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Several multivariate statistical methodologies have been proposed to
ensure objective and quantitative evaluation of the multitrait-multimethod
matrix. The paper examines the performance of confirmatory factor anal-
ysis and covariance component models. It is shown, both empirically and
formally, that confirmatory factor analysis is not a reliable method for si-
multa:.eous estimation of trait and method tactors. The poor performance
is due to an inherent rotational indeterminacy common to all factor ana-
lytic models of trait and method effects. Covariance component analysis,
on the other hand, shows a more parsimonious parameteriv.tion of gen-
eral, trait, and method variation in the multitrait-multimethod matrix
and is therefore typically unaffected by rotational indeterminacies. The
performance with 23 empirical multitrait-multimethod correlation matri-
ces was also found satisfactory .

qualitative foundations of the multitrait-mul-
timethod approach

Pivotal to the arguments in the paper is the notion that method effects in behav-
ioral research are (a) sizable, (b) undesirable, (c) products of many "potential
influences at several levels of abstraction" (Fiske, 1982, p. 82), and that (d)
"we have only other invalid measures against which to validate our tests; we
have no 'criterion' to check them against" (Campbell, 1969, p. 15). The size
of methods effects in individual measurements ca-tnot be exactly determined
in a platonic sense, but method dependence can be assessed in a crude sense

R.D. Bock, D.W. Fiske, K.G..Threskog, and D. Rindskopf contributed valuable suggestions
and questions.
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when the measurements change with the assessment methods. The question is
how trait validity may be assessed without having to know the txact nature of
method disturbances beforehand.

This paper conceives of traits as constructs relating an unobservable magni-
tude to differences among observable units of measurement. For simplification,
it is assumed that traits and their indicators are linearly related.

In their well-known paper, Campbell &Fiske (1959) proposed the multitrait-
multimethod (MTMM) matrix format as a device to study trait validity across
different assessment methods. The MTMM matrix shows a crossed measure-
ment design based on a simple rationale: Traits (i.e., latent quantitative char-
acteristics of the research units) are universal, equally manifest over a variety of
situations and detectable with a variety of methods. Most importantly, traits
should not change just because different assessment methods are used. Hence,
if there axe m multiple sets of measures of t traits, each utilizing a different
method of assessment, and if the methods indeed produce equivalent measure-
ments, then the resulting covariance matrix takes the form

Er(txt) diag(0(1,1), 0(1,2), I

Er
-F diag(0 _.1

where

E is the mt x mt covariance matrix among all measures,

1 is amxm matrix of unit entries in all its elements,

0 symbolizes the Kxonecker product operator (cf. Bock, 1975),

Er is the covariance matrix among trait measures within each method, and

diag(0(1,1), 0(1,2),...,0(,Th,o) is the diagonal matrix of uncorrelated uniqueness
components of the mt measures.

The model described by Equation (1) is reasonable only if all measurements
are made on the same scale. This is equivalent to the psychometric concept of
r-equivalent measurement (Lord & Novick, 1968). In the behavioral and social
sciences, where very often diverse methods like test scores, behavioral obser-
vations, and one-item ratMgs are compared, such strong scale assumptions are
usually not warranted. Scale information is typically regardnd as arbitrary or
of little interest and, since Spearman's days, the social sciences have had a tra-
dition of analyzing correlation matrices, effectively neglecting information due
to the origMal scale of measurement. For these reasoas, some terminology de-
signed to describe valid measurement in more general terms based on correlation
patterns is preferable to the strict formulation of Equation (1).
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Campbell & Fiske proposed several qualitative criteria to judge convergent
and discriminant validity. These criteria are quite popular and appear to be rig-
orous, but can be shown to be not quite adequate in borderline cases (Wothke,
1984) and, because of thefr complete lack of any stattical basis, need to be re-
placed by quantitative rules (see, e.g.: Althauser, 1974; Althauser & Heberlein,
1970; Althauser, Heberlein & Scott, 1971).

confirmatory factor analysis (Jöreskog, 1966, 1977) and covariance compo-
nent analysis (Bock, 1960; Bock & Bergmann, 1966; Wiley, Schmidt & Bramble,
1973) are two quantitative approaches with potential application to multitrait-
multimethod analysis. Both models are realations of the multivariate linear
model and are embedded in an abundance of statistical theory. Otherwise, they
are structurally distinct and derive from different stattical traditions: Confir-
matory factor analysis is rooted in the psychometric tradition of validity theory,
as outlined by Lord & Novick (1968); covariance component analysis is a mul-
tivariate generalization of random effects analysis of variance, based on R.A.
Fher's work.

2 Confirmatory Factor Analysis of the Multi-
tralt-Multimetho d Matrix

Confirmatory factor analysis (CFA) of the MTMM matrix was first proposed
by Jfireskog (1966, 1977). Employing essentially the same maximum-likelihood
estimation techniques as Law ley's (1940) exploratory factor analysis, confirma-
tory factor analysis is commonly characterized by additional equality restrictions
imposed on estimated factor loadbags, factor variances and covariances, and fn
unique components of the measured variables. A computer program for CFA
is available in LISREL-6 (JOreskog & Sarbom, 1986). Assuming multivariate
normality of factor space end measurement errors, maximum-likelihood X2 tests
among nested models can be performed. In cases of non-normality, the more
recent work by Browne (198413) seems promising, using a weighted least-squares
estimation approach.

Factor analysis decomposes the n x p data matrix X of p of measures on ri
units uito an n x k matrix E of a lesser number k of latent factors:

(2)

where A is the p x k matrix of partial regression coefficients of observedmeasures
regressed onto the latent factors and E is the matrix of unique, uncorrelated
components. Expressing the population covariance matrices of X as E., of E" as
cr), and of E as 0, respectively, Equation 2 implies the covariance representation

E. = AOA + 0. 3)

Over the years, different types of confirmatory factor models have been pro-
posed for the multitrait-rnultimethod matrix. They can be characterized by



how many latent factors are modeled; whether these factors are thought to de-
scribe trait variance, method variance, or both; and whether the correlation
structuxe among these methods is free or restricted, Occasionally, models with
correlated uniqueness coefficients were abo applied (e.g., Stacy et al., 1985), but
the present paper retains the classic factor analytic notion that unique compo-
nents are uncorrelated. With this one restriction, all CFA models of the MTMM
matrix may be described by particular restriction patterns imposed on the A
and C. matrices.

2.1 Trait-only factor analysis
The simplest factor analytic models require that all common variation among
measures is due to the latent trait factors and that no covariation is due to
the assessment methods. Different traits may be correlated. Such a trait-
only model, which specifies that each measure assesses exactly one trait factor
Jfireskog, 1971, 1978; Schmitt, 1978; Werts, J8reskog, & Linn, 1972; Werts &

Linn, 1970) shows the properties of congeneric measurement. When measures
are ordered by traits within measures, the factor loading matrix for a 3 x 3
MTMM design takes the form

t Ai,ri 0 0 \
0 ,X3,r2 0
0 0 A3.T3

)44tri 0 0
A, = 0

0
Ag,,
0

0

0 0
0 Ag,,, 0

,.. 0 0 A9,3

and the matrix of factor intercorrelations is obtained by

1.0 (symm.)
= 1.0(k, 1_0

The factor structure b no -overlapping and oblique. All zero entries in A,
and all diagonal entries in cl, are fixed (predetermined) parameters, the nine
symbolic parameters Ai,ri and the three symbolic parameters are esti-
mated from the data. Also estimated are the nine uniqueness coefficients in the
diagonal of O.

The Campbc11-Fiske criteria, applied to the trait-only model, appear as in-
equality ccnstraints on factor loadings and factor intercorrelations. Two of the
criteria, are rather useful, yet, because Campbell & Fiske tacitly assumed ho-
mogeneous reliabilities, the other two criteria imply a somewhat unintelligible



trade-off between the boundary conditions fiar gs and factor corre-
lations (Warlike, 1984).

The most interesting question for the applied rercher is how well the con-
generic trait-only model can be used to describe and analyze empirical MTMM
matrices. Critical indicators for model performance are

Identifleationuniqueness of the model parameter estimates. The parameters
are not identified when different sets of values for one or more estimates
result in the same model covariance matrix t. A trivial case of non-
identification occurs when the model has more parameters than elements
in the model covariance matrix. Further issues concerning the identifica-
tion problem with MTMM factor analysis are discussed in Wothke (1984).

Convergencenumerical evaluation of the parameter estimates. Maximum-
clihood parameter estimates for the covariance structure models consid-

ered here do not have a closed-form solution. Estimates must be obtained
iteratively, using, for example, the Fletcher-Powell or Newton-Raphson al-
gorithms implemented in the LISREL program. Both numerical methods
are generally efficient, but can fail to converge to a final solution, either
because the number of iterations will exceed the przsent program limit of
250 or because the process will actually diverge. Common reasons for non-
concrergence are (a) starting values chosen too far from the final solution,
(b) flat maxima or ridges in the likelihood surface, and (c) singularity of
the information matrix in the vicinity of the solution. The latter two cases
indicate poor model properties.

Admissibilitythe Fisherian estimation methods employed by LISREL and
related programs may produce parameter estimates that are not com-
patible with the measurement model in Equation 2. For instance, nega-
tive uniqueness components Oi or factor correlations in excess of 1.0 are
not uncommon. In formal terms, all estimated covariance matrices (here:
cI3, 9) are com:eived as Gramian and must be non-negative definite. Vi-
olations would bnply a complex-valued measurement space. Substantive
considerations may produce even stricter criteria when, for instance, the
communality of a measure exceeds its known reliability. For all practical
purposes, the emergence of non-admissible parameter estimates indicates
poor specification of the structural model.

