. Such courses do little more than
re-invent programming structures that are already available in such
educational programming languages (EPLs) as PILOT and TEACH. While
BASIC is the only General programming language that is both simple
and powerful enough to enable beginning programmers like teachers to
develop software in their own content area, it typically limits them
to writing simple programs with multiple-choice format answers. An
EPL can generate more powerful, more flexible software in less time
without requiring knowledge of a more difficult lower-level
programming language. Education courses emphasizing BASIC are
obsolete, and educational computing classes should be restructured
towara the more versatile EPLs. Teachers, particularly in the
humanities, would be better served by mastering one of these
languages. BASIC remains useful to know since so many programs have
been written in the language, but it should be offered at a
reading-knowledge-only level in computer literacy courses.
(Author/RP)

********************************************%**************************
* Reproductions supplied by EDRS are the best that can be made *

* from the original document. *
***********************************************************************



N.. James S. Baumlin
Dennis Cone
Texas Christian. University
Fort Worth, Texas 76129

CO

U.S DEPARTMENT OF EDUCATION
Office Of Educational Research and Improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

AThis document has been reproduced as
received from the person or organization
originating it

0 Minor changes have been made to improve
reproduction quality

Points°, viewor opinions stateOin thisdocu
ment do not necessarily represent official
OERI position or policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

James S. Baumlin

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Teaching Teachers to Compute: A Revised Syllabus

The distinction between computer literacy and what could be

termed "computer fluency" is considerable, and as Sue Kay Otto

and James P. Pusack have observed, the "tasks teachers may be

able to envision doing with the help of a computer require a high

degree of expertise." Most teachers, they admit, have neither

the time nor the resources to acquire this expertise; yet, like

many involved in teacher training, they continue to argue in

favor of a general-purpose programming language like BASIC. The

logic here is inherently flawed: if we knnw that courses in BASIC

generally fail to make expert programmers, why require or even

encourage such coursework for Education majors? Outside of

Computer Science. teachers--certainly teachers in the

-Iumanities--are not programmers. Nor do they need to be

3rogrammers to make effective use of computers in their

instruction. Why, then, does programming in BASIC remain a focus

df computer literacy courses for teachers, regardless of level

and field?

There is another kind of computer course for teacher

training, one whiL,1 de- emphasizes programming skills 2nd stresses

2 BEST COPY AVAILABLE



#

-.)

application or, as Roy Agee more ambitiously describes it, the

"extensive, systematic use of the published courseware with heavy

hands-on experience."2 This, we agree, would be the ideal

literacy course for teachers in the Humanities; the acute problem

is that "published courseware," particularly in the Language

Arts, remains thoroughly inadequate. And although educational

authoring systems (programs like Conduit's DASHER and AIDS) offer

some possibilities for modifying the content of such courseware,

the systems presently available are so limiting that they hardly

begin to exploit the potential of computer-assisted instruction.

Teachers in the Humanities do need the ability to translate their

own specific materials into courseware, and neither BASIC nor

authoring systems have proven fully satisfactory.

There exists, fortunately, a middle ground between the

complexities of general-purpose programming languages and the

structural limitations of authoring systems: the educational

programming language (EFL>, of which PILOT and TEACH are

examples. While Agee does not incorporate such educational

programming languages into his revised syllabus for computer

literacy (and we suspect that few courses presently do), we

suggest that EPL offers the best solution to teacher training in

programming. EPL should, in fact, be the central focus in

teaching teachers to compute--and we are surprised, frankly, that

EPL has received so little attention both in journals of

education and in practical application. We present below some

arguments against the present emphases in teacher training,

particularly instruction in BASIC, and describe briefly some

3



3

advantages of TEACH, an educational programming language we have

used to design software for instruction in both collegelevel

composition and English as a second language.

********

The weekend seminar in educational computing is now a staple

of many Departments of Contin.tiiig Education, and few Schools of

Education neglect to offer--indeed, some even require of their

majors--a course in educational computing. What is the goal of

such courses? A quick comparison of the typical Education

Department course to a Computer Science course in computing will

demonstrate at once that the former is not designed to fashion a

programmer. The BASIC language--which "from a pedagogic point of

view," Joseph Weizenbaum writes, is "an intellectual

monstrosity"4--is now the sole province of hobbyists and, it

seems, Departments of Education; most college Departments of

Computer Science no longer even offer courses in BASIC, and high

schools, too, have recognized its inadequacy (the ETS Advanced

Placement Test now emphasizes PASCAL for college credit). So why

do so many courses and weekend workshops teach it?

One answer, doubtless, is that BASIC is the only language

simple yet powerful enough to give "amateur" programmers like

teachers the ability to develop software in their own content

area, software based on their own individualized teaching. Yet a

teacher mastering the typical textbook on educational

computing--Culp's and Nickles' An Apple for the Teacher,'" for

4



4

example--will be able, after some twenty-four separate lesson

programs and 150 pages of instruction, to do little more than

ask, in multiple-choice format, "WHICH PLANET IS EARTH FROM THE

SUN?" or "WHAT IS THE STATE FLOWER OF TEXAS?" Teachers

successfully completing such a weekend workshop or even

semester-long course in general-purpose programming will be able

to write useful though, surely, simple programs within their

'content area. They will have also done no more than reinvent the

wheel, since educational programming languages would have

generated more powerful, more flexible software in less time--and

without requiring knowledge of a more difficult lower-level

programming language. Education courses emphasizing BASIC

programming are, simply put, obsolete, and teachers, particularly

in the Humanities, would be better served by mastering an EPL.

