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ABSTRACT

Bootstrap methodology was used to estimate the

variability of the sample variance, statistic when the

population distribution was normal, platykurtic and

leptokurtic. The bootstrap estimates of variability

underestimated the theoretical variance value and the mean

square error of the estimated variance was small for both

the normal and platykurtic distributions but large for the

leptokurtic distribution. The F-ratio and chi-square test

statistics were computed for comparing the variability of

two populations using the bootstrap estimates of variance.

Observered Type I error rates within two standard errors of

the nominal significance level were obtained only when the

population distribution was ulatykurttc.



Bootstrap Estimation and Testing for Va- ance Equality

Developing statistical procedures for comparing two or

more population variances has been an interest among

statisticians f r many years. The first procedures

developed (e.g. Bartlett, 1937; Cochran, 1941; Hartley,

1950) were based on the likelihood ratio test. These

procedures all assume that the sampled population

distributions are normal. When the distributions are

nonnormal the actual Type I error rate c n be greater than

or less than the nominal significance level depending on

whether the distr butions are platykurtic or leptokurtic

respectively (Box, 1953). Since in practice the population

distribution form is generally unknown and often nonnormal,

these approaches are of limited value. Procedures were then

developed which attempted to modify the likelihood ratio

tests by adjusting for the kurtosis of the distribution (e.g

Box, 1953; Scheffe, 1959; Layard, 1973). These procedures

estimate the population kurtosis using sample data. But

kurtosis estimated on a sample is not a very ,table

statIstIc and these tests typically have actual Type I error

rates which deviate considerably from the nominal

significance level. A third approach taken for testing

variance eq ality has been the use of nonparametric rank

tests of scale (eg. Mood, 1954; SiegelTukey, 1960; Klotz,

1962). The nonparametric tests however are extremely

sensitive to diffe ences in the location parameter (Moses,
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1963). As dif erences in the population med s icre
the procedures become increasingly canservoti:v

statistical powe_ dec eases. Adjusting for J.1 Fferenc q in

sample medlans or sample means has been sug,f,.-

procedures do not provide valid tests of sa.,=11

the distributions sampled are asymmetric (Cool.

and Johnson, 1981; Olejnik and Algina, 1987).

Still another category of tests for variance equality

are procedures which transform the original data to a

me--ure which reflects variability rather than location and

compares the mean transformed scores using analysis of

liariance (eg. Miller, 1968; Brown and Forsythe 1974;

O'Brien, 1978). Empirical studLs of these approaches have

L

when

:on

had mixed results. Conover, Johnson and Johnson (1981)

compared 59 procedure (excluding O'Brien's) from the four

categories of approaches and could only recommend the

Brawn-Forsythe for non-normal distributions. Additional

studies have shown both the Br, n-Forsthe aud the O'Brien

procedures as valid tests with reasonable statistical power

(O'Brien, 1978; Olejnik and Algina, 1987). Neither

procedure is uniformly superior to the other f:- all

distribution forms however. O'B-ien's procedure is more

powerful with normal and platykurtic distributions and the

Brown-Forstyhe approach Is more sensItIve to variance

diffe ences wh n the distributions are leptokurtic.

Although both of these procedures provide valid tests for

variance equality it would be convenient if a single



procedure could b developed that could be used for

distributIon forto with equal statistical power.
A new approah that might be suggeated to teat f

variance equality is an application of the boots trap
methodology. Thin= resampling procedure estimates th e
standard error of a statistic of interest by emp him ally
developing the sarrampling distribution of the statistic

through Monte Carl_to simulat on procedures. Beginnirt g with a

sample of size n Lu=nit.J randomly selected from a popu_ la tion,

multiple bootstrap.a estima tes of the stati tie of int .erest
are calculated. Tese estimates are based on sub snip les of n
Units created by r esampling with replacement f run th

original n units. The standard deviation of the
distribution of bo -otstrap estimates provides a menu re of
accuracy of the

many boot tL

tstic. Although it is not clegr how

est imates are needed to provide a good
estimate of accura cy, Efron and Tibshi ran (1986)ha

suggested that as few os 25 subsamples may be sufflc ±ent for
some situations an* d 200 subsamples should be sufficint for
most estimators. The approach has been used wIth su.= cess irs
several contexts (1Lunneborg and Tousignant, 1985; Efr on and
Tibahir ni, 1986). Given that the standard error of the
sample variance cairn be estimated accurately it could then be
used to calculate n F or a chisquare test s ttLsti Since
the standard error is determined empirically frorn th sample

data , the approach co _Id be used for all populatton
distribution fcrms...



