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Toward Intelligent Systems for Testing
Alan Lesgold
Jefjrey Bonar
Joyee Ivill

Unlversity of Pittsburgh

One of Robert Glaser's special contributions to psychology and education is the concept of
criterion-referenced testing (Glaser, 1963). While norm-referenced testing supports decisions that
involve choosing among people or otherwise comparing them, criterion-referenced tests tell us
something about what people know or what they can do. In introducing the concept, Glaser was
beginning a long advocacy of adaptive education, of shaping education to each person's current
competences rather than choosing to educate only the people who score highest on general tests,

While this was his goal, most work on criterion-referenced testing (cf. Hambleton, 1984) has
focused on issues relating to certification, to setting of standards for educational outcomes, and to
tracking, that is, on selection more than on adaptation. There are a number of reasons for this, but the
situation can be summarized as follows. Adaptive education isa steering process. Norm-referenced
tests are designed to indicate reliably who is out in front; criterion-referenced tests are designed to tell
us exactly where each person is; but knowing where you are is not the same as knowing how to steera
course toward a planned destination.

The purpose of this chapter is to illustrate one way in which the technologies of testing might

combine with certain cognitive science techniques to help steer instruction.- We focus on steering an
intelligent tutor, i.e., on student modeling. However, the approach can be generalized to other
instructional forms, including reactive environments (exploratory microworlds) and perhaps even

conventional classroom instruction, We are discussing diagnostic testing to be used often, in small
amounts, to steer the course of instruction. Further, in contrast to relatively standard (e.g.,
pretest-treatment-posttest) designs for individualizing the teaching of children, we focus on
individualizing the testing process to make it more efficient in steering instruction.

Problems of Diagnostic Testing

Any test, including a diagnostic test, consists of a number of items. The person being tested
carries out some performance of each of the items, scores are assigned to those performances, and those
scores are aggregated to arrive at an evaluation. To make steering tests, we need test items that are
relevant to the specific steering decisions that must be made about a particular student in a particular
context, and we need procedures for scoring performance on those items. Steering tests must be
efficient to administer, since steering requires frequent, but not necessarily precise, feedback (given
the inertia of teaching and learning, the steering error produced by believing an imprecise test will
probably be canceled out by subsequent course corrections).

Standard psychometric methods are not designed for steering tests. They are designed to assure
that different forms of a test are equivalent and that the scores on that test are reliable, The problem
of steering tests is that they must be brief, so that testing does not take too much time from learning.
This makes it difficult for them to be reliable, and steering requires at least some reliability of '
feedback to be successful, :

There are two ways a test can be made more reliable. The first is to increase the extent to which
performance on its items directly reflects the skills one wishes to assess. This can be done statistically
or substantively. Statistical approaches such as item-response theory (Lord, 1980) help assure that
different items are measuring the same thing, and thereby increase the reliability of scores, but not
necessarily their validity. However, it is also possible to develop a microtheory of the competences one
wishes to teach. Such a microtheory can help in specifying items that test particular subsets of the
target skills.

The second way to make a test more reliable is to use knowledge about the student's performance
on prior items to limit the information each new test item must provide. Adaptive testing algorithms
have been developed for this purpose. They use a sequential strategy. After the student completes an
item, an estimate of the student's performance based upon the items so far completed is used to select
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the most informative next item to administer, and then the score on that next item is used to update
the estimate. The adaptive testing approach, which almost always requires a eomputer for the
real-time estimates just mentioned, can be applied even when nothing more than the difficulty
ordering of items is known. However, it is especially powerful if more detailed information about the
items is available. Again, a theory that relates performance on various test items to underlying
competences and their acquisition can be helpful, even if it is incomplete.

Inat least one case, adaptive testing techniques were applied to diagnostic testing (Spineti &
Hambleton, 1977). Spineti and Hambleton used learning hierarchies specified by rational task
analysis (Gagne, 1965) to help constrain the estimation process. That is, they decided on items
according to an analysis of the material being learned and to some theoretical predictions of the order
of acquisition for parts of that material. Doing this, they were able to achieve a 50% reduction in the
number of items required to achieve a given level of score reliability.

The approach we have taken to steering testing is somewhat different. [t uses very simple
heuristics for reasoning about the level of a student's competence in particular subskills. Its power
derives primarily from its ability to intelligently manufacture practice opportunities {test items) for
the student that will be especially revealing about his current competences. We believe, although it
remains to be proven, that these practice opportunities are generally appropriate learning vehicles as
well as test items. In that sense, we are pursuing steering as a unified system in which testing and
learning are combined. '

Inour view, a cognitive theory of testing, and especially a theory of steering testing, should have
two characteristics. First, it should permit a partly logical (in contrast to a purely statistical)
constraining of diagnosis. Second, it should be based on a representation of the knowledge that is
needed to exercise the skill it purports to measure. The logical approach is not at all foreign to our
experience. When one is sick and goes to a physician, one is not satisfied with broad probabilistic
statements. Rather, one expects a diagnosis constrained by the physician's knowledge of disease.
More specifically, we expect the physician to be asking herself what diseases could produce the overall
complex of symptoms and signs presenting themselves to her. Diagnosis in medicine, then, is the
designing of a personal theory of a specific patient's pathology. This personzi theory is rooted in

theories of disease mechanisms and not just in unexplained statistical relationships,

The diagnosis process is dynamic. For example, based on the hypathesis that a patient has heart
disease, the physician may probe for more explicit detail about certain symptoms or order a test that
may confirm or refute her theory. A teacher does this toc when prior knowledge about a student,
combined with current observations, leads her to attribute grammatical errors in the student’s paper
either to inexperience with written language or to use of nonstandard dialect or to a mistaken sense of
when formal conventions are needed.

The good teacher's diagnosis differs from that of a physician in one respect, though. We cometoa
physician to get a diagnosis when something is wrong -- she does not generally shape continuing
decisions about how we should act (except perhaps in developing special regimens, e.g., diets for
control of diabetes). A teacher, in contrast, is carrying out an active, goal-directed activity -- teaching
-- which needs only small course corrections. Consequently,it: s reasonable to conduct the testing
from the teacher's point of view, at least in part. '

We would like to produce tests that capture some of the capabilities of the most perceptive and
observant teachers. We want them to be driven mostly from the teacher's goal structures for teaching
but also to respond to knowledge of the expertise the teacher is trying to convey, the treatments
available to the teacher for effecting learning, and certain more global teacher concerns, such as
adapting to general differences in aptitude and general characteristics of competence at different
levels of learning.

In the next section, we discuss the different kinds of knowledge that are needed to adapt teaching

to an individual student's course of learning. We take the viewpoint of intelligent tutoring system
design, but the same concerns arise in all approaches to instruction. This is followed by sections in
which a specific approach to the generation of diagnostically and educationally useful problems is
discussed.

Components of Teaching and Testing Knowledge
Several different kinds of knowledge are required in our approach to steering testing. Especially
when designing computer systems to teach or to test, it is important to clarify the knowledge, or

competence, that is involved in dealing with a student. We have egegoriged’ that knowledge into four
A .
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types.! These are domain expertise, curriculum knowledge, instract . 4a: R 3
treatment knowledge. Each type of knowledge has different stru es, d__fer«i t gone
and different purpose and applicability. Further, there are a va: of connec¢ - ns frewa one type of

knowledge to another. Figure 1 shows these four categories wit «xx sple. * == kinets of knowledge

they contain for an electricity tutoring/testing system under de=ve 1, »nt at-.; '.ear wing Research
and Development Center.

Domain Expertise

Domain expertise is always embodied in instructional deic. sz musking  »itter explicitly or
implicitly. Deep diagnosis of student difficulties may require: gl EOTES
knowledge required for the performances that are the goals o ims! et
a computer-based tutor to diagnose bugs (systematic errors) iruc.ailder.'s aritthmetic performances
requires having a model of the algorithms that experts use in ety 7 those performances. Also,
feedback on test performance and advice to the student may have 2 2 counshed in terms of procedures
for acting rather than in terms of criteria for outcomes specified in the curriculum. One way or

Foos éxaz’nple, the ability of

another, the performances that constitute the goals of a curriculum degive from information about the
competences that constitute expertise.

