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Methods and Findings I

A Comparison of Three Integrative Review Methods:

Different Methods, Different Findings?

Lin Chang and Betsy Jane Becker

Michigan State University

Abstract

Comparisons are made of the hypotheses and conclusions appropriate to

three different meta-analysis methodologies: vote counts and vote-counting

estimation procedures, tests of combined significance, and analyses of

effect sizes. Also, the statistical properties of related estimates and the

statistical power of the hypothesis tests are discussed. Such comparisons

both facilitate choosing among the methods and illustrate the strengths and

weaknesses of each. Application of the three methodologies is illustrated

using data from a synthesis of gender differences in science achievement.

Seemingly contradictory conclusions from the three methods can be explained

in terms of differences in the hypotheses tested by the methods and in the

statistical properties of the methods. Analyses revealed that the

magnitudes of gender differences in science achievement varied according to

the subject-matter under study. Effect-size analyses were more informative

than the other two approaches. Recommendations for use of the three

approaches conclude the paper.
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Methods and Findings 2

Introduction

In the past decade interest has grown in methods of synthesizing and

analyzing the results of related research reports in the social science.

Many researchers, confronted by a multitude of study results, have turned to

quantification as a mean of handling the volume of information.

By now a great variety of statistical analyses is available for the

quantitative synthesis of research results. Prospective reviewers must be

able to consider the available methods and select a method (or methods)

which test interesting hypotheses, support reasonably specific and

informative conclusions, and have good statistical properties.

In this paper we compare three of the available approaches to the

statistical analysis of related research results. We examine tests and

estimates of effect magnitudes based on vote counting, tests of combined

significance, and effect-size analyses. Comparisons of these methods are

useful for a variety of reasons. They illustrate concretely the differences

between hypotheses and conclusions for competing meta-analysis methods. The

kinds of conclusions that can be Justified should be one of the primary

concerns of a reviewer selecting an analysis method. Also our comparisons

will illustrate how differences in the statistical properties of three meta-

analysis methods may lead to apparently different conclusions about a

research domain. An understanding of such differences can help researchers

as readers to better judge the conclusions drawn in meta-analyses of

interest.

Our comparisons are based on empirical data a "case study" of the

the use of the three methods. It is impossible to tell which of such data

analyses are "correct" (unless simulated data are studied) because any real

data will represent a sample with unknown population parameters. Power

computations and examinations of the statistical properties of the competing
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Methods and Findings 3

analyses can indicate how likely the analyses would be to suggest "correct"

decisions under hypothetical circumstances. Such information must augment

any empirical comparisons of the outcomes of the analyses. Consideration of

agreement and contradictions among conclusions, in light of the strengths

and weaknesses of the different methods, can increase our understanding of

the functioning of the different analyses.

This paper contains four main sections. In section one the three

approaches are introduced, with the hypotheses and conclusions that may be

justified on the basis of each approach. Second, the literature concerning

the statistical properties of the three approaches is discussed. Third, an

example based on studies of gender differences in science achievement

(Steinkamp 8 Maehr, 1983, 1984; Becker & Chang, 1986) illustrates

differences Zn results and inferences for the three approaches. Finally,

results based on the three methods are related to statistical properties of

the methods and recommendations are given for the use of the methods.

Hypotheses and Conclusions for the Three Approaches

We first introduce some notation to represent parameters for the study

outcomes under investigation. Mean differences are often used in comparing

average or typical performance for two groups. Consider a series of k

studies, the population effect size (or standardized mean difference) 6 for

the two groups within study i (i = 1, k) is defined as

(5i = u2t)/ai,

where the lilt and u2i are the populations means in the ith study for groups

1 and 2 respectively, and at is the common population standard deviation for

study i. Various approaches have been used to estimate the population

effect size (e.g. Glass, 1976; Hedges, 1981; Kraemer, 1983); differences in

estimation procedures are not crucial to the issues we discuss here. Other
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parameters such as population propo-rtions and correlations may be

investigated using the methods we consider below; we focus on effect-size

analyses primarily because they have been so widely applied.