Model fit fit is evaluated in terms of deviations between the sample and the
estimated model covariance matrices. Several measures are conceivable
and have been proposed in various papers. A popular fit statistic with
powerful large-sample characteristics is the maxirnum-likelihood G2, com-
puted as

02 N[1n121- ln IL trace (St-i ) I.



Under multinormality, and when the correct structural model is selected,
02 is asymptotically x2-distributed with

p(P ÷ 1)df
2

where p is the order of the covariance matrix and t is the number of
independently estimated model parameters. When a more restricted or
modified model is applied, Ga will follow a non-central x2-distribution.
Model fit can only be properly assessed when the estimation has converged
to an admissible solution. Generally, inadrnbsible parameter estimates are
associated with over-fit of the model so that the '72-statistic will be neg-
atively biased. It is also well-known that non-normality and non-random
sampling will bias the 02-statistic hi the positive dfrection.

Using these four criteria (identification, convergence, admissibility, and fit),
performance of congeneric trait-only factor analysis was evaluated with 23 em-
pirical multitrait-multimethod matrices. The datasets were obtained from publi-
cations in psychological, sociological, educational and marketing research jour-
nals comprising a probably typical collection of MTMM matrices from these
fields. The sample of the datasets was biased: many MTMM matrices with very
small 'Sample size, incomplete measurement design, and/or correlations based on
pairwise deletion or other non-Gramian procedures were rejected. Conversely,
datasets that Iricl been reanalyzed in the literature had a higher chance to be
included in the sample. Origin ard nature of the matrices are described in the
Appendix.

Results of the analysis are summarized in Table 1. No globally under-
identified solutions of the congeneric trait-only model were observedall the
information matrices were of full rank. Convergence problems occurred with
the three datasets "Attitudes to Authority (Burwen & Campbell)", "Personal-
ity Traits (Kelley & Krey)", and "Job Eehavior (Dickinson & Tice)". Inspection
of intermediate solutions for these datasets suggested local under-identification
as the likely reason for non-converger. te. In addition to three non-converged so-
lutions, the model produced inadmissible parameter estimates for seven further
datasets. This left 13 of the 23 datasets with admissible congeneric solutions-

The 02-statistic shows acceptable fit for just two of the remaining 13 datasets
["Smoking and Capital Punishment (Jaccard)" and "Three Attitudes (Flamer,
Sample WI; Jaccard's dataset should not be given much weight, however, con-
sidering the small N of 35.

Table 2 shows the parameter estimates for the Flamer (Sample 1) dataset.
The traits are "Attitude towards Discipline in Children" (ADC), "Attitude to-
wards Mathematics" (AM), and "Attitude towards the Law" (AL). All assess-
ment methods are paper-and-pencil, but comprise different item types and re-
sponse formats: dichotomous Likert scales, Thurstone scales, and the semantic
differential (SD) technique. Since the maximum-likelihood G2-statistic indicates

(7)
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Table 1: Congener c tr-ait=only analysis

Dataset Identified Converged
Admissible

Solution 02 df N
Lntelligence
and Effort
(Mayo)

no 2.4 3 166

Intelligence
& Alertness
(Thorndike)

66.4 8 750

Popularity
Expansiveness
(Borgatta)

96.3 19 125

Smoking
and CP
Jaccaxcl)

15.9 19. 35

Leadership
Study (Summers,
et aL)

185.1 19 290

Authority
(Burwen &
Campbell)

no no 22.5 6 57

Drives in
Rats
Anderson

no 40.9 50

Involvement
Components
(Arora

107.6 24 96

Job
Behavior
(Dickinson & Tice

144.6 24 149

Three Attitudes
(Flamer,
Sample 1)

23.3 24 .105

Three Attitudes
(Flamer,
Sample 2

no 36.0 24 105

Stress
Measure
(Karst & Most

no 198.9 24 80



Table 1Continued

Dataset dentified onverged
Admissible
Solution 02 df N

Job
Performance
(Lawler

100.9 24 113

Moral
Dilemma
(Shepherd

24 487

Cóntrace..
tives (Kot-
handapani

no 369.8 - 51 100

Attitudes to
the Church
(Ostrom)

135.5 51 189

Drug Use
Reports
(Stacy et aL

368.8 51 190

Clinical
Clerkships
(Boodoo)

287.2 87 136

Personality
Traits
Kelley & Krey)

no no 123.4 14

Desirability
(Jackson &
Singer

1194.0 164 480

Interaction
Process Vars.
Porgatta)

no 279.1 80 125

Guillord-
Martin Fact.
(Carroll)

no 288.2 80 110

Assessment
(Kelly &
Fiske)

140.5 80 124

9
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Table 2: Congeneric only estImates of the Flam mple 1) data

Factor loading matrix AT

factors Uniqueness
EstimatesMethod Trait

Trait
ADC AM AL

ADC .85 .00 .00 .28
Likert AM .00 .77 .00 .41

AL .00 .00 61 .63
ADC .84 .00 .00 .29

Thurstonc AM .00 .80 .00 .36
AL .00 .00 .62 .62

ADC .00 .75
SD AM .00 .94 .00 .12

AL .00 .00 .71 .50

Factor corTelations

ADC
AM
AL

AD
1.0
-.07

A A

1.0
-.05 1.0

G = 23.28
df = 24

P = 0.503
N = 105

9



an acceptable model fit, convergentyal dity is confirmed for all nire trait-method
combinations. One can also see that the relative Etrecision of rieasurement is
consistently higher for measure at "Attitude towards Matheintics" than for
"Attitude towards the Law". Some cauticon is indicated for the rait "Attitude
towards Discipline in Childree which shcvws a larger variation ii m. the size of its
factor loadings. The heterogeneity of the factor loadings is rnarginally signifi-
cant: tested against a model with equal factor loading for each ait, there is a
fit increase of Diff-G2 15.1(cyz0,P 0.020) for the congener--ic model.

Discriminant validity between the trait concepts can be jue=iged from the
estimated factor correlation matrix Evidently 'Attitude tc4a.-wards Mathe-
matics" is virtually unrelated to the other two traits, while the disattenuated
correlation coefficient of cb,,, shows a mild association be---ween the atti-
tudes towards the law and towns& discipline.

In summary: Estbalation of the congeneric trait-only factor -__Anodel will of-
ten converge to an admissible solution, but the fit to empirial multitrait-
multirnethod matrices tends to be poor. These problems of mo-..del misfit can
be blamed on the datamost empirical da.tasets did not support the notions of
convergent and discriminant validity. In the two cases where the :=odel showed
a good fit, the assessment methods appemred to differ only in reatively minor
aspects of question wording.

2.2 Trait-method factor analysis
As a less restrictive alternative to the trait-only model, several authors have
suggested to include additional method factors (Althauser, 1974 Althauser &
Heberlein, 1970; Althaaser, Ileberleeo, & Scott, 1971; Jöreskog, =71; Kalleberg
& Kluegel, 1975; Schmitt, 1978; Werts, Jareskag, & Linn, 1972; 'T'Verts & Linn,
1970; Werts, Linn & Jöreskog, i971). The rationale for added rnehod factors is
that, apart from expressing trait variation, measures may also be orrelated be-
cause they share the same assessment method. Method factors wail purportedly
account for systematic variation due to these shared method corm_ponents.

For a 3-trait-by-3-method rneaeuremeiat design, the factor lc:evading matrix
of the trait-method factor Podel is simply constricted by anagmenting A,

from Equation 4 with three additional method factors jii , is2, and_ p3:

I. ALT, 0 0 Ai,pi 0 o
0 A2.r, 0 ..142,,,1 0 o
o 0 As ,, A3,0, 0 o
A4,r, o o a A4,A2 o

Afp 0 As. 0 0 A5,1,2 o
0 0 0 AG.A. 0
A7,r, 0 0 0 0 A7,ita
0 .A8,i, 0 0 0 A8,03
0 0 An,r, 0 0 Ao,u3

10



Tlis expanded model seems to be at least partially motivated by hopes of
finding a statistical procrustes method able to eliminate method effects from
the measurements. The argument goes as follows:

If trait factors are uncorrelated with method factors, the respective
factor scores should also be uncorrelated in the population, The
trait scores would be retained for further analysis of ernethod.free"
trait measures, while method scores would be rejected az "trait.less"
measurement artffacts. In this sense the trait-method factor model
can possibly be used to separate trait and method components.

1Wven though this proposition sounds somewhat fantastic, the confirmatory trait-
--=tethed factor model can easily los restricted to independence between traits and
==nethods specifying the factor intercorrelation matrix as

=

/ 1.0
Or2,i1 LO Ora,ra

0,-3,72 1.13

0

0 0 0
0 0 0
0
1.0 0,41,02
OA, ,A1

0i14.01 143 §P2

(9)

Whe remainder of this section will examine model performance vitli a block-
-ti...iLiagonal type of correlation structure described in Equation 9. Wien clarity is
r...-equfred, explicit reference is made to the trait-method independe vet models.

The difference between trait-method and trait-only factor rno loll is not just
matter of quantity of factors. The trait-only model, conceived in the psy-

cornetric tradition of parallel measurement of a single latent trait, describes
n..on-overlapping factor concepts. The trait-method factor model, on the other

expresses the systematic variance of each measure as the linearcombina-
tulEon of two latent factors and is overlapping. In consequence, the trait-method
rm=aodel does not reflect the parallelity concepts of classical test theory and is
largely krelevant to the assessment of factorial validities in a set of measures.
=he trait-method model rather describes a metric linear decornisoition of an
aMoserved measurement structure distantly related to decomposition mode ap-
poaches in the tradition of Beals et al. (1968). Furthermore, the rrodel appears
tc=, deviate substantially from the Campbell & Fiske (1959) trait conceptionthe
v.lidity criteria of the original paper fail to establish reasonable boundaries of
th±ne parameter space (Althauser, 1974; Althauser & Heberlein, 1970;Althauser,
1=eberlein, & Scott, 1971).