The present stu4 had two o -objectives: First to apply Or
briottrap method hgy to *ate the accuracy of the mplo
variance and to compare this e= stimate with the theoretical
measure of accuracyderived by Box (1953). Second, use the
empirical eStimateef the samplLle variance standard er or to
compute a test statistic 'and demovelop the sampling

distribution of thattest statiistic to determine the Type
error rate under a true null cndItIon and _he statistical
power when population v riances differ. Finally the Type I
error rate and the statistical

compared to simil

power of this approach is

ults obtained using O'Brien's test.

Bootstrap estimate ofoccuracy

Met_hod. The adequacy of th bootstrap meLhodology to

estimate the varianceof the unbc_,iased sample variance was
studied under severalconditionsas. Three E ctors were

manipulated: sample size (n), di _stribution form and the
number of bootstrap aOsamples B). Four sample sizes were
considered from threedtstributiona1 forms. Samples of size
9, 15, 25 and 30 wereselected f- rom distributions which were
normal (0,0), pl tykurtic (0, or leptokurtic (0,3.75).
Since it Is not clear hw many bc=Dotstrap samples are needed,
three levels of this factor were considered: 50, 100 and
200. Thus this part of the studr considered 36 conditions

a completely cross04x3x3 fac :torial design. Each
these conditions were replicated 200 times to de ine: the
ave a-e bootstrap estimate _f var_ lance (, ), the average
astimate of variability for the sm.ample variance CTWF(S 2

),



and he averag mean square error of the too :trap estimate
SE). The mean s uare erior was calculated

tale average squared dif ference between each replicati n
iliate of va Iabfl I ty and the theore tiCal measure

yarince proviaed by Box (1953). The vari nce of the
nhised sampli estimate of the popula tint, variance is

calclated as ti

id

Da

folio g

a 2
n-i

a is ttit squared population varig
n is th sample size;

is th e kur Lost of the popu ationdistribut

tjon. The d ta for the

n.

ere gene 'ated
and a3e nalyzed us 1 ng the Statistical A o System

(SAS 1984) comp "ng package. Observations uere generated
Flavin g a mean c. an variance equal to lusing RANNOR,

h ormal rand number generating fuocti in SAS- The
n ormal dist r ibut ions, were generated h ytrans f arming

norma 1 random v r iabl es using a polynerni al power procedure

atlgge sted by Fl ishman (1978): W (dX lobjx+a . Whe re x

la th 4e normally d is t r ibuted random variabl eand b, c, and
d are constants which modify the e and 'kurtosis of the
dig tr Ibution le ing the mean and variance OR anged.

For each condit on attad71:Procedure. random sample

subsamples were

then reared by resampling with placemen rom the

of ri mobservatiora s were generated. Boo



origirmal sample of n observ tioos with

subsarmnple consisting of n scores.

each bootstap

unbiased estimate of

the smple variance of each bootstrap ubsamn1 e was then

calcunt ced (S
2

E( -X )
2
/(u-1) ) crating a sampling

bl

distrrw bution of the s mple va.riance haed on B estimates of

the srample variance. Finally the and var lance of the

samplL_Lng distribution was ooMputed alorig with the estimated

sq us re d error (the di ference between mile estimated sample

varian ee and the theoreti .1 value for the variance of the

sample variance). This procednre was fE.nlicated 200 times
-and th e average mean varIance (2 S-), tii average var anee

across the bootstrap samples (rif(52)) a_d the mean squared

error (M5E) were computed. ir pilot te sting the program it

was non-ted that over the 200 replIcation s the average mean

vari consistently undereathiated th e population variance
which wz..Tas equal to 1. The underestirnat Ion was greatest when
the semonie size was small. f3efore gene rating the samplIng

dis ril=outions of the sample Variances, r7-rthe program was

modifid to incl de two addittoral met1ids of e a lcula t ing

the var=ianze of the bootstrap subsample. Method 2 divided

the swam of squared deviations around tIi subsample mean by
n-2 rat_=her than n-1, (S 2

E(K -X )21 Method 3b2

calcula ted the sum of squared deviation of the bootstrap

subsamp -le observations around the mean c=s f the o _ginal n

observa tions from which the be tatron sLmL bsamples were

generat ed. The sum of squares were therm divided by n-1,



2
(S E (X_ ), In p--ilot testing the _evised
-b3

p ogrem ehe nuMbermf replications per condition was

increased to 500. the result s for 200 and 500 replication

were not noticablydifFerent so e sampling distributions

were genera ed Oshg 200 repl cations.