Vote-counting Methods

The traditional vote-count procedure has been done two ways: one is to

observe the proportions of positive and negative results and the other is to

count results which are significant in either direction and which are

nonsignificant. In either case, the category with the highest proportion of

votes, or which receives more than a specified proportion of votes (e.g., 50

percent of the votes) is considered to be supported by the data. Vote-

counting methods are useful because they can be applied when only the

directions and significance of study results are reported.

Hedges and Olkin (1980) noted that with the traditional vote-count the

meta-analyst is testing the hypothesis

6 = 0,H0 . (1)

where the 6 is a single population effect size assumed to be common to all

studies. When the procedure of observing only the directions of the results

is used, the vote-count procedure is analogous to the sign test using the

assumption that the chance of obtaining a positive result is 0.5. We note

that the vote-count does not always differentiate between situations in

which all effects are zero and those in which the average population effect

size is zero and is represented by a balance of positive and negative

results.

Modified vote-count procedures (Hedges, 1986; Hedges & Olkin, 1980,

1985) provide a maximum likelihood estimate of a single overall (or average)

effect size (denoted here and below as 6) on the basis of counts of study

outcomes. Using either a significance test or a confidence interval based
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on that estimate, the reviewer can again test the hypothesis that 6 = 0

shown in Model 1.

The procedures for testing and estimation based on vote counts provided

by Hedges (1986) do not require the assumption that all studies share a

single population effect size 6. Thus these newest procedures enable the

meta-analyst to examine another hypothesis about the effect sizes 61 through

6
IC

This test concerns the consistency (homogeneity) of the population

effects. The null model is

H0: di = 62 = ... = 6k = 6, (2)

versus the alternative that at least one of the effect sizes differs from

the hypothesized common effect size 6. When the null Model 2 is rejected,

the reviewer can conclude that some studies are from populations which have

either larger or smaller population effect sizes than the other populations.

Combined Significance Tests

Combined significance tests are summaries computed from the sample

probabilities associated with independent tests of similar hypotheses (e.g.,

Rosenthal, 1978). These summaries have been extensively studied and used by

statisticians for over fifty years (e.g., Fisher, 1932; Tippett, 1931).

Becker (in press) indicated that the statistical null hypothesis for

.combined significance tests is always the composite hypothesis of no effects

in all of the studies under review. When the measures of study outcomes are

the effect sizes 61 through 6k, the null hypothesis examined by the combined

significance tests is

H
0 1

: 6 = 6
2

= = 6
k

= 0. (3)

The hypothesis in Model 3 is a composite of the hypotheses in Models 1 and

2. Like the modified vote-counting procedures, such tests examine the

assumption that all studies share a common effect size.

7



Methods and Findings 6

When the combined significance tests are based on probability values

computed from directional tests (each examining the alternative that di >

0), the alternative model for the combined significance tests is

H1 : di > 0, for i = 1, ..., k, and (4)

at least one d > 0.

When the null hypothesis is rejected on the basis of the directional,

probability values, the meta-analyst can conclude that "at least one"

population effect size is nonzero and positive. Rejection of the null mule]

thus can be associated with many different patterns of effect sizes (or

other study results), and the substantive interpretations of these patterns

vary greatly for all the possible unspecified alternative hypotheses. All

of the studies may share a common positive effect size, or perhaps only one

study has a positive population effect size. Alternatively some population

effects may be positive while others are negative.

With an analysis based solely on tests of combined significance, one

cannot distinguish between these different patterns of population effect

sizes. Becker (in press) illustrated this with examples from three meta-

analyses in which significant probability-value summaries were associated

with three very different configurations of sample effect sizes. Therefore

the interpretations and the inferences based on rejecting the null

hypothesis for tests of combined significance are not precise even when

identical population parameters are under study.

