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INTROBUCTI

should know not only something about the development of pure mathematics
&% but also something about its applications. Several years ago NASA, recog-
1izing the appeal of aerospace activities, initiated and supported the development
of curriculum supplements for several high school courses. Because attainments in
aerospace would not be possible without mathematics, it was most appropriate
that z supplementary publication dealing with space activities be prepared for

teachers of mathematics.

E%gh School mathematics teachers have long been aware that their students

The first mathematics curriculum supplement, Space Mathematics, A Resource for
Teachers, vsas published in 1972. One of the most popular and oft-requested of the
supplements, the book has been unavailable for several years. This volume up-
dates the earlier work. We hope that a new generation of students will become

more interested in mathematics as the result of seeing some of its significant appli-
cations in recent and current space projects. Working problems such as thoze in
this book should enhance both the mathematical knowledge and skills of students
and their appreciation and understanding of aerospace technology and achieve-
ments.

NASA’s Technical Monitor for this project was Muriel M. Thorne, Educational
Programs Officer, under the general direction of William D. Nixon, Chief of Edu-
cation Services, NASA.

September 1985
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Space Mathematics, A Resource Jor Teachers was published by the Educational

In 1972, a collection of mathematical problems related to space science entitled
Programs Dlvmﬁn of the Natlonal Aemnauucs and Spaf:e Admmlstratmn

;.,m: materxals espec‘:ially in the llght of anothgr twelve yésrs of actlwty in
spaze exploration. This inierval has been a pérlod of muf:h progress in both thé
scnence and tbe téchnalogy

The basic format of the original publication has been retained, as well as many of
the classical problems and those which coniplemented the new material. In devel-
oping the examples and problems pressnted here, we have aimed at preserving the
authenticity and significance of the original setting while keeping the level of math-
ematics within the secondary school curriculum. The problems have been grouped
into chapters according to the predominant mathematical topic. Within each chap-

ter we have attempted, as far as possible, to group problems involving similar
themes. There is a wide range of sophistication required to solve the various prob-
lems. Since this is a resource book for teachers, we have assumed that the reader
will be interested not only in problems that can be brought directly into the class-
room, but also ir: those that, although keyond the current level of their students,
will increase the teacher’s own awareness of some of the interesting appl;catmns of
mathematics in the space program.

Perhaps the most valuable potential of a collection such as this lies in its ability to
convey a sense of how secondary school mathematics is actually used by practicing
scientists and engineers. Attitudes and approaches may thereby be fostered, on

the part of teachers, that can help students to be more insightful users of the
mathematics they learn. The present school mathematics curriculum, for example,
gives no hint that many real-world problems do not have anaiytic solutions in
closed form but may nevertheless be satisfactorily “solved” by using carefully cho-
sen approximations or the numerical methods made possible by modern computers.

In this connection, we stress that in order to use numerical analysis correctly or to
make good approximations, it is necessary to know something of the theoretical
background of the subject and to understand the concepts of precision and accu-
racy 1nd the use of significant digits. Also, methods that reveal meaningful aspects
of a procedure are preferable to purely algonthmu‘: prescriptions; the perhaps un-
familiar “factor unit” method of unit conversion presented in Chapter 2 is actually
quite commonly used in science and engineering. It not only removes a!l uncet-
tainty about whether to multiply or divide by a conversion factor but also is far
more likely fo contribute to an understanding of the underlying concepts than, for
example, the more usual metric system algorithm expressed in terms of “moving”
the decimal point.
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aware of the rapid development of space science, We realize that the spec-

tacular achievements of the space program have depended heavily on mathe-
matics—mathematics that is generally complex, advanced, and well beyond the
level of most secondary school curricula. Even though this perception is valid,
there are many significant aspects of space science that can be understood using
only high school mathematics.

Taachers of mathematics, like most adults in today’s world, can hardly fail to be

The exploration of space naturally uses the tools and techniques of astronomy.
Astronomy in turn is gaining much new information as a result of sending sci-

entific probes and satellites beyond Earth’s atmosphere. Because astronomy has
stimulated the growth of many of the concepts and methods of mathematics, the
high school teacher will find here much that is familiar. However, in some in-
stances the way mathematics is used to solve real-life problems is rather different
from methods emphasized in school courses.

In this opening chapter, we shall examine several recent achievements of the
National Aeronautics and Space Administration and identify mathematical ideas
and questions that may be of interest to high school teachers and students. When
appropriate, we will refer to a problem illustrating some aspect of the subject
and worked elsewhere in the book.

The Space Shuttle

The Space Shuttle (Fig. 1.1) is a true aerospace vehicle—it takes off like a rocket,
operates in orbit as a spacecraft, and lands like an airplane. To do this takes a
complex configuration of three main elements: the Orbiter, a delta-winged
spacecraft-aircraft, about the length of a twin-jet commercial airliner but much
bulkier; a dirigible-like external tank, the only expendable element, secured to the
Orbiter’s belly and containing two million liters of propellant (Chapter 4, Prob-
lem 5); a pair of reusable solid rocket boosters, each longer and thic'zer than a

railway tank car and attached to the sides of the external tank.

Each Space Shuttle is meant to be just one element in a total transportation
system linking Earth with spac... {n addition to providing for continued scientific
investigations by transporting such systems as the Spacelab and the Large Space
Telescope, recently renamed the Edwin P. Hubble Space Telescope, into orbit
(Chapter 3, Problem 4), the Space Shuttles are also expected to carry the build-
ing blocks for large solar-power space stations or huge antenna-bearing structures
for improved communication systems (Chapter 4, Problems 9 and 10). Structures
that would be too fragile to stand up under their own weight on Earth will be
folded up in the Shuttle’s cargo bay and assume their firal shapes in the micro-
gravity environment of space. The Shuttle will also be capable of carrying a work
force of seven people and returning them home after the completion of their work.

10



___Mathematical Aspects of Some Recent NASA Missions

One of the most basic mathematical problems raised by the launching and control-
ling of a Shuttle or any other spacecraft is that of describing its motion. This
problem requires the ability to specify the position of the spacecraft’s center of
mass and its attitude (orientation) and to describe changes in both during flight.
The specification of position and attitude can be accomplished by setting up suit-
able coordinate systems (Chapter 7, Probiem 10). Instruments to determine a
spacecraft’s attitude are most effectively referenced to a spacecraft-based coordi-
nate system, whereas ground control is best accomplished in terms of an Earth-
based system. This dual-based system necessitates transformations between
coordinate systems (Chapter 7, Problem 1, and Chapter 8, Problem 2).

Describing a change of position and attitude requires an understanding of the
measurement of time (Chapter 2, Problem 11). It is interesting to note here that
our definition of a day on our rotating Earth must be redefined for a Space Shuttle
Orbiter crew. For them the Sun might rise again and again every hour and a half!

The Planetary Probes

The launch of the two Voyager spacecraft in the summer of 1977 climaxed a series
of fruitful missions of planetary exploration including the Mariner, Viking, and
Pioneer series of probes to Mercury, Venus, Mars, Jupiter, and Saturn. All these
missions sent back new information about the structure and composition of these
planets and their associated moons. We focus in this book on some of the results
of Voyager 1 and Voyager 2. These probes, which benefited from more highly
developed instrumentation and computer capability than their predecessors,
approached closer to Jupiter (Chapter 7, Problem 11) and Saturn than previous
flights did. Stunning pictures resulted, showing the unanticipated presence of
active volcanoes on Jupiter’s moon Io (Chapter 10, Problem 6) and the fine

1. Transmitting spacecraft observations back to Earth (Chapter 5, Problems 2
and 3, and Chapter 8, Problem 1).

2. Determining the time of transmission of spacecraft observations (Chapter 3,
Problem 5).

3. Calculating the rotation period for planets such as Saturn, which is not solid
and has no outstanding observable features like Jupiter's Great Red Spot (Chapter
2, Problem 13).

i1
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Chapter One

Satellites

NAFSA began its formal existence in 1958 and by the end of 1979 had successfully
launched more than 300 large and small satellites with missions as diverse as
vbserving Earth’s weather (Synchronous Meteorological Satellite [SMS] series) and
resources (Landsat series), providing communication links for television signals
(Applications Technoiogy Satellite [ ATS] series), and measuring solar radiation out-
side Earth’s atmosphere (Orbiting Solar Observatory [OSO] series).

The design of these satellites and their experiments and the analysis of the data
gathered invelve a variety of mathematical questions. We shall consider sorne of

1. The connection between the conic sections and the law of gravitation
(See Appendix).

2. For elliptic orbits, the connection between the orbit parameters and the period
of revolution (Chapter 9, Problem 11) and the determination of the exact posi-
tion of a satellite in its orbit at a specified time (Chapter 9, Problems 19 and 20).

3. The geometry necessary to correct for distortions arising when flat pictures
are made of a curved Earth (Chapter 7, Problems 7 and 9, and Chapter 10,
Problem 2).

4. The need for logarithms to undcrstand how radiation is absorbed by Earth’s
atmosphere (Chapter 6, Problem 3),

5. The mathematical analysis of the reflective properties of the conic sections
needed to design an X-ray telescope (Chapter 9, Problems 21 and 22).

6. The judicious use of approximation (Chapter 3, Problem 8; Chapter 4,
Problems 6 and 8; Chapter 7, Problem 6; Chapter 9, Problem 22).

12
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A photograph of the planet Jupiter made
from images obtained by Voyager 1 on Feb-
ruary 5, 1979, showing the Great Red Spot
and three of Jupiter's four largest satellites:
lo (in front of Jupiter), Europa (brightly Iit, to
the right), and Callisto (barely visible at the
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Chapter Two

pace science is based on a mathematical description of the universe. This

mathematical desc ptmn is in turn based on defining physical quantities

clearly and precisely so that all observers can agree on any measurement of
these quantities. Every measurement has two parts: a number and a unit, In
mathematics, we tend to focus on the numbers and assume that the units are taken
care of; but in scientific work, units receive careful attention through a proce-

dure knowr: as dimensional analysis. which is illustrated in the first problem.

Among the physical quantities used to describe the universe, some are considered
fundamental quantities whereas others are derived quantities, comparable to the
designation of definitions and undefined terms in a mathematical system. Although
it does not really matter which particular quantities are the ones designated as
fundamental, the most common are length, mass, and time. In scientific work the
two major systems of units for these quantities are the mks (meter-ki ilogram-
second) and the cgs (centimeter-gram-second). Every measurement is a cOmpari-
son with the standards that are universally accepted as definitions of these funda-

mental units. In astronomy and space science, where large distances are common,

the meter and even the kilometer are too small to be convenient; in Problems 5,
9, and 10 of this chapter, we show how more suitable units for length are defined.

U

Dimensional analysis (manipulation of units according to the rules of algebra) is
the procedure used to ensure consistency in the definition and use of units. For

-

example, since force is, by definition, the product of mass and acceleration, mea-
sured respectively in kg and m/'s” in the mks system, the unit of force in thls
system must be equivalent to lcg m/s’. A new term, the newton, was created to
describe the unit of force: 1 newton = 1 kg - m/s%

PROBLEM i. Newton’s law of gravitation, one of the most important ideas in space science, states
that the force of gravitational attraction bétween two bodies of masses M, and M,
is proportional to the product of the two masses and inversely proportional to the
square of the distance R separating the two masses. If G is the constant of pro-
portionality, called the universal gravitational constant, this law can be stated in

GA;ZM’ What must be the unit for G in the mks system?

symbols as F =

Solution: Using dimensional analysis, we equate the known units in accordance with the
relationship above without worrymg about the numbers. then solve algebraically
to gett

get the unknown unit. This gives

5

(unit for G) (kg) (kg) (m)~*

newton

or (unit for G) = (newton) (m)? (kg) 2

(kg msec™) (m)? (kg)~?

m* kg~! sec’,

e,
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PROBLEM 2.

Solution:

Solution:

We know that in a circle of radius r. if an arc of length s subtends an angle ¢ and #1s
measured in radians, then s = rf. Show that the radian is essentially dimension-
less (i.e.. an angle of 7/4 radians is just the real number w/4).

Since r and s are both lengths. in the mks system they will both be measured in

AL

meters. Froms = rfwe have § == = m" Since the units cancel, #is

dimensionless.

Scientific theories and technological development both require accurate mea-
surements. Since every measurement is an approximation, an important aspect of
scientific and technical work is the analysis of experimental error and the control
of the propagation of error when computations are made using measured quan-
tities. The use of computers to solve complex problems by numerical methods
has made error analysis even more important because computers approximate real
numbers using finite decimals. Moreover, computers represent numbers inter-
nally using a floating point binary representation. Even though it is not really
necessary to understand the binary numeration system to work with computers,
such knowleauze is essential to the analysis and control of error propagationin
computational work. The next problem considers the floating point binary repre-
sentation of our familiar numbers.

The binary (i.e., base two) representation of a number u<es only two digits, 0 and 1.

and the appropriate power of 10 according to the position of the digit with respect
to the decimal point, in base two the value of a digit is the product of its nom-

inal value and the appropriate power of 2. So, for example, the binary number
10011 has the value that we represent in base tenas 1 X 2 + 0 x 2° + 0 x 2° +
1x2'+1x2"0rl16 + 2+ 1 = 19; the binary number 10.011 is the same as the
decimalnumber 1 X 2' + 0 x 2"+ 0x 27"+ 1 x 27+ 1x27% or2+0.25 +
0.125 = 2.375.

a. Determine the binary representations of the decimal numbers 625, 6.25. and
0.0625.

625 can be written as the sum

5124+ 64+ 32+ 16+ 1 =242+ 254 24 4 20

s0 625,.,, = 1001110001,

6.25 can be written as the sum

]
N
+
L
+
.

4+ 2+

P
|

50 6.25,0 = 110.01,,.

ten

0.0625 = —— = ; =27

n
o
(o)
[
]
=

z

50 0.0625,,, =

15 " "

gt
”
[



Chapter Two _

b. Show that it is impossible to represent the decimal fraction 0.2 exactly in a finite
binary code.

Solution: 0.2 = 2/10 = 1/5. To express this in binary notation, we must write 1/5 as a sum of
unit fractions, each having some power of 2 as denominator. Since 1/2%is the
largest such fraction smaller than 1/%. ‘ve begin by finding the difference:

8—5_ 3
5.2

=
‘t’ﬂ‘u H -

i

2
Now the largest unit fraction less than 3/(5 - 2*) with a power of 2 as denominator
is 1/2%, so we next find the difference:

3

5-2

6 —

i

1

5.2 5.2

This means that 1/5 = 1/2* + 1,/2* + (1/2%) (1/5). Since the fraction 1/5 has re-
curred, multiplied by 1/2*, we see that the first four digits we have found to the
right of the binary ‘‘decimal point,* 0.0011, will repeat continuously. In other
words, 0.2, = 0.0011,.,. (A quicker but less intuitive approach to finding this
representation is to express 1/5 as the binary fraction 1/101 and then divide 101
into 1, using binary arithmetic.)

Ll
ﬂ‘“ﬂ ‘” —

The reader can use the method of part (b) to show that the decimal fractions 0. 1.
0.3,0.4.0.6,0.7, 0.8, 0.9 also have infinitely repeating binary representations.

In this system, every number is expressed in the form 0.dd;...d, x 2™, where

dy=1,d=0orlfori=2,3,...,n,and mis aninteger. For example, the
floating point representations of the numbers in part (a) would be

¢. Almost all computers use a floating point binary representation for numbers.

625 = 0.1001110001 x 2'°
6.25 = 0.11001 x 2°
0.0625 = 0.1 x 272

Different computers have differing capabilities both with respect to the length (n)
of the string of 0’s and 1’s that can be stored for any single number and with
respect to the exponent m that can be stored. The limits available for n and m
determine the largest and smallest number a computer can represent and also

the size of the errors that must result when a number with an infinitely repeating

representation must be stored with only a finite string length availablc,

If a certain computer can store only an eight-digit string (n = 8), then the repre-
sentation for the decimal fraction 0.2 will be stored as 0.11001100 x 2-2. What
number is this, and what is the difference betwee: this number and 0.27

18

ERIC

Aruitoxt provided by Eic:



E

_ Computation and Measurement

O

RIC

Aruitoxt provided by Eic:

Solut

1011z

0.11001100 x 272 =

We now state two definitions used in error analysis. These definitions can be
applied to both measurement errors and the errors that arise because of the way in
which numbers are represented in computers. It is probably worth noting in this
context that the term measurement error as used here does not imply that the
measurement has been carelessly made but rather refers to the fact that every
measuring instrument is limited in accuracy and can never provide more than an

estimate of a true value.

Let X7 be the true value of a specified quantity, and let X be the value of this

]
mw,
=
.
<
I+
e
-
k]
Wi
k|
=
i

Observe that absolute error has the same units as the quantity under considera-
tion, whereas relative error (usually reported as a percent) is dimensionless.

The relative error is considered to be the indicator of how good a measurement

or any other approximation is. For example, a measurement of 2.5 mm with a
0.05 o

55 - or . percent,

possible absolute error of 0.05 mm has a relative error of

whereas a measurement of 1230 km, with a (much larger) possible absolute error
of 5 km has a much smaller relative error QFT—{ﬁ .or{).4 percent. Awareness of

the appropriate tolerance for relative error is a vital ingredient of scientific work.

-
i
oot 1
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PROBLEM 4. What ars the absolute and relative errors if a computer that has an eight-bit binary
digit string represents 0.2 as 0.11001100 x 272

Solution: From Problem 3c, the absolute error is 1/1280, or about 0.0008. The relative
error = 0.0008/0.2 = 0.004, or 0.4 percent.

The use of significant figures is helpful in error analysis. The number of signifi-
cant figures is defined as the number of digits that can be assumed to be correct,
starting at the left with the first nonzero digit, and proceeding to the right. By
this definition, 10.62, 0.05713, and 4.600 all have four significant figures. A num-
ber such as 4300 is ambiguous. This ambiguity may be resolved by using scientific
notation, since we may write ihe number as 4.3 x 10%, 4.30 x 10°, or 4.300 x 10°
according to whether the number has two, three, or four significant

figures, respectively.

When approximate numbers are added or subtracted, it can be shown that the
absolute error in the sum or diffcrence could be as large as the sum of the abso-
lute errors of the individual numbers. When approximate numbers are multiplied
or divided, it can be shown that the relative error of the result could be as large
as the sum of the relative errors of the individual numbers. This means that for
sums and differences of approximate numbers, the number of decimal places
considered significant can never be greater than the number of decimal placesin
the least precise addend. For products and quotients, the number of significant
figures can never be more than the smallest number of significant figures in the
individual factors. Wherever appropriate, numerical results will be given in
accordance with these guidelines,

M 5. Earth’s orbit around the Sun is elliptical, but in many cases it is sufficiently accurate
to approximate the orbit with a circle of radius equal to the mean Earth-Sun dis-
tance of 1.49598 x 10° km. This distance is called the Astronomical Unit AL,
Listed in the chart that follows are actual Earth-Sun distances, given to five sig-
nificant digits, on the first day of each month of a representative year. (The Ameri-
can Ephemeris lists daily distances and the actuaj times for these distances to

seven significant digits.)

PROB]

=

Date Distance (x10" km)

1 January 1.4710
1 February 1.4741
1 March 1.4823
1 April 1.4949
1 May 1.5073
1 June 1.5169
1 July 1.5208
1 August 1.5183
1 September 1.5097
1 October 1.4977
1 November 1.4848
1 December 1.4751

distance as though the orbit were circular?

a. To how many significant digits is it reasonable to approximate the Earth-Sun

20 N
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Solution:

Solution:

Solution:

To two significant digits, each of the distances in the table can be given as
1.5 x 10° km.

b, What are the largest possible absolute and relative ¢..u1. in using the Astro-
nomical Unit as the Earth-Sun distance in a computation instead of one of the

distances from the table?
(1.49598 — 1.4710) x 10* = 0.0240 x 10" km (smallest table value)
(1.49598 — 1.5208) x 10° = —0.0248 x 10° km (largest table value)

absolute error = 0.0248 x 10°km
relative error = **— = 0.0166, or 1.7 percent.

The procedure of dimensional analysis, described earlier, is easily adapted and
commonly used in science and iechnology for the task of unit conversion. Recall
that in dimensional analysis the units are manipulated in accordance with the
rules of algebra.

Suppose we wish to change a length of 623 cm to meters. The adaptation of dimen-
sional analysis for unit coversion involves multiplication by aﬁicmr unit chosen
according to the following s;mplé principles: the factor unit is a fraction with a
value of 1, whose numerator is expressed in terms of ihe unit we wish to have and
whose danommator is expressed in terms of the unit we wish to change. Since

100 cm = 1 m, in order to change 623 cm to m, we perform the multiplication

623 cm 1m
=

— — , “‘canceling’ the cm in numerator and denominator to get
1 100 cm -

623/100 m, or 6.23 m.

More complex conversions can be done using multiplication by several factor
units and those readers wishing to convert between British and metric units can
also use this method. For example, the speed of light, 3.00 x 10° km/sec, can be
found in miles per hour:

3.00 X 10° km  1mile _ 60sec 60 min
1 sec  1.61km°~ 1min ~ 1hour

N
m
\.'Il
—_
*
—_
=

i
3
o
“
-]

1]

-t

=
o]
=
=

The deep space probe Pioreer 10 took 21 months to get from Mars to Jupiter, a
distance of 998 million kilometers. Use the factor unit technique to find its aver-
age speed in kilometers per hour during that period.

e eman] - diStance
average speed = time
998 x 10°km _ 12 months , _1lday
21 months 365 days 24 hours

x 10* km/h, or about 65 000 km/h

b
—

- 6.5
19
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PROBLEM 7. a. Recall that the Astronomica! Unit (Earth-Sun distance) discussed in Problem 5 is
1.4¥6 x 10 km., to four significant figures. Find the Earth-Sun distance inn miles
to three significant figures.

Solution: 1 AU = 1.496 x 10°km

_ 1496 X 10°km 1 mile
1 ~ 1.61 km

= 9.29 x 10’ miles (almost 93 million miles)

b. The chart that follows gives the mean distance in kilometers of each planet in
the solar system from the Sun. Kxpress these distances in AU, using a suitable
number of significant digits.

Planet Distance (km x 10%)

Mercury
Venus
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

iy
~~d
L=

e ~d o

wbhoo ke = O
— N L g b

L

Solution:  Since each distance in the table has three significant digits, and the factor unit

1,49759184?:]1@“ o has an exact number in the numerator and six significant digits

in the denominator, the distances in AU can be given to three significant digits.
Multiplying by the factor unit shown gives the foliowing distances in AU:

Mercury 0.387

Venus 0.722

Mars 1.52

Jupiter 5.20

Saturn 9.56

Uranus 19.2

Neptune 30.1

Pluto 39.5

PROBLEM 8. The Solar Maximum Mission (SMM) satellite orbits Earth at a height of 560 km. In
many computations, the Earth-Sun distance of 1.5 x 10® km is used to approxi-
mate the distance of SMM from the Sun. What is the maximum relative error of
this approximation?

Solution:  The distance of SMM from the Sun is contained within the range (Earth-Sun
distance = (Earth diameter + 560 km)), or (Earth-Sun distance + 6930 km).
From Problem 5, if 1.5 X 10® km is used as the Earth-Sun distance, the absolute
error =2.48 x 10°km. 6930 km is much smaller than th's €rror, so that the abso-
lute and relative errors incurred in using 1.5 x 10* km as the SMM-Sun distance
are the same as those of part (b) of Problem 5. If greater accuracy is required, it

20
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will be necessary to use daily Ephemeris values such as those in the listing given in
Problem 7. In this event, it is still true that since 6930 km < 7 x 10° km, the
relative error in approximating the SMM-5Sun distance with the Eazth-Sun
- . 7

distance < =19 = 4,67 x 10-*, or about 0.005 percent.

1.5 x 10
The Astronomical Unit (AU), although useful for measuring distances within the
solar system, is too small to be convenient for distances to stars. We shall therefore
consider two other units of length used by astronomers. The first is called
the light-year.

PROBLEM 9. The light-year is the distance travel~d by light during one Earth year. To three sig-
nificant digits, the speed of light is 3.00 x 10% km/s. Find the length of the light-
yearin km and in AU.

65.25 x 24 % 60 % 60 seconds. In one year. light

4 x 60 x 60 km = 9.47 x 10" km. To express this

1ay , 4

Solution: 1 Earth year = 365.25 days
travels 3.00 x 10% x 365.25

|
Bk

s
distance in AU, 1 light-year = 9.47 x 10" km X

The parsec is the astronomical unit of distance that relates to observational mea-
surements. In order to define this unit, we must consider the fact that when we
observe the heavens, we have no direct perception of depth or distance. A useful
model dzveloped to portray the heavens is the celestial sphere. In this model,
Earth is surroundad by an imaginary sphere with infinite radius. A coordinate
system, similar to latitude and longitude, is imposed on the celestial sphere by
projecting Earth’s rotation axis on the sphere to identify the celestial north pole
(CNP) and celestial south pole (CSP) as shown in Fig. 2.1. Since the radius of the
celestial sphere is infinite, all parallel lines point to the same spot on the sphere,
and so every line parallel to Earth’s rotation axis also points to the celestial north
and south poles.

great circle called the celestial equator. Now a system of small circles of declin-
ation (8), comparable to latitude ciicles on Earth, is imagined on the celestial
sphere, and a system of great circles called right ascension (o) circles, comparable
to longitude, passing through the two poles, completes the coordinate system
(Fig. 2.2).
Celestial north pole:
5= +o0°

Fig. 2.2

. elestial equator: § = 0° .
cse gi 4 Vernal equinox

23
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Every star or celestial object can now have its position identified by the ordered
pair (c. 8). Because Earth rotates with respect to the celestial sphere. the time of
observation must also be known in order to use the coordinate system. Differences
in the positions of two objects on the celestial sphere are expressed in terms of

the angle subtended at Earth by the arc joining these points.

As Earth revolves around the Sun. very distant stars show no discernible changes
in position, but closer stars will show apparent motior with respect to the celes-
tial sphere when viewed from different points in Earth’s orbit. as shown in Fig. 2.3.
This apparent motion is called parallactic motion, and the change in position is
called the paraliax angle. In thic context, 1 parsec is defined as the distance at
which the radius of Earth’s orbit subtends an angle measuring 1 arc-second

(see Fig. 2.4).

L T T 66°00°05"

AL 6O
12P00™ 00", 5 12R00%00,0

PROBLEM 10. a. Find the length to three significant digits of 1 parsec in terms of AU, km
and light-years.

Solution: If 6 is in radians. we have arc length = r6, where r is the distance expressed in the
same units as the arc length. In this case. arc length = radius of Earth's
orbit = 1 AU.

8 = 1second = L degree 1 degree _m radians_
"EONT T 3600 U8 3600 ~ 180 degrees

Since we want three significant digits in our answer, let us use 7 = 3.142 in
this computation:

rad = 4.85 % 10°°

(We have omitted rad, since the radian is really dimensionless. (Problem 2,
this Chapter))

24 L ]
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Solution:

Then

arc length 1AL ) e
— o = 2.06 X 10° AU
[ 4.85 x 107" )6 x 107 AL

In terms of km, r = 2.06 x 10° X 1.50 x 10*km = 3.09 x 10" km. Since 1 light-

i e o 1 light-year -
year = 6.31 x 10° AU, 1 parsec = 2.06 X 10° AU x E%{j = 3.26 light-

years.

b. In general, if p is the parallax of a star and d its distance from Earth, then

d (in parsecs) = ————— —— . The parallax of our nearest star, a Centauri,
' p (in seconds of arc) *

is 0.75 seconds, and the parallax of Sirius, one of the brightest stars in the north-

ern sky, is 0.38 seconds. Find the distances to these stars in parsecs and in km.

For a Centauri,

[

d = —== parsecs

1
0.75 F 1.3 parsecs

1.3 x 3.09 x 10" km

It

=4.1x% 10° km.

For Sirius,

R
Il
=
) L

= parsecs = 2.6 parsecs

2.6 % 3.09 x 10" km

= 8.1 x 10" km.

The accurate measurement of time has been one of the most challenging prob-
lems in human history. We now tend to take for granted the civil time-keeping
system in general use. This system has evolved over many centuries and from

time to time has been substantially revised. The original definitions of day, month,
and year depended, respectively, on observations of the periodic motions of the
Earth, Moon. and Sun with respect to the celestial background as observed from
Earth. Since all these motions have fluctuations in their periods, it is not possible
to define a completely regular unit on which to base an accurate time measurement
in terms of the day, month, or year.

The first time-keeping instrument that did not depend on celestial observation
was the pendulum clock. It did, however, depend on the Earth’s gravity, which
varies with geographic location and the positions of the Sun and Moon. The
sccond, originally defined as m of a day, more recently has been
redefined in terms of the microwave emissions of certain atoms (e.g., quartz
crystals). This new definition provides a uniform standard with which to measure

intervals of time.
23 25
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PROBLEM 11.

Solution:

Solution:

0

ution:

a. One of the serious problems of the old nonuniform time units was the accumu-

tive error of m .or about 1 X 10%) would be sufficient for most tech-
nical or scientific purposes. Show that an error of 1 second a day could result in
an error of 1.1 X 10* km in the position of the Earth in its orbit after only 1 yezr.
(Assume Earth’s orbit is circular with a radius of 1.5 x 10" km.)