Re s u blel present s the results using the three

methods of ealciJ1otIng the bo otstrap subsample variance, for

sample sizes of 9,15, 25 end 30 using 50, 100 or 200

bootstrap subsaMNies when the population di_ ribution

sampled was AL Tables 1 1 and III report similar

results when the sampled dist- ributions were platykurtic and

leptokurtic re r all f-ur sample sizes and all

lasart tables 1, TI and III here

three methods of cIctilat -g *tithe subsample variance the

results were simibrwhen the number of bootstrap subsamples

were 50, 100 or 200, Using memMehod 1 for calculating

unbiased estimate d sample vmlriance, the average variance

2-
(S ) consistently unde-estimeMed the population va_ianee

across all sample akes and aross all sizes of bootstrap

subsamples. The average veriar-nce (var(S2)) of the sample

variances also unciamstimated the theoretical value of the

snmple varLance. Farthe platzwkurtfc distribution the

difference weS no great excep=,t for a sample size of 9. The

greatest difference.as found with the leptokurtic

10



distribution and amoderat e =differece was observed for -he

normal distributin

Using method2which useeds-2 E.,ther than n-1 as the

denominator for thecalculattion. of the bootstrap subsample

va iance, the results were rilich clo=er to the theoretical

values. The lovegmean varitance e=timate equalled .944 and

the largest mean varIance eot=imete c--qualled 1.075. The

average variance deviated rnomst from the theoretical value

when the original sample had oay 9 observations. As sample

size increased thenverage tjrlance approached the

theoretical value for the sanapla var lance.

Method 3 which -'sed the origins 1 sample mean in

calculati g the subhmple var lance A iso had results similar

to the theoretical values For the saummple varlance and the

mean variance. Thesmallest mean va- iance was calculated as

.965 and the largest mean vat iance eL,mqualled 1.094. Only

with a sample of size 9 d d t'lle mean variance deviate

greatly from thenretical vaIue fr the variance.

Examining the mean nquare error- . for all three methods

indicate c asiderable vs iability bet=ween the estImated

va,:iance of the sample vari cpce and he theoretical value.

The er- were greatest for tattle lepr okurtie distribution

and smallest for theplatykurocie dist=ribution. Far the

normal distributIon the error ms appealned small when the

sample size was_ at lea__ 15. These r--esults IndIcate that

estimating the stanhrd error of the sample variance may be

adequate for hypothesi testrig when sample sizes are



at least 15 and the population distribution is normal

platykurtic. With a leptokurtic distribution the average

variance for all three methods seriously underestima -d the

theoretic I value of variance. More importantly the men

square error _as large for the three mAthods of calcul=Ang

subsample variance for all sample sizett. How important these

differences are for hypothesis testing for variance equality

is not clear. However one might expect that using the

bootstrap methodology to estimate the standard error fora

sample variance would result in a liberal test for variance

equality if the sampled distribution was leptokurtic. WW1

a platykurtic popnlation the test may be valid for even

small sample sizes. When the population distribution is

normal the bootstrap procedure might be valid when sample

sizes are at least 15. The second part of the study

investigated the accuracy of these predictions.

Testing for variance equality

Method. Two clasnical procedures for comparing

pop lation parameters using sample statistics were

considered. The sample variances were compared using nn

Fratio and a ch square test statistic. Although both

procedures could be used to compare the variances of sevemi

populations, the present study was limited to a comparison

f two populations. An Fratio can be computed ns the ratio

of the squared difference between two sample statIstIcs nod

the sum of the variances of the two statistics. In the cane

1 9



the sample va- ance the F--atio is computed as the

following:

2

F

. 2
Var(Si) + Var S

The test statistic is referred to an F distribution with

d n14-_2-2 deg ees of freedom.

A chi-square test statistic can be constructed by

summing the ratio of the squared differ nce between the

sample statistic and the mean sample statistic across all

compari.on grOUps and the variance of each sample statistic.

