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Toward Intelligent Systems for Testing
Aron Leopold
Jeffrey Bonar

Joyce Ivill

Learning Research and Development Cen er
University or Pittsburgh

One of Robert Glaser's special contributions to psychology and education is the concept of
criterion-referenced testing (Glaser, 1963). While norm-referenced testing supports decisions thatinvolve choosing among people or otherwise comparing them, criterion-referenced tests tell ussomething about what people know or what they can do. In introducing the concept, Glaser wasbeginning a long advocacy of adaptive education, ofshaping education to each person's current
competences rather than choosing to educate only the people who score highest on general tests.

While this was his goal, most work on criterion-referenced testing (cf. Hambleton, 1984) has
focused on iSsues relating to certification, to setting of standards for educational outcomes, arid totracking, that is, on selection more than on adaptation. There are a number of reasons for this, but the
situation can be summarized as follows. Adaptive education is a steering process. Norm-referenced
tests are designed to indicate reliably who is out in front; criterion-referenced tests are designed to tellus exactly where each person is; but knowing where you are is not the same as knowing how to steer acourse toward a planned destination.

The purpose of this chapter is to illustrate one way in which the technologies of testing might
combine with certain cognitive science techniques to help steer instruction. We focus on steering anintelligent tutor, i.e., on student modeling. However, the approach can be generalized to other
instructional forms, including reactive environments (exploratory microworlds) and perhaps evenconventional classroom instruction. We are discussing diagnostic testing to be used often, in small
amounts, to steer the course of instruction. Further, in contrast to relatively standard ( e.g.,
pretest-treatment-posttest) designs for individualizing the teaching of children, we thous on
individualizing the testing process to make it more efficient in steering instruction.

Problems of Diagnosdc Testing
A

Any test, including a diagnostic test, consists of a number of items. The person being tested
carries out some performance of each of the items, scores are assigned to those performances, and those
scores are aggregated to arrive at an evaluation. To make steering tests, we need test items that arerelevant to the specific steering decisions that must be made about a particular student in a particularcontext, and we need procedures for scoring performance on those items. Steering tests must beefficient to admirdster, since steering requires frequent, but not necessarily precise, feedback (giventhe inertia of teaching and learning, the steeringerror produced by believing an imprecise test willprobably be canceled out by subsequent course corrections).

Standard psychometric methods are not designed for steering tests. They are designed to assurethat different forms of a test are equivalent and that the scores on that test are reliable. The problem
of steering tests is that they must be brief, so that testing does not take too much time from learning.
This makes it difficult for them to be reliable, and steering requires at least some reliability offeedback to be successful.

There are two ways a test can be made more reliable. The first is to increase the extent to whichperformance on its items directly reflects the skills one wishes to assess, This can be done statisticallyor substantively. Statistical approaches such as item-response theory (Lord, 1980) help assure thatdifferent items are measuring the same thing, and thereby increase the reliability ofscores, but notnecessarily their validity. However, it is also possible to develop a microtheory of the competences onewishes to teach. Such a microtheory can help in specifying items that test particular subsets of thetarget skills.

The second way to make a test more reliable is to use knowledge about the student's performanceon prior items to limit the information each new test item must provide. Adaptive testing algorithms
have been developed for this purpose. They use a sequential strategy. After the student completesanitem, an estimate of the student's performance based upon the items so far completed is used to select
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the most informative next item to administer, and then the score on that next item is used to update
the estimate. The adaptive testing approach, which almost always requires a computer for the
real-time estimates just mentioned, can be applied even when nothing more than the difficulty
ordering of items is known. However, it is especially powerful if more detailed information about the
items is available. Again, a theory that relates performance on various test items to underlying
competences and their acquisition can be helpful, even ff it is incomplete.

In at least one case, adaptive testing techniques were applied to diagnostic testing (Spineti &
Hambleton, 1977). Spineti and Hambleton used learning hierarchies specified by rational task
analysis (Gagne, 1965) to help constrain the estimation process. That is, they decided on items
according to an analysis of the material being learned and to some theoretical predictions of the order
of acquisition for parts of that material. Doing this, they were able to achieve a 50% reduction in the
number of items required to achieve a given level of score reliability.

The approach we have taken to steering testing is somewhat different. It uses very simple
heuristics for reasoning about the level of a student's competence in particularsubskills. Its power
derives primarily from its ability to intelligently manufacture practice opportunities (test items) for
the student that will be especially revealing about his current competences. We believe, although it
remains to be proven, that these practice opportunities are generally appropriate learning vehicles as
well as test items. In that sense, we are pursuing steering as a unified system in which testing and
learning are combined.

In our view, a cognitive theory of testing, and especially a theory of steering testing, should have
two characteristics. First, it should permit a partly logical (in contrast to a purely statistical)
constraining of diagnosis. Second, it should be based on a representation of the knowledge that is
needed to exercise the skill it purports to measure. The logical approach is not at all foreign to our
experience. When one is sick and goes to a physician, one is not satisfied with broad probabilistic
statements. Rather, one expects a diagnosis constrained by the physician's knowledge of disease.
More specifically, we expect the physician to be asking herself what diseases could produce the overall
complex of symptoms and signs presenting themselves to her. Diagnosis in medicine, then, is the
designing of a personal theory of a specffic patient's pathology. This persona', theory is rooted in
theories of disease mechanisms and notjust in unexplained statiStical relationships.

