DOCUMENT RESUME

™ 870 413
AUTHOR Olejnik, Stephen; Algina, James )
TITLE Bootstrap Estimation and Testing for Variance
Equality.
PUB DATE Apr 87 )
NOTE 29;.; Paper presented at the Annual Meeting of the

American Educational Research Association
(Wwashington, DC, April 20-24, 1987).

PUB TYPE Speeches/Cenference Papers (15@) =- Reports -
Research/Technical (143)

EDRS PRICE MF01/PC02 Plus Postage.

DESCRIPTORS Cemparative Analysis; Estimation (Mathematics);
Measurement Techniques; *Monte Carlo Methods;
*Population Distribution; Sample Size; *Sampling;
*Statistical Distributions; *Statistical
Significance; Stat15t;;al Studies

IDENTIF1ERS *Bootstrap Methodc; Chi Square Test; F Ratia:
Population Val;d;ty, Statistical Analysis System;
Type I Errors; *Variance (Statistical).

ABSTRACT

The purpose of this study was to develop a s: ingle
procedure for comparing population variances which could be used for
distribution forms. Bootstrap methodology was used to estimate the
var;ab;litg of the sample variance statistic when the populatian
distribution was normal, platykurtic and leptokurtic. The data for
the study were geﬂerateé and analyzed using the Statistical Analysis
System computing package. The baatstrag estimates of variability
underestimated the theoretical variance value, and the mean square
error of the estimated variance was small for both the normal and
platykurt;c distributions, but large for the leptokurtic

istribution. The F-ratio and chi-square test statistics were

computed for Eamparzng the variability of two popuiations using the
bootstrap estimates of variance. Cbserved Type 1 error rates within
two standard errors of the nominal significance level were obtained
only when the pﬁpulatlon distribution was platykurtic. The study
cangluﬂed that in the case af sample vaflanae the baatstrap

degree of ac:u;acy "would depend on the dlstr1but;an farm. (EAZ)

* Repraductians 5uppl;ed by EDgsragg the best that can be made
* fram the ar;g;nal dacumant.



B TI 870 413

ERIC

Aruitoxt provided by Eic:

Bootstrap Estimation and Testing for Variance Equality

Stephen 0Olejnik

[
pe]
[
=

"PERMISSION TO REFRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

 S.Dlejnik

TO THE EDUCATIONAL RESOURCES
INFORMATION GENTER (ERIC)."

Paper presented at the meetings of the Americ:

Research Association,

1]
m‘

[

Washington D.C.

2

3

of Georgia

James Algina

ersity of Florida

u.g. LvEFAHTHEHTE EBUEATIDH
Oftice ol Edu ch and Im
EELII:ATIE!NEL FIES-DLIF!EESI FOR MATIDN

CENTER (ERIC)
nThIS document has been reproduced as
fram the paraon of organizalion
Erlgl g it
B Mner \‘:‘innges ﬁavg besn mads o /mprove

Painta of visw of opinions sialed inthisdocu:
manl do Aol necessarily reprasent official
DERI poaition ar pohicy.

s
s
=
e |
(=™
=
(p]
bl
(s
o
o
=
ui

April, 1987

BEST COPY AVAILABLE

—



O

ERIC

Aruitoxt provided by Eic:

Bootstrap methodology was used to estimate the
variability of the sample variance. statistic when the
population distribution was normal, platykurtie and
leptokurtic. The bootstrap estimates of variability
underestimated the theoretical variance value and the mean
square error of the estimated variance was small for both
the normal and platykurtic distributions but large for the
leptokurtic distribution. The F-ratio and chi-square test
statistics were computed for comparing the varlability of
two peopulations using the bootstrap estimates of variance.
Observered Type I error rates within two standard errors of

the nominal significance level were ohbtained only when the
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Bootstrap Estimation and Testing for Variance Equality