Performance of the trait-method factor model is summarized in Table 3.
=le model was globally unidentified with four datasets rIntelligence and Ef-
fe.rt (Mayo)", 'Intelligence and Alertness (Thorndike)", "Authority (Burwen

z Campbell)", and "Drives in Rats (Anderson)"). The correlation matrices of
damese datasets were too small, contaMing fewer empirical correlationcodcients



Table 3: Trait-method independence factor analysis

Dataset
Intelligence
and Effort
(Mayo
Intelligence
& Alertness
(Thorndike)
Popularity &
Expansiveness
(Borgatta)
Smoking
and CP
(Jaccard)
Leadership
Study (Sum- no he 21st (of 31) para_eter may not be iden fied
mers, et aL)

no

no

AdmIssible
Identified Converged Solution

no

no

df

no no 3.7 5 125

no: the 23rd (of 31) parameter may not be identified

Authority
(Barwen &
Campbell)
Drives in
Rats
(Anderson)
Involvement
Components
(Arora)
Job Behav-
ior (Dickinson
& Tice)
Three Atti-
tudes (Flamer,
Sample 1)
Three Atti-
tudes, Flamer,
Sample 2)

diverged no 403.9 1,2 96

diverged
no: the 31st parameter (of 33) may not be identified (07)

117+
no: the 6th parameter (of ) may not be iden ifiad ()3./21)

145+
no: the 6th parameter (of 33) may not be identified (A3.,1)

Stress
Measures
(Karst & Mo

diverged no 3892.2 12 80

12



Dataset
Job Perform-
ance
(Lawler)
Moral
Dilemma
(Shephe
Contracep-
tives (Kot-
handapani)
Attitudes to
the Church
(Ostrom)
Drug Use
Reports
(Stacy et al
Clinical
Clerkships
(Boodoo
Personality
Traits
(Kelley & Krey
Desirability
(Jackson &
Singer)

Table 3GorthTntd

Id entified Converged
Admissible
Solution df

diverged no 5580.6 12 113

diverged no 21688.9 12 487

no 53.1 100

no 21.7 189

no 93.5 33 Igo

diverged
no: the 2nd (of 58) parameter may not be identified A

no: the 23rd (of 31) parameter may not be identified

Interac n
Process Vars.
(Borgatta)
Guilford-
Martbi Fact.
(Carroll)
Assessment

_elly &

no 410.2 1 4 480

no no 100.5 62 125

no 112.5 62 110

no 57.5 62 124

13
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than there were parameters to be estimated. Seven further cases also resulted
in unidentified solutions even though the number of correlation coefficients ex-
ceeded the number of independent model parameters ("Smoking and Capital
Punishment (Jaccard)", "Leadership Study (Summers et aL)", "Job Behavior
(Dickinson !. Tice)", "Three Attitudes (Flamer, Sample 1)", "Three Attitudes
(Flamer, Sample 2)", "Clinical Clerkships (Boodoo)", and "Personality Traits
(Kelley & Krey)"1. The parameters involved vary even among similar struc-
tured datasets so that one might expect empirical underidentification. Yet, the
frequency of unidentified solutions appears suspiciously high.

Among the remaining twelve datasets, solutions converged in five cases. Con-
vergence failed in seven cases. Yet, in no case, converged or not, was the solution
admissible. Table 4 shows the inadmissible solution for the Assessment (K4ley
& Fiske) data as a typical example. Traditional interpretation of this well-known
dataset has occasionally concluded that the Staff and Self Rating method fac-
tors should be combined because their correlation is so excessive (Jöreskog, 1971;
Browne, 1984a). ',Ich a decion supposes that the estimates are inadmissible
as a consequence of problematic sample correlation matrix rather than because
of a structural deficiency of the model. This does not seem to be the case. First,
if inadmissibility was due to sample problems, one should also be able to find
datas.As that have an admissible solution. The search for such a dataset was
negative, as documented in Table 3. Second, a strong point can be made that
the trait-method model is conceptually flawed. Suppose that all measures in a
particular study share some common variance due to any kind of shared circum-
stances. Com.non variance can be shared for a number of reasons, for instance
(1) choice of similar measurement situations, (2) choice of similar traits, or (3) a
strong general factor of individual differences. The three interpretations relate
the common variance to method, trait, or neutral concepts, respectively, by t
they cannot possibly be distinguished on empirical grounds in a single MTMM
study..

This conceptual identification problem has a direct numerical equivalent.
The common variance may be accounted for by either the covariance structure
due to trait factor. or by the method factor structure. Existence of the indeter-
minacy can easily be demonstrated for two more restricted forms of trait-method
factor analysis.

Two-factor model: Suppose the factor correlation matrix is restricted so (a)
that all traits are perfectly correlated with each other and (b) all methods
are likewise correlated with unity among themselves. Such a model is
equivalent to an exploratory factor analytic solution with two orthogonal
factors and the loading matrix

Aj,r
Azr

Ap,tecu

14

AP.kg

(10)



Table 4: Trait-method independence factor analyst of the Kelly & Fiske as-
sessment data

Factor loading ma ATM

Trait factors Method factors Uniqueness
ethod Staff a e Self Estimates

.00 .00 .00 .00 -.07 00 .00 .26
Staff .00 .83 .00 .00 .00 -.05 .00 .00 .31
Rat-ngs .00 .00 .60 .00 .00 .09 .00 .00 .62

.00 .00 .00 .89 .00 .14 .00 .00 .20

.00 .00 .00 .00 .72 .15 .00_ .00 .45

.84 .00 .00 .00 .00 .00 00 .29
Teammate .00 .83 .00 .00 .00 .00 .28 .00 .47
Ratings .00 .00 .68 .00 .00 .00 .35 .00 .41

.00 .00 .00 .18 .00 .00 .58 .00 .65

.00 .00 .00 57 .00 .50 .00 43
A 5 00 .00 .00 00 .00 .00 .16

Self .00 .45 .00 .00 .00 .00 .00 .24 .76
Rathigs .00 .00 .44 .00 .00 .00 .00 .28 .74

.00 .00 .00 .43 .00 .00 .00 .41 .66

.00 .00 .00 .00 .67 .00 .00 .57 .28

Factor corTelations
S aff Mate Self

A 1.00
C .56 1.00
S -.39 -.43 1.00
P .33 .62 -.07 1.00
I .54 .30 -.03 .46 1.00

Staff .00 .00 .00 .00 .00 1.00
Mate .00 .00 .00 .00 .00 .88 1.00

Seff MO .00 .00 .00 .00 -2.34 -.01 1.0
C4 = 57.64
62

P = 0.503
N 105
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It is well known that only 2p 1 of the 2p parameters in matrix 10 can
be estimated, one parameter has to be set to zero in order to fix the
orientation of the factors (Anderson & Rubi_n, 1956; Dunn, 1973; Yoreskog
& S5rborn, 1979, pp. 443). The trait-method factor model does not
incorporate such a constraint and is therefore unidentified.

Equally weighted indicators: Suppoae the factor model is simplified so that
all estirnated loadings of a- given factor have the same value. Such a
solution, presented in equation 11, specifies that variance of a given factor
is equally reflected in all its indicators. This would be generally attractive
and simplify greatly the interpretation of the factors.

/ Ai 0 0 A4 0
O A2 0 A4 0 0
O 0 A3 A4 0 0
A1 C 0 0 As 0

A = 0 A2 0 0 As 0 (ii)
O 0 A3 0 As 0
A1 0 0 0 0 AG

0 A2 0 0 0 AG

0 0 A3 0 0 AG

AT can be expressed as the product of a design matrix and a dia onal
matrix Dr', of factor loadings

(j 0 0 1
O 1 0 1 0 0
O 0 1 1 0 0
1 0 0 0 1 0

An, = 0 1 0 0 1 0
O 0 1 0 1 0
1 0 0 0 0 1
O 1 0 0 1

k. 0 0 1 0 0 1

Arm

/ A1 0 0 0 0 0 }
0 A2 0 0 0 0
0 0 A 0
0 0 0 A4 0 0
0 0 0 0 As 0

\. 0 0 0 0 0 A

The model equation then becomes

1; ..A.D,011DAA' +

(12)

(13)

Since A has rank t + m 1, only at most t + m 1 functions of the t + m
factors are estimable (Graybill, 1961, pp. 228-229). Wothke (1984) has
shown that any single parameter in Equation 13 can be fixed in a way
that solves the identification problem. Such a solution would, however, be
arbitrary and render the remaining parameter estimates meaningless.

17 16



Discussion of identification conditions for the general form of the trait-
method model is still difficult and far from conclusive. It can, for instance, be
shown that the trait-method independence model does not fulfill the sufficiency
conditions for factor identification outlined by Anderson & Rubin (1956), Jen-
nrich (1978), and Jöreskog & SOrbom (1979). According two these sufficiency
conditions, we may have a case of rotaticnial underidentification on our hands,
but there is no conclusive proof. For the moment we shall be satisfied that the
case of equally weighted indicaton, a textbook example of a simple structure
decomposition, cannot be identified. The relative orientation of the trait and
method subspaces remaurs undefined.

2.3 Discussion
Twentythree empirical MTMM matrices were analyzed with trait-only and trait-
method iridependence factor models. Neither model showed perfect performance
with all datasets. The trait-only model converged to admissible and identified
solutions in more than half the cases, but model fit was acceptable only in two
cases. Trait-only factor analysis is the most des&able model, but most empirical
correlation matrices do not conform.