The diagnosis process is dynamic. For example, based on the hypothesis that a patient has heart
disease, the physician may probe for more explicit detail about certain symptoms or order a test that
may confirm or refute her theory. A teacher does this toe when prior knowledge about a student,
combined with current observations, leads her to attribute grammatical errors in the student's paper
either to inexperience with written language or to use of nonstandard dialect or to a mistaken sense of
when formal conventions are needed.

The good teacher's diagnosis differs from that ofa physician in one respect, though. We come to a
physician to get a diagnosis when something is wrong -- she does not generally shape continuing
decisions about how we should act (except perhaps Ln developing special regimens, e.g., diets for
control of diabetes). A teacher, in contrast, is carrying out an active, goal-directed activity teaching
-- which needs only small course corrections. Consequently, it as reasonable to conduct the testing
from the teacher's point of view, at least in part.

We would like to produce tests that capture some of the capabilities of the most perceptive and
observant teachers. We want them to be driven mostly from the teacher's goal structures for teaching
but also to respond to knowledge of the expertise the teacher is trying to convey, the treatments
available to the teacher for effecting learning, and certain more global teacher concerns, such as
adapting to general dffferences in aptitude and general characteristics of competence at different
levels of learning.

In the next section, we discuss the different kinds of knowledge that are needed to adapt teaching
to an individual student's course of learning. We take the viewpoint of intelligent tutoring system
design, but the same concerns arise in all approaches to instruction. This is followed by sections in
which a specific approach to the generation of diagnostically and educationally useful problems is
cliscussed.

Components of Teaching and Testing Knowledge

Several different kinds of knowledge are required in our approach to steering testing. Especially
when designing computer systems to teach or to test, it is important to clarLfy the knowledge, or
competence, that is involved in dealing with a student. We have cegorized that knowledge into four
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types.' These are domain expertise, curriculum knowledge, instr-.,c kn; :ledge, and
treatment knowledge. Each type of knowledge has clLfferent stru:e rei dJer f nr-iized methods,
and different pUrpose and applicability. Further, there are a varriea, of connee' ns i'roti one type of
knowledge to another. Figure 1 shows these four categories wit pk r kinal-, of knowledge
they contain for an electricity tutoring/testing system under dr-. nt at ear ing Research
and Development Center.

Domain Expertise

Domain expertise is always embodied in instructional dec. ,w12 explicitly or
implicitly. Deep diagnosis of student difficulties may requim r--prr-r-,entation of the
knowledge required for the performances that are the goals orFirrp,` exatnple, the ability of
a computer-based tutor to diagnose bugs (systematic errors) irrLe.,aild_2(:1 's aric.hmetic performances
requires having a model of the algorithms that experts use in e=,x'rlit`ni tho&e performances. Also,
feedback on test performance and advice to the student may ha-ve e- ,ie coutehed in terms of procedures
for acting rather than in terms of criteria for outcomes specified in the cur riculum. One way or
another, the performances that constitute the goals of a curriculum de-iive from information about the
competences that constitute expertise.

Another aspect of domain expertise that is important in instruction and testing is knowledge of
the target task environment. When we speak of what it is we want people to do, we are referring not
only to the knowledge they need to perform successfully but also to the circumstances under which
that knowledge must be employed. Again, knowledge of these circumstances might be the basis for
curricular objectives, but those objectives rest upon domain expertise. If we have the objective that
given situation X, the student can do Y, it rests upon knowledge of what kind of situation X is and how
Y can be done in X. For example, a student might be able to solve a proportion problem at the time a
lesson on proportion is presented but not be able to use that knowledge later in solving a word problem
or even to solve the same problem as one of a set on mixed topics. When testing or teaching is done by
a computer program, the underlying domain knowledge sometimes must be made explicit.

Curriculum Knowledge

Curriculum knowledge is the specffication of the goal structure that guides the teaching of a body
of expertise. Educational researchers and developers often treat the procedures that constitute
expertise and the instructional goals that constitute curriculum as more or less the same. They
assume that expertise can be split apart easily "at its joints" (to use Plato's phrase). The curriculum,
then, is a natural hierarchy of goals and subgoals to teach the natural units ofexpertise. From this
viewpoint, curriculum knowledge and domain expertise are the same thing. However, it appears that
there are many different plans for splitting apart expertise, especially when expertise involves
complex performances. For example, consider the curricular issues that arise in teaching simple
electrical principles. There are some basic concepts -- voltage, current, and resistance -- and some
basic laws -- Kirchhofrs Laws and Ohm's Law. In addition, there are different types of circuits -- series
and parallel.

So, one legitimate decomposition of the subject might begin with voltage, teaching the behavior
of voltage in series and parallel circuits, then teaching about resistance in the two types of circuits,
and finally treating current. Another decomposition might, with equal legitimacy, build the entire
curriculum on Kirchhoff's current laws. Yet another view might treat parallel circuits as being quite
distinct from series circuits and redevelop the concepts of voltage, resistance and current separately
for each. We need to capture these multiple viewpoints if they correspond to different curricular goals
about which steering information may be needed. For this reason, the various subgoals of knowledge
that the teacher or curriculum writer can have are best represented by multiple hierarchical goal
structures; these goal structures overlap in the components of expert performance to which they refer.