Developing statistical procedures for comparing two or
more population variances has been an interest among
statisticlians for many years. The first procedures
developed (e.g. Bartlett, 1937; Cochran, 1941; Hartley,
1950) were based on the likelihood ratio test. These
procedures all assume that the sampled population
distributions are normél; When the distributions are
non-normal the actual Type T error rate can be greater than
or less than the nominal significance level depending on
whether the distributions are platykurtic or leptokurtiec
respectively (Box, 1953). Since in practice the population

distribution form 1is generally unknown and often non=normal,

oy

these approaches are of limited value. Procedures were then
developed which attempted to modify the likelihood ratio
tests by adjusting for the kurtosis of the distribution (e.p
Box, 1953; Scheffe, 1959; Layard, 1973). These procedures
estimate the population kurtosis using sample data. But
kurtésis estimated on a sample is not a very .cable
statistic and these tests typically have actual Type 1 error
rates which deviate considerably from the nominal
significance level. A third approach taken for testing
variance equality has heen the use of nonparametric rank
tests of scale (eg. Mood, 1954; Siegel-Tukey, 1960; Klotz,
1962). The nonparametric tests however are extremely

sensitive to differences in the location parameter (Moses,

4



1963). As differences in the population med’ .:s “ners .sc
the procedures become increasingly conservati . +d
statistical power decreases. Adjusting for i fferences irn

sample medians or sample means has been sugg: -=d . ° ii 2se

]

provide valid tests of scwul: 2q.-" it when

i

procedures do no
the distributions sampled are asymmetric (Comcver Jolanson
and Johnson, 1981; Olejnik and Algiﬁa; 1987).
S5till another category of tests for variance equality
are procedures which transform the original data to a
measure which reflects variability rather than location and
compares the mean transformed scores usiné analysis of
,variance (eg. Miller, 1968; Brown and Forsythe, 1974;
O'Brien, 1978). Empirical studies of these approaches have
had mixed results. Conover, .Johnson and .Johnson (1981)
compared 59 procedures (excluding O'Brien's) from the four
categories of approaches and could only recommend the
Brown-Forsythe for non-normal distributions. Additional
studies have shown both the Brown-Forsthe aud the 0'Brien
procedures as valid tests with reasonable statigticél pover
(0'Brien, 1978; Olejnik and Algina, 1987). Neither
procedure is uniformly superior to the other For all
distribution forms however. O'Brien's procedure is more
powerful with normal and platykurtic distributions and the
EréwnEForstyhe approach 1s more sensitive to variance
differences when the distributions are leptokurtic.
Although both of these procedures provide valid tests for

variance equality it would be convenient if a single

ERIC
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procedure could be== developed that could be used for =11
distribution form== with equal statistical power.

A new approac—h that might be suggested to tut Ffor
variance equality is an application of the bootstup
methodology, This= resampling procedure estimatesth e
standard error of a statistic of interest by empile ally
developing the sammpling distribution of the stat it
through Monte Carlfo simula’;;ign procedures. Begiming with a
sample of size n mmnits randomly selected from a popu lation,
multiple bootstrame estimates of the statistic of Int erest
are calculated. Themese estimates are based on subswp les of n
units ecreated-by r—esampling with replacement fromthe
original nunits. The standard deviation of the
distribution of bo -otstrap estimates provides a3 menu Tre of
accuracy of the st atistic. Although 1t is not clur how
many bootstrap est imates are needed to provide a poel
estimate of aceura. ey, Efron and Tibshirani (1986)ha=
suggested that as few as 25 subsamples may be sufflc Zent for
some situations aned 200 subsamples should be sufflilert for
most estimtors. ~The approach has been used withsisiccess in
s=2veral contexts (T Lunneborg and Tousignant, 1985: fxon and
Tibshirani, 1986). Given that the standard eyror o the
sample varlance camn hbe estimated accurately it could then be
used to calculate ==n F or a chi-square test statistiec . Since
the standard error is determined empirically fromthee sample

data, the approach conld be used for all populatim

distribution forms cm
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The present study had twe 0 =bjectives: First teo apply th
baotstrap methodology to estim rate the accuracy of the sampl:
variance and to comare this e-= Stimate with the theoretical
measure of accuracyderived by Box (1953). Second, use the
empirical estimate of the sampile variance standard error to
compute a test statistic /and des=velop the sampling

distribution of that test stacimstic to determine the Type I

€rror rate under a trye nill cowendition and the statistical

power when population variances = differ. Finally the Type 1
error rate and Ehesmzistizal power of this approach is

compared to similar results obtz ained using O'Brien's test.