On the other hand, analyses with the trait-method independence model failed
completely. The practical consequence of these results is that the trait-method
model is not applicable to any of the 23 datasets. Apparently, the factor analytic
treatment of the multitrait-multiraethod matrix has reached its limits with the
trait-method model already. The seemingly sensible approach of reducing the
systematic variance into sets of trait and method factors cannot be applied. The
solutions are either not identified or are not admissible. Either case precludes
substantive interpretation of the parameter estLmates. The reason is that the
structural conception of the measurement design is deficient. The trait-method
model appears to be overparameterized with the consequence that the solutions
are rotationally undetermined.

3 Covariance Component Analysis
Covariance component analysis (CCA ) was first introduced by Bock (1960) and
Bock & Bargmann (1966) as a multivaxiate random model for factorial measure-
ment designs. The method was originally designated as "covwlance structure
analysis", the term is avoided here because it has since become synonymous with
the more general class of structural equation models. A successful application by
Bock, Dicken, & Van Pelt (1969) investigates the effects of content-acquiescence
interaction in MMPI scales.

Covariance component analysis explicitly accounts for the general level of
covariation common to all measures in the design, trait variation, and plus
method variation, but contains only thosc: parameters that, at least in princi-
ple, can be estimated. CCA thus avoids the indeterminacy encountered with
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trait-method factor analysis. Apparent problems with CCA were rooted in tra-
ditionally strict assumptions about scale and eor variance of each measure,
untenable for MTMM correlation matrices. This section introduces a termi-
nolou of generalized covariance component models appropriate for scale free
analysis. Discussion is restricted to structural charactertics of CCA; parame-
ter estimates are always obtained with the LISREL (Jareskog & Sarborn, 1986)
program.

3.1 Covariance component structures
In the original formulation by Bock & Bargmann (1966), covariance component
analysis describes the facet-structured observed variables as linear functions
of underlying latent variates. The set of measures shows the latent structure
decomposition

X(nx,nt) Enx(1-1-t+m)A(r+j+m)xmt E(riXrnt) (14)

The matrix shows one variate for general latent variation, t variates for the
traits, and rn variates for the methods. The structural coefficient matrix is
assumed to be fully known and, for an MTMM matrix with 3 traits and 3
methods, takes the form

/
1

1

1

A 1

1

1 0 0
O 1 0
O 0 1
1 0 0
O 1 0
O 0 1
1 0 0
O 1 0
O 0 1

traits

1 0 0
1 0 0
1 0 0
0 1 0
O 1 0
O 1 0
O 0 1

O 0 1

O 0 1 j
methods

(15)

The correspondence to Equition 8 is apparent. The expectation of the sample
covariance matrix S. = ,X' (i ;111')X is

e(S) Acl3A' + e (16)

with 43 being the covariance matrix of the latent variates and 0 the (typically
diagonal) covariance matrix of unique and error components. Error variances
(the diagonal entries in 0) may or may not be restricted to homoscedasticity.
Bock & Bargmann originally assumed that IT) is diagonal. This assumption is
unnecessarily strict for applied purposes, however, and Wiley et al. (1973) and
Jareskog (1978) have extended the model to include correlated latent structures.

Graybill (1961, pp. 228-229) has shown that, since A in Equation 16 is not of
full rank, not all parameters in and 0 can be estimated. However, estimation
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of the essential variance components can be attained via repara e erization.
To this effect, two matrices K and L with

A K L, (17)

are chosen, so that K is a matrix of m t 1 orthonormal column contrasts in
A and L is a matrix of rn t 1 orthogonal row contrasts of A with

L = (WK)-1WA = WA. (18)

X may then be a expressed in terms of a reduced 71X (t 771 1) latent structure
matrix .E E L' as

= FIC + E (19)
EVW E. (20)

Instead of the covariance matrix of the latent components, now V' =
Lt11/, the covariance matrix of orthogonal transforms of the original latent
components, is estimated. The matrix cD' has two fewer rows and columns
than 11, but, since the omitted parameters could not be estimated in the first
place, no information is effectively lost. Interpretation must be based on the
transformed parameters in kr' which correspond to the three groups of variates:

one variate for the general level of covariation,

t 1 variates describing differences in covariation due to traits, and

1 variates expressing differences due to methods.

The reparameterization transforms Equation 16 into

= KVW e, (21)

Interpretation of the covariance components in V' must reflect the particular
choice of contrasts in K in addition to the empirical covariance structure. In
the case of a 3 traits by 3 methods measurement design, for instance, K may
be chosen as

V 3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3

lif/3
1/07g
1/1/11

1/.4-8
1/1/178-

N7/3
-1A/111
-1/NriT3

0
1/-46

0
1/V6

1/1..
o

-,//3
1.//3
1,//3

1/1/Th
1/1/Th
1/V37
-1/VT8
-1/-%/T8

0
0

1/V6
1/-*A
1//6-

-1/-16
-31,16
1/1/6

(22)

traits

19

2 0

methods



Then the first trait contrast will reflect individual differences between trait 1
and the other two, the second one expresses difference variation between traits
2 and 3. When the variance due to these contrasts is zero, the original traits are
indie.inguishable (i.e., perfectly correlated). Traits can only be distinguished
when the contrast variates show non-zero variance. Method variates would be
interpreted correspondingly as differential responses to assessment methods.

When substantive considerations permit, the contrast matrix K should be
implified at one of the following levels: One, column contrasts for general,

trait, and method components may be chosen as blockwe orthogonal. This
allows testing independence between the trait and method differences and the
general variate. Two, if all columns in K are orthogonal, correlations derived
from 43'" may be directly interpreted, but the variance estimates will still be
functionally dependent on the scale of the contrasts. FLnally, when all contrasts
axe orthonormal (i.e., orthogonal and normalized to unit le-gth), all parameters
in cr are estimated on the same scale and latent varian .es can be compared
relative to each other. Orthonormal contrasts are advantageous when the rela-
tive contribution of trait or method facets is assessed. All data analyses m this
paper are based on orthonormal contrast matrices.

Several types of covariance component models, defined by restrictions of the
matrix (V, should be distinguished.

Fully correlated 1.*: The observed covaxiance matrix can be expressed as a
compound of trait and method variance components:

V =
)

(23)
sy

p.

There is some justification foz trait concepts, but genera , trait, and
method variates are correlated.

Independent-cinnmon-vaxiation: The first row and column show zero en-
tries in the off-diagonal elements:

(24)

Trait and method variation is independent of the general va- iate, but tr
and method contrasts may be intercorrelated.

Tr -method independence: Trait contrasts are Mdependent of method c
trasts = 0), but the general factor may covary with either.

cD.

21
20

(2F



Block-diagonal V': Trait contrasts are imcorrelated with method contrasts
and, M addition, the general variate is independent of both trait and
method contrastp,

(26)

If the empirical measurement structure has a block-diagonal covariance
component form, then the following three conclusions are legitimate: (a)
patterns of individual differences in traits do not predict individual dif-
ferences in response to methods; (b) differential response to method does
not predict an individual's average level on all measures; and (c) trait
contruts do not predict the individual's relative standing on the general
variate.

Diagonal cl)': All (reparameterized) variates are uncorrelated. Diagonality is
postulated by design only in the case of 2' measurement designs, When
trait or method facets contain more than two elements, diagonality will
partly depend on the particular choice of contrasts. In these cases, con-
trast selection must be guided by substantive theory. Diagonality implies
that the researcher has, in substantive terms, found a most parsimonious
account of the observed covariance structure. This transcends the question
whether trait and method differences are independent.

3.2 Covariance component analys s with unknown scale
factors

Fixed-scale CCA in the form of Equation 21 calls for known or hypothesized
scales of the latent variates over the entire set of measures or, alternatively, ne-
cessitates specific assumptions about the uniqueness components in the diagonal
of G. Knowledge of the scale of measurement, however, is often not available
and, just as frequently, is of secondary interest in analytic behavioral research.
For instance, scale information in correlation analysis is lost entkely due to
standardization. Furthermore, raultitrait-multimethod analyses are frequently
conducted when fixed-scale assumptions across different traits and methods are
not meaningful on conceptual grounds. Standarclation of observed variables
in these cases imposes an arbitrary ceiling on the variance of the observed vari-
ables and, in order to obtain any kind of interpretable estimates for in the
linear model framework, the relative true score scales have to be estimated.
Wiley, Schmidt it Bramble (1973) propose a class of scale-free generalizations
of Equation 21 by introducing a diagonal matrix G of scaling constants:

E. i= GI{c13K'G + 0. (27)

G will absorb scale differences among the obsarved measures and should be
interpreted accordingly. Wiley et al (p. 317) state that
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The major utility of ... (GI is for dealing with those situations in
which the observed variables are measured in different metrics. For
such cases the introduction of ... [GI whose elements do not have
to be related to the variances of the variables allows for optimal
resealing.

3.2.1 Model identification

One element in G and V' must be set to a positive value to fix the scale of
the estimates. This is because the Gramian product in Equation 27 is generally
not identified due to a scale trade-off between 11* and G: multiplication of V'
with a positive constant a is fully compensated for when G is simultaneously
divided by V7:i. This trivial underidentification has no consequence for the
substantive interpretation of the parameter estimates. Only the relative size of
the component variance and covariance estimates in is required to reconstruct
the latent correlation structure of the measures. Furthermore, estimates of the
scaling constants in G are only meaningful in conjunction with the estimate of

The underidentification is removed by a single non-zero constraint; ail ex-
emplar/ analyses will use the identity

1, (28)

restricting the variance of the general variate to unity. Variance estimates for
the trait and method contrasts have to be evaluated relative to the variance of
the general variate.