Effect-size Analyses

The composite hypothesis tested by combined significance tests can also

be tested through effect-size analyses, but it typically is examined in two

steps. First, one tests the hypothesis that the studies share a single

population effect size. The statistical test for the homogeneity of effect
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sizes is a test of the hypothesis gi-ven in Model 2 above versus the

alternative that at least one of the effect sizes differs from the

hypothesized common effect size 6. The computational procedures for the

homogeneity test are given in Hedges and Olkin (1985) and Rosenthal and

Rubin (1982). This test statistic has an asymptotic chi-square distribution

with k - 1 degrees of freedom.

If the results from the k studies are consistent with the model of a

single common effect size, one can test whether the value of that single

effect (6) differs from zero. (If results are not consistent, one tests the

value of the average effect). Thus the second hypothesis tested is the same

hypothesis shown in Model 1. Hedges and Olkin (1985) noted that either z

tests or confidence intervals can be used to test hypotheses about values of

6.

If the studies do not share a common population effect size, further

analyses may be applied. One approach for further study of effect-size

variability is to use a categorical model, analogous to the fixed-effects

analysis of variance, to examine differences in results between a priori

classes or categories of studies. Alternately, fixed-effects regression

models allow the examination of fixed continous or categorical predictor

variables, and random-effects or mixed models for variation in effect sizes

(e.g., Hedges, 1983; Raudenbush & Bryk, 1985) can also be applied.

In summary, both efrect-size analyses and modified tests based on vote-

counts can test two kinds of meta-analysis hypotheses. They ask whether the

effect sizes are consistent and they address the question of whether the

common or average effect size is equal to zero. The tests of combined

significance, however, can only test the composite null hypothesis that all

the effect sizes are equal and equal to zero.

9
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Statistical Properties

The maximum likelihood estimator for modified vote-counts proposed by

Hedges (1986) has an asymptotic normal distribution with a mean of 6 as k

tends to infinity. Therefore, 6 is asymptotically unbiased.

The usual sample estimate of 6 proposed by Glass (1976) is

g = (Y 7 us
1 -li -21 -1'

where Yii and Y21 are the two sample means in the ith study and Si is the

pooled within-groups sample standard deviation in the lth study. Hedges

(1981) noted that gi is a biased estimate of the population effect size 6i,

and provided an unbiased estimator di = c(mi)gi, where c(m) = 1-3/(4m-1) and

m is the degrees of freedom for the two - sample t test, the total sample size

minus two. We will apply di in our effect-size analysis below.

Hedges and Olkin (1985) note further that weighted average estimates of

6 (computed across studies) are only slightly biased due to the stochastic

component in the weights (the inverse variances). This bias is minimal when

the 6
i
values are small and when samples are large.

Efficiency

Both maximum likelihood analyses based on vote-counts and effect-size

analyses provide estimates for population effect sizes. Are both estimates

equally good at estimating the population effect sizes? One aspect of this

question is, are they equally efficient? Hedges (1986) indicated that the

relative efficiency of the estimate of effect size based on vote counts

compared with that of the parametric estimate based on sample effect sizes

has a maximum at 6 = 0, independent of the sample size. This maximum

efficiency is 2/n or 63.7%.

Thus, the estimate of population effect size based on vote-counts is

less efficient than the parametric estimate. Its relative efficiency
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decreases as 6 moves away from zero and decreases more rapidly when n, an

assumed uniform sample size in each study, is larger. Hedges and Olkin also

pointed out that when 6 and n increase, the parametric estimators are more

likely to have the same sign and therefore relatively less of the

information about effect size is contained in the signs of the estimate.

Statistical Power

Hedges acid Olkin (1980) noted that if the average power of the studies

is smaller than the cutoff criterion for the traditional vote-counting

method, the statistical power of detecting a nonzero effect tends to zero as

the number of studies increases. Thus even if all additional studies

represent a nonzero effects, the likelihood of detecting that is decreased.

Hedges and Olkin therefore suggested that the traditional vote-counting

method may often be misleading.