Bootstrap estimate of accuracy

Method. The adeqiacy of them bootstrap methodology to

estimate the varianceorf the unlk==siased sample variance was
studied under several conditions=. Three factors were
manipulated: sample size (n), di _stribution form and the
number of bcatstfaps%samplés ( B). Four sample sizes were
considered Ffrom threedistributie onal forms. Samples of size
9, 15, 25 and 30 were selected fmxrom distributions which were
normal (0,0), platykurtic (0,-1) or leptokurtic CD,B.?S).V

e 1t 1is not clear how many bcootsirap samples are needed,

W
I
=
g

levels of this factor vere considered: 50, 100 and

[
=
=
1]
i

200. Thus this part of the study— considered 36 conditions
in a completely crossed 4%x3x3 fac -torial design, FEach of
these conditions were replicated 200 times to determine: the
average bootstrap estimte of var. iance (gﬂ)’ the average

#stimate of variability for the s=ample variance (ﬁa?fsz)j

”
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and "Tthe average mean square error of the BNtstrap est;imjatg
of v=ariabllity (MSE). The mean square efyitwas calculated
as tHhe average squared difference between wch replication
agtimnate of var 1ability and the theoreticalneasure of
vari=ance provid ed by Box (1953). The variame of the
unpbi=ased sample estimate of the populationwuriance is

calece=ilated as £ he following:

- 2 k -
Var(s®) = o [ 2 ,_k_
n-1 n

4
wher ¢ {5 thxe squared population variano

n is thhe sample size;

and k is thhe kurtosis of the populatioidistribuction.

ation. The data for the =sghivere generated

n

Data Gene

and a= nalyzed us i ng the Statistical Analysislystem

(SAs, 1984) computing package. Observatjons wre generated
havin.- g a mean o £ 10 and variance equal tg lusing RANNOR,
the n_ormal rand om number generating functiomin SAS. The
non-n ormal dist ¥ ibutions, were generated bytransforming the
norma 1 random variables using a polynomlal pver procedure
sugge sted by Fle ishman (1978): W = [(dx+c)shx+a. Where x
is th e normally distributed random variablemd a, b, ¢, and
d are constants which modify the skew and litosis of the

distr ibution leaving the mean and variance ic'anged.

rocedure. For each condition zstudiedirandom sample

"

of n eobservatiomn s were generated. Bootstrapwbsamples were

then ecreated by resampling with replacemengirom the
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origirmal sample of n observatlme with each bootstap
subsammple consisting of n scons. The unbiased estimate of
the s==ample variance of each butstrap =subsample was then
calcuM sced (Stis };(xi —’Xg)E/Cn-l) ) creeating a sampling
distriZ bution of the sample varlince bas=sed on B estimates of
the sammple variance. Finally 'the mean and variance of the
samplli - ng distribution was comjpited alor—ag with the estimated
square=d errcr (the difference letween t—he estimated sample
varian :ce and the theoretical wvilie for the variance of the
sample variance). This procedue was re=plicated 200 times
and th e average mean vaf!ience (gz), thee= average variance
across the bootstrap samples (VSEF(SE)) and the mean squared
error = (MSE) were computed. Injllot te-sting the program it
was nowted that over the 200 replication s rhe average mean
variancse consistently underestimted th e population variance
which wovas equal to 1. The unduestimat -Hon was gEreatest when
the sammple size was =zmall. Belire gene xating the sampling
distri=—>utions of the sample vartlances, =% he Pprogram was
modifie=d to include two additioml metheeods of calculating
the var—ianze of the bootstrap smbsamples=s. Method 2 divided
the sumn of squared deviations aund thes subsample mean by
n~2 rat—her than n-1, (jsélzZ Z(}{iﬂxl)zf(nfg) ). Method 3
calcula =ted the sum of sauared dwlation= of the bootstrap
subsamp -le observations around th mean = f the original n
observa tions from which the boolstrap smmbsamples were

generat. ed. The sum of squares wre them divided by n-1,
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(s%ﬂxisﬁ Y2y/¢1) Yo In peilot testing the revised

program the numberof replica-tions per condition was

increased to 500, The result s for 200 and 500 replicatioen
were not notlcablydifferent s0 the sampling distributions
were generated ugly 200 repl dications.