In one year the error could be 365 seconds. Earth moves through an angle of
27 ) 2w
365 X 24 x 60 x 60 24 x 60 x 60 U

onds. The length of arc that subtends this angle in a circle of radius 1.5 x 10° km is

_ ;211‘ . i A e s
2AX 60 x 60 11X 107km.

radians in one second, or

s=rf =1.53% 10F %

b. The tropical year is defined as the time difference between successive vernal
equinoxes—in other words. the time it takes Earth to complete one revolution
around the Sun. This time does not have a simple relationship to Earth’s rotation
period (the day). In fact, it turns out that to the nearest second one tropical year is
365 days, 5 hours, 48 minutes, 46 seconds. Show that the current system of

adding an extra day to each calendar year that is a multiple of 4 but not a multiple
of 100 (leap years) serves to give each calendar year an integral number of days
and also keeps the seasons constant with respect to the calendar.

If a calendar year has 365 days, the excess time in a tropical yearis 5 h 48 m 46 s, not
quite 1/4 day. Multiplying this excessby 4,4 x (5h48 m46s) = 23 h15m 4s,
almost 1 day. If we add 1 extra day each 4 years, we will create a deficit of

24h ~ (23h 15m4s) = 44 m 56 s for each leap year. In each 100 years, there are
25 years that are multiples of 4; however, after 24 leap years, the deficit will accu-
mulate to 24 X (44 m 56s) = 17 h 58 m 24 s, almost 3/4 day. This will almost
balance the excess accumulation for the remaining 4 years of the century, so that
years that are multiples of 100 should not be leap years. It is clear that further
juggling will be necessary, since things never balance exactly.

¢. For some computations in astronomy and space science, it is necessary to have
an absolute time that is a continuous count of the number of time units from

some arbitrary reference. The universally accepted standard is the Julian Day Cal-
endar, a continuous count of the number of days since 12:00 noon on 1 January
4713 B.C. This curious starting date was actually chosen in A.D. 1582 by consid-
ering the cycle that is the least common multiple of the 28-year solar cycle (the
interval required for all dates to recur on the same day of the week), the 19-year
lunar cycle (the interval containing an integral number of lunar months), and the
15-year indiction (the tax period introduced by the Roman emperor Constantine
in A.D. 313). The year 4713 B.C. was the most recent date prior to 1582 when
these cycles coincided, and it had the added advantage of predating the ecclesiasti-
cally approved date of Creation, 4 October 4004 B.C. How long is the Julian day
cycle, and when is the next year when all three of the cycles used in its creation
will coincide?

The least common multiple of 28, 19, and 15 is their product, since these numbers

have no prime factors in common. 28 X 19 x 15 = 7980, so the next year the
cycles coincide will be (=4713) + 7980, or A.D. 3267.
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Solution:

d. A clever computer algorithm for converting calendar dates to Julian days was
developed using FORTRAN integer arithmetic (H. F. Fliegel and T. C. Van
Flandern, **A Machine Algorithm for Processing Calendar Dates,” Communica-
tions of the ACM 11 [1968]: 657). In FORTRAN integer arithmetic, multiplica-
tion and division are performed left to right in the order of occurrence, and the
absolute value of each result is truncated to the next lower integer valuc: after
each operation, so that both 2/12 and —2/12 become 0. If / is the year, J the nu-
meric order value of the month, and K the day of the month, then the
algorithm is

JD -

K — 32075 + 1461 * (I + 4800 + (J—14)/12)/4

+ 367 * (J=2—(J —=14)/12*12)/12 = 3 * ((I + 4900 + (J—14)/12)/100)/4.

thlS algonthm to fmd thz Jullan dates of the lauru:h Df Expl-:prer 1 (thg first U.S.
satellite placed into orbit), Greenwich Mean Time 1 February 1958 (Eastern
Standard Time January 31, 1958), and the launch of the seventh Space Shuttle on
18 June 1983 (carrying the first American female astronaut, Sally Ride, into orbit).

For 1 February 1958,7 = 1958,J =2, K = 1.

JD =1 — 32075 + 1461+(1958-+4800+(2—14)/12)/4

+ 367+(2—2—-(2—14)/12%12)/12 — 3»((1958+4900+(2—14)/12)/100)/4

1

32075 + 1461+6757/4 + 367+(1%12)/12 — 3+(6857/100)/4

1 — 32075 + 2467 994 + 367 —~ 51 = 2436236

For 18 June 1983, 7 = 1983, J

6, K = 18.

Vomes
w]
lh

18 — 32075 + 1461+(1983+4800+(6-14)/12)/4

+ 367*(6—2—(6—14)/12+12)/12 — 3+((1983+4900+(6—14)/12)/100/4

18 — 32075 + 1461*6783/4 + 367+4/12 — 3*68/4

18 — 32075 + 2477 490 + 122 — 51 == 2 445 504,

A large number of satellites require ground processing of spacecraft sensor data
to determine the spacecraft attitude (i.e., the spacecraft’s orientation). Examples
of sensors used are Sun sensors, Earth sensors, and star sensors. These sensors
provide information, usually a measured angle, concerning the spacecraft pointing

relative to a celestial body (e.g., Sun, Earth, or star).

Telemetry signals from these sensors are converted on the spacecraft to digital
counts and transmitted to ground stations. The digital count representation of a
sensor output can be easily converted to meaningful measurements and units on
the ground. However, telemetry signals are frequently subject to random inter-
ference, or “‘noise.”” To understand the meaning of noise, one has only to tune
intoa weak channel on a television set; the “snow™ that is seen is a visual repre-
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sentation of noise present in an electronic signal. Noise consists of random sig-
nals superimposed on valid electronic signals from any electronic device. An
in-depth understanding of the cause, effect, and reduction of noise is not neces-
sary in the context of this problem. However, it should be understood that noise
can sufficiently corrupt any electronic signal to the extent that making use of,
and properly interpreting, the true signal can be difficult. )

This problem applies to spacecraft instruments and sensors. A number of methods
have been developed to smooth data and remove the effects of noise. In the next
problem, we examine one such method, called the running average.

PRGBLEM 12. Given an ordered set of numbers, X;,j = 1,2, ... M, asmoothed set of numbers can
be found by averaging each number with the 1 preceding and the n following
numbers. Symbolically,

where # is typically a small whole number (n = 5).
For example, for the data in Table 2.1, if n = 2, then

-

| s

LA

(11 +14 + 18 4+ 19 + 16) = 15.6.

I
&

a. Compute the smoothed values of the data in Table 2.1 forsn = land n = 2.

Solution: ~We present a computer program in BASIC, along with the run for this task.

Table 2.1

Spacecraft Sensor Data . B
Sample Unsmoothed Sample Unsmoothed
No. (j) Value (X)) No. (j) Value (X))
2 11 20

7 12 20

10 13 13

6 14 19

11 15 20

14 16 20

18 17 17

19 18 19

16 19 18

17 ) 20 _1s

LB = <IN o R W T N PV )

f Tt
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PRINT Jit HTAB 10: PRINT X(.
i1 HTAB 20: Fi. '™ ¥(J)3;
HTAB 30: FRINT Z{J)

NEXT : J o o
PRINT *18"§: HTAB 10: PRINT
X(18) 41" HTAB 20: PRINT ¥Y(19)1

i REM . SHOOTHING FUNCTION 280
2Cs . REM - ROUNDED TO 2 DECIMAL PLA
. EE

205=
200 -

i14 i'iégjgij.:

T iso. 1,18 v
' : 20120417419 |

-~ PRINT *20" 54
B {1} I
END.-

HTAB.10: PRINT :

KD NS L X7 () HmE =2

7.2
9.8
“11s8
13:8
1%+ 86
. 18.8 |
eyl
ciilde 4
1g.2 -
18:8
-1g.4
19.4
ig
18.8 -
1g

b. IE the data points are plotted and joedby line segments, we get a graph
demonstrating data fluctuations. Normlly, vEE1atis of interest is the underlying
smoo>th curve (hence the term smoothiy) for t- his process. Compare the graphs 0:oof
the wnsmoothed data and the smootheddata feorn = 2,

Fig. 2.5 shows the plot of the unsmooiied dac=a (solid line) and the data smootheched
with 722 = 2 (broken line),

ed and smoothed (n = 2) daia from talle - = 1

2
i 1 I T S B R b I S W T

5 [ 15 = 20
Sample # (j)
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c. This smoothing technique cannot be used blindly. It ispossible to disguise - the
true nature of the data by smoothing. Modify the programof part (a) to smoo -th
thé‘ dam iﬂ Table 2 2 aﬂd COmpare the graphs Df the unsmomhed ciata "iﬁd the

mque dl';gmsed the true nature of the data?
Solution: Thé falic:wing program inéorparatés a SuerutinE to smmlhlhé data of Table 2= .2 for

SIT!DDIhEd valugs ﬁ:r n =35 are dlsplayed in Flg, ?,6, We sccthat the original & ata
had a sinusoidal form, with the noise appearing as some slight departures from=
the smooth curve. The smoothed data are still sinusoidal, but the amplitude h==as
been drastically reduced. It is evident, if the program withthese data is run, tEat
each increase in 1 reduces the amplitude more than the previous .

Table 2.2 - -

J X; J X, J —~X;
1 20,5836 35 25.7612 69 i2,=1985
2 24,4349 36 24,8147 70 10. =644
3 28,8846 37 18.7918 71 89,0069
4 27.1585 38 14,7649 72 89,1803
) 2749732 39 10,7724 73 9.1 452
G 24,4361 40 B.6446 74 1&.:17?0
7 21.2117 a1 77,0318 75 17 +: ]
8 14,8825 42 B.G0OBB 76
9 12,5582 43 11.4900 77
10 B.0117 a4 15.3886 78 2 - .
11 g8.1619 43 18.443%2 79 28.82 451
12 9,0843 46 20,6217 8o 25.5367
| 10.1741 a7 24,7681 81 24 ,e=59373
15.2122 48 273421 82 20,5476
17.2274 48 £28.1035 83 15. =~ 963
;f_O 91"‘»3 50 27,3259 84 12,=2591
51 23.4473 83 8,=834
S2 20,3038 86 9.41840
53 18,3532 87 8.= 730
54 10.88G68 88 10,=0G6
55 10,0192 89 14,= 093
o6 3, 2502 a0 18,7170
S7 89,5464 91 22,5785
38 8.1521 a8z 25, = 463
28 13.8209 93 26.2=984
5 GO 18.678%2 94 27,77 386
27 B1 23.2414 g3 27.3=292
228 B2 26.3716 ag 23. 77517
=9 ' 63 28.5849 87 19, =016
=30 18-¢.059 64 28.89297 88 15, &=903
=1 22.4038 BS 25.8880 99 12,%£370
==z £25.58G64 GB 2z2.4440 100 10.0 038
=33 28.4748 67 Z1.336%5
—4 289.2417 G8 15, BEEIB
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101 R "sﬁmn'mmr: Fgugnnn _2 .. 140 READ X(J)

Counts . _
36,000 - ’7 - 77 *
—_— AL v - 7 IS 5 —
. = = Ty —= 'E !T777 = —
T - F = - _ SE T N B — - L] 77; _
&‘ R i . T T e s
_ L “N= S fﬂr smnmh:d data - -
0.000 - " Sample Number T - 100,000
Fig. 2.6
We end this chapter with a problem that shows how a classical mathematical model

is modified so that it can be used to determine the period of rotation of a planet.
The fﬁDd f cation uses some of thE princi plgs Qf sciénuf ic accuracy dlscussed ear-

The procedure we develop has been used to determine the rotation period of

Saturn more accurately than earlier estimates by using observations of variations
in the planet’s radio emissions made by Voyager 1. Since this plane.c has neith
solid surface nor any distinctive atmospheric features comparable to Jupiter’s

Great Red Spot, what is computed is the period of rotation of thz magnetic field of

the planet. Because of the complex nature of the radio emission data, we illus-
trate the method by computing the rotation period of Jupiter rather than Saturn.

TN 29
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PROBLEM 13.

Solution:

Solutjon:

‘We begin with a question that is essentially the same as the familiar "How much
time elapses between successive alignments of the hands of the clock?” but that
sets the stage for the actual problem we wish to solve.

- a. Jupiter rotates on its axis once every 9.92 hours, and its moon o revolves around
~ Jupiter once every 42.5 hours. What is the length of time between consecutive
- passages of lo over a particular spot on Jupiter?

Let R, and R, be the angular rotation and revolution rates for Jupiter

- and lo respectively.

—_— 360 o a o
Then Ry =575 = 36.3 degrees/hour
==and R = 55’% = 8.47 degrees/hour.
ZInFig. 2.7, lo moves from A to B while the point S on Jupiter makes a complete

EFEVL)IUUGH and then goes on to 5’ to be under [o again. So we must find the time T
=such that R,7 — 360 = R,T. Using the values above for R, and R;, we get
&the following:

363T —-360=8.47T
36.37 — 8.47 T = 360
(27.8) T = 360
360 .
= — = 2 i 1rs
T 27 & 12.9 hours

"ETo see how this classic problem might be altered, suppose we don’t know Jupiter’s
r—otation period (or that we don t know it very accur‘ately) As it approached

F& upiter, the Voyager was
Sreat Red Spot appeared in the center of the disc as vmwgd from V;::ya,gfr We

w=ovant to use these observations to determine Jupiter’s rotation period.

lx>. Voyager's trajectory as it approached Jupiter is illustrated in Fig. 2.8. Modify
tZ he results of part (a) to find Jupiter’s period if the Red Spot is observed to be in
t= he center at time 4, = 2 h 25 min = 1 min, when Vayagers distance from Jupiter is

7 70 x 717()*i km and agam at time L= 16 h 24 min = 1 min, when Vz::yagers

d_tflgl(; o = 147 2° with respect to .JLlpltEl’ s center between these two Dbs&rvatmns!

I- f Voyager's trajectory were circular and if Jupiter's period is P, then the analysis of
p=>art (a) can be applied with R, = 360/P and R\T = a. We now have (360/P)T —
3560 = a, which transforms into T = P + aP /360. However, the trajectory is not

¢ =ircular, so we must take into account the different lengths of time it takes for

IE ght to travel from Jupiter to Voyager. Since light travels at a speed ¢ (¢ = 3.00 X
_ . Dy —= D, aP
5 _ T e = P 4 e
1 O®km/s), the corrected equation is 7 - P + 360"
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R, !
C_ | ) = upiter rotation C | D Jupiter rotation

Fig. 2.7 Fig. 24

For the data provideed, we note that

Dy = Dy _ (7.70 — i) x 10° _

c ' 3.00x10°

= 1 second,
Since the uncertaincy (possible error) is oneninute in both time measure Iments,
we see that in this case there is no point in miking this correction. The eq uation

. , aP (: @ ) e el 1t D
= —_—— = s e :
T=P+ 360 P 7 1+ 360/ M2y be solved o P:

Substituting the dat=x ,

[
o
e
P\'"«
o
=
!
!?'-«J
'
8]
=
o
=t
—
o
WO
o)
=2
=]
=
i |
o
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¢. The observations of the radio emissions from Saturn were much more erratic.
A series of measurements 1, I», . ... Iy of the times of certain characteristic peak

emissions was recorded, but it was not known how many complete rmatlons had
. = D‘x
actually occurred between each consecutive pair (f,_;, ;). The correction %:%
is not negligible in this case, and other corrections not discussed here also apply.
Under these circumstances thE equation rslatmg T, P, and a becomes impossible
to solve directly. However, the iterative approach illustrated next can bé used,
and by applying it to the case of part (b), we can show that the same solution is
obtained. We let t}E = f; + P. Since P is Jupiter’s period, f;. can be consndered a
“corrected time"’ in the sense that if Voyager's revolution period around Jupiter

matched Jupiter’s rotation period, we would have o = 0, P = T, and 15, = 1,.

Substituting 7 = & — 1, and P = 1., = 1, for the first term on the right in the equa-
— 1= — 1y + 2

tion T = PE’“ﬁ wegeti — 1) = I t|+360.

Solving for f:., we getfo, = 1, — '335% Since this equation still conta , the

is usgd mge her wit h ,ht,z anwn valuas Df I and ato fmd a flrst estlmate of tat,

which we may call ,t;ﬂ, Next we let =+ — 1, and repeat the evaluation of Iy tO
get byes; then P = 1,; — 1. This proce:ss is roy zated until the difference B, — B_| is
less than 1 min = 0. DZ h, the possible er: fDUr time observation. This pro-
cedure is easily done by computer (and in t h is case may even be done using a
hand calculator). Write a computer program (¢ pe:rfmm this iteration.

Solution: We display a program written in BASIC.

ITERATION
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Artist's concept of Pioneer 10 leaving the
solar system, June 13, 1983,
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niques can be found in most of rhe examples in this volume. The problems
=4 W selected for this chaprer are those that do not also draw heavily on other
mathematical areas. Several use the distance, time, and rate relationship, and
others use direct and inverse variation. Some approximation techniques that are
frequently used to solve otherwise intractable problems are also included.

Ag&bra is the language of quantitative science. As such. its methods and tech-

During 1982, the planets Jupiter and Saturn were in conjunction, so that they
appeared very close to each other in the night sky. In the problem that follows, we
see how frequently such an event happens.

PROBLEM 1. The planets Earth, Jupiter, Saturn, and Uranus revolve around the Sun approxi-
mately once every 1, 12, 30, and 84 years respectively.

a. How often will Jupiter and Saturn appear close to each other in the night sky
as seen from Earth?

Solution: The time requirad must be a multiple of both 12 years and 30 years. This event will
recur at intervals of the least common multiple of 12 and 30, or 60 years.

b. How often will Jupiter, Saturn, and Uranus all appear in the same area in the
night sky as seen from Earth?

Solution: Now we need the least common multiple of 12, 30, and 84, which is 420 years.
In addition to the electromagnetic radiation that we know as heat and light, the
Sun continuously sends out charged particles known as the solar plasma (see also
Chapter 10, Problem 1). From time to time, there is a strong burst of highly ener-

getic particles called a solar flare from a small source in the Sun’s atmosphere.

PROBLEM 2. When a solar flare occurs on the Sun, it can send out a blast wave that travels

that for a satellite close enough to Earth, we can use the Earth-Sun distance of
1.5 x 10® km for the satellite-Sun distance.)

Solution: Since distance = speed X time,

1.5 x 10* km

(3 x 10° km/h) (time).

B .
Lo X100, _ 5% 10°h,

0
=
]

Then time

or 50 h (about two days).
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Solution:

PROBLEM 3,

Solution:

b. When such a solar flare is detected, it is interesting to study the source. Since
the Sun is rotating, we must determine how far the source has turned between the
emission and the detection of a solar flare. Because the Sun is a dense gas rather
than a solid body, it does not have a uniform rotation rate; on the average the Sun
makes one complete revolution in 25.4 days. How many degrees would it rotate
(on the average) during the time the blast wave traveled to the orbiting satellite?

2

Since the Sun rotates 360° in 25.4 days, it rotates isﬁa@/dayi 50

the solar rotation rate = 14.2 °/day

e -

)
I
|

0.59 °/h.
In 50 hours. the Sun rotates 530 h x 0.59°/k = 29.5°,

A scientific capsule was carried aloft by a rocket and released at the peak of the
rocket’s trajectory. The rocket had an average vertical speed of 920 km an hour
from liftoff to release of the capsule. The capsule made a controlled descent with
an average vertical speed of 390 km an hour and landed 68 minutes after the

rocket was launched. Find the maximum height reached by the rocket.

Let ¢ be the time of ascent in hours. Then % — tis the time of descent, and since the
distances of ascent and descent are equal,

. {68
920 = 390 (E - I)
=442 — 390¢

1310¢ = 442

t=0.34h,

The maximum height = distance of ascent = (920 km/h) (0.34 h) = 310 km.

Italian scientist Galileo Galilei’s introduction of the telescope for studying the
heavens brought about a revolutionary change in astronomy. It is expected that a
comparable leap in our ability to examine the universe will take place when the
Hubble Space Telescope is launched into orbit by the Space Shuttle in 1986.
Because the space telescope will be above Earth’s atmosphere, it will be able to
see much fainter objects than can now be seen by the best Earth-based telescopes.
As we shall see in the next problem, this means that astronomexs will soon be
able to make observations and to compare them with the cosmological theories
about the age and formation of the universe.
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Solution:

Solution:

Solufion:

a. The Space Telescope will be able to see stars and galaxies whose brightness is
only 5=ID of the faintest objects now observable using ground-based telescopes. The

brightness of a point source such as a star varies inversely as the square of its
distance from the observer How much farthﬁr’ into the univ«:rse will the space

Let dg be the distance from Earth of the faintest object visible to a ground-based
telescope, and let Bg be the brightness of this object. Let d be the distance of an

object of brightness — 50 Bg. Since brightness varies inversely as the square of dis-

-k 1 e k _d L
tance, Bg = <z and VBg— i ThenBG —So,sgd =50déord = 7.1dg.

The Space Telescope will see about seven times farther.

d

)

b. Because of the time it takes for light to travel from distant stars and galaxies,

we see them as they were some time ago—the photons that reach us from an object
that is 1 parsec away were actually emitted 3.26 years ago (see Chapter 2, Prob-
lem 12). The best ground-based telescopes can see objects about 10° parsecs from
our solar system. How long ago were the photons emitted that we now see when
we observe such an object?

Since 10° parsecs = 3.26 x 10° light-years, the photons were emitted 3.26 x 10°
years ago.

¢. When the Space Telescope begins its observations, how far back in time will it
see stars and galaxies?

Since it will see 7.1 times farther, it will see photons that were emitted 7.1 X
3.26 X 10° = 2.2 X 10" years ago. (If, as suggested by cosmological theory, the
age of the universe is between 10 and 20 billion years, the space telescope should
enable us to see stars and galaxies in the earliest stages of formation.)

Pioneer 10 was launched on 3 March 1972. It outlived and outperformed the fond-
est dreams of its creators. Designed to last at least 21 months, it has continued
well beyond the accomplishment of its mission. On 25 April 1983, its distance from
Earth equaled that of Pluto, and the following June it crossed Neptune’s orbit

and left the salar system (Althaugh F‘luto is normally the autermost planet in the

Néptuﬂe wnll be for the TIEKI seventeen yearsi) To add to its rEEDrd of gnduran:e,
most of Pioneer 10’s instruments are still working, and Earth-based tracking
stations were still receiving signals bearing information about the behavior of the

Sun’s extended atmosphere as of this writing.
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FROBLEM 5,

Soluiion:

a. How long did Pioneer 10°s radio signals. traveling at the speed of light
(3.00 x 10° km/s) take to reach Earth from the distance of Pluto ir April 1983
(4.58 X 10° km)?

distance _ 4.58 x 10°
speed 3.00 x 10

time =

0
|
I
n
I

1.53 x 10° -
3600 h, or 4.23 hours

b. What was Pioneer 10’s average speed, in km/h, if it traveled about
4.58 x 10" km between 3 March 1972 and 25 April 19837

From 3 March 1972 to 3 March 1983 there were 11 years, of which 2 were leap
years, and from 3 March 1983 to 25 April there were another 53 days. The time
for Pioneer 10 to travel that distance was (365 x 11) + 2 + 53 = 4070 days, or
4070 x 24 = 97 680 hours.

4,58 x 10° |

9.77 x 10° km/h = 4.69 x 10 km/h

Average speed =

(We note that the average speed over this period is less than the average speed
over the 21-month period of Problem 6 in Chapter 2.)

The time required for an orbiting satellite to make one complete revolution of
Earth is called its period. The length of the period depends on the location of the
observer making the measurement.

Suppose the observer is located far out in space and views the satellite against
the background of fixed stars. The period measured in this manner is called the
sidereal period of revolution, or the period in relation to the stars. Note that the
rotation of Earth does not affect the sidereal period. Now suppose that the
observer is standing on Earth’s equator. A satellite is overhead in low Earth
orbit moving directly eastward. When the satellite has made one complete transit
of its orbit, it will not yet be overhead for the observer because the rotation of
Earth will have carried the observer a distance eastward. The satellite must travel
sures the period of the satellite as the time elapsing between successive passes
directly overhead. This period is called the synodic period of revolution, or the
period between successive conjunctions, and it takes into account the

rotation of Earth.

Spacecraft usually orbit in the same easterly direction as Earth’s rotation: this is
called a posigrade orbit. All U.S. manned spaceflights have been launched in posi-
grade orbits to take advantage of the extra velocity given to the spacecraft by
Earth’s rotation. In this case, the synodic period is greater than the sidereal period.
If the direction of orbiting is westerly, or opposite to Earth’s rotation, the orbit is
said to be retrograde. In this case, an Earth observer would meet the satellite
before it made one complete.revolution around Earth, and the synodic period
would be less than the sidéreal period. '

37
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PROBLEM 6.

Solution:

Solution:

In Chapter 9, Problem 7, we show that the sidereal period (in seconds) can be
computed by the formula P = 27Va®/GM, where a is the average radius of orbit
from the center of the body about which the satellite is in motion, G is the constant
of universal gravitation, and M is the mass of the body about which the

satellite orbits.

a. Find the sidereal period of the High Energy Astronomy Observatory (HEAO)
satellites, which have an average altitude above Earth of 430 km. The radius of
the Earth averages 6370 km, and the value of the product GM for Earth is

3.99 x 10" m?/sec’.

The radius of orbit is the sum of the radius of Earth and the average altitude
of the satellite:

6370 km + 430 km = 6.80 x 10° m.

a

T'hen the sidereal period in seconds is
] /(6;807?;10“)3
=9 T Ao A
F=2(3.142) 3.99 % 10

5 % 10° = 5580

The sidereal period then is 93.0 minutes, or 1.55 hours.

b. Compute the synodic period of the HEAO satellites, given that their orbits
are posigrade.
In Fig. 3.1, let x be the position of the observer (assumed on the equator) when the

satellite is directly overhead and let y be the observer’s position one synodic
period later, due to the rotation of Earth.

38
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Solution:

If we can find the angular distance A. we shall be able to use it to find the synodic
period. In one synodic period the observer traveled an angular distance 4, and
the satellite traveled an angular distance 360° + A, measuring the angular distance
in degrees. The observer travels 360° in 24 hours, or 1°in 24/360 hours, so it
takes the observer (24/360) (A4) hours to travel the angular distance A. From part
(a), the sidereal period is 1.55 hours. It takes the satellite 1.55/360 hours to
travel 1°, and the time that elapses between successive viewings over the observer
is therefore (SECT (360 + A) hours.

24 1.55 -

— A === + A

360 1 T 360 (300 +A)

244 = (1.55)(360) + 1.55 A

55

fee)

I

22,454
A

24.9 degrees

So the synodic period is (1355) (360 + 24.9)

observe that the synodic period is 6.6 minutes longer than the sidereal period.

1.66 hours = 99.6 minutes. We

The statement has been made that Newton’s derivation of his inverse-square law of
gravity from Kepler’s third law is among the most important calculations ever
performed in the history of science. Kepler's third law, based on observation
rather than theory, states that the squares of the periods of any two planets are

to each other as the cubes of their average distances from the Sun. Derive Newton's
law from Kepler’s law.

If we represent the periods of any two planets by r and T and their distances from the
Sun by r and R, respectively, then

T;’

=]

[
i
-

"~

or

q‘
[
]
-
‘ e
AP
1"

Assuming that we know the values of 1 and r, and substituting a constant C for

the quantity — the equation can be reduced to
] P

T* = CR*,

Thus if we know either T or R for the secend planet, we can solve for the unknown
quantity. In this problem, however, we wish to use this equation to discover a

new relationship, Newton’s law of gravitation. For a body moving in a circular
path, the acceleration toward the center is

Jh v

- 74 y
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Substituting in F = ma,

[
[a]

- mv: _ m (2aR\?
F _— = f( =

to the Sun. Newton expressed the vaiue of X and obtained his law of universal
gravitation:

That is, the force holding a planet in orbit falls off as the square of the distance R

This law applies not only to the attraction between a planet and the Sun but also
to the attraction between any two bodies. G is the constant of universal gravita-
tion, M and m are the masses of the two bodies, and 7 is the distance between
ilieir centers of mass.

In solving the next problem, two special techniques are needed. One is a fre-
quently used approximation based on the fact that (1 (1l =-x)=1-x*

If x is small (for example, suppose x = = (). 01), then x* is very much smaller (for

x = 0.01, x* = 0.0001), and in this case it is well within the limits of experimental

errortouse (1 +x)(1 —x)=1,o0r 1 if = 1 — x. The other is the substitution

of a single variable for the ratio of two other variable names.
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PROBLEM 8.

Solution:

Fon  Kepler's third law, we see that the farther apl=anet is located from the

Sunt” =he longer its period is. Suppose Earth orbitstte Sun in a circle of radius

rf= - 1.5 x 10° km) with a period T (T = 1 year). T hen any spacecraft SC (see
Fizd .2) orbiting the Sun in the same plane but atscmme greater distance (r + a)
Wilb=zave a period larger than 7, and if it starts from a point on the extension of the
Eih——Sun line (as shown), it will gradually lag farth er and farther behind.