Another aspect of domain expertise that is important in instruction and testing is knowledge of
the target task environment. When we speak of what it is we want people to do, we are referring not
only to the knowledge they need to perform successfully but also to the circumstances under which
that knowledge must be employed. Again, knowledge of these circumstances might be the basis for
curricular objectives, but those objectives rest upon domain expertise. If we have the objective that
given situation X, the student can do Y, it rests upon knowledge of what kind of situation X is and how
Y can bedone in X. For example, a student might be able to solve a proportion problem at the time a
lesson on proportion is presented but not be able to use that knowledge later in solving a word problem
or even to solve the same problem as one of a set on mixed topics. When testing or teaching is done by
a computer program, the underlying domain knowledge sometimes must be made explicit.

Curriculum Knowledge

Curriculum knowledge is the specification of the goal structure that guides the teaching of a body
of expertise. Educational researchers and developers often treat the procedures that constitute
expertise and the instructional goals that constitute curriculum as more or less the same. They
assume that expertise can be split apart easily "at its joints" (to use Plato’s phrase). The curriculum,
then, is a natural hierarchy of goals and subgoals to teach the natural units of expertise. From this
viewpoint, curriculum knowledge and domain expertise are the same thing. However, it appears that
there are many different plans for splitting apart expertise, especially when expertise involves
complex performances. For example, consider the curricular issues that arise in teaching simple
electrical principles. There are some basic concepts -- voltage, current, and resistance -- and some
basie laws -- Kirchhoff's Laws and Ohm's Law. In addition, there are different types of circuits -- series
and parallel.

So, one legitimate decomposition of the subject might begin with voltage, teaching the behavior

of voltage in series and parallel circuits, then teaching about resistance in the two types of eircuits,
and finally treating current. Another decomposition might, with equal legitimacy, build the entire
curriculum on Kirchhoff's current laws. Yet another view might treat parallel circuits as being quite
distinct from series circuits and redevelop the concepts of voltage, resistance and current separately
for each. We need to capture these multiple viewpoints if they correspond to different curricular goals
about which steering information may be needed. For this reason, the various subgoals of knowledge
that the teacher or curriculum writer can have are best represented by multiple hierarchical goal
structures; these goal structures overlap in the components of expert performance to which they refer.

Once we concede that instructional goals are not really a simple decomposition of the expertise
being taught into discrete sets and subsets, we are in a position to understand why some testing that is
part of a curriculum may not be as diagnostic as we would hope. Specifically, we can understand why a
student might demonstrate clear competence on a curricular goal that is prerequisite to some other
goal but still appear, from the standpoint of the teacher of that second goal, to not have mastered the
first. For example, a student may demonstrate understanding of Kirchhoff's Current Law but fail to
apply it in a circumstance for which it is relevant. Separating expertise from curriculum allows us to
understand such situations better.

(op]
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Suppose that we consider domain expertise to be represented by a surface. Expert knowledge is,
after all, highly interconnected. Even ifit is properly represented as some kind of network, it can be
approximated by a continuous surface (specifically, a manifold of unspecified dimensionality). We
start by assuming that each curricular subgoal corresponds to a region of the expertise continuum.
The expertise subset corresponding to a curricular goal will likely be convex, in the sense that if two
pieces of knowledge are part of the same curricular goal, then any strong relationship that directly ties
them together should also be part of that goal. On the other hand, a curriculum goal’s corresponding
expertise is not a completely closed set, since concepts it subsumes may well have connections to other
knowledge that goes beyond the goal. That is, the edges between the expertise subsets corresponding
to different curricular subgoals are not necessarily clean edges with no connections to other
knowledge.

The untargeted knowledge lying between the clusters of expertise directly addressed by the
curriculum can be important in remediating lack of transfer from a eurriculum goal's prerequisites tc
the final target capability.2 Ordinarily, instruction is directed at the center of the expertize subset
corresponding to a curricular goal (see Figure 2). This helps keep the new knowledge to be taught
simple enough to be learned. However, this approach can sometimes backfire. For example, if two
bundles of expertise are both curricular goals, their centers may be well taught but their peripheries
ignored. For example, I may teach you how to compute the joint resistance of two resistors in series,
and this may satisfy an instructional objective. Later, if you need to find the joint resistance of three
resistors in order to solve a problem, you may be able to do that or you may not. In either case, simply
reteaching the two-resistor algorithm will be insufficient.

If a higher-order curricular goal happens to depend upon the integration of the two lower-order
subgoals, it is exactly the edges of their domain knowledge subsets on which it will likely depend. For
decisions about what to teach when remediation seems necessary and also for decisions about how to
interpret apparent inconsistencies in diagnosing whether a curricular subgoal has been achieved,

domain expertise may be needed.
Planning Knowledge

In addition to specific curricular goals, there are some other higher-order curricular issues that
need to he addressed in planning testing or teaching. Often, these are abstractions from, or specialized
viewpoints on, the curricular goal structure. These may include learning skills, problem solving
heuristics, rather gerneral aptitudes, and even preferences. These concerns, e.g., the more general
"inquiry"” skill goals in a science course, overlap some of the higher-level goals in the curriculum. It
could even be argued that these concerns really are part of the curriculum, but we retain the
distinction since planning issues often color the exact form that goal-specific instruction might take.

For example, we would treat as a planning issue the complexity of arithinetic computation that is
required to solve a word problem in a math course. The metagoal is for the student to be able to
advance through the problem-solving part of the curriculum even if his arithmetic skills are
developing more slowly than his problem solving skills. So, the arithmetic required in a word problem
might be adjusted to keep it simple enough to let new problem solving skills develop. Later, when
problem solving skills are strong, the situation might reverse, and increasingly tough arithmetie
might be required whenever the student is predicted to find the problem solving tasks easy. Note that
the issue of arithmetic skills getting in the way of problem solving could arise in crirricula other than
math, such as the electrical networks curriculum sketched in Figures 1 and 3. It is for this reason
especially that we choose to treat the matter as a metacurricular planning issue. Sometimes
capability on skills that are not the focus of instruction will require alteration of instructional and
testing strategies for target skills. This is why instruction and testing systems need planning and
metacurricular knowledge.

The planning of teaching must also take into account the long-term, higher-order aspec:s of
education: metacognitive skills, mature and flexible preferences, and fundamental principles that
apply in many domains. From the point of view of the steering test developer, though, these
higher-order issues represent, for the most part, variables to be controlled. We can't really understand
whether a student knows how to solve electrical network problems, for example, if his capability is
hidden by slow arithmetic performance. So, we have to take account of metacurricular issues in
selecting problems for instructional or measurement use. That is, prcklems can be selected to require
domain-specific skills but to assure that the student answering a given problem will not be troubled by
weakness on general basic skills that are not the current focus of measurement or instruction. For
example, if a student is weak in arithmetic, a problem might be generated that required only
small-integer arithmetic. Ifa different student finds it easier to receive information in graphical form,
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the information given for a problem might be presented via a diagram, graph, or even phobgraphic
image.

Treatment Knowledge

We turn now to the matter of educational treatments and test item development. Ewnwhen we
know what to teach or what to measure, there remains a separate form of expertise involvdin
successfully generating a situation in which a piece of knowledge can be exercised. For exmple,
several different types of problems can be created to test understanding of electrical netwark
principles (or to provide opportunities for coached practice). Problems can be quantitativer
qualitative. They can deal with unchanging situations or can focus on relative changes indifferent
measurements of a circuit. Since electricity knowledge must be applied in slightly differeniways for
each type of problem, we could treat problem type as a curriculum issue. However, the knovledge an
intelligent system needs about problem categories is different in form from knowledge abait
curricular goals. This is especially the case when we want to develop problems for practicsor for
steering tests that require integrated use of several different skill components that are sepuate
curricular goals. The knowledge needed to develop such problems is specific to electricity mdto the
teaching of electricity. . .

Practice and testing that requires multiple skills to be combined is an important goalifour work.
A contrasting approach is taken in seme formal instructional development methodologiessuch as the
Defense Department's ISD (Merrill & Tennyson, 1977) approach. As generally used, thatuproach
consists of complete development and elaboration of the curriculum followed by the develgment of
tests and treatments corresponding to each curricular goal. This seems entirely sensible, aextension
of a management-by-objectives approach. However, if this method is applied superficially,ifficulties
can arise. We have already discussed the problem of too-narrow focusing on core concepts vithout
adequate elaboration and qualification, but there are other, related problems as well. Foreumple, a
variety of apprenticeship situations involve simultaneous practice of a wide range of skill unponents,
only some of which may be the current targets of instruction. When practice is provided onmch skill
component separately, without attention to when each should be used and how they tie togther,
fragmentary learning results. The instructor can show, on academic-style tests, that the stulent
learned each subskill that was to be taught, but the subskills cannot be put together to solw
real-world problems.