An additional and more complicated identification problem arises with fully
correlated and trait-method independence CCA. It turns out that correlations
with the general variate; i.e., the elements of cr;`, and cri71, are unidentified in
the scale-free model when the measurement design is small. Figure 1 illustrates
this identificatioL problem with a simple two-dimensional case. In both parts
of the Figure, the length of the general variate g has been axed to unity (cr;2 =-
Err = 1.0). Case a describes the latent measurement structure as diagonal or
block-diagonal and with unequal scale factors (Ai = 1.0 and A2 = 0.3). Case b
describes the identical measurement structure using a fully correlated version of
(D. with cr;, corresponding to a correlation of cos(36.9°) = 0.80 and equal sized
scale factors (Ai = A2 = 0.72). Many other equivalent solutions exist and the
estimation equations axe undetermined.

The identification problem is practically independent of the size of the mea-
surement design. It certainly remains when all but one contrast variates are of
length zero. When the design is larger than 2 traits by 2 methods, trait-method
independence CCA may be numerically identified, but some asymptotic corre-
lations among th estimates usually exceed 0.95. Then, the precision of the
parameter estimation will not be acceptable.
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Figure 1: Two equivalent covariance component reprr- ations



In short, scale-free diagonal, block-diagonal, and independent-common-vari-
ation CCA models are generally identified, while the scale-free versions of the
fully correlated and trait-method independence models are not. These results
contradict some of the claims by Wiley et aL (1973). Correlations of the corn-
mon variate can be evaluated if the scale factors are known. Alternatively,
scale factors can be determined when strict assumptions about the correlation
structure of the common variate are imposed.

3.3 Empirical application of scale-free CCA
This section applies scale-f:ee block-diagonal and independent-common-variation
CCA to the 23 empirical MTMM matrices. Both models are direct generaliza-
tions of congeneric trait-only factor analysis. Model performance is evaluated
in terms of identification, convergence, admissibility, and fit. Definitions for the
first three criteria are identical to those for factor analysis in Section 2.1.

Admissibility of CCA solutions implies that 0 and ol)* are both non-negative
definite. Admissibility shall also denote that no latent variate will account for
more than the total variance of the measured variables:

0 < 1.1 < s (2g)

For correlation matrices, the upper bound becomes unity.
Models using the other three covariance component structures; i.e., strIctly

diagonal, trait-method independence, and fully correlated CCA are not evalu-
ated here for different reasons. The diagonal submodel requires theory-guided,
not simply design-guided, selection of contrasts and transcends the scope of this
paper. The other two submodels allow for correlation between contrasts and
the general variate and are ridden with identification problems.

Table 5 summarizes the scale-free block-diagonal covariance component anal-
yses a the 23 datasets. All solutions are identified and converged, but not all
are admissible. Solutions for 13 of the 23 datasets violate the admissibility con-
ditions. Five of the 10 adnisible solutions have good fit ("Popularity and Ex-
pansiveness (Borgatta)", "Smoking and Capital Punishment (Jaccard)", "Job
Behavior (Dickinson & Tice)", "Job Performance (Lawler)", and "Attitudes
to the Church (Ostrom)"]. With an additional dataset ["Assessment (Kelly &
Fke)"] the fit is marginal. Four of these solutions show a significant fit increase
compared to the -.ongeneric trait-only factor solution, while one ["Smoking and
Capital Punishment (Jaccard)" ] was already well fit by the congeneric two-trait
factor model. in one case ("Job Behavior (Dickinson & Tice)" the trait-only
factor model had not converged to an admissible solution, while admissibil-
ity was achieved for the "Three Attitudes (Flamer, Sample 1)" data using the
trait-only model, but not in the case of block-diagonal CCA.

The fridependent-common variation model is a generalization of block-diag-
onal structures. Allowing for non-zero covariances between trait and method
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Table 5: Scale free covariance component analysis of
block-diagonal mod

the datasets,

Dataset Identified Converged
Admissible
Solution G2 d

IntAigence
and Effort
(Mayo)

no 0.0 0 166

Intelligenc
& Alertness
(Thorndike

17.2 750

Populari
Expansiveness
(Borgatta)

14.6 13 125

Smoking
and CP
(Jaccard)

9.9 13 35

Leadership
Study (Stun-
mere et al.)

no 81.4 13 196

Authority
(Burwen
Campbel

no 16.8 57

Drives in
Rats
(Anderson

no 3.5 50

Involvement
Components
(Arora

50.4 21

Job Behavio
(Dickinson
& Tice

16.3 21 149

Three Atti-
tudes (Flamer,
Sample 1)

no 19.3 21 105

Three Atti-
tudes (Flamer,
Sample 2)

no 35.9 21 105

Stress
Measures
(Karst & Most

no 46.4 21 80

Job
Performance
(Lawl

29.2 21 113
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Table 5Continued

Dataset dentfled
Admissible

Converged Solution G2 df N
Mor
Dilemma
(Shepherd

131.3 21 487

Contracep-
tives (Kot-
handapan

no 104.5 45 100

Attitudes to
the Church
(Oatroni)

58.4 4_ 189

Drug Use
Reports
(Stacy et aL

no 224.2 45 190

Clinical
Clerkships
(Boodoo)

no 143.1 77 136

Personality
Traits
(Kelley & Krey

no 15.2 13 311

Desirability
Jackson &

Singer)
848.8 154 480

Interaction
Process Vars.
(Borgatta)

no 211 9 77 125

Guilford-
Martin Fact.
(Carroll)

no 182.7 77 110

Assessment
(Kelly &
FLske)

104.7 77 124
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Table 6: Scale-free covariance component analysis of the datasets, indepen-
dent-common-variation model

Dataset
Intaigence
and Effort
(Mayo)
Intelligence
& Alertness
(Thorndike)
Popularity &
Expansiveness
(Borgatta)
Smoking
and CP
Jaccard)

Leadership
Study (Summers,
et aL
Authority
(Burwen &
Campbell)
Drives in
Rats
(Anderson)
Involvement
Components
(Arora
Job
Behavior
(Dickinson & The
Three Att
(Flamer,
Sample 1)

tides

Three Attitudes
(Flamer,
Sample 2)
Stress
Measures
(Karst & Mos

Admissible
Identified Converged Solution 02 df N

not identified (the design is too small)

no 4.4 3 750

no 10.7 10 125

8.6 10 35

no 67.0 10 196

no: the first parameter (gii) is not identified

no 3.4 50

41.3 17 96

14.0 17 149

no 17.2 17 105

no 29.9 17 105

no 43.1 17 80



Table 6Continued

Datae dentified
Admissible

Converged Solution G2 df
Job
Performance

awler
22.3 17 113

oral
Dilemma
(Shepherd)

94.8 17 487

Contracep-
tives (Kot-
handapani)

no 87.3 39 100

Attitudes to
the Church
(Ostrom

no 52.6 39 189

Drug Use
Reports
Stacy et al.)

no 207.7 39 190

Clinical
Clerkships
(Boodoo)

no 138.9 69 136

Personality
Traits
(Kelley & Krey)

no 7.7 10 .:11

Desfrability
(Jackson &
Singer

798.5 142 480

Interaction
Process Vars.
(Borgatta)

no 187.9 69 125

Guilford-
Martin Fact.
(Carroll)

no 153.2 69 110

Assessment
(Kelly &
Fiske)

87.4 9 124

2 9
28



contrasts, (t 1) x rn 1) additional parameters are estimated from the data.
Ffesults are summarized in Table 6. Solutions for two datasets are not identi-
fied: with the "Intelligence and Effort (Mayo)" data, the 2 x 2 measurement
design is simply too small, while the "Authority (Burwen & Campbell)" correla-
tion Matrix apparently presents an empirical identification problem. Estimation
procedures converged to an admissible solution in only 7 cases. Fit improve-
ment is small in the four cases where the block-diagonal model already ap-
proximates the empLrical correlation matrix ["Smoking and Capital Punishment
Paccm-dr , "Job Behavior (Dickinson & Tice)", "Job Performance (Lawler)" ,
and "Assessment (Kelly & Fiske)" . With three other datasets, for which the
block-diagonal structure did not provide an acceptable account, fit improve-
ment by the independent-common-variation model is substantial but not large
enough. For the "Involvement Components (Arora)" (Diff-02 = 9.1, df = 4),
the "Moral Dilemma (Shepherd)" (Diff-G2 = 36.5, df 4), and the "Desirabil-
ity (Jackson & Singer)" data (Diff-G2 = 50.3, df = 12), neither block-diagonal
nor independent-common-variation covariance component structures yield close
descriptions of the empirical corxelation matrices.

The independent-common-variation model provides acceptable descriptions
for four of the 23 empirical correlation matrices. These matrices are, how-
ever, already well accounted for by the more restricted block-diagonal covari-
ance component model. The incremental utility of the independent-common-
variation model over the block-diagonal model therefore cannot be clearly af-
firmed. This lack of significant improvement is quite likely a function of the
particular datasets used in this study and does not indicate any model defi-
ciency. For the time being, the model may or may not be endorsed, pending
some less ambiguous evidence becoming available.

3.4 Interpretation of CCA solutions
In addition to finding the correct component structure, substantive interpreta-
tion of the parameter estimates is a necessary part of the data analysis. Unfor-
tunately, in my experience, it is quite a difficult enterprise to explain covariance
component estimates (in $*) to social scientists and even to some trained statis-
ticians. Training in contrast techniques appears to be laLking. Prior knowledge
on these matters does, however, aid in the understanding of this section; Bock
(1975) and Finn (1974) provide useful terminology on these matters.