Resulis. Tabll present s the results using the three
methods of calculitihg the bo otstrap subsample variance, for
sample sizes of 9,15, 25 and 30 using 50, 100 or 200
bootstrap subsampls when the population distribution
sampled was normal, Tables 1 T and TILI report similar

results when the spled dist- ributions were platykurtic and

leptokurtic respecively. Fo r all four sample sizes and all

Ingrt tables T, TI and I1II here

three methods of alculating st he subsample variance the
results were simpilr when the number of bootstrap subsamples
were 59, 100 or 20l Using mem=thod 1 for calculating the

urthiased estimate o sample v=mriance, the average variance

(?2) consigtently wmlerestimaemw-ed the population variance
across all sample jizes and ac——ross all sizes of hootstrap
subsamples. The awrge variarmce (FE?(SZ)) of the sample
variances also undwestimated the theoretical value of the
sample variance, T the platwoskurtic disctributinn the
difference wag notffeat exce=—t for a sample size of 9. The

greatest differengvas found with the leptokurtic

10
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distribution and amncderate e=lifferer=ace was observed for the

normal distributio,

=1 as the

=

Using method ! vhich use=d n~2 r—=ther than
denominator for th calculation of = he bootstrap subsample

the thearetical

rr
[+

variance, the resiults vere mach clos=er
values. The lowest nean var¥¥ance es=timate equalled .944 and

the largest mean virlance egt—imate e-qualled 1.075. The

average variance deviated moest from the theoretical value
when the original sanple had only 9 observations. As sample
slze increased theaverage vamriance approached the
theoretical value?w the sammple var iancé.r

Method 3 whichused the origina 1 sample mean in
calculating the subsample var iance a 1so had results similar
to the theoreticalvalues for the sammple var ance and the
mean variances Thesmallest mesn vaz=xiance was calculated as
<965 and the largest mean var iance ee=qjualled 1.094. Only
with a sample of slit 9 did t he mean variance deviate
greatly from the theoretical -—value fcor the variance.

Examining the man sqQuaree srror= for all three methods
indicate considerable variabi 1ity bet—ween the estimated
varslance of the samle variane=ce and =—he theoretical value.
The errors were greitest for sthe lept—okurtic distribution
and smallest for theplatykurmeic dist—ribution. For the

normal distribuytionthe error=s appear—ed small when the

sample size was at least 15. These r—esults indicate that
estimating the stanlard error of the sample variance may he

adequate for hypotheis testirmaig only when sample sizes are

11
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at least 15 and the population distribution 1s normal ot
platykurtic. With a leptokurtic distributien the averap
variance for all three methods seriously underestimated the
theoretical value of variance. More importantly the mes
Square error was large for the three methods of caleculating
subsample variance for all sample sizes. Hcow important these
differences are for hypothesis testing for variance equallty
1s not clear. However one might exXxpect that using the
bootstrap methodology to estimate the standard error fora
sample variance would result in a liberal test for variance
equality if the sampled distribution was iéptckurtig. With
a platykurtic population the test may be valid for even
small sample sizes. When the population distribution is
normal the bootstrap procedure might be valid when sample

second part of the study

o]
mw

sizes are at least 15. h

investigated the accuracy of these predictions.

Testing for variance equality

Method. Two classical procedures for comparing
population parameters using sample statisctics were
consldered. The sample variances were compared using an
F-ratio and a chi-square test statistic. Although both
procedures could be used to compare the variances of several
populations, the present study was limited to a comparisaon
of two pﬂpulaﬁinﬁsg An F-ratio can be computed as the ratls
of the squared difference between two sample statistics md

the sum of the variances of the two statistics. In the case

-l
J
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of the sample variance the F-ratio is
following:
2 2

) 2.2
(51‘*“.52,)

e |
]

vgf(§ ) + Var(s }

The test statistiec is referred ta an F distribution with 1

EJ

and n.+n,-2 degrees of freedom

summing the ratioc of the squared difference between the
sample statistic and the mean sample statistic across all
comparison groups and the variance of each sample statistic.
In the case of the sample variance the chi-square statistic

can be calculated as the following:

The test statistic is E:FEEEE% to a chi-square distribution

For both statistics the variances were estimated using

Both of the procedures considered

)

the bootstrap methodolgy.
assume that the sampling distribution oF the sample

statistic is normal. Since the sampling distribution of a
sample variance is positi ively skewed, it was necessary to

transform the sample statistic before computing the test

statistic. Two transformations were considered. The sample

variance was transformed by taking the log of the sample
statistic. This is the appreach taken 1in Bartlett's test.