This, of course, is a viewpoint that has been taken before. In the world of reading instrution, for
example, we have just seen a long period in which holistic approaches have been taken. Sinilarly,
case study approaches to the teaching of medicine and business are driven by the same motiution.
There is, of course, some evidence against holistic approaches. Fer example, Chall (1967) suneyed a
number of reading curricula and found that, on average, weaker students benefited from a phnics
approach, in which recognition of each individual grapheme was the focus of separate instrufion. In
the professional world, it is regularly asked how we can be sure that a student who took a canstudy
course really learned everything he should have. "What if I get a disease that was not one dthe cases

discussed?”

We can be a bit more formal about this problem if we view subskills as productions, actins to be
performed under specific conditions. When subskills are taught in isolation, the conditionsuider
which they should apply cannot be specified, since those conditions relate to the broader contut of
holistic performances. Also, there may be specific productions that are not represented as siygoals for
instruction but thag are the "glue” needed to combine the productions that were direct curriular
targets.

An instructional synthesis of the holistic and componential approaches requires severalthings,
including an understanding of the circumstances under which new subskills or concepts shoudbe
introduced in isolation even if they are later to be practiced more holistically. Of course, thenissing
productions, the "glue" that holds together the subskills we target in our curriculum, eannotbtaught
adequately in vitro; they require holistic instruction. The dilemma is that they also need to b
assessed. We may need to help students attend to "gluing" their fragmentary knowledge togiher if
they have trouble doing so on their own. Further, we may not always choose to introduce nevpieces of
knowledge formally and explicitly, hoping that they will be inferred through rich domain exprience.
If we take this approach, which may be very efficient, we need to be able to assess later whethrthere
are any subgoals that were not well attained.

 The basic approach we have taken is to generate test items (and instructional treatmenis for
that matter) in the course of testing. That is, at any given point in the course of testing, if a question
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arises about a specific' curricular goal, a test item is generated for illyan int—elligent subsystem of the
tutoring program we (primarily the second author) are developing, The itemesa can be shaped by
metacurricular considerations. Further, if multiple skills are requtifor a1y realistic performance
within the domain, sets of items can be developed over which partigir subsizkill requirements are
systematically varied.

So, our approach, given a family of cognitive analyses (of expuife, metzzacurricular issues, and
problem environments in which the expertise can be manifested oxmcticedID, is to intelligently
generate the equivalent of a controlled experiment in which the nediir vari-Eous target pieces of
knowledge is systematically varied. If the student fails to perform/ms reqizziiring a piece of
knowledge but does perform other items thatdo not require it, the nwinfer E@hat work is needed on
that knowledge. Further, we ask only about pieces of knowledge thire in t=he part of the curriculum
through which we are steering. Finally, rather than make statistiuldecisiomns about whether a piece
of knowledge is present or absent, we assume that knowledge can hyresent ==at various strength levels
and use experience about the reliability with which a particular piesof knowevledge manifests itself to
specify the level of learning of that knowledge.

Summary. Perhaps the best way to illustrate the ideas just prunted is = to refer back to the
example given above. Figure 3 elaborates the knowledge categoriesipart, = for our system to teach
and test basic electricity principles. The curriculum knowledge in<lies thre-=e sets of goals: laws,
concepts and architectures. Under each of these are subgoals. Formnple, t2=he architectures being
considered are series and parallel circuits (i.e., no bridge circuits), Teplann-ming knowledge includes
two sets of planning concerns: the arithmetic difficulty of problemslit are pmoresented to the student
and the circuit complexity. Both apply with respect to a variety of anisular =subgoals. For example,

circuit complexity may affect whether a student can handle parallelicuits, w=whether he can apply
Kirchhoff's current law, ete. Arithmetic difficulty could also affect e subg=oals, especially if
quantitative problems are presented to the student. The treatmentinwledg=—e includes information
on problem formats and feedback to the student.” Finally, the domaliperti==se contains specific
details of expertise in handling electrical networks that are refereruby the curriculum

specification.
Generating Test Items from a Studexliidel

Having described the architecture of the knowledge in a steerigtesting — system, we turn now to
how one uses that knowledge to do assessment driven by a cognitivemdel of = the target capabilities
being taught. We offer as a first approximation an approach that halken tes==ted in prototype form in
an intelligent tutor. It assumes additional knowledge that we haveniyet di==cussed: a student
model, some sort of knowledge structure specifying which subskillsistudermx t is thought to know and
which ones not,

We currently specify the student model by embedding it in theuriculam— goal structure of an
intelligent tutor. For each curricular subgoal, there must be some siloffnotas—tion about the student's
assumed competence relative to that subgoal. In one tutor the first ghor and= his colleagues are
building (Lesgold, Lajoie, et al., 1986), there are only four notationg «inlearnesed, perhaps acquired,
prebably acquired, and reliably strong. These notations relate to an wderlyin.= g cognitive model of
learning derived from John Anderson's (1983) work. The rules curculyused  to change a subskill
notation from one state to another are quite rough, but they are prixjled.

Movement to the probably learned state implies that a correct miuction__, or set of productions, is
assumed to have been developed by the student. The perkaps state Jilutes teat the student has been
observed to perform the target skill component, but that there is insiltient es=idence to conclude that
he knows the conditions as well as the actions for the subskill. The zilops stasate is unstable. Either
further correct performances will occur, prompting classification to thprobaba=Zy state, or we will
assume that the single correct performance observed was accidentalitive tme the problem ecology for
the curriculum, and the student will be moved back to the unlearnediite. Reemcurrent reliable
performance will move a student from probably to strong. One can imgne otlmer approaches in which
the notations might include indicators of misconceptions as well. TEemportarmnt point is that if we
look in on a student who is in the midst of learning a skill, some of thybskill= will be clearly
demonstrated already, some will be manifesting obvious problems, s will base unlearned, and some
will be in an unknewn status.

If we consider how to diagnose student progress in a holistic prafie enviesronment givena

current student model state, we see that a first issue to be addressed liwhat to #—test. In principle, the
student could have learned anything since we last tested him or her. lrthat menatter, any prior

9
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demonstration of competencenight have been a fluke, _ soall pomsitive entries in the student model are
tentative. Nonetheless, it woulimake no use of the sti—admt me>del at all if we merely tested for every
skill coraponent at every oppottunity. The student mocxdelenabEd es testing for selected skill components
efficiefitly-and in realistic perfirmance contexts. It ist.=he quiv==alent for steering testing of the
patient's chart for medical diagusis.

We want to use the studentmodel to generate con=-stnints on the problems we pose to the student
as test items. These constrainlsshould have the propec="tythat =hey make the items maximally
informative in tuning the studnt model to changes int®Ehestude=nt's capabilities. What can guide our
choices of curricular goals to ! There are several po==sshilitie=ss. We discuss them in terms of the
four-level model of acquisitionmentioned above (I nlecserned, Pee=rhaps learned, Probably learned, and
Strong). The Perhaps stage miybe the most volatile. SSujpose == curricular goal to be the attainment
of a specific production (carryinout a particular actiom— when a=—ppropriate). When the action is
initially performed and is succssful, there is a consider=—able cha=ance that the student may not notice
the most important cues aboutth circumstance of the mewoment__ So, he/she may be unable to
demonstrate the production inother circumstances. Forex oll prammctical purposes, it was never really
learned atall. Till we have sevnl demonstrations of tBBhesitair—ment of a curricular goal, we must
agsume that our assessmentofthe student is unstable. One we= see multiple suecessful performances,
we will reclassify the student'sumpetence to the Probr==4lyleveEd. So, a first principle in selecting
current curricular goals to testisto be sure to check upe=ongals  in the Perhaps state.

A second issue has to do vithprerequisite skills. [==FShllA depends upon Skill B, then there is no
point in regularly testing for Autil B is demonstrated. . Pitanc>ther way, if there is ordering
information about the curriculirgoals, we may want t0  cocenta=rate testing on the region in the
ordering between the goals in thStrong state and thosese= inthe T /nlearned state, testing most often the
Perhaps goals, checking for progss on the next few L/n_= Zeirned =goals, and checking occasionally to see
if any goals have gone from Prolibly to Strong (operatieonilly, w—e check to see if problems requiring
this subgoal’s skills are answertcorrectly for several compnsicuti——ve occasions with varying
requirements).