Once we concede that instructional goals are not really a simple decomposition of the expertise
being taught into discrete sets and subsets, we are in a position to understand why some testing that is
part of a curriculum may not be as diagnostic as we would hope. Specifically, we can understand why a
student might demonstrate clear competence on a curricular goal that is prerequisite to some other
goal but still appear, from the standpoint of the teacher of that second goal, to not have mastered the
first. For example, a student may demonstrate understanding of KirchhofTs Current Law but fail to
apply it in a circumstance for which it is relevant. Separating expertise from curriculum allows us to
understand such situations better.

6
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Suppose that we consider domain expertise to be represented by a surface. Expert knowledge is,
after all, highly interconnected. Even if it is properly represented as some kind of network, it can be
approximated by a continuous surface (specifically, a manifold of unspecified dimensionality). We
start by assuming that each curricular subgoal corresponds to a region of the expertise continuum.
The expertise subset corresponding to a curricular goal will likely be convex, in the sense that if two
pieces of knowledge are part of the same curricular goal, then any strong relationship that directly ties
them together should also be part of that goal. On the other hand, a curriculum goal's corresponding
expertise is not a completely closed set, since concepts it subsumes may well have connections to other
knowledge that goes beyond the goal. That is, the edges between the expertise subsets corresponding
to different curricular subgoals are not necessarily clean edges with no connections to other
knowledge.

The untargeted knowledge lying between the clusters of expertise directly addressed by the
curriculum can be important in remediating lack of transfer from a curriculum goal's prerequisites tc
the final target capability.2 Ordinarily, instruction is directed at the center of the expertice subset
corresponding to a curricular goal (see Figure 2). This helps keep the new knowledge to be taught
simple enough to be learned. However, this approach can sometimes backfire. For example, if two
bundles of expertise are both curricular goals, their centers may be well taught but their peripheries
gnored. For example, I may teach you how to compute the joint resistance of two resistors in series,

and this may satisfy an instructional objective. Later, ffyou need to find the joint resistance of three
resistors in order to solve a problem, you may be able to do that or you may not. In either case, simply
reteaching the two-resistor algorithm will be insufficient.

Ha higher-order curricular goal happens to depend upon the integration of the two lower-order
subgoals, it is exactly the edges of their domain knowledge subsets on which it will likely depend. For
decisions about what to teach when remediation seems necessary and also for decisions about how to
interpret apparent inconsistencies in diagnosing whether a curricular subgoal has been achieved,
domain expertise may be needed.

Plamning Knowledge

In addition to specific curricular goals, there are some other higher-order curricular issues that
need to be addressed in planning testing or teaching. Often, these are abstractions from, or specialized
viewpoints on, the curricular goal structure. These may include learning skills, problem solving
heuristics, rather general aptitudes, and even preferences. These concerns, e.g., the more general
"inquiry" skill goals in a science course, overlap some of the higher-level goals in the curriculum. It
could even be argued that these concerns really are part of the curriculum, butwe retain the
distinction since planning issues often color the exact form that goal-specific instruction might take.

For example, we would treat as a planning issue the complexity of arithmeticcomputation that is
required to solve a word problem in a math course. The metagoal is for the student to be able to
advance through the problem-solving part of the curriculum even if his arithmetic skills are
developing more slowly than his problem solving skills. So, the arithmetic required in a word problem
might be adjusted to keep it simple enough to let new problem solving skills develop. Later, when
problem solving skills are strong, the situation might reverse, and increasingly tough arithmetic
might be required whenever the student is predicted to find the problem solving tasks easy. Note that
the issue of arithmetic skills getting in the way of problem solving could arise in cnrricula other than
math, such as the electrical networks curriculum sketched in Figures 1 and 3. It is for this reason
especially that we choose to treat the matter as a metacurricular planning issue. Sometimes
capability on skills that are not the focus of instruction will require alteration of instructional and
testing strategies for target skills. This is why instruction and testing systems need planning and
metacurricular knowledge.

The planning of teaching must also take into account the long-term, higher-orderaspects of
education: metacognitive skills, mature and flexible preferences, and fundamental principles that
apply in many domains. From the point of view of the steering test developer, though, these
higher-order issues represent, for the most part, variables to be controlled, We can't really understand
whether a student knows how to solve electrical network problems, for example, if his capability is
hidden by slow arithmetic performance. So, we have to take account of metacurricular issues in
selecting problems for instructional or measurement use. That is, problems can be selected to require
domain-specific skills but to assure that the student answering a given problem will not be troubled by
weakness on general basic skills that are not the current focus of measurement or instruction. For
example, lie student is weak in arithmetic, a problem might be generated that required only
small-integer arithmetic. If a different student finds it easier to receive information in graphical form,

7
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the information given for a problem might be presented via a diagram, graph, or even photographicimage.