In the case of the sample va iance the chi-square st tistic

can be calculated as the following:

2 _2
( S. - S

Var(S
2)

The test statistic is referre

with 1 degree of freedom.

to a chi-square distrib

For both statistics the variances were estimated using

the boorst _p methodolgy. Both of the procedures considered

assume that the ampling distribution of the sample

statistIc is normal. Since the sampling distribution o_

sample variance is positively skewed, It was necessary

transfo m the sample statistic before computing the test

statistic. Two transformations were considered. The sample

variance was transformed by taking the log of the sample

statistic. This is the approach taken in Ba tlett's test.

The second transfo-mation considered was recently suggested

by Hawkins and Wixley (1986) using the fourth root of the

13



chi-squared variable. It was hoped that an better

approximation to normality could improve the Type I error

rate and statistical power of the tests.

A third test for variance equality was considered in

the study which did not use the bootstrap methodology.

O'Brien s (1978) procedure for comparing variances was

included fOr two reas ns: first since O'Brien's test is

currently one of the best procedures for comparing

population variances it provides a useful index for

comparing observed Type I error rates when the null

hypothesis is true and second it provides a standard to

evaluate the statistical power of the procedures using the

bootstrap methociology when the population variances

differed. O'Brien suggested that a test for variance

equality could be developed by transforffiing the sample data

using:

wheres.is the within group unbiased estimate of variance

for sample j and w is a weighting factor. O'Brien (1981)

recommends setting w=.5 for most situations. The

transformed observations are then used as the outcome

measure in calculating the ANOVA F-ratio.

Data generation. The data for this part of the study

were generated using the Rannor random generating function

the SAS computing package. Two factors were manipulated:



sample size and distribution form. Since estimates of

sample variance variability in the first part of the -tudy

were sho:n to be somewhat accurate when sample sizes were at

least 15, three sample size combinations were included in

comparisons of variances: (15,15), (25,25) and (30,30).

Since neither O'Brien's test nor the bootstrap procedures

are affected by sample size inequality under the null

condition, only equal sample sizes were considered. Three

distributional forms were studied: no- 1 (0,0), platykurtic

(0,-1) and leptokurtic (0,3.75). The distributional forms

were generated using the same methodology as described in

part 1 of the invest gation.

Finally, since the e,timated stability of the sample

variances in part 1 was not greatly affec_ d by the number

of bootstrap subsamples used, the estimated variances of the

sample variance was based on 100 bootstrap subsamples.

Procedure. For each condition studied a random sample

of n observations were generated for each of two independent

groups. The sample variances were then compared using

O'Brien's test. Then for each gr up the variance of the

sample variance was estimated separately using the bootstrap

methodology. For each bootstrap subsample the subsample

variance was computed using the three methods described

earlier. Each of these estimates was transformed using the

log Lransformation and the 4th root transformation before

the variance of the sampling distribution was calculated.

Before computing the Fratio and isquare statistics, the

15



sample variances of the original n observations were also

transformed. Thus for each condition studied 13 test

statistics were computed: O'Brien's, the six tests using the

F-rati_ (3 using the log transformation and 3 using the 4th

root transformation) and six rests using the chi-square

statistic. This procedure was replicated 1000 times to

develop the sampling distribution of the 13 test statistics

for each of the 9 conditions under investigation. The

proportion of times the n 11 hypothesis was rejected at the

.01, .05 and .10 levels were recorded.

_Itesu ts. The empirically determined Type I error rates

for the 13 test statistics a e reported in tables IV, V and

VI for the .05 and .10 levels of significance

respectively. O'Brien test stati t_c had observed Type I

Insert Tables IV, V, and VI here

error rates within two standard errors ef the nominal

signi ic nee levels for all conditions studied except the

condition where the sampled distribution was normal and

sample size was 15 and when the distribution sampled was

leptokurtic and the sample size was 25. For these

conditions the observed Type I error rate underestimated the

nominal significance levels at the .10 and .05 with normal

distribution and at the .05 and .01 with the leptokurtie

distribution. These results are consistent with previous



research findings and support the validity of the data

generation procedures used in the study.