Research has been done on the power of tests of combined significance

(e.g., Koziol II Perlman, 1978). Becker (1985) indicated that only a few

generalizations are possible. For example, the Tippett and Fisher tests are

most powerful at detecting single large effects. Becker also noted that

Stouffer's test has high power to detect small deviations from zero that are

consistent across populations.

Little research has been done on the power of tests of homogeneity from

effect-size analyses. Thus, the comparison of the statistical power among

the three review methods is not available.

However, some comments may be made. There are two types of hypothesis

testing Involved with the three review methods: (1) tests of one composite

hypothesis, and (2) tests done by considering the composite hypothesis

through a two-step hypothesis test. The statistical power of the two types

of hypothesis test will differ. The issue of Type I error also will

complicate comparisons of the two types of hypothesis tests. The

hypothesis-wise Type I error rate for a pair of tests will be twice that of

11
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the single test unless it is reduced a priori, which in turn will affect the

estimated power for the pair of tests. Such considerations would need to be

made if power for effect-size analyses and combined significance tests were

to be compared.

Examples

Data Set

Data for the example were drawn from 30 reports on gender differences

in science achievement (Becker 8 Chang, 1986). These reports represent the

published articles and ERIC documents from previous reviews by Steinkamp end

Maehr (1983, 1984). Results from dissertations and test manuals were not

included in our analyses.

Twenty-nine independent effect sizes were extracted from 23 of the 30

reports. Seven studies reported only the sign (direction) of the effect

size, and twelve other sources cited by Steinkamp and Maehr had insufficient

data for determining either the effect size or the direction of the effect

size, or had reported on subjects who were also studied in another report.

Example 1: Overall Analysis

Our first example is based on an overall analysis of the study

outcomes. No attempt is made to examine variation in study outcomes.

Traditional vote count. For the 29 samples for which the significance

of the outcome cculd be determined, no sample produced significantly higher

female achievement, nine samples (or roughly one third) showed significantly

higher science achievement for males, and 20 samples showed no differences

in science achievement between the sexes. (An overall a level of 0.05 was

obtained by requiring results to be significant at the 0.025 level in both

tails.) The winning category was the "no gender difference" outcome, since

the bulk of the samples showed this result. Thus the conclusion from the

12
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traditional vote count was that males and females do not differ on average

science achievement.

Modified vote-counting methods. The vote-counting estimate of 6 was

obtained from all studies: those with effect sizes as well as those with

only the directional results. Hedges' (1986) maximum likelihood vote-

counting estimate of 6 based on all 36 samples was 0.055 with a standard

error of 0.025. A z test indicates that 6 differs from zero (z = 2.2,

R < 0.02) at the 0.05 level.

Hedges' likelihood ratio statistic provides a test of the overall

homogeneity of results on the basis of the count data. The maximum value of

the likelihood was -22.32, which gives a homogeneity chi-square value of

-2(-22.32) = 44.64- The probability of obtaining a value of 44.64 or more

is greater than .25 (as compared to percentage poi is of the chi-square

distribution with 35 degrees of freedom). Thus on the basis of the vote-

count data the results appeared homogeneous.

Combined significance tests. The directional probabilities summarized

were for tests of the null hypothesis of no gender differences versus the

alternative that miles are superior to females on science achievement. That

is, smaller sample probabilities were associated with samples in which males

outscored females.

The Stouffer test value of 6.25 was highly significant when compared to

a table of standard normal critical values. The Fisher test with a

statistic of 192.05 was also significant when compared to critical points of

the chi-square distribution with 58 (i.e., 2k) degrees of freedom. Thus

both combined significance tests roject.id the null Model 3, and we conclude

that at least one of the populations studied shows a significant male

advantage on science achievement.

Effect-Size Analysis. Hedges' (1982) test of homogeneity of effect

sizes was computed first to examine whether the results were reasonably

13
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similar for the 29 samples providing effebt sizes. The value of the overall

homogeneity test statistic was 101.13, which was significant when compared

to a chi - square with 28 degrees of freedom (p < .001). According to the

effect-size analysis these studies do not appear to share a single common

population value for the size of the gender difference.