As a typical example for MTMM analysis, Table 7 displays a contrast matrix
K for the Kelly and Fiske assessment data previously discussed in Table 4 in the
factor analytic context. K contains seven contrasts, one for the general variate,
four for trait variation, and two for method variation. The matrix is columnwise
orthonormal; i.e., the contrasts are uncorrelated and have unit length. The
component values for the general variate (in the first column) are standard
and should not be modified- Yet, since the data analysis was only concerned
with determining the overall covariance component structure, and no further



Table 7: Orthonormal contrast matrix K for the Kelly & Fiske assessment data.

ethod Trait 8a , 5r .
Staff Assertive .25820 .51640 0.0 0.0 0.0 36515 0
Ratings Cheerful .25820 .12910 .5 0.0 0.0 .36515 0.0

Serious .25820 .12910 -.16667 .47141 0.0 .36515 0.0
Poise .25820 .12910 -.16667 -.23570 .40825 .36515 0.0
Interests .25820 .12910 -.16667 -.23570 -.40825 .36515 0.0

Team- Assertive .25820 .51640 0.0 0.0 0.0 -.18257 .31623
m 4te Cheerful .25820 -.12910 .5 0.0 0.0 -.18257 .31623
Ratkgs Serious .25820 -.12910 -.16667 .47141 0.0 -.18257 .31623

Poise .25820 -.12910 -.16667 -.23570 .40825 -.18257 .31623
Interests .25820 -.12910 -.16667 -.23570 -.40825 -.18257 .31623

Self Assertive .25820 .51640 0.0 0.0 0.0 -.18257 -.31623
Ratings Cheerful .25820 -.12910 .5 0.0 0.0 -.18257 -.31623

Serious .25820 -.12910 -.16667 47141 0.0 -.18257 -.31623
Poise .25820 -.12910 -.16667 -.23570 .40825 -.18257 -.31623
Interests .25820 -.12910 -.16667 -.23570 -.40825 -.18257 -.31623

confirmatory substantive hypotheses were employed, the Hebnert contrasts in
the trait and method blocks were chosen arbitrarily. The first trait contrast
determines the latent variate 5 as the difference bttween Assertiveness and
the remaining four traits, 8, describes the difference between Cheerfulness and
the average of Seriousness, Unshakable Poise, and Broad Interests, 44, finally,
contrasts Unshakable Poise with Broad Interests. Correspondingly, the method
contrast 5tii is defined to absorb the difference between Staff Ratings and the
average of Teammate and Self Ratings, while 5t,, compares Teammate Ratings
against Self Ratings.

Fit of the block-diagonal CCA model is marginally significant ( ith G2 =
104.7 and df 77) and can be considered satisfactory, given that the corre-
lations were computed from rating scales. Estimates for model Equation 27
are displayed in Tables 8 and 9. The uniqueness coefficients (()ii in Table 8
have the same interpretation as thek factor analytic equivalent. Self ratings of
Assertiveness, Cheerfulness, and Seriousness have uniqueness components al-
most twice as large as the corresponding ratings obtained from teammates and
staff members, kdicating that the self ratings are less reliable, reflect different
insights and standards, and/or are mediated by additional constructs like the
person's degree of confidence. Teammate and Staff ratings differ most notica-
bly for Unshakable Poise, the unique component being twice as large for the
teammate data.

The scale factor estimates (0)ii in Table 8 reflect differences in "true score"
variance of the observed measures. Measures associated with larger scale fac-

31
30



Table 8: Estimated scale factors and uniqueness coefficients G.

Method Trait
Scale

Factors (G)ii
Uniqueness

Coeffs.
Staff Assertive 1.628 .250
Ratings Cheerful 1.650 .330

,
Serious .774 .639
Poise 2.253 .425
Interests_ 1.836 .533

Team- Assertive 1.616 .255
mate Cheerful 1.468 .478
Ratings Serious .956 .404

Poise 1.126 .837
Interests 1.907 .418

Self Assertive .925 .714
Ratings Cheerful .987 .709

Serious .557 .811
Poise 1.725 .569
Interests _1.975 367._

tors di-scriminate on a relatively larger scale, above and beyond the systematic
variance due to the covariance component structure Such an inter-
pretation is correct for MTMM covariance matrices. When generalized CCA is
based on MTMM correlation matrices, instead, scale factor estimates will also
be dependent on the error variance of the original (unstandardized) measures.
Then, the substantive interpretation of (d)ii wiLl be less direct. In either case,
the diagonal of (d) contains the estimated scale factors needed to optkaally
rescale the original variables as Y xa-i, transforming Equation 8 to

(30)
G-1(GKt:VIV + 0)G-1 (31)
Kcit*K' G-lec-1 (32)

All tlizee ratings of Broad Interests are found to show scale factors of com-
parable magnitude. Assertiveness, Cheerfulness, and Seriousness have similar
scale factors for staff and teammate rating methods, while sell rating factors
are substantially smaller. Self ratings of these variables are not comparable to
-1.tings made by others. For the Kelly & Fice assessment data, scale factors

Athiqueness coefficients reflect different aspects of the same phenomenon
Entfts in 6* are harder to interpret than scale factors and uniqueness coef-

ficientg, Coiven the contrast definitions in Table 7, the estimates can be viewed
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Table 9: Estimated Covariance Component Matrix

.670 (symmetric)0.0-
_V .387 .793

5, 0.0* -.639 -.821 1.284
0.0* -.087 .107 .020 .169
0.0 0.0 0.0 0.0 0. .126
0.0* 0.0 0.0 0.0 0.0 .100 .360

as relative variance components of the respective latent variates. The first com-
ponent (0) is fixed at unity and defines the scale of all other estimates in (D
and G. The remaining diagonal elements of cr contain the relative variance due
to the trait and method contrasts. Substantive interpretation of the variance
components is only meaningful when the ccuresponding contrast has itself any
substantive significance. For instance, Om' can be understood as the variance
of the difference between staff ratings -.Jrsus teammate and self ratings. On the
other hand, trait contrasts had been chosen arbitrarily, so that the estimates
in c13;,. have no direct substantive interpretation. While it is not inconceivable
to attempt a direct interpretation of the estimates in (11.,., the result of such an
attempt would appear contrived and nearly incomprehensible.

Similar interpretative problems appear for the off-diagonal elements in cr;
i.e., for the covariance components that reflect the association among the con-
trasts variates. The moderately positive correlation between the two method
variates can, for instance, be interpreted to relate all ratings by others: People
with higher average values in staff rathigs than in combined mate and self ratings
also tend to be rated higher by the teammates than they rate themselves. Kere
again, considering the present dataset, direct interpretation of trait covariance
components is not easily communicated.

When contrasts are arbitrarily selected, as in the present case, some purely
exploratory transformation of the solution may be required for substantive in-
terpretation. In the case of block-diagonal CCA, and only then, can several
transformations from the tool box of the multivariate literature be reasonably
employed, such as dispersion component comparisons, canonical decomposition
of the covariance component blocks, and blockwise varimax rotation.

3.4.1 Dispersion components
The determinant of a covariance matrix is frequently regarded as a scalar mea-
sure of the generaled rnultivariate variance (Green & Carroll, 1976; Kendall &

32



Stuart, 1968; Wilks, 1932). It Ls well known (cf., Searle, 1982, D. 258) that the
determinant of a block-diagonal matrix equals the product of the determinants
of the blocks. When the covariance component solution is block-diagonal with

=

the computation of the determinant 10*1 is facilitated in the form

IV I Ic7;

In the case of generalied CCA, with the scale constraint of a:2 =
mutant simplifies further to

(34)

bhe deter-

IV 14):r II. (35)

The dispersion of the whole covariance component matrix 0* therefore equals
the product of trait and method dispersions. With the Kelly & Fiske assessment
data, both dispersion components are small, with 0.0122 and 0.0354, respec-
tively, indicating that most of the systematic variance of the optimally-scaled
ratings is due to the general variate S. Method differences account for slightly
more variation in the Assessment data than trait differences.

3.4.2 Canonical decomposition of covariance component blocks
Lnterpretation of covariance component estimates is greatly facilitated when
the diagonal blocks and 0,*, can be transformed into a diagonal structure.
Choleski factorization and Eigenvalue decomposition are well-known traditional
methods for this purpose.

Under Choleski factorization, a nonnegative definite symmetric matrix A is
dec-Imposed hat° the product of a lower triangular matrix S and its transpose:
A SS', with S'S diagonal. Computational procedures are described in many
texts, for instance, Anderson (1984), Bock (1975), Finn (1974), and Maindonald
(1984).

The results of Choleaki factorization depend on the order of calculation. If
A is of order q x q, Lltere will be q! numerically different Choleski factors S
with the equivalent product SS' = A. Order dependence of S may be put to
an advantage when the contrast variates can be entered by importance or, in
reverse order, by dubiosity. Then, oh, the squared first diagonal entry in S,
contains the relative valiance due to the most important contrast, sh is the
partial variance of the second most important contrast, adjusted for effects of
the first one, a33 the partial contribution of the third contrast, adjusted for the
first two, and so on. These values may be evaluated in step-down fashion as
successive partial contributions.



Unfortunately, there are many instances when an importance ranking of the
latent variates is not meaningful on substantive grounds; the present analysis of
the Kelly dz Fiske assessment data beLng one of them. When the viates cannot
be ranked beforehand, values in the diagonal of S are arbitrary and cannot be
interpreted by themselves. Yet, even Ln this case, Choleski factorization will
furnii a canonical matrix decomposition in the form A = S IS', effectively
reducing the covariance matrices CI,. and nt, to orthonormal variates, The
derived sol'ition cm then be further rotated to aid interpretation (see below).