No clear pattern of results were obtained for the tests

which used the bootstrap methodology. The results for the

test StatiStiCS based on the bootstrap estimates of

variability for the sample variance had mixed results

depending on the distribut_onal form, the test statistic,

the type of transformation used, the sample size and the

method of computing the subsample variance. I- general the

bootstrap test s ics had observered Type I e -or rates

which evereS 'mated the nominal significance level when the

distributions were normal or leptokurtic. With the

platykurtic distribution the observed Type I error rates

were within two standard errors of the nominal significance

level for the tests using the F-ratio except for method 2

with the 4th root transformation when the nominal

sign ficance level was underestimated. With the chi-square

test the results were mixed. Method 1 had appropriate error

rates when sample sizes were at least 25 per group for both

the log and 4th root transformations. Method 3 overestimated

the .10 and .05 nominal sIgnificance levels but

underestimated the .01 nominal significance level.

The three methods for computing subsample variance

provided similar conclusions. When the log transformation

was used method 1 and 2 had identical results. With the 4th

root transformation method 2 provided for en underestimation

of the nominal significance level when the F-ratio was



calculated. With the chisquare test and method 2 the

nominal ignificance level was underestimated for the normal

and platykurtic disturbutions and overestimated fo_ the

leptokurtic distribution.

Finally the 4th root transformation did not improve the

approximations to the reference distr butions for either

test statistic. Using the 4th root transforma:ion to

normalize the sampling distribution sample var ance

resulted in findings similar to those reported under the log

transformation.

t a stical Power. The above results indicate that

th the execption of the platykurtic distributions the

procedures considered in the present study using the

bootstrap methodology do not provide valid tests for

variance equality. Given these result attempts to estimate

statistical power would not be meaningful and no further

an_lyses were conducted.

Summary and Discussion

Developing a single procedure for comparing populatf n

variances which could be used for all distribution forms w_u

the maj objective of the present study. It was hoped that

by using bootst _p methodology the snmpling variability of

the sample v:-iance could be estimated accuraely and nn

Ftest or chisquare test c-uld be computed to compare

estimates of popul3tion variances. The initial results of

the study indicated that the unbiased estimator of sample

variance computed on the bootstrap subsamples underestimated



the population variance. But two modif cations for computing

subsample variance were both successful in providing more

accurate estimates of the population variance.

Estimating the variability of the sample variance was

less successful. The average variability over 200

replications resulted in an underestimation of the

theoretical variance when the sampled distribution was

normal or leptokurtic. With the platykurtic distribution

the estimated variance was similar to the theoretical value.

These results were consistent across all three methods of

calculating subsample variance, although the unbiased

estimator deviated the most from the theoretical value. As

sample size increased the bootstrap estmate of accuracy

also improved. The mean square e rors ho ever were large for

the leptokurtic distribution for all sample sizes indicating

considerable variability from replication to replication in

the estimation of the variability of the sample variance

h that distribution. The mean square errors for the

normal and platykurtic distributions were not as great and

provided some hope that a valid test could be developed

using the bootstrap methodology. By comparison, Efron (1983)

had reported wean square errors for the bootstrap estimate

accruacy for a correlation coefficient of the same

magnitude as those reported here for the normal

distribution.

Since the bootstrap estima e of variability for the

sample variance generally underestimated the theoretical



value it was pred cted that the Ftest and chi quare tests

would have Type I error rates greater than the nominal

significance level when the distributions sampled were

normal or leptokurt c. The extent to which the observed Type

I er or rates overestimated the nominal significance level

was unknown however. The predictions were correct. The

extent of the overestimatio- depended on the distribution

form, the method of transformation and the test statistic

used. Observed Type I error rates were observed similar to

the nominal significance level however when the distribution

was platykurtic.

The results of this study indicate that in the case of

the samp e variance the bo tstrap methodology can Rrovide

some indication of sample accruacy but the degree of

accuracy depends on the distribution form. If the

researcher has no idea of the population distribution form

then it would be impossible to interpret a bootstrap

estimate. In addition except for the platykurtic

distribution the tests for statistical significance

using the bootstrap estimate of variability resulted in a

liberal test. Since O'Brien's test for variance qua1lty

does not ove estimate the Type I err _ rate for any

distribution it appears that the bootstrap approach does not

provide a useful alternative.

20
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Table

Empirical estimates of mean, variance and mean square error for three
bootstrap estimates of sample variance over 200 replications when the
population distribution is normal.