The weighted average effect size for the 29 samples was 0.16 (with a

standard error of 0.02), indicating slightly less than one sixth of a

standard deviation advantage on science achievement measures for male

students. This average effect differed significantly from zero at the .06

level (as indicated by a z test or confidence interval). However, because

the homogeneity t..:.rst indicated that the samples did not share a common

effect size, the interpretation of the average effect size across the

samples is not straightforward. Some samples can be expected to have a true

gender difference larger than 0.16 standard deviations, while others may be

from populations with smaller gender differences.

Summary. In the overall analysis we have applied four synthesis

methods and addressed two hypotheses. Table 1 summarizes the results.

Table 1

Overall Hypotheses Examined ty Four Research Synthesis Methods

Average Effect of Zero Homogeneity of Effect Size

Method Hypothesis Supported?

Traditional Vote-count yes not applicable
Modified Vote-count no yes
Tests of Corhined cannot tell cannot tell

Effect-Size Analysis no no

The traditional vote count indicated no gender difference, while

providing no information regarding the consistency of gender differences.

14
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The modified vote-count analyses suggested that the results of the studies

of science achievement agree well, and furthermore that males and females ciJ

not differ significantly on mean science achievement. Either one or both

hypotheses tested by combined significance are supported but without further

information it is impossible to know which.

Finally, the effect-size analyses suggested that the gender differences

were not consistent and that, on average, males outscored females on science

achievement measures. Thus this result does not contradict the combined

significahce findings though it disagrees with the traditional vote-count

homogeneity test.

Example 2: Further Data Analysis

Our second example is based on the hypothesis that gender differences

may relate to the science content being examined.

Categorical analysis of effect sizes. Hedges' (1982) analogue to

analysis of variance was used to further examine the variation in gender

differences according to an a priori grouping of studies by the subject-

matter content of the achievement measure. Table 2 shows the results of the

categorical analysis according to subject matter.

Table 2

Subject-Matter Differences Among Effect Sizes

Test of Mean effect-size
Source df Homogeneity p value estimate (SE)

Total 28 101.13 <.901 0.16 (0.02)*
Between subject-
matter groups 4 51.14 <.001

Within groups 24 49.99 <.001
General science 10 30.68 <.005 0.07 (0.05)
Biology 5 4.49 ns 0.14 (0.04)*
Chemistry 0 0.00 -0.12 (0.06)
Geology 4 6.49 ns 0.10 (0.06)
Physics 5 8.33 ns 0.35 (0.04)*
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The effect sizes within each subject- matter group were consistent or

homogeneous with the exception of those from studies of general science.

Mean effect sizes can be interpreted as common population effects for the

five consistent subject-matter subgroups. Mean gender differences for

sthdies of biology and physics both showed significant advantages for males,

of 0.14 standard deviations for biology (with a standard error of 0.04), and

of 0.35 standard deviation units for physics (SE = 0.03). The average

gender effect for biology achievement also differed significantly from that

for physics (z = 4.20, 2 < .001). Males and females performed equally on

tests of both geology/earth sciences and chemistry (though the single study

of chemistry provides little information for generalizations).

On average the gender difference for studies classed as general science

did not differ from zero. However, because of the heterogeneity within the

general science studies it is likely that some studies are of populations

with effects that are nonzero.

Combined significance tests for subject-matter subgroups. To further

illustrate the differences between the meta-analysis approaches the combined

significance tests were applied to results within the subgroups of studies

(except for the single study of chemistry). The tests were expected to

indicate rejection of the composite hypothesis that all of values equal zero

for studies of biology and physics, because within these consistent groups

the gender differences deviated significantly from zero. in fact both

combined significance tests rejected the composite null hypothesis Model 3

for studies of biology (z = 3.20; x
2

= 30.91, df = 12; 2 < 0.002) and

physics (z = 7.20; x2 = 97.56, df = 12; o < 0.00007), and therefore agreed

with the results from the effect-size analysis.