Spartifa. essft
i Earth Sun

e OO

FigJi

Hoivaswer, the situation changes if a is sufficiently sn=all, because then the gravity of
Eatl, L in the configuration shown, adds appreciably ~to that of the Sun. For the
foreharolding the spacecraft in orbit to balance the ccombined pull of the Earth and
Sunli=%he spacecraft must move a bit faster. In fact, th:ere is a particular value for
asolha _at the speeding up of the spacecraft is just suff Sicient to allow it to keep up
wilhE= _arth. If that happr ns, then the spacecraft orbit=s the Sun in a circle of

radis - (r + a), but with period T like Earth. Whatis ®the value of 4 that allows
sucham_n orbit?

Letn, , m., m.. be the masses of the Sun, Earth, and sspacecraft, respectively. For
Eal's==s motion, we have, as in the foregoing probler=,

or

Forlle = motion of the spacecraft, similar analysis give s

] Ml | Mltfs \ | PV - 2 , %2 \2
F=OnG (E"S%'HE + s ) = MlacVse My (3‘ﬁ(f = Q)) = (r +a (77,) i
a? (r +a)? r+a  r+g T ) my(r + a) T

G% = (= )2 from (1) =

CanelZ=ing m,. and substituting

mel, 1 __r+a_1+ (@/n
o - I 1
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R

- o - Hl. .
Nowletu = —2andz =
I

After these substitutions,

u+ 1 71+7§i

u 1
—+t—=1++ "z
zt (1+ 2 i

Although this equation contains only u and z, it still has no simple solution, so w

now make two approximations in the second term on the left:

ﬁé(l;z)zil—22+zzél=2§

*

% + (1 - 2z) = 1 + z, simplifying tc% =3z,0orz*=

R

Now the quantityu = — =3 X 107,502 = 10, orz = 10~

107 = 1.5 x 10°km.

[
Ll
o]
L]
mw
ta
I
Ry
(5]
I
~
>,

The position we have found in this problem is an equilibrium point of the Sun-
Earth system. A similar analysis can be used to show the existence of another
equilibrium point on the sunward side of Earth, and in fact there are five such
equilibrium points in all for any two-body gravitational system. These are called
Lagrangian points in honor of the mathematician who first proposed their

ence (Fig. 3.3). It has been suggested that two of the Lagrangian points ol wie
Earth-Moon system should be considered as possible location: .r future

space colonies.

e

Center of mass of
Sun-Earth system

path of Earth’s orbit
£

s,
~ L _ ;’
L; e kL e o
s - - =
Earth — L, The five Lagrangian points
Ly, La, La Ly, Ls
Fig. 3.3

. Notice that z is very small, since ¢ is much less than r.

a
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PROBLEM 9,

Solution:

Solution:

The ISEE-3 satellite (third International Sun-Earth Explorer), a joint venture of
NASA and the European Space Agency, was launched in August 1978 and
placed in a **halo orbit™ around the Lagrangian equilibrium point between Earth
and the Sun. In this orbit, it monitored the Sun’s emissions that approach
Earth—without the interference that would result if the satellite were actually at
the equilibrium point where its radio antenna would have to point directly at the
Sun. After this mission was successfully completed in 1982, ISEE-3’s orbit and
direction were chznged to conduct an exploratory survey of Earth’s magneto-
tail. In December 1983, the satellite was redirected toward the comet Giacobini-
Zinner and renamed International Cometary Explorer (ICE) in keeping with its
new mission. It reached this comet in September 1985,

a. If M is the mass of Earth, then the mass of the Moon is 0.012M¢. The radii of Earth
and the Moon are 6370 and 1740 km, respectively. Use these facts with Newton’s
law of universal gravitation to find the ratio of surface gravity on the Moon to
surface gravity on Earth.

If we place a mass /n at the surface of Earth, then the gravitational attraction
between the mass and Earth is

Similarly, the attraction between the Moon and an equal mass m placed on its
surface is

F = G(0.012M)m
" (1740)°

The ratio of F, to E is

E, _ 0012 (6370)
E ~ (1740)’ 1

- 4.87 x 10°
3.03 x 10°

ov =

That is, gravity at the surface of the Moon is % as great as gravity at the surface of

Earth.
b. If a man weighs 180 pounds on Earth, what would he weigh on the Moon?
Weight on the Moon would be as follows:

1 1801b=1301b

6
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PROBLEM 10. In some future space stations it is expected that artificial gravity will be created by
rotation of all or part of the station. Gas jets or other propulsion devices can be
used to control the rate of rotation of the station. As with the centrifuge, the

rotation will produce a force against the astronaut that cannot be distinguished
from gravity. If r is the distance of a point in the station from the center of rota-
tion, then the velocity of the point for NV rotations a second is
¥

v = 2mrN.
As noted in Problem 7,
v2 _
a=-—,orv = Var.
Setting the two velocities equal,
2nwrN = Var
N7 = A
' (27)%r?
1 Ja
N = 2 \/;

If 7 is given in meters, then a is the acceleration in meters per second per second.
By controlling the values of r and N, any desired artificial gravity can be produced.

a. Compute the rotational rate needed if the radius of the stationis 30 m and a
gravity equal to one-half the gravity of Earth is desired. (Use g = 980 cm per
second per second, or 9.8 m per second per second.)

st

4.7

Solution: == (9 8 m/s?)

M

1[4

N=5: V30

o
—
|
~Ji

27

= 0.063

The rate of rotation must be 0.063 rotation per second or 60 x 0.063 = 3.8 rota-
tions per minute.

48 44
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Solution:

z

i
]
3 H‘*"‘
P
=lom |

-é‘
LR
Cn

2
= 0.04
The rate of rotation must be 0.04 rotation per second or 2.4 rotations per minute.

PROBLEM 11. a. The force of gravitation with which one body attracts another is inversely propor-
tional to the square of the distance between them. Consequently, the pull of the
Moon on the oceans is greater on one side of Earth than on the other. This gravita-
tional imbalance produces tides. The Sun affects the tides similarly. Because the
Sun exerts an enormously greater pull on Earth than the Moon does, one might
think that the Sun would influence the tides more than the Moon. Just the oppo-
site is true. How can this be?

Solution: Let N be the point on Earth nearest the Moon and let F be the point on Earth
farthest from the Moon. We shall assume that the tide-raising force of the Moon
is in some sense measured by the difference in the pull of the Moon on unit masses
located at N and F (see Fig. 3.4). If ris the distance from the center of the Moon
to N and if D, is the diameter of Earth, then the forces acting at N and F are,

respectively, Cff and e Eff% 2 M being the mass of the Moon and G the uni-

versal gravitational constant. The difference between these two forces is the tide-
raising force, which we shall call F. Then,

F=am (r r + D)

Because % is very small, this expression is approximately

3

. 2GMD,
K —.
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Solution:

Thus we would expect the tidal effect to be inversely proportional to the cube of
the distance, whereas gravity is inversely proportional to the square of the dis-
tance. Because the distance from Earth to the Sun is enormously greater than the
distance to the Moon, it is not surprising that the Moon provides the dominant
tide-raising force. Local horizontal components of this force cause the tides to roll
in and roll out (i.e., the horizontal movement of the water).

b. From the foregoing, we can compare the tide-raising forces of the Moon and
the Sun. If we use the subscript m for variables that apply to the Moon and s for
those that apply to the Sun, the ratio

B _ 2GMyD./ry _ Myr}
R, 2GM/DD./r}  MJs}'

The mass and distance of the Moon and Sun are as follows:

Mgy =73.5 x 10%'kg; M, = 1.99 x 10°%kg

3.84 x 10°%km; r. = 1.5 x 10°%km

Tm

‘I"W
|
\\

‘\é-"‘l

fe

Comput

Fm _ 73.5 X 10°" x (1.5 x 10%? _ 248 X 10545 = 5 2
F.  1.99 x 10" x (3.84 x 10°° 113 )

So the tidal force exerted by the Moon is more than double that exerted by the Sun
on the Earth.
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A hypothetical space station with "electronic

mail" capabilities.
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Chapter Four

A eometry is fundamental to space science. A multitude of activities, from the
prediction of flight paths to the design of equipment. make use of geo-

metric analysis. Geometry enters into many of the problems of the preceding
and subsequent chapters. Most of the problems in this chapter fall into three
categories: those involving areas and volumes of plane and solid figures, those that
use similarity, and those that use properties of circles or spheres. The Sun-Earth-
Moon system happens to exhibit a striking geometric coincidence, which we exam-
ine in the first problem.

PROBLEM 1. To an observer on Earth, the Sun and the Moon subtend almost the same angle in
the sky. The average angle is 0.52 degrees for the Moon and 0.53 degrees for the
Sun. Depending on the particular location in its elliptic orbit. the Moon’s angle
ranges between 0.49° and 0.55°, whereas that of the Sun ranges between 0.52°
and 0.54°. This is why the Moon sometimes completely blocks the Sun, producing
a total solar eclipse.

a. If the mean lunar and solar distances are respectively 3.8 x 10° km and
1.5 x 10° km, what is the ratio of the solar diameter to the lunar diameter, and

what is the ratio of the solar volume to the lunar volume?

Vel

Solution: The geometry of the eclipse is illustrated in Fig. 4.1. Since the angle at 0 is the same
for both the large and the small triangles and the triangles are isosceles, they
must be similar. Letting Ry and Rs denote the lunar and solar distances,
respectively, and Dy, and Ds the lunar and solar diameters, we have

Ds _ Rs _ 1.5 x 10°
Dy Ru 3.8x10°

= 390.

If V\ and Vs are the lunar and solar volumes, respectively,

Vs _ (4/3)n(Dg2)*

= & 32 0y = i
Vi~ (4/3)ym(Dyd2) ( ) = (390) 5.9 % 107,

Dy
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b. Since the angle at 0 is very small, we can approximate the lunar or solar
diameter by the arc length of the circle wnh radius Ry or Rs where this arc length
subtends the anigle at 0. Use the relations = r8 (8 in radians) to determine the
actveal values of Dy; and D-.

0.52° % ﬁggf 0.0091 rad
Dy = Ry (0.0091)
0.53° = 0.0092 rad, by the same conversion just shown
Ds = R5(0.0092) = 1.5 % 10* x 0.0092 = 1.4 x 10°km

o
Ly
s
[+
]

Solution:

3.8 x 10° X 0.0091 = 3.5 % 10°km

(%]

(Note: The reader may prefer to avoid the approximation by using the tangent
lunar radius solar radius

—— = : note, however, that

lunar distance  solar distance’

. . [7]
function—that is, tan E

to two significant digits the result is the same.)

PROBLEM 2. All thé energy to meet ﬂEEdS on Earth whéthéf thé ‘energy | is ﬂatural or Eynthétic—,

ation. ThETE has been mut:h interest recently in using this radlant source of enérgy
directly to supplement or supplant the existing power sources. Further, since our
Sun is but one of many stars, it is of interest to compare its energy output with that
of other celestial objects.

O+.e measure of the total energy radiated by the Sun received at a unit area of
the Earth’s surface is called the solar constant (where radiation is summed over all
wavelengths of the electromagnetic spectrum).

A radiometer flown on the Solar Maximum Mission (SMM) is able to measure
accurately the intensity of solar radiation. SMM is a satellite in orbit around

Earth at low altitude, and its measurements can be used to provide a good estimate
of the solar constant.

The radmmeter on SMM admits solar radiation through a small aperture whose
area is 0.50 cm?, and it measures the rate of entrance of this radiation accurately.
The spacecraft attitude (pointing direction) is controlled so that the entrance aper-
ture is perpendicular to the line of sight between SMM and the Sun.

a. Over one observation period, radiation entered the radiometer at the rate of
0.069 watts. What is the value of the solar constant, S, as determined by this
observation? (Use an extra significant digit in the answer, since this quantity will
be used in subsequent calculations.)

. 9=06—9=-‘l’="‘35 = 0.138 watts/cm?

0.50¢

Solution: § =

g

br :J
[*o9
m‘
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Solution:

Solution:

Solution:

b. Itis generally assumed that the Sun emits radiation uniformly in all directions.
If this is true, calculate the total rate of energy radiation by the Sun.

Since the radiation energy rate measurement contains only two significant digits, we
can use the Earth-Sun distance of 1.5 x 10° km as SMM s distance from the Sun
(see Chapter 2, Problem 8). If the Sun emits uniformly in all directions, the total
rate of energy radiation from the Sun is the product of the solar constant and the

area of the sphere with radius 1.5 x 10°km, or 1.5 x 10" ¢m.

I
—-
Lo}
-
=
-
T
=4
w
o]
=
L]
=]
L
-

3
e
-
a
=7
o
=
o]
=l
=l
O
3
-
=
L]
]
=
=

Letting P = total rate of energy radiation from th
P (5) (4117**)

(0.138 watts/cm®) (41) (1.5 x 10" ¢m)*

= 3.9 x 10% watts.

c. The foregoing are typical values. Variations of approximately 0.05 percent have
been observed at other times. How much do such variations affect § and P?

AS = 0.05 x 107* x 0.138 = 6.9 x 10™° watts/cm*
AP =0.05 x 1072 x 3.9 x 10* = 2.0 x 10® watts

(Nﬂié' ThES& variations occur on a short time scale (day to day) and are thought to
salar radlatlon overa tlme scale of years ::ould produce S!gn!flcant cllmata changes
on Earth.)

d. Ii. 1981, SMM lost pointing accuracy because of a component failure on the
spacecraft. Suppose that the orientation of the spacecraft changed so that the

line perpendicular (the normal) to the entrance aperture made an angle of 30° with
respect to the Sun-SMM line, rather than being parallel to it. By how much

would the radiation entering the radiometer be changed?

For simplicity, let us assume the aperture is a square, ABCD (see Fig. 4.2), with side
length a, where @ = 0.50 cm®. Looking at this square edge-on with AD as the

tlltEd édgé lf DE is parallel to thE dlrectmn of solar radlatmn mt:lclc:nce and AE is
are AB and AE. We labél the angl a, B ¥, Sas shuwn Smce (L::s LE) and

(L*y, £ 8) are complementary pairs of angles and since L3 = £y, we have

48 = Lo = 30°, 50 AADE is similar to the standard 30°-60°-90° triangle, and the
ratios —EE-)- . glé and % are equal, giving AE = %AD 0.866 4. The area of
the effective aperture is therefore (0.866 a) (a) = 0.866 &'. In other words, the
radiometer will register only 87 percent of what it did before losmg

pointing control.

P
o]

Fig. 4.2
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PROBLEM 3.

Solution:

P

Solution:
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OBLEM 4.

(We observe that the result holds for apertures that are not square.)

As observed in part (c) of the foregoing problem, one of the interesting outcomes
of modern advances in the precision with which it is now possible to make mea-
surements of the solar constant is that this quantity is in fact not really a constant!

Solar cells convert the energy of sunlight directly into electrical energy. For each
square centimeter of solar cell in direct overhead sunlight, about 0,01 watt of
electrical power is available. A solar cell in the shape of a regular hexagon is
required to deliver 15 watts. Find the minimum length of a side.

The total area required is 15 watts/0.01 watt per square centimeter, or 1500 square
centimeters. The regular hexagon can be partitioned into six congruent equi-
lateral triangles, each with an area of 1500/6 = 250 square centimeters (see

Fig. 4.3).

The area A of any equilateral triangle with side s may be expressed
' 5 V3s 35 P
2T = Solving for s, we have

A= % (base) (altitude) =

s

Solar cells are made in various shapes to use most of the lateral area of satellites. A
certain circular solar cell with radius r will produce 5 watts. Two equivalent solar
cells are made, one being a square with side 5 and the other an equilateral triangle
with side p. Find r in terms of p and also in terms of s.
For the solar cells to have equivalent outputs, their areas must be equal. Thus for the
circle and square, we have

Aﬁir:ic = Asqunre: ﬁfz = SZ

5

F =
Vi
0.564 s.

For the circle and equilateral triangle, we have
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Chapter Four

Solution:

The largest component of the prelaunch Space Shuttle configuration is the external
tank, which serves as the *‘gas tank' *for the Orbiter—it contains the propellants
the propellants have been used, the external tank is jettisoned. It is the only

major part of the Space Shuttle that is not reused.

Fig 4.4(a) shows the launch configuration with the back view of the Orbiter, and
Fig. 4.4(b) shows the side view. Fig. 4.5(a), (b), and (c) show the liquid hydrogen
tank, the intertank, and the liquid oxygen tank, respectively. The intertank serves
as a mechanical connector between the liquid oxygen and liquid hydrogen tanks,
and contains the upper dome of the liquid hydrogen tank and the lower dome of
the liquid oxygen tank.

a. Using the dimensions provided in the diagrams, estimate the volume of each of
the tanks by dividing the tanks into shapes whose volumes are easy to compute.

Fig. 4.4

Intertank 47.0 mzers

Liguid
Hydrogen
Tank

B.4 meters

(a) (b)

Liguid Hydregen Tank Intertank Liguid Oxygen Tank Fig. 4.5

T
i

7%

WL
x

29.6 melers - 16.3meters

(a) (B) (e)

(This is one possible solution.) The liquid hydrogen tank has the shape of a cylinder
with ellipsoidal caps on each end. Since the formula for the volume of a hemi-
sphere is better known, let us approximate the domes as hemispheres. Now the
total length of the tank is given as 29.6 m, and the diameter as 8.4 m; our
approximation, then, consists of two hemispheres (or a single sphere) of radius
4.2 m and a cylinder of radius 4.2 m and length 29.6 — 8.4 = 21.2 m. The resulting
volume estimate is

52
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Solution:

Solution:

nr + wrh

i

%—nm.z)ﬂ +(4.2)1(21.2)

Lo |

=310+ 1170, or 1480 m*.
The liquid oxygen tank can be approximated by joining a hemisphere of radius
4.2 m, a cylinder of radius 4.2 m and length about 4 m, and a cone with base radius
4.2 m and height 8.1 m. (This should probably underestimate the volume, since
the tapered section is larger than a cone.) Using this dissection, we find that the
voluine estimate is

- 5 1 ?
o+ T[f‘”i.;yi + ”‘!Tf;hcg':\e

3

ol ]

7420+ m(4.2)(4) + 17 (4.2)(8.1)

I
—t
Ly
Lh

+222+150

+ 3
/.

Il
%]
[
~J

b. The actual volumes of the hydrogen and oxygen tanks, respectively, to the
nearest m” are 1450 m* and 541 m’, What are the absolute and relative errors of
the estimates in (a)? (See Chapter 2 for a discussion of these errors.)

For the hydrogen tank:

Absolute error = |estimate — true value| = [1480 — 1450 = 30 m®
Relative error ?M % 100% ;i x100% =2.1%
true value 1450
For the oxygen tank:
Absolute error = |527 = 541| = 14 m?
- 14 .
ive error = — x L =2 .6%
Relative error TThS 100% 6%

N

¢. The outside of the external tank is covered with a multilayered thermal protec-
tive coating to withstand the extreme temperature variations expected during
prelaunch, launch, and early flight. Although there are variations in the exact type
of material and the thickness at various locations on the tank, the average thick-
ness is 2.5 cm. Estimate the total volume of the insulation material on the tank,
assuming a uniform thickness of 2.5 cm.

A simple way to get such an estimate is to model the external tank as three sections:
the lowest section is approximately a hemisphere of radius 4.2 m; the middle
section is an open cylinder of radius 4.2 m and height (47.0 — 4.2~ 8.1) = 34,7 m;
the top part is approximately a cone of base radius 4.2 m and height 8.1 m. The
volume of insulation is then close to the product of the surface area of this figure
and the thickness 2.5 cm, or 0 025 m.

The surface area of an open hemisphere of radius r is 27r%; the lateral area of a
cylinder of radius r and length 4 is 2mrh; the lateral area of a cone of radius r and
slant height s is w7s—in this case we know the vertical height h rather than the slant
height, but s, 4, and r are related by s> = r>+ 1%, or s = V'r? + h* (see Fig. 4.6).

Y+ 59
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Chapter Four

The surface area, then, is
27 (4.2) + 27 (4.2) (34.7) + 7w (4.2)*
=111+916+ 120
= 1147 m?.
The volume, then, is (1147) (.025) =29 m°.

(4.2)2 + (8.1

Fig. 4.6 Fig. 4.7

LEM 6. A spacecraft is at P, at an altitude 4 above Earth’s surface, as pictured in Fig. 4.7.
The distance to the horizon is d, and r is the radius of Earth.

P

=

a. Derive an equation for d in terms of rand h.
Solution: Because PA is tangent to the circle at A, angle PAO is a right angle. Then
r’+d*=(r +h)?

d*=(r+h)} -+

=2rh + h*

b. The satellite Atmospheric Explorer 3 (AE-3) has an elliptic orbit with apogee
height 4300 km and perigee height 150 km. Find the distance from AE-3 to the

is 6400 km.

Solution: At apogee: At perigee:

d =V/2(6400) (4300) + (4300)? d = V/2(6400) (150) + (150)
= 100V/5504 + 1849 =10V/19200 + 225

= 8600 km 1400 km
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Geometry

S olution:

S-lution:

¢. If hissmall compared to r, the formula for d found in part (a) can be sim-
plified by dropping the A* term, leaving d = V2rh. Redo the calculations of part
(a) using the simplified formula and compute the relative errors of

these approximations.

At apogee:
dipprox. = (6400) (4300) = 7400 km
8600 — 7400 i )
i E = I = ———— —_———— = = /4
relative error 8600 0.14=14%
At perigee:

dappfax, =V ?(E;t(j()) (1565 = 1400 km
This agrees with the previous result, and the relative error is 0.

d. Forwhatrange of values of A is the approximationd = V 2rh accurate to two
significant digits?

V2rh + R2< 2k +0.01V2rh

\V2rh + h2<1.01V2rh

2rh + h* = (1.01)*(2rh) = 2rh (1.0201)
h%*<0.04rh
h=<0.04r
For r =6400 km, we need A <256 km.
From the foregoing, we see that under certain conditions it is possible to substitute
a simple formula for a complicated one without affecting the results. Great care
must be taken, of course, to ensure that the conditions needed for such sim-
plification are in fact satisfied. Another useful result based on two such approxi-

mations is developed in Problem 8. But first we consider the basic geometry of
photographic scale.
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PROBLEM 7. InFig. 4.8, the flight path of an airplane or satellite carrying a camera with its lens at
Cisshown by the arrow. The caniera is at & height / above the ground and has

focallength f.
P O
p
1 \
H
N _ __ ) 4
B A

Fig. 4.8

a. [fPQ is the image on the film of line AB on the ground, find the scale of the
icé , assuming the picture is taken vertically (PA is perpendic-
ular to both the film and the ground).

picture, the ratio

Solution: Since triangles ABC and PQC are similar, };g ‘IL-!

b. If fand H are in the same units, the ratio % is called a 1-1 scale factor. Deter-

mine the 1-1scale factor for a photograph taken at a height of 30 km with a
camera having a 150 mm focal length.

[ _150 x 1073

H 30x100 0 X107

Solution:

c. Ifthe photograph of part (a) shows an image of a straight road that measures
1.25 mm on the film, how long is the actual road?

Solution: LetL be the actual length of the road in meters.

image length _ 1.25 < 1071

. = =5x10"°®
actual length L > > 10
1.25 x 10
== m= 25 % 3. =7 —
L Sx 108 ™ 0.25%x10°m=250m

d. With current technolngy it is possible to make measurements on photographs
to the nearest micron (10™* m). What is the smallest actual length whose image

can be measured on the photograph of part (b)? (This is called the resolution of
the photograph.)

- : 56
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Solution: Let S be the smallest actual length in meters. Then

=6
B =5x107
50
5% 107 5=10"
and SZ%mEDiZm

new ten‘nmology to discuss the correction for such distortion. The po,nt on Earth
VEFUEE"y helow the camera is called the nadzr and its lmagg on the fllrn is calléd the

Earth were also flat. In the next prohlem we dEVElQp a formula to correct for this.

PROBLEM 8. The geometry of the photographic correction for Earth’s curvature is shown in
Fig. 4.9. The image of the point P is a distance r from the photograph nadir point
Q, flS the focal length of the camera, and His its henght when the pu;ture was

the plané of the tangent to thE nadlr N. ThlS means we need to compute Ar so that
the corrected image is a distance r + Ar from Q.

3
a. Show that Ar = iﬁ; =, where R is the radius of Earth.

Solution: Let /4 be the vertical displacement of P’ with respect to P and let x be the horizontal
displacement of P’ (also of P) with respect to N. We see from the diagram in Fig. 4.9
that x and 4 are related. If Tis the foot of the perpendicular from P to NE,
where E is the center of Earth, then APTE is a right triangle with PE = R,
PT=x, and TE=R — h. By the Pythaggrean theorem, R*=x%+ (R — h)%, s0
R?=x*+R?—2Rh + h?, giving x* = ERh h?. Since h is very small compared to
R, we shall use the approximation x> = 2Rh. .
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There are two pairs of similar triangles in the diagram.

For the inner pair.

fx=(H + h)r,
or
fx=Hr+ hr.

For the outer pair,

:

™~
+
v
<
|

or

fx=H(r+Ar),

or

fx = Hr + HAr.

Comparing the two expressions for fx, we see that 4ir = HAr. Then Ar = ﬁ h

2

Lx
H2R
Sfx = Hr -+ hr, since h is small compared to H, we have fx = Hr,so x* = fz

. 72,2 3
Making this last substitution, we have Ar = ?ITIR . Iic; = é%}}j

. Now we need another approximation in order to eliminate x. In the relation

b. Find the correction Ar and the resulting 7 + Ar for a photographic image taken
at a height of 92 km with a camera having a focal length of 132 mm if r measures
65.24 mm. Recall that R = 6400 km.

Solution: Since H and R are in km and r and fare in mm, if we do no unit conversions, we shall
be computing Ar in mm.

=0.11 mm

Ar==— (92) (65.24)*
T (2)(6400) (132)?

r+Ar=65.24+0.11 =65.35mm

64 Al 28
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The final problems in this chapter deal with some aspects of planning for the future
construction of such large commercial space structures as the antenna system in
the illustration on page 47. It is planned that the materials for the antenna system
will be carried up and the actual construction done in orbit. This frees the con-
struction of two considerations: (1) the rigidity that would be required for such a
structure to break away from Earth’s gravity and (2) the strength needed to
survive transportation into orbit intact. It is, of course, desirable to keeptoa
minimum the number of trips needed to transport the components, and consid-
erable effort has gone into the development of materials that are strong and light-
weight and that maintain their properties over a wide range of temperatures. Let
us see how successful the effort to minimize the number of trips has been.

PROBLEM 9. The Space Shuttle can carry 29 500 kg of payload into orbit in a cargo bay that is
basically a cylinder having a length of 18.3 m and a diameter of 4.6 m. The
structure in the illustration has 91 antennas, each a paraboloidal cap 20 m in
diameter and 2 m deep. The material for the antennas is a knitted metallic mesh
weighing 60 g/m?,

strength and stiffness with light weight, having a density of 1522 kg/m®. The truss
assembly shown has 252 copies of the basic repeating element, with each repeat-
ing element consisting of a tetrahedron having nine complete struts as shown in
Fig. 4.10(c). The struts themselves are holiow columns 10.4 m long with radius

3.8 em and thickness 0.57 mm as shown in Fig. 11.

4 v 4
(c) Basic Repeating Element

l

No. of Columns per
Repeating Element

Lower cover—3
Core—3
Upper cover—3

A8 D9 65
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Solution:

Solution:

a. How many Shuttle trips wouldbe necessary to get the weight of these eleme mits
(the rmetallic mesh for the antenmsand the columns for the struts) into orbit?

We s hall get an approximation for the weight of metallic mesh by treating the
anterx nas as though they were cirdes of radius 10 m. (In Chapter 10, “*Calculus _ ~°
we stz all get a more accurate resul) If we have 91 circles of radius 10 m, the toxal
area ~will be (91) (w) (10)* m?, andihe tot al weight of metallic mesh will be

(91) (=7) (10)°(60) g = 1.7 x 10" k. The volume of material in each column can Iz e
approximated by (27r) (t) (€) = 21(3.8 < 107%) (0.57x1077) (10.4) m?, so the

total ~weight of the columns is (25)(9)(65.28) (3.8)(0.57) (10.4) (1079 (1522) kg =
4.9 x 10"kg. The total weight of these m aterials is (1.7+ 4.9) x 10° kg = 6.6 x 1€)°

Lo &-6X10°kg _ oo, Y e the @R sl ate oot o .
kg. 25 .5 % 10 kg 0.224, or aboul22 pe rcent of the Shuttle’s weight capacity.

b. We= see that the Shuttle can euily carry this weight on a single trip. Now we
must consider volume: will the mierials fitin the available space? Assume that
the me etallic mesh is 7.5 mm thickand su fficiently flexible to pack into any shap<.

The cargo bay’s cylindrical volumeis given by =wRIL =7(2.3)2(18.3) m*=3.0>= 102
m'. W/e have already found that thetotal area of metallic mesh is (91) (100w) m=
=2.9 > 10°m?, so the total volumeof meshis (2.9 x 10°) (7.5 x 10™%) m®

2.2 x<10°m’.

This 1 eaves (3.0 —2.2) x 10° m* =80 w’ for the columns (and all the remaining
hardwrare needed for assembly. which wes are ignoring here).

Since the columns are 10.4 m long they cannot be placed end to end in the 18.3 m
long cargo bay. We must considerhow to stack them most efficiently. If we
consicler the cross section of the stck, we see that weneed to find the most
efficie=nt way to pack circles in a phine, It is intuitively reasonable (although the
proof 1is far from simple) that themiximum efficiencyis achieved when each cire<le
is tangzent to six others, as illustraled in Fig. 4. 12. From the diagram we see that

each Fxexagon has sides of length ), whexe ris the radius of the circle, and theres= -
fore e as area 6 (1/2) (2r) (\Gr) =6V3* Also, each hexagon contains three comrx-
plete «<=ircles whose total area is 3(r’), S © the fraction of area occupied by circles is

5 2
dmr. W __ 0.907.