The second transformation considered was recently suggested

h

i
m

by Hawkins and Wixley (1986) using the fourth root of

i3
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chi—-squared variable. It was hoped that an better
approximation to normality could improve the Type I error
rate and statistical power of the tests.

A third test for variance equality was considered in

the study which did not use the bootstrap methodology.

O'Brien's (1978) procedure for comparing variances was

'Brien's test is

=]

included for twe reasons: first since 0
currently one of the best procedures for comparing
population variances it provides a useful index for
comparing observed Type 1 error rates when the null
hypothesis is true and second it provides a standard to
evaluate the statistical power of the procedures using the
bootstrap methodology when the populaticn variances
differed. O0'Brien suggested that a test for variance

equality could be developed by transforming the sample data

using:

where s, 1s the within group unbiased estimate of variance
for sample j and w is a weighting factor. O'Brien (1981)
recommends setting w=.5 for most situations. The

transformed observations are then used as the outcome

measure in calculating the ANOVA F-ratio.

Data generatjon. The data for this part of the study

were generated using the Rannor random generating funectien

in the SAS computing package. Two factors were manipulated:

14
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sample size and distribution form. Since estimates of
sample variance variability in the first part of the study
were shown to be somewhat accurate when sample sizes were at
least 15, three sample size combinations were included in
comparisons of variances: (15,15), (25,25) and (30,30).

ince neither O0'Brien's test nor the bootstrap procedures

]

are affected by sample size 1nequality under the null
condition, only equal sample sizes were considered. Three
distributional forms were studied: normal (0,0), platykurtic

(0,-1) and leptokurtic (0,3.75). The distributional forms

were generated using the same methodology as described in
part 1 of the investigation.

Finally, since the estimated stability of the sample
variances in part | was not greatly affected by the number
of bootstrap subsamples used, the estimated variances of the

sample variance was based on 100 bootstrap suhsamples.

Procedure. For each condition studied a random sample
of n observations were generated for each of two independent
groups. The sample variances were then compared using
O'Brien's test. Then for each group the variance of the
sample varlance was estimated separately using the bootstrap
methodology. For each bootstrap subsample the subsample
varlance was computed using the three methods described
earlier. Each of these estimates was transformed using the
log transformation and the 4th root transformation before
the variance of the sampling distribution was calculated.

Before computing the F=-ratio and chi-square statistics, the

iS5
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sample variances of the original n observations were also
transformed. Thus for each condition studied 13 test
statistics were computed: O'Brien‘s, the six tests using the
F-ratioe (3 using the log tvansformation and 3 using the 4th
root transformation) and six tests using the chi=square
statistic. This procedure was replicated 1000 times to

develop the sampling distribution of the 13 test statistics

i

for each of the 9 conditions under investigation. The

proportion of times the null hypothesis was rejected at the

:01, .05 and .10 levels were recorded.

Results. The empirically determined Type I error rates
for the 13 test statistics are reported in tables IV, V and
VI for the .01, .05 and .10 levels of significance

respectively. O'Brien's test statistic had observed Type I

Insert Tables IV, V, and VI here

error rates within two standard errors ¢f the nominal
significance levels for all conditions studied except the
condition where the sampled distribution was normal and
sample size was 15 and when the distribution sampled was
leptokurtic and the sample size was 25. For these
conditions the observed Type I error rate underestimated the
nominal significance levels at the .10 and .05 with normal
distribution and at the .05 and .01 with the leptokurtic

distribution. These results are consistent with previous

i6



research findings and support the validity of the data
generation procedures used in the study.