Method 1

Var(S 2
) MSE

ethod 2 Method 3
_2 2

Va ) MSE 2
Var(S 2

) MSE

50 .886 .179 .055 .997 .190 .066 1.013 .234 .085
100 .849 .180 .054 .956 .196 .069 .971 .235 .084
200 .867 .176 .049 .976 .190 .061 .991 .231 .075

7heory 1.000 .25 1.000 .25 1.000 .25

50 .933 .123 .020 1.000 .130 .023 1.000 .142 .026
100 .919 .109 .009 .986 .116 .010 .990 .126 .010
200 .929 .123 .015 .995 .130 .017 1.000 .143 .020

lieory 1.000 .143 1.000 .143 1.000 .143

5 50 .984 .083 .006 1.023 .087 .008 1.026 .091) .007
100 .925 .066 .002 .963 .068 .002 .965 .072 .003
200 .982 .078 .004 1.023 .081 .004 1.025 .084 .005

heory 1.000 .093 1.000 .093 1.000 .093

50 1.004 071 .003 1.038 .074 .no3 1.040 .077 .034
100 .975 .061 .002 1.009 .061 .002 1.009 .065 .002
200 .973 .062 1.006 .064 .002 1.008 .066 .002

heory 1.000 .069 1.000 .06.9 1.000 .069

2 4



Table II

Empirical estImates of mean, variance and mean square error for threebootstrap estlmtes of sample variance over 200 replications when thepopulation distributIon is platykurtic.

ethcd 1

Var(S ) MSE

thod 2

Var(S2) MSE

rMethod 3

Var(S2) MSE

50 .902 .121 .006 1.016 .121 .008 1.031 .159 .011100 .912 .126 .007 1.026 .125 .008 1.040 .164 .012200 .900 .129 .007 1.012 .132 .008 1.029 .169 .012Theory 1.000 .139 1.000 .139 1.000 .139

15 50 .953 .069 .001 1.021 .068 .001 1.026 .079 .012100 .928 .070 .001 .995 .071 .001 .999 .081 .001200 .917 .070 .001 .983 .070 .001 .988 .081 .001Theory 1.000 ,.073 1.000 .073 1.000 .073

25 50 .962 .040 .000 1.000 .040 .000 1.000 .044 .000100 .969 .042 .000 1.010 .042 .000 1.010 .046 ,000200
Theory

.960
1.000

.041

.043
. 000 .999

1.000
.041
.043

.000 1.000
1.000

.044

.043
.000

30 50 .967 .034 .000 .999 .034 .000 1.001 .036 .000100 .948 .032 .000 .979 .033 .000 .982 .035 .000200 .859 .034 .000 .993 .034 .000 .994 .037 .000Theory 1.000 .036 1.000 .036 1.000 .036
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Table ITT

Empirical estimates of mean, vari nce and mean square error for three
bootstrap estimates of sample varlance over 200 replications when the
population distribution ic leptokurtic.

TI

Method 1

Var S2) MSE

ethod 2

Var USE

t_hod 3

1TWF(S2)

50 .925 .364 .967 1.040 .405 1.153 1.051 .475 1.531
100 .957 .415 .748 1.075 .476 1.096 1.094 .542 1.183
200 .880 .296 .592 .944 .338 .765 .960 .386 .854

Theory 1.01)0 .667 1.000 .667 1.000 .667

15 50 .951 .325 1.276 1.027 .366 1 .76-2 1.030 .377 1.710
100 .997 .307 .487 1.069 .337 .601 1.074 .356 .647
200 .924 .261 .257 .980 .288 .313 .995 .303 .330

Theory 1.000 .393 1.000 .393 1.000 .393

25 50 .966 .183 .122 1.006 .199 .146 1.009 .200 .143
100 .939 .184 .134 .978 .197 .193 .979 .200 .192
200 .926 .177 .185 .965 .189 .220 .966 .192 .217

Theory 1.000 .233 1.000 .231 1.000 .233

30 50 .972 .191 .159 1.006 .199 .173 1.006 .205 .183
100 .960 .152 .076 .993 .163 .088 .995 .163 .087
200 .988 .183 .177 1.022 .195 .221 1.023 .196 .204

Theory 1.000 .194 1.001) .194 1.000 194



Table IV

Observed Type I error rates for 13 tests of variance equality with
sample sizes of 15, 25, and 30 when the nominal significance level
is .01.