6V3ir= 2V3 7
60
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Since the fr==action of space occupied at the boundary vilbe smaller than this, let
us assume tEXat the columns pack into the cargo bay sothat 12 percent of the space
is empty. Tk=1is means that the columns will pack intoatoss-sectional are & equal
10 1/0.88 of ~ their total cross-sectional area. We recalllt there were 252 > 9 =
2268 columr=s, each having radius 3.8 cm and thereforicross-sectional area of
w(0.038)* me=~ = 4.5 x 107 m?. The total cross-sectionilirea needed, then. is
2268 x 4.5>= 10~*
0.88
occupy (11.=7) (10.4) m* = 1.2 x 10* m’ of space. Hower, there was only S0 m” of
space left af~ter calculating the volume of the metallicnesh, so it will take snore
than one trieo to handle the volume, even though the wight is not a problem. Our
success in re=ducing the weight now places the focus ofor attention on vo I ume.

m’ = 11.7 m*, Since the columns arell.4 m long, they will

PROBLEM10. In order to &Fit more columns into a smaller space, thedesigners realized that they
should inves=tigate the possibility of tapering the coiumsand then “nestim g™
them for trazmsportation, like a stack of paper cups. Fig4.i3 illustrates the= idea.
Under this secheme, each column would be made of twitipered half-colurzins,
with their we= der openings joined; half-columns could fien be nested for stowage in
the cargo ba—y. Tapered columns have been developedund tested for strenth. If
riis the radie=ss of the smaller end and r, the radius of ticlarger end. tests s howed

. : .. T | el . ; .
that an optirexium taper ratio is ;—3 = 0.41 and that suchilipered column is actu-

ally stronger—; it can carry about 30 percent more load lefore buckling thara an
untapered cc>lumn of the same weight.

/

P- —
(a) Assembled CoEZumn (b) Mested HallCumn Elements

Fig. 4.13. Taper==ed Column Concept
; G ] ) o
a, If the mea _n radius is to be 3.8 cm as before. and ;l =04, find the values of r,
3
and Fi.

L . rt o . . . o .
Solilion: We have '5',2 — 2338 and r; = 0.4 r,. Clearing the fracion and substituting , we get

7.6

04r+r,

14r,=76

P
i

et ‘E
¥
1]
bk
i

r
3

= (0.4)(5.4) = 2.2
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Solution:

lution:

b. Fig. 4 14(3) and (b) display the geome=try of the tube nesting, whered, = = 2. r,

d> = 2 - r.. € is the length ofshalf-colume=n., and A isthe tube-nesting separali Zion.

Show that A = — L€ P and find an expres==ion in termsof { and A for the nymber of
1 1

half-columns that will fit inioone stack tE=xe length of the Space Shuttle carge—

bay.

In Fig. 4.14(b). if we insertthe horizopt==1 line shownand letter some keéy po oints as
indicated (Fig. 4.15), AABE'and ABCP  are similar,s0 AB/BC = BE'/CP. . We
have AB = A, BC = {,CD=r, - r- ancc we shall approximate BE' by BE = = .

Then, with thiz approximation and the pr—oportion above, A = r;’ -
o 27N

From Fig. 4.14(a), we haveone half-colus=mn of length { on the left end, in #HChich
3. BA ] (INT signifie=es the

we nest x additional half-columns, where- 7 = INT[

greater integer which is lessthan or equaZl to the number in the square bracke=zet.)
MNow the number of half-columns that wil 1 fitinto onestackisN =1+ p =T 1 +

rgr | 183 — €
INT[ A ]

<. For the truss assembly offroblem 9, d . etermine the volume occupied by tH he
strut columns if they are made of half-col 11mns as described here and nested  for

stowing in the cargo bay.

“We have ¢ = half-column length = (1/2)e£ 10.4) = 5.2m

N=1+INT[B352 oy INT[1456)= 1 + 145 = 146

“We had a total of 2268 columns, or 4536 l=a alf-columns, so this means there wg=ill be

INT [4536

146 ] = 31 stacks, andone additiorza al shorter stack.

Each stack is 18.3 m long (althnugh ong s—rack will be shorter) and has a radicaus of
5.4 cm, so its volume is 7 (0.054)?(18.3) == D 17 m’, The total volume of the =32
stacks is a little less than 32x0.17 = 5.4 m’.

By the analysis in the last partof Problemm 9, these stacks will take up aiésg’ =

6.2 m’ of space in the cargobay, and now the materils for the truss assemplyry and
tThe antenna “dishes’ can allbe transpofte=d in a single Shuttle trip.
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Space Shuttle locker tray containing 18 stan-
dard orbital flight test menu meals for two
crew members,
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Chapter Five

Solution:

) robability theory and statistical techniques makeinportant con_ tributions to
the space program. In this chapter we examine therole of prob== bility in

@ menu planning, in some aspects of the transmissimand coding of spacecraft
nbservatlons and in the control of equipment reliability, Some eleme=ntary
examples of the use of statistics are illustrated in the fin! two proble—ms.

The early manned spaceflights revealed much about the body's ressponse to pro-
longed weightlessness. An interesting and varied foodspply was thu=s needed to
guard against a loss of appetite in the face of what waslurmed. The frood supply
for the crew of the Space Shuttle is carefully planned tocompensate t=ur the high
knergy requirements (averaging 3000 calories per personper day) of —working in a
frictionless environment and the body’s tendency to loseessential mi—merals (such
as potassium, calcium, and nitrogen) in microgravity. The Space Shuzz tle food and
beverage list contains more than a hundred individualiems. A typice=al day's

menu might be the following:

Meal 1 Meal 11 Meal 11] B
Peaches Frankfurters Shrimp cc>cktail

Beef patty Turkey tetrazzini Beef steable<

Scrambled eggs Bread (2) Rice pilaf—

Bran flakes Bananas Broccoli = u gratin
Cocoa Almond crunch bar Fruit coctk=1tail

Orange drink Apple drink (2) Butterscd tch pudding

Grape dii mk

In general, each meal 11I contains a main dish, a vegetable, and two d_esserts, with
an appetizer included every other day. The food list conhins 10 jtems.  classified
as main dishes (M), 8 vegetable dishes (V), 13 desserts(D), and 3 app--etizers (A).
How many different menu combinations are possible incch of the fi—st six days
of flight, assuming no dish is repeated?

The number of choices is tabulated below:

Day A M V. DI D2 ___ MNunberof co—zbinations
1 3 10 8 13 12 374=0
2 — 9 7 11 10 69=0
3 2 8 6 9 8 cIE 2
4 —_ 7 5 7 6 140
5 1 6 4 5 4 4=0
6 — 5 3 3 2 =0
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PRGBLEM 2.

Solution:

PROELEM 3.

Solution:

The electronic telemetry system aboard a spacecraft transmits the data of spacecraft
motion in the x, y, and z directions. The system consists of thr2e motion sensors,

a signal conditioner, and a transmitter. The probability of failure for each motion
sensor and for the signal conditioner is 0.0001. The probability of failure for the
transmitter is 0.001. Assuming that component failures are independent events
and that the failure of any component will render the telemetry system inopera-

tive, compute the probability of a spacecraft telemetry success.

the prnbablhty of success for each sensor and the sngnal tandltloner is
P =1-0.0001 = 0.9999.
Similarly, the probability of success for the transmitter is
P =1-0.001 =0.999.

The probability of success for the telemetry system is the product of prgbablhtles
of success for each component; that is,

P = (0.9999)(0.999) = 0.9986.

The signals transmitted by a spacecraft telemetry system are in the form of pulses
imposed on a radio beam, which can be interpreted as binary digits. For exam-
ple, the signal fragment ... [ LI L _ ... willberead as ...010110..., since the

presence of a pulse is read as 1 and the absence of a pulse as D Each Possnblé
representation of a 0 or a 1 is called a **bit.”

For a variety of reasons, equipment errors can cause a 0 to be transmitted instead
Df a 1 or vice versa. As a result error- détécting COCIES have béén developéd to

can be used to d ,tarmmé Whﬂthi.‘l' errors are prgsent and even, for the more
saphistiﬂated i:DdES whéfe l‘.hé errors are. Transmitting these extra bits however

transmlsmon rehablhty must be traded agamst transmission EfflClEnCy Frobablllty
theory plays an important part in weighing the trade-offs.

a) The telemetry system of a certain spacecraft has a probability of 1 percent of

transmitting an erroneous bit. One way to increase data reliability would be to

repeat each message bit three times. For example, ... 010110... would become
.000111000111111000.. ., if no errors occur. If lt is decided to interpret any

Df the triplets 000, 001, 010, or 100 as 0 and any of the triplets 011, 101, 110, or 111

asl, fmd the prgbablllty of error m ths mtgrprétatmn of a message blt
A message bit will be interpreted erroneously if two or three errors have occurred in
the triplet.
P(2 errors) = @) (0.01)(0.99) = 0.000297
FP(3 errors) = (0.01)* = 0.000001
P (2 or 3 errors) = 0.000298 = 0.0003
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Solution:

We see that we can reduce the probability of a transmission error in a single bit
from 1 percent to 0.03 percent. but at a cost of sending three times as many bits
as are actually needed for the message. To put it a different way. the desired
message would be sent one-third as quickly.

!L Mnr’e efficierlt error detection can be done with parin' r:e;nding In th;s methud.

I«:ngth k so that the sum of the (A + ]) bits is enther always even (EVEﬂ panty) or
always odd (odd parity). For example, if X =4 and even parity is used, the message
110100101001 . .. will become 110110010110010... On receiving the trans-
mission signals, an error is detected if the sum of the appropriate five contiguous
dlglts is odd If the pmbahlllty uf errorina smgle bit is 1 pen:ent fmd (1) the

1 ~ P(no errors in the 4 bits) = 1 — (0,99)*

[

—0.9606 = 0.04, or 4 percent,
(ii) In each set of five bits under parity coding. if 1. 3. or 5 errors occur, the sum of
the binary digits will be odd and the error will be detected. If 2 or 4 digits are in

error, this will go undetected.

P(2 errors) = (;’) (0.01)? (0.99)" = 0.00097

P(4 errors) = (2) (0.01)* (0.99) = 5 x 10°¥
50
P(undetected error) = P(2 or 4 errors) = 0.1 percent
Ey inserting a parity bit after each four message bits we have r&ducﬁd the trans-
probablhty Df an undetected transmlssmn error in Each ft:lur blt “wcxrd” fmm 4
percent to 0.1 percent. However, when we do detect an error, parity coding does
not tell us which of the bits is erroneous. In Chapter 8, ““Matrix Algebra,” we

shall examine the Hamming Code. which not only detects a transmission error but
also tells which bit is wrong.
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Solution:

An aerospace consulting company is working on the design of a spacecraft system
composed of three main subsystems, A, B. and C. The rellahlllty or probability

of success, of each subsystem after three periods of operation is displayed in the
following table:

1 day 3.3 months 8.5 months
A 0.9997 0.8985 0.6910
B 1.0000 0.9386 0.7265
C 0.9961 0.9960 0.9959

These reliabilities have been rounded to four significant digits. The 1.0000 in the
first column means that the likelihood of the failure of subsystem B during the
first day of operation is so remote that more than four significant digits are needed
to indicate it.

a. Consider the case of the series system shown in Fig. 5.1. If any one (or more)
of the subsystems A, B, or C fails, the entire system will fail. If A is the total
probability of success of the system, find P, for each of the three time periods.

Fig. 5.1

For the first 24 hours,
F, = PoPyPc
= (0.9997) (1.0000) (0.9961)
=0.9958.
For a period of 3.3 months,
F, = PAPpPc
= (0.8985) (0.9386) (0.9960)
=0.8400.
For a period of 8.5 months,
E = P,PsPc
= (0.6910) (0.7265) (0.9959)

N :d =0.5000.
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h Thé system shawn in Fig 5,2 will succeed if B succeeds and at least one of A
bability of success for this system for the 3.3-month

Fig. 5.3

Solution: The probability of success for the portion of the system containing A and C is
Ps.c=1~ P(both A and C fail)
=1—(0.1015) (0.0040) = 0.9996.
Then
P.= PuPa = (0.9386)(0.9996) = 0.9382.

c. For more comiplicated systems, the use of conditional probability is helpful. If
an event A car be divided into n mutually exclusive subevents By, B,, ... B, (n
finite), then P(A) = P(A|B,)P(B,) + P(A|B)) P(B:) + ... + F’(A]B )P(Bn) where
the notation P(X|Y) designates the conditional prgbablllty of X given that Y has
occurred.

Consider the system in Fig. 5.3, where the 3.3-month reliabilities of the sub-

systems A, B, C are the same as before and the 3.3-month reliabilities of D and
E are 0.9216 and 0.9542, respectively. Use conditional probability to find the
reliability (i .e., R) of this system for the 3.3-month period.

Solution:  This system will succeed if any one of the paths (A,D), (B.D), (B,E), or

(C,E) succeeds. We can choose B as our focus and assert that
P, = P(system succeeds|B succeeds) Py + P(system succeeds|B fails) (1 — Pg). Now

we evaluate P(system succeeds|B succeeds). If the system succeeds given that B
succeeds, this means that at least one of D and E would have succeeded, so

P (system succeeds|B succeeds) =1 — (1 - Pp) (1 — P)
=1-01—-FP=F:+ k)
=h+FKE—-RKhE

= (0.9216) + (0.9542) ~ (0.9216) (0.9542)
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Next we evaluate P(system succeeds|B fails). For the system to succeed in view of
the failure of B means that at Icast one of the paths (A,D) or (C.E) must have
succeeded, so

P(system succeeds|B fails) =1 — (1 — P\Pp) (1 — B-F)

= PabPo+ PP = PARFP-R:

= (0.8985) (0.9216) + (0.9960) (0.9542)
~ (0.8985) (0.9216) (0.9960) (0.9542)

=0.9915
P.= (0.9964)F; + (0.9915) (1 — By)

= (0.9964) (0.9386) + (0.9915) (0.0614)

=0.9961.

PROBLEM 5. In Problem 4a we saw that the total reliability of the system deteriorates rather
rapidly in its present stage of design, with less than a 50-percent chance that it
will operate after 8.5 months. The reliability of subsystem C remains nearly con-
stant, whereas the greatest decline in reliability takes place in subsystem A,
which contains a particular part that is expected to wear out rapidly. The consult-
ing firm is asked to determine if enough improvement could be made in sub-
syster A to provide a reliability after 8.5 months of 0.7500. Compute the
improvement needed in subsystem A.

Solution: Let x be the factor by which the reliability of subsystem A must be multiplied. Then,
as before,

The reliability of subsystem A must be 1.500 x 0.6910 = 1.037. The increase in
reliability cannot be obtained by improving subsystem A alone, since the
reliability cannot be greater than 1.

The next problem demonstrates the combined use of probability and computer

simulation to determine the volume of an irregular solid.
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PROBLEM 6. An internal fuel tank on a space vehicle has the shape of an ellipsoid truncated by
three pla’ s, as shown in Fig. 5.4, Our problem is to determine the volume of

Ih!s fuel . Let us use, for an example, the ellipsoid whose equation is

g_ +j§z‘+ == 1 and with the planes being x = =7, and z = —1.5, where the units
are meter:,

Fig. 5.4 {

a. If the tank is surrounded as tightly as possible by a rectangular prism with faces
parallel to the planes formed by the coordinate axes, what inequalities must the
coordinates of the ponts inside the prism satisfy? What is the volume of this prism?

Solution:  If (x.y,z) is inside the prism, x must satisfy —7 <x <7 because of the truncating
planes x = —7 and x = 7; y must satisfy —3 <y < 3 because y = —3 and y =3are
the planes tangent to the ellipsoid and parallel to the x-z plane; z must satisfy
—1.5<z <2, since z is bounded below by the truncating plane z = —1.5 and
above by the plane z = 2 tangent to the ellipsoid and parallel to the x- -y plane. This
reﬂtangular prism has dimension 14 m x 6 m % 3.5 m, and the resulting volume is
294 m’

b. Let V, be the volume of the prism and let V, be the volume of the tank, which
we are SEEklng If a point is randomly chosen inside the prism, express the proba-
bility that it is also inside the tank, in terms of V, and V,.

Solution: This probability is equal to V,/V,, the ratio of the volume of the tank to that of the
surrounding prism.
c¢. If N points are chosen at random inside the prism and [ of these points are also
inside the tank, express V, in terms of , 7, and Ve

Solution: The pmbablhty that / points are in the tank out of the N pomts chosen randomly
msxde the prism is approximated by //N. Sowe get I/N = V,/V, 5 giving

Vo(I/N).
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d "Vrite a camputt:r pngram to pérfurm this *;lmulauan using a random number

Solution: )
10 REM VOLUME SIMULATION USING 240 PRINT : PRINT : PRINT "TYPE
. " PROBABILITY L ANY OTHER LETTER IF- FINISHED
12 DIN K(25): DIM UEL(ES): DIN P 250 INPUT AS:iMsM .+ 1 :
T BTLRSY e DL e T - . 280 IF A% = "“§* THEN K(H! = =
IS'H = : ' ©--1)¢ GOTO-S0
20 -REH: NTEENAL "FUEL . TANK » ﬁuu - 270 - IF ns = '»p»

CATED * ELLIPSOID -« - -

30 . REM. BOUNDARIES"X'2/8°2 + ¥: 1
L 73%2 4 2ARYZNR e LuXs -7.x 701
251,58 ,

32  PRINT.:"THIS PRI M . EDHPUTEE

' - THE:VOLUME.OF ®: .-

HANY: FQINTS po: YBLI

3a

36 FRINT, "Hﬁnss SHARE .18 A ?ﬁ
. . ATED’ELLIPSOID®

37 PRINT.

38 : ;

as “THE .USER WILL' CHDOSE T . -

UMBER" OF "1 . PEINT'“PﬁINTE.

: SIMULATION":.PRINT -

a0

5
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PROBLEM 7. Sunspots were observed and recorded as long as two thousand years ago. The
invention of the telescope around 1610 permitted the systematic observation of
these solar features, their motion, and their frequency of occurrence. (Problem 6
of Chapter 7 illustrates the use of trigonometry in analyzing sunspot motion.) It
is relatively easy to observe sunspots by using a long-focus telescope to project an
image of the Sun on a piece of white cardboard.

Fig. 5.5 shows the record from 1610 to 1975 of what is now commonly referred to
as the “'sunspot cycle.” The vertical scale represents the number of sunspots
observed. The data since 1740 are considered reliable.

are regions in the solar atmosphere that contain enormous magnetic fields relative
to their surroundings, along with cooler temperatures. Moreover, there appear

to be connections between the level of sunspot activity and thé occurrence of
“‘magnetic storms” in Earth’s ionosphere, the density of Earth’s upper atmo-
sphere, and changes in Earth's weather and climate.

Since variations in upper atmosphere density can affect the orbital lifetimes of
satellites, the prediction of sunspot activity is an important aspect of the plan-
ning of some space missions. The mean cycle length as well as its variability must
be taken into account, making statistical analysis vital to such predictions.

140 - - - - - e Fig. 5.5
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_ Probability and Statistic

The following table summarizes some of the data of Fig. 5.5. The first step in the
statistical analysis for the prediction of sunspot activity is to determine the mean
and the standard deviation for each of the following measures: the rise time; the
fall time; the period from minimum to minimum: the period from maximum to
maximum. Compute these means and standard deviations.

Table 5.1 ) ) B o - -

Year of Year of Year of Year of
Cycle Minimum Maximum Minimum Maximum
1745 1750.3
1755.2 1761.5
1769.7
1778 .4
1788.1
1805.2
1816.4
1829.9

Iy
e
w

— WD DD N O L e D B “n\
—
W
L
1
o]

1867.2 1870.6
1878.9 1883.9
1889.6 1894.1
1901.7 1907.0
1913.6 1917.6
1923.6 1928.4
1933.8 1937.4
1944.1 1947.7
1954.2 1958.2
1964.6 1970.6

2

L e

he computatior :re done by microcomputer. The program listing and the results
of the run are shown below and on page 82.




530 HTAB Z4: PRINT AAV;
S3E FOR J= 1 TO H

540 Z(J) = B(J)
54% NEXT J
550 - GOSUB 2000
580 BAV = Zauy. .
570 HTAB 34:1 PRINT BAU.
600, REM . COMPUTE AND - PRINT 5
- &RD EEUIQTIGNS
805 - DIM-D{H} .
10 - PRINT, *§:0; %3
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Among the studies arising from Landsar observations are several concerning
the evaluation of properties of snowpacks. In many areas of the world, water
resources are heavily dependent on winter accumulations of snow.

Computer models are being developed whereby potential water resources can be
predicted from satellite measurements of microwave emission in snow-covered
areas. Predictions from such models are tested and the models refined by making
comparisons with ground-based measurements of snow depth and temperature.
Such measurements, when graphed, insvitably show a large amount of scatter,

and it is the regression line for the datz that is used as the standard for comparison.

Fig. 5.6 shows such a comparison, where the horizontal scale is temperature in

elvin. (The Kelvin scale of temperature is obtained from the Celsius
stant, 273.15, so that 0°C = 273.15°K, and

scale by adding a con
10°C = 283.15°K..)
The data points of Fig. 5.6 are listed below. Fin
of the regression line.

d the parameters of the equation

Tt
=
|

b
v
T
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s

Model - Line

Snow Depth {om)
o
T
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Curve - ~
10 =
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Fig. 5.6
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Solution: Asist I
program listing and the results follow.
ILIST
10" REM . SNOWPACK MODEL
15 PRINT
20 REM REGRESSION LINE
.30 BATA 1985,25,207,19,209,15,20

5.1?.216.25
_211!2Q|211l21121§121|2!
'213!15

EE;-!S.EEI:lE.EEE-i?.ES
: 3!151333!11}23313!235!211235

38,18 +235,8 4240
rEﬂl!EiEQE:Sigﬂ

E
A ;ﬂs.l.zaﬁ.l.gg?.znzaiga
’lEﬂEnﬂl§ﬂ§!§r25@|2125lrSIESE
2525551 -
X(ﬂs}: DIHVY(GE)
FDOR. 1-='1 Th 48
-READ’ ﬁ(I). READ Y(I)
: SNEXT T : :
‘13ﬁ' GOSUB 1QQQ'
-1 140 XSUM = Q:?SUH = 0:SP = 0:50 =

I-= 1 TO a8
XSUM + H{I):YSUH = YSU
(1)

o
)

P+ X{I) # ¥(I):50 =
(1) % X{1)
1

XSUH_! AB:YMEAN = YSU

P - 48 + XMEAN ¥ YMEAN)
O - 48 * XMEAN » XNEAN)

1000 % B:B = BZ / 1000

'lﬂD * HHEEN = €L /7 100

PﬁINT “TH
'"HAS S;DFE

iB
'"PRiHT . BND A HEAN ENDH DEFT

E
'EDREESFDNDE TO A HEA
N TEHFEEQTUEE“' PRINT " OF *

REM ECHO INPUT DATA
TT10L00PRINT: ™ - JR WX {I)w wy(I}n
/1020 FOR 1.= 1 TO 48
1501030 PRINT 1.X(1),¥(I)
1040 . NEXT 1
1050 ' PRINT "END OF DATA"
- 1060 - RETURN -

a4 T
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100 #. YMEAN:A = AZ / 100

he previous problem, the computations were done by microcomputer. The

i
T
Iz
Z

=

T 0Ol O AT B ) D) e

10

[

M2

243
245
247
2a7
248
249
250
251
252
255

uwwmmmuwwu--memmmnmwmwmwmmmm

END OF DATA

THE REGRESSION LINE HAS SLOPE =-.45
AND A HMEAN SNOW DEPTH DF 11.3
CORRESPONDS TO A MEAN TEMPERATURE
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* EXPONENTIALAND
LOGARITHMIC FUNCTIONS

APOLLO 17 EVA—Astronaut Eugene A.
Cernan, Commander of the mission is photo-
graphed by Astronaul Schmitt whose photo is
reflected in the gold visor.
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Solution:

Solution:

Solution:

Solution:

he early work that led to our understanding of the planetary motions and gave
us the description of the solar system we know today would have been virtu-
ally impossible without the use of logarithms to reduce the labor of the com-
putatmm Although r:omputers and calr::ulators have replaccd lngarlthmﬁ as com-

;tudy of Earth atmnsphcre and rocket propulsmn Examples of whu:h are cited
in this chapter.

Experimentation and theory have shown that an approximate rule for atirsspheric
pressure at altitudes less than 80 km is the following: Standard atmospheric pres-
sure, 1035 grams per square centimeter, is halved for each 5.8 km of vertical

ascent.

a. Write a simple exponential equation to express this rule.

Letting P denote atmospheric pressure at altitudes less than 80 km and 4 the altitude
in km. we have »
P =1035(1/2)**¥ g/em®.

b. Compute the atmospheric pressure at an altitude of 40 km.

From the equation of part (a).
P = 1035 (1/2)***g/cm?
035 (1/2)* g/em?
5 (0. 0084) g/em®
= 3.7 g/

c. Find the altitude at which the pressure is 20 percent of standard atmospheric
pressare.

IHI

Subsmutmg in the equation of part (a) gives (0.20) (1035) = (1035)(1/2)"*¢, where
hisin km, and so (0.2) = (1/2)"**, Now, taking logarithms,

11

log (0.2) = =— !og (0.5)

and

) log (0.2) m -
= bt = I A = 3
h 38 (DS)k =5.8(2.32)km = 13.5km.

The rule for the variation of atmospheric pressure with height which was given in the
previous problem can also be written

P

1035 (2)~//s8
1

1035 (2)-017,

Atmaspheric scigmiats often use this rule in one ofits equivaiem forms where the
that P = 103‘5 (‘?)"" o 10?5 (10) “kih = 1()35 (t:) kak,
We need to find 4, so that 2%'7 = 104, Taking logarithms, 0.17 log 2 = k, or

ky = (0.17) (0.301) = 0.051. For k; we have 27 = ¢, or k; = (0.17) log.2
= (0.17) (0. 593) =0.12.
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Solution:

Sometimes different bases are used together in the same application in atmospheric
work. For example, atmospheric absorption of electromagnetic radiation from

the Sun and other sources is dependent on the wavelengths of the incoming radi-
ation. Instruments carried by rockets, balloons, and satellites have shown how

far in the atmosphere such radiation penetrates before being reduced by a factor of
1/e, the conventional measure used in this work. The results are given in Fig. 6.1.
Both the wavelength scale and the altitude scale are logarithmic, with the
haorizontal scale in base 10 and the vertical scale in base 2. (How much of this
information could be displayed using linear scales even on a wall-sized chart?)

Fig. 6.1shows that visible light and radio waves penetrate the atmosphere com-
pletely and reach Earth’s surface. However, gases such as oxygen, ozone, nitro-
gen, and water vapor absorb most of the infrared, ultraviolet, X-ray. and shorter
wavelengths. At what altitude will solar infrared radiation of wavelength 107 m be
reduced by a factor of 1/e?

1071 Wave length
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Fig. 6.1

The equal intervals on the altitude scale have length log 2. The ordinate we are
seeking, y, is 1/4 of the way between log 50 and log 100. This means that

log y = log 50 + 1 log2 = 1.699 + 31,(0,3010)

1.699 + 0
Theny = 107" = 59,

If a calculator with a y* key is available, we can solve this problem without

actually finding logarithms, as follows:

logy = log 50 + %l@g 2 =log [(50) (2)“"‘] = log [(50) (1.189)]

= log 59. Soy = 59,

In the foregoing problem, we saw how the use of logarithmic scales made it possi-
ble to display information over an extremely large range of values. The next two
problems show another use for logarithmic scales, that of fitting a mathematical

function to experimental data.
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PROBLEM 4.

Solution:

some p]aﬂél'ﬁ (e g.. E:uth Jupxter Sgturn) and a plDt of the numbgr Qf pgrtlclgs
found at different energies is called a spectrum. Often the spectrum has a shape
that can be represented by an equation of the form N = KE™ where N is the
number of particles at a certain energy. £: K is a proportionality factor; and m is
called the spectral index.

When the spectrum has such a shape. we call it a power-law spectrum. and the
E‘{péﬁméntér’ %tudyiﬂg such a 5peictrum wants to knnw thg values of 11 and K.
past Jup!ter! For these data, find the best valué of m and of K. (N is really the
numbéf of partich’;s hittiﬁg a detecmr per unit time, or the counting rate, which is

Table 6.1 — — _
_ Energy. E ~ Number. N
.16 7 - Lox 1
I ! B L3 w0’
S A o L3 =
Lo - 6.8 % 10°
L6 - Lox 10t
_ 43 - 20
_ __1up - 1
00 ol

Usinglogarithms on the expression N = KE"resultsinlog N = log K + mlog E.or,
to obtain the form of a linear equationy = mx + b, log N =mlog E + log K.