Treatment Knowledge

We turn now to the matter of educational treatments and test item development. Even when weknow what to teach or what to measure, there remains a separate form of expertise invol ved in
successfully generating a situation in which a piece of knowledge can be exercised. For example,
several different types of problems can be created to test understanding of electrical network
principles (or to provide opportunities for coached practice). Problems can be quantitative orqualitative. They can deal with imchanging situations or can focus on relative changes indifferent
measurements of a circuit. Since electricity knowledge must be applied in slightly differentways for
each type of problem, we could treat problem type as a curriculum issue. However, the knowledge anintelligent system needs about problem categories is different in form from knowledge about
curricular goals. This is especially the case when we want to develop problems for practiceor for
steering tests that require integrated use of several different skill components that are separate
curricular goals. The knowledge needed to develop such problems is specific to electricity and to theteaching of electrici

Practice and testing that requires multiple skills to be combined is an important goal of our work.
A contrasting approach is taken in some formal instructional development methodologies such as the
Defense Department's 1SD (Merrill & Tennyson, 1977) approach. As generally used, that approach
consists of complete development and elaboration of the curriculum followed by the devekpment of
tests and treatments corresponding to each curricular goal. This seems entirely sensible, anextension
of a management-by-objectives approach. However, if this method is applied superficially,difficulties
can arise. We have already discussed the problem of too-narrow focusing on core concepts without
adequate elaboration and qualification, but there are other, related problems as well. For exarnple, avariety of apprenticeship situations involve simultaneous practice of a wide range of skill components,
only some of which may be the current targets ofinstruction. When practice is provided on each skill
component separately, without attention to when each shouldbe used and how they tie together,
fragmentary learning results. The instructor can show, on academic-style tests, that the student
learned each subskill that was to be taught, but the subskills cannot be put together to solve
real-world problems.

This, of course, is a viewpoint that has been taken before. In the world of reading instruction, for
example, we have just seen a long period in which holistic approaches have been taken. Similarly,
case study approaches to the teaching of medicine and business are driven by the same motivation.There is, of course, some evidence against holistic approaches. Fer example, Chall (1967) surveyed anumber of reading curricula and found that, on average, weaker students benefited from a phonics
approach, in which recognition of each individual grapheme was the focus of separate instruction. In
the professional world, it is regularly asked how we can be sure that a student who took a case study
course really learned everything he should have. "What if I get a disease that was not one of the casesdiscussed?"

We can be a bit more formal about this problem if we view subskills as productions, actions to be
performed under specific conditions. When subskills are taught in isolation, the conditions under
which they should apply cannot be specified, since those conditions relate to the broader context of
holistic performances. Also, there may be specific productions that are not represented as subgoals forinstruction but that are the "glue" needed to combine the productions that were direct curriculartargets.

An instructional synthesis of the holistic and componential approaches requires several things,
including an understanding of the circumstances under which new subskills or concepts should be
introduted in isolation even if they are later to be practiced more holistically. Ofcourse, the missing
productions, the "glue" that holds together the subskills we target in our curriculum, cannotbe taught
adequately in vitro; they require holistic instruction. The dilemma is that they also need to be
assessed. We may need to help students attend to "gluing" their fragmentary knowledge together if
they have trouble doftig so on their own. Further, we may not always choose to introduce newpieces of
knowledge formally and explicitly, hoping that they will be inlerred through rich domain experience.
If we take this approach, which may be very efficient, we need to be able to assess later whether there
are any subgoals that were not well attained.

The basic approach we have taken is to generate test items (and instructional treat ents, forthat matter) in the course of testing. That is, at any given point in the course of testing, if a question

8
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arises about a specific`curricular goal, a test item is generated for itby an ir1elligent subsystem of the
tutoring program we (primarily the second author) are developing The itenimi can be shaped by
metacurricular considerations. Further, if multiple skills are req-ulreci for ai.y realistic performance
within the domain, sets of items can be developed over which particular subslzkill requirentepts are
systematically varied.

So, our approach, given a family of cognitive analyses (of experfise, meLzacurricular issues, and
problem environments in which the expertise can be manifested orpracticed1:), is to intelligently
generate the equivalent of a controlled experiment in which the nedfor various targetpieces of
knowledge is systematically varied. If the student fails to perform-311ms recp i iring a piece of
knowledge but does perform other items that do not require it, the-nwe infer Ulthat work is needed on
that knowledge. Further, we ask only about pieces of knowledge Lintare in t=he part of the curriculum
through which we are steering. Finally, rather than make statistiteoldecisies about whether a piece
of knowledge is present or absent, we assume that knowledge can bpresent moat various strength levels
and use experience about the reliability with which a particular pinettof knowPavledge manifests itself to
specify the level of learning of that knowledge.

Summary. Perhaps the best way to illustrate the ideas just punted is to refer back to the
example given above. Figure 3 elaborates the knowledge categorioln part, Tor our system to teach
and test basic electricity principles. The curriculum knowledge includes thre sets of goals: laws,
concepts and architectures. Under each of these are subgoals. For- sample, t:=1-ie architecturesbeing
considered are series and parallel circuits (i.e., no bridge circuits). The planrr_ming knowledge includes
two sets of planning concerns: the arithmetic difficulty of probleinsthalare conresented to the student
and the circuit complexity. Both apply with respect to a variety of curricular ubgoals, For example,
circuit complexity may affect whether a student can handle paralleldreuits, .-..vhether he can apply
Kirchhoff's current law, etc. Arithmetic difficulty could also affect these sub=oals, especially if
quantitative problems are presented to the student. The treatmerrthowledpe includes information
on problem formats and feedback to the student. Finally, the domelnexpertie contains specific
details of expertise in handling electrical networks thatare referencodby the curriculum
specffication.

Generang Test Items from a Studeailedel

Having described the architecture of the knowledge in a steeriegtesting- 7 system, we turn now to
how one uses that knowledge to do assessment driven by a cognitivemodel of the target capabilities
being taught. We offer as a first approximation an approach tl,at itabeen tes=ted in prototype form in
an intelligent tutor. It assumes additional knowledge that we havenotyet dicussed: a student
model, some sort of knowledge structure specifying which subskills the studert is thought to know and
which ones not.