No clear pattern of results were obtained for the tests
which used the bootstrap methodology. The results for the
test statistics based on the hootstrap estimates of

variability for the sample variance had mixed results

depending on the distributional form, the test statistic,
the type of transformation used, the sample size and the

method of computing the subsample variance. In general the

which overestimated the nominal significance level when the
distributions were normal or leptokurtic. With the
platykurtie distribution the observed Type I error rates
were within two standard errors of the nominal significance
level for the tests using the F-ratio except for method 2
with the 4th root transformation when the nominal
significance level was underestimated. With the chi=square
test the results were mixed. Method 1 had appraprfaté error
rates when sample sizes were at least 25 per groun for beth
the log and 4th root transformations. Methed 3 overestimated
the .10 and .05 nominal significance levels but
underestimated the .01 nominal significance level.

The three methods for computing subsample variance
provided similar conclusions. When the log transformation
was used method 1 and 2 had identical results. With the 4th

transformation method 2 provided for #n underestimation

e

roo

of the nominal zignificance level when the F-ratio was

ERIC
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calculated. With the chi-square test and method 2 the
nominal significance level was underestimated for the normal
and platykurtie disturbutions and overestimated for the
leptokurtic distribution.

Finally the 4th root transformation did not improve the
approximations to the reference distributions for either
test statistic., Using the 4th root transformation te
normalize the sampling distribution of the sample variance
resulted in findings similar to those reported under the log
transformation.

Power. The above results indicate that

Statistica

I
=

with the execption of the platykurtic distributions the
procedures considered in the present study using the

tstrap methodology do not provide valid tests for

[wnl

o

[»]

variance equality. Given these result attempts to estimate

]

statistical power would not be meaningful and no further

analyses were conducted.

Summary and Discussion
Developing a single procedure for comparing population
variances which could be used for all distribution forms was
the major objective of the present study. It was hoped that
by using bootstrap methndology the sampling variability of
the sample variance could be estimated accurately and an
F-test or chi-square test could be computed to compare
estimates of populstion variances. The initial results of
the study indicated that the unbiased estimator of sample

variance computed on the bootstrap subsamples underestimated

‘ | i8
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the population variance. But two modifications fer computing
subsample variance were both successful in providing more
accurate estimates of the population variance.

Estimating the variability of the sample variance was
less successful. The average variability over 200
replications resulted in an underestimation of the
theoretical variance when the sampled distribution was
normal or leptokurtic. With the platykurtic distribution
the estimated variance was similar to the theoretical value.
These results were consistent across all three methods of
calculating subsample variance, although the unbiased
estimator deviated the most from the theoretical value. As

ample size increased the bootstrap estimate of accuracy

')}

Jui]

lso improved. The mean scuare errors however were large for

h

T
i

leptokurtin distribution for all sample sizes indicating
considerable variability from replication to replication 1in
the estimation of the variability of the sample variance
with that distribution. The mean square errors for the
normal and platykurtic distributions were not as great and
provided some hope that a valid test could be developed
tsing the bootstrap methodology. By comparison, Efron (1983)
had reported iwean square errors for the bontstrap estimate
of accruacy for a correlation coefficicnt of the same
magnitude as those reported here for the normal
distribution.

Since the bootstrap estimate of variability fer the

sample variance generally underestimated the theoretical
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value it was predicted that the F-test and chi-square tests
would have Type I error rates greater than the neminal
significance level when the distributions sampled were
normal or leptokurtic. The extent to which the observed Type
I error rates overestimated the nominal significance level

was unknown however. The predictions were correct. The

form, the method of transformation and the test statistic

used. Observed Type I error rates were observed similar to

the nominal significance level however when the distribution

was platykurtic.

The results of this study indicate that in the case of

e

the sample variance the bootstrap methodology can provide
some indication of sample accruacy but the degree of
accuracy depends on the distribution form. If the
researcher has no idea of the population distribution form
then it would be impossible to interpret a bootstrap
estimate. In addition except for the platykurtic

using the bootstrap estimate of variability resulted in a
liberal test. Since 0O'Brien's test for variance equality
does not overestimate the Type 1 error rate for any
distribution it appears that the bootstrap approach does not

provide a useful alternative,
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Table 1

Empirical estimates of mean, variance and mean square error for three
bootstrap estimates of sample variance over 200 replications when the
population distributien is normal.