The next issue involves meticurricular concerns, e==spiciall==s those relating to extraneous sources
of difficulty, such as requiring umplicated arithmetic Jemerfirmaewnace, presenting information in a
medium known to be difficult forthe student, etc. The be=asicrule= of thumb we propose is to adapt these
difficulty variables to the curreitstudent model level. F="orexammem ple, if the goal is to detect a
movement from Unlearned to Prhaps for some curriculs=ar goal, t=hen we want to set the metacurricular
difficulty levels low, so that thelitial weak acquisition. ofthat s=ubgoal’s knowledge is not masked by
too many other demands for prussing capacity. For mavement  from Perhaps to Probably, an
appropriate problem constrainiisio have some situationealthane=ses from the problem in which the
initial appearance of the relevarknowledge was first ncote, sine=e the theoretical motivation for the
distinction is the possibility of thecorrect actions havinge hen lirked to imprecise conditions, For
validating movement to Strongmsome goal, there shoul_ldbea desemonstration of the relevant
capability under more difficultdrumstances, since the omcyuestions=e is whether the relevant knowledge is
robust enough to occur even undiradverse conditions.



lesgoid & e—=vill, March 4, 1987 8

The Commcept of Constraint Posting

The== basic approach is to begin each cycle of diagnosis by sweeping through the curricular goal
sructure=s, noting which subskills are "ripe" for testing. When the sweep is completed, we try to build
me or meore problems that maximize our chances for accurately noting changes in the student's
urrent l=—nowledge state, using some of the rules of thumb just described. We then use performance on
these mams=cle-to-order problems to decide how to update the student model -- we make a diagnosis.

Crit=ical to the approach is the concept of censtraint posting (Stefik, 1980). -Rather than building
kst item==s as we sweep through the curricular goal structure, we instead simply add to a list of item
unstrairmmts as we proceed. Each time we see an issue on which we would like more clarity, we post
that concam=ern as a constraint on the test item generation process. When the sweep through the
wrriculu—=in is complete, we take the bundle of constraints and try to build items that satisfy them.
Stefik (15280) has shown that in many complex problem solving tasks involving multiple sources of
umplexi®iy and interactions between problem aspects (e.g., designing recombinant DNA experiments),
lhis const—raint posting approach is much more efficient than piecemeal search processes.

(onstrai—=nt Posting Applied to Problem Generation

The item generation process, then, can work as follows. We first consider the student model.
%me of tEEne subskills may be marked as reliably strong. These represent beachheads in the conquest
ffignorar=ace. From these beachheads, as we venture out toward related subskills, we find some whose
fatus is ==ancertain (subskills that may or may not have been acquired yet and aequired subskills that
ngy or m==y not be reliable yet). We can make this search process more efficient if we know, for some
wbgoals, - which other subgoals are prerequisite to them and which they are prerequisite for. A
ubgoal fommr which a just attained subgoal is prerequisite is likely to be a testing target, but we will also
five some— weight to all subgoals, using the rules of thumb discussed above. Since we are making
irering d¥ecisions, we focus on the area of the curriculum that is currently the object of instruction.
fr each ==ubgoal that is a current target of testing, at least one constraint is posted: a test problem
nust add——ess that subgoal. For example, if we want to find out whether the student's capabilities in
yplying COhm's Law to series circuits have improved, we post constraints that the problem must
rquire OF¥hm's Law and must involve a series circuit.

We nemnust also consider metacurricular planning issues. For example, a part of the system's
lanning ——omponent may address the question of whether or not a physics student has adequate math
lility, or— whether or not a student is able to learn information from graphical presentations.

binstrain=ts can be posted based on metacurricular aspects of the student model, too. We may,
uentiallsms, say to the test generator, “Since this student is poor in arithmetie, [ can't find out if he has
lurned (m—oved from unlearned to perhaps) how to use Ohm's Law to compute the current in a eireuit if
learithr=maetic comes out messy, so make the numbers come out simple.” '
Once—- the sweep through the curricular and planning structures is complete, the posted
mstraint== must be analyzed before test items are generated. Are there too many to handle at once? If
n,we mig=ht partition them into several clusters. Are the constraints inconsistent, in the sense thata
mblem e—mbodying some of them cannot, in principle, embody the others? For example, if we
mstrain ==an electricity problem to be simple and we want to know both whether a student knows how
hdeal wit=Ih two resistors in series and also whether he knows how to deal with two in parallel, this
unot all #be done with one circuit problem. So, again, we might partition the constraints into bundles
flat can commrnfortably be handled.

Final 1y, one or more holistic problems that satisfy the constraints posted must be posed. From
Eerf@rmaﬂge on a problem, either a diagnosis can be made immediately or a more focused problem can
tspecifiec= for further testing. In essence, we are dealing witha qualitative process that has many of
e propert=Eies of one of psychometrics' most important quantitative processes -- adaptive testing,
hExame—ole from a Tutor for Basic Electricity Principles

To I3 ustrate some of these ideas, we describe MHO, a tutor that teaches basic electrical
pinciples C”current, voltage, and resistance; Kirchhoff's Laws and Ohm's Law). MHO is designed to
wrk in botE=h a problem-posing and an exploration mode. In the exploratory mode, the student can
mke measssurements on circuits and even build his own circuit. In the didactic mode, though, MHO
nst decidesmes what problem to present to the student. Thus, it faces the same problem that a testing
ingram wespuld face: to examine the student model and determine which problem to pose to optimize
feinforme=ation value of the student's answer.
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MHO's student model is a specialized form of checilist: a goal structure for teaching the specific
knowledge it wants to teach. The check!list derives from the curriculum and planning issues shown in
Figure 3 above. For each subgoal, the student is marked as being in one of the four states described
above, as shown in Table 1. Quantitative scores could be entered as well. Whatis critical is that some
student knowledge levels are considered to indicate potential for change while others are not. For
example, a student who knows certain material is not likely to suddenly stop knowing it, but & student
who has yet to learn some material is in a more changeable state. '

From the subgoal scores and other knowledge, such as curricular sequencing and prerequisite
relationships, it is possible to define a set of subgoals that are most unstable. These are the subgoeals
that may require more frequent measurement in order for instruction to be steered well. Asdiscussed
above, they represent the front along which instruction is progressing through the curriculum goal
structure. The task of a test item generator, then, is to generate a test item that will be especially
informative about this front. MHO does this by posting a set of constraints for the test problem. In the
student model given above, the Series, Kirchhoff's Law, and Current subgoels are at this front. Each
constraint helps adapt the steering feedback to the student’s current state. To see how this is done, we
need to consider MHO's architecture and the subject matter that it teaches and tests.

Architecture

At this time, MHO teaches and tests several levels of DC circuits. It poses problems such as the
one shown in Figure 4, We call the architecture used in MHO the Bite-Size Architecture. Itis an
object-oriented architecture for intelligerit tutoring systems.3 An object is a semiautonomous piece of
computer program that can be called upon to achieve particular goals. It includes both data structures
and procedural capabilities. Object-oriented programming involves designing sets of objects that can
efficiently interact to solve problems. Each curriculum subgoal (and also each metacurricular
planning issue and eacl' problem format) is represented by an object called a "bite.” Within the
computer program, a bite contains a record of the student's performance on a subgoal and the
knowledge needed to post a constraint for that subgoal.

Voltage, for example, is represented by a bite in MHO. That bite has rules for teaching about

voltage. It contains information pertinent to developing an understanding of what voltage represents,

including the constraints it should post to create relevant problems. Also, it can update the student
model information by noting how the student does on problems relevant to its subgoal. One byproduct
of this architecture and the curricular model on which it is based is that a tutoring program's
knowledge is modular and can easily be expanded by adding additional curricular objects along with
their pointers to the other knowledge components (which may involve additions to those components
as well). For example, MHO's designers are now expanding it to include curricular goals involving
simple alternating current circuits.