Eigenvalue decomposition is another well-known method to describe a matrix
in terms of a canonical structure. Eigenvalues At and the corresponding (non-
zero) Eigenvectors q of a symmetric matrix A are defined as the roots of

Aqt qt.At.

Solutions can be obtained by various numerical methods, many of which are im-
plemented in such maintained software libraries as IMSL (IMSL, 1977), MAT-
CAL (Bock & Repp, 1974), and the NAG library (NAG, Ltd., Oxford, U.K.).

Eigenvectors associated with different Eigenvalues of the same symmetric
matrix are orthogonal. All Eigenvectors of A may be scaled to unit-length and
assembled in the columns of the matrix Q, so that Q'Q = I. By collecting the
associated Eigenvalues in the same order in the diagonal matrix DA, Equation 36
can be written more compactly as

AQ = QDA.
This further implies the canonical decomposition

A = QDACY. (38)

(37)

It has become customazy to base the interpretation of Eigenanalysis on the
weighted principal components P QD/2 rather than on the normalized com-
ponents Q.

The size of the Eigenvalues in DA reflects the variance of the respective
Eigencomponents of A: q'tAqt = )t. It is well known that the largest Eigenvalue
is the size of the largest variance component in A, the second largest Eigenvalue
the variance of the largest component that is orthogonal to the first, etc. (e.g.,
Anderson, 1984). The size of the Eigenvalue becomes a useful indicator for
empirical importance of the principal components of a covariance matrix. Small
variance components are likely redundant.

Since arbitrary choice of trait or method contrasts affects the estimate of
, computation of principal components must be based on the entLre Gramian

product KVIV. In the block-diagonal CCA model, this covariance structure
can be additively partitioned into general, trait, and method components as:

K'ymm.)
K'KWIC (KoiK,.(K,)

Krci);,. Kt,

34 3 5

(30)

(40)



Table 10: Unrotated component loadings P of the Kelly & Fiske data

Method Trai P P 3 Pc Pea Prri Prn
Staff Assertive .258 -.23 -.121 .020 -.079 -.10
Ratings Cheerful .258 .312 .229 -.053 -.075 -.079 -.103

Serious .258 .733 -.006 -.063 -.018 -.079 -.103
Poise .258 -.045 .130 .051 .124 -.079 -.103
Interests .258 7.042 -.120 .190 -.047 -.079 -.103

Team- Assertive .258 -.331 -.23 - 121 020 -.147 .084
mate Cheerful .258 -.312 .229 -.053 -.075 -.147 .084
Ratings Serious .258 .733 -.006 -.063 -.018 -.147 .084

Poe .258 -.045 .130 .051 .124 -.147 .084
Interests .258 -.042 -.120 .190 -,047 .147 .084

Self Assertive .258 -.331 -.233 -.121 .020 .227 .018
Ratings Cheerful .258 -.312 .229 -.053 -.075 .227 .018

Serious .258 .733 -.006 -.063 -.018 .227 .018
Poise .258 -.045 .130 .051 .124 .227 .018
Interes .258 -.042 -.120 .190 -.047 .227 .018

Variance .0 2.246 .415 .182 .072 .239 .054

Separate Eigenstructures should be computed for the trait component rK.
and the method component ItK.

Table 10 shows the unrotated principal components of the Kelly & Fiske
assessment data, computed from the block diagonal CCA solution. All seven
variates are now uncorrelated and have unit variance, tile columns of compo-
nent loadings are weighted contrasts, sorted within blocks with respect to the
explained variance. The first trait component, pti has more than twice the
variance of the general variate. It is clearly defined as a contrast between Seri-
ousness on one hand and the two variables Assertiveness and Cheerfulness on
the other. Seriousness has the largest trait component-this variable is most
distinct from the 5,, the general variate, and, consequently, from most of the
remaining traits in the study. Assertiveness and Cheerfulness are further re-
moved from Seriousness than Poise and Broad Interests. The remaining trait
components are relatively minor: pt2 through pg4 reflect some differences be-
tween the four trait domains other than Seriousness. Finaay, the two method
components indicate that most method variance is due to the difference between
seU ratings and ratings by others.

3.4.3 Blockwise VAREVIAX rotation

Varimax rotated canonical components (Kaiser, 1958) comprise the same infor-
mation as their unrotated counterparts and as the covariance component matrix

5
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Table 1 Rotated component loadings P of the Kelly & Fiske data

Method Trait c Pt1 P Pt] Pt4 Fn 1 Pm I
St aff Assertive .2 -.407 -.078 -.030 .076 -.014 -.129
Ratings Cheerful .258 -.084 -.374 .064 -.086 -.014 -.129

Serious .258 .500 .481 .176 .171 -.014 -.129
Poise .258 .018 -.043 .019 -.185 -.014 -.129
Interests 2 -.025 .016 -.231 .022 -.014 -.129

Team- Assertive .2 8 -.407 -.078 -.030 .076 .170 -.004
mate Cheerful .258 -.084 -.374 .064 -.086 -.170 -.004
Ratings Serious .258 .500 .481 .176 .171 -.170 -J304

Poe .258 .018 -.043 .019 -.185 -.170 -.004
Interests .258 -.025 .016 -.231 .022 -.170 -.004

Self Assertive .258 -.407 -.078 -.030 .076 184 .134
Ratings Cheerful .258 -.0e,4 -.374 .064 -.086 .134 .134

Serious -.258 .500 481 .176 .171 .184 .134
Po6e .258 .018 -.043 .019 -.185 .184 .134

terests .258 .025 .016 -.231 .022 .184 .134

cis , except that the rotation leads to a simple structure solution. Many students
are familiar -with simple structure solutions in factor analys6, from where it is
a minor step to the interpretation of a simple structure derived from covariance
components.

To demonstrate such a simple structure, the trait and me hod blocks in Ta-
ble 10 were subjected to separate varimax rotations. The result 6 shown in
Table 11. Evidence in the trait block now clearly shows that the four simple
contrasts between Seriousness and each of the other traits are uncorrelated. The
effects sizes of the rotated components corroborate earlier findings: Assertive-
ness and Cheerfulness are most disparate from Seriousness, while Unshakable
Poise and Broad Interests are located somewhat closer. The rotated method
components also appear as independent simple contrasts: The first component
shows a difference between self ratbigs and teammate ratings, the second in-
dicates that self ratings and staff ratings vary in different directions. Both
rotated method component show about equal size.

3.5 Discussion
Thiz paper studies the performance of two classes of multivariate linear model
structures for the multitrait-multirnethod matrix: confirmatory factor analysis
and generalized covariance component analysis. Notable submodels with appli-
cations to multitrait-multimethod analysis are identified in each class. Trait-
only and independent trait-method decomposition models are selected from fat-
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tor analysis, block-diagonal and independent-common-variation represent the
covariance component approach. The four modeLs are partially nested and two
strands of hierarchical model testing may be pursued. The two factor analytic
modeLs can be directly compared to each other and the statistical significance
due to added method factors can be tested comparing the two motlel
The other line of nested hierarchical model testing allows comparons between
the trait-only factor model and the two generalized CCA models.

Performance of all four model types is evaluated with 2$ empirical MTMM
matrices usng the criteria of identification, convergence, admissibility, and
model fit.

With these data, the trait-only factor model was generally found to be iden-
tified and converged, yet the solutions were often inadmissible, and model fit
was typically very poor. However, this is a positive result compared to the
trait-method factor model, which never even converged to an adrnsible so-
lution. Formal evidence is provided showing that the trait-method factor is
rotationally (and conceptually) underdetermined. Thin is bad news, because
the trait-method decomposition model has been extensively promoted in the
literature and its deficiencies axe not yet widely known.

Two types of identification problems are found with generalized covariance
component models. The first is trivial and easily removed: because the scale
factors are eseimated, the scale of the variance components is lost, making it
necessary to fix a single variance component or one scaling constant at a non-zero
value. Only the relative size of covariance component esthrlates is meaningful.
The second identification problem is more severe: scale-free generalization of
covariance component analysis finds its limitations when the common iariate is
allowed to correlate with the contrast components. In the presence of any kind
of empirical sampling error; i.e., Ln all empixical applications, estimation of these
parameter groups gives very unreliable results. Estimation of these correlations
is only possible when the latent scale of the measured variables is assumed to be
known (and vice versa). This new finding qualifies some of the very optimhtic
statements by Wiley et al. (1973).

Block-diagonal and independent-common-variation CCA converged to ad-
missible solutions in about half the cases, with acceptable model fit for 5 or 6
of the 23 datasets. The fact that just a moderate number of MTMM matrices
could be successfully modeled is a favorable result, considering that for several of
these datasets multitrait-multimethod validation would have been questionable
on substantive grounds already. A good stattical model must be falsifiable on
empirical grounds to be of any practical use.

Despite its impressive estimation properties, covariance component analysis
has not gained near as much popularity among researchers as the competing
factor analytic model. One of the major reasons for this development may
be that the interpretation of covariance components is difficult and unpopular.
To facilitate interpretation, primary estimates of covariance components can
be transformed into canonical variates and rotated into simple structure or
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into other orientations that may be heuristically helpful. Worked examples are
provided.