The concern of teachers should not be with the nuts and

bolts of a program. It should rest with the instructional

content. And for the educator who is not a professional

programmer, every hour spent constructing the program itself is

an hour away from the content--an hour wasted. Once again, the

wheel--the presentational structure of an educational

program--has already been invented and is available in the

structure of an EPL. We would argue, therefore, that the typical

graduate of a course in BASIC programming can do few things

better than a person using such a higher-level language; usually

(depending on his or her expertise) that person can only do less

than one using an EPL, and it will take considerably more time.
1

BASIC remains useful to know. S. so many educational 1



5

programs have been written in this language, a knowledge of BASIC

allows one to read and modify many extant programs. But courses

teaching computer literacy to teachers should stress no more than

a reading-knowledge of the language, and then get down to

business: the translation, through an EPL, of content into

courseware. This has been the emphasis in three-week courseswe

have ourselves taught to students in the graduate program in

English at Texas Christian University. Using TEACH on the

university's IBM mainframe computer, participants have learned,

in little more than a week's time, to write software more

sophisticated than a semester's worth of BASIC would have

enabled. The subjects of these programs have also been

diverse--excitingly so, since our students have explored content

areas totally neglected by software publishers. We have learned

that CAI need not be restricted to Grammar drills and reading

comprehension (seemingly the sole interests of publishers): using

an EPL like TEACH, our students have designed programs in poetry

scansion, in the analysis of stylistic features of a text, in

logical analysis, in paragraph organization, in

sentence-combining, even in the interpretation of literature. So

why, we repeat, teach BASIC? We recommend instead that computer

literacy courses stress application and the development of

content-specific software by means of an EPL.

What then can teachers in the Language Arts, for example,

expect to do if they learn an EPL like TEACH? To begin with, a

handful of simple commands enables the novice teacher-programmer

to design a tutorial session on any subject, from vocabulary to

6



6

sentence mechanics, logic, and methods of literary analysis. In

addition to its display of information the tutorial session

receives and stores student responses (which can in turn

determine what information is presented next). The presentation

can be personalized by references to the student's name or the

instructor's. Modifications of these few commands make it

possible to branch to various points within the program: to a

menu of instructions, say, to a review section, or to more

challenging material. Supplementing this more sophisticated

tutorial mode is TEACH's simple yet flexible drill-and-practice

mode. To use TEACH for drill the teacher simply enters the

questions and correct answers in a file. The program will then

automatically number the questions; present them in random order;

tell the student if the Answer is right or wrong; give a second

chance for incorrect responses; display the correct response if

necessary; count the number wrong and the number right; calculate

the percentage correct; and flag the items presented so that the

same questions will not be presented again if the student chooses

to do more. It would take literally hundreds of lines of code to

do this in BASIC, while TEACH handles it with perhaps a

half-dozen one-letter commands. And the teacher retains the

option to intervene in various ways, adapting the drill to the

content. For example, the number of chances for each question can

be increased or decreased; the items can be presented in

sequential rather than random order; the correct answer does not

have to be displayed; and hints may be provided to those who

initially answer incorrectly.

7



7

After only a few hours of orientation and online experience

most teachers are able to begin running simple lessons they have

designed and programmed themselves. And almost immediately they

can begin trying out unique approaches and strategies; our

experience has shown that, even though the presentational

structure of an EPL is difficult to "rewrite " or modify, one's

creativity with an EFL is limited only by the time one spends

"playing" with the language and exploiting it to its full

potential. Far more useful than a course in BASIC, the EPL

demands more consideration than Departments of Education

presently give it.

O



8

NOTES

I Sue K. Otto and James P. Pusack, "Stringing Us Along:

Programming for Foreign Language CAI," Calico Journal (September

1983), 26.

2 Roy Agee, "Are We Really Training Computer Teachers?" T.H.E.

Journal (March 1985), 97.

David H. Wyatt descrihes the differences among general-purpose

programming languages, educational programming languages, and

authoring systems: "Three Major Approaches to Developing

Computer-Assisted Language Learning Materials for

Microcomputers," Calico Journal (September 1983), 34-38.

4 Joseph Weizenbaum, "Another View," a response to Stephan L.

Chorover, "Cautions on Computers in Education," Byte (June 1984),

225. Alan Neibauer argues similarly that "BASIC, the language

most of the current crop of computer literacy teachers are

familiar with, may not be the most suitable language for program

development or programming instruction." "The Computer Literacy

Myth," T.H.E. Journal (February 1985), 90.

's George Culp and Herbert Nickles, An Apple for the Teacher:

Fundamentals of Instructional Computing (Monterey, California:

Brooks/Cole, 1983).

9