We currently specify the student model by embedding it in the curricular= goal structure of an
intelligent tutor. For each curricular subgoal, there must be some sorter notas-tion about the student's
assumed competence relative to that subgoal. In one tutor the first author ancil his colleagues are
building (Lesgold, Lajoie, et al., 1986), there are only four notationa-unlearnefted, perhaps acquired,
probably acquired, and reliably strong. These notations relate to an underlyin-4zg cognitive model of
learning derived from John Anderson's (1983) work. The rules currently used to change a subskill
notation from one state to another are quite rough, but they are prixicipled.

Movement to the probably learned state implies that a correct production._ or set of productions, is
assumed to have been developed by the student. The perhaps state ideates tl=at the student has been
observed to perform the target skill component, but that there is inedeient evidence to conclude that
he knows the conditions as well as the actions for the subskill. The jperhapsstate is unstable. Either
further correct performances will occur, prompting classification to theprobab.-ly state, or we will
assume that the single correct performance observed was accidental relative trap the problem ecology for
the curriculum, and the student will be moved back to the unlearnecielate. Reezicurrent reliable
performance will move a student from probably to strong. One can Unglue ()diaper approaches in which
the notations might include indicators of misconceptions as well_ Theimportat point is that if we
look in on a student who is in the midst of learning a skill, some of theiubskill will be clearly
demonstrated already, some will be manilesting obvious problems, same will bo.ie unlearned, and some
-All be in an unknown status.

If we consider how to diagnose student progress ina holistic przclice envinronment given a
current student model state, we see that a first issue to be addressecilshat to a-test. In principle, the
student could have learned anything since we last tested him or her_ Far that ranatter, any prior

9
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demonstration of competence might have been a fluke, _ so all pamositive entries in the student model aretentative. Nonetheless, it would make no use of the stt.zadent mr=del at all if we merely tested for every
skill component at every opportunity. The student rnocrlel eriab3Eles testing for selected skill components
efficientlyand in realistic performance contexts. It is t_z_he equialent for steering testing of the
patient's chart for medical iiiagnosis.

We want to use the studentmodel to generate contraints on the problems we pose to the student
as test items. These constraints should have the propem-ty that =hey make the items maximally
informative in tuning the student model to changes in Mlle studyit'scapabilities. What can guide our
choices of curricular goals to test? There are several po:-ssibilitis. We discuss them in terms of the
four-level model of acquisition mentioned above (Unieo=rned,Prhaps learned, Probably learned, and
Strong). The Perhaps stage maybe the moat volatile. 1.ippose curricular goal to be the attainment
of a specific production (carryingout a particular actiorrzi when Et=_--ppropriate). When the action is
initially performed and is successful, there is a considerable chEws_nce that the student may not notice
the most important cues aboutthe circumstance of thenw:rloment So, he/she may be unable to
demonstrate the production milother circumstances. Von-x all prammctical purposes, it was never really
learned at all. Till we have several demonstrations oftiMeattaimmment of a curricular goal, we must
assume that our assessment of the student is unstable. Cure w see multiple successful performances,
we will reclassify the student's competence to the Probt=blyleven.. So, a first principle in selecting
current curricular goals to testis to be sure to check upwion goals in the Perhaps state.

A second issue has to do with prerequisite skills. 1tSkill A depends upon Skill B , then there is no
point in regularly testing for .A until B is demonstrated. Put anc=lther way, if there is ordering
information about the curricular goals, we may want to concentate testing on the region in the
ordering between the goals in. the Strong state and those in the =Inlearned state, testing most often the
Perhaps goals, checking for progress on the next few Urt..z_learned oals, and checking occasionally to seeif any goals have gone from Probably to Strong (operatim=bnally, vie check to see if problems requiring
this subgoal's skills are answered correctly for several comonsecuti=ve occasions with varying
requirements).

The next issue involves rnetacurricular concern; especiallr those relating to extraneous sourcesof difficulty, such as requiring complicated arithmetic perforrnam-ice, presenting information in a
medium known to be difficult forthe student, etc. The bisicrul of thumb we propose is to adapt these
difficulty variables to the currentstudent model level_ .erexarracaple, if the goal is to detect a
movement from Unlearned to Perhaps for some curriculr goal, =hen we want to set the metacurricular
dffliculty levels low, so that theinitial weak acquisition. of that s=1.1.bgoal's knowledge is not masked by
too many other demands for processing capacity. For tnce=evement from Perhaps to Probably, an
appropriate problem constraint is to have some situatiortmalchanes from the problem in which the
initial appearance of the relevantknowledge was first nizxDted, sine the theoretical motivation for the
distinction is the possibility of the correct actions havie= been li=lced to imprecise conditicais. For
validating movement to Strongon some goal, there shouLid be a de-emonstration of the relevant
capability under more difficult circumstances, since the trelquestionee_ is whether the relevant knowledge is
robust enough to occur even under adverse conditions_
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The Coramcept of Constraint Posting

Tlfs basic approach is to begin each cycle of diagnosis by sweeping through thecurricular goal
structun==-, noting which subskills are "ripe" for testing. When the sweep is completed, we try to build
one or or -Ire problems that maximize our chances for accurately noting changes in the student's
currentl=_nowledge state, using some of the rules of thumb just described. We then use performance on
these insoloade-to-order problems to decide how to update the student model - we make a diagnosis.