We can find logarithms for the values of £ and N in the table (or we can use
log-log graph paper and circumvent this step), plot the points, and draw the best
straight line through this set of points. Then m will be the slope of the line, and

K will be the value of N for which log £ = 0. (Note that this is the value that lies
on the best straight line, and not necessanly any value in the data set.) -

We observe in Fig. 6.2 that the intercept on the log N scale is 3.5. Since log

N =3.5whenlog E = 0, we have log K = 3.5, s0 K = 10** = 3200. The points
—0_ —-3.5

1.0

‘».M
] @m
m
[a]

(0,3.5) and (1.0,0) are on the best fit line, som = (5
N = (3200) £
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Many of the control functions in a space vehicle system are automatic, handled
by computers and electronic feedback devices. However, the adaptability and the
decision-making ability of human monitors of these systems, whether crew mem-
bers or ground controllers, greatly increase the overall effectiveness of mission
control. Because of this, managers of projects in the space prograin have become
interested in some results from psychological studies of human decision making.
One such study measured the time it took to respond when faced with varying
numbers of choices. Experimental results are given in the table below, where N
is the number of choices presented and R is the reaction time in seconds. Graph
these data on semilogarithmic graph paper with N on the logarithmic scale (or
graph R against log,,N if semilog graph paper is not available) and find an empir-
ical expression for reaction time as a function of the number of choices.

1 3 , 5 6 7 8 9 10
R 017 034 037 042 048 0.52 0.56 0.58 0.59 0.57

[t

N 1

The points are graphed and a “‘best fit" line drawn (sce Fig. 6.3). Since the point

(N,R) = (1,0.17) does lie on this line, we have R = 0.17 + m log;yN. To find m,
we can use the points (1,0.17) and (9, 0.59), since both are on the **best fit'"’ line:

0.59=0.17+m log,9

S0 0.42

i

m (0.954),

or m

(0.42)/(0.954) = 0.44
The requested relationis R = 0.17 + 0.44 logiV.

As we have seen in Chapter 4, solar cells, which convert solar energy into elec-
trical energy, can be used to supply power in space vehicles. Nuclear energy
derived from radioactive isotopes is also used. Nuclear energy sources gradually
lose power in a manner descrilied by the exponential function. The next problem
illustrates some computations.of the available power and operational life of a
satellite using a nuclear power source. 82
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PROBLEM 6. A satellite has a radioisotope power supply. The power output in watts is given by
the equation

P =502
where ¢ is the time in days and ¢ is the base of natural logarithms.
a. How much power will be available at the end of one year?
Solution: Applying the given equation, we have

P = 50e-368/150

[
L

DEZLJE

i
Ly

0x0.232
=11.6
Thus approximately 11.6 watts will be available at the end of one year.

b. What is the half-life of the power supply? In other words, how long will it take
for the power to drop to half its original strength?

ution: To find the half-life, we solve the equation

i
i

1)

for r and obtain

1 =250x0.693

Thus the half-life of the power supply is approximately 173 days. (Note thatIn x
is a shorter expression for log, x.)
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Exponential and Logarithmic Functions

Solution:

Solution:

¢. The equipment aboard the satellite requires 10 watts of power to operate
properly. What is the operational life of the satellite?

Solving the equation

—
=
1

.
-
=
4
_\l
-~y
5

for r gives

its propellant is burned to depletion is expressed by the equation
v=cInR

¢ is the exhaust velocity of the engine;
In R is log.R. or the natural logarithm of R;
takeoff weight

and R is the mass ratio of the spacecraft, defined by R = burnout Iveight .

a. The takeoff weight consists of propellant or fuel. F, structure, §, and payload,

P. At burnout, assuming all the fuel has been used, the remaining weight is § + P,
F+S+P | - . . . , '

othat R % . In general, the weight of fuel cannot be more than about

10 times the weight of the structure in order for the vehicle to withstand the

stresses of operation. Show that if F = 105, then an upper limit for Ris 11.

W
—

F+5+P_ 10S5+5+P

i - e T — =+ =
IfF=IDS,t?13nR— S+ P ST p

11(S + P) — 10P

- S+P
=11-29 41

+P

Ly

So the largest possible value for R is 11, but we see that in order to actually

could carry no payload!
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Chapter Six

b Thg minimum aititudg fDl‘ a stablg orbit abaut Edl’th is abgut 150 km At lDwef

overcome the retardlng effect of Earth’s atmosphgre WhllE l;he spacscraft is
ascending, the total v:lm:lty imparted by the launch vehicle must be at least 9.0
km/s. What is the minimum exhaust velocity needed by the rocket engine if
R =117

Solution:  Substituting v=9.0km/s
9.0km/s=cln 11

9.0 ., 9.0 ...
TSI km/s i 3.8 km/s.

o=

c. The propellants used for engines such as those of the Delta, Centaur, and
Saturn launch vehicles could produce exhaust velocities averagmg at most 3
km/s, which would not be sufficient to achieve orbit. The main engines of the
Space Shuttle use a mixture of liquid hydrogen and liquid oxygen, which can
produce exhaust velocities of 4.6 km/s. However, in order for the Shuttle to per-
form its tasks and return to Earth with its crew, it has an R-value of arcmnd 3.5.

Could the Space Shuttle achieve orbit with its main engines?

Solution:  If c=4.6km/s, and

= (4.6)(1.25) km/s
=5.8 krﬂ/—S,

which is not sufficient for orbit.
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PROBLEM 8. Itis apparent from the rocket equation that the burnout velocity increases when the
mass ratio increases. We can get a higher mass ratio by using a solid propellant
because the stiff, rubberlike propellant mass serves as part of the structure. If no
payload. or a very small payload. is included. a solid-propellant rocket could
have a mass ratio of about 19. A typical average exhaust velocity for a solid pro-
pellant might be about 2.4 km per second. Could this launch vehicle achieve a

160 km Earth orbit?

Solution: Using the rocket equation.

v = In 19 km/s
= (2.4)(2.94)
=7.1km/s

which is much less than that needed for orbit.

The solution to the problem pointed out in the preceding examples is to use stag-
ing. That is, the launch vehicle is divided into two or more parts, or stages. As
soon as the propellant has been burned in the first stage, there is a brief coast
during which the heavy motors and structure in the first stage are jettisoned and
permiited to fall into the ocean. Freed from this deadweight, the second-stage
motors are much more effective; the same procedure is repeated for the remain-
ing stages.

PROBLEM 9. Let us design a two-stage vehicle to place a payload into Earth orbit. We shall make
some simplifying assumptions to make this problem easier while preserving the
basic idea: (1) the structure weight of each stage is 10 percent of the fuel weight,
the remaining weight being payload; (2) the gain in velocity is divided equally
among the stages, each contributing 4.5 km/s to the required final velocity of 9.0
km/s; (3) all stages use the same propellant with an exhaust velocity of 3.7 km/s.
This third assumption is generally not true in practice—for example, the Space
Shuttle uses solid rocket boosters in addition to the main engines—but our goal
here i5 1o see how stagmg wnrks For the sake of havmg a numeru:al example we

ExdmplE detexmme the welght of fuel to bE c:arne.d by each stage the structural
weight of each stage, and the weight of the orbital payload.
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Solution: Let Fy, §;, P, represent fuel, structure, and payload weight, respectively, of the first

stage, and F3, S;, and P, those of the second stage. Since the “*payload™ of the
first stage includes the entire second stage and the orbital payload,

P =F,+ 5§+ P..

First stage: v =cln R,

So L =2 0 o3

Then Sl"“P;:E",,*f

T

and Fi=(50-1.5)%x10"=3.5:¢ 10" kg.

=

By assumption 1. §,=0.10 (3.5 x 10%) = 3.5 x 10" kg.

Then Pi=15%x10"=-3.5%x10°=1.15x 10" kg.
Second stage: We again have, from the rocket equation,
45=3.71nR.,

50 R.=3.4.

AISD, R; =

Then S+ Py =

Therefore, F2=1.15%x10'-3.4x10°=8.1x 10" kg

P.=(3.4—0.8) x 10’ kg = 2.6 x 10" kg.
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PROBLEM 10,

Solution:

PROBLEM 11.

Solution:

ERIC

Aruitoxt provided by Eic:

Our design for the two-stage launch vehicle may be checked as follows:

Weight of orbital payload .............. 2.6

Total weight of vehicle............. 50.0=5.0x 10*kg

place any payload into orbit, this two-stage vehicle can place nearly 5 percent of
its weight into Earth orbit,
Show that when all stages use the same propellant, the total mass ratio of a multiple-

stage launch vehicle is equal to the product of he individual mass ratios.

Indicate the burnout velocities and mass ratios of the first, second, third stages, and

s0 on, by the subscripts 1, 2, 3, and so on. Then, using a three-stage vehicle as an
example,

1;'1'+'L'3+}’3§§iﬂR1+€]ﬂR:+§]ﬂR3

=
Il

c(lnRi+InR:+1InRy)

il

v =clog.(R\R:R;)

(Note: Making the structure stronger so that it can support large payloads reduces
the mass ratios. However, if we have several stages, the total mass ratio can
become very high, producing much greater performance.)

Using the equation derived in Problem 9, show that the launch vehicle constructed
in Problem 8 can indecd orbit its payload.

Given RiR,=(3.4)(3.4)=11.56
v =2.7log.11.56
=3.7(2.45)
=9.06 km/s
The raunch vehicle will impart sufficient velocity to overcome drag losses and

insert the payload into a 160-km Earth orbit. Note that dividing the launch
vehicle into stages increases the overall mass ratio to 11.56.
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Chapter Seven

ngle measurements and the trigonome+ric analysis of such measurements are
used éxtenqiv:ly in space science. Among the examples we shall consider

k here are some involving transformations between terrestrial (or celestial) and
spacecraft coordinate systems, a variety of photogrammetric corrections, and the
tracking of spacecraft from stations on Earth.

PROBLEM 1. A conventional right-handed three-dimensional spacecraft coordinate system is
shown in Fig. 7.1. The angular motions of the spacecraft with respect to the x-,
and z-axes rEsp thEly are call:d rt:zll pn‘ch and yaw, shawn m F!g '7 1 hy

‘*-:

cmnc:des wnth the one in the dlagram hut d,ge:s not undergo rotation. Here. we
ngle rotation at a time. In Chapter 8, **Matrix Algebra.” we shall
iﬂVEStlgatE a series of such rotations.

When the spacecraft performs a rotation, the reference system remains fixed, but
the spacecraft coordinate system undergoes the same rotation as t the s p cecraft.

If the point Q has coordinates (x, y. z) in the reference system, we need to find its
coordinates in the spacecraft system after such a rotation takes place. Let us

consider each of the motions roll, pitch. and yaw separately.

a. Let the spacecraft coordinate system m initially coincide with the reference sys-
tem, and let the ,pacécr’aft undergo roll through angle R. Express the coordi-

nates (¥g, Yr, zg) of a point Q on the spacecraft in terms of (x, y, z) and R after this
motion is performed.

GF— Fig. 7.2
Y
Fig. 7.1
Solution:  Since the roll is around the x-axis, the x-coordinate of Q is the same in both systems:
xr = x. Now consider the plane parallel to the y-z plane, which contains Q. The
roll moves Q to Q' as shownin Fig. 7.2. Let r = OQ = OQ’ and let LYOQ' = @
Then £Y,,0Q' = 6 = R. Q' has coordinates (y, z) in the reference system, where
y=Frcos# and z =rsin 8.

—
=
=
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In the spacecraft system, Q' has coordinates ( yg. 2g)

where vg = rcos (8 = R) and g = rsin (8 — R).

Expanding the sine and cosine of this difference rzsults in

Ye=rcosfcosR + rsin@sinR =y + zsin R

Ll

[s]

L

>y I

(2]

rsinffcos R — rcossinR = zcos R — vsin R,

Il
M

Tt

ZRr

b. Find the comparable transformations if the rotation is either a pitch through
an angle P or a yaw through an angle Y.

Solution:  For a pirch rotation, this takes place around the y-axis, so if the coordinates in the

spacecraft system are(tp ¥, 2p), we have yp = y. We next consider a plane
paraliel to the x-z plane, and the analysis will be just as in part (a) with y replaced
by z, z replaced by x, and £R replaced by £ P, resulting in xp = x cos P — z sin

P,zp=zcos P + xsin P.

A yaw rotation takes place around the z-axis, so if the coordinates in the space-
craft system are (v, yy, 2y). we have zy = z; now we consider a plane parallel to

positive angle of rotation take place so that the cyulic order x y z x is maintained.)

¢. An Earth-based computer monitoring the coordinates of Jupiter in Vovager's
reference frame recorded Jupiter at (2.03, —2.81, 0.336) (in units equivalent
to 10° km) at one point. If Voyager had performed a yaw rotation of 28° just prior

to this reading, what were Jupiter’s coordinates in the spacecraft

Solution:  Using (x', y', z’) for the spacecraft coordinate system:

x' = x cos 28° + y sin 28°

2.03 cos28° — 2,81 sin 28°

Il
Lt
u
~J
[

o
]
[
-
w
=]
b
g
o
.l’_
e
e
e
e
i
o]
o

il

!
fd
i
T

z' =z =0.336

We next calculate the length of some of the latitude circles on Earth.
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PROBLEM 2,

Solution:

Solution:

Solution:

Although Earth is not really a sphere, it can be treated as though it were spherical
for many purposes.

a. Show that the length of any parallel of latitude around Earth is equal to the
equatorial distance around Earth times the cosine of the latitude angle (sce
Fig. 7.3), if we assume a spherical shape for Earth.

By the definition of the cosine function, cos = r/R, orr = R cos 6. The length
of the parallel of latitude is C,. If C, denotes the equatorial circumference of

Earth, then

2nr

&

2nR cos @

C.cos 8.
b. Find the length of the 30° parallel, north or south latitude. Use R = 6400 km.
Applying the formula for the length of a paralic] of latitude derived in part (a) gives
C, = (6400 km) (cos 30°)
= (6400 km) (0.866)
= 5500 km.
c. Determine the length of the Arctic Circle (66°33" N).
Using the formula from part (a), the length is

= (6400 km) (0.398)

72 2500 km,
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Solution:

PROBLEM 3,

Solution:

d. How far is it "around the world™ along the parallel of 80° north latitude?
Using the result of part (a). the distance is

C, = (6400 km) (cos 80°)

= (6400 km) (0.1737)
= 1100 km.
Two tracking stations s miles apart measure the elevation angle of a weather balloon

to be « and B, respectively (Fig. 7.4). Derive a formula for the altitude 4 of the
balloon in terms of the angles @ and . Ignore Earth’s curvature.

Writing an equation for the cotangent of each angle and solving for x gives

ty
|+
o

Pl

cot «

hcota — s

X

and

cotfB =

%

Now the two expressions for x are

Il
b

= hcot B.

equated:

hecota —s=hcot B

h(cot a — cot B)

and

D =
!
é

]
L

5

cota — cot B



Chapter Seven

Solution:

A satellite traveling in a circular orbit 1600 km above Earth is due to pass directly
over a tracking station at noon. Assume that the satellite takes two hours to make
an orbit and that the radius of Earth is 6400 km.

a. If the tracking antenna is aimed 30° above the horizon, at what time will the
satellite pass through the beam of the antenna? (See Fig. 7.5.)

Noon

Station ‘\

£ Satellite

Inthe triangle formed by the station, the satellite, and the center of Earth, y = 120°.
From the law of sines,

(]

sin &

x _ siny

6400 8000

_ 6400 sin 120° _ ..
2000 = 0.693.

sina =
Then
a = 44°
and

= 180° — (120° + 44°) = 16°.

i
]

The time between

_1ce .. v e e 10° ion .o
16°and 8 = 0.0°%is 360° (120 min)

™
I

= 5.3 min.

This means that the satellite will pass through the beam of the antenna at
12:00 — 5.3 minute:, 07 11:54.7 a.m.

94

PR E



Trigonometry

Solutic n:

Solution:

b. Find the distance between the satellite and the tracking station at 12:03 p.m.

Computing angle 3 gives

3= SMIN_ 4000 g

120 min
By the law of cosines,
x? = (6400)* + (8000)* = 2(6400) (8000) cos 9°
= (40.96 + 64 — 101.14) x 10"km?

3.82 x 10° km?

.96 % 107 = 2.0 % 10 km.

fl
(=
L=

x =
We have found that the distance between the satellite and the tracking station is
2000 km (to two signidicant figures) at 12:03 p.m.

beam will intercept the satellite at 12:03 p.m.? (See Fig. 7.6.)

Moon

12.03 pém.gﬁ\

—

Fio, 7.6

Again, applying the law of sines,

sin 9° _ sin (y + 90°)
8000

2000

sin (y + 90°) = gggg sin 9° -

0.626

cos y = 0.626

51°.

5 105
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Chapter Seven

PROBLEM 5. Two of NASA's tracking stations are located near the equator; one is in Ethiopia, at
40° east longitude, another near Quito. Ecuador, at 78° west longitude. Assume
both stations, represented by E and Q in Fig. 7.7, are on the equator and that the
radius of Earth is 6380 km. A satellite in orbit over the equator is observed at the
same instant from both tracking stations. The angles of elevation above the hori-
zon are 5° from Quito and 10° from Ethiopia. Find the distance of the satellite
from Earth at the instant of observation.

R

Fig. 7.7

Solution: In Fig. 7.7, 0Q = OP = OE = 6380 km: 2QOE = the longitude difference of the
two stations, so ZQOE = 78° — (—40°) = 118°. Since AQEO is isosceles,

LOQE = 20EQ = % (180° — 118°) = 31°,

Further, since the horizon is perpendicular to the radius, ZSQE = 5° + (com-
plement of ZEQO) = 5° + 59° = 64", and £SEQ = 10° + (complement of
£QEQ) = 10° + 59° = 69°. Also, LQSE = 180° — (64° + 69°) = 47°. These angles
are all shown in Fig. 7.7. We are looking for the distance SP. If we can determine
OS, then SP = OS — OP = OS - 6380 k. We note that OS is not an angle bisec-
tor for either ZQOE or £QSE, so we must use an indirect method to find OS.

o AE Fr  QE OE
We can evaluate QE from Sin118  sn3r.

;= 28OS LIS _ 1y 04 » 104 km;
sin 31°
then

om _SE__ _QE |,
" sin 64°  sin 47°°

_ 1.094 x 10" sin 64°
sin 47°

= 1.34 x 10° km;
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O

ERIC

Aruitoxt provided by Eic:



Trigonometry

OS = V(OE)® + (SE)* = 2(OE) (SE) cos ZOES

V(6.38 X 10°)7 + (1.34 x 10°)" — (2) (6.38 X 10%) (1.34 x 10")cos 100°

= 10°V40.70 + 119.68 + 24.24

10°V249.62 = 1.58 x 10* km.

So

SP = 15800 — 6400 = 9400 km.

Although the Sun is more than a hundred times as large as Earth, as we noted in
the first problem of Chapter 4, it subtends an angle of only abaut half a degree in
the sky as viewed from Earth. In the next problem, we consider some aspects of
the observation of sunspots.

a. Find the angular separation between two large sunspots when viewed from Earth
(or Earth ortit) if they are separated by 30° in longitude along the Sun’s equator.

Corisider two cases:

1. A time when the midpoint between the spots is on the center of the visible disc
of the Sun;

2. A time about a week later when the Sun has rotated so that the leading spot is
just about to go over the Sun's limb (edge).

Recall that the Earth-Sun distance is 1.5 x 10° km. The radius of the Sun is
7.0 x 10° km. In the first case it will help, and in the second it will be necessary,
to make a suitable approximation (Fig. 7.8).

5un’s Rotation Axis

Photographic =—
Sunzpots




Chapter Seven

Solution: Case 1. In the edge-on drawing shown above we have:

CD = Earth-5un distance = 1.5 X 108 km
C

radius of Sun = 7.0 % 10°km

>
(
9
o
Il

ZABC = 30° and CD bisects ZACB

Let AE be the perpendicular from A to CD and let A be its length.

Then
CE = hcot LACE;
ED = hcot ZADE;
and
h = CAsin £LACE,
So
CD =CE + ED.
= hcot LACE + hcot ZADE
= CA sin £ZACE cot ZACE + CA sin ZACE cot 2ADE.
Then
cot ZADE = CD — CA sin £ACE cot LACE _ CD — CA cos ZACE

CA sin ZACE = T CAsin ZACE

_ 1.5 x 10° — 7.0 x 10° cos 15°
7.0 x 10° sin 15°

_15x10°-7.0 x 10° x 0.97
7.0 X 10° x 0.26

- 15x10°—6.8x10°_ 1.5 x 10*

1.8 x 10°

, = 1.82 x 107,
1.8 x 10° .8 x 0.82 > 10

ok

£ADE = arccot 0.82 x 10* = 0.070°, so the angular separation between the
sunspots =2 ZADE = 0.14°. A simpler solution can be found if we approximate
AD by saying AD = CD. Now we can use the law of sines:

CA __AD

sin ZADC sin ZACD’
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then

. .~ _CA . o CA . -
sin ZADC = AD sin ZACD = CD sin ZACD

7.0 x 10°

1.5 x 10° sin 15° = 4.7 x 107* x 0.26

=1.2 x 107%

£ADC = 0.07°and £LADB = 2 LADC = 0.14°,

Case 2. There is more than one way to solve this, but we present just one
solution and use an approximation. In the drawing for Case 2 (see Fig. 7.8),
construct the perpendicular AE from A to BC. For the approximation, we shall
use tan ZADB = %—% In AAEC, cos ZACE = % , 50 CE = CA cos LACE =
7.0 X 10° cos 30° = 7.0 x 10° x 0.87 = 6.1 X 10° km.

Then EB=CB - CE=7.0x%10°-6.1 % 10°=0.9 x 10° = 9 x 10*km.

) i
Now, from our approximation, tan ZADB = 1—95%% =6 X 1074, giving the

angular separation ZADB = 0.036°.

b. The unaided eye can distinguish a sunspot if it is 1.5 minutes of arc, or 0.025
degrees, across. Sunspot sizes are usually measured in units of 0.001 of the Sun’s
area. What is the minimum size of sunspot that can be seen without a telescope?

Solution:  Sun’s area = 4mr? = 4m(7.0 X 10°)* km? = 196w X 10' km?. Since 1 sunspot
unit = 1072 of the Sun’s area, we have 1 sunspot unit = 196w % 107 km?.
Now if we assume that we have a sunspot that is approximately a disc sub-

radius = (Earth-Sun distance) x sin(p’ozzi)

=15x108% 2.2 x 10"*km = 3.3 x 10*km.

Sunspot
Diameters

Fig. 7.9
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Such a disc has area w(3.3 % 10°)* km?

. i3 1 sunspot unit
— 2 -] 2 —— — —
™(3.3)" x 10%km 7 X 196 X 107 km?

1089 x 107
Wé_ sunspot units

= (.55 sunspot units.

Historical note: Very few sunspots exceed an angular diameter of 1.5 minutes of
arc. Normally, the Sun is too dazzling to permit an observation of such a sunspot
by the unaided eye; however, if the Sun is low on the horizon and shines through
a thick haze, sunspots can be obscrved. Pretelescopic sunspot observations have
been recorded by Chinese and Japanese viewers. (Caution: Never look directly at
the Sun.)

The photographic scale factor for vertical aerial photographs was developed in
Problem 7 of Chapter 4. We now consider the situation when the camera is tilted
so that the film is not parallel to the ground. The result of such tilting is shown in
Fig. 7.10, where the broken lines represent a square grid as it would appear in a
vertical phctograph and the solid lines show the actual image on a tilted photo-
graph. (This is sometimes called the “‘keystone effect.”) In order to use the
photograph to produce an undistorted picture, numerical relationships must be
established between the actual shapes and their photographic images.

><J —— Axis of tilt

\
%

] ENE
<] LN

Scale variation on tilted phntuérgph,

N

=
I

Fig. 7.10 Fig. 7.11

Fig.7.11 shows the geometry of the configuration, where the camera is located at C,
N is the nadir, V is the photographic nadir point, P is the image of ground point

A, and ¢ is the tilt angle of the film (the acute angle made by the film with the
horizontal). If CT is the normal from the camera to the film, CT = f, the focal
length of the camera. CN = H is the height of the camera above the ground, which
we assume to be level. It is customary in this work to use the film “positive”” QW
instead of the “‘negative” PV. This is obtained by choosing W on CN and Q on CA
so that CW = CV and CQ = CP. We let R be the point on the film positive so

that CR is normal _t,oith:; film.
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respeu:t to the verncal  where 0 > 0 if Q and R are on the same side of CN and

8 < 0if they are on opposité sides of CN (8 = £NCQ). Express the ratio of the
length of the image WQ to the length of NA in terms of 6, ¢, f, and H for the case
where 8 = ¢.

Solution: From the geometry, we «2e that since CR L WQ, £ZNCR = £VCT = rand

[

Ow QR+ RW _ ftan(6-=t)+ftant

AN = AN H tan 8
f(tan @ — tan 1)
, +
= lttanftant f ,ta? f
H tan @

_ftan 6 — ftant + ftant + f tan 0 tan’ ¢
H tan 8 (1 + tan @ tan 1)

~ ftan 8 (1 + tan*))
H tan 8 (1 + tan @ tan 1)

oQw _ _ fa+ tan? §)

AN H(l+tanf@tanf)’

. Show that if t = 0 (untilted camera) or t = @ (camera aimed at point A), then
E% = é . (Recall from Problem 7 of Chapter 4 that this is the scale factor of a

vertical phatograph@)

Solution: For ¢t = 0, tan ¢ = 0 and the result follows. For ¢ = 6, the second factor in the
denominator becomes (1 + tan? ¢), which cancels, and the result follows.

¢. Show that the result of part (a) still applies for the cases where Q is between

W and R (Fig. 7.12) and where Q is on the side of CN that does not contain R
(Fig. 7.13), taking into consideration the sign of 6.

Fig. 7.13

[
[
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Solutic a2 L <) is between W and R, then

\m‘
\m\

Q

W_RW-RO_ftant —ftan (t — )

AN AN H tan 0

. SfQ+ranty
H(l+tan 6tany)’

If Q is as shown in Fig. 7.13, then 6 is negative, and the positive value of the
angle in the diagram is (— ).

So
Qw_QR—RW:fFEn((EE)+t)§fIaE

AN AN H tan (-0)

ftan (t = 6) — ftant f (1 +tan®y

—H tan @ H (1 +tant tan 6)’

Note that this implies (since 8 is negative in the last case) that points on the

*“down” side of the film will have their images “‘stretched out,”” whereas points
on the “ap” side (at least those for which 8 > 1) will have their images “shrunk.”

d. Fig. 7.10 showed a point I (called the isocenter) at which there is no distortion
in the scale of the tilted photograph. Show that I is the point of intersection of

the bisector of ZNCR in Fig. 7.11 with the film positive QW by establishing that a
vertical photograph taken with the camera in its position at C would contain tne
point I.

ution: The bisector of ZNCR is shown in Fig. 7.14, along with a horizontal through I that
intersects CN at Y. Since CN is vertical and I'Y is horizontal, 2CY] is a right
angle. [riangles CYI and CRI have corresponding angles equal and share side CI
and arc therefo:e congruent. Since CY = CR = f, a vertical photographic posi-
tive and the actual photograph positive from the same camera position C both
contain the point I.

0
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PROBLEM 8.

Solution:

In Problem 8 of Chapter 4 we developed a formula to correct an aerial photograph
for distortion due to Earth’s curvature. The distortion occurs because the camera
cannot distinguish how far away an object is—it has no “‘depth perceptlon * For
aerial photography, the pwture is interpreted as though everything is in the plane
tangent to Earth at the nadir; in satellite photography, as we shall see in Problem 9,
pictures will be interpreted (unless corrected) as though everything is in the
horizon plane sensed by the satellite.

Depth perception in humans has two aspects, called monoscopic and stereoscopic.
Monosconic ]udgments of distance use only one eye and are based on an inter- -~
pretation of relative sizes of objects, shadows, hidden portions of objects, and

other attrlbutes of thlS ‘ype such ]udgmsnt are very rough and frsquently fsﬂ
psopls Stereascopis Jufigmsnt depsnds on the physmal ssparatlon of the syss

which causes an object to be viewed at 2 different angle by each eye, as shown in

Fig. 7.15. The angle subtended by the “‘eye base™ (the distance I.R where L is

the le: : eye ar.:: R the right) at the object O is called the parallactic angle; it is

evident that the closer the object, the larger the parallactic angle.

The smallest parallactic angle discernible by human eyes is about 0.025°, and the
average adult eyes are spaced about 6.5 cm apart. What is the largest distance at
which the average adult can judge depth?

Let d be the distance of O from LR in Fig. 7 15. We present two methods of solution.
The first uses the fact that

= 150 m.

For another approach, we may approximate LR as an arc of a circle with radius d
where LR subtiends an angle @ = 0.025°, If 8is in radians, then LR = 6 - d. So
0.025

0 =0.025° = 180 = (0.00044 rad and therefore
_ _0.025 =+ s
d = 5.00044 ™ = 150m

Satellites such as the Landsats, Seasat, and the Synchronous Meteorological Satellites
(SMS-1 and -2j have made it possible to study Earth and its oceans, resources,

and weather patterns as never before. They have returned observations and data
that are bemg used by botsnists geologists ocsanngraphers and mstsarslagists
tions have bssn ussd in the assessment of sonl monsture in aﬁncultural flslds and
SMS observations have been useful in predicting severs storms.
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Solution:

A spacecraft at a distance /4 from Earth in synchronous orbit can see only a portion
of Earth’s surface, as illustrated in Fig. 7.16. The circle that is the boundary of

this spherical *‘cap’” will be called the korizon circle, and the spacecraft has sensors
that can recognize this horizon,

Although every spacecraft uses its horizon sensors to find its angular direction
with respect to Earth’s center, those satellites whose purpose is to observe Earth
can also use this'angle measurement to determine the size of the spherical cap
that can be obsarved.