Covariance component analysis provides a fundamental vehicle for theassess-
ment of trait validity. Evaluation a validity should be based on a comprehensive
model of the parameters that underlie au observed correlation structure, rather
than the individual sample correlation components themselves. In reference to
the treatment by Campbell &I- Fiske (1959) it is observed that convergent va.
lidity is reflected by disappearing method covariance structures; i.e., I.:, = 0,
while discriminant validity is established when the determinant of the trait co-
variance component matrix cll is large. The covariance structure approach Ims
the interesting implication that traits can be validated in observational studies
only insofar as they differ from other traits in the same study.
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Apendix
Descriptio= of Datasets

Model performance is evaluated iv-rzth 23 empirical correlation matrices pub-
/ihed M the psychological and socialc=gical literature. Nine matrices we taken
frnl the original article by Campbell Fiske (1959), the other 14 datasets were
caz=,ntributed in various papers written ince. A synoptic characterization of each

TMM matrix is provided in Table 2
The size of measurement design c=3f the datasets varies from 2 traits by 2

in..-ethods to 4 traits by 5 methods and traits by 3 methods. Sample sizes range
litween 35 and 750. Information on rieans and variances was notably absent
fro-am all reports, rdectMg _the traditinal neglect of the scale of measurement

much of psychological research.
The trait domains are variously coeivad as abilities, social dispositions or

so.wcial behavior, attitudes or attitude components, drives, and social desirability
kb_agments. Attractiveness of differen methods as study objects has changed
et anarkably over the years: while Cam=bell & Fiske compared mostly effects of

Selif ratings, ratings by others, and objctive measures, later studies concern the
er-5ects of different question formats of different panels engaging in political
prb-eference judgments.

Two studies show unorthodox metiod concepts. All six measures in the "In-
telnligence and Alertness (Thorndike)" mwdata are paper-and-pencil assessments of
0.b:.mility with "Intelligence" and "Menta= Alertness" labeled as traits and "Mem-
o/N=1", "Comprehension", and "VocabuNtiary" labeled as methods. The "Clinical
Clep_erkships (Boodoo)" data assess gerieral dispositions in "Pediatrics", "Internal
pifidicine", and "Surgery" as traits, balms-sed on the performance in such method
Jox-rnains as "Skills', 'Problem solvin" , etc.. In these two cases, both facets
oi the measurement design are of nib- oztantive interest and the "trait" versus
"Insethod" distinction becomes arbitrary. Hoodoo (1985) did, in fact, label her
fsc =ets the exact opposite way. One shm=ald keep in mind that multivariate meth-
eicl just as easily accommodate crosa-clssifications among several trait facets as
tily can handle measurement designs1=4 traits by methods. Hierarchical model
tLst=ting is aided from &substantive poi=it of view when the facets clearly differ
ift x relevance, but estimation methods azicl fit statistics remains unaffected even
wfli.en all facets are equally important.

One of the correlation matrices, tt--Ailie "Moral Dilemma (Shepherd)" data,
pro=wed not to be positive definite and, consequently, not Gramian. This may
hau.m.re been due to a typesetting error or o some pairwise deletion of missing data
rsrowaining unreported, For the present nalyses, the originally published matrix
w'a smoothed subtracting the negative roots from the correlation structure and
aideing a ridge of small variance corripo ments to the diagonal.
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Table 12: Description of datasets

Name, Trait Size
Conception
Intelligence
and Effort

2 2 166 1

(Mayo) 2
Abilities
Intelligence
and

750 1

Alertness 2
(Thorndike)
Abilities
Popularity
and

125

Expansive-
ness 2
(Borgatta)
Social
Disposi-
tions

Smoking
and

5

Capital 2
Punishment
(Jaccard,
et aL)
Attitudes

Leade hip 290 1
(Summers,
et al.) 2
Social
Disposi-
dons

Domains
Data Source

late Ili- a Peer Campbell and
gence Ratings Fiske (1959)
Effort b Objective

Measures
Intern- a Memory
gence b Compre-
Mental hension
Alertness c Vocabu-

lary
Popul-azity a Sociometr.

Self
Rating

Expansive- b Rating by
ness Others

c Observed
Group In-
teraction

d Observed
Role
Playing

Cigarette a Semantic Jaccard,
Smoking Differen- Weber, and
Capital tial Lundmark (1975)
Punish- b Likert
ment Scaling

c Thurstone
Scaling

d Guilford
Scaling

Community Panels of
Leadership a 17 School
Educa- Leaders
tional h 20 Organi-
Leadership z ation

Campbell and
Fiske (1959)

Campbell and
Fiske 1959)

Heads
c 19 Popu-

lar Judges
d 196 Heads

of House-
holds

Summers,
Seiler, and
Wiley (1970)
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Table 12Continued

Name, Trait-
Conception

Size
Traits Methods

Attitudes 3 2 57
to Authority 1
(Burwen and 2
Campbell) 3
Attitudes--Drives in 2 50 1
Rats 2
(Anderson) 3
Drives
Involvement 96
Components
(Arora)
Attitudes 2

3

Job 149 1
Behavior
(Dickinson
& Tice) 2
Social 3
Disposi-
tions

Three 105
Attitudes
(Flamer, 1
Sample 1)
Attitudes

2
3

Three 105
Attitudes
(Flamer,
Sample 2)
Attitudes

2

41

Do _ns
Traits
Attitudes
To father
To boss
To peer

Hunger
Thirst
Sex

Involvement
Situa-
tional
Enduring
Response

Getting
along with
cv.hers
Dedication
Ability to
apply
learning

Attitude
Towards
Disci-
pline of
children
Mathematics
The law

Methods

a Interview
Check
List

Obstruc-
tion Box

b Activity

Data Source
Campbell and
Fiskc 1959)

Campbell and
Fiske (1959)

Rating Scale
a Stapel

Likert
c Semantic

Differen-
tial

Arora (1982)

Peer
Nominations

b Peer Check-
list
Ratings
Self Check-
list
Ratings
Likert
Scales
Thurstone
Scales

c Semantic
Differ-
ential

Dickinson
Tice (1973)

Fla 1983)

Attitude
Towards
Disci-
pline of
children
Mathematic
The law

a Likert
Scales

b Thurstone
Scales

c Semanti
Differ-
ent al

Flame
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Table 12Con utued

Name, Trait-
Conception
Stress
Measures
(Karst and
Most)
Arousal
States

Traits Methods Traits
0 Stress

1 Antici-
patory

2 During
Perform-
ance
Post Per-
formance

Methods Data Source
General Karst and
Self Rat- Most 1973)
ings

b Anchored
Self
Ratings
Finger
Sweat
Print
Ratings by Law

a Superiors
b Peers

Seli

Job Per-
formance
(Lawler)
Social
Disposi-
tions

Moral
Dilemma
(Shepherd)
Beliefs and
Attitudes
Attitudes to
Contracep-
tives
(Kothanda-
pani)
Attitude
Components

C.uality
of job
perform-
ance

2 Ability to
perform
job

3 Effort put
forth en
the job

487 Morality
1 Negative

Positive
Achievement
of

r P67

Three Shepherd (1977
different
test forms

00 Attitude
Components

1 Affective
Behavioral
Cognitive

Kothandapani
a Thurstone (1971)

Scaling
b Likert

Scaling
c Guttman

Scaling
d Guilford

Scaling
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Table 12Cantinued

Name, Trait-
Conception
Attitudes to
the Church
(Ostrom)
Attitude
Components

Size
rlYaits Methods

4 189

Domains
Traits
Attitude
Components

1 Affective
2 Behavioral
3 Cognitive

Methods Data Source

Drug Use
Reports
(Stacy
et aL)
Social
Behavior

1 0 Alcohol
2 Marijuana
3 Nicotine

Clinical
Clerkships
(Boodoo)
Social
Disposi-
tions

136
1 Pediatrics
2 Internal

Medicine
3 Surgery

Personality
Traits
(Kelly and
Krey)
Social
Disposi-
tions

4 11 Social Traits
1 Courtesy
2 Honesty

Poise
School
Drives

Thurstone
Scaling

b Likert
Scaling

c Guttman
Scaling

d Guilford
Scaling

Ostrorn (1969

a Self
Rating

b Self
Intake
Report

c Peer
Rating
Peer
Intake
Report
Teacher Ra

a Skills
b Problem

Solving
c Relation-

ships
d Knowledge
e Attitude

a Peer
Rating

b Associa-
tion
Test

Stacy et oL
(1985)

--s Boodoo
(1985)

Campbell and
Fiske (19C9)

43
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Name, Trait-
Conception
Desability
and Frequen-
cy Ratings
of Personal-
ity Traits
(Jackson and
Singer)
JusiwTnents
on Person-
allty Traits

Traits

Table 12Continued

Size
ethods

4 480

Interactior
Process
Variables
(Borgatta)
Social
Behavior

125

Guilford-
Martin
Factors
(Carroll)
Personality
Disposi-
tions
Clinical
Assessment
(Kelly and
Fiske)
Social
Traits

110

124

Domains
Traits Methods Data Source

1

2
3

4

Judgments on
Personality
Traits
Feminity
Anxiety
Somatic
Complaints
Socially
Deviant
Attitudes

a

b

d

Desirable
in Seff
Desh-able
in Others
What
Others
Find Desir-

Pi-equency
of Occur-
rence

Jackson (1975)

able

Harmful-
ness

Social Behavior Campbell and
1 Shows Sol-

idarity
a Free

Behavior
Fiske (1959)

2 Gives Sug-
gestion

b Rols
Playing

3 Gives c Projective
Opinion Test

4 Gives Orien-
tation

5 Shows Dis-
agreement

1 S a Inventor/ Campbell and
2 T b Self Fiske (1959)
3 D RatLug
4 C c Peer
5 -R Rating

1 Assertive a Staff Campbell and
2 Cheerful Rating Fiske (1959)
3 Serious b Teammate
4 Unshakable Rating

Poise Self
5 Broad Rating

Interests
44 45
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