Method 1

+ Method 2

__Method 3

n B 52 Var(s?) Ws® 5% Var(s®) WsE 52 Var(s?%) MSE

9 50 .886 .179  .055 .997  .190  .066 1.013  .234  .085
100 .B49 .180  .054 .956  .196  .069 .971 .235  .084
200 .B67 .176  .049 .976 .190 .06l L991 .231  .075

‘heory 1.000 .25 1.000 .25 1.000 .25

5 50 .933 .123  ,020  1.000 .130  .023 1.000 .142  .026
100 .919 .109  .009 .986 .116  .010 .990 .126  .010
200 .829 .123  .015 .995 .130  .017 1.000  .143  .020

‘heory 1.000 .143 1.000 .143 1.000 .143

5 50 .984 ,083  .006  1.023 .087  .008 1.026  .090  .007
100 .925 .066  .N0O2 .963 .068  .002 L965 .072  .003
200 .982 .078  ,004 1.023 .08l  .004 1.025 .084  .005

heory 1.000 .093 1.000 .093 1.000 .n93

0 50 1.004 .071  .003  1.038 .074  .003 1.040 .077  .034
100 .975 .061  .002 1.009 .063  .0C2 1.009 .065  .002
200 .973 .062  .002  1.006 .064  .002 1.008 .066  .002

heory 1.000 .069 1.000  .069 1.000 .069
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Table 1

Empirical estimates of mean, variance and mean square error for three
bootstrap estimates of sample variance over 200 replications when the
population distribution is platykurtic.

Methed 1 - Method 2 _ Method 3

n B 5 Var(s>) NSE g2 Var(s?) MSE 52 var(s?) NsE

9 50 .902 121 006 1.016 =121 .008 1.031 . 159 011

100 =912 126 007 1.026 .125 008 1.040 164 L0012

200 900 =129 .N07 1.012 132 .008 1.029 169 012

15 50 -@53 -.069 001 1.021 068 .001 1.026 079 012

100 «928 070 001 995 .071 001 . 799 081 001

200 «917 070 001 9873 L.070 001 .988 081 L0N1
Theory 1.000 w073 1.000 .073 1.000 073

25 50 962 040 L 000 1.000 .N40 000 1.000 044 .000

100 969 042 000 1.010 N4 7 000 1.010 046 .N0O0

200 <940 041 000 .999 041 000 1.000 044 000
Theory 1.000 .043 1.000 043 1.000 .043

30 50 -967 . 034 000 999 « 34 0076 1.001 «+036 000

100 <948 .032 000 =979 =031 000 + 982 035 000

200 « 859 «034 L. 000 .993 034 .000 . 994 037 000
Theory 1.000 «+036 1.000 036 1.000 036

25
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Empirical

population distribution

estimates of mean,

Table ITI

is leptokurtic.

variance and mean square error for

e - ) N three
bootstrap estimates of sample variance over 200 replications when the

_Method 1

_Method 2

vgr(sz) MSE

§2

]

Var($s

2y

9 50
100
200
Theory

15 50
100
200
Theaory

25 50
100
200
Theory

30 50
100
200
Theory

925
957
«RA0D
1.000

951
997
« 924
1.000

-966
=939
926
1.000

=972
960
-988
1.000

<364
415
<296
.h67

+ 325
. 307
«2A1
- 393

-183
-184
177
=233

191
«152
183
194

122
134
185

= 159
.076
!177

1.040
1.075
- 944
1.n00

1.027
1.069
. 980
1.000

1.006
-978
.965

1.000

1.00n

=993
1.022
1.000

<405
476
- 338
«hb7

. 3606
« 337
.288
-»393

- 199
197
- 189
237

- 199
163
=195
- 194

-

!l.ﬂﬁ
.193
«220

173
.088
221

1.051
1.094

-960
1.000

1030
1.G74

995
1.000

1.009
.979
«966

1.000

1.006
.995

1.023

1.000

+377
-356
-303
=393

« 200
-200
=192
-233

-205
-163
. 196
194

ot

o

i7in
-h47

i}flz
- 192
=217

1813
<087
=204
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Table IV

sample sizes of 15, 25, and 30 when the nominal significance level
is .01.