Effect-size analyses for studies of geology or earth sciences did not

reject the hypothesis of homogeneity and also retained the hypothesis that 6

16
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= 0 within the group. Thus the composite hypothesis that all effects equal

zero for studies of geology is intuitively expected also to be retained on

the basis of the combined significance tests. However, both combined

significance tests were significant for this subgroup of studies. (The

summaries were significant at the 0.02 level, z = 2.52; x2 = 20.95 df = 10).

Thus, the composite null hypothesis was rejected by the combined

significance tests, and the conclusion was that at least one population

studied showed a male advantage on geology or earth science achievement.

This contradicted the effect-size analysis conclusion.

Further, the effect-size analyses indicated that the population effects

for studies of general science were heterogeneous, though on average

approximately zero. In order to agree with the effect-size analyses, the

combined probability analyses would need to reject the null hypothesis of

all effects equaling zero for the general-science studies. In fact, while

the Fisher statistic was significant for the eleven studies of general

science (x
2

42.57, df = 22, 2 ( 0.02) the Stouffer test was not (z = 1.53,

2 = 0.06). Here there is even disagreement among the combined probability

analyses concerning gender differences in the general-science studies.

Analyses support both the presence and absence of gender differences on

general science.

Discussion

The comparisons made in the previous section do not enable us to

determine which (if any) of the competing analyses has given the correct

answer because the comparisons are based on sample data. However, insights

can be gained by comparing the outcomes and conclusions for the analyses in

light of the strengths and weaknesses of each.

Example 1

The first comparison which can be made is between the overall analyses
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(tests of homogeneity and estimates of effect size) based on vote counting

and on effect-size analysis. It is not surprising that the traditional vote

count, with its low power did not support the finding of gender differences

in science achievement. Becker (1986) noted a similar pattern of

conclusions for studies of gender differences in social influence.

The vote-counting estimate of effect size from the analysis of all 36

study results was 0.055, or about one third the value of the parametric

estimate. However, the value differed significantly from zero (at the .05

level), thus supporting the same general inference as the parametric test of

6 = O.

To address the question of whether the reduced value of the vote-count

estimate resulted from the addition of studies without effect sizes, we

computed vote-count estimates of 6 for the studies with and without effect

sizes. The values for the two sets of studies are quite similar (0.06 for

the 29 studies with effect sizes and 0.04 for the seven studies reporting

only directions of results) and both are smaller than the parametric

estimate. This suggests that other factors have caused the vote-count

estimate to be smaller than the parametric estimate.

Unlike average effect sizes which are based on the sample mean

differences from each study, the estimate of effect size from vote-counting

(6) is based on the directions of the differences between two groups across

the whole set of studies. Thus information about the sizes of the mean

differences in the samples under review is unavailable to the vote-count

estimate which is especially crucial when areare large.

Hedges and Olkin (1985) noted that when all study results have the same

direction, there is no unique estimate of effect size and when most of the

study effect sizes have the same direction, the estimate of 6 is less

accurate than when there is greater balance in the signs of the results. In

18
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the example data large proportions of the results were positive: Twenty-

three of the 29 results (79%) of studies with effect sizes were positive

(indicating higher male achievement scores) and six of the seven studies

reporting only directions of results noted that males had outscored females.

Furthermore, over half of the calculable effect sizes in this example

were larger than 0.15 standard deviation units. If the calculated effect

sizes represent reasonably well the true size of the gender difference in

science achievement, the vote-counting estimate is considerably less

efficient than Glass's effect size estimate for this data.

The overall test-of-homogeneity results from the vote-count analysis

indicated that the study results were consistent, while those of the effect-

size analysis indicated considerable lack of agreeMent among the results.

This resulted in large part again from the reliance of the vote-counting

tests on only the sign (as was in this data), the magnitudes of

population effect sizes may still vary, and the differences can not be

detected by the likelihood ratio test.

The results of the tests of combined significance agreed with the

overall effect-size tests of homogeneity and of average effect magnitude,

though they did not provide the same information. Effect-size homogeneity

tests indicated that all studies did not share a common population outcome.