Criical to the approach is the concept of constraint posting (Stefik, 1980). 'Rather than building
teat itern as we sweep through the curricular goal structure, we instead simply add to a list of item
constraimmts as we proceed. Each time we see an issue on which we would like more clarity, we post
lhat conNmern as a constraint on the test item generation process. When the sweep through the
curriculin is complete, we take the bundle of constraints and try to build items that satisfy them,
Stefik (180) has shown that in many complex problem solving tasks involving multiple sources of
cornplexiMy and interactions between problem aspects (e.g., designing recombinant DNA experiments),
this cons=raint posting approach is much more efficient than piecemeal search processes.

Constrnnt Posting Applied to Problem Generation

The item generation process, then, can work as follows. We first consider the student model.
Some of tla-ie subskills may be marked as reliably strong. These represent beachheads in the conquest
of ignore From these beachheads, as we venture out toward related subskills, we find some whose
status is i.ncertain (subskills that may or may not have been acquired yet and acquired subskills that
may Of aut.y not be reliable yet). We can make this search process more efficient if we know, for some
subgoals, which other subgoals are prerequisite to them and which they are prerequisite for. A
subgoal fclr which a just attained subgoal is prerequisite is likely to be a testing target, but we will also
give some weight to all subgoals, using the rules of thumb discussed above. Since we are making
stoeringecisions, we focus on the area of the curriculum that is currently the object of instruction.
For each ubgoal that is a current target of testing, at least one constraint is posted: a test problem
must ackln-=ess that subgoal. For example, if we want to find out whether the student's capabilities in
applying C=hm's Law to series circuits have improved, we post constraints that the problem must
require OWElm's Law and must involve a series circuit.

We =must also consider metacurricular planning issues. For example, a part of the system's
planning cf:omponent may address the question of whether or not a physics student has adequate math
facility, or whether or not a student is able to learn information from graphical presentations.
Constraiimas can be posted based on metacurricular aspects of the studentmodel, too. We may,
easentiall, say to the test generator, "Since this student is poor in arithmetic, I can't find out if he has
learned (r=wved from unlearned to perlzaps) how to use Ohm's Law to compute the current in a circuit if
the arithn=tetic comes out messy, so make the numbers come out simple."

the sweep through the curricular and planning structures is complete, the posted
constraint must be analyzed before test items are generated. Are there too many to handle at once? If

t partition them into several clusters. Are the constraints inconsistent, in the sense that a
problem et=ribodying some of them cannot, in principle, embody the others? For example, if we
ronstrainn electricity problem to be simple and we want to know both whether a student knows how
lodeal witi two resistors in series and also whether he knows how to deal with two in parallel, this
cannot all -gaie done with one circuit problem. So, again, we might partition the constraints into bundles
that can ccimorniortably be handled.

Finaly, one or more holistic problems that satisfy the constraints posted must be posed. From
performane on a problem, either a diagnosis can be made immediately or a more focused problem can
specifitet=1 for further testing. In essence, we are dealing with a qualitative process that has many of

the properMies of one of psychometrics' most important quantitative processes -- adaptive testing.

An Exannle from a Tutor for Basic Electricity Principles

To ilMustrate some of these ideas, we describe MHO, a tutor that teaches basic electrical
principles current, voltage, and resistance; Kirchhoffs Laws and Ohm's Law). MHO is designed to
work in bo=h a problem-posing and an exploration mode. In the exploratory mode, the student can
make meaurements on circuits and even build his own circuit. In the didactic mode, though, MHO
must decidiw what problem to present to the student. Thus, it faces the same problem that a testing
program we=ould face: to examine the student model and determine which problem to pose to optimize
the inforution value of the student's answer.

1 1
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MHO's student model is a specialized form cf checklist: a goal structure for teaching the specific
knowledge it wants to teach. The checklist derives from the curriculum and planning issues shown in
Figure 3 above. For each subgoal, the student is marked as being in one of the four states described
above, as shown in Table I. Quantitative scores could be entered as well. What is critical is that some
student knowledge levels are considered to indicate potential for change while others are not. For
example, a student who knows certain material is not likely to suddenly stop knowing it, but a studentwho has yet to learn some material is in a more changeable state.

From the subgoal scores and other knowledge, such as curricular sequencing and prerequisite
relationships, it is possible to define a set of subgoals that are most unstable. These are the subgoalsthat may require more frequent measurement in order for instruction to be steered well. As discussed
above, they represent the front along which instruction is progressing through the curriculum goal
structure. The task of a test item generator, then, is to generate a test item that will be especially
informative about this front. MHO does this by posting a set of constraints for the test problem. In the
student model given above, the Series, Kirchhoff's Law, and Current subgoals are at this front. Each
constraint helps adapt the steering feedback to the student's current state. To see how this is done, weneed to consider MHO's architecture and the subject matter that it teaches and tests.
Architecture

At this time, MHO teaches and tests several levels of DC circuits. It poses problems such as theone shown in Figure 4. We call the architecture used in MHO the Bite.Size Architecture. It is an
object-oriented architecture for intelligent tutoring systems.3 An object is a semiautonomous piece of
computer program that can be called upon to achieve particulargoals. It includes both data structures
and procedural capabilities. Object-oriented programming involves designing sets of objects that canefficiently interact to solve problems. Each curriculum subgoal (and also each metacurricular
planning issue and eaci problem format) is represented by an object called a "bite." Within the
computer program, a bite contains a record of the student's performance on a subgoal and the
knowledge needed to post a constraint for that subgoal.