Problem Generation

MHO poses problems by presenting a circuit diagram and asking a question about it. The
machinery used in problem generation chooses most of the circuit components randomly, but itis
constrained by both general and specific curricular subgoals (bites) which the student has not yet

mastered. Some of the choices represented by these constraints are the following:
a. A problem can be posed in qualitative, quantitative or relative form.

b. The problem can vary in the complexity of the arithmetic it requires and the complexity of
the circuit diagram to which it refers. This is determined by a global assessment of how much of the
curriculum the student has mastered.

¢. The problem can require knowledge of Ohm's Law or either of Kirchhoff's Laws.
d. The problem can focus on voltage, current or resistance.

e. The problem can focus on series or parallel circuit topologies. (MHO also worries about
where the meters are placed in circuit diagrams, since there are some placements that students have
particular difficulty handling, but we ignore that matter to make presentation of the basie approach
more straightforward).

. The product of constraint posting is stored as a list structure (see Footnote 3) to be used as the
basis for problem generation and problem solving. This list structure contain$ information that
specifies how to create a circuit and a problem based on that circuit, what the circuit should look like,
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and what electronic concepts are relevant. Anexample of such a list, derived from the student model
shown in Table 1) is:

[1] ((((Rel Simple) ($ Kirchhoff)) ($ I =Series)) (UninterruptedS)) Series).

This list represents the constraints that have been posted in sweeping the model shown in Table
1 and is the starting point for automatic generation of a problem. Rel stands for a Relative problem
that will pose a simple question asking if two areas of the circuit will have the same measurement (in
this case, current). Simple specifies the student's level of general understanding and will cause the
circuit to be very simple in structure. Kirchhoff is the law this problem centers around. [ =Series is a
specialization of Kirchhoff's law, that current is equal at all points in a series array. UninterruptedS
informs the problem generator that one meter should appear next to another with no other
components between them (this is the simplest form for a problem looking at Kirchhoff's Law).
Constrained by this information, the problem generator can develop many different circuits and pose
many different problems about them, so it is quite plausible to do as muck steering testing as any
student requires and also to give students sets of appropriate problems as homework.

At the next, more elaborated, level of representation the circuit is designated as a network of
resistors, a combination of series and parallel subnets with a power source. A more detailed list breaks
this circuit into four nodes, each of which represents a side of a rectangular circuit. The nodes are
created separately and then put together to make up a circuit. One at a time, the nodes are passed into
a recursive function called MakeCircuitString to be elaborated further. MakeCircuitString makes
decisions such as how many resistors are placed en a node, and whether these resistors should appear
in a parallel or series net. These decisions are based on the information from the first list.

Simple instructs MakeCircuitString to limit the number of resistors that appear and to
otherwise make the circuit conform to the specifications of a simple circuit. The Simple specifications
keep the coriiponents that will be drawn to a minimum. Simple also informs MakeCircuitString that
depending on what net we are working with a!l nodes should be of this kind. I =Series specifies the
net to be used: all sides are series arrays. If this were a Difficult problem, some sides might have

parallel subnets and others series. An example of a simple cireuit, [1], that has passed through
MakeCircuitString is

[2] ((VoltageSource) (Series (Resistor) (Resistor)) (Parallel (Resistor) (Resistor)) (Wire)).
Figure 5 below shows the circuit designated by [2].

The final specifications development step is determining what problem should be posed about the
circuit, where meters should be placed and what question should be asked about them. This step
requires some information from the first list, e.g. [1]. I =Series reveals whether current or voltage is
the target concept, while UninterruptedS holds information pertaining to how many problems and
where problems should appear. Several recursive functions tear apart the second list and insert
problem information (mainly meters) where it is best suited. Using the above example and placing
several meters into the list, one example of the next stage is

[31((Problem Rel current after on (VoltageSource)) (Series (Resistor) (Problem Rel current before
off (Resistor)) (Parallel (Problem Rel current after on (Resistor) (Resistor)) (Wire)).

_ Thislist is then passed to an intelligent problem developer, which composes and draws the
circuit. Figure 6 below shows a display corresponding to [3]. The question posed to the student will
end up being, "Ts the current at Meter A higher, lower, or the same as the current at Meter B2"

The Simulator assigns values to the components, i.e. resistance and voltage, and then finds the:
dependent values, i.e. current, voltage drops over resistors, ete. It can, for simple problems, ensure
that all the values for current and voltage will be integral, and also can determine whether or not
resistors and voltage sources should be displayed. If the circuit were more complex, an iterative
propagation would occur next. Resistance for a subnet of a complex circuit, for example, would be
calculated by asking each subnet component its resistance and then adding them together. Parallel
structures are handled recursively as well, using the appropriate formulae.

The Softness of Student Classifications

We conclude by reconsidering more broadly the issue of diagnostic assessment of cognitive skills
to steer instruction. Fundamentally, cognitive skill, like physical skill, often requires substantial

i3



Q

ERIC

Aruitoxt provided by Eic:

Lesgold & lvill, March 4, 1987 i1

practice of its basic components in the contexts in which they are to be applied. Actions can be learned
without learning the exact conditions for which they are appropriate. Newly learned, and
consequently weak, knowledge can fail to be used because stronger but incorrect knowledge is
overgeneralized from related situations. Processing capacity demands due to one subskill may be so
great as to make the execution of another, newly formed subskill impossible. This means that for most
of the course of learning, a fundamental principle is true:

One cannot be sure a subskill has not been learned just because it
was not demonstrated on an occasion where it should have been.

On the other hand, cognitive skill, like physical skill, is partly redundant. Weak methods can
sometimes overcome the lack of appropriate domain knowledge. Sometimes, a problem that in theory
should require a particular subskill is solved correctly by accident. The correct action may be taken
with incorrect knowledge of the conditions under which it is appropriate, or an incorrect action may
turn out to be "safe” this time only. This leads to a second fundamental principle.

7 One cannot be sure a subskill is completely learned just because it
has been demonstrated.

These two principles suggest that the steering approach to diagnostic testing, in which local
microtesting is embedded in the curriculum to steer instruction, is a more valid approach than the
broader diagnostic testing that has become part of many current meonitoring programs in our schools.
By asking broad, generic questions (e.g., "What can I diagnose knowing ncthing about the student in
advance and giving only a general test?") we can get only broad, generic answers. Thatis, we can
know how well, in general, learning is proceeding, but we can't steer specific children's education with
such broad indicators, any more than we could steer a ship if all we had was an hourly accourt of how
close to the correct path we were.

Empirical experience and cognitive theory tell us that an inherent property of cognitive
performance is that it is unreliable unless substantial practice has occurred and that success can come
for muliiple reasons. These factors have to be taken into account in diagnosis. Ironically, perhaps, the
less reliable steering testing approach provides better steering capability than the highly refined
approaches used in current psychometric efforts at diagnosis. But this is no different than the irony
that continuously knowing approximately where you are affords better steering capability than
occasionaily knowing how well you are steering, in general.

The field of testing has worked to try to become efficient at making precise estimates from
inherently unreliable data, and it has dore very well at this. Approaches such as item-response theory
and adaptive testing have allowed the broad and vague measures that tests provide to be made ever
more efficiently. Further progress, and especially progress in steering testing (as opposed to
certification: and selection testing) will depend on better use of information we already have, or can
readily get, about the cognitive requirements of the performances and student competences relative to
those performances that interest us. Like the physician, we will, in steering the course of a child's
education, be better guided by sketchy data tied to specific theoretical analysis than by precise, but

general, indicators.

Our approach can be contrasted to the steering forms used in the curricula that grew from Bob
Glaser's work on individualized instruction. There, the steering idea was also used. However, the
technology of the time did not permit more than a short, uniform mastery test after each lesson. This
allowed adequate teaching of the higher-aptitude student but did not handle the remediation problem
discussed above. That is, it suffered from having to treat each curricular goal and its corresponding
student capability as separable from every other, ard it could not handle the problem of core learning
without fringe transfer. There was much discussion during the period of that curriculum development
about having remediation that was more than just doing the same thing again. The present approach
to steering testing, which permits adaptation grounded i cognitive analysis of the instruetional
domain, rests on the goal structure for educational research established during the period of work by
Bob Glaser and his colleagues on individually-prescribed instruction.
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2This issue is addressed more completely in Lesgold (in press).