In Fig. 7.17, § is the position of the spacecraft, C is the center of Earth, His a
point on the horizon circle seen by the spacecraft, P is the subsatellite point

on Earth (the intersection of Earth’s surface with the line from Earth’s center to
the satellite), and Q is the center of the horizon circle. We have 5P = } and

CH = CP = y, the radius of Exrth. pis the angular separation of the horizon seen
by thz spacecraft from Earth’s center, and A is the angle subtended at Earth’s
ceuter by the radius of the horizon circle. ’

Fig. 7.16

il
Q
o]
(7]
-

]

|

[

Since ASHC has a right angle at H, sin p =

b. Listed below are some Earth-observing satellites and their perigee or apogee
distances from Earth. For each, find the angular radius (A) of the horizon circle
seen by the spacecraft. (Earth’s radius is 6378 km.)
Landsar 2 916 km (apogee) 0Go-1 260 km (perigee)
Seasat 790 km (apogee) 0GO-1 150 000 km (apogee)
SMS-2 36 000 km (apogee)

(OGO is the Orbiting Geophysical Ouservatory.)



Trignometry

), for Landsat 2 we have

G Teing A = eoe-
Solution: Using A = cos (r+h,

= —,=z_,,=£7=3_=)i - (( = 290
= COS§ (5378 T cos~'(0.8744) = 29°.
Similarly, we get angular radii of 27°, 81°, 16°, and 87° for the remaining
cases, respectively.

¢. If a satellite sees a horizon circle of angular radius 30°, what is its distanc
from Earth?

Solution: cos 30° = —2=°— = 0.8660

6378(1 ~ 0.8660)

0. 8660 987 km (to the nearest km).

h=

In observing Earth from space using spacecraft sensors, distortions are intnduced
because of Earth’s spherical shape. For example, suppose a thick black lineis
painted along the equator, the 10° parallel of latitude, and the 50° and 90° west
meridians of longitude as shown in Fig. 7.18(a). Uncorrected obser . ationsof this
“rectangle’” would appear as shown in Fig. 7.18(b). The diagram in Fig. 7.1%illus-
the angle at which point R on Earth is observed, they cannot measure the {istance
to R—all observations are interpreted as though lying in the same plane, sothe
image of R is treated as though it were at R’, in the plane of the horizon cird.

Horizon Circle - |
Centerat =
+ Latitude 0%, .- sy AN N - i
Longitude 70° West, | e o ST
" Angular Radius 30° o “ C ' L e
= S . ~ 10° Lifude ~ - ;

LW e i N S0°W Longitude
- Lofigitude ——s ’ . . -

R

A

-
s . i}
. . =

(a) (b

Fig. 7.18
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The data can be corre=cted by the spacecraft’s computers 50 that the information
relayed to Earth is disstortion-free. The actual computer program that does the
correction depends ak:so on the particular hardware of the sensors, but the first step
in the correctionis to  express the relationship among the angle of observation of

R (£a), the angular d--eviation of R from the line joining Earth’s center to the
satellite (£ ), and the= angle of observation of the horizon (£p). Since a and p

can be measured, the computer can then find g for the proper mapping of R,

d. Show that the relat~jonship linking a, 8, and pis given by

) sin psin B
tang = ————— |
ana 1=sinpcosB’
In Fig. 7.19, if T is the= foot of the perpendicular from R. to CS, then
n_ . _ RT _ RT rsin 8
t - f = = ——— — ~— —
e T S T CS—CT  (r+ /) —rcosp

Solution:

r_
r+h
r

lé};’:ﬁ—cas B

sin _ _sinpsin g
1 = sinpcos B

Fig. 7.19

e. If the spacecraft sens=sors measure Zp as30° and a point R is observed at an
angle of 25° from the su - .a%ellite point, what is the actual angular displacement of

R from the subsatellite _point with respect to Earth’s center?

Solution: We have Zp = 30°, Za = 25° and we are seekir

I o sz 5in 30°sin 8
From the las ] y tan25° = ————— —,
rom the last equation an 1~ sin 30° cos 8

50
(0.5)sing
1—(0.5)cos

_singf

éécésﬁg

0.446 =
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PROBLEM 10.

then (0.466): = ;— 0B

0217 = —

Clearing fractions gives 0. 868 = 0.868cos B + 0.217 cos’ B = 1 — cos® B, and col-
lecting terms gives 1.217 cos’ 8 — 0.868cos B8 — 0.132 = 0.
Then
0. + V(-0.868)> — 4(1.217)(=0.132)
cos g = 2:368 V(-0.868)* — 4(1.217) (~0.132)
2(1.217)
_ 0.868 = V1.39%
12.438

Since we know that | 8| < 90°, we discard the negative root, and so

N

.05
.43

O

0.841

cos B =

\M
N}
[ ]

B =328 =33,

We have already seen in Fig. 2.2 of Chapter 2 that the celestial coordinate system
uses angles of declination and right ascerision in a manner analogous to the
latitnde and longitude angles of the coordinate system of Earth. We now compare

the thiree-dimensional spherical coordinate system commonly used in mathe-
matics with the one generally used in astronomy and space science.

Texts in analytic geometry or calculus with analytic geometry usually define 2
spherical coordinate system so that if for P(p, 6, ¢) we let Q be the foot of the
perpendicular from P to the x-y plane (Fig. 7.20), then

p = thedistance OP,p =0

e

the angle made by OQ with the positive x-axis, the positive
angular direction being a rotation from OX toward OY,
0=06<2w

¢ = the angle made by OP with the z-axis, with the positive angular
direction being away from 0Z,0 = ¢ = .

piz
\Eﬂ\
o
V]
=

Fig. 7.21
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Solution:

In this systen, as the reader may verify, the transformation between (x,y,z)and
(p, 6, ¢) are as follows:

, . 1
x =psind$ecosf p=(x*+y?+ z%:

y = psin ¢sin 8 6 = (arctan (y/x)

) . 1%
z =pcos ¢ ¢ = arccos (s/(fx’z + y? + zz)é)

In the spherical coordinate system used by astronomers and space scientists, if P
has coordinates (r, 5, ) and Q is the foot of the perpendicular from P to the x-y
plane (Fig. 7.21), then

r = the distance OP, r = 0

8

the angle made by OP with OQ, the positive angular direction
being from OQ toward the positive z-axis,

@ = the angle made by OQ with the positive x-axis, the positive
angular direction being a rotation from OX toward OY,
0=a <27

Develop the transformations from (», 8, @) to (x, y, 2).

From the definitions, it is evident that

I3

p=rld=a¢d==—-35

b

So we have

in ¢ cos 8 = rsin (%- 5) COS @ = r cos & cos a

-
Il
() .

p

y = psin ¢sin @ = rsin (%‘ 5) Sina = rcos §sinu

Z =pcos¢ = Fcos (%E «3) =rsiné

(Recall that § is the declination and « the right ascension in the celestial
coordinate system.)

T,y
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PROBLEM 11.

Solution:

Solution:

On March 5, 1979, the spacecraft Voyager I passed close to the Jovian moon Io. This
close encounter took place just after Voyager's closest radial approach to Jupiter,
which occurred at about noon on that day. If we set up a Cartesian coordinate
system centered at Jupiter with the x-y plane as lo’s orbital plane and the
Jupiter-to-Sun vector as the positive x-axis (see Fig. 7.22), then Voyager’s
spherical coordinates at f, = 13 hourswerer = 5.0, 6 = ~5.0°. and a = 127°.

(We measure lengths in units of Jovian radii. R;, where 1 R, = 70 000 km.

The spherical coordinate system used here is the one defined in the

previous problem.)

Io orhit

a V, i t,

C Y aty, =—lo utt,

Fig. 7.22

a. What was the Voyager’s radial distance from Jupiter in km at 1, = 13 hours?
r=>5.0(R;) =5.0x 70000 km = 350 000 km

b. What were its Cartesian (x, y, z) coordinates in the system defined above?
x = 5.0cos(—5.0°cos(127°) = =3.0 R,
y = 5.0cos (=5.0°) sin (127°) = 4.0 R,
z = 5.0sin (=5.0°) = —0.44 R,

Three hours later, at 7, = 16 hours, its coordinates were

F=

o

5,8 = ~1.9° a = 166°,
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Solution:

Solution:

Solution:

Soluti - :

c. What were Voyager’s Cartesian coordinates at t, = 16 hours?

6.5 cos (—1.9°) cos (166°) = —6.3 R;

X

]

y = 6.5 cos (—1.9°) sin (166°) = 1.6 R,

6.5sin (=1.9°) = —~0.22 R,

£

As you can see, in the interval Voyager hes moved away from Jupiter in the anti-
Sun dirzction (its x-coordinate has becoms more negative), toward the Sun-
Jupiter line (its y-coordinate has decreased), and it has moved toward Io's orbital
plane (its z-coordinate has decreased in abolute value).

If we assume that Voyager’s Cartesian coordinates change linearly with time
between ¢, and 1,, this means that we assume that Voyager has constant velocity
components in the x, y, and z directions.

d. Under this assumption, what are Voyager’s velocity components in the x, y,
and z directions?
X — X9 _ —6.3-(-3.0)

Vi=t T =113 = "LIR/

= 1.1 x 70000 km/h = 77 000 km/h

oy - .6 — (4.0 o -
v, =2 "0 1?6 ;(1;’3 = —0.8 R;/h = 56000 km/h

A R

21— zo _ =0.22 — (0.44)
=1 16 — 13

5100 km/h

V.

0.073 R;/h

e. Under the assumption that Voyager’s Cartesian coordinates vary linearly with
time, find expressions for x (1), y (1), and z (2).

Sincex = xo + Vi (t — 1), wehavex = =3.0 — 1.1 (+ — 1). Similarly,
y=4.0-0.8(—1t)andz = —0.44 + 0.073 (¢ — t,). While Voyager was
moving, Io had been progressing in its orbit. Consider Io’s orbit to be a circle of
radius r = 5.9 and recall that in this coordinate system, Io’s & equals 0 at all
times. At f, = 13 hours on 5 March, Io’s phase ¢ 1gle o was 139°,

f. This phase angle is a linear function of time. Knowing that Io’s orbital period is
42.5 hours (i.e., it takes Io 42.5 hours to move 360° in «), derive an expression

for a ().

Io moves through ;fzésg degrees per hour, and & = 139° at ¢, so

a(n) é%ﬁ + 139 degrees = 8.47 (1 ~ ) + 139 degrees.
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Solution:

Solution:

Solution:

ind Io’s rectangular coordinates as functions of time.

T

2.
x=rcosbcosa = 5.9c0s(B.47(t — 1) + 139),sincecos 8 = 1
y=rcosdsina = 5.9s5in (8.47 (¢t — 1y) + 139)

=rsiné =0

¥
I

h. Derive an expression for the separation distance A between Voyager and lo as a
function of time. Use { for (r — 1,).

A= (ft\’gy - xlr::)z + ()"Vuy = yin): + (g\’lﬁg‘ - EI@):
From parts (e) and (g),

Al

[=3.0 = 1.1 = 5.9 cos (8.47 + 139)]*

+ (4.0 — 0.8f — 5.9sin (8.47L + 139)

+[—0.44 + 0.073¢]

i. Use a calculator and evaluate A, for several values o>f [, in the interval 0 = { = 3.
Plot the results, and use the resulting graph to find when Voyager's closest
approach to Io occurs and at what distance.

=
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o
&
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The graph is shown in Fig. 7.23.

We see that the closest approach occurred atf = 13 + 2.3 hours = 15.3 hours on
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Artist's concept of the International Ultra-
violet Explorer (IUE) showing how it can
transmi: and receive messages. 1 l 2
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Chapter Eight

@ atrices are an invaluable tool in space science, making it possitole to organize,
handle. and nianipulate, with the aid of computers, large quan _tities of

8 W B data. Most of the actual examples involving matrix algebra are - too long and
complex for inclusion here; however, by considering simplified exampoles. we can
get some sense of the role of matrix algebra in this context.

PROBLEM 1. InChapter 5 we considered some simple error-detecting binary codes —for telemetry.
A more complex system, the Hamming Code, will not only detect the presence
ofan error in a received message but will identify the erroneous bitin cases where
asinigle error has occurred. If two bits are wrong. this fact wi.. be dete=cted but
the locations of the errors will not be known. We use a very simple exzample to
illustrate the methiod. '

Sup pose we have a ‘“‘message’’ in the form of a four-bit binary string= that is, the
mes sage is in the form abcd where each ofa, b, ¢, dis 0 or 1. The Hazmming matrix
for a message of this type is the 4 X 8 matrix H:

[——

T
0
—

[RR o i =]
—_—
[EETR SR ]
— S
— T
—

ot .

The structure of the matrix is as follows: For a message containing 4b=ts, we

need 2% = 8 columns and 4 rows. The binary numerals for 0 through7, . (written in
3-di git form as 000, 001, 010, . ..) are used, in order, as the first three - entries in
each column; the bottom entry is always 1. A Hamming matrix for a5—bit message
would need 2* = 16 columns and 5 rows in order to represent the binarxy numer-
als for 0 through 15 (0000, 0001, ..., 1111) followed by 1 in the columzns.

Ifth e message we wish to send is abed, we need to use four additional gparity bits,
P P23, px and p,, and form a message row vector M = [p, ps psa p; b cd®). The

parity bits must be assigned so that the product H - M7 = in mod 2 arithmetic.

foow e B v B e’

a. Find the conditions that p,, p,, p;, and p, must satisly so that H - M= =
mod 2 arithmetic.

'cooco

=

(S e
[re——

B

|

" e

+

o

Solution: ., .

(N e R
b o [

T e Y
s N ek

e e
[ e R —
L]

o

=%

+

3

=

+
cCooo

+ps+ b+ +d.
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Matrix Algebra

Solution:

Solution:

So the conditionsareps + b + ¢ +d =0;ps+a +c +d = 0;

ppra+b+d=0:p +p.+pita+tpi+btc+d=0

o I I\

b. Find the message row vector if the actual messageis 0 1 1 0.

Wehavea =0,b=1,c=1.4d =0. bubstltutmg these values in the preceding

equations in part (a) and solving in mod 2 gives p, = 0, p; = 1. p:=1.p =0,
The message row vectoristhenM =[01 100 11 0].

c. The matrix H :+ M7 is a column vector called the syndrome vector S. In the set-

ting we are using, S will have four components. When a message is received, the

syndrome vector is formed. If none of the bits of M was in error, the components
DfS wnll all be 0. Ifwe fmd that 53 =1, we l\rmw that an error has occurred in

M wnu:h is wmﬂg whe:n: the comparxgnts are numberzd from the h:ft begmnmg
with 0. If 5, = 0 and one or more of 5, 5., 5;:i5 1, then two bits of M are incorrect,
but we do not know which two—the error is detectable but uncorrectable. If
there are more than two errors, it is possible that they will be “‘corrected” incor-
rectly or not get detected.

Suppose the message [0 0 1 1 1 0 0 0] is received. Compute S and, if appropri-
ate, correct the message.

0

0 -
00001111 1 1
00110011 1{_ |0
01010101 1] |1
11111111 0 1

0

0

0]

Since s; = 1, there is an error; 5, 5253 = 101,02 = 5, so the erroris in position #5
(recall that the first position is #0) and the corrected messageis[0 0 1 1 1 1 0 0].

systém toa refergnce systém ‘with the same ongm whén the spacecraft has per—
formed a roll or a pitch or a yaw rotation. Matrix algebra is the natural tool to use

to find the transformation in cases where the spacecraft performs a series of such
rotations. This is developed in the next problem.

Recall that in Problem 1 of Chapter 7, we showed that

Xp =X xp=xcos P — zsin P Xxy=xcosY +ysinY
yu=ycosR + zsinR yp=y yy=ycosY —xsin¥
zp=zcosR —ysinR zp=zcos P +xsinP Iy=7z

where the uppercase R, P, Y are the angles of roll, pitch, and yaw respectively, the
coordinates (x,y,z) are those of the reference system, and the subscripted coordi-
nates are those of the spacecraft coordinate system after performance of the rota-
tion designated by the subscript.
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L]

Xy x
a. Express these transformations in matrix form [1" = A - [}’J where the sub-

script sc designates the spacecraft coordinate system. by finding Mg, My, My. the
matrices of roll, pitch, and yaw, respectively.
Solution: Expressing each set of transformations above in matrix form,

1 0 0 cos P 0 —sin P] cos Y sinY O]
M., =10 cos R sinR| M= 0 1 0 My=|-sin¥Y cos¥ 0
) 1

0 =sinR cosR sinP 0O cos P 0] 0
b. If the spacecraft and reference systems are initially concurrent and the space-
craft performs in sequence a roll through angle R. a pitch through angle P, and a
yaw through angle Y, then the transformation from reference system coordinates
to spacecraft coordinates will be given by

Xow X
[yw} =M - yJ where M = My - Mp - Mg.

Solution:

Mg =10 cos 30° sin30°| =0
0 .

[
P | ] o
[N TS
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L
1

rJ H<" o M”ﬁ
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[+]

I

=

[

|

|

|
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o
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My

o n<ﬂ fan] ‘M‘i‘
I

cos 60° sin 60° 0
cos 60° 0| =[-
0 0 1

i
|
w
=
o
L
]
=

My

= Mﬂ<ﬂ [y p—
o

S I wu ‘
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L
[
| I—
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Solution:

1 va ] e, 2] oo o
7 73 = 0 -5 ~
= ) V3 1
x . _ _ 1 — =
A Vi o V3 1 V3
R N e ey 0 3 7
[ 1 v3 1 [ vEo_vE]
2 2 " 2 4 4
| v3 1 V3 1
AR R °© 3 3
o V2 V2 Ve
oo ) |5
[ V2 VZ_3 _\B_ Vi3]
4 8 4 8 4
_|_V6 _V6_ V3 3V3 1
4 8 4 8 4
V2 V2 V6
L 2 4 4
[ 035  0.93 0.13]
= | —0.61 0.13 0.78%
| 0.71 —0.35 0.61]

c. The matrix M can be used to find the orientation of the spacecraft coordinate
axes with respect to those of the reference system in terms of direction cosines.

X=M. {OJ is a column matrix whose elements are the direction cosines of the

spacecraft x-axis with respect to the X-, -, and z-axes of the reference system.
i 0 O
Similarly, Y =M -|1|and Z = M - 0 produce column matrices whose ele-

L0l 1]

ments are the direction cosines of the spacecraft y- and z-axes, respectively, with
respect to the reference system. For the motion of part (¥), find X, ¥, and Z, and,
from these, the angles made by each of the spacecraft coordinate system axes

with those of the reference system.
1’ 0.35] [eos 70°
0 —=0.61| = |cos (—52°)
O, 0.71 cos 45°

The angles between the spacecraft x-axis and the x-, y-,and z
ence system are about 70", —52°, and 45°, respectively.

lo [ 0.93] ‘cos 22° '
Y’sM*[l =| 0.13| = |cos 82°
ol 1

—0.35 cos (—70°).
solk 116

X=M-

t of the refer-
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The angles between the spacecraft y-axis and the x-, y-, and z-axes of the refer-
ence system are about 22°, 83°, and —70°, respectively.

0

0 0.13]
Z=M:-{0 0.78
l1] Lo

‘w

II-
[V]

‘U’ﬂ LM ‘m<

3
39
52°

2
\m U‘l\

The angles between the sprcecraft z-axis and the x-, y-, and z-axes of the refer-
ence system are about 837, 39°, and 52°, respectively.

Analyzing the light emitted from sources in space is a very important part of the
astronomer's Or space scientist’s task. Some of these sources, such as the stars,
are toc far away for their shapes to be discernible; but others are close enough for
the emitting volume to be made oui—that is, light can be seen to come from
separate parts of the volume—and such sources are said to be “‘spatially resolved.’
Among such sources are the solar atmosphere, glowing at temperatures ranging
from 2500°C to well above a million degrees Celsius, depending on the particular
location, and comet tails fluorescing under the Sun’s radiation. 7

If such a source is transparent to its own radiation—ihat is, light emitted at any
point within it can escape from the source volume without being scattered or
reabsorbed—then an observer looking at a particular area of the surface of the
source wnll see the sum nf all the llght Ermtted behmd that area, in th = “lme Gf
practu:e is always an unknown function Df pos:tu:m is not dlI’EI‘:tly avallable to an
outside observer.

However, when the source geometry is of an especially regular or simple shape,
such as spherical or eylindrical, mathematical methods are available to ““invert”
th= observed intensity data, thereby **reconstructing’ the source.

In the next problem, we illustrate the basic idea with a very simple but concrete
example in two dimensions.

Consider a small checkerboard, three squares on a side, on which a few lighted
candles have been placed in some squares at random, as shown in Fig. 8.1. If one
looks down any row, the combined light of all the candles in that row will be seen;
this combined light is simply the arithmetic sum of the separate candles in the

row. Referring to the figure, if we look along row 1, the light of three candles will
be seen; whereas, looking along row 3, we see the light of two candles. In similar
fashion, one can look along a column or even along a diagonal.

— Fig. 8.1
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Solution:

To a *‘two-dimensional™ observer in the plane of the checkerboard, this is, in fact,
the only direct information available—the actual distribution of the candles on

system of equations for these nine unknowns:

Row equations Column equations

Xyt xitxz=3 Xt X tbxy =2

3

X+ X+ xa3 =3 Xiz + X2 + X352

il
[

Xy txn+txa=2 X3t X+ x;3 =

Since we need nine equations to solve for nine unknowns, we may look along three
of the diagonals to get

Xy + x:2=3
xptrxntaxz=1
X2+ x3=3

In this simple case, it is not difficult fo solve the system by elimination; however,
it is easy to see that a more general method is usually necessary.

a. Write a matrix equation for this system of linear equations.

L]
b
MMW‘MMM‘H

o= D DD =D O !
[l el o T e B o i an o I
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SO OO O =
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5
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Tl et N
[

T
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b. Use elementary row operations to find the source distribution for a case that
produces the following matrix equation:

i
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™
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Solution:

Il
—
-
]
[
wn

Xy Xz =1; X3

]
2
Tt
o

i
=

i
=

X2 X3 = 2; Xy s

X33 1

Although it is certainly possible to solve part (b) manually, it is no doubt obvious
that a computer soiution is more desirable even in this vastly simplified context.
Any of the commercially available programs to solve such matrix equations could
be employed to produce the solution to part (b) or to discover that the solution
to part (a) is not unique.

several ways: (a) they are continuous distributions rather than discrete ones, as

in the example just treated; (b) they are three-dimensional sources; (c) they do not
have simple geometric shapes; and (d) distant (astronomical) sources cannot
usually be observed from a sufficient number of directions to obtain a complete set
of emission data. What this means is that each observation must be modeled as

an integral rather than a simple sum and the integrals are generally complicated
expressions that are difficult to “'invert.”” However, such inversions can be car-
ried out for certain types of local radiating sources.

In practice, the physical radiating sources encountered are more complex in

One recent example of this same technique in the medical field is Computer-Aided
Tomography, or CAT scanning, in which X-ray radiation through a section of the
human body is used to mathematically reconstrect a three-dimensional image of
the section. For example, one kind of scanner measures the X-ray intensity that
penetrates the portion of the body being imaged (such as the brain or the abdom-
inal cavity). This scanner records the received radiation at 160 different positions
in each scan direction; the entire unit is rotated one degree at a time around the
head or abdomen, in a complete semicircle, to obtain 180 x 160, or 28 800,
“sums.” The computer then processes this information to produce a “picture” of a
cross section of the organ by reconstructing the X-ray absorption in each square
(or "'pixel’’) of a 160 < 160 grid. The complexities enumerated in the foregoing
paragraph also apply in this context, requiring the use of additional sophisticated
mathematical techniques. However, the basic idea of the checkerboard model
underlies this useful application.
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Fig. 9.1
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he conic sections play a fundamental role in space science. As shown in the

Appendix, any body under the influence of an inverse square law force (i.e.,

where force is inversely propertional (o the square of distance) must have a
trajectory that is one of the conic sections. In celestial mechanics the forces are
gravitational; hoewever, it is also of interest that the forces of attraction or
repulsion between electrically charged particles obey an inverse square law, and
such particles also have paths that are conic sections.

I close this chaptér b} con-
sndgrmg the dESlgn af an X ray tglescopé that requlres two reflections in sequence
from surfaces whose cross sections are conics.

In the analysis of orbits, where a celestial body, such as a planet, comet, meteor,
star, or artificial satellite moves under gravitational ttraction to a primary celes-
tial body, the center of mass of the primary body is at one focus of the conic
section along which the satellite moves. Because the simplest nontrivial conic sec-
tion is the circle, we shall begin with a consideration of circular orbits. (The word
“nontfivisl“ is includgd because a canig secticm could be a poiﬁt ora pair of

tex. ) Most Df us understand fmrn Experlence Newton’s flrst law of motmn whn:h
statés that an Db]gct in motlon cnntmues ina stfalght line unl&ss it 15 agtad on by

stralght lme we must give it a constant push toward the center. Thus a central,
or centrlpetal fOi‘EE is requn d For éxamplg whgn we tie a strmg to an Db]EEF and

circular path. If we represent the centripetal force by F,, then F, = ﬂ% , where m

is the mass of the object, v is its speed or velocity, and r is the radius of
the circle.

When a SPSEEETS& is moving in a circular orbit about any primary body, the force
toward the zenter is supplied by the force of gravity F.. According to Newton’s
GM{H

law of universal gravitation, F; = . In this equation, G is the constant of

universal gravitation, assumed to be constant throughout the universe; M and m
are the masses of any two bodies; and r is the distance between their centers of
gravity. The physical situation, if the forces F; and F; are equal, is represented
in Fig. 9.1.

The arrow toward the center represents the 1orce of gravity, the dashed arrow
represents the tangential velocity of the spacccraft, and the curved arrow indi-
cates the circular path. (In rigorous use, velocity is a vector quantity, because it has
both magnitude and direction, whereas speed, having magnitude only, is a scalar
quantity. We will be using the symbol v for speed, the magnitude of the velocity
vector.) Thus the force of gravity holds the body in the circular orbit.

If we set F; = F;, we obtain mT === n Solving for v gives us
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PROBLEM 1.

Solution:

Solution:

This simple equation enables us to find circular orbital velocities about any pri-
mary body, if M is the mass of the body and r is the radius of the orbit measured
from the center of mass of the body. Because the value of GM is constant for any
primary body, it is convenient to substitute its numerical value rather than to
compute the value of the product for each individual problem. If the primary body
is Earth, then GM = 3.99 x 10" m*/s%. Thus for bodies in circular orbits

around Earth,
3.99 x 10"
VEarth i '}g* = m/s

where, of course, the distance r is expressed in meters.

Most manned spacecraft in Earth orbit have been placed at altitudes of about
160 km or more bgcause atmospherm drag at altlmdes belnw thls causes a ratlner

Earth Dl’bli at an alt!tuds of 160 km,

Using the given equation,

\/7:73 99 x 10% m/s
(6380 + 160) x 10°

VEarth

10° .99

\1554 m/s

7.81 ¥ 10 m/s, or 2.81 km/h.

circular orbits about any pnmarj body G is a universal constant. We need only
to change the value of M when we are concerned with another primary of different
mass.

a. The mass of the Moon is approximately 0.012 times the mass M of Earth.
Write a formula for finding circular orbital velocities about the Moon.

Multiplying the numerator in the previous equation by 0.012,

\/Dféié X 3.99 x 10" _
———————— m/s

VhMon
f53li] r

) 4.8 x 10“ .
—=——— m/s.
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Solution:

t—l\
m

PROB

Solution:

M 3.

b. During the Apollo flights the parking orbit for the command and service mod-
ule about the Moon had an altitude of 110 km. The radius of the Moon is about
1740 km. Find the velocity in this orbit.

. E\/ 4.8 x 102 - m/s
Moen (1740 + 110) x 10°

= 10°V2.6 m/s = 1600 m/s,

or 5800 km/h.

A synchronous Earth satellite is one that is placed in a west-to-east orbit over the
equator at such an altitude that its period of revolution about Earth is 24 hours,
the time for one rotation of Earth on its axis. Thus the orbita! motion of the
satellite is synchronized with Earth’s rotation, and the satellite appears, from
Earth, to remain stationary over a point on Earth’s surface below. Such commu-
nication satellites as Syncom, Early Bird, Intelsat, and ATS are in synchronous

orbits. Find the altitude and the velocity for a synchronous Earth satellite.

The velocity can be found from the equation for circular orbital velocity. It can also

be found by dividing the distance around the orbit by the time required; that is,
27

V=

ol Because the two velocities are equal,

It is apparent that ¢ = 24 hours = 86 400 seconds. Substituting the other values
yields

,/3.99 X 10" x (86 400y
= A= et : — 1073/
r= \/ Tx (3.14)° 10 V75.4

=4,22x 10" m, or 42 200 km

Altitude = 42 200 — 6400 km = 35 800 km

| .2%3.14 x 42 200

= ) 4 N S
v T =1.10 %10 km/hr
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Conic Sections

PROBLEM 4.