Observed Type I error rates for 13 tests of variance equality with

, Normal | Platykurtice Leptokurtic
Procedure 15 25 30 15 25 30 15 25 30
O0'Brien 006 006 .008 .010 .009 .010 .006 .002 .009

[ +N17 .020 .019 .013 .007 .007 .017 .025 .032
HS 026 .023 .020 .016 .010 .010 «.026 ,027 .035
F-ratio
Hl .018 .021 .019 014 010 010 018 .022 .n29
4th root M2 .000 001 .000 :N00 000 ,000 .000 .000 .000
Mé +N29 .025 .022 :019 014 .014 .029 .025 .030
HI .N32 .034 .028 .020 .013 .0l4 073 051 .052
Log Mé .032 .034 .026 020 .013 .014 «.073 .051 .052
2 Hj .N52 .037 .033 .034 .021 .019 «+093 059 .057
%2
Hl «N47 036 .N29 .023 014 .014 .101 081 .070
4th root ME :015 .008 .005 .007 .002 .002 .034 .035 .026
Mé 016 009 .006 008 .002 .003 .035 .036 .027
gﬁl bootstrap subsample variance calculated using the unbiased
estimator of subsample variance,
HE bootstrap subsample variance caleculated by dividing the sum
of squares by n-2
HB bootstrap subsample variance calculated by subtracting sample
mean rather than the subsample mean in computing the sum of

sgusress
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Table V

Observed Type 1 error rates for 13 tests of varlance equality with
sample sizes of 15, 25 and 30 when the nominal significance level
is .05.

Normal Platykurtic Leptokurtic
Procedure 15 25 30 15 25 30 15 25 30
O'Brien +033 .051 051 .056 .048 .042 .041 .028 .038
a
Hl .N92 .070 .073 044 043 037 .075 .084 ,086
Log HZ .092 ,070 .073 .D44 ,043 ,037 .075 .084 .086
Mj -124 .078 .083 069 .054 .044 .095 ,093 .095
F-ratlio
M, .100 .076 .082 059 .054 044 .080 .088 .085
4th root Mé «010 .003 .00 .002 .001 .000 .003 .009 .008
MS .114 .081 .085 «075 .059 .048 .100 .093 .095

M .097 .08B7 .085 .0DA5 059 .053 «153 127 .127

Log M. .097 .087 .085 .065 .059 .053 <153 127 .127

2 MB .121 .095 .098 .098 .072 064 «179 .138 .136
X

M] «115 094 094 .076 064 056 186 ,152 .157

4¢th root M2 «041 ,036 .027 .023 .013 .016 <090 .066 .065

Mj «+132 .102 104 2101 075 .064 «205 .163 .168

M. bootstrap subsample variance calculated using the unbiased
estimator of subsample variance,

M, bootstrap subsample variance calculated by dividing the sum
of squares by n-2,

M. bootstrap subsample variance calculated by subtracting sample

mean rather than subsample mean in computing the sum of
squares.




Table VI

Observed Type 1 error rates for 13 tests of variance equality with
sample sizes of 15, 25 and 30 when the nominal significance level

is .10,

Normal Platykurtic Leptokurtie
Procedure 15 25 30 15 25 30 15 25 30
O'Brien 076 102 .110 101 .097 .095 .089 .081 .082
a ) ] .
Ml 160 122 121 .086 .088 .083 «122 .149 ,172
Log HZ 160 .122 .121 086 .088 .0n8a3 «122 149 ,172
Hj +190 .138 .131 «+117 100 .097 .144 ,162 ,180
F-ratio
Hl 169 131 .133 .106 101 093 .136 148 .169
4th root MZ .027 .011 004 .003 .00z .002 007 .020 .034
Hj +199 .148 .136 «+130 107 103 « 154 156 .177
Hl «+155 .143 .1l40 109 .105 .099 +218 4195 .215
LDE HZ «151 143 3140 ngB =104 .0N99 218 .195 «215
2 Hj «176 166 .148 .152 .118 .111 «249 .210 .225
x2 3
M1 <172 164 .149 «126 .111 .106 «257 221 .237
4th root M2 +075 .070 .072 .049 .033 .034 .128 .103 .116
Hj «200 .173 .156 «155 124 113 «204 .226 .244
M bootstrap subsample variance calculated using the unbiased

estimator of subsample variance,

Mi bootstrap subsample variance calculated by dividing the sum
of squares by n=2,

M., bootstrap subsample variance calculate by subtracting sample
mean rather than subsample mean in computing the sum of
squares.