3See Bonar, Cunningham and Schultz, 1988, for a description of An Object-Oriented Architecture
for Intelligent Tutoring Systems. MHO is implemented in Loops, Xerox's proprietary object-oriented
specialization of the standard artificial intelligence language Lisp. The graphics and student interface
are handled via an interface package called Chips. Chips is a program developed at the Learning
Research and Development Center, primarily by John D. Corbett and Robert E. Cunningham, with
some contribution by Andrew D. Bowen. The Chips tools allow circuit displays to be designed so the
student can click the mouse (a mouse is a pointing device that causes a marker to move on the screen
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Figure 1. Types of Knowledge Needed in Teaching and Testing

o — Instruction and

N“Tz?r,'fal Test Planning

Difficulty Knowledge

Circuit o =
Complexity
—_— . Treatment Khowledge

Curriculum ™, Laws L - ) )
Knowledge Architactures Problem

Concepts

Expert Procedures
and their
Expected Results

Formats

Domain Expertise




E

O

RIC

Aruitoxt provided by Eic:

Lesgold & Ivill, March 4, 1987

14

) Fragment of
Curriculum Goal Structure

Fragment of B '\
Domain Expertise s s
3

: :
Knowledgs

of B

17



O

ERIC

Aruitoxt provided by Eic:

Lesgoid & lvill, March 4, 1987

Figure 3. Examples of Different Knowledges Needed for Steering Testing.
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Figure 5. Circuit described by Eq. 2.
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Metacurricular Issues
Numerical Difficulty simple vs. Difficult
Circuit Complexity Simple vs. complex
Curricular Subgoals Current Student State
Laws
Ohm's Unlearned
Kirchhoff's Perhaps
Architecture
Series Perhaps
Parallel Unlearned
Concepts
Current Perhaps
Resistance Unlearned
Voltage Unlearned
Treatment Issues
Problem Formats
Qualitative
Quantitative
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Figure 6. Circuit described by Eq. 3.
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Stanford University
Stariford, CA 94306

Dr. Robert Breaux

Code N-095R

Naval Training 3ystems Center
Orlando, FL 32813

Commanding Officer
CAPT Lorin W. Brown
NROTC Unit
IT11inois Institute of Technology
3300 5. Federal Street
Chicago, IL 60616-3733

Dr. John 5. Brown

XEROX Palo Alto Raesearch
Center

3333 Coyote Road

Palo Alto, CA 94304

Maj. Hugh Burns
AFHRL/IDE
Lowry AFB, €0 B80230-5000

Dr. Jaime Carbonell
Carnegie-Mallon University
Department of Psychology
Pittsburgh, PA 15213

Dr. Pat Carpenter
Carnagie-Mallon University
Department of Psychology
Pittsburgh, PA 15213

Rebert Carter

ce of the Chief

f Maval Operatiens

oP-01B

Pentagon

Washington, DOC  20350-2000

Chair, Department of
Psychelegy

College of Arts and

Catholic University
America

Washington, OC

Sciences
of

20064

Dr. Michelene Chi
Learning R & D Center
University of Pittsburgh
3839 0'Hara Street
Pittsburgh, PA 15213

Dr. L. J. ¢hmura
Computer Science and Systems
Code: 7590
Information Technology Division
Naval Research Laboratory
Washington, DC 20375
Mr. Raymond E. Christal
AFHRL /MOE
Brooks AFB, TX 78235
Assistant Chief of Staff
for Research, Development,
Test, and Evaluation
Naval Education and
Training Command (N=5)
NAS Pensacola, FL 32508

Dr. Allan M. Collins

Bolt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02138

Dr. Stanlay Collyer
Gffice of Naval Technology
Code 222

800 N. Quincy Straet
Arlingten, VA 22217-5000

Brian Daliman
3400 TTW/TTGXS

Lowry AFB, CO 80230-5000
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Or. Diane Damos
Arizona State University
Department of Psychology
Tempa, AZ 85287

Dr, Denise Dellarosa
Department of Psychology
Yale University

Box 11A, Yale Station
Nu= Haven, CT 06520

bDr. R. K. Dismukes

Associate Director for Life Scieances
AFOSR

Bolling AFB

Washington, DC 20332

Dr. Stephanie Doan

Code 6021

Naval Air Davelopment Center
Warminster, PA 18974-5000

Dr. Emanusal Oonchin
University of I1linois
Department of Psychology
Champaign, IL 61820

tefense Technical
Information Center

Camerfon Station. Bldg 5

Alaxandria, VA 22314

Attn: TC

(12 Copies)

Dr. Susan Embretson

University of Kansas

Psychology Department

426 Fraser

Lawrence, K5 66045

Dr. Randy Engle

Department of Psychology
University of South Carolina
Columbia, SC 29208

Dr. William Epstein
Univarsity of Wisconsin

W. J. Brogden Psychology Bldg.
1202 W. Johnson Street
Madisen, WI 53706

ERIC Facility-Acquisitions

4833 Rugby Avenus
Bethesda, MD 20014

Dr. K. Anders Erieszson
University of Colorado
Department of Psychology
Boulder, CO 80309

Dr. Martha Farah
Department of Psychology
Carnegie-Mellon University
Scheénley Park

Pittsburgh, PA 15213

Or. Beatrice J. Farr
Army Research Institute
5001 Eisenhowar Avenue

Dr. Marshall J. Farr
Farr-Sight Co.
2520 North Vernon Street

Arlington, VA 22207

Dr. Paul Feltovich
Southern I1linois University
School of Madicine

Medical Education Departmant
P.0. Box 3926

Springfield, IL 62703

bOr. Craig I. Fields
ARPA

1400 Wilson Bivd.
Arlington, VA 22209

J. D. Flatcher
9931 Corsica 5traeet
Vianna VA 22180

Or. Kenneth D. Forbus
Univarsity of I1linois
Department of Computer Science
1304 West Springfield Avenue
Urbana, IL 61801

Dr. John R. Fraderiksen
Bolt Beranak & Newman
50 Moulton Street
Cambridge, MA 02138
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Dr. Alfred R. Fregly
AFOSR/NL
Belling AFB, DC 20332

Dr. Michael Friendly
Psychology Department
York University
Toronto ONT

CANADA  M3J 1P3

Julie A. Gadsden
Information Technology

Applications Divisioen
Admiralty Research Establishmant
Portsdown, Paortsmouth PO6 4AA
UNITED KINGDOM

Dr. Michael Genesereth
Stanford University
Computer Science Department
Stanford, CA 94305

Or. Dedre Gentner
University of I1linois
Dapartment of Psychology
603 E. Daniel St.
Champaign, IL 61820

Dr, Lae Giles

AFOSR

Balling AFB
Washington, DC 20332

Dr. Robert Glaser
Learning Research

& Davelopmant Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15260

Dr. Marvin D. Glock
13 Stone Hall
Cornall Univarsity
Ithaca, NY 14853

Or. Sam Glucksberg
Department of Psychology
Princeton University
Princeton, NJ 08540

Dr. Daniel Gopher

Indystrial Engineering
& Management

TECHNION

Haifa 32000

ISRAEL

Dr. Sherrie Gott
AFHRL/MODJ
Brooks AFEB, TX 78235

Dr. T. Govindaraj

Georgia Institute of Technology

School of Industrial & Systems
Engineering

Atlanta, GA 30332

Br. Richard H. Granger
Departmant of Computer Sciance
University of California, Irvine
Irvine, CA 92717

Dr. James G. Greeno
University of California
Berkeley. CA 94720

Or. Henry M. Halff
Halff Rasources, Inec.
4918 33rd Road, Nerth
Arlington, VA 22207

Dr. Bruce Hamill

The Johns Hopkins University
Applied Physics Laboratory
Laurel, MD 20707

Dr. John M. Hamner
Centar for Man-Machine
Systems Research
Georgia Instituta of Technology
Atlanta, GA 30332

r. Ray Hannapel

ientific and Enginsering
Personnal and Education

National Science Foundation

Washington, DC 20550

]

Dr. Hareld Hawkins
Office of Naval Research
Code 1i42CS

800 N. Quincy Street
Arlington, VA 22217-5000
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Dr. Barbara Hayes-Roth
Department of Computar Science
Stanford University

Stanford, CA 95305

Dr. Fredarick Hayes-Roth
Teknowledge

525 University Ave.

Palo ATto, CA 94301

Dr. Joan I. Heller
505 Haddon Road
Oakland, CA 948606

Or. Geoffrey Hinten
Carnegie-Mellen University
Computer Science Department
Pittsburgh, PA 15213