Voltage, for example, is represented by a bite in MHO. That bite has rules for teaching about
voltage. It contains information pertinent to developing an understanding of what voltage represents,
including the constraints it should post to create relevant problems. Also, it can update the student
model iniormation by noting how the student does on problems relevant to its subgoal. One byproduct
of this architecture and the curricular model on which it is based is that a tutoring program's
knowledge is modular and can easily be expanded by adding additional curricular objects along withtheir pointers to the other knowledge components (which may involve additions to those components
as well). For example, MHO's designers are now expanding it to include curricular goals involvingsimple alternating current circuits.

Problem Generation

MHO poses problems by presenting a circuit diagram and asking a question about it. The
machinery used in problem generation chooses most of the circuit components randomly, but it is
constrained by both general and specffic curricular subgoals (bites) which the student has not yet
mastered. Some of the choices represented by these constraints are the following.

a. A problem can be posed in qualitative, quantitative or relative form.

b. The problem can vary in the complexity of the arithmetic it requires and the complexity of
the circuit diagram to which it refers. This is determined by a global assessment of how much of the
curriculum the student has mastered.

c. The problem can require knowledge of Ohm's Law or either of Kirchhoff's Laws.

d. The problem can focus on voltage, current or resistance.

e. The problem can focus on series or parallel circuit topologies. (MHO also worries aboutwhere the meters are placed in circuit diagrams, since there are some placements that students have
particular difficulty handling, but we ignore that matter to make presentation of the basic approach
more straightforward).

The product of constraint posting is stored as a list structure (see Footnote 3) to be used as the
basis for problem generation and problem solving. This list structure containi information that
specifies how to create a circuit and a problem based on that circuit, what the circuit should look like,

12
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and what electronic concepts are relevant. An example of such a list, derived from the student model
shown in Table 1) is:

10

[1] ((((Rel Simple) ($ Kirchhofn) ($ I= Series)) (UninterruptedS)) Series).

This list represents the constraints that have been posted in sweeping the model shown in Table
1 and is the starting point for automatic generation of a problem. Rel stands for a Relative problem
that will pose a simple question asking if two areas of the circuit will have the same measurement (in
this case, current). Simple specifies the student's level of general understanding and will cause the
circuit to be very simple in structure. Kirchhoff is the law this problem centers around. I =Series is a
specialization of Kirchhoff's law, that current is equal at all points in a series array. UninterruptedS
informs the problem generator that one meter should appear next to another with no other
components between them (this is the simplest form for a problem looking at Kirchhoff's Law).
Constrained by this inlormation, the problem generator can develop many different circuits and pose
many different problems about them, so it is quite plausible to do as much steering testing as any
student requires and also to give students sets of appropriate problems as homework.

At the next, more elaborated, level of representation the circuit s designated as a network of
resistors, a combination of series and parallel subnets with a power source. A more detailed list breaks
this circuit into four nodes, each of which represents a side of a rectangular circuit. The nodes are
created separately and then put together to make up a circuit. One at a time, the nodes are passed into
a recursive function called MakeCircuitStzing to be elaborated further. MakeCircuitString makes
decisions such as how many resistors are placed on a node, and whether these resistors should appear
in a parallel or series net. These decisions are based on the information from the first list.

Simple instructs MakeCircuitString to limit the number of resistors that appear and to
otherwise make the circuit conform to the specifications of a simple circuit. The Simple specifications
keep the components that will be drawn to a minimum. Simple also informs MakeCircuitString that
depending on what net we are working with ail nodes should be of this kind. I =Series specLfies the
net to be used: all sides are series arrays. If this were a Difficult problem, some sides might have
parallel subnets and others series. An example of a simple circuit, [11, that has passed through
MakeCircuitString is

[2] ((VoltageSource) (Series (Resistor) (Re or)) (Parallel (Resistor) (Resis or)) (

Figure 5 below shows the circuit designated by [2].

The final specifications development step is determining what problem should be posed about the
circuit, where meters should be placed and what question should be asked about them. This step
requires some information from the first list, e.g. W. I =Series reveals whether current or voltage is
the target concept, while UninterruptedS holds information pertaining to how many problems and
where problems should appear. Several recursive functions tear apart the second list and insert
problem information (mainly meters) where it is best suited. Using the above example and placing
several meters into the list, one example of the next stage is

[3] ((Probl.em Rel current after on (VoltageSource)) (Series (Resistor) (Problem Rel current before
ff (Resistor)) (Parallel (Problem Rel current after on (Resistor) (Resistor)) (Wire)).

This list is then passed to an intelligent problem developer, which composes and draws the
circuit. Figure 6 below shows a display corresponding to [31. The question posed to the student will
end up being, Is the current at Meter A higher, lower, or the same as the current at Meter B?"