Solution:

bz
b=
-
ol

Fig. 9.2

To understand orbits, we must know something of the nature and properties of the
conic sections. They get their name, of course, from the fact that they can be
formed by cutting or sectioning a complete right circular cone (of two nappes) with
a plane. Any plane perpendicular to the axis of the cone cuts a section thatis a
circle. Incline the plane z bit. and the section formed is an ellipse. Tilt the plane
still more until it is parallel to a ruling of the cone and the section is a parabola.
Continue tilting until the plane is parallel to the axis and cuts both nappes, and the
section is a hyperbola, a curve with two branches. It is apparent that closed

orbits are circles or ellipses. Open or escape orbits are parabolas or hyperbolas
(see Fig. 9.2).

Another way of classifying the conic sections is by means of their eccentricity.

Let F be a fixed point (focus) and d a fixed line (directrix). For nonzero values of
eccentricity e, a conic section may be defined as the locus of points such that the
ratio of the distance PF to the distance from P to d is the constant e. The use of
polar coordinates permits a unified treatment of the conic sections, and it is the
polar coordinate equations of these curves that are used in celestial mechanics.

Use the eccentricity definition above to show that the equation of a conic section in
. ep . .

polar coordinates can be stated as r = ?‘1056 , where p is the distance

between F and d, and the polar axis is perpendicular to, and pointing away from d,

with the pole at F as shown in Fig. 9.3.

If Q is the foot of the perpendicular from P to d, and P has coordinates (r, ), then,
by definition,

,
p+rcosé

N ]

r=ep +ercos @

r—ercosd =ep
r(l—ecos 8)=ep

en

Fr=— .
ST l—ecosd

Sa s 124 139
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Fig. 9.4 shows a family of conics, each of which has directrix d and focus F,, for
different values of e. If a Cartesian coordinate system has origin F, and x-axis
along the polar axis, the Cartesian equations of these conics have this form:

ellipse: & E,h Y =; =1

parabola: yi=g(x—h)

hyperbola: Ay,

Equatlcm of an zlhpse lfD <e= 1 a parabola le = 1 ‘and a hypérbola ife > 1.
Express the parameters A, a, b, or g, as appropriate, in terms of e and p.

(] tion: = _-L
Solution: r = T e cos
r=ercos@ + ep
Ife = 1,thenr = ercos 6 + ep becomes » = rcos 6 + p. Since

recos@=x and r=Vxi+y Vil+tyi=x+p
Squaring,

x*+ 2xp + p*?

M
+
ot
I

e y? —Zp(@: +%)i
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50

h=-—

i
I

and g = 2p.

[N~

Ife # 1, then r

hY /xz 4+ yz

ercos 8 + ep becomes

ex + ep

elx? + 2e’px + e7p?

x4+ y?

33
e p-.

{1 ~ el — 2e'px + y?

Dividing by (1 — €°) and completing the square, we get the following:

.

"E—"Z ] a e 3
(I - 117 ) ;g’**? = P,; 3

1f 0 < e < 1, the denominator of the y? term is positive, and we have an ellipse
pe’ ep ep

with A 1— el zi;é “\f1=,gz!

If e = 1, the denominator of the y® term is negative, so we may rewrite the
equation as

[
ul
]

I

Il
ot
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PROBLEM ~.

ufion:

Sal

PROBLEM 7.

Solution:

Recall that for an ellipse a? — % = ¢? and for a hyperbola a® + b* = ¢2, where, in
both cases, c is the distance between the center of the conic and a focus and a is

the length of the semimajor axis. Show that the results of the preceding problem
rire consistent with this and that in both cases e = ¢ /a.

For the ellipse,

For the hyperbola,

| iy
It
[ )
(X
o
[

I |~

It

s |
—
Lt
—
R
[E]

We see that for an ellipse, 2 - ¢ is the distance between the foci. Sincee = c/a, if
¢ = 0we havee = 0; butifc = 0, the two foci coincide with the center and we
have a circle rather than an ellipse. A circle can therefore be considered the conic
section with eccentricity 0.

It is shown in the Appendix that the total energy E of a two-body gravitational
system and the eccentricity e of the orbit of the less massive body (mass m) with
respect to the more massive body (mass M) are related by

E = 7(}'@;7'2(&? - 1)

2ep
Since it is virtually impossible in the real world for the total energy to have a
value that would result ine = 0 or e = 1 exactly, orbits that are exactly circles or
exactly parabolas do not occur in nature. However, such orbits are of interest as
limiting cases of actual trajectories. The energy equation of the Appendix,

GMm _ . GMm(e®=1)
- "=E=—a—-
2ep

lmx«'E;
2 r

k]

provides the means to determine the velocity of an orbiting body at any point in its
orbit.

Solve the energy equation for v, and then express the velocity at any point in an orbit
in terms of G, M, r and a, if needed (where a is defined as in problem 5), for each
type of orbit.
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Conic Sections

For an ellipse,

Ve =

For a circle, r = constant=a

Jom (3-1)=\jem.
F F r

(Recall that this was shown at the beginning of this chapter in the preliminary
discussion of circular orbits.)

=
l

For a parabola,e =1, and

n=yfom ()= 22,

For a hyperbola,

The minimum escape velocity of a rocket-borne space probe is the parabolic
velocity v, = V2GM /r . Velocities greater than this produce a hyperbolic orbit,

and lesser velocities produce an elliptical orbit (or no orbit if too small).

Elliptical orbits are frequently analyzed in terms of orbit parameters, such as
apogee and perigee distances. These distances are indicated in Fig. 9.5 by the let-
ters A and P respectively. Before we discuss elliptical orbits, it will be necessary
for us to avoid ambiguity by clarifying our terminology and mathematical notation.
Most of us know from our reading of space events that in NASA news reports the
point in an orbit nearest the surface of Earth is called the perigsc. whereas the
farthest point from the surface is called the apogee. These points are indicated by
C and D, respectively, in Fig. 9.5. In common usage the word is used to refer to
either the position of the point or the distance to the point.
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PROBLEM 8.

Solution:

Solution:

PROBLEM 9.

Solution:

However, usage is not uniform; some references state that the distances are
measured, not from the surface of Earth, but from the center. In this article, we
shall use distances measured from the center. The distances from the center to
the perigee and the apogee will be indicated by P and A, respectively. In most
discugsions, the context will make this clear. If in any situation confusion could
result, then distances from the surface, if used, will be called perigee altitude or
apogee altitude, whereas distances from the center will be called perigee radius or
apogee radius. Incidentally, the mathematics is simpler when distances are mea-
sured from the center. '

a. Express the distances A and P in terms of the semimajor axis @ and the eccen-
tricity e of an ellipse.

From Fig. 9.5,
A=a+c=a+ea=a(l+e)
P=a-c=a-ea=a(l-e)

b. Express the eccentricity of an elliptical orbit in terms of A and P.

The following relationships are apparent from Fig. 9.5:

(A + P),

d

a~P=4A+P)-P=}A - P),

2]
]

and

(A - P

[
L
e

M

[
Ry

il

y

WA+

It
—
P

ES
|
]

b

+

bl

This formula is a quick and easy way of finding the eccentricity of an elliptical
orbit. As a check, we note by inspection that e = 0 when A = P, which is the
condition for a circular orbit.

Derive formulas for v4 and vy, the velocities at apogee and perigee, in terms of A or
P, respectively, and e of the elliptical trajectory.

From Problem 7, the velocity of a body in an elliptical orbit at a distance r from the
focus is

Ifr =A =a(l +e), we can substitute 1/a = (1 + ¢)/Aandr = A to get
(2 Lre) \/@ 1o
\/GM (,4 - M1-e).

Va

e
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PROBLEM 10.

Solution:

PROBLEM 11.

Solution:

Ifr = P = a(l — e), by asimilar substitution,

N 79 o

Ve

fm- the formulas reflécts persnnal pref&rancé

that the velocities at apogee and perigec are inversely proporlional to the
1ces from the center.

Va _ ? - E)? /ﬂ(l - E)P
Va \/(1 +e)A \’a(l +e)A
Iy
- YA? A°

Thus the velocity at perigee is inversely proportional to P, and so on, That is, when
the orbital distance from the center of the primary body is small, the vlocity at
that point is large; when the distance is large, the orbital velocity is small. This
result agrees with Kepler’s second law of planetary motion, which statesthat a
planet moves about the Sunin such a way that the radius vector from fun to planet
sweeps out equal areas in equal times. ’

Derive a formula for the period of an elliptical orbit, given that the period of an
elliptical orbit with semimajor axis a is the same as that for a circle withradius
F =a.

Following the method used in Problem 3, we express the velocity interms of the
distance around the orbit and the time p required to make one transitof the orbit

27r
y ==
p
Also
GM
= [—.
r
Then
2mr _ |GM
P F
@mr)t _ GM
p? r
. _ @ur)r

P
130 145%
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P =2m\==.

Becau se the period is the same when r

a, we may write

- 9 b
p=2n M

PROBLEMI. An Eaxth satellite is placed in an elliptical orbit with perigee altitude of 160 km and
apogee altitude of 16 000 km. Use 63380 km for the radius of Earth.

a. If irz jection is at perigee, what must be the injection velocity?
Solat: We first find the eccentricity as follows:
P =6380+ 160 = 6540 km or 6.54 % 10°m
A =6380+16000=22 380 km or 2.24x10°m
ByProiblem 8,

22380 ~ 6540 _ 15 840
22380 + 6540 28920

=

=0.55.

3,99 x 10"
6.54 x 10°

1)

Ve =

(1.55) = 10*V0.945
=9.72x10°m/s, or  3.50x 10°km/h.
b. Find the sp~ed at apogee.

Saolutim By Problem 9,

_ .[3.99 x 104
2.24 x 107

(1-0.55)=V1.78 x 10’ X 0.45

Va

=10°V8.02m/s=2.83x 10°m/s, or  1.02X 10°km/h.
c. Find the period in this orbit.

Solution  From Problem 8,

a=

2238016390 14460km,  or  1.446% 10"m,

and, frorn Problem 11,

L [(1.446 x 107)°
3.99 x 10 °

= (2m) (10°) V'7.48 5
- =17.2x 10%s, or 4.77 h.
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Solution:

PROBLEM 14.

Solution:

PROBLEM 15.

During the Apollo flights, the Apollo spacecraft and the third stage (SIVB) of the
Saturn V launch vgh!cla were placed in a parking orbit 190 km above Earth. Find

or 2.8 % 10° km/h.

to plac& thE Apalla spacecraﬁ ona trajt:c:mry to the Mnan At the end of the
burn thg spacecraft had a velDuty nf abnut 3 .90 % 1(‘)J krn per hour at an altitude of

Using the results of Problem 7, the escape velocity equals

. \/zgw \[ 2(3.99 x 10") /s
P r (6380 + 336) X 10°

=10*V1.18 m/s=1.09 % 10°m/s, or 3.92x 10 :m/h.

thereby assurmg a free return tfajectory That is, 1f the majm prapulsmn systéms
failed, the spacecraft would be going slowly ermugh to be pulled around and ori-
Entgd back toward Earth by lunar gravxty, the attitude-control system being ade-

Fig. 9.6
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Solution:

We first find the eccentricity of the transfer orbit, which is. of course, an ellipse,
with A =7180 km and P = 6540 km.

0—6540 _ 640

0+ 6540 13720 ~ 0-047.

, 718
* =718

We then compare the velocities at A in the circular orbit and the elliptical orbit
to find what changes must be made. Since GM has units m*/s>. we express A and P
in meters. From Problem 7,

v
%‘% m/s=7.45x10'm/s,  or  2.68x 10 km/h,

3.99 x 10" , oo v S
P, = == oM - = =TT _ = ' 52 3
Va \/7,1sx 105 (1=0.047) =7.28 x10°m/s.  or  2.62 x 10* km/h.

Therefore a propulsion engine on board the spacecraft must be fired long
enough so that a retrothrust (opposite to the direction of motion) will slow down
the spacecraft by 600 km per hour. The spacecraft will then leave the 800-km
circular orbit and follow the elliptical transfer orbit, remaining in it indefinitely
unless additional changes in velocity are made. '

When the spacecraft reaches the point P, however, we want it to move from the
elliptical orbit into the 160 km circular orbit. Therefore we must use the results of
Problems 7 and 9 to investigate velocity changes at P.

2.81 % 10° km/h

o
-

m/s=7.81x 10 m/s,

2 s )
vp= \/35—*2%11%7(1,047) =7.99x10°m/s, or  2.88x 10‘km/h,

This method of transferring a spacecraft from one orbit to another is known as a
Hohmann transfer, named after Walter Hohmann, city engineer of Essen, Ger-
many, who published the metkod in 1925. There are many paths that could be used
to move the spacecraft from the 800 km to the 160 kra orbit. But the Hohmann-
transfer ellipse, requiring only two short burns, is the most economical, taking the
miaimum amount of energy. Therefore this method is called a minimum-energy
transfer. It has many applications.
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PROBLEM 16.

Solution:

‘ illustrative. If tha—p ;1

transfer Elhps«: WE computed in Problem 3 that the altitude of such a satellite is
about 35 800 km and its orbital speed is about 9370 km per hour. Fig. 9.7 suggests
the details.

We shall assume that injection is at the perigee point, which we shall place
160 km shove Earth. Then obviously

P = 6380 + 160 = 6540 km, and

A = 6380 + 35800 = 42180 km.

_ 42180 — 6540 _ 35640 _
42180 + 6540 48720

id T
v, = \/2%%%%? (1. 732) = 1.028 x 10 m/s,
or3.7 X 10°km/h

14
3.99 x 10% (1 -0.732) = 1.59 x 10°m/s,

AT N2 % 107 T
or5.73 x 10’ km/h.

9370 = 5730 = 364@ krn per hour Thls extra push or klck would be prov:ded by
the flrmg of a motor on board the satelllte and the thrust and flrmg tllTlE must be

The relative efficiency of using this method is easy to understand. Placing a heavy
final stage of the launch vehicle at the synchronous altitude and then having a
burn to give the entire assembly circular orbital velocity would tuke much fuel.
Instead we send up to the synchmnous altitude Oﬁly a reldti’\f&l h *ht sstellite

and a small apogee n

gee alntudé is hlgher or lower thaﬂ the one we have
assumed, all the other numbers are changed.
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PROBLEM 17.

]

Solution:

Solution:

BLEM 18.

Solution:

One more maneuver is needed to make the satellite synchronous. It now has a
period equal to the t'me of Earth’s rotation. However, the satellite will appearto
be stationary over a jiven point only if it is in equatorial orbit. Unless corrections
were made during la.nch, the plane of the orbit will be inclined to the plane of
the equator. One method of solving this problem is to fire a motor at the precise
instant when the satellite crosses the equator, adjusting the burn time and direc-
tion of thrust so that the vector sum of the burn velocity and the orbital velocity
make the angle of inclination equal to zero.

The first step in lunar orbit injection in the Apollo 11 flight was to place the
spacecraft in an elliptical orbit of 110 by 313 km, the low point—or perilune
(corresponding to perigee for Earth)—being on the back side of the Moon.

a. Compute the velocity needed at perilune to inject the Apollo spacecraft into
this orbit.

Using the data developed for lunar orbits in Problem 2,

P =1740 + 110 = 1850 km

A = 1740 + 314 = 2054 km

2054 ~ 1850 _ 204 _ .
2054 + 1850 _ 3004 ~ 0:052

TR T
= \/ﬁil‘:l— (1.052) = 10°V/2.73 = 1.65 x 10" m/s.

Y 1.85 x 10°
or5.95 x 10° km/h.

P

b. Find the period in this orbit.

Evidently a = 3 (2054 + 1850) km, or 1.95 x 10°m

and

5§ =2w(1.24) x 10°s = 7825, 0r 130m

The lunar module descent orbit insertion during the Apollo 11 mission began with a
Hohmann transfer. The command and service (CSM) and lunar modules were in

a circular orbit 110 km above the Moon. The lunar module was detached and its
descent engine was fired to reduce velocity so that it would enter a 110-by-15-km
lunar orbit. Find the reduction in velocity needed to achieve this orbit. The CSM
remained in the 110 km parking orbit.

In this case, the change to the elliptical transfer orbit was made at apolune (corre-
sponding to apogee for Earth).

A =1740 + 110 = 1850 km or 1.85 % 10°m

™
Il

P = 1750 + 15 = 1755 km or 1.755 x 10°m
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Fig. 3.8

We found in Problem 2 that the circular velocity in the 110-km orbit was 5800 km
per hour. Thus the reduction in the velocity needed, achieved by a retroburn of
the lunar module descent engine, was 100 km per hour. At perilune altitude of
15 km, several retroburns and attitude changes were made—both automatically,
and manually by the pilot——causing the spacecraft to descend to the surface. If for
any reason the descent from the 15-km perilune could not be made, the lunar
module could have remained indefinitely in the elliptical transfer orbit until a
rendezvous and docking with the CSM could be made. Thus this maneuver,
which seemed so tricky and dangerous as we watched before our felevision sets,
was actually a routine Hohmann transfer. The tricky maneuver, requiring some
manual control, came when the powered descent to the lunar surface was made
from the 15-km altitude.

We will conclude our discussion of orbits by considering the classic analysis
known as Kepler's Problem, which in modern times makes use of high-speed com-
puters to produce final results. It is the task of determining the exact position of

a body in an elliptical orbit at any given time. Kepler, of course. was interested in
establishing the nature of the planetary orbits around the Sun, but today the

same analysis is used to predict the location of artificial satellites in their orbits
around Earth.

We shall make use of a number of the relationships involving elliptical orbits
already established. For the orbit illustrated in Figure 9.9,

ep _a(l —e?)

1—ecos@ 1—ecosb

..,
1

T
o
Il
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o
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where F is one focus of the ellipse and the location of the primary body in the
gravitational system; A, P, C are apogee, perigee, and center of the ellipse,
respectively; and ¢ is the eccentricity of the ellipse.

Kepler's Problem is stated in terms of the angle v (called the true anomaly of the
cilipse) between the Earth-perigee ray (FP) and the radius vector (FS), rather
than the angle 6, as shown in Fig. 9.9. Since vis the supplement of 6, the ellipse
equation may be written in terms of v as

Recall also that the rate at which the radius vector traces out the ellipse is not
constant, but is in accordance with Kepler’s first law: The radius vector sweeps out
equal areas in equal time. This makes the task of expressing r and v directly in
terms of time extremely difficult. Kepler circumvented the problem by considering
the projection of the ellipse on an “auxiliary circle’ having the same center and
passing through P and A as shown in Fig. 9.10. If a satellite is at S on the ellipse
and Q is the foot of the perpendicular from S to AP, then §' is the intersection of
QS with the circle. Kepler defined three new quantities: the foreshortening factor
k = SQ/8'Q; the eccentric anomaly £ = £8'CF, and the mean anomaly M,
which is a fictitious angle through which an object would move at a uniform angu-
lar speed with respect to F. That is, M = (At/T) - 27 radians, where T is the time
for one complete orbit and At s the time of interest. He then established the
following relaticnships:

2

(1) k=VI-e

=a(l —ecoskE)

~

()
+e E
,tang

=
+

(3) tan

[NTE
bk
|

E —esinE

X
I

4

These will be derived in Problem 20.

Fig. 9.9 Fig. 9.10
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,,,,, satellite’s position at any time, we must be able to compute
rand u Since : ,¢and T (and therefore M) are known for an orbit, if
Equatmn (4) be sol d fnr E, then (2) and (3) wnll pm\qde r and v. But Eq

dlffn:ulty has been thg core (llf many iomputat onal schemes generated b SthﬂD-

mers, mathematicians, and physicists.

High-speed computers now make a numerical, iterative solution both possible
and feasible. The iterations would proceed as follows:

E1=D
E.=M + esin E;
Ei=M + esin E;

E.,i=M + esin E;

(s*” 1072 or ID ”‘)- in ather words when |Ek ‘1

E = E, ., if this is our desired level of accuracy. Smce E‘,{ 4 - Ek =
e (sin Ex — sin Ey _ ), it can be shown that |E, ., ; — E] = e¢*~ M, so that the
sequence E, converges to the new value of E, since e < 1. This process is highly
efficient for small values of e, and after a few iterations, it is usually found that

the difference is within tolerance.

Gmputer progream to pérfarm the, iteration outlm d above, and then to
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Solution:

b. Use this program to find the position of the satellite discussed in Problem 12
one hour after it passes the perigee point in its orbit.

We had e
T

0.55, a = (A+F’):§(2386+654D)km-145?€10“km and

=4, 77 h. Runnmg the program of part (a) with these values produces the

15’;_

HHﬂT
DISTANT FROM EARTH:. ' .
AND. IT5' ANONALY 15 247 EABIANE- =

The four relationships of Kepler's Problem can be established using the geometry
and trigonometry of Fig. 9.10.

[*3

a. Showthatk = V1 —¢
k was defined as k = SQ/S'Q. From Fig. 9.10, we have
SQ =rsin v,
and
$'Q = V(S'C)’ = (CQ)’ = Va® — (CF - QF)
= Va® - (ae + rcos v)*.
Then
k= rsin v _ \/ 7 rz(li—— cos’y)
"~ Va’ = (ae + rcos v)* 2* — (ae + rcos v)*’
Substituting r = lﬂ_f_,l,j‘:::) and simplifying produces, after some labor, the result

k=V1-¢g2,

b. If a rectangular coordinate system is placed on Fig. 9.10 with origin at F and
positive x-axis along the polar axis, express the rectangular coordinates of S in
termsof E, a, and e. Then use the fact that S can also be given by (—r cos v, rsin »)
to show thatr = 4 (1 — e cos E).

ST,
ey
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Solution:

Solution:

Since CF = aeand §'C = 4, the x-coordinate of Sis QF = CF — CQ = ge — g cos E.
The y-coordinate is
SQ=kS8Q

V1 — e?(asin E).

So the coordinates of S are (ae — acos E, V1 — e*asin E).

3 3

Now  r*=r'cos’v + risin’v = (—rcos v)? + (rsin v)?

o

— 2a*ecos E + a*cos’E + a’sin’E — a’e?sin’E

e*—2alecos E + a®* — a’e*(1 — cos’E)

2a*ecos E + a’elcostE

)

]

=y
[
|

[t

b

iy

- 2ecos E + e?cos

I

in]
N
—
i

|
]

ol

=a?(1 — ecos E)*.

I
1)

So r=a(l —ecosE).

¢. Use (b) and the identity

l;cosé
1+ cosé

to show that

Then

1—-cosv=-+

—
i

M

r
L= U‘
]
tm

|

e Y
(=}

o
m

‘ +

™
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areas nf the c—:lhpse in équal times, FS' sweeps out equal areas Df thE aux;llary
circle in equal times. If the area enclosed by FP, FS’, and the arc S'P is swept out in
time At, and T is the tirrc for the satellite to traverse the entire ellipse, then this
areais given by At /T (.ra® ) Recall that M is (Ar/T) (2w), and use the geometry of

Fig. 9.10 to show that M = E — esin E.

Solution: Area FPS' = area of sector CSP’' — area of CFS’
ar - lap 1
T T4 -=2a 2(.;:ué*)(zzsmE)
Eﬁ% =F —esinE
M=E —¢esinE

Amnng theﬁ first Lglgscopﬂa uaed tc: Explnn: the hgavﬂnﬁ were thns;‘: based on the

such a mirror in the direction parallel to the axis of the parabnlmd is réflected to
the focus that provides the light-gathering capacity of the telescope. The reflec-
tive properties of ellipsoidal and hyperboloidal surfaces are also important. In
both cases, light striking the surface in a direction toward or away from one focus
is reflected in a direction either away from or toward the other focus. These prop-
erties are illustrated in Fig. 9.11.

(b)
parabola
'ﬁ“\
‘\
N e
L
* ]
1
7
F
;s'
(© (d)
hyperbola

ellipse
Fig. 9.11
141
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PROBLEM 21.

Solution:

The technique of ray tracing is used in the design of optical instruments. One class of
suth instruments owes its fo;:using pmperties to the ldw of reflection This law
e.In ray trat:mg,
equanons are written for the lines Egntammg mt:ndent and emergem rays of ¢l
tr’émagnetic radiation. Use this technique to prove the reflective property of th.
parabola given that the slope of the tangent at the point (xg, yo) on the parabo-

y* = 4px is 2p /y,. (The slope of the tangent at any point on a conic section gra:=i
wiil be derived in Chapter 10.)

We must show that an incident ray parallel to the axis is reflected through the focus.
Thc: geornetry of th& rzﬂe;‘tmn is shown in Flg 9 12 smc&: thg lmés Tl and FF

have that trlangle FTPis lSDSCElES and 50 c:b = 26 The Equatlﬁn of thg llnE con-
tammg the incident ray is y = yo. The equation of the line containing the reflected

tan ¢ (x = xp) =

ray is (y — yo) = tan 20 (x = xg).

Fig. 9.12

Since
tan 29 = —2tan 6 andtan 6 = 22,
1 = tan®6 Yo
4 4p? 4
tan 20 = -2 (1 %): py“—a,
Yo/t % Yo yi— 4p~°
But
_y(% = 4PX(]
50
) 4pyo
nz2e =
tan 26 yr—
. = Yo
- Xx—=p
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Substituting the slope into the equation of the line,
Yo

Yy =>Y= ',[.T‘* (x = xy)

o )-’n(t Xo)
y =

- Yo—p + Yo

Ifx = p,y = 0, so this line passes through the focus.

Special instruments have been designed to study the electromagnetic radiation of
stars and other astronomical sources in wavelengths outside the visible region. If
X-rays are to be reflected, the incoming rays must form a very small angle (grazing
angle) with respect to the reflecting surface; otherwise the X-rays are simply
absorbed. However, with grazing angle incidence, incoming rays that are not par-
allel to the axis are not focused at all (making it impossible to form an image of a
source that is not a point) unless an even number of reflections is used. The X-ray
telescope on the High Energy Astronomy Observatory (HEAO) satellite was
therefore designed to use two reflections from conic section surfaces. Fig. 9.13
shows some of the possibilities that were considered. Notice that in each, the
focus of the paraboloid coincides with one focus of the other conic.

reflecting surfaces ¢

Fig. 9.13 c.

In designing an X-ray telescope that uses hyperboloidal and paraboloidal reflecting
surfaces, the most effective placement of the x- and y-axes is such that the x-axis
coincides with the axis of the parabolold and the y-axis passes through the inter-
section of the two surfaces. This is illustrated in Fig. 9.14 in cross section. (Note

that fxgufes 9 14 thru 9.17 are distorted: grazing angles are much smaller than shown
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Fig. 9.14 hypcrbglaids\’ -
=
— incident

— : paraxial

radiation

k—

a. If p is the distance between the vertex and focus of the parabola in Fig. 9.14; c,
the distance between the center of the hyperbola and each of its foci; A, the
distance between the center of the hyperbola and each of its vertices; and &, the
distance between the center of the hyperbola and the origin, find the equations
of the two conic sections in this coordinate system.

For the parabola, the vertex isat (—(p + ¢ + k), 0) and the focus-vertex distance is
P, 50 the equation is

yi=dp(x +p +c + k),

For the hyperbola, the center is at (—k, 0); the role of the parameter a in the
dard equation is taken by # and that of the parameter b by V¢? — A%, so the

equatlan is

(x + k) __
h* I -pt

res;we::twely, with rgspect to the x-axis. Expenence in thls fleld has shnwn that
when successive reflections take place, surface reflection efficiency is maximum
when an incoming ray parallel to the axis strikes each reflecting surface at about
the same angle. Show that this condition, together with the fact that the angle of
incidence equals the angle of reflection, means that 8 = 26, ¢ = 36, a = 44.
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Solution:

We number the angles 1, 2, 3, 4, 5in Fig. 9.15. as shown in Fig. 9.16.

T hyperbola

Fig. 9.16

We see that

41 = 42and £3 = £5 (£ ofiincidence = £ of reflection);

M
[
]

£4 (vertical angles);

£2 = £3 (for maximum reflection efficiency).
So
L1=22=/3=/4=/5=08.

Now, since an exterior angle of a triangle is equal to the sum of the nonadjacent
interior angles,

B =26;
¢ =B+ 8 =38;

a=¢+ 8 =40

¢. In designing the surface of the X-ray telescope, the designer must be able to
express the parameters p, c, k, and & of part (a) in terms of two initial design
parameters F and y, of the instrument, where Fis the distance along the x-axis
between the origin and the focus of the hyperbola, and y; is the distance along
the y-axis between the origin and the point of intersection to the parabola and
hyperbola. (These are shown in Fig. 9.15.)

Recall that under grazing-angie incidence, @is a very small angle (this is defi-
nitely not shown in the figure; the angle occurs where these lines finally intersect).
It is also true in this situation that p is small compared to F. Show that the
parameters p, ¢, k, and k can be given, at least approximately, in terms of F and y,
by the following

(X

0

]

F k==F p=

(2]

Il
B [
bl
Pﬂw

"y

=t kP Ap(p t e+ k) =V + K +dp(p + ¢ + k) — dcik?
IWE LI )
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Solution:

Let (xi, y,) be the point on the hyperbola where the second reflection takes place, and
let (0, y;) be the y-intercept of the line containing the ray after the second reflec-
tion. (See Figure 9.17.) Then tan a = y,/Fand tan = y,/(c + kK)=y/(2c+F),
since F = k — c. Because 6 is such a small angle, o and B are also small. This

suggests the following approximations:

Y2Eyo=y;tana =a;tan g = 3.

p(0.y2)

Thyp:rbgla
= ) ; = =

Fig. 9.17

(Fig. 9.17 does not show this because the angles are not small enough. The reader is
encouraged to imagine how the figure would change if angles 8, B, ¢, and o shrink.)