Dr. James D. Hellan
MCC,

Human Interface Program
3500 West Balcones Center Dr.
Austin, TX 78758

Dr. John Holland

University of Michigan
2313 East Engineering
Ann Arber, MI 48109

Dr. Melissa Holland

Army Research Institute for the
Bahavioral and Social Sciences

5001 Eisenhower Avenus

Alexandria, VA 22333

Dr. Robert W. Helt
Department of Psycholagy
George Mason University
4400 University Drive
Fairfax, VA 22030

Ms. Julia S. Hough

Lawrence Erlbaum Asseciates
6012 Greane Street
Philadelphia, PA 19144

Dr. James Howard

Dapti of Psychology

Human Performance Laberator ry

Catholic University of
America

Washington, DC 20064

Dr. Earl Hunt

Department of Psychology
University of Washington
Seattle, WA 98105

Or. Ed Hutchins
Intelligent Systems Group
Inst1tute far

La Jolla, CA 92093

Dr. Janet Jackson
Rijksuniversiteit Groningen
Biologisch Centrum, Vieugel D
Kerklaan 30, 9751 NN Haren (Gn.)
NETHERLANDS

Dr. R. J. K. Jac
Computer Scienc
Code: 7530
Information Technelogy Divis
Naval Research Laboratory
Washington, DC 20375

nd Systems

Dr. Zachary Jacobson

Bureau of Management Consulting
365 Laurier Avenue Wast

Ottawa, Ontario K1A 0S5

CANADA

Pharm.~-Chim, en Chef Jean Jaeg
Division de Psychologie
Centre de Recherches di
Service de Sante des Armees
108 Boulavard Pinel
69272 Lynn Cedax 03, FRANCE
Dr. Robert Jan
Department of Psyc
Univarsity of Sout
Columbia, SC 29208

M
ive FSTtE' du Quebez a Montreal
(v} E ox 8883, 5t. "A"
Queha; HiC 3P8



7777 : 10-Mar-37 09:27:48

Page &

1987/03/09

Distribution List [Pittsburgh/Lesgold] NR 4422539

COL Dennis W. Jarvi
Commander

AFHRL

Brooks AFB, TX 78235-5601

Dr. Robin Jaffries
Hewlett-Packard Laboratories
P.0. Box 10490

Palo Alto, CA 94303-0971

Dr., Douglas H. Jones
Thatecher Jones Associates
P.0. Box 6640

i0 Trafalgar Court
Lawrenceville, NJ 08848

Or. Marcel Just
Carnaegie-Mellon University
Department of Psychology
Schanley Park

Pittsburgh, PA 15213

Dr. Daniel Kahneman
Department of Psychology
University of California
Berkalay, CA 94720

Dr. Miiton 3. Katz

Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr, Staven W, Keele
Department of Psychology
University of Oregon
Eugena, OR 97403

Dr. Wendy Kellogg

IBM T, J. Watson Research Ctr.
P.0. Box 218

Yorktown Heights, NY 10598

Dr. David Kieras

University of Michigan
Technical Communicatien
College of Engineering

1223 E. Engineering Building
Ann Arbor, MI 48109

Or. Walter Kintsch
Department of Psychology
University of Colorado
Campus Box 345

Boulder, CO 80302

Dr. David Klahr
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Mr. Al Kledder
Army Research Office
P.0. Bex 12211

Park
Nerth Carolina 27708-2211

Dr. Ronald Knell
Bell Laboratories
Murray Hill, NJ 17974

Dr. Stephan Kosslyn
Harvard University
1236 Willdiam James Hall
33 Kirkland St.
Cambridge. MA 02138

Dr. Kenneth Kotovsky

Department of Psychology

Community College of
Allegheny County

800 Allegheny Avenue

Pittsburgh, PA 15233

Dr. David H, Krantz

2 Washington Square Village
Apt. # 15]

New York, NY 10012

Dr. Patrick Kyllonen

325 Aderhold

Departmert of Educational
Psychology

University of Georgia

Athens, GA 30602

Dr. David R, Lambert

Naval Ocean Systems Center
Code 441T

271 Catalina Boulevard

San Diego, CA 92152-6300

ERIC

Aruitoxt provided by Eic:



ERI

Aruitoxt provided by Eic:

{DSK}<LISPFILES>DRIB0O310A. ;2

10-Mar-87 09:27:48

/

o]
1]

1987/

[w]
L]

Distribution List [Pittsburgh/Lesgold] NR 4422539

Dr. Ji11 Larkin
Carnegie-Mallon University
Department of Psychology

. R. W. Lawler

I 65810

01 Eisanhowar Avenua
exandria, VA 22333-5600

r
R
0
1

S om0

r. Alan M. Lesgold
Learning Research and
Development Centar

University of Pittsburgh
Pittsburgh, PA 15260
Dr. Alan Leshner
Deputy Division Directer
Behavioral and Neural Sciences
National Science Foundation
1800 G Street
Washington, DC 20550

Dr. Jim Levin
Department of

Educational Psychology
210 Education Building
1310 South Sixth Streest
Champaign, IL 61820-6990

Dr. John Levine

Learning R&D Center
University of Pittsburgh
Pittsburgh, PA 15260

r. Clayton Lawis

nivarsity of Colorado
epartment of Computer Science
ampus Box 430

oulder, CO  803d9

Dol e N el ]

Matt Lewis

Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213

Library,
Naval War College
Newpart, RI 02940

Library,
Naval Training Systems
Centar

Orlande, FL 32813

Seience and Technology Division,
Library of Congress
Washington, OC 20540

Dr. Janae Malin

Mail Code SR 111

NASA Johnson Space Center
Houston, TX 77058

Dr. Sandra P, Marshall
Dept. of Psychology

San Diego State University
San Diego, CA 92182

Or. Humberto Maturana
University of Chile

Dr. Richard E. Mayer

Department of Psychology
University of California
Santa Barbara, CA 93106

Dr. James McBride

Psychological Corporation

c/0 Harcourt, Brace,
Javanovich Inc.

250 Wast 6th Street

an Diego, CA 952101

L

r. James L. McGaugh
center for the Neurobiolagy

of Learning and Memory
Univarsity of Califernia, Irvine
Irvine, CA 92717

[p =]

Dr. Gail McKoaon
CAS/Psychology
Northwestern University
1859 Sheridan Road
Kresge #230

Evanston, IL 60201

Dr. Joe Mclachlan
Navy Parsennel R&D Center
San Diego, CA 92152-6800
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Dr. James S. McMichael

Navy Personnel Research
and Development Center

Code 05

San Diego. CA 92152

Dr. Barbara Means
Human Resourcas

Research Organization
1100 South Washington
Alaexandria, VA 22314

Dr. Douglas L. Madin
Dapartment of Psychology
University of I1linois
603 E. Daniel Straet
Champaign, IL 61820

Dr. George A, Millar
Department of Psycholagy
Grean Hall

Princeton University
Princeton, NJ 08540

Dr. Andrew R. Molnar

Scientific and Engineering
Parsonnal and Education

National Science Foundation

Washington, DC 20550

Dr. William Montague
NPRDC Code 13
San Diego, CA 92152-6800

Dr. Nancy Morris

Search Technology, Inc.
5550-A Peachtree Parkway
Technology Park/Summit
Norcross, GA 30092

Alexandria, VA 22314

br. Allan Munro

Behavioral Taechnolagy
Laboratoriaes - USC

1845 5. Elena Ave., 4th Floor

Redondo Beach, CA 90277

Chair, Department of
Computer Science

U.5, Naval Academy

Annapolis, MD 21402

Chair, Department of
Systems Engineering

U.8. Naval Academy

Annapolis., MD 21402

Technical Diractor,

P.0. Box 85122
San Diego, CA 92138

Or, Allen Newell
Department of Psychology
Carnegie-Mellon University
Schenley Park

Pittsburgh, PA 15213

n

Or. Mary Jo Nisse
innesota
1

University of M
NZ18 E11iott Hal
Minneapolis, MN 55455

Or. A, F. Norcio

Code: 7590
Information Technelogy Division
Naval Research Laboratory
Washington, DC 20375
Dr. Donald A. Norman
Institute for Cognitive

Science C-015
University of California, San Diego
La Jolla, California 92093

Deputy Technical Directer,
NPROC Code 01A
San Diege, CA 92152-6800

Director, Training Laboratory,
NPROC (Code 05)
San Diego, CA 92152-6800

Director, Manpower and Personnal
Laboratory,
NPRDC (Code 06)

San Diego, CA 92152-63800
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San Diegg. CA 92152-6800

'I'!I

eat Support Office,
NPROC (Code 301)
San Diego, CA 92152-6800

San n1aga§ CA 92152-6800

Technical Diractor,

Navy Paersonnel R&D Centar

San Diego, CA 92152-6800

Commanding Officer,
Maval Research Labo

Code 2627

Washington, DC 20390

Dr. Hareld F., O0'Neil, Jr.