The Simulator assigns values to the components, i.e. resistance and voltage, and then finds air
dependent values, i.e. current, voltage drops over resistors, etc. It can, for simple problems, ensure
that all the values for current and voltage will be integral, and also can determine whether or not
resistors and voltage sources should be displayed. If the circuit were more complex, an iterative
propagation would occur next. Resistance for a subnet of a complex circuit, for example, would be
calculated by asking each subnat component its resistance and then adding them together. Parallel
structures are handled recursively as well, using the appropriate formulae.

The Softness of Student Classifications

We conclude by reconsidering more broadly the issue of dianostic assessment of cognitive skills
to steer instruction. Fundamentally, cognitive skill, like physical skill, often requires substantial

13
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practice of its basic components m the contexts in which they are to be applied. Actions can be learned
without learning the exact conditions for which they are appropriate. Newly learned, and
consequently weak, knowledge can fail to be used because stronger but incorrect knowledge is
overgeneralized from related situations. Processing capacity demands due to one subskill may be so
gTeat as to make the execution of another, newly formed subskill impossible. This means that for most
of the course of learning, a fundamental principle is true:

One cannot be sure a subskill has not been learned just because it
was not demonstrated on an occasion where it should have been.

On the other hand, cognitive skill, like physical skill, is partly redundant. Weak methods can
sometimes overcome the lack of appropriate domain knowledge. Sometimes, a problem that in theory
should require a particular subskill is solved correctly by accident. The correct action may be taken
with incorrect knowledge of the conditions under which it is appropriate, or an incorrect action may
turn out to be "safe" this time only. This leads to a second fundamental principle.

One cannot be sure a subskill is completely lea ned just because it
has been demonstrated.

These two principles suggest that the steering approach to diagnostic testing, in which local
microtesting is embedded in the curriculum to steer instruction, is a more valid approach than the
broader diagnostic testing that has become part of many current monitoring programs in our schools.
By asking broad, generic questions (e.g., "What can I diagnose knowing nothing about the student in
advance and giving only a general testr) we can get only broad, generic answers. That is, we can
know how well, in general, learning is proceeding, but we can't steer specific children's education with
such broad indicators, any more than we could steer a ship if all we had was an hourly account of how
close to the correct path we were.

Empirical experience and cognitive theory tell us that an inherent property of cognitive
performance is that it is unreliable unless substantial practice hasoccurred and that success can come
for mul.:,ple reasons. These factors have to be taken into account in diagnosis. Ironically, perhaps, the
less reliable steering testing approach provides better steering capability than the highly refined
approaches used in current psychometric efforts at diagnosis. But this is no different than the irony
that continuously knowing approximately where you are affords better steering capability than
occasionally knowing how well you are steering, in general.

The field of testing has worked to try to become efficient at making precise estimates from
inherently unreliable data, and it has done very well at this. Approaches such as item-response theory
and adaptive testing have allowed the broad and vague measures that tests provide to be made ever
more efficiently. Further progTess, and especially progress in steering testing (as opposed to
certLfication and selection testing) will depend on better use of information we already have, or can
readily get, about the cognitive requirements of the performances and student competences relative to
those performances that interest us. Like the physician, we will, in steering the course of a child's
education, be better guided by sketchy data tied to specific theoretical analysis than by precise, but
general, indicators. -

Our approach can be contrasted to the steering forms used in the curricula that grew from Bob
Glaser's work on individualized instruction. There, the steering idea was also used. However, the
technology of the time did not permit more than a short, unLform Mastery test after each lesson. This
allowed adequate teaching of the higher-aptitude student but did not handle the rernediation problem
discussed above. That is, it suffered from having to treat each curricular goal and its corresponding
student capability as separable frOm every other, and it could not handle the problem of core learning
without fringe transfer. There was much discussion during the period of that curriculum development
about having remediation that was more than just doing the same thing again. The present approach
to steering testing, which permits adaptation grounded in cognitive analysis of the instructional
domain, rests on the goal structure for educational research established during the period of work by
Bob Glaser and his colleagues on individually-prescribed instruction.
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tin Lesgold (in press) a three-category model was presented. Since then, we have become
convinced that the curriculum and treatment categories should be separated.

2This issue Ls addressed more completely in Lesgold (in press).

3See Bonar, Cunningham and Schultz, 1986, for a description of An Object-Oriented Architecture
for Intelligent Tutoring Systems. MHO is implemented in Loops, Xerox's proprietary object-oriented
specialization of the standard artificial intelligence language Lisp. The graphics and student interface
are handled via an interface package called Chips. Chips is a program developed at the Learning
Research and Development Center, primarily by John D. Corbett and Robert E. Cunningham, with
some contribution by Andrew D. Bowen. The Chips tools allow circuit displays to be designed so the
student can click the mouse (a mouse is a pointing device that causes a marker to move on the screen
as the device is moved on a table top; it often contains buttons as well, so that the computer user can
point to an object on the screen by moving the marker over that object and then pressing a button) on
any of the components and thereby cause a menu of query options to appear. Each object can behave
differently: when a student clicks on a meter, a question is asked; when he/she clicks on a resistor a
special menu of options is presented.
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Figure 1. Types of Knowledge Needed in Teaching and Testing.
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Figure 2. Remedial Knowledge May Not Be Core Knowledge.
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Figure 3. Examples of Different Know ledges Needed for Steering Testing.
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Figure 4. Example Problem from MHO Test Generator.
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Figure 5. Circuit described by Eq. 2.
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Figure 6. Circuit described by Eq, 3.
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Table 1. Example Student Model.
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