Since o =28, we get

and if y; = y,, then

Indi
\l?l‘
i
I
™
+
e
o]

-t
“ry
[
[
"y

So

F, and k;F-%r:‘:%E

The parabola has equation y> = 4p (x + p + ¢ + k). Since y = y, when x = 0, and
since ¢ + k = 2F,

yé = d4p (p + 2F) = 4p? + §Fp.

1:6
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If p is small compared to F, the term in p~ may be neglected giving p = v,*/(8F):
/1 can be expressed exactly in terms of p. ¢, and k by observing that (0. yv,) is on
both the parabola and the hyperbola. This means that

and

[
—

Then

s0

kPR E)Y+ R =4p(p + ¢ + k)R,
or

RP= ke + kP +dp(p +c + k) + k=0,

Using the quadratic formula,

g Otk dp(p t e+ k)= VTt KT+ ap (p F ¢ + k)T — 4c’k
1- - 3 — —,

=

The positive sign before the radical is discarded. since it produces a physically
unrealistic value of & larger than ¢, so

I

M=+ kP +dpp e+ k)= V(T HK Fdp(p T+ k) — Ak,

computer program, based on the principles discussed in Problem 21, is then used
to check the actual focusing capabilities of a hypothetical instrument with these
specifications. The use of the computer with such a program makes it possible to
refine the values of the parameters for best focus under desired conditions. Actual
preparation of the reflecting surface is also controlled by computer-driven
machinery once the optimal values of the parameters are established.

This analysis produces an initial set of parameters p, c. &, and A. A ray-tracing

147
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Photegraph of an active volcanic eruption on
Jupiter's satellite lo taken on March 4, 1979, -
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Chapter Ten

: amphfy 1dgas dlscussed in prevmue c:hapt::rs Calculus is also used in the
Appéndl}i

PROBLEM 1. Until recently it was accepted that there were three possible states in which matter
could exist: solid, liquid, and gas. Under conditions that normally prevail on
Earth, these are the Dﬂly states in which matter is found. However, it is now known
that if the temperature is very high or the density is very low, a fourth state of
matter can exist; it is called plasma. A plasma consists of electrons and positively
charged ions rather than neutral atoms, and so it has both electric and magnetic
fields. (Anion is an atom that has lost one or more of its electrons.) On Earth,
plasmas exist, at least temporarily, in lightning, electrical sparks, fluorescent
lamps, and in the ionosphere.

In addition to the electromagnetic radiation we sense as heat and light. it is now
known that the Sun emits particle radiation having a wide range of energies. The
particles (or plasma) appear to come from specific regions on the Sun, some as
highly energetic particles which move radially outward into interplanetary space.
Some of these highly energetic particles that reach Earth’s ionosphere produce
auroral displays (the northern lights) and affect shortwave radio transmission by
modifying the ionospheric structure.

basns and thESE low&r engrgy partlclés also move away from th:: Sunina stra!ght
line (radially). The study of this interplanetary plasma, which has been called the
solar wind, is of great concern to astronomers and other scientists for several
reasons. One is that the Sun is the only star we are close to, and the emission of
plasma means that it is very gradually losing matter, an important factor in stellar
evolution. Another is that the plasma state of matter is difficult to study on Earth
bf;cause it is hard to reproducé in the laboratory the cand ons of high terﬁpera—

tary spactz

A number of space probes and satellites have been used to investigate the prop-
erties of the interplanetary plasma. The Inrerplanetary Monitoring Platform (IMP)
series of probes from 1963 to the present, the Orbiting Geophysical Observatory
(OGO) series from 1964 to 1974, the International Sun-Earth Explorer (ISEE)
satellites from 1977 to the presenti, and the Mariner, Pioneer, and Voyager deep-
spac:& probas have all earrléd éxpanmems resultmg ina SEI‘IES of m::asurernems of

sular wmd

It has been postulated, on theoretical grounds, that the magnetic field lines of the
solar wind coincide with the locus of particles emitted from the Sun, and the
experimental findings to date seem to support this hypothesis.

a. Determine the shape of this locus, given that the solar atmosphere from which
emission takes place rotates at a constant angular velocity and that particles
move outward with constant velocity in the radial direction. Assume the direction
of rotation is clockwise.
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Solution:

An intuitive solution using “‘time lapse” polar graphing is displayed in Fig. 10.1, and
this shows that the locus is an Archimedean spiral. This can be verified analyti-
cally using calculus. We are seeking r = f(8) such that dr/ct = V (particles emitted
with constant radial velocity), and d@/dr = C (emissive origin is rotating with
constant angular velocity). From the chain rule,

dr _ dr do
dt de di’
and substituting from above, we have

. - dr _
Vﬁdg C, or i

™y \H <

a constant we may call 4.

Integrating and choosing the coordinate system so that f(0) = 0, we have r = k@,
which is the equation of an Archimedean spiral.

Fig. 10.1
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Solution:

b. It has been observed that the equatorial region of the solar atmosphere rotates
at a rate of C = 2.94 x 107° radians per second with respect to the distant stars.
This is known as the sidereal rotation rate and is equivalent to a sidereal rotation
period of

21

504 x 10-° s =214 x 10°s = 24.7 days.

Spacecraft measurements of the solar wind velocity show time variations, with

400 km/s and 750 km/s.
For V = 400 km/s,

= 1.4 x 10% km/rad.

?;.

I
al<
I
|
|

k=120 = 2.6 x 10° km/rad.

The graphs of r = k@ are shown in Fig. 10.2. (Note that it is the practice to use
km/rad as the unit for &, but this is equivalent to km, since the radian is
dimensionless.)

mﬂ

Scale for r: 2 units = 10° km

(a): V=400
km/sec

Fig. 10.2

In Chapters 4 and 7, we considered some of the corrections needed to produce
undistorted pictures of spacecraft observations. Here is another such correction.

151
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PROBLEM 2. Most satellite photography makes use of scanning techniques. This is illustrated in
Fig. 10.3(a), where the scanning is done in the direction orthogonal to the flight
path In pErfDrmlng the scan, a system of lTlll'I'QI‘S and lenses rotates around an axis

m
w

rate we can see from Flg 10. 3(b) that the rate at Wthh the scaﬁnmg bgam mOoves
alnng the ground depends on the angle it makes with the vertical,

-
a, 408, = A
Ox; #F Ax,
h 8,
Multispectral
Scanner .
X A% A
Xa .
SE;I] (h)

(a)

Fig. 10.3

If we imagine that a square on the ground has the pattern shown in Fig. 10. 4(a),
the result of this variable Earth-scan rate will be the distorted pattern shown in
Fig. 10.4(b). In order to produce an undistorted picture, the actual recording of
the images must be done at the Earth-scan rate rather than the rotation rate,
This panoramic distortion correction requires the ability to express the scan rate
along the ground, dx /dt in terms of the satellite height, A, the angle 6, and the
rotation rate, d8/ds, of the scanning system, where 6, 4, and x are as defined in
Fig. 10.3(b). Find such an expression.

Flag r_“fJ!ES 60° 30° ©°
1 hd * o -+— Flag poles
[ [
A ™ Z I\
= - V,
a) ®
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Solution:  (This is a straightforward related rate problem.) From Fig. 10.3(b), we see that
tan § = -;E so that x = A tan 6. Differentiating with respect to time,
de _, 1,d8
= = hsec’6—.
dr 1 5€C"¢ ar’

PROBLEM 3. In Problem 9a of (’Zhapter 4, we estimated the surface area c)f an antenna ‘*d!sh* by

us see how good thls estimate was.

a. Find an expression for the surface area of a paraboloidal cap that is bounded
by a circle of radius r and has depth a.

Solution: We can consider the paraboloidal cap to be generated by revolving the illustrated
portion of the parabolic curve (Fig. 10.5) around the x-axis. We must first deter-
mine the function y = f(x) for this curve. Then the surface area will be given
by the integral

s =21 HVT+ [FCIT d
Since this curve is a parabola with axis horizontal, opening to the left, and

with vertex at (2,0), its equation has the formy = bVa — x, WhEl‘E b must be
determined so that (0,r) satisfies the equatlcn Thismeansr = bVa — 0. or

b = r/Va. The function we nzed, then, is flx) = (r/ a)\,/a —x = F\/l - x/a.
y
T
\ ;x
- 0 IE
Fig. 10.5
Then
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This integral may be evaluated by the substitution u = r* + 4a® — 4ax to produce

2 2+ 482
[ 7

dr=

Fadt | lwdt

£+ dgd _
F — r
S z-ﬁf, Viudu = [
:

8a’ 4a

b

E’;’;%[(rz + 432)3/2 _ r"3]

b. Recall that the paraboloidal cap had a radius of 10 meters. If its depth was 1 m,
find its surface area (assuming exact numbers) and then find the relative error of
the estimate made in Chapter 4.

Solution: Forr = 10manda = 1m,

5

m-.

31

~J

h)

1%1[(104)3’2 - 107

The estimate, approximating the paraboloidal cap as a circle, was

S =7r?= 1007 = 314 m".

[

% = 0.0098, or about 1 percent.

r.e.

¢. Find the relative error for a depth of 2 m.

—

Solution: 5 =

O [(116)"* ~ 10%] = 326 m?

(AN
oy

error = |326 — 314|m* = 12 m’

]

1
2

r.e. = = 3.8 percent

Lad
fe ]

PROBLEM 4. InProblem 11 of Chapter 7, we observed that a spacecraft at a distance h from Earth
can observe only a portion of Earth’s surface.
a. Derive a formula for finding the fraction of the observable area as a function
of height above Earth’s surface.
Solution: The portion of Earth’s surface visible from the spacecraft is shown shaded in
Fig. 10.6. Let A, be the area of the zone with altitude BE. If we setup a

rectangular coordinate system with origin at A, and if the coordinates of a point on
the arc EC are (g(y), ¥), then this surface area is found by evaluating the integral

A, =2m JE gV + [g'(y)] dy

where g(y) = x = VR? — y?and y; and yg are the y-coordinates, respectively,
of the points B and E.
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Chapter Ten =

Fig. 10.6

To determine the y-coordinate of B, j,we observe thai triangle== ABC and ACD
are similar, so that

or
Yo __R
R R+h
giving

We have

o
fm]
=3

s0 the integral is

+
-2 SR 2nR
EETFR[R R+h] R +h

If we let A, represent the area of Earthssurface, then A, = 47wR?  so that

A, _2mRY h

AT anRRH) 2R + h)
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b. In .April 1983, two members of the Space Shuttle Challenger crew, Story Mus-
grave and Donald Peterson, performed an extravehicular activity (an activity
outsid & the spacecraft) while Challenger was at an altitude of 280 km. What frac-
tion of Earth did they see? (Use 6380 km for the Earth’s radius.)

Solution: Fori = 280 and R = 6380,

2 = s——————— = 0.021, or 2.1 percent.

¢. Discuss the manner in which the fraction A,/ A, varies with the altitude A,

Solution: Intuition suggests that as 4 increases, the value of A,/A, should vary from zero e=o
1/2. O 11 the surface of Earth, the fraction is zero. As A increases, so does the
fractio x1, and yet it must always be less than 1/2 ; that is, one cannot hope to view
more thran a hemisphere at any one time. A little algebra bears this out.

A: h
A 2(r+h)

iscertainly zero when h = 0. Observe that

>

1

- F S
2(L + )
(h /
Ashin creases, the denominator of the right-hand side decreases, which forces

the entire fraction A,/ A, to increase. Furthermore, as A==, r/h — 0, and con-
sequently A,/ A, approaches 1/[2(1 + 0] = 1/2.

T

[

d. At vwhat altitude will an astronaut see one-fourth of Earth's surface?

Solution: We musst find / such that

1 ___h

4  2(6380+h)
4-h=2(6380)+2
2-h = 2(6380)

h = 6380 km.

e. The First astronauts to travel that far from Earth were the Apollo 8 crew
(Ander=s, Borman, and Lovell), who orbited the Moon on Christmas Day, 1968.
What peercent of Earth’s surface could these astronauts sec as they passed the
Moon, & distance of 3.76 x 10° km from Earth?

3.76 x 10° _ _3.76x10°

T2(3.76 X 10° + 6.38 x 109 _ 2(3.82% 107)

.;.:P

Solution:

>

= (.492, or 49.2 percent
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PROBLEM 5.

Solution:

Solution:

Solution:
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The reflective properties of the conic sections were discussed in the final two prob-
lems of Chaper 9, where the formula for the slope of the tangent to a parabola

was used. Use differentiation to find such a formula for each of the following
conics at a point (xy, yu).

a. The parabola y? = 4px

Differentiation produces

dy

2y 4s =4
dy _2p
dx y

-
So the slope of the tangent at (x,, yq) is yP or, if stated in terms of x,,

s -
, » ,\/?
slope = *- = E g =,
P Vap, *u
y 3
b. The elhpse = + 5= 1
Differentiating this equation,
2x , 2ydy _
St g =0
dy_ _bix
de  ay

The slope of the tangent at (x,, y,) is then

—bix
a*yo’
c. The hyperbola%—i; - % =1

This is exas:tly the same as (b) with one sign change, so that the slope of the tangent
Xo

b?
at (xo, yo) is ?)T

noes, thé first known instance of volc:ancxc:s other than thase here on Earth, lmage;s
returned by the spacecraft have provided measurements which scientists are

using to develop and evaluate models by which both the behavior and possible
causes of this volcanic activity may be understood.
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Caltu{u;

Soluvon:

The starting point is the familiar projectile problem with the valid condition (in
contrast to such problems applied to Earth) that air resistance is neglected, since

assuming that the gas and solid particles ejected from the volcano’s opening do not
affect each other’s motion upon ejection, that the opening is circular (roughly),
and that all particles start from the same point below the surface with the same
initial velocity at all possible escape angles in any direction. These assumptions
together have been called the ballistic model.

cal cross section through the volecano vent’s center has the shape diagrammed in
Fig. 10.7, where we have placed the r-axis along lo’s surface and the z-axis per-
pendicular to the surface. If (7, z) is a representative point in such a cross sec-
tion, find an expression for the escape angle i (or a trigonometric function of /)
which will cause an ejected particle to pass through this point (7 is measured from
the z-axis). Let r, be the radius of the circular opening, v, the initial velocity of the
particle, and d the distance below the surface of the point where the

particle originates.

Zm*

If g is the value of lo’s gravity and 1, the time at which the particle is ejected, then our
model is given mathematically by the following conditions:

o
Le

2, . E
dr | -

L]
|
gy
=N
=

=™

. dr
I

-
[
;O
w

=vyysini; r(p) =0

i

=N

Routine integration and application of the initial conditions result in

J s

(A) z(t) = —5gt*+ got + vorcosi —d — %gtﬁz — vl cOS |

[

(vesini) (t — to)
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To get an expression for i, we eliminate ¢ by solving equation (B) for r and substi-
tuting this expression into equation (A), which gives

—grt . .

=5 cosec*l + rcoti = d.
2vé

(C) 7=

Since equation (C) contains cosec?/ and cot i, we may use the identity
cosec’i = 1 + cot’i to obtain an equation in cot i, namely,

{x

; op2
r . . gr , )
—cot?i —rcoti +E8-+d+z =0,
2vy 2vg

Jle]

Applying the quadratic formula,

i, 3
.2 _ Si”’,)(zgjf, )
\/r 4(2p§ 2F§+dil=§

coti =r = — —

arilve

and simplifying,

(D) cot i Eg—‘i"; (1 = \/i - (f’;—;;)2 =(i—§) (d +3))

We see that there are two possible ejection angles that will bring a particle through
a particular point, one on the way up and the other on the way down. This is
illustrated in Fig. 10.7, at the point marked (r, z).

b. If i, is the largest possible escape angle for the vent, express the height z of the
lower boundary of the portion of the plume that contains both upward- and
downward-moving particles (identified in Fig. 10.7) as a function of r, and then
find r,, and r, of Fig. 10.7.

Solution: From equation (C), withi = i,

w2
cosec?p + rcot iy — d;

7.2
21*5

Zm

rm and r, are the values of r in this expression for which z,, = 0. Setting z,, = 0 and
multiplying by
2ve

sin%,

oy

produces the equation

,  2vésinip cos iy 2v¢ d sin%,
re = —r + — -
g g

= 0.

Using the positive sign in the quadratic formula to get the larger r,

Dy

V,

. rm=—sinfp|cosi; + -

R

o |
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Solution:

Solution:

and using the negative sign to get the smaller value,

vi .
rp = ?sm io|cos iy —

k D

c. Express the height zy; of the upper boundary of the plume of Fig. 10.7 as a
function of r and find an expression for k,, the maximum height of the plume.

The upper boundary is the set of points for which the two solutions given by
equation (D) of part (a) coalesce; in other words, where the radical vanishes, or

1=(£f=“§;Ti§£:Di

3 2
v 0

50
_vi g’
™MT g T2 d
The maximum height &, occurs when r = 0:
E .
(E) hy 3 d

d. Express the coordinates (r, z;) of the point to the right of the z-axis, at which
the upper and lower boundaries meet, in terms of iy, vg, g,and d.

Since this point is on the upper boundary, we have the radical of equation (D) equal
to 0, and since it is on the lower boundary, we have i = ;. From equation (D),

)2 o2

cotiy = Yo 50 F % tani
0= - s 1= — I9.
gn g °
From our solution to part (c},
- 2
Vi r
I = % - g 11 -d
2z 2vg

or

vé g [vé 2
=5 — ,E,(—;Ianin) - d

(1 — tan%;) — d.
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vided vzalues for ry, 1, and /,. Use the foregoing results to obtain expressions so

that iy, -373/g, and d may be calculated from these measusements.

e. Mea surements of images obtained from the Voyager I imaging system have pro-

Soluti:  From e cquation (E), d = (vi/2g) — h,. This will give d if we have vi/g. since Ay is
known.

From p=art (b),

Fn T P

o]
-

itk o
o T o5 = (rm + 1) cosec(24).
g sin(2i) (r + 1) (2i)

This wil

el

give v;i/g if we have i, since r,, and rp are known.

Also fre- m part (b),

]
-

- 8in #;4

~
3
[
~
It
Koot
=
= ol
m\
]
o]
e
W
|
[
+
[ 1
Nt

0/ . .
% sin;
¥y

Tm —Fp _

Fm + Fo

- . ) .. . . s . 2 sin i, cosi
Squaring to eliminate the radical and substituting ‘5; =
) T Vi T'm + 1p
2gh - 2sin;cos i s
=87 in2 2( #) h, — sin,
o + rp B )

cos’i, cosiy
4k

= P ion £ 22
= ————— {an [; — tan-<,,
I'm + 1y

which we  can solve for tan i, using the quadratic formula:

. | 4, 16k 7(rm =5;p)f
.}qq lQ - Fu + rp * (F; + ijl ~ 4 P + Fp
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Solution:

Since iy appears on the images to be smaller than 45°, the minus sign is
chosen, giving

. 2hy . \? rm——li},Z
tani, = + e —
p r + rp rm +r

f. Voyager I detected eight volcanic plumes, of which plume 1 and plume 3 were
closest in shape to our diagram in Fig. 10.7. Table 10.1 gives the observed mea-
surements of r, r,, and A, for these plumes. For each, calculate iy, vi/g, and d
from these data, then use the results of part d. to predict r; and z, for these plumes.

Table 10.1

Measurements of Io’s Plumes
Plume
No. T o hp (mzasuréd inkm)
1 500 17.5 280
3 125 7.5 70

For plume 1,

. (280 ) B \/ ( 280 ) '(4825 :
=7 - -] - (== =
tan fy *(517!5 4(37735) - (5775) =033

Sodp = 28.05°

3;% = (517.5) (cosec (56.1°)) = 623 km
d=ﬁéfipzé§;28D232km
2g 2
r o= % tan io = (623) (0.533) = 332 km
E;E%ﬂz (1=tan1n)=d=6=§é[, (DSSB)]‘SEEIQlkmi

For plume 3, the results are as follows:

tan ip = 0.4821, s0 iy = 25.74°

,2
Vi

E: 169km;d = 15km;r, = 82 km;z, = 50km

162

3 J‘

o™y
.
-y,
L
—
o
("=}



(:ljspt:ei Ten _ ) ) ) -

g- Foplume 3, it was also possible t=s0 measure ri. This measurement was 125 km.
Cornpte the relative error of our ca=lculated value for r, as a percent.

Solution: Absoiute error == |82 — 125| = 43,

Relative error == % = (.34

34 percent.

Thisor is large enough to demanc=i refinement of the model. The assumption
leastliely to hold is that ejected gas=s and particles do not affect each other’s
motioitis more probable that the s combination of particle sizes and rate of gas
flow issich that the particles are carz-ried by the gas into the central portion of the
top oltie plume and released into basallistic trajectories only on descent.

Althagh we shall not consider these= modifications here, the reader may be
interskdin knowing that the resulte=s of further refinements of the model are
consisent with the theoretical propo esal that Io’s volcanoes are due to tidal
effectiinits surface generated prima srily by another Jovian moon, Europa.
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AND THE CONIC
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hE Ellipticai Sha’pé of planétary mbits was first assertad by Johannés I{eplar

fathEr thanin the calculus chapter (Chapter 10) since the mampulanons needed
in the development include some complexities that may be unfamiliar to the
intended audience.

and secnnd dEerathES nf the VEEtOrS The umt vectors 7 ]., U, u., are shcwn in
Fig. A.1. We have

U, =1icos6+ jsin@
and

ug =1 (—sin @) + 7 cos 6.

Differentiating with respect to time,

du, _ - oodg - degd(da)i
—,—zl(*S!DQ)E“F](COSQ)thL{Erfi

dr dr
dip _ = od8 = o do_ - de.
dt’z(—cose)d—!+1( smﬁ)aig Urgrs
Fig. A.1
In polar coordinates, the position vector is (r 4,), and so
velocity = @ (r i) = Gl + r gt = G, + rig i
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deration = 9 _4d (dr- dg -
acceleration (r u,) a (dt i, +rdt ug)
d3r= drdu,  drde- d0— . dedu,
[, + =5 + == + 7
E T, dr T drarte dr? dr dr
_d'Fr— drdf - d’g — (dé)
=Ly + + p=— -
dt u, Ed ar e thl Uy dr u,

- (G5 () (2 895

We now consider the statement of the law of gravitation: The force on the orbiting

body (mass m) is proportional to the product of the masses of the two bodies

involved and inversely proportional to the square of the distance between them.
In symbnls,

&(ru) GMm —
- ] - 3 U,
dr’ r

[;;F(gf] N ECETIN PR P
drr  \de dr dt dr2] 7% T o

Since the u, term is missing on the right, we have

,drdé | d%
;dz dr + "ar

0.

Kepler’s first law, that the radius vector sweeps out equal areas in equal times,

can be stated mathematically as % rz%—g = A, aconstant. If we differentiate this

expression with respect to time, we get

1a0drd0, o) _
2[2rd1¢ trge] =0

T

ot
[

1 [ dr do dgé]ir
27 zdtdt "ar 0

So we may let the constant A = r ‘2‘6 , and this is equivalent to the fact that the u,

coefficient vanishes, or Kepler’s first law.

[

= s p dr _ (de) _GM
Equating the u, terms, al @) ST

3 B
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a

GM. aswellas A = r? %’ . produces the differential

Using the substitution B

equa
dr A' B

1 — ==+ = =10,
() der

We are seeking 7 as a function of 8: it turns out 1o be casier to find 1/ as a function
of 8. This can be done by letting w = 1/r, or equivalently. r = 1/w. Then

dr _ _ Ldw _ _ 1 dwdg
dr we di w: dé di
= AW e 1 40 2d0_
e we dt !
Differentiating again
Cr ey b d
dr* dr \de de’ dr
B id:“‘
= —ANWITE
H d6=
We ¢can now rewrite (1) as
’EAzn"d‘l = A'w '+ Blwi=10
do-
or
d-w v = B
do* A*
which has a solution. w = Ccos (8 — 6)) + %
But this means that
1 D S A/B

~
[

W Ccos(0 — @) + (B/AY) 1+ (CA/B)cos (0 — 6

For A*/B = ep,C = —1/P, 6, = 0, we getr = ep/ (1 — e cos 8). the equation of
the conic section in Chapter 9, Problem 4.

We next derive the **vis-viva,” or energy integral, and show that the eccentricity of
a conic section trajectory is physically determined by the total energy of the

gravitational system. Again, it helps to first establish some properties of the vec-
tors involved. In this context, we will need the square of the velocity vector, v:
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. = = d(v) - dv T
s =y O — =—={y-p)y= p -— 4+ — =2 py =
! Vv so =g dt(‘ v) =y ar v=2veg
so that
= dv _1d,.,
Var Tza )

d?;iﬁMm
my - _ %
dt r

Premultiplying by v, usinig the dot product, produces

dv GMm- -
my s = TRV U
df F?

Substituting
- dr- da —
==y + r=i
v dtu, r df Uy

on the right,

on the left, and recalling that i, - i, = 1 while ¥, - u, = 0, we get

22! [i,_i E:I GMFH dl‘

S L2 de ] dl‘
i l3mv] = ommgi ()
dr [zmv‘]—GMmdt - )

Integrating, we get the energy equation

s GMm i L
my- — - = E, a constant.

] s

In physics, the first term on the left, (1/2) m v?, is the kinetic energy of the system;
- GMm is the gravitational potential energy; E, the constant

the second term, -
of integration, is the total energy. We may evaluate E by consdermg a particular
point in the orbit. Since r = ep/ (1 ~ e cos 8), r attains its rmrumum value for

0=
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But

1 W
Fanin max
50
o _ 1+ e
Whae =

Now from the vector expression for velocity,

a dr);’ ( t:ié)2
2 (8r L£e
v (cjz * ar )

But when 8 = m, the velocity is entirely in the u, direction, so for w = w,,,,

2

v r==) and equation (2) becomes

dt

%mﬂzwz —Bmw — E =0,
recalling that A = r-is? ,and B = GM. Now, using the quadratic formula with

the positive siga,

Bm + V(Bm)' + 2mA

mA?

Wmax

Equating the two expressions for wn,,, and recalling thatep = A?/B

and therefore

3) e =

169
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Since m > 0, we see that the nature of the trajectory depends on the total energy
E:

If E =0, thene

! and the trajectory is a parabola;

if E < 0, thene < 1 and the trajectory is an ellipse;

if E > 0, thene > 1 and the trajectory is a hyperbola.

It is sometimes useful to solve (3) for E, giving

B'm (e’ - 1)
zﬂz

~ GMm (e* — 1)
B 2ep )
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Apogee
Attitude of a spacecraft

Celestial equator
Celestial sphere

Center of mass
Conjunction of planets

Cosmology
Declination

Direction cosines

Ecliptic

Electromagnetic spectrum
Ephemeris

Iteration
Jovian
Julian day

Orbital period

Perigee

Photon

ERIC
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The most distant point from Earth reached by a body in an elliptical orbit with Earth
at the primary focus,

The orientation of the spacecraft in space. with respect to some chosen coordinate
system.

‘The projection of the equatorial plane of Earth on the celestial sphere.
An imaginary sphere of infinite radius on which celestial objects appear projected.

The point within a body at which all the mass could be located without changing its
dynamical behavior.

The position of the planets when they are on the same right ascension circle on the
celestial sphere (in other words. when they appear closest together in the sky).

The study of the evolution of the cosmas or universe.
The analog. on the celestial sphere. of latitude circles on Earth.

The cosines of the angles made by a vector in space with each of the three positive
coordinate axes.

The path described by the center of the Sun on the geocentric celestial sphere during
the course of a year.

Radiation of various wavelengths emitted in the form of waves carrying rapidly vary-
ing electric and magnetic fields (light is an example of a portion of the spectrum).

A list of the successive positions of a celestial object on the geocentric celestial
sphere for a series of equally spaced times.

Concentric with Earth.

produce improved values of a desired quantity.
Relating to the planet Jupiter.

The number of days, and fraction of a day, measured from noon on 1 January of the
year 4713 B.C.,

The time it takes for an object to complete one orbit.

The closest point to Earth reached by a body in an elliptical orbit with Earth at the
primary focus.

The smallest unit (or “particle™) of electromagnetic radiation. carrying one quantum
of energy.
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Pitch

Right ascension
Right-handed three-
dimensional coordinate
system

Roll

Watt

Yaw

o]
)
[ 2]
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An angular rotation of an aircraft or spacecraft around ar axis through the wings
(which has the effect of moving the nose up or down).

The analog, on the celestial sphere, of the longitude circles on Earth.

A convention of three basis vectors most simply represented by the thumb, index,
and middle fingers of the right hand when extended at right angles to each other; the
x-axis is along the thumb, the y-axis along the index finger, and the z-axis along the
middle finger.

An angular rotation of an aircraft or spacecraft around an axis along its length (which
has the effect of tipping its wings).

A unit of power. (In the mks system of units, 1 watt = 1 joule per second.)

An angular rotation of an aircraft or spacecraft around an axis perpendicular to its
bedy (which has the effect of moving the nose from side to side).
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