School of Education - WPH 801

Department of Educational

Psycholegy & Taechnology
University of Southern Califernia
20089-0031

Los Angeles, CA

De. Michael Obarlin

Naval Training Systems Center

Code 711
Orlando, FL  32813-7100
Dr. 5tellan Ohlsson
Learning R & D Centar
Univarsity of Pittsburgh
3939 0'Hara Street
Pittsburgh, PA 15213
Office of Navai Resaearch,
Code 1142BI
800 N. Quincy Strest
Arlington, VA 22217-5@300

Offica of Naval Research,
Code 1142

800 N. Quincy St.

Arlington, VA 22217-5000

ice
Cﬁdé 1142pS
800 N. Quincy Street
Arlingten, VA 22217-5000

Office of Naval Research,
Code 1142CS

800 N. Quincy Street

Arlington, VA 22217-5000

(6 Copies)

Psychologist,
Office of Naval Research
Branch Office, London
Bex 39
FPO New York, NY 09510

Special Assistant for Marine
Corps Mattars,
ONR Coda 00OMC

800 N. Quincy St.

Arlington, VA 22217-5000

Psychologist.

Office of Naval Research
Liaison Office, Far East
APO San Francisce, CA 96503

Dr. Judith Orasany

Army Research Institutas
5001 Eisenhower Avanue
Alexandria, VA 22333

Dr, Douglas Pearse

DCIEM

Box 2000

Downsview, Ontario
CANADA

Dr. James W. Pellegrino
University of California,

Santa Barbara
Department of Psychology
Santa Barbara, CA 93106

Dr. Virginia E.
Code 711

Naval Training Systems Center
Oriando, FL 32813-7100

Pendergrass
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bOr, Naney Pennington
University of Chicago
Graduate School of Business
1101 E. 58th 5t.
Chicage, IL B0G637
Military Assistant for Training
Parsonnel Technology.
ousD (R & E)
Room 3D129. The Pentagon
Washington, DC 20301-3080

Dr. Steven Pinkar
Department of Psychology
E10-018

M.I.T,

Cambridges, MA 02139

=]
=

Dr. Martha Pols
Department of Psychology
Campus Box 348
University of Colorado
Boulder, CO 80309

r. Patar Polsen
niversity of Colorado
epartment of Psychology
oulder, CO 80309 i

[ R el e |

Dr. Michasl I. Posnar

Department of Neurology

Washington Univarsity
Medical School

St. Louis, MO 63110

Dr. Mary C. Potter
Dgpartment of Psychology
MIT (E-10-032) )
Cambridga, MA 02139

Dr. Paul 5. Rau

Code U-32

Naval Surface Weapons Center
White Oak Laboratory

Silvar Spring, MD 20303

Dr. Lynne Reder
Department of Psychology
Carnagie-Maellon Urivaersity
Schanlay Park

Pittsburgh, PA 15213

Dr. James A, Reggia
University of Maryland
School of Medicine
Department of Neurology
22 South Greene Street
Baltimore, MD 21201

Dr. Wesley [=gian
AFHRL/MOD
Brooks AFB, TX 78235

Dr. Fred Reif

Physics Department
University of California
Berkeley, CA 94720

Dr. Gi1 Ricgard

Mail Stop C04-14
Grumman Aerospace Corp.
Bathpage, NY 11714

Dr. Linda 6. Roberts
Science, Education, and
Transportation Program
Office of Technology Assessment
Congress of the United States
Washington, DC 20510
r. Paul R. Rosenbaum
ducational Testing Servic
rinceton, NJ 08541

3a»5E
L]

I
i
-

11iam B. Rouse
Technology, Inc.
Pgachtree Parkway
lTogy Park/Summit
GA 30092

L2
=0y

= = o
oW N
[ = e )

=
3

Dr. David Rumalhart
Center for Human

Information Processing
Univ, of California )
La Jol1la, CA 92083

Dr. Walter Schneider
Learning R&D Center
Univarsity of Pittsburgh
3938 0'Hara Street
Pittsburgh, PA 15260
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Or, Miriam Schustack

Coda 51

Navy Personnel R & D Center
San Diego, CA 92152-6800

Dr. Marc Sebrachts
Department of Psychology
Wesleyan University
Middletown, CT 06475

Dr. Colleen M. Saifert
Intelligent Systems Group
Institute for

Cognitive Science (C-015)
ucso
La Jolla, CA 32093

Dr. Ben Shneiderman

Dept. of Computer Scieace
University of Marvland
College Park, MO 20742

Dr, Robert 5. Sieglar
Carnegie-Mellon University
Department of Psychology
Schanley Park

Pittsburgh, PA 15213

Dr. Herbert A. Simon
Department of Psychology
Carnegie-Melion University
Scheniey Park

Pittsburgh, PA 15213

LTCOL Robert Simpson
Defense Advanced Research
Projects Administration
1400 Wilson Blvd.
Arlington, VA 22209

Or. H. Wallace Sinaiko
Manpowar Raseaarch

and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alaxandria, VA 22314

Dr. Richard E. Snow
Department of Psychology
Stanford University
Stanford, CA 94306

31

Dr. Richard Sorensen
Navy Perseonnel R&D Center
San Diego, CA 92152-8800

Or. Kathryn T. Spoehr
Brown University
Department of Psychology
Providence, RI 02912

Dr. James J. Staszewski
Research Associate
Carnegie-Mellon University
Department of Psychology
Schenley Park

Pittsburgh, PA 15213

Dr. Robart Starnberg
Department of Psychology
Yale University

Box 11A, vale Station
New Haven, CT 08520

Dr. Kurt Steuck
AFHRL/MOD

Brooks AFB

San Antonio TX 78235

Dr. Paul J. Sticha

Senior Staff Scientist
Training Resasarch Division
HumRRO

1100 5. Washington
Alexandria, VA 22314

Dr. John Tangney
AFOSR/NL
Bolling AFB, DC 20332

Dr. Kikumi Tatsuoka

CERL

252 Engineering Research
Laboratory

Urbana, IL 61801

Dr. Parry W, Thorndyke

FMC Corporation

Central Engineering Labs
1185 Coleman Avenue, Box 580
Santa Clara, CA 95052
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Headquarters, U, §. Marine Corps

Washingten, DC 20380

Dr. William Uttal
NDSE Hawaii Lab
8ox 997

Kailua, HI 96734

Dr. Kurt Van Lahn
Department of Psychology

Carnagie-Mellon University

Schenley Park
Pittsburgh, PA 15213

Dr. Bath Warren

Balt Beranek & Newman, Inc.

50 Moulton Street
Cambridge, MA 02138

Dr. Keith T. Wescourt
FHC Carpnratian

1185 Cﬁ1eman Ava . Enx SEQ

Banta Clara, CA 95052
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vy Personnal RED Center
San Diego, CA 92152-63800

Dr. Barbara White

Bolt Beranek & Newman, Inc.

10 Moulton Street
Cambridge, MA 02238

Dr. Christopher Wickans
Department of Psycholoay
Univarsity of Il1linois
Champaign, IL 61820
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Dr. Heather Wild

Naval Air Develepment
Center

Code 6021

Warminster, PA 18974-5000

Dr. Robert A. Wisher

U.5. Army Institute for the

1987/03/09

Behavioral and Social Sciences

5001 Eisenhowar Avenua
Aleaxandria, VA 22333

Dr. Martin F. Wiskoff

Navy Personnal R & D Center

5an Diego, CA 92152-6800

De. Dan Wolz
AFHRL/MOE
Brooks AFB, TX 78235

]

Dr, Wallace Wulfeck, II
Navy Personnal R&D Cent
San Diego, CA 92152-630

Or. Jo@ Yasatuks

AFHRL/LRT
Lowry AFB, CO 80230

Dr. Joseph L. Young
Memory & Cognitive
Processes

National Science Foundation

Washingten, DC 20550
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