One could not distinguish whether rejection of the null Model 3 on the basis

of combined significance tests resulted from heterogeneity of the study

results or from deviation of any of the effect sizes from zero. The

differences in the conclusions for these two kinds of test become more

obvious when comparing the significance tests with further effect-size

analyses.

Example 2

Further comparisons between the methodologies can be made by

considering the results of the categorical analyses of studies according to

19
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subject matter. First we note that vote -count estimates and tests could not

be computed for the subject-matter subgroups of studies because of the

similarity of outcomes within the groups. If the population values .of

parameters within subgroups of studies are similar and different from zero

this problem will be most likely to occur. Also, the problem is more likely

to occur when subgroups of studies are small (even if the population

parameters for the studies are near zero).

When further analyses of effect size were applied, three different

patterns of outcomes were identified. In studies of biology and physics the

gender differences were relatively homogeneous and differed significantly

from zero. Gender differences for studies of geology/earth sciences were

also homogeneous, but the common gender difference was essentially zero.

Finally the results of studies of general science were not consistent with

each other and their average value was near zero.

The three patterns of effect sizes were associated with three very

different substantive conclusions about the nature of gender and science

achievement. However, the oucomes of tests of combined significance for

these subsets of studies were almost identical. It was expected that the

combined significance tests would be significant for the studies with

nonzero common effects (i.e., those of biology and physics) or heterogeneous

effects (i.e., the general-science studies). However, the tests also

rejected the null hypothesis of equal effects for the studies of

geology/earth science. More so, one of the combined significance tests,

namely Stouffer's test, disagreed with Fisher's test of combined

siginificance, and failed to reject the null hypothesis of equal effects for

the general-science group.

Examination of power values for the combined significance tests

indicates that Fisher's combined significance tests (used in our analysis)
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is very likely to reject the null hypothesis for even small single

deviations. Also Stouffer's test has high power to detect small deviations

from zero that are consistent across populations (Becker, 1985). These power

differences may explain the "conflicting" results from these two tests of

combined significance. For cur data set, the Fisher test may have been more

powerful than Stouffer's test. The difference between the results of the

combined significance and the effect-size analyses may have resulted from

the lower power of the effect-size analysis. However, more study on power

of homogeneity tests needs to be done to make stronger conclusions on this

matter.

Summary and Recommendations

Effect-size analyses appear more informative for the study of single

outcome constructs than the other methodologies examined because they enable

reviewers to test hypotheses about specific values for the population effect

magnitudes (even on the basis of single sample effects), and to formulate

models for predicting effect sizes from study features. Tests of combined

significance are omnibus tests and therefore by definition less informative.

Applying combined significance tests with effect-size analyses also does not

provide more information, while additionally increasing the chance that the

reviewer will make a Type I error because the analyses are not independent.

Thus tests of combined significance are not preferable to effect-size

analyses. They might be useful when effect sizes can not be analyzed, for

example, when effect sizes can not be obtained but probability values are

available (which is unusual), or when studies present tests of different

parameters or constructs which can not be transformed onto a common scale.

Tests of combined significance can appropriately be applied in these

situations but valid interpretations of their results will still be very

broad.
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If only the signs of the outcomes are presented, vote-counting methods

are the only applicable method, but reviewers should realize the limitations

of the procedures. Information about magnitude of effect simply is not

available to the vote-count procedures. Thus vote-count effect-size

estimates will have relatively larger standard errors than would be obtained

for parametric estimators, especially when the true value is far from zero.

A few conclusions may be drawn also about gender differences in science

achievement. Gender differences for all subject-matter groups, except for

studies of general science, were consistent, and in many areas no

significant differences were found. Even the significant differences were

all less than one half of a standard deviation: in physics males outscored

females on the average by about one-third of a standard deviation while in

biology they outperformed females by about one sixth of a standard

deviation. These results (though tentative) suggest that care should be

taken to carefully distinguish between subject-matter areas when discussing

or researching science achievement and gender.
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