Procedure

Normal Platykurtic Leptokurttc

15 25 30 15 25 30 15 25 30

O'Brien

F

4th

X

4th

.006

a
147 .017

Log M_ .017
_-L

M- .026_

M
1

.018
root M .000

-2
M--- .029

M_ .032
Log M- .032

_2
M_ .052

.047
root .015

-: .016143

.006

.020

.020

.023

.021

.001

.025

.034

.034

.037

.036

.008

.009

.008

.019

.019

.020

.019

.000

.022

.026

.026

.033

.029

.005

.006

.010

.013

.013

.016

.014

.000

.019

.020

.020

.034

.023

.007

.008

.009

.007

.007

.010

.010

.000

.014

.013

.013

.021

.014

.002

.002

.010

.007

.007

.010

.010

.000

.014

.014

.014

.019

014
.002
.003

.006

.017

.017

.026

.018

.000

.029

.073

.073

.093

.101

.034

.035

.002

.025

.025

.027

.022

.000

.025

.051

.051

.059

.081

.035

.036

.009

.032

.032
035

.029

.000

.030

.052

.052

.057

.070

.026

.027

bootstrap subsample variance calculated using the unbta
estimator of subsample variance,

bootstrap subsample variance calculated by dividing the
of squares by n-2

bootstrap subsample variance calculated by subtracting
mean rather than the subsample mean in computing the
squares.

ed

snm

sample
sum of
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Table V

Observed Type 1 error rates for 13 tests of variance equality with
sample sizes of 15, 25 and 30 when the nom nal significance level
is .05.

Procedure

Normal Platykurtic Leptokurtic

15 25 30 15 25 30 15 25

O'Brien

a t io

4th

4th

Log

root

Log

root

a
M
_1
M_
-2
M-

ml

2

.0

.092

.092

.124

.100

.010

.114

.097

.097

.121

.115

.041

.132

.051

.070

.070

.078

.076

.003

.081

.087

.087

.095

.094

.036

.102

.051

.073

.073

.083

.082

.001

.085

.085

.085

.098

.094

.027

.104

.056

.044

.044

.069

.059

.002

.075

.065

.065

.098

.076

.023

.101

.048

.043

.043

.054

.054

.001

.059

.059

.059

.072

.064

.013

.075

.042

.037

.037

.044

.044

.000

.048

.053

.053

.064

.056

.016

.064

.041

.075

.075

.095

.080

.003

.100

.153

.153

.179

.186

.090

.205

.028

.084

.084

.093

.088

.009

.093

.127

.127

.138

.152

.066

.163

.038

.086

.086

.095

.085

.008

.095

.127

.127

.136

.157

.065

.168

a
M

I
bootstrap subsample variance calculated using the unbiased

estimator of subsample variance,
M2 bootstrap subsample variance calculated by dividing the sum

of squares by n-2,
M
3
bootstrap subsample variance calculated by subtracting sample
mean rather than subsample mean in computing the sum of
squares.



Table VI

Observed Type I error rates for 13 tests of variance equali y with
sample sizes of 15, 25 and 30 when the nom nal significance level
is .10.

Procedure

No ma l Platykurtic Leptokurtic

15 25 30 15 25 30 15 25 30

O'Brien .076 .102 .110 .101 .097 . 95 .089 .081 .082

Log

F -ratio

4th root

. 160 . 22 .121 .086 .088 .083 .122 .149 .172

. 160 122 .121 .086 .088 .083 .122 .149 .172

. 190 .138 .131 .117 .100 .097 .144 .162 .180

. 169 .131 .133 .106 .101 093 .136 .148 .169

. 027 .011 .004 .003 .002 .002 .007 .020 .034
M3 .199 .148 .136 .130 .107 .103 .154 .156 .177

M .155 .143 .140 .109 .105 .099 .218 .195 .215
Log M

1 .151 .143 .140 .109 .104 .099 .218 .195 .215
M_ .176 .166 .148 .152 .118 .111 .249 .210 .225

_2 -3
X-

M .172 .164 .149 .126 .111 .106
4 h root M

1 .075 .070 .072 .049 .033 .034
M3 .200 .173 .156 .155 .124 .1

. 257 .271 .237

. 128 .103 .116

. 204 .226 .244

bootstrap subsample variance calculated using the unbiased
estimator of subsample variance,

M bootstrap subsample variance calculated by dividing the sum
of squares by n-2,

bootstrap subsample variance calculate by subtracting sample
mean rather than subsample mean in computing the sum of